
 Eindhoven University of Technology

MASTER

Ultrasound Beamforming on a FPGA

Bakthavatsalam, Yeshika

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c8c0038b-3181-42e3-b420-3eff1e08d1fd

Ultrasound Beamforming
on a FPGA

Master Thesis

Yeshika Bakthavatsalam

Department of Electrical Engineering
Electronic Systems Group

Supervisors and Committee Members:
Marc Geilen

Annamarie Stanton
Massimo Mischi
Emad Ibrahim

version 3

Eindhoven, October 2020

Abstract

Breast Cancer is the most common form of cancer in women, accounting for 25.1% of all cancers.
Breast ultrasound is superior to other technologies in diagnosis due to quicker advancement in the
underlying technology and higher precision in the resulting image.

To reconstruct the ultrasound image, beamforming is the technique used. Beamforming re-
constructs the ultrasound signals generated from a common source that are received by multiple
transducer elements of the Ultrasound array into the ultrasound image. This is done by phase
alignment and summation of signals. Beamforming involves processing time delays of every ele-
ment of the transducer array and applying a time delay to each element’s received signal. There
is a constant need to optimize the computation of time delays to improve efficiency in terms of
resources, cost and area. Assuming the field of view to be taken as an n×m size image, every pixel
of the image is considered a point source, thereby calculating the time delay for every element on
the transducer array for each point source of the ultrasound image for multiple frames requires
billions of calculations and is computationally intensive, this leads to issues related to memory,
power and throughput.

To tackle the time delay calculations for every ultrasound signal, this thesis proposes using a
FPGA. The FPGA has the ability to stream multiple channels of data and compute beamforming
calculations in a parallel or a pipelined way. Also the FPGAs compactness, its high speed and
ability to perform DSP operations make it an ideal candidate for this task. This thesis concentrates
on understanding the complexity of ultrasound beamforming and using the CORDIC algorithm
to optimize the use of hardware resources. It also focuses on constructing the hardware design
and understand the requirements to compute the transmit and receive time delays using HDL
coder and Xilinx System Generator while also performing High Level Synthesis for FPGAs. This
research aims to pave the path towards scaling beamforming on a FPGA towards the application of
compound imaging of breast tissues; a technique that uses electronic beam steering of a transducer
array to acquire multiple overlapping scans of an object from different viewing angles.

Reconstructing the transmit delay and receive delay of ultrasound beamforming was performed
using HDL coder. It was observed that the CORDIC equivalent of cos and sin (used in the transmit
delay design) reduced the number of DSPs used for computation but increased the number of CLB
LUTs and CLB registers. With area optimizations such as resource sharing, the CLB logic could
be reused thereby decreasing the utilization of system logic cells on the whole. The square root
operation (used in the receive delay design) exhausts FPGA resources, specifically the CLB LUTs.
To solve this problem, the CORDIC equivalent square root operation was proposed. Comparing
the MATLAB square root block and Xilinx System Generator’s CORDIC 6.0 square root IP block
,the latter had a reduction in CLB LUT utilization. There was a trade off between the resolution
of the ultrasound image and the number of receiving channels of the ultrasound probe. There was
a trade off between the quality of the ultrasound image and the resource utilization of an FPGA.
In conclusion, ultrasound beamforming is computationally intensive and the CORDIC equivalent
along with design optimizations like area, speed and pipelining will yield in a reduction of FPGA
resources.

This thesis consists of 10 chapters. The first chapter is an introduction on the process of ultra-
sound beamforming for breast tissue. The second chapter discusses the concepts and tools used
during the course of this thesis. The third chapter provides a literature study on the complexity
of ultrasound beamforming. The fourth chapter describes the problem statement and research

ii Ultrasound Beamforming on a FPGA

question. Chapters five, six and seven explore the implementation and results for beamforming
using CORDIC equivalents for transmit and receive delay calculations. The eighth chapter dis-
cusses the trade offs with respect to resource utilization, cost and area of the FPGA. The ninth
chapter answers the research question and the final tenth chapter concludes this thesis.

Ultrasound Beamforming on a FPGA iii

Contents

Contents iv

List of Figures vi

1 Introduction 1

2 Background 3

2.1 Ultrasound Beamforming . 3

2.1.1 Transmit Delay . 4

2.1.2 Receive Delay . 5

2.2 Quality Measurement . 5

2.2.1 SNR . 5

2.2.2 Contrast Ratio . 6

2.3 Matlab-UltraSound Toolbox . 7

2.4 CORDIC Algorithm . 10

2.4.1 MATLAB CORDIC . 10

2.5 Simulink and Fixed-point designer . 11

2.6 HDL Coder . 12

2.7 Xilinx System Generator . 14

3 State of the art and literature study 16

4 Problem Statement 19

5 Beamforming and CORDIC Implementation 21

5.1 Complexity of beamforming . 21

5.2 Minor Optimizations . 22

5.3 Operations and their effect on FPGA . 23

5.4 CORDIC algorithm . 24

5.4.1 Transmit Delay . 24

5.4.2 Receive Delay . 25

5.5 HDL Coder : Hardware Design . 26

5.5.1 Beamforming hardware design . 26

5.5.2 HDL Coder optimizations . 27

6 Transmit Delay Implementation 29

6.1 Transmit Delay . 29

6.1.1 Optimized Transmit Delay . 29

6.1.2 Effect of number of iterations on hardware resources 32

6.1.3 Scaling up the hardware design . 34

iv Ultrasound Beamforming on a FPGA

CONTENTS

7 Receive Delay Implementation 37
7.1 Receive Delay . 37

7.1.1 Results . 37
7.2 Solving the bottleneck of square root operation . 39

7.2.1 Scaling up the hardware design . 40

8 Analysis 42
8.1 FPGA design trade offs . 42

8.1.1 Fixed point design . 42
8.2 Relationship between Logic and area of FPGA . 43
8.3 Relationship between CORDIC iterations and area, the latency of an FPGA 43
8.4 Ultrasound scan and frequency requirements . 44
8.5 Trade-off between quality and number of resources 44
8.6 Trade-off between Ultrasound Image resolution and number of channels 45

9 Research Question and Answers 46

10 Conclusion 48

Bibliography 49

Ultrasound Beamforming on a FPGA v

List of Figures

1.1 On the left is a normal B-mode ultrasound image of a breast cyst. On the right
is the reconstruction of the same breast cyst after compounding where the speckle
artefact is eliminated . 2

1.2 Delay and Sum [16] . 2

2.1 Pixels are considered as point sources and bearmorming is performed using a pixel-
based approach . 4

2.2 Time Delays for transmit signals [27] . 4
2.3 Apply receive delays and coherently sum signals to produce a beamformed signal [27] 5
2.4 Example : Contrast Ratio is measured as the difference between mean intensity of

region 1 (cyst) to it’s background region 2,3 . 7
2.5 Beamforming using Ultrasound Toolbox and Uff data structure 8
2.6 Data structure in UFF and USTB . 9
2.7 Uff data structure . 9
2.8 Example : Dynamic range of fixed-point designer tool 12
2.9 HDL coder high level description . 13
2.10 HDL code generation in detail . 14

5.1 Number of operations it takes to compute the receive delay, transmit delay and
beamformed signal matrices . 22

5.2 Number of operations . 23
5.3 CORDIC trigonometric operation. on the left is an image produced with fixed point

notation WL-14 and FL-12 and niters-14; On the right is a poorer quality image
produced with fixed point notation WL-20 and niters-6 25

5.4 CORDIC square root operation, on the left is an image produced with fixed point
notation WL-18 and FL-16 and niters-12; On the right is a poorer quality image
produced with fixed point notation WL-14, FL-12 and niters-2 26

5.5 Simulink high level block diagram of Ultraosund beamforming 27

6.1 Hardware design to compute transmit delay of 21 elements using CORDIC trigo-
nometric function . 29

6.2 Shared resources in the optimized transmit delay design 30
6.3 Streaming group in the optimized transmit delay design 31
6.4 Effect of CORDIC sin and cos on hardware resources 33
6.5 Effect of CORDIC sin and cos on SNR, CR and pipeline latency 33
6.6 Resource utilization and cost when the resolution of output image increases 34
6.7 Increase in FPGA resources as the ultrasound image’s resolution increases 35
6.8 Scaling up the Transmit delay calculation based on the number of transmitting

channels . 36

7.1 Receive delay using MATLAB sqrt function . 38
7.2 Xilinx System Generator CORDIC sqrt block . 39

vi Ultrasound Beamforming on a FPGA

LIST OF FIGURES

7.3 MATLAB sqrt function . 40
7.4 Increasing the resolution of the ultrasound image and its effect on FPGAs resources 40
7.5 Scaling up the receive delay calculation . 41

Ultrasound Beamforming on a FPGA vii

Chapter 1

Introduction

Breast cancer is the most common form of cancer in women. There is a never-ending need to im-
prove technology for a more accurate diagnosis. Compared to MRI and X-Ray, breast Ultrasound
is superior due to ultrasound signals being able to penetrate dense breast tissues [13]. A majority
of the detected lesions are breast cysts; the nature of cysts is that they are circular and contain
in them suspended particles that result in reduced resolution and speckle artefact while imaging.
Poor resolution and speckle artefact can be tackled by compounding the RF signals coming from
each element of the ultrasound. Compounding is an ultrasound technique that uses electronic
beam steering of the transducer array to rapidly acquire several overlapping scans of an object
from different view angles. Figure 1.1 shows a comparison of an ultrasound image of a breast cyst
before and after application of compound imaging [31].

Beamforming requires the computation of time delays for each element of the transducer array
for both transmitting and receiving signals. The output image is generated in the following
way. A sound wave is first transmitted through the body by the transmitting transducers. The
reflected echoes from the transmitted wave are then received by the receiving transducers. These
signals are delayed and summed together by each of its elements to reconstruct the ultrasound
image. This process is called beamforming. The most critical part of the beamforming is the
delay calculation, which is the summation of the delay profiles along with the echo samples. The
computation of transmit time delay requires millions of computations. Similarly, while performing
beamforming, computing the receive time delays requires trillions of calculations [15]. These are
computationally intensive and consume a lot of resources. Therefore, computing time delays for
each element of the ultrasound array is the bottleneck of the ultrasound image reconstruction
process.

The ultrasound reconstruction process produces an image composed of bright dots representing
the ultrasound echos, known as a B-mode ultrasound image. A B-mode ultrasound image is
generated with the help of a linear phased array. A linear phased array probe scans the object
along the length of the probe to create a cross-sectional profile without moving the transducer.
The transducer array collects the backscattered signals from each transmission, known as time-
domain signals. The individual signals are added together into a single signal. This algorithm is
called the Delay and Sum algorithm and is central to every image reconstruction algorithm
for the ultrasound beamforming [28]. Figure 1.2 shows the Delay and Sum.

Beamforming runs into major computation and bandwidth challenges due to the large number
of calculations that need to be performed for every signal [3]. Computation of time delays is
the bottleneck of ultrasound beamforming and to tackle this, offloading the delay calculation to
an FPGA’s seems to be a more promising approach with regard to cost, power and flexibility
in choosing the hardware blocks according to mathematical computations. Additionally, it is
lightweight, portable and efficient due to parallelization and pipelining [15]. The time delays
computed for beamforming are represented in a 2D/3D delay matrix depending on the array
geometry. A time delay matrix is a representation of discrete-time delays applied to each element
of the linear array for each pixel of the ultrasound image. In a 2D time-delay matrix m × n, m

Ultrasound Beamforming on a FPGA 1

CHAPTER 1. INTRODUCTION

Figure 1.1: On the left is a normal B-mode ultrasound image of a breast cyst. On the right is the
reconstruction of the same breast cyst after compounding where the speckle artefact is eliminated

Figure 1.2: Delay and Sum [16]

represents the number of pixels, and n represents each element of the ultrasound array. Some of
the work proposing delay calculations on an FPGA is explained in detail in the following literature
survey in Chapter 3.

The research question that piques interest is: What is the effect of the CORDIC algorithm on
the beamformed ultrasound signal and on an FPGA and what FPGAs can be proposed to perform
time delay calculations?

2 Ultrasound Beamforming on a FPGA

Chapter 2

Background

2.1 Ultrasound Beamforming

This section describes the theory behind ultrasound beamforming. The MATLAB scripts and
hardware design are based on the concepts and equations mentioned in this chapter. The type
of beamforming performed here is using the delay and sum algorithm using a pixel-based beam-
forming approach [11] [20]. The incoming data is a m × n × p matrix, where m is the number
of samples, n is the number of receive elements and p is the number of transmitting elements.
Channel data are beamformed directly into a grid of pixels. Figure 2.1 represents the pixel-based
approach of beamforming where a 4x4 pixel image is converted into a grid format and each block
represents a single source. There are 128 elements in the ultrasound probe, the ultrasound signal is
transmitted by the first 21 elements. The signals after being reflected from the source are received
by all 128 elements of the array. Beamformed signal is calculated for each pixel of the image for
each element transmitting the ultrasound signal therefore there are 16× 128 beamforming signals
for a single element transmitting the ultrasound signal.

