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Navigation of Extrinsic Factors for Reducing the Uncertainty of Intrinsic
Factor Estimates

Berk Isler

ABSTRACT

Evaluation of the uncertainty of the model’s predictions is important
for black-box models, such as deep neural networks. Hence, there
has been an intensive effort to be able to capture the uncertainty, in
other words allowing the model to be aware of the cases when the
predictions have high uncertainty. However, there has been limited
work to reason about or even act upon the prediction uncertainty.
Active learning is one example where the prediction uncertainty
is used to make manual labeling more efficient. In this thesis, we
define a method to identify underlying reasons of uncertainty and
obtain insights from it such that we can reduce the uncertainty of
the predictions. Given an object to perform predictions on, intrinsic
factors denote its characteristic properties (color, shape, texture)
whereas extrinsic ones denote the external factors (lighting, orienta-
tion) that the object is independent of, yet affect how the intrinsic
factors are perceived. We defined our task to estimate an intrinsic
property of the object of interest in an environment where we have
control over extrinsic factors. We propose to manipulate the ex-
trinsic factors using a mobile agent to collect observations of the
object. The final objective is to improve intrinsic factor classifica-
tion performance. This is done by using uncertainty as guidance
to efficiently sample the data space in order to improve prediction
accuracy during inference time. The idea is to focus on ambiguous
cases with low certainty and propose more favorable extrinsic factor
configurations such that we can classify with higher certainty. The
experiments show that we can obtain an increase of f1-score of about
6.8% without any additional training.

1 INTRODUCTION

1.1 Motivation

Currently, fields of Machine Learning (ML) and Artificial Intelli-
gence (AI) are attracting a great amount of attention. Thanks to
the efforts of the research community, ML models have reached the
capability of performing many tasks close to or even better than the
human level. Hence, ML models have been deployed in many real-
life decision-making processes. Moreover, to maintain transparency
in such cases, the interpretability of the model’s outcome is essen-
tial which is hard to obtain with black-box models. Despite their
success due to huge parametric search space and efficient learning
algorithms, Deep Neural Network (DNN) is an example of the black
box models [1]. This kind of opaque behavior is detrimental for the
applications in social environments where human life and security
can be directly affected [2].

Explainable AI (XAI) is the sub-filed of AI, that focuses on ex-
plaining the causal link about the results and inner mechanism of
the models. According to [14], XAI aims to ’produce more explain-
able models while maintaining a high level of learning performance
(e.g., prediction accuracy), and enable humans to understand, ap-
propriately trust, and effectively manage the emerging generation
of artificially intelligent partners.’. As emphasized in the definition,
the efforts towards the XAI should maintain transparency about the

decisions of the ML models as well as an adequate learning perfor-
mance for the task at hand. As stated in [29], there is an inverse
relationship between the capacity/performance and the opacity of
the model. Even though reducing model capacity can be used to
increase the model interpretability, these solutions would also limit
the success of the predictions of the AI/ML systems.

In AI/ML community, uncertainty can be used to capture the con-
fidence of the models’ predictions [1]. The prediction uncertainty is
one of the aspects of the models that would indicate the trust and in-
terpretability of the model’s outcome. The uncertainty of the model
is considered as a fundamental element of all ML models, especially
in domains where safety issues are critical [19]. To emphasize the
importance of considering model confidence, the following example
can be given. The accident of an autonomous vehicle with a truck
that results in a causality is described in [34]. The main cause of the
accident is attributed to the misinterpretation of the white side of
the truck as a clear sky. This accident may have been avoided if the
system were aware of the uncertainty for predicting the side of the
truck as the sky and notify the driver of low certainty.

Apart from AI safety issues, evaluation of uncertainty is funda-
mental for numerous of ML approaches. In active learning, model
decides actively which data points to label in situations where an-
notating is costly. The model seeks for examples that would be the
most informative for the task at hand, by focusing on those with
the highest prediction uncertainty. Active inference describes the
methodology to allow an agent to make decisions under uncertainty
in a dynamic environment [32]. The agent has a generative model to
infer the world in terms of the hidden states that describe the current
condition of the environment. These states are then evaluated to
decide on the next action. Furthermore, the agent behaves in the
environment (characterized by its states), in a way that minimizes
the unexpected observations, in other words, the surprise [8]. The
notion of surprise captures the uncertainty about the environment.
Thus, the model is trained to jointly optimize the perception and
action in a Bayesian fashion to minimize the surprise.