The equations for beamforming are represented below where the first equation is the beam-
formed signal for a single element transmitting the ultrasound signal and all 128 elements receiving
the echo. St is the set of signals that create a low-quality image for each transmitting signal. Co-
ordinates [x,z] represent the pixels and elements of the array, respectively. m is the total number
of elements of the array (128 elements), ym is the delayed signal from element m to M and wm

are predefined receive weights. Weights for beamforming are not addressed here as the focus of
the thesis is the time delays.

St[x, z] =

M−1∑
m=0

wm[x, z]ym[x, z] (2.1)

In the equation below, the images are coherently compounded into an image of higher quality.
St[x, z] represents the signals making up a lower quality image and S[x, z] represents the final
beamformed signal that is of a higher quality. T is the number of transmit signals (in this case
21) and wt is predefined transmit weight.

S[x, z] =

T−1∑
t=0

wt[x, z]St[x, z] (2.2)

The total time delay i.e between the transmitting element to the point source and back to the
receiving element, is given by the equation below where total time delay is represented by τ and
the transmit and receive time delays are represented by τtx and τrx respectively. Time delays are
subtracted from each of the ym[x, z] signal.

τ = τtx + τrx (2.3)

Ultrasound Beamforming on a FPGA 3

CHAPTER 2. BACKGROUND

Figure 2.1: Pixels are considered as point sources and bearmorming is performed using a pixel-
based approach

Figure 2.2: Time Delays for transmit signals [27]

2.1.1 Transmit Delay

In ultrasound arrays, the transducer is composed of piezoelectric elements where each element
can be separately driven in the time domain to transmit a signal and the echo signal is received
by each element of the same array. Each element of the array has a relative time delay of ∆td
from its subsequent element, this allows for ultrasound transmit beam to be steered by an angle.
Electronically steering by applying time delays to each element is represented in Figure 2.2.

Transmit delay is calculated by the equation given below, where τtx[x, z] represents the transmit
delay of a pixel with coordinates x and z where x is the pixel number in the x-axis and z is the
element of the array that is transmitting the ultrasound signal in the z-axis. scanzaxis represents
a vector containing values that of each pixel that is to be scanned along the z-axis the same goes
for scanxaxis along the x-axis. T represents the number of transmission waves, (in this case 21),
z represents the elements of the array which is also 21. Since the ultrasound probe consists of
1D elements, it has one angle of freedom, i.e the azimuth angle. However, the angle of elevation
(which is zero in this case) is also considered here since this algorithm is flexible for a 2D array.
According to the example considered, τtx is a 16× 21 matrix array.

4 Ultrasound Beamforming on a FPGA

CHAPTER 2. BACKGROUND

Figure 2.3: Apply receive delays and coherently sum signals to produce a beamformed signal [27]

τtx[x, z] =

T−1∑
z=0

scanzaxis.cos(azimuthz).cos(elevationz)

+scanxaxis.sin(azimuthz).cos(elevationz)

(2.4)

2.1.2 Receive Delay

Relative time delays for each element can also be used to modify characteristics of receiving signals
in the array. The figure 2.3 shows the echos of planar waves arriving at an array and this wave
strikes each element of the array in succession and a series of electric pulses are generated. The
relative time delays ∆ti are applied to these received signals so that all of the signals can be
coherently added. Then these are summed together to produce a single large output signal.

The equation below represents the calculation of receive delay. Receive delay is the delay
between pixel p and the receiving element xj where c is the speed of sound. Receive delay is to be
calculated for all pixels required to form the output image and all elements of the array that are
receiving the signal. According to the example considered in this section, the receive delay would
be a matrix of the size 16× 128.

τrx =
|xj − p|

c
(2.5)

The equation below represents a more detailed mathematical version of the equation above,
where xm represents the difference between the data at a pixel point [x] and the virtual source
points represented as pixels in a grid, the same thing goes for zm along the z-axis and ym along
the y axis. The equation below represents the receive delay for p pixels of the ultrasound image
and M elements that are receiving the signal.

τrx =

√
x2m + z2m + y2m

c
(2.6)

2.2 Quality Measurement

2.2.1 SNR

Signal to noise ratio compares the level of a desired signal to the level of background noise. In
ultrasound imaging it is hard to differentiate between what is noise in an image and what is not.
Also, there is no reference image that can be considered as noise as the ultrasound image changes

Ultrasound Beamforming on a FPGA 5

CHAPTER 2. BACKGROUND

in every scan. In this case, the signal to noise ratio is defined as the ratio of mean and the
standard deviation of an image, represented by the equation below where µ is the mean and σ is
the standard deviation. Each pixel of the output image represents a complex valued beamformed
signal.

SNR =
µ

σ
(2.7)

The mean µ is calculated as the mean of the absolute value of all pixels of the output image
divided by the maximum absolute value of all pixels, represented in the equation below. Here,
pixels is the vector containing all pixels of the ultrasound image, max is a MATLAB function
used to calculate the maximum of a given matrix and abs is a MATLAB function that returns the
absolute value of a matrix.

µ = mean| pixels

max(abs(pixels)
| (2.8)

Subsequently, σ is the standard deviation of the absolute value or all pixels divided by the
maximum absolute value of all pixels. It is calculated as below,

σ = std| pixels

max(abs(pixels)
| (2.9)

2.2.2 Contrast Ratio

To measure the quality of the image Ultrasound Toolbox presents a tool that can measure the
contrast ratio between regions [23]. The contrast ratio (CR) is defined as,

CR = |µROI − µB | (2.10)

Where µROI is the mean intensity value in dB from the region of interest and µB is the mean
intensity value of the background region. Figure 2.4 is an example of the contrast ratio being
calculated. Region 1 is the cyst and Region 2 is the background. The Contrast Ratio (CR) for
this example is 28.7. The purpose of using CR as a quality measurement standard in this thesis is
to understand the effect CORDIC and Fixed-point optimizations have on the output image. When
the contrast ratio decreases then the ability to differentiate the cyst from its background decreases.
In further chapters, it is observed that as optimizations increase, the quality of the image decreases
i.e the cyst blends into the background and it gets harder to distinguish the boundary of the cyst
from its background. This tool will enable one to find a limit as to how much optimization can be
done.

With SNR and CR, the ultrasound image’s quality can be determined. The highest quality
image generated is considered to be the image generated using the floating point data type. The
SNR and CR of the floating point data type is used as a reference for further experimentation
with CORDIC and fixed point data type.

6 Ultrasound Beamforming on a FPGA

CHAPTER 2. BACKGROUND

Figure 2.4: Example : Contrast Ratio is measured as the difference between mean intensity of
region 1 (cyst) to it’s background region 2,3

2.3 Matlab-UltraSound Toolbox

UltraSound Toolbox [25] is an add on toolbox for MATLAB [17]. Ultrasound toolbox presents the
Ultrasound File Format(UFF) which is an HDF5 data format open to any programming language
for storage of channel and beamformed data. The toolbox is made of both MATLAB and C++
code with GPU support. UFF and USTB (UltraSound Toolbox) provide a structure to process
2D and 3D ultrasound data.

A high-level description of the process of beamforming using Ultrasound Toolbox is represented
in figure 2.5 Channel data in the form of a .uff extension can be adhered to any process/algorithm,
in this case, the Delay and Sum beamforming[21]. Data can be simulated or read from a file (.uff
extension), followed by defining a scan using an ultrasound probe configuration and then is fur-
ther processed using the Delay and Sum algorithm. Transmit and receive apodization weights are
calculated, however in this thesis weights is not of focus and hence default values are used. Apod-
ization involves varying the amplitude across the aperture of the transducer such that elements of
the center of the probe are excited with a higher voltage compared to the other elements on the
side. Apodization weights are weights given to different elements of the probe that imitate this
voltage change.

Transmit and receive delays are calculated using the equations mentioned in the previous
section. Finally, the Delay and Sum algorithm is used to compute the beamformed signal. The
beamformed data then stored back to the UFF file. The beamformed data can be represented as
an ultrasound image of size m× n pixels, where each pixel represents a beamformed signal. The
dataset used is that of a hypoechoic cyst i.e. the cyst is brighter than that of the background.
The dataset used is recorded on an Alpinion scanner with a 128 element L3-8 (linear 3-8 Mhz
probe) probe and stored in a .uff extension. The dataset consists of 21 plane waves that are being
transmitted from the ultrasound probe and the echo is received by all 128 elements of the probe.
This dataset is an ideal candidate for the application of compound imaging.

The Data structure of the combination of UFF-USTB is represented in figure 2.6 and figure
2.7. Figure 2.7 represents the uff data structure in its simplest form. The uff class has several

Ultrasound Beamforming on a FPGA 7

CHAPTER 2. BACKGROUND

Figure 2.5: Beamforming using Ultrasound Toolbox and Uff data structure

subclasses like that of channel data, scan, beamformed data etc, each of which has several objects.
The channel data class has objects like sampling frequency of the probe, probe geometry (element
spacing) and holds the data (3 dimensional). objects can be individually accessed and worked on.
The scan consists of the geometry of the grid that represents the pixels. In the dataset considered
the output image is a 512× 512 image therefore the data structure uff.scan holds the geometry
of each pixel on the x-axis and the z-axis. The class called probe contains the geometry of the
probe i.e the placement of the elements of the array and the spacing between them. The class
called point contains the focus point of the source. In this implementation, since we consider plane
wave imaging, the point sources are set to infinity. The class called wave consists of a sequence of
transmit waves, this class has several objects that describe the transmission of the ultrasound wave
such as transmit delay and the geometry of the elements that are transmitting. The beamformed
data consists of the beamformed signals. 1. The resulting beamformed data is a M x N image
where each pixel is represented by a complex-valued beamformed signal.

The reason behind choosing this dataset is that the hypoechoic data is collected using an
actual ultrasound probe and stored in the uff data structure. This enables one to expect the
intermediate and final results to match the results of an actual ultrasound scan. The beamformed
signal and the output image are used as a reference for when further experimentation is done.
The beamformed signal is used as a reference floating-point signal to compare the difference in
results when beamforming is performed using the CORDIC algorithm and fixed-point notation.
The beamformed image is used as a reference image so that the effect of optimization techniques
can be observed (for SNR and CR).

1https://www.ustb.no/ius2017-abstract

8 Ultrasound Beamforming on a FPGA

https://www.ustb.no/ius2017-abstract

CHAPTER 2. BACKGROUND

Figure 2.6: Data structure in UFF and USTB

Figure 2.7: Uff data structure

Ultrasound Beamforming on a FPGA 9

CHAPTER 2. BACKGROUND

2.4 CORDIC Algorithm

CORDIC is an iterative algorithm used to compute trigonometric, square root and division func-
tions for DSP applications. It was first introduced in 1959 by Volder [30] and over the past years,
there have been significant improvements and variants that improve the speed and basic design.
The variations all aim to reduce the resources used for computation, increase the speed, reduce the
complexity of hardware and to reduce the number of iterations [22]. The algorithm of CORDIC
proposed by Volder is derived from the two rotation equations,

x′ = xcosφ− ysinφ (2.11)

y′ = ycosφ+ xsinφ (2.12)

The equations represent a vector (x,y) that is rotated by an angle of φ. This is modified further
to replace the multiplication operation by iterative shift operations. The modified equation is given
by,

xi+1 = xi − yi.m.di.2−i (2.13)

yi+1 = yi − xi.m.di.2−i (2.14)

zi+1 = zi − di.tan−1(2−i) (2.15)

where m = -1,0,1 and represents the rotation in the specific coordinate system (m = 0 for
linear, m = 1 for circular, m = -1 for hyperbolic) and di = +1 if the vector has to be rotated
counterclockwise (if zi > 0) and di = -1 for clockwise rotation (if zi < 0) This forms the basic
equation to compute various mathematical functions using CORDIC.

The CORDIC algorithmic rule performs the rotation of a vector in a sequence of micro-rotations
that aim to converge to the required angle that the vector is subjected to rotate at. The arith-
metic rule reduces the multiplication and simplify overall hardware requirements. In general, a
single multiplication is mapped to a single DSP in a FPGA, hence reducing/eliminating the mul-
tiplication operation (as done in CORDIC) reduces the number of DSP slices that are required
to perform beamforming on an FPGA. The CORDIC algorithm is chosen here as an optimization
to reduce the multiplications required to calculate the cos, sin and square root operations while
computing the transmit and receive delay. The basic hardware required to compute a result using
CORDIC is shift registers, lookup table, adder/subtractors. The adder/subtractor perform the
addition and subtraction of binary numbers. The register performs the bit-shift operation follow-
ing the algorithmic rule. The constants equivalent to angle values are obtained from the look-up
table. Since CORDIC is an iterative algorithm, increasing the number of iterations can produce
more accurate results but doing so also increases the expense of the computation i.e number of
adder/subtractor blocks and shift registers. An increase in iteration also adds latency. To solve
the issue of latency, pipelining can be adopted.

The CORDIC architecture consists of bit shift registers and adder/subtractors and can extend
its architecture to perform CORDIC iterations in a parallel and pipelined way. As CORDIC
iterations are identical it is convenient to map them to pipelined architectures. When pipelined
CORDIC circuits are used, high throughput is achieved. For an N bit, CORDIC input N stage
pipeline can be obtained for N cycles. In future improvements and optimizations, CORDIC
pipelining can be explored to increase efficiency concerning throughput and speed.

2.4.1 MATLAB CORDIC

Matlab offers a wide range of mathematical operations like cos, sin, square root, tan etc to be
computed using the CORDIC algorithm. A high-level understanding of MATLAB CORDIC (the
cordic functions offered by MATLAB) is discussed here as this is sufficient to understand the
optimizations it presents for hardware resources.

10 Ultrasound Beamforming on a FPGA

CHAPTER 2. BACKGROUND

CORDICOS and CORDICSIN

In the equations mentioned below, the MATLAB function used to compute the CORDIC equival-
ent value. Theta can be a signed or unsigned scalar, vector or a matrix. The values of theta can be
real and in the range [–2π 2π). niters is the number of iterations the CORDIC algorithm computes
for. niters is a positive scalar value, for fixed-point operation, the maximum number of iteration
is one less than the word length (WL-1) of theta and for floating-point operation, the maximum
value is 52 (when theta is of a double data type) or 23 (when theta is of a single datatype). The
result is stored in y i.e y is the CORDIC-based approximation of the cosine and sine of theta.
When the input (theta) is of fixed-point type, the output has the same word length(WL) and the
fractional length is equal to word length - 2 (FL-2).

y = cordiccos(theta, niters) (2.16)

y = cordicsin(theta, niters) (2.17)

CORDICSQRT

The CORDIC algorithm is also used to estimate the square root of a value. The equation below
represents the MATLAB CORDIC square root function where the input u is a positive scalar,
vector or a matrix of fixed-point notation. The input should ideally have a value within the range
of 0.5 to 2 for the algorithm to be most accurate. In the case where the input is outside this
range, the cordicsqrt applies to pre and post normalization process to give accurate results. The
number of iterations can be specified in the place niters, this must be a positive scalar value. The
number of iterations should be a maximum of Wordlength - 1. The output y has the fixed point
notation like that of the input u.

y = cordicsqrt(u, niters) (2.18)

In subsequent chapters, the effect of the fixed point notation of theta, u and the number of
iterations on the beamformed signal and output image are discussed. The objective would be
to find the word length, fractional length and number of iterations that will yield an ultrasound
image with an acceptable resolution and SNR. For reference, the floating-point cos, sin and square
root are considered. The CR and SNR calculated using the floating-point cos sin, square root and
are considered ideal values and used as a reference.

2.5 Simulink and Fixed-point designer

Simulink

Simulink is a tool provided by MATLAB that can build and test simulations and create a hardware
design using a Model-Based approach. It supports system-level design, simulation and automatic
code generation. Simulink can read and store data from and to the MATLAB workspace. Simulink
has a graphical editor, block libraries (here the ’block’ is the Simulink subsystem that contains
the hardware design that is to be synthesized.) supported by DSP toolbox and is integrated with
MATLAB such that MATLAB algorithms can be incorporated into models and simulation results
can be exported for further analysis. Here Simulink plays an important role in creating a hardware
design for the transmit and receive delay. Simulink paves a way to work with HDL coder for FPGA
synthesis and VHDL code generation.

Fixed point designer

Digital hardware can be represented in fixed-point or floating-point data types. The dynamic
range of floating-point is more than that of fixed point and for very small numbers (the decimal
point at 10−7) floating-point yields better results than that of the fixed point. However, fixed-point
is still used for hardware design. The reason being :

Ultrasound Beamforming on a FPGA 11

CHAPTER 2. BACKGROUND

Figure 2.8: Example : Dynamic range of fixed-point designer tool

• Size and Power Consumption: the complexity of logic circuits with fixed-point is lesser than
that of floating-point. The chip size and power consumption are lesser compared to floating-
point. For applications that require small and portable devices, fixed-point is a better choice.

• Memory Usage and Speed: In general fixed-point calculations require less memory and less
processor time to perform as compared to floating-point.

• Fixed-point hardware is more cost-effective than floating-point hardware and thus can result
in significant savings

In this thesis fixed-point designer tool by MATLAB is used to convert the floating-point design
to fixed-point design. Fixed-point designer provides data types and tools for optimizing and
implementing fixed-point design for beamforming. Fixed point designer collects a set of ranges
and suggests fixed point notations accordingly such that overflow or underflow do not happen.
Figure 2.8 is an example that shows how fixed point designer tool works. Simulink hardware
blocks like product4, product5 give results that do not cause overflows or underflows, the same is
not for the case of product3. Overflow and underflow both cause errors in the result and therefore
affect the beamformed signal and reduce the quality of output image. Therefore the required fixed-
point numerical accuracy can be set using fixed point designer according to the requirement of
the hardware before actually implementing this on the hardware. A good analysis on fixed point
fraction length and optimizing the fractional length keeping in mind not to have overflow and
underflow is performed here, these values of fixed-point are then chosen and can be implemented
in hardware. Production of C and HDL code can be generated from fixed-point models.

2.6 HDL Coder

HDL coder is a high-level synthesis tool that allows for creating a hardware design of DSP al-
gorithms and performing FPGA synthesis of it. FPGA synthesis results in the code generation of
VHDL and provides resource and timing summaries for the hardware design. It offers high-level
design blocks, MATLAB functions that can be used to perform simulation and generate synthes-
izable VHDL or Verilog source code. In this thesis HDL coder is used to reconstruct the transmit
and receive delay that is computed during the beamforming process. The bottlenecks are observed
and optimizations are performed. A block diagram of the working of HDL coder is shown in figure
2.9 2. MATLAB stores the input vectors in the workspace. Simulink is used to design the hardware

2https://www.bdti.com/InsideDSP/2012/09/05/MathWorks

12 Ultrasound Beamforming on a FPGA

CHAPTER 2. BACKGROUND

Figure 2.9: HDL coder high level description

required to perform mathematical computations for transmit and receive delay. The HDL coder
tool then converts the hardware design to VHDL or Verilog code that is targeted to an FPGA or
ASIC device. The HDL tool also offers to create a test bench for verification purposes such that
the hardware design can be checked for correctness.

Figure 2.10 represents a more detailed depiction HDL Code generation.

HDL coder properties can be configured, here the target FPGA or ASIC device can be set,
optimizations can be explored, the type of report one wants to generate can be set, for verification
purposes, test bench configurations can be set and in general global settings can be found here.
Next, block properties can be set. Here pipelining options like adaptive pipelining, input and
output pipelining and clock rate pipelining can be explored. Input streaming and resource sharing
factors can also be set to appropriate values. These configurations mentioned here are discussed
in more details in further chapters.

Finally, HDL workflow advisor can be used to perform synthesis and generate VHDL code.
The workflow advisor performs several tests and checks compatibility and configurations during
these checks. Once all checks are passed then synthesis and code generation is performed. Once
the target device is set and HDL mode is set then the HDL code is generated and a report
is produced. In this report, a detailed description of hardware resources used to perform the
whole computation is generated i.e the number of multipliers, adder/subtractor, one-bit registers,
memory is all presented. As and when optimization techniques are included in the hardware design,
the resource utilization reduces however this is not always the case, experimentation is done and
its results are discussed in detail in further chapters. The final step is FPGA synthesis where the
source code is generated and the utilization of resources for the target device are tabulated in the
form of a resource summary; here, the number of Lookup tables, DSP slices, RAM are presented.
Also, a timing summary is displayed where the required timing, data path delay and slack time
are all presented. Changes in hardware design and optimizations with design all yield different
timing and resource summaries.

The use of HDL coder her threefold. First, to understand the hardware resources required
to compute parts of beamforming. Second to generate VHDL or Verilog source that can be

Ultrasound Beamforming on a FPGA 13

CHAPTER 2. BACKGROUND

Figure 2.10: HDL code generation in detail

used to work on the FPGA (also hardware in the loop can be performed). Thirdly, the effect of
optimizations like pipelining, resource sharing, using CORDIC and using a fixed-point notation
can be explored such that the best result can be implemented on an FPGA. The HDL coder is a
great tool to map DSP algorithms to hardware devices and perform synthesis.

2.7 Xilinx System Generator

System Generator for DSP is the industry’s architecture level design tool to define, test and imple-
ment high-performance DSP algorithms on Xilinx devices. This is designed as an add-on toolbox
for MathWorks Simulink [7]. SysGen is a tool provided by Xilinx’s Vivado. System generator
provides IP that enables us to create RTL code for the hardware design of beamforming. It also
allows for flexibility in working with hardware blocks, like implementing optimization techniques
for conserving hardware resources like LUTs, memory, shift registers etc. Combined with simula-
tion and verification, the quality of the algorithms can also be easily assessed. The RTL code and
functions generated can easily be transferred onto one of the Xilinx boards that are compatible
with Vivado.

Xilinx system generator allows for building and debugging of high-performance systems, us-
ing Xilinx optimized RTL IPs as blocks within Simulink for signal processing (e.g., FIR filters,
FFTs) one can define memory blocks (FIFO, RAM, ROM), digital logic and arithmetic logic. The
system generator also supports bit and cycle-accurate fixed-point, double, and custom precision
floating-point. This is useful to compare the precision for transmit and receive delays.

RTL generation and target specific Xilinx IP cores from the Xilinx Blockset. For further re-
search and implementation, one can generate the RTL code for the beamforming algorithm used,
thereby having the ability to transfer and implement beamforming onto a Xilinx board. Several
devices are supported to work with Xilinx system generator, these can be found in the System
Generator for DSP website3. Among these, there is one in particular which is useful and efficient
for Ultrasound applications, which is the Kintex UltraScale series. We target this board in specific

3https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html

14 Ultrasound Beamforming on a FPGA

https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html

CHAPTER 2. BACKGROUND

because of its current availability and also because it can support as many as 32 × 32 receive
channels, which sufficient to stream data in.

Ultrasound Beamforming on a FPGA 15

Chapter 3

State of the art and literature
study

A key bottleneck of delay calculations in the receive beamforming is investigated in A. Ibrahim
et al. [14] where the computation of fine-grained time delays among the digitized receive echos
are released by implementing smarter time delay calculation and present their feasibility analysis
on an FPGA platform. This paper presents studies that show the existing challenge faced by
time delay computation in ultrasound beamforming and how to use an FPGA to tackle this. The
smart time delay calculations perform beamforming on FPGA by computing a reference lookup
table for a single point on the Z-axis and calculate the time delay for subsequent points steered
from this reference point and proposing an FPGA hardware logic of two additions and the square
root operation. It also states that a typical 2D system requires a pre-computed delay LUT of
a few million coefficients but a 3D system ranges beyond billion coefficient, therefore, implying
problems arising in storage. Results show that it is possible to perform 3D delay calculations on a
Virtex FPGA by tuning fixed-point representations. Like that of this paper, the computationally
intensive transmit delay and receive delay were identified. For future improvements, this idea can
be adopted for the calculation of square root.

R. Sampson et al. [26] tackle the key challenge of large 3D ultrasound systems. They need
to compute over 100 billion round trip delays to convert the RF channel data into beamformed
images. They do this by introducing an algorithm that computes on the fly delays as opposed to
the standard 2D approach of pre-computing delays and storing them in LUTs (which require large
storage space). What piques interest for us is the flow of data generated by Field II simulation
and hardware modelling done on MATLAB, showing that on the fly computation of delays is
a possibility to perform ultrasound beamforming. This algorithm implemented on hardware by
prototyping a single channel of beamformer design on an Altera DE1 FPGA board. The proposed
work claims to have a higher speed, low power consumption up and better image quality. The idea
of utilizing MATLAB HDL coder for synthesis was stemmed from this research. However, during
the course of this thesis it seemed that on the fly computation was not a practical approach to
calculate the receive delay, however for the transmit delay it is possible.

A.Ibrahim et al. [15] describe an imager that tackles the bottleneck of a large number of com-
putational time-delay calculations by providing a highly scalable architecture. The architecture
is down-scaled for 2D imaging or further up-scaled for 3D ultrasound imaging. The platform
supports both real-time inputs over an optical cable and test data feed sent by a laptop running
Matlab. This work presents a complete fully digital imaging system capable of both 2D and 3D
reconstruction capable of utilizing up to 1024 transducer channels in a single Kintex UltraScale
KU040 FPGA. Thus, this work justifies why an FPGA performs efficiently and why the optimiz-
ation of beamforming of Ultrasound signals is feasible, thus in this thesis, the FPGA was chosen

16 Ultrasound Beamforming on a FPGA

CHAPTER 3. STATE OF THE ART AND LITERATURE STUDY

as the hardware used to offload the calculations on to.
An extension of the said work is scaled down to consume lower power; the proposed parallel

architecture uses 32×32 delays that pre-calculated and summed thus utilizing only 32x32 channels
probe for reconstruction [3]. In this thesis, 32 receiving elements was also chosen since having 128
receive elements was computationally intensive.