1.2 Problem Definition

The process of vehicle evaluation is an important step in the second-
hand vehicle trading business. Potential buyers want to make sure
the vehicle meets certain standards. These standards can vary from
more fundamental aspects such as safety and moving parts to more
aesthetic ones as bodywork. The former ones have better-established
ground-truth values, whereas the latter ones are less definitive in
terms of optimal conditions. Hence, the inspection of aesthetic
aspects requires more human interpretation and thus automated
techniques are less applicable for them.

Some of the available automated solutions use multiple cameras
with fixed locations. These cameras take pictures of the vehicles
from various angles to capture the maximum amount of information
about the car. However, to ensure a certain level of success, these
methods require controlled environments where external conditions
such as lighting conditions or surroundings of the car are standard-
ized. Thus, due to the limited flexibility, these methods cannot
offer scalable solutions, considering numerous inspection locations.
Therefore, a more complete solution should be able to adapt various
external factors in the scene to perform the prediction task with the
least number of observations (efficiently).



To define it more formally, our ultimate goal is to make predic-
tions about some visual property of the car with utmost accuracy
and certainty. Hence, we need to somehow capture the maximum
amount of information about that property of the car. Given that
the prediction task is about visual properties, an intuitive way to
collect information is by taking its pictures. The features extracted
from an image of the scene can be subdivided into extrinsic ( fe) and
intrinsic ( fi). Intrinsic factors describe the vehicle and its charac-
teristic information, such as the geometry (shape), color, or texture.
Extrinsic factors, on the other hand, describe the ambient factors of
the scene such as the lighting conditions, shadings, and orientation
of the camera w.r.t the vehicle. Essentially the task of visual vehicle
evaluation depends on the intrinsic factors of the image. Hence, our
aim is to estimate the intrinsic factors of the car to aid its visual
evaluation.

We use the term observation to denote a particular image of the
car. The configuration of the scene defines the values of the extrinsic
factors that lead to a specific observation. Observations of a car
vary depending on the scene configuration that defines it. Since the
possible number of observations is excessive, we cannot try all of
them during the visual evaluation of a car. One intuitive approach
can propose to evaluate all observations, given a scene, before the
visual evaluation. Then, we can perform the visual evaluation with
the observation, described by a scene configuration, that always
provides the highest information about any car. However, given
the broad diversity of the cars, we cannot expect a single scene
configuration with maximum informativeness for any car. Hence,
we need to know dynamically which observations are the most
informative for a given car. However, this requires a way to measure
the amount of information held by an observation.

In our case, prediction uncertainty is used to assess the informa-
tion gain that can be obtained from observation. To be more precise,
we can use prediction uncertainties of observations from the scene,
such that we can detect observations with minimum uncertainty and
maximum informativeness. At this point, the notion of uncertainty
assessment can be refined. In general, the sources of uncertainty
within an ML model can be attributed to two main components as
aleatoric and epistemic. Aleatoric uncertainty refers to the uncer-
tainty inherent to the data generation process whereas epistemic
uncertainty denotes the model uncertainty [20]. In other words,
aleatoric uncertainty cannot be reduced by refining the model or
introducing more data. On the other hand, epistemic uncertainty is
essentially ML models’ inefficacy to capture the generative process
of the data and can be reduced with additional information such as
more data points. Hence, our focus is on epistemic uncertainty such
that we are trying to detect the most informative observations which
reduce the uncertainty of our predictions due to epistemic sources.

Due to rich and complex interactions in the scene, extrinsic factors
may affect the perception of the intrinsic factors. In particular, this
behavior can lead to changes in terms of resulting uncertainty when
extrinsic factors are altered. Hence, being able to understand the
relationship between the uncertainty of an intrinsic factor estimate
and extrinsic factors would allow us to control and improve the
certainty. More formally, we can define the research questions as
follows:

• How can we capture the information about individual intrinsic
and extrinsic generative factors independently?

• How can we quantify the uncertainty on the prediction of
intrinsic factors?

• How can we assess to which degree an extrinsic factor con-
tributes to the intrinsic factor prediction uncertainty?

• How can we improve the performance of intrinsic factor pre-
diction by manipulating the extrinsic factors to reduce the
uncertainty of the prediction.

1.3 Proposed Solution
Having stated the research questions, we defined three sub-steps to
be able to address them.

In the context of this study, we assume we are collecting the
observations with a mobile agent. This allows us to manipulate
individual extrinsic factors separately. In particular, we obtain the
representation of an observation where the information about each
extrinsic factor is separated. Hence we can evaluate the extent they
contribute to the prediction uncertainty of the intrinsic factor. Con-
sequently, the agent can specifically act upon the most responsible
extrinsic factors to reduce uncertainty. In the first step of our method,
we focus on this aspect using the notion of disentanglement.