Other methods to tackle the time delay computation problem is to have more efficient al-
gorithms, for example, I. K. Holfort et al. [12] investigates a minimum variance (MV) approach
for nearfield beamforming of broadband. They compare the performance of MV beamformer with
the traditional Delay and Sum beamforming. Results indicated that they outperformed the tra-
ditional beamformer in terms of SNR. Another algorithm prominent in the study of breast tissues
based off of Delay and Sum algorithm would be delay multiply and sum algorithm (DMAS) as
mentioned by G. Matrone et al [18] that also outperforms the traditional DAS algorithm in con-
trast resolution. In DMAS a single scan line is considered just like in DAS and each element
transducer receives the echo and DAS is applied, once the signals are in phase they are combinat-
orially coupled and multiplied. It would be interesting to note what effect these algorithms have
on the hardware design of the FPGA beamformer i.e. how would one design the hardware when
using superior algorithms containing multiple multiplications, squaring and summing operations.
For future high quality imaging, the DMAS algorithm can be adopted instead of DAS. In this
thesis the DAS algorithm was chosen as it is simpler to reconstruct the hardware design.

J. Chen et al. [5] look into the design considerations of real-time adaptive beamforming on
FPGA and GPU. Their algorithm, MV adaptive beamforming, is more computationally demand-
ing than delay and sum beamformers because it computes weights in real-time with the response
from input data providing a throughput of 20 fps-100 fps. This work provides proof that Field
2 simulated data can be used to perform beamforming on Xilinx and that hardware designs can
be analysed using Xilinx System Generator. Field II simulation of a cyst is used to simulate
the data and the beamforming design uses Simulink and Xilinx System Generator. Ideally, the
input channel data is taken from Matlab workspace (field II) and goes into FPGA MV beam-
former and the output is sent back to Matlab workspace, which is similar to the way the data
flow in the hardware designs of this thesis work. This proposed work uses MV adaptive beam-
forming which promises speedup but does not see an improvement in image quality primarily
due to numerical errors generated from a different sequence of floating-point operations. In this
thesis, the data set used is also simulated from Field 2. The decision of using fixed-point design
instead of floating-point design was due to the poor results obtained using a floating-point design
in this research paper. Floating-point design used too many resources and slowed down processing.

M. Almekkawy et al. [2] presents a resource-optimized dynamic digital beamformer for an ul-
trasound system based on FPGA. This study uses a 64 channel receive-beamformer embedded into
an Altera Arria V FPGA chip. This work provides sufficient knowledge on the hardware resources
used for Altera Arria V FPGA, thus enabling the choice of hardware to be Xilinx Ultrascale for
our work. The reason for not choosing Altera Arria V FPGA is because Xilinx Ultrascale series
is superior in several aspects [24], especially the utilization of LUT .

M. A. Hassan et al. [9], is an approach that is similar to this thesis. Here, a system with two
8-channel blocks is reconstructed by a single block. The beamformer is generated using Xilinx
System Generator and MATLAB Simulink; the RF data is saved in Matlab workspace and used
by the Xilinx block digital beamforming is implemented in Virtex-5 FPGA. In this thesis it was
identified that the Ultrascale Virtex FPGA series was a high end FPGA and was more expensive.
To reconstruct the receive delay for a 64 channel beamformer, this FPGA can be chosen.

Other hardware FPGA designs employing a larger number of channels for highly scalable
applications like sonar also exist that use the same concept of advance beamforming and FPGA
computation. One such example is the design in H. J. Hewener et al. [10] that uses 128 channel

Ultrasound Beamforming on a FPGA 17

CHAPTER 3. STATE OF THE ART AND LITERATURE STUDY

beamformer using MicroBlaze in the front end and stores time delays in external DDR3 memory
with a throughput of 30fps. Although this method is ultrafast, it is extremely bulky and not
intended for the application presented in this thesis. A similar concept is presented in A. A.
Assef et al. [4] that uses a simple delay and sum algorithm. During the course of the thesis,
it was identified that for high quality applications that involve the use of all 128 elements of
the ultrasound array (i.e 128 receive channels), an external memory can be used. This external
memory can serve as a storage for pre calculated square root values in the form of LUTs, this way
the square root operation used in the receive delay calculation can be eliminated.

18 Ultrasound Beamforming on a FPGA

Chapter 4

Problem Statement

Breast Ultrasound is superior to other forms of breast cancer diagnostic tools due to its ease of
use, cost and rapid advancement in its technology. One of the major challenges that occur in
the diagnosis of a breast cyst is the circular shape of the cyst leading to speckle artefact and
reverberations within the cyst. To solve the issues due to the speckle artefact, the coherent wave
compounding is adapted.

The technological challenge that persists to this day is the computation of time delays during
beamforming. The most critical part of beamforming is the time delay calculations as the delay
profiles of each element of the ultrasound array along with the echo samples are to be summed
up to provide a single signal that represents a pixel of the entire ultrasound image. The delay
is calculated as the propagation path from the transmit element to the focus point and back to
the receiving element, this delay calculation involves arithmetic logic such as square root, divi-
sions, and summations. Computation of transmit time delay and receive delay requires trillions
of calculations which is highly computationally intensive for the Ultrasound probe and system.
Thus computing beamforming time delays for each element of the array is the bottleneck of the
ultrasound image reconstruction process. To analyse hardware design, pipelining and exploit par-
allelism, the use of an FPGA to perform this time delay computation is proposed. By this, an
understanding of resources, memory and area used, are explored.

Principal Research Question: How to optimize the time delay calculations of ul-
trasound beamforming and what FPGAs can be proposed to perform time delay cal-
culations?

The reconstruction of ultrasound signals starts with a basic algorithm called the delay and
sum algorithm which is to be reconstructed on hardware via HDL coder for Matlab Simulink. By
creating the beamformer with the help of HDL Coder, one can understand the underlying require-
ments of hardware that are needed to perform arithmetic operations that compute the time delay.
Further, trigonometric and square root operations are replaced by its CORDIC variants and its
effects on the ultrasound image, and FPGA resource utilization is determined. This can further
be mapped using performance measuring tools to see how resources are utilized and react when
scaling up the application.

SUB Research Question 1: How to optimize the time delay calculations of ultra-
sound beamforming using the CORDIC algorithm ?

CORDIC variants of cos, sin and the square root is used in the calculation of transmit delay
and receive delay, the effects of this on the SNR and Contrast ratio of the resulting ultrasound

Ultrasound Beamforming on a FPGA 19

CHAPTER 4. PROBLEM STATEMENT

image are observed. Further, the hardware design is reconstructed and FPGA synthesis is per-
formed, this gives an idea on resource utilization and timing analysis.

SUB Research Question 2: What FPGAs can be proposed to compute transmit
and receive time delays for ultrasound beamforming?

Trade-offs observed during hardware design are discussed and a suggestion on optimal hardware
design is given. Further, suggestions on Xilinx FPGAs that are best suited to calculate the receive
and transmit delay are provided.

20 Ultrasound Beamforming on a FPGA

Chapter 5

Beamforming and CORDIC
Implementation

5.1 Complexity of beamforming

Several articles mentioned in chapter 3 discuss the complexity of beamforming in detail, many of
which focus on the computation of time delays which is the bottleneck of Ultrasound beamforming.
Complexity is due to the large number of calculations that have to be performed to compute
receive delay, transmit delay and beamforming in general. This section explores the number of
mathematical operations required to compute receive delay, transmit delay and beamforming for
the data set considered. As mentioned in chapter 2, the dataset is of a uff format; The dataset
used is that of a hypoechoic cyst i.e. the cyst is brighter than that of the background. The dataset
used is recorded on an Alpinion scanner with a 128 element L3-8 probe. The dataset consists of
21 plane waves that are being transmitted from the ultrasound probe and the echo is received
by all 128 elements of the probe. Based on the equations discussed in chapter 2 the number of
additions, subtractions, multiplications, division and the square root is calculated. The resulting
image is a 512 × 512 image that is obtained from compounding 21 images. The first image is
obtained when the first element is transmitting a planar wave and all 128 elements are receiving
the echo, similarly, the second, third ... up to twenty-one. These images are compounded to give
one resulting 512× 512 image that is used in further chapters.

Receive delay is calculated as the square root of the distance between the element to the source
(one pixel at a time) and back to the element, as represented in equation 2.6. Therefore the receive
delay is a 2D matrix of size 262144× 128 (the output image has 512× 512 pixels therefore 262144
point sources). Transmit delay (represented in equation 2.4) is calculated for 21 transmitting
elements therefore, the size of the 2D matrix is 262144× 21.

Beamformed signal is a vector containing 262144 × 1 elements of complex-valued numbers
where each element represents the beamformed signal of one pixel in the output ultrasound image
(represented in equation 2.1). The figure 5.1 below describes the number of operations it takes to
calculate the transmit delay, receive delay and beamformed signal for the given dataset.

Ultrasound Beamforming on a FPGA 21

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

Figure 5.1: Number of operations it takes to compute the receive delay, transmit delay and
beamformed signal matrices

5.2 Minor Optimizations

On observing the algorithm closely there are a few redundancies that can be eliminated. First of
which is that there is no y coordinate as the ultrasound probe has only two degrees of freedom, the
x-axis and z-axis. The receive delay equation originally calculates the receive delay for all three
coordinates assuming the elements on the y-axis to be zero, as represented in the equation below,

τrx =

√
x2m + z2m + y2m

c
(5.1)

This can be replaced with the following equation, thereby eliminating the need to compute
receive delay along y axis

τrx =

√
x2m + z2m
c

(5.2)

Secondly, division by a constant can be eliminated by converting it to a multiplication of the
inverse of the element. Speed of sound is the divisor in several computations, this is converted to
multiplication with the inverse of the value of the speed of sound.
Thirdly, In this application involving breast tissues, transmit apodization is a 262144 X 21 matrix
containing all 1’s. It is observed that each element in this transmit apodization matrix is multiplied
to the 262144× 128 receive apodization to give the final apodization matrix. This is redundancy
since any number multiplied with 1 gives the number itself. Another reason behind setting the
default value of the transmit apodization as 1 is that for the application of breast cysts, since they
are superficial, a transmit apodization is not required and can be eliminated [19]. With these minor
changes in computation, the number of operations can be reduced drastically. As represented in
figure 5.2, the bottleneck is the multiplication operation and the square root operation. As addition
and subtraction take fewer clock cycles (around 1-2 clock cycles) to compute and multiplications
(typically 6 clock cycles) and square root take many more (around 25 clock cycles), depending
on the hardware. Now that the bottleneck of beamforming is realized which is the number of
multiplications and the number of square root operations, the aim is to try and find a solution.

Trigonometric operations sin and cos are involved in the calculation of transmit delay, these add
to latency and utilize many multipliers. The sine and cosine of a number is calculated using taylor
series. Taylor series is an approximation based function where the sin or cosine is calculated using
an infinite series of polynomials involving a lot of multiplications and divisions. On the whole,
computing the sin or cos of a number takes hundreds of clock cycles (depending on the precision).
For compound imaging, the angle of incidence constantly changes every scan and this requires
a lot of calculation of trigonometric functions. Therefore, trigonometric functions are also to be
optimized.

22 Ultrasound Beamforming on a FPGA

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

Figure 5.2: Number of operations

5.3 Operations and their effect on FPGA

FPGA’s come in different sizes and speeds, dedicating parts of the logic to specific tasks is up to
the user. FPGA’s have DSP slices that each have a multiplier, accumulator, pre-adder, SIMD,
pattern-detector and logic unit. The multiplier, accumulator each take in different word lengths,
depending on the FPGA, for example, the Virtex-7 series has a 25*18 bit multiplier and 48-
bit accumulator and the number of DSP slices vary between different boards. Larger devices
(example: Xilinx spartan-6 series) have would have 1000 or more of these multiplier blocks that
are used to perform mathematical computations with speed. It is also possible to decompose large
multiplication into smaller operations using several DSP’s adders to sum the partial product. In
general, it would take 3 or 4 clock cycles to get the output for a single-precision multiplication
(this is the latency). In a fully pipelined version, the throughput increases and would be 1 result
per clock cycle. Similarly, for division, the latency is 8 cycles but throughput for a fully pipelined
architecture is 1 result per cycle (for Xilinx spartan-6 series) In general, there would always be
trade-offs between size, speed and cost. For example for speed up, adding multipliers does increase
the number of outputs per cycle but at the cost of the area since the logic size increases.

Therefore, It is hard to estimate the effect of these mathematical operations on the hardware
at this stage, which is why a hardware design using HDL coder is explored to gain a better un-
derstanding on the trade-offs. The table below gives aims to understand the relationship between
FPGA resources, FPGA device package dimension and it’s cost. It can be observed that when
the number of resources increases, the packaging area and its cost also increase. Therefore after
performing FPGA synthesis and appropriate FPGA can be chosen for the application of Ultra-
sound beamforming. Many ultrasound applications for ultrasound beamforming for breast cysts
use Xilinx Kintex Ultrascale or Xilinx Virtex Ultrascale series, in this thesis, the Ultrascale series
is chosen to perform FPGA synthesis.

Ultrasound Beamforming on a FPGA 23

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

Kintex Ultrascale Logic cells LUTs DSPs Size (mm) Cost (USD)

KU025 318,150 145,440 1,152 35 x 35 1,052
KU040 530,250 242,400 1,920 35 x 35 2,193
KU085 1,088,325 497,520 4,100 40 x 40 4,876
KU115 1,451,100 663,360 5,520 40 x 40 7,601

5.4 CORDIC algorithm

The previous section identifies multiplications and square root operations as the bottleneck of
the computing transmit delay, receive delay and beamforming. CORDIC algorithm is used to
reduce the multiplications while computing the cos, sin and square root. It has the potential for
efficient and low-cost implementation towards multiple DSP applications. Many operations can be
computed using CORDIC, including several trigonometric, hyperbolic, division and square root
operations and hence this proof of concept can be used to further improve the whole ultrasound
beamforming algorithm. Using CORDIC has a few disadvantages; the first is its speed; since it
takes many iterations to converge to the required precision. Second is the area consumption since
it requires many variable shifters and ROM’s to store angle constants. However, there have been
many improvements in the past years to overcome these two disadvantages [8]. A common way to
overcome latency is pipelining which produces one output every clock cycle, but this comes with
the cost of area as pipelined stages require more resources.

Based on the description of the CORDIC algorithm given in chapter 2, it is observed that
multiplication by 2i is replaced by a bit shift. Shift operations are quicker than multiplication.
This section describes the use of CORDIC to compute sin, cos and square root operations. Since
multiplication operation is mapped to DSP slices of an FPGA, a reduction in multipliers would
give a reduction in the number of DSP slices that are used for computation, this can be observed
in the section on hardware design using HDL Coder.

5.4.1 Transmit Delay

The equation to compute transmit delay is replaced by the following,

τtx[x, z] =

T−1∑
z=0

scanzaxis.cordiccos(azimuthz).cordiccos(elevationz)

+scanxaxis.cordicsin(azimuthz).cordiccos(elevationz)

Results

The table 5.4.1 represents a list of experiments performed to observe the effect of cordicos

and cordicsin on the output image. The quality of the signal and the beamformed image was
measured using SNR and Contrast Ratio, as described in chapter 2.

Experiment 1 is the floating-point reference value which is considered to be the ideal and the
highest quality of the beamformed signal and output image. Setting the number of iterations to
14 and the fixed point notation of word length to 14 and fraction length to 12 is a good choice
for hardware implementation. This is because increasing the number of iterations and fixed-point
precision greater than these values did not result in much of an improvement in SNR and Con-
trast Ratio. Therefore it would be a logical choice to choose the parameters in experiment 6 for
hardware design using HDL coder.

24 Ultrasound Beamforming on a FPGA

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

Figure 5.3: CORDIC trigonometric operation. on the left is an image produced with fixed point
notation WL-14 and FL-12 and niters-14; On the right is a poorer quality image produced with
fixed point notation WL-20 and niters-6

heightExp No. Data type niters SNR Contrast Ratio

1 floating point 0 1.3176 28.7
2 sfi(v,20) 6 1.0794 18
3 sfi(v,20) 14 1.3166 28
4 sfi(v,14,12) 12 1.3175 27.81
5 sfi(v,14,12) 14 1.3169 27.75
6 sfi(v,18,16) 12 1.3176 28.52
7 sfi(v,20,18) 16 1.3165 28.55

It was observed that using cordicos and cordicsin decreased the quality of the output image.
Figure 5.3 shows the result of using a fixed point representation for experiment 2 and figure 5.3
shows the output image for experiment 4. As the precision decreases and the number of iterations
decrease, the image quality decreases like that of the image on the right.

5.4.2 Receive Delay

CORDIC square root is used in the place of the square root operation. The equation is replaced
by the equation below,

τrx =
cordicsqrt(x2m + z2m)

c
(5.3)

As expected the quality of the image decreases as and when the fixed point precision and
niters decrease. This can be observed in the figure 5.4 where the left is the output image with the
fixed-point notation of WL-18, FL-16, niters-12 and the right represents an image with fixed-point
notation WL-14, FL-12 and niters-2; it can be seen that the image on the right has a poorly
defined boundary of the cyst which is why the contrast ratio is below 20. It can also be observed
that CORDIC square root requires a higher precision (as compared to CORDIC cos and sin) to
converge to the square root result.

Results

The table below contains a set of experiments performed to observe the effect of cordicsqrt on the
output of the beamformed image. Experiment 1 is the floating-point reference which is considered

Ultrasound Beamforming on a FPGA 25

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

Figure 5.4: CORDIC square root operation, on the left is an image produced with fixed point
notation WL-18 and FL-16 and niters-12; On the right is a poorer quality image produced with
fixed point notation WL-14, FL-12 and niters-2

as the ideal and highest quality SNR and beamformed image. After fixed-point notation of WL-18
AND FL-16 and niters 12, there is not much of a difference in the quality of the image, hence
these parameters can be chosen to work with to ensure a high-quality ultrasound image.

Exp No. Data type niters SNR Contrast Ratio

1 floating point 0 1.3176 28.7
2 sfi(v,14,12) 2 0.9860 11.8
3 sfi(v,16,14) 4 1.3006 22.5
4 sfi(v,16,14) 12 1.3022 22.63
5 sfi(v,16,14) 14 1.3022 22.7
6 sfi(v,18,16) 12 1.3171 27.8
7 sfi(v,20,18) 12 1.3163 28.48

5.5 HDL Coder : Hardware Design

5.5.1 Beamforming hardware design

MATLAB Simulink is used to create a hardware design to compute the transmit delay, receive
delay and beamforming. A high-level block diagram of the ultrasound beamforming process in
Simulink is represented in figure 5.5 There are several ways to create the hardware design, based on
the user’s experience, knowledge and interpretation. Many hardware optimizations can be applied
to each of the blocks to increase the speed, reduce memory, area and reduce hardware resources
used. Tackling each block in the figure independently and then creating a final model that takes
in data and computes the final ultrasound image is the approach taken here. Transmit delay
and receive delay are the first hardware blocks that this thesis focuses on. In the future, there is
potential to implement the hardware design for beamforming and explore the optimizations HDL
coder presents. The block diagram in figure 5.5 represents the beamforming process for a single
element of the ultrasound array transmitting a signal and 8 elements receiving the signal. It was
not possible to use all 128 elements as receivers to reconstruct beamforming since Simulink takes
a lot of time to compute the result and to reconstruct this form of a parallel implementation. In
the block diagram, transmit delay is calculated for 1 element and receive delay is calculated for

26 Ultrasound Beamforming on a FPGA

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

Figure 5.5: Simulink high level block diagram of Ultraosund beamforming

8 elements of the array, these are summed and fed to the block that is a MATLAB function that
performs Delay and Sum beamforming, each of the 8 beamformed signals is added to produce a
single beamformed signal.

5.5.2 HDL Coder optimizations

Hardware optimizations are offered by HDL coder, the hardware blocks, subsystems and the
model all can be subjected to optimizations such as pipelining, resource sharing, increasing speed,
reduction of area etc.

1. Block level optimization

• Pipelining parameters such as output pipelining and input pipelining can be set to a
constant value to specify the pipeline depth and allow pipelining to happen.

2. Subsystem level optimization A subsystem creates a hierarchy in the HDL, an entire sub-
system can be optimized based on this.

• Area Optimizations: Hardware can be reused by specifying sharing and streaming
factor. Sharing factor is a resource sharing optimization that tries to share up to N
resources. Streaming factor allows for the sharing of an atomic part of the design across
multiple channels. It is set to the size of the input vector. An atomic part is a part
of the hardware design that is independent of other parts. A channel in this thesis
represents the hardware design required to calculate the time delay for a single element
of an ultrasound array.

• Speed optimizations: Distributed Pipelining reduces the critical path of a subsystem
by re-timing the registers in the input and output pipelining as well as other delays
inserted.

3. Model-level optimizations

• Automatic delay balancing: optimization techniques like streaming and sharing factor
give rise to delays in other paths of the model, this is balanced by setting automatic
delay balancing. Delay balancing ensures that functional integrity is preserved with
reference to the original model

Ultrasound Beamforming on a FPGA 27

CHAPTER 5. BEAMFORMING AND CORDIC IMPLEMENTATION

• Adaptive Pipelining: Some Simulink blocks like the delay block and pipeline registers
will be automatically inserted with this setting. This way, manually inserting pipelining
can be avoided.

28 Ultrasound Beamforming on a FPGA

Chapter 6

Transmit Delay Implementation

6.1 Transmit Delay

Each block in figure 5.5 is to be considered separately. The first step is to use hardware blocks
Simulink offers to compute the transmit delay for all 21 transmitting elements. The second step
is to use the fixed point designer tool that collects ranges and plots a histogram on the dynamic
ranges of the hardware blocks. The fixed-point tool also suggests fixed point values that one can
use in their design. Once the fixed-point design is ready, the steps mentioned in chapter 2 under
HDL coder are performed, and a report is generated. The report gives a detailed description
of the resources required to compute the result along with optimization and timing summaries.
The fixed point design is created based on the equation of transmit delay, in equation 2.4. The
unoptimized version is represented in figure 6.1. To check for correctness, the transmit delay values
are compared to the floating-point design. Both these designs are unoptimized versions and since
HDL coder allows for many optimizations the next sections describe the optimizations used.

6.1.1 Optimized Transmit Delay

Transmit delay is a 262144× 21 matrix containing the time delays transmitted by 21 transmitting
elements of the array for each of the 512×512 pixels (point sources). As discussed in the literature
survey we know that these calculations are computationally intensive. The design in figure 6.2
represents the hardware design computing the transmit delay for 4 out of 512× 512 pixels and all
21 transmitting elements of the ultrasound array. MATLAB CORDIC blocks are used to compute
the CORDIC equivalent value for cos and sin azimuth and elevation angles. In the figure 6.1 the
first input is a single pixel along z axis scan line. The second input is the azimuth angle. The third
input is the angle of elevation. There are 21 angles of elevation and 21 azimuth angles that are

Figure 6.1: Hardware design to compute transmit delay of 21 elements using CORDIC trigono-
metric function

Ultrasound Beamforming on a FPGA 29

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Figure 6.2: Shared resources in the optimized transmit delay design

streamed in. The fourth input is the pixel along the x axis scan line. The sixth input is the inverse
of speed of sound. The output is the transmit delay for the pixel in position [1,1]. Similarly, in
figure 6.2 there are four pixels that are inputs. Again, there are 21 elevation and azimuth angles
being streamed in. The output for this design is the transmit delay for 4 pixels of the 512 × 512
ultrasound image.

Some optimizations can be used to reduce the number of resources and increase throughput.
These are discussed here along with their effect on the design:

• Area optimization : Streaming factor is set to the length of the input vector for the CORDIC
blocks. Since there are 21 transmitting elements of the ultrasound array, there are 21 azimuth
and elevation angles, therefore the size of the input vector is 21. The streaming factor is
set to 21. By doing this, each element of the input vector utilizes the same set of resources
i.e the design streams the input values one after the other. Figure 6.3 shows the streaming
groups. Each of the streaming groups are represented in different colours. Looking at the
figure from right to left, the blocks in yellow belong to one streaming group, similarly with
the red, blue, green blocks.

• Area optimization : Sharing factor is set as 5, so five product blocks are involved in calcu-
lating the transmit delay for a single pixel. Figure 6.2 represents the sharing groups. There
are 4 sharing groups, each computing the transmit delay for a single element. There are
5 multiplication operations required to compute the transmit delay for a single pixel, this
requires 5 product blocks, by setting the sharing factor as 5, a single product block is shared
among the computations. This optimization drastically decreases the number of multipliers
used for computation.

• Delay balancing is set. Delay blocks with delay values matching the pipelining latency are
set in paths that do not introduce delays. For example, if the pipeline latency introduces is
28, 28 delay blocks are used in the design to compensate for this.

• Pipelining : Adaptive pipeline is set. There are 2 stages of pipeline introduced for every
output. There are 4 output lines, each of which has 2 pipeline stages.

• Speed Optimization : Distributed pipelining is set, with this 1-bit registers are re-timed and
the speed is increased.

30 Ultrasound Beamforming on a FPGA

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Figure 6.3: Streaming group in the optimized transmit delay design

Experiments and Results

This sections explores in detail three designs that show significant change in resource utilization.
The first design is the floating point design, this is a reference design to which other two designs
are compared to. The second is the the CORDIC equivalent design, the third is the hardware
design with area, speed and resource optimizations and with CORDIC equivalent cos and sin, this
is the most optimized version of the three. A detailed description is below :

1. The first design is that of floating point design that calculates the transmit delay for 21
elements of the ultrasound array, this design utilizes the native floating point library by
HDL coder to perform FPGA synthesis. This design has the streaming factor as 21 and the
sharing factor as 5 and the target device is set to Zynq xc7z035 .