In the second step, we propose to perform intrinsic factor predic-
tion using the latent representations of the observations. We defined
the intrinsic factor prediction task as multi-class classification of the
cars into different types based on their shape. This particular choice
was based on the data set we used and we will further reason about
it in section 3.2. Subsequently, we will use the classification results
as the predictive distribution and estimate corresponding uncertainty
using the entropy measure. It should be noted that to use soft-max
outputs as prediction probabilities, additional measures should be
performed, which are explained in detail in section 3.2.

In the third step, assuming disentanglement, we use the error
signal of intrinsic factor prediction to update the representation in
the latent space for each extrinsic factor. In this thesis, the term
transformation denotes the change in the value of an extrinsic factor.
Hence, the updates of the representation can be seen as transforming
it in terms of extrinsic factors in the latent space. Consequently, we
evaluate the extrinsic factors in terms of their capability to reduce un-
certainty, using their respective transformed representation. Finally,
we map the transformations in the latent space to the new value
of the corresponding extrinsic factor in the scene. These updated
extrinsic factors describe the new scene configuration for the next
observation with lower uncertainty that is obtained using the agent.

1.4 Contributions
The aim of this thesis to develop a model that guides an agent in an
environment to perform a prediction task on a vehicle. Particularly
the model can reason about the root causes of prediction uncertainty
in terms of extrinsic generative factors of the scene using the disen-
tangled representation of the environment. Furthermore, the model
can suggest new values on the extrinsic factors such that resulting
observations would lead to lower uncertainty. Hence, the model
could use the ability to navigate an agent in an uncertainty-aware
manner to perform the prediction with the least number of observa-
tions while achieving high prediction accuracy and low prediction
uncertainty.

• We associate the uncertainty of the predictions to the extrinsic
generative factors such that main contributing factors can be
identified.

• We defined a novel pipeline, that identifies scene configurations
for the next observation that would lead to low prediction
uncertainty.

• We generated a data set with synthetic images, where the
images have known generative factors with correct ground
truth values.

2 LITERATURE REVIEW

2.1 Disentanglement
Obtaining disentangled representations, that capture distinct sources
of variation independently, is an important step towards human-
level AI/ML systems [21]. Despite the lack of agreement on the
definition, one description states that a disentangled representation



should separate the distinct, informative factors of variations in
the data [3]. There has been a considerable effort on that matter.
These efforts can be investigated as two main approaches namely,
supervised and unsupervised.

In the scope of disentangled representation learning, unsupervised
methods try to achieve disentanglement without any guidance about
the actual factors of variation [30]. It is further motivated by human’s
ability to learn these factors in an unsupervised manner and the
inconsistency and difficulties of providing labels [21]. Within Deep
Generative Models (DGM), this is done by using neural networks to
approximate a conditional distribution on the data. Particularly VAEs
are heavily favored due to their ability to model a joint distribution
while maintaining scalability and training stability [18]. Therefore
most of the methods are based on augmentations on original VAE
framework [18] [6] [21] [28].

The authors of [18] are one of the first to propose to change the
standard vanilla-VAE objective by introducing additional regular-
ization term. Particularly, they put additional weight term to KL
divergence in the VAE loss. Hence, they force the approximate
posterior to be factorized, which leads to better disentanglement.
As [18] shows a promising approach to the disentangled representa-
tion learning problem, various other papers follow the same principle
of augmenting VAE objective. Both [6] and [21] argued that the
penalty term on the KL divergence term in equation 2 is causing
the low reconstruction capability and proposed to further decom-
pose the KL divergence term and identify underlying sources of
disentanglement. In [6], KL divergence term of original VAE objec-
tive is decomposed into mutual information, total correlation and
dimension-wise KL divergence. Consecutively, they declared a total
correlation term as the most crucial element of disentanglement and
hence proposed to penalize this term with additional weight term.
Similarly, in [21], they define composition in a more implicit way,
where total correlation and dimension-wise KL divergence expressed
as one term and proposed to use additional weight for this term.