2. The second design is that of a fixed point design, using CORDIC trigonometric functions
without any HDL coder optimizations and is targeted to Kintex Ultrascale+ xcku13p-ffve900-
1-e.

3. The third design is that of a fixed point design using CORDIC trigonometric functions with
the use of HDL coder optimizations as mentioned in the previous section. The target device
is the Kintex Ultrascale+ xcku13p-ffve900-1-e.

The table below represents resource utilization for the three hardware designs. On comparing
the three designs, it is observed that the optimized version of the fixed point CORDIC cos and
sin yields the best results for resources. Traditional cos and sin use 3 more multipliers (also, 3
more DSPs on a FPGA) as compared to that of CORDIC equivalent cos and sin. As expected,
using CORDIC reduces the multipliers required to compute the cos and sin values. CORDIC
replaces multiplication with addition/subtraction and bit shifts which can be observed with the
increase in adder/subtractor blocks and static shift operators. With an increase in the number of
iterations, there is an increase in the number of 1-bit registers, keeping the sharing and streaming
optimizations constant. CORDIC also introduces more multiplexers since CORDIC is computed
in iterations. When these iterations are unrolled into multiple pipeline stages, each pipeline stage
requires its own set of multiplexers.

Ultrasound Beamforming on a FPGA 31

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Resource Floating point Fixed-p Cordic Fixed-p Optimized Cordic

Multipliers 45 42 4
Adders/Subtractors 552 4582 4550

Registers 3434 4092 5307
Total 1-bit registers 58362 64277 88164

RAMs 0 0 0
Multiplexers 1671 2363 2347

I/O Bits 4324 1396 2164
Static Shift Operators 18 1260 2160

Dynamic Shift Operators 12 0 0

The table above represents the result after FPGA synthesis for the three designs. As expected,
with CORDIC the number of multipliers decrease, therefore the number of DSP’s also reduce.
However, the number of LUTs and Registers increase. This is expected since CORDIC does use
only LUTs, shift registers and addition/subtraction operations to compute values.

Fixed point can store a value in memory as an integer and can adhere to optimizations that
have been set, unlike that of floating-point. Which is why the floating-point library consumes
more memory as observed in the resource of block ram tile. The floating-point library uses single-
precision (32 bits of storage) and double-precision(64 bits of storage) whereas fixed-point integer
using an 8-bit or 16-bit representation. Timing requirements are set to 20 ns (clock running at
50 Mhz). This introduces data path delay which is the delay of the data path from the source to
the destination. As for slack(the difference between required time and data path delay), negative
slack can be solved by increasing the clock or adding register stages to break up combinatorial
logic and allow for longer routes. Timing optimization is not performed here. However, in future
work, it can be done to help match the speed at which ultrasound data must be processed. Slack
indicates that the intended clock frequency could not be met. Here, the positive slack indicates
that the data arrives faster than it is expected. The frequency can be increased. It was observed
that this design was able to perform with clock frequency of 150-170MHz.

Resource Floating point Fixed-p Cordic Fixed-p Optimized Cordic

Slice LUTs/ CLBs 22941 36801 32783
Slice registers/ CLB Registers 23012 32877 31773

DSPs 32 42 18
Block Ram Tile 4.5 0 0

URAM 0 0 0
Timing requirement 20 (ns) 20 (ns) 20 (ns)

Data Path Delay 4.333 (ns) 3.629 2.834
Slack 15.671(ns) 16.351 17.158

6.1.2 Effect of number of iterations on hardware resources

Figure 6.4 and figure 6.5 represent the effect of increasing the number of iterations on the hardware
resources, signal to noise ratio and contrast ratio.

The table below represents the cost of increasing one CORDIC iteration for the fixed point
notation of FL-16, WL-25. It can be observed that by increasing the iterations resources like
adder/subtractor, registers, shift operators, CLBs, LUTs, pipeline latency increase. However, the
number of multipliers and DSPs stay constant for a particular design. This is because the number
of DSPs depend on the number of channels and also because CORDIC does not require multipliers
for computation. Increasing the number of iterations beyond 11 does not have much of an effect
on SNR and Contrast Ratio as seen in 6.5. However, the number of resources required to compute
the CORDIC sin and cos do increase. Thus, for a fixed point notation of FL-16 and WL-25, the
number of iterations can be set to 11 since there is no change in quality of the ultrasound image

32 Ultrasound Beamforming on a FPGA

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Figure 6.4: Effect of CORDIC sin and cos on hardware resources

Figure 6.5: Effect of CORDIC sin and cos on SNR, CR and pipeline latency

Ultrasound Beamforming on a FPGA 33

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Figure 6.6: Resource utilization and cost when the resolution of output image increases

with number of iterations higher than 11. The cost of each iteration on hardware area and price
is further discussed in chapter 8

Resource Number

Multipliers 0
Adders/Subtractors 378

Registers 261
Total 1-bit registers 3231

Shift operators 1026
Multiplexers 189

CLBs 2889
CLB LUTs 2724

DSPs 0
Pipeline latency 1

6.1.3 Scaling up the hardware design

Scaling up the hardware design is done by increasing the number of transmitting channels and
increasing the resolution of the ultrasound image. The current hardware design in previous sections
supports 4 channels of the ultrasound array (i.e 4 transmitting elements). Increasing the number
of transmitting elements increases the number of channels used. Similarly, increasing the number
of point sources increases the resolution of the ultrasound image. By scaling up, the number of
resources increase. The table in figure 6.6 represents the resource utilization on a Xilinx FPGA
as the ultrasound image resolution increases. Correspondingly, figure 6.7 represents the drastic
increase in FPGA resources as the number of pixels in the ultrasound image increase. It is
clear that increasing the resolution and number of channels increase the resources required for
computation. Both figure 6.7 and figure 6.6 represent the relationship between resources and the
resolution of the ultrasound image for a single channel. It is observed (although not presented
here) that the number of DSPs increase as the number of channels increases. With an increase
in the resolution, there is no increase in DSPs as the resources are shared among the different
elements of the input vector (pixels).

Figure 6.8 is a high level block diagram indicating the delay calculation for 21 transmitting
elements. Since there are 21 transmitting elements, there are 21 transmitting channels. Each
channel is responsible for calculating the transmit delay for all pixels of the ultrasound image. If
the ultrasound image has a resolution of 256 x 256, it has the same amount of point sources. Each
channel must calculate the CORDIC cos and sin of the azimuth and elevation angle i.e each channel

34 Ultrasound Beamforming on a FPGA

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Figure 6.7: Increase in FPGA resources as the ultrasound image’s resolution increases

has a different azimuth and elevation angle to it. Transmit delay logic has the hardware blocks
responsible for the calculation of the transmit delay. This hardware design can be implemented
by considering hardware in the loop simulation (HIL). HIL simulation is real-time and utilizes the
connected hardware’s resources and provides results in real-time, this eases the load on Simulink
as the computation is offloaded on the Xilinx platform in use. Hardware in the loop can be used to
figure out if the design fits on the FPGA and further HDL coder optimizations can be performed
to improve timing and resource utilization. Performing synthesis with HIL is faster and less time
consuming as compared to running the simulation on the pc.

Ultrasound Beamforming on a FPGA 35

CHAPTER 6. TRANSMIT DELAY IMPLEMENTATION

Figure 6.8: Scaling up the Transmit delay calculation based on the number of transmitting channels

36 Ultrasound Beamforming on a FPGA

Chapter 7

Receive Delay Implementation

7.1 Receive Delay

Receive delay is reconstructed in Simulink for a single-pixel (single point source) and 128 elements
of the array receiving the signal. This design seemed to be most ideal to start with since all 128
elements of the ultrasound array are active and required for the reconstruction of the whole image.
The hardware design is reconstructed using equation 5.2. Figure 7.1 represents the hardware design
to compute the receive delay. The HDL coder optimizations used are mentioned below :

• Area optimization : Streaming factor is set to the length of the input vector. Since there
are 128 receiving elements of the ultrasound array, the size of the input vector is 128. The
streaming factor is also set to 128. By doing this, each element of the input vector utilizes
the same set of resources i.e the design streams the input values one after the other.

• Area optimization : Sharing factor is set as 3 since three product blocks are involved in
calculating the receive delay for a single pixel. Figure 7.1 represents three product blocks
and one adder block in blue that share one multiplier. The product block that is not in blue
uses another a multiplier for itself. Therefore this design requires two multipliers.

• Delay balancing is set. Delay blocks with delay values matching the pipelining latency are
set in paths that do not introduce delays. For example, in this design, the pipeline latency
introduced is nine, therefore 9 delay blocks are used in the design to compensate for this.

• Pipelining : Adaptive pipeline is set. The product block at the output and the product block
computing z2m have 2 pipeline stages each.

• Speed optimization : Distributed pipelining is set, with this 1-bit registers are re-timed and
the speed is increased.

7.1.1 Results

The table below represents the resources required to compute the receive delay for a single point
source (1 pixel) for 128 elements of the array i.e. the results of the hardware design in figure 7.1.
Unfortunately, MATLAB does not offer a CORDIC optimized square root hardware block. Two
designs are considered here, the first is the hardware design with the MATLAB square root block
and the second is the same hardware design as the previous one except there is no square root
block. From the table below it is clear that the square root operation is computationally intensive.
The reason behind these two designs is to show how computationally intensive the square root
operation is. The second design (without square root) is only represented here for a comparison.
The number of multipliers, adder/subtractor, multiplexers and shift operators increase drastically
by adding the square root block. The same optimization settings as above are used here. However,

Ultrasound Beamforming on a FPGA 37

CHAPTER 7. RECEIVE DELAY IMPLEMENTATION

Figure 7.1: Receive delay using MATLAB sqrt function

the 3 product operations all share a single product block therefore the number of 1-bit registers
increase to achieve this level of sharing.

Resource With MATLABsqrt function Without MATLABsqrt function

Multipliers 2 1
Adders/Subtractors 3848 9

Registers 1429 2837
Total 1-bit registers 35628 80271

RAMs 1 1
Multiplexers 9878 17

I/O Bits 6148 6148
Static Shift Operators 1920 0

Dynamic Shift Operators 0 0
Pipeline latency 9 8

The table below represents the resource and timing summary of FPGA synthesis of the design
in figure 7.1. The target device is set as Kintex Ultrascale+ xcku13p-ffve900-1-e. The results
are compared with the same hardware design with a slight variation by removing the MATLAB
sqrt function. It can be seen that the number of look-up tables increases drastically with the
square root operation. This is expected because complex operations that do not have a dedicated
hardware pre-compute the result and store the results in a LUT, these values are then used during
run time.

An interesting observation is the critical path delay. The critical path is a combinational path
between an input and output that has the maximum delay. In the design with the square root
operation, critical paths are broken into smaller paths and additional delays are added to meet the
timing requirement of 20Mhz, therefore the total latency and register usage on the target FPGA
increases. The critical path delay when using the square root function is almost 17 times more
than without the square root function. Another observation would be the negative slack; slack
is the required time minus the data path time, a negative slack indicates that the signal arrives
later than the time it needs to be there i.e it is delayed. Here, the frequency needs to be reduced
from 50Mhz to a frequency around 2-5Mhz to meet the timing constraint. The bottleneck in the
receive delay lies with the square root operation since there is a limit in the size of lookup tables
in FPGAs. Also since timing is always of concern when it comes to an ultrasound scan since the
output ultrasound image needs to be viewed in real-time.

38 Ultrasound Beamforming on a FPGA

CHAPTER 7. RECEIVE DELAY IMPLEMENTATION

Resource With MATLABsqrt function Without MATLABsqrt function

CLBs 1.286e+05 3371
CLB Registers 9297 5802

DSPs 2 1
Block Ram Tile 0 0

Critical Path Delay 85.645 (ns) 4.332 (ns)
Timing requirement 20 (ns) 20 (ns)

Data Path Delay 33.209 0.984
Slack -13.584 18.789

7.2 Solving the bottleneck of square root operation

The Xilinx system generator offers a CORDIC optimized square root operation block. Figure 7.3
represents the square root block by MATLAB Simulink and figure 7.2 represents the CORDIC 6.0
block by Xilinx system generator.

A simple experiment is performed to compare the resource utilization between these two blocks.
FPGA synthesis for the target device Kintex Ultrascale+ xcku13p-ffve900-1-e is performed and the
results are presented in the table below. The results are for input with a fixed point notation of WL-
10 and FL-8. The Xilinx system generator block uses a lesser number of lookup tables to perform
the square root of a number with the same fixed-point notation. In future implementations, the
CORDIC square root block provided by the Xilinx system generator can be used to reconstruct the
hardware design of the receive delay and FPGA synthesis can be performed. With this CORDIC
square root block, using a lower precision input and output fixed-point notation and computing
CORDIC for lesser number of iterations, it is possible to reduce the number of LUTs/CLBs used.
This would, of course, mean that the quality of the ultrasound image will decrease. The trade-offs
can be observed with experimentation just as it was done in previous sections. The Xilinx system
generator square root block has the potential to provide optimized results for resource utilization
(LUTs/CLBs). Working with CORDIC 6.0 would have been the next step in optimizing the
receive delay calculation. This was not completed due to time constraints. The proof of concept
is presented here and can be implemented in the future.

Resource Xilinx system generator CORDIC 6.0 MATLAB sqrt block

CLBs 126 212
CLB Registers 137 0

DSPs 0 0

Figure 7.2: Xilinx System Generator CORDIC sqrt block

Ultrasound Beamforming on a FPGA 39

CHAPTER 7. RECEIVE DELAY IMPLEMENTATION

Figure 7.3: MATLAB sqrt function

Figure 7.4: Increasing the resolution of the ultrasound image and its effect on FPGAs resources

7.2.1 Scaling up the hardware design

Performing synthesis with the existing MATLAB square root function yielded in results that were
not feasible. This is shown in figure 7.4. As the number of pixels increased, the size of CLB
LUTs and CLB Registers increased drastically to such an extent that they could not fit in the
chosen Xilinx device. The data represented in the table is for a single channel, as this increases,
the number of DSPs will increase to support the computation. Here we see the true problem of
the square root operation spoken in literature. Design changes need to be made such that the
design can fit on an FPGA. Firstly, decreasing the number of receiving channels to 32 would have
benefits for a decrease in CLB utilization and DSPs. Secondly, the CORDIC 6.0 square root block
will also reduce CLB utilization. Thirdly, reducing the precision of fixed-point also results in a
decrease in CLB utilization. Once the CORDIC 6.0 IP block of Xilinx system generator is used
instead of the square root, the design can be scaled up. To start with, a 128 receiving element
beamformer can be reconstructed and this can be scaled down to 64 and 32 element beamformer,
as shown in 7.5. For future work on the receive delay, this design can be used to perform synthesis
on FPGA (utilizing Hardware in the loop simulation).

40 Ultrasound Beamforming on a FPGA

CHAPTER 7. RECEIVE DELAY IMPLEMENTATION

Figure 7.5: Scaling up the receive delay calculation

Ultrasound Beamforming on a FPGA 41

Chapter 8

Analysis

Chapter 3 presents a literature study on the complexity of Ultrasound beamforming, this com-
plexity is explored in this thesis, both on an algorithmic level and a hardware level. This section
discusses the trade-offs observed and documented during the thesis.

8.1 FPGA design trade offs

FPGAs are being used for the most demanding applications like AI, machine learning, signal
processing etc, in some cases used with other processors to develop an entire system. As a result,
the requirements for effective power, performance and area are import and the trade-offs are
equally complicated to analyse. With complex designs such as beamforming, some choices need
to be made upfront. An ultrasound scan that has to be performed in real-time would have its
priority as speed whereas an ultrasound application that requires a portable system would have
reduced power and area as its priority. Similarly, a system that requires a higher quality image
would not prioritize a reduction in FPGA area/ number of resources over the quality of its result.
Therefore design choices are made based on the requirement of the application. This section aims
to briefly discuss some of the trade-offs observed and understood during the thesis.

8.1.1 Fixed point design

Choosing a fixed point design is more efficient for hardware since the value stored in memory is an
integer (in this case of 16 bits) and many optimizations can be performed on the FPGAs without
requiring additional hardware like a Floating Point Unit (for floating-point computations). It can
be seen from previous chapters that resource sharing and pipelining was not effectively adapted by
the floating-point design (by HDL coder) but it was adapted for a fixed point design thus enabling
a reduction in resources. Without a dedicated FPU, floating-point calculations require signific-
ant logic resources on hardware and an increased number of clock-cycles per operation, thereby
reducing the efficiency of the device. Floating-point operations require dynamic shift or float of
the exponent used to scale the significand during run time, however in the case of fixed-point, the
exponent value is defined by the fixed-point data type and is not computed during run time. By
specifying the word length and fractional length for inputs and operators (product/division/ad-
der/subtractor), the performance of the device and system improves, in terms of memory, speed,
resource utilization.
The disadvantage of using fixed-point is of course it’s limited dynamic range, however, fixed-
point numbers eliminate the need for the hardware logic to calculate and perform dynamic shifts.
Another overhead with fixed-point for an FPGA is that unless double precision is applied, the
accuracy will be limited due to rounding errors. In cases of overflow and underflows, fixed point
designer tool can be used to prevent this. As for precision, the fixed point notation implemented
in the hardware design can be reused in the MATLAB script and the resulting image’s SNR and

42 Ultrasound Beamforming on a FPGA

CHAPTER 8. ANALYSIS

contrast ratio can be observed. The fixed point is more beneficial than floating-point and hence
fixed-point is acceptable for most practical applications such as ultrasound beamforming.

8.2 Relationship between Logic and area of FPGA

The table below represents FPGA resources for Xilinx Ultrascale+ Kintex series. Five different
boards are chosen and the change in area and cost as the number of resources increase is observed.
The area of the FPGA does not necessarily increase as the number of logic blocks increase, like
that of KU5P-FFVD, KU11P-FFVD and KU13P-FFVE. However, the cost does increase despite
no change in the area.

Resource KU5P-FFVD KU11P-FFVD KU13P-FFVE KU15P-FFVA KU19P-FFVJ

System Logic Cells 474,600 653,100 1,143,450 746,550 1,842,750
CLB Flip-Flops 433,920 597,120 682,560 1,045,440 1,684,800

CLB LUTs 216,960 298,560 341,280 522,720 842,400
Block RAM Blocks 480 600 744 984 1,728
UltraRAM Blocks 64 80 112 128 288

DSP Slices 1,824 2,928 3,528 1,968 1,080
Area (mm) 31x31 31x31 31x31 35x35 42.5x42.5
Cost in e 2.060,16 2.794,60 3.435,43 5.373,37 6.045,04

8.3 Relationship between CORDIC iterations and area, the
latency of an FPGA

The CORDIC equivalent for cos, sin and square root operation is used to compute the transmit
delay and receive delay. CORDIC square root utilizes a lot of CLB LUTs, CLB registers, this when
scaled up to compute the receive delay for all 128 receiving elements of the array and for all the
pixels of the ultrasound image exhaust resources and will not fit on the Kintex Ultrascale+ series.
Using the CORDIC square root increases the cost of the FPGA because it utilizes too many CLB
LUTs. Therefore, computing receive delay is expensive and a mid-high (Xilinx Ultrascale Kin-
tex/ Virtex family) end FPGA with very large (1.4 million and above) CLB LUTs is a requirement.

Two types of CORDIC circuits can be implemented on hardware, the first being a sequential
structure (iterative) based on three n-bit adders/subtractors and sign extending shifters, a LUT
which performs one iteration per clock cycle. The second being a parallel implementation (cas-
caded) which is similar to an array multiplier structure consisting of adders/subtractors, constants
that can be implemented as a combinational logic for small designs and can be pipelined. Here,
consecutive iterations can be executed within one clock cycle.
It is observed that CORDIC increases latency in the application however this is not a problem
in practical applications since pipelining is used. In the iterative CORDIC implementation of cos
and sin i.e the fixed-point design in chapter 6 yields a critical path delay of 2.834 ns, this means
the design can run at a clock speed of 325.8 Mhz. Similarly, the receive delay fixed-point design in
chapter 7 has a data path delay of 33.209 ns, this means that the design can run at a clock speed
of 30 Mhz. Increasing the number of iterations does increase the accuracy of the result, thereby
increasing the SNR and contrast ratio. However, it adds to a lot of latency.

There are a few solutions to deal with the problem of area and latency :

1. Mapping the CLB LUTs to Block RAMs such that the coefficients can be held by the RAM.
Not only does this reduce the logic utilization, but it also decreases latency and the speed

Ultrasound Beamforming on a FPGA 43

CHAPTER 8. ANALYSIS

increases. 1

2. Implement a parallel ’cascaded’ CORDIC hardware design, consisting of rows of adder-
s/subtractors with hardwired shifts and constants. The amount of parallelism depends on
the number of iterations, if the number of CORDIC iterations is 10, there can be 10 parallel
stages of this therefore in a cascaded version there is an output at every clock cycle. Latency
can be improved here however the CLB consumption increases. In this case, a high end
FPGA (Xilinx Virtex Ultrascale) must be used to meet the resource requirements. [29].

8.4 Ultrasound scan and frequency requirements

It is important to be familiar with the frequencies of the sound waves used in medical ultrasound
since the selection of proper frequencies influences the image resolution and indirectly the depth
of the field visualised. The transducer frequency is inversely proportional to the depth of penetra-
tion of the ultrasound signal and directly proportional to the image resolution. The most common
frequency used for breast ultrasound is 7.5 Mhz and can reach up to 10 Mhz. Increasing frequency
from 7.5Mhz to 10Mhz increases the resolution of the ultrasound signal. However, it reduces the
penetration of the beam. The ultrasound beamformer consists of two parts, the transmit beam-
former and the receive beamformer.

The transmit beamformer is responsible for initiating scan lines and generating the time pulse
string that gets externally converted into high-voltage pulses for the transducer and also set the
desired focal point of the cyst. Typically ultrasound elements are capable of transmitting signals
at 20Mhz and require high voltages up to 100 Vpp. Thus it would be the task of the FPGA to
drive the ultrasound transducers to produce an ultrasound signal of 7.5 Mhz to 10 Mhz.

The receive beamformer is responsible for receiving echo from the analogue front end and
collecting data into representative scan lines. The two beamformers are time-synchronized and
continuously pass timing, position and control data to each other. The delay is calculated in
real-time based on the required instantaneous location of the ultrasound beam for a given scan
line. The receiver front end must oversample the incoming data to enable better accuracy and
meet the timing requirements of the back end FPGA.

On the whole, it is a difficult task for designers to match the timing across all channels without
compromising to signal integrity. The FPGAs are connected to the ultrasound probes, and the
DACs and ADCs at the interfaces are responsible to match each block/ channel with timing
analysis. This leads to a discussion that is out of the scope of this thesis. Documents provided by
Xilinx on this would be of better help [1] [6] [32].

8.5 Trade-off between quality and number of resources

There can be considerable variation in logic capacity for a given FPGA device in use. This
depends on factors like, how well the application’s logic functions match the architecture of the
FPGA device, the efficiency of the synthesis tools, the skill and experience of the designer. There
are two ways to measure the capacity of a device. The first is Gate Counting, and the second is
Resource utilization. Gate counting involves measuring logic capacity in terms of 2 input NAND
gates that are required to implement the same number of logic functions the resulting capacity
estimates the users to compare capacities of different Xilinx devices. For a particular application,
after synthesis, the CLBs and DSPs are mapped to gates and the number of logic gates used for
computation is calculated. This is used to determine the capacity of the device and how much of it
is used by the application. Resource utilization is a convenient way of calculating the percentage of
resources that are utilized in the application/ computation and synthesis of the hardware design.

1https://zipcpu.com/blog/2017/06/12/minimizing-luts.html

44 Ultrasound Beamforming on a FPGA

CHAPTER 8. ANALYSIS

This metric indicates the device capacity and how much of the resources are being used.
Scaling the hardware design or increasing the precision both cause the number of resources to
increase, which in turn increases the cost of the FPGA since more logic is required. Increasing the
number of iterations in CORDIC equivalent cos, sin and square root cause does increase the quality
but at the cost of increased resources and price of hardware. Therefore, depending on the required
quality of the ultrasound image, the fixed point precision and number of CORDIC iterations can
be increased, provided the resource utilization does not exceed the maximum specified utilization
for the application. A Suggestion would be to not go beyond 85% utilization is not considered as an
ideal case since there exists some level of logic required in moving data along CLBs, interconnects,
memory (which is used by the rest 15%)etc. These metrics represent typical utilization levels and
devices can be chosen based on the application needs.

8.6 Trade-off between Ultrasound Image resolution and num-
ber of channels

An Ultrasound image of lower resolution utilizes lesser resources. This can be seen in the results of
transmit-delay in chapter 6. The advantage of using FPGAs is that they are equipped with parallel
processing and executing complex computations like square root and trigonometric functions have
been feasible. The transmit and receive delay are to be calculated for all pixels of the ultrasound
image and all active transmitting and receiving elements, this process utilizes a lot of logic. A
high-level block diagram on how to compute these delay values for beamforming is represented in
chapter 6 and 7, a compromise would have to be made between the resolution of the ultrasound
image and number of transmit and receive channels. On revisiting the literature study, it is
understood that the quality of the image increases having more receiving elements. Since the
application that the thesis aims for is ultrasound imaging for a superficial breast cyst that has
already been detected, a reduced resolution is acceptable and the number of transmit and receive
channels can be prioritized. The number of DSPs increase with an increase in the number of
channels. However, the number of DSPs do not increase with an increase in the number of pixels.
Therefore, it can be expected that to reconstruct the transmit and receive delay for 256 x 256
pixel, 32 element ultrasound receive array a high-end FPGA should be used, Kintex Ultrascale+
KU15 and higher or any of Virtex Ultrascale+ series.

Ultrasound Beamforming on a FPGA 45

Chapter 9

Research Question and Answers

Principal Research Question: How to optimize the time delay calculations of ultra-
sound beamforming and what FPGAs can be proposed to perform time delay calcu-
lations?

The principal research question is split into two sub research questions and answered separ-
ately.

SUB Research Question 1: How to optimize the time delay calculations of ultra-
sound beamforming using the CORDIC algorithm ?

Ultrasound beamforming is computationally intensive. The number of multiplications and the
square root operation is the bottleneck of Ultrasound beamforming. The CORDIC equivalent of
cos, sin and square root operation is used in the calculation of transmit delay and receive delay.
Using CORDIC has the benefits in reducing the multipliers required to perform operations since
this iterative algorithm uses LUTs, adder/subtractors and shift registers to converge to the result.
Using CORDIC reduces the number of CLBs LUTs, CLB registers and DSPs used but increases
the pipeline latency of the design. CORDIC along with fixed-point design reduces the SNR and
Contrast Ratio when compared to the floating-point equivalent. However, a good quality image
can still be achieved by choosing an optimal fixed-point notation and the number of CORDIC
iterations.

SUB Research Question 2: What FPGAs can be proposed to compute transmit
and receive time delays for ultrasound beamforming?

Scaling up transmit and receive delay calculations lead to more resource utilization. The hard-
ware design proposed for transmit delay and receive delay are discussed in previous sections, there
is a trade-off between the number of pixels and number of channels such that the design would fit
on an FPGA. A suggestion would be to use 21 transmitting elements and 32 receiving elements,
this gives rise to 21 transmitting channels and 32 receiving channels. The resolution of the ultra-
sound image can be set to 256 x 256. For a higher-quality application, these parameters can be
increased, but this gives rise to an increase in resources like CLB LUTs, CLB registers and DSPs
thus increasing the area of the FPGA and the cost of the FPGA. There are two categories that
FPGAs proposed can be put into. The first is a mid-range FPGA and the second is a high-end
FPGA. The mid-range FPGA supports 21 transmitting channels and 32 receiving channels for a
256 x 256 ultrasound image and the high-end FPGA can be used for the ultrasound application
larger than this. Hardware in the loop simulation and synthesis can be performed before narrow-
ing down on the board one wants to use. It is suggested that transmit delay and receive delay
should be calculated on different boards, boards with a very large (1.4 million) CLB LUTs are

46 Ultrasound Beamforming on a FPGA

CHAPTER 9. RESEARCH QUESTION AND ANSWERS

most preferable to receive delays.

Mid Range FPGAs High End FPGAs

Xilinx Kintex Ultrascale+ KU13P Xilinx Virtex Ultrascale VU160
Xilinx Kintex Ultrascale+ KU15P Xilinx Virtex Ultrascale VU190
Xilinx Kintex Ultrascale+ KU19P Xilinx Virtex Ultrascale VU440

Ultrasound Beamforming on a FPGA 47

Chapter 10

Conclusion

During the course of this thesis, Ultrasound beamforming has been explored, in particularly the
transmit and receive delay computation and it’s FPGA synthesis has been performed. The com-
plexity of beamforming has been identified, these are the multiplication and square root operations.
As a solution to the complexity in computation, the CORDIC equivalent for trigonometric and
square root operations has been implemented and the effects of it on signal to noise ratio and
contrast ratio have been observed. Several trade offs have been discussed and suggestions on
hardware design for future implementations have been indicated. The CORDIC square root equi-
valent does decrease the number of CLB LUTs and the CORDIC trigonometric operation does
decrease the number of DSPs. For future implementation, to increase the speed and throughput
of the application, a cascaded CORDIC hardware design can be utilized. There is also a trade
off between the resolution of the image and the number of channels of transmitting and receiving
elements of the ultrasound array. The number of receive channels can be scaled down to 64 or 32
to reduce resource utilization. Research questions are answered and recommended FPGAs for the
computation of transmit and receive delays are discussed. In future implementations these devices
can be used and hardware in the loop simulated design can be performed.

48 Ultrasound Beamforming on a FPGA

Bibliography

[1] Jon Alexander. Xilinx devices in portable ultrasound systems. WP378 (v1. 2) May, 13, 2013.
44

[2] M. Almekkawy, J. Xu, and M. Chirala. An optimized ultrasound digital beamformer with
dynamic focusing implemented on fpga. In 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 3296–3299, Aug 2014. 17

[3] F. Angiolini, A. Ibrahim, W. Simon, A. C. Yüzügüler, M. Arditi, J. . Thiran, and G. De
Micheli. 1024-channel 3d ultrasound digital beamformer in a single 5w fpga. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, pages 1225–1228, March
2017. 1, 17

[4] A. A. Assef, J. M. Maia, and E. T. Costa. Initial experiments of a 128-channel fpga and pc-
based ultrasound imaging system for teaching and research activities. In 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pages 5172–5175, Aug 2016. 18

[5] J. Chen, A. C. H. Yu, and H. K. . So. Design considerations of real-time adaptive beamformer
for medical ultrasound research using fpga and gpu. In 2012 International Conference on
Field-Programmable Technology, pages 198–205, Dec 2012. 17

[6] Marc Defossez. Connecting virtex-6 fpgas to adcs with serial lvds interfaces and dacs with
parallel lvds interfaces. Application Note: Virtex-6 FPGAs, 2010. 44

[7] Simulink Documentation. Simulation and model-based design. 14

[8] M. D. Ercegovac and T. Lang. Redundant and on-line cordic: application to matrix triangu-
larization and svd. IEEE Transactions on Computers, 39(6):725–740, 1990. 24

[9] M. A. Hassan and Y. M. Kadah. Digital signal processing methodologies for conventional
digital medical ultrasound imaging system. In American Journal of Biomedical Engineering,
pages 14–30, 2013. 17

[10] H. J. Hewener, H. Welsch, H. Fonfara, F. Motzki, and S. H. Tretbar. Highly scalable and
flexible fpga based platform for advanced ultrasound research. In 2012 IEEE International
Ultrasonics Symposium, pages 2075–2080, Oct 2012. 17

[11] O. M. Hoel Rindal, A. R. Molares, and A. Austeng. A simple, artifact - free, virtual source
model. In 2018 IEEE International Ultrasonics Symposium (IUS), pages 1–4, 2018. 3

[12] I. K. Holfort, F. Gran, and J. A. Jensen. Broadband minimum variance beamforming for ul-
trasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
56(2):314–325, February 2009. 17

[13] T. Hopp, N. Ruiter, J.C. Bamber, N. Duric, and K.W.A. van Dongen. Proceedings of the
International Workshop on Medical Ultrasound Tomography: 1.- 3. Nov. 2017, Speyer, Ger-
many. KIT Scientific Publishing, 2018. 1

Ultrasound Beamforming on a FPGA 49

BIBLIOGRAPHY

[14] A. Ibrahim, P. Hager, A. Bartolini, F. Angiolini, M. Arditi, L. Benini, and G. De Micheli.
Tackling the bottleneck of delay tables in 3d ultrasound imaging. In 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1683–1688, March 2015. 16

[15] A. Ibrahim, W. Simon, D. Doy, E. Pignat, F. Angiolini, M. Arditi, J. . Thiran, and G. De
Micheli. Single-fpga complete 3d and 2d medical ultrasound imager. In 2017 Conference on
Design and Architectures for Signal and Image Processing (DASIP), pages 1–6, Sep. 2017. 1,
16

[16] G. Kim, C. Yoon, S. Kye, Y. Lee, J. Kang, Y. Yoo, and T. Song. A single fpga-based portable
ultrasound imaging system for point-of-care applications. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 59(7):1386–1394, July 2012. vi, 2

[17] MATLAB. version 9.3 (R2017b). The MathWorks Inc., Natick, Massachusetts, 2017. 7

[18] G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes. The delay multiply and sum beam-
forming algorithm in ultrasound b-mode medical imaging. IEEE Transactions on Medical
Imaging, 34(4):940–949, Apr 2015. 17

[19] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink. Coherent plane-wave compound-
ing for very high frame rate ultrasonography and transient elastography. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, 56(3):489–506, 2009. 22

[20] F. Prieur, O. M. H. Rindal, and A. Austeng. Signal coherence and image amplitude with the
filtered delay multiply and sum beamformer. IEEE Transactions on Ultrasonics, Ferroelec-
trics, and Frequency Control, 65(7):1133–1140, 2018. 3

[21] F. Prieur, O. M. H. Rindal, and A. Austeng. Signal coherence and image amplitude with the
filtered delay multiply and sum beamformer. IEEE Transactions on Ultrasonics, Ferroelec-
trics, and Frequency Control, 65(7):1133–1140, July 2018. 7

[22] S. Ravichandran and V. Asari. Implementation of unidirectional cordic algorithm using pre-
computed rotation bits. In The 2002 45th Midwest Symposium on Circuits and Systems,
2002. MWSCAS-2002., volume 3, pages III–III, 2002. 10

[23] O. M. H. Rindal, A. Rodriguez-Molares, and A. Austeng. The dark region artifact in adaptive
ultrasound beamforming. In 2017 IEEE International Ultrasonics Symposium (IUS), pages
1–4, 2017. 6

[24] Frederic Rivoallon. Measuring Device Performance and Utilization: A Competitive
Overview (WP496). https://www.xilinx.com/support/documentation/white_papers/

wp496-comp-perf-util.pdf, 2007. Last accessed: February, 2020. 17

[25] A. Rodriguez-Molares, O. M. H. Rindal, O. Bernard, A. Nair, M. A. L. Bell, H. Liebgott,
A. Austeng, and L. Lvstakken. The ultrasound toolbox. In 2017 IEEE International Ultra-
sonics Symposium (IUS), pages 1–4, Sep. 2017. 7

[26] R. Sampson, M. Yang, S. Wei, R. Jintamethasawat, B. Fowlkes, O. Kripfgans, C. Chakrabarti,
and T. F. Wenisch. Fpga implementation of low-power 3d ultrasound beamformer. In 2015
IEEE International Ultrasonics Symposium (IUS), pages 1–4, Oct 2015. 16

[27] L.W. Schmerr. Fundamentals of Ultrasonic Phased Arrays. Solid Mechanics and Its Applic-
ations. Springer International Publishing, 2014. vi, vi, 4, 5

[28] K. E. Thomenius. Evolution of ultrasound beamformers. In 1996 IEEE Ultrasonics Sym-
posium. Proceedings, volume 2, pages 1615–1622 vol.2, Nov 1996. 1

[29] Tanya Vladimirova and Hans Tiggeler. Fpga implementation of sine and cosine generators
using the cordic algorithm. Military and Aerospace Applications of Programmable Devices
and Technologies Conference, 01 1998. 44

50 Ultrasound Beamforming on a FPGA

https://www.xilinx.com/support/documentation/white_papers/wp496-comp-perf-util.pdf
https://www.xilinx.com/support/documentation/white_papers/wp496-comp-perf-util.pdf

BIBLIOGRAPHY

[30] Jack E. Volder. The cordic trigonometric computing technique. IEEE Trans. Electronic
Computers, pages 330–334, 1959. 10

[31] Tony Whittingham and Kevin Martin. Transducers and beam-forming, page 23–46. Cam-
bridge University Press, 2 edition, 2010. 1

[32] X. Wu, J. Sanders, X. Zhang, F. Y. Yamaner, and Ö. Oralkan. A high-frequency and high-
frame-rate ultrasound imaging system design on an fpga evaluation board for capacitive mi-
cromachined ultrasonic transducer arrays. In 2017 IEEE International Ultrasonics Symposium
(IUS), pages 1–4, 2017. 44

Ultrasound Beamforming on a FPGA 51

	Contents
	List of Figures
	Introduction
	Background
	Ultrasound Beamforming
	Transmit Delay
	Receive Delay

	Quality Measurement
	SNR
	Contrast Ratio

	Matlab-UltraSound Toolbox
	CORDIC Algorithm
	MATLAB CORDIC

	Simulink and Fixed-point designer
	 HDL Coder
	Xilinx System Generator

	State of the art and literature study
	Problem Statement
	Beamforming and CORDIC Implementation
	Complexity of beamforming
	Minor Optimizations
	Operations and their effect on FPGA
	CORDIC algorithm
	Transmit Delay
	Receive Delay

	HDL Coder : Hardware Design
	Beamforming hardware design
	HDL Coder optimizations

	Transmit Delay Implementation
	Transmit Delay
	Optimized Transmit Delay
	Effect of number of iterations on hardware resources
	Scaling up the hardware design

	Receive Delay Implementation
	 Receive Delay
	Results

	Solving the bottleneck of square root operation
	Scaling up the hardware design

	Analysis
	FPGA design trade offs
	Fixed point design

	Relationship between Logic and area of FPGA
	Relationship between CORDIC iterations and area, the latency of an FPGA
	Ultrasound scan and frequency requirements
	Trade-off between quality and number of resources
	Trade-off between Ultrasound Image resolution and number of channels

	Research Question and Answers
	Conclusion
	Bibliography