Despite improved disentanglement offered by unsupervised meth-
ods, in [28], the authors showed that obtaining disentangled rep-
resentation in an unsupervised way is theoretically not possible.
Moreover, they stated supervision is essential for disentanglement.
The methods described in [9], [17], [26] and [37] use supervision
imposed by either the training procedures or through the labels. The
method described in [17], disentangle the factors corresponding to
ambient values (extrinsic) and the factors denoting identity informa-
tion of the object (intrinsic) in the image that is invariant ambient
values. It is achieved by inferring two sets of latent variables by a
VAE and using additional loss terms to define constraints on a subset
of latent factors. In [9] again similar sets of factors are disentangled,
namely class and content that corresponds to class-specific identity
information and the aspects that can vary within the same class re-
spectively. The proposed training procedure defines two separate
latent spaces for each factor. These latent spaces are jointly trained
using reconstruction error between sequence of content varying im-
ages and reconstructions of encodings sampled from these latent
spaces. Both of the works defined in [37] and [26] exploit the data
that describes the various transformations. They regularize the latent
space such that a particular subset of latent factors shows equivari-
ance to those transformations. In [26], this is achieved by defining
linear transformations for various transformations and using them
to manipulate the latent space such that its reconstruction would
approximate the image with true transformation. On the other hand,
in [37] two sets of latent factors are defined as identity and pose. For
a fixed identity unit they apply linear transformations to the pose unit
in a recurrent fashion, which are then combined with the identity
unit to reconstruct the sequence of transformed images.

2.2 Uncertainty Estimation

Estimating uncertainty of the prediction of the ML models is attract-
ing interest increasingly. In general, the success of ML models is
assessed mainly based on the correctness of the predictions, such as
accuracy or f1 score for classification models. Yet, these metrics fail
to reveal the uncertainty of predictions.

Bayesian Neural Networks (BNN) provide an inherent solution to
assess prediction uncertainty due to their probabilistic aspect. BNNs
are differentiated from regular NNs by how the weights of the net-
work are defined and learned. Instead of learning weights determin-
istically with pointwise estimates, BNN assigns a prior distribution
over the possible values that the weights can take and try to refine
these distributions using Bayesian inference. Precisely, for a data set
D with inputs X = {x1,x2, ..,xn} and labels Y = {y1,y2, ..,yn}, the
posterior distribution over the set of possible weights W is described
by Bayes theorem as p(W |D) = p(D|W )p(W )/p(D). The posterior
distribution denotes the family of possible model weights, given
the data set [20]. The prediction of a probabilistic classifier can be
expressed as the conditional probability that depends on the chosen
weights and the input image (p(y|x,w)). On the other hand, for a
test input, x∗ with true label y∗, the final prediction of a BNN is com-
puted by marginalizing the weight term from the likelihood. In other
words, the expectation of the likelihood term over the posterior distri-
bution gives the final prediction, p(y∗|x∗,D) = Ep(W |D)[p(y

∗|x∗,w)].
The uncertainty can be computed by a discrepancy measure such as
variance or entropy over the predictive distribution, p(y|x). How-
ever, it should be noted that the posterior evaluation is intractable.
Hence, it is approximated with various techniques.

A group of techniques proposes to use variational inference to
approximate the intractable posterior. The general idea is to de-
fine an approximate posterior q′(w) from a family of distributions
over the possible W and then minimize the KL divergence between
approximate and true posterior. Thus, the problem can be stated
as an optimization task, where the parameters of the approximate
distribution are optimized w.r.t. KL divergence. Some examples
of variational inference applied to BNN are found in [13], [4], [11]
and [35].

Non-Bayesian approaches also gained popularity for the estima-
tion of prediction uncertainty. This group of methods focuses on
Monte-Carlo (MC) sampling. Specifically, the prediction is per-
formed with an arbitrary number of models with weights sampled
from all possible weights described by its distribution. The final
prediction is obtained by averaging the results and the uncertainty of
prediction estimated by a discrepancy measure of this series of pre-
dictions. The ensemble learning is the technique where the results
of multiple models are combined and used as the final decision. The
MC sampling technique can be interpreted as an ensemble method
since the averaging of predictions is performed using an ensemble
of neural networks [25]. The work presented in [12], uses dropout
as a method to approximate Bayesian inference. The authors apply
dropout also during test time and disable a subset of the network
according to Bernoulli distributions defined for each weight. For a
test input, they perform multiple stochastic forward passes and aver-
age the results. Since at each pass, the model is randomly altered,
this can be seen as an ensemble method [27]. As another ensemble
method [25], defines multiple instances of a model with random
initialization. The networks are trained independently on the full
data set and then the final prediction is obtained by averaging the
resulting predicted probability of each model.

To summarize, the methods we discussed for both disentangle-
ment and uncertainty estimations have some shortcomings for our
requirements. In [13], [4] disentanglement is achieved only between
intrinsic and extrinsic set of factors without further separating each
set. On the other hand, the methods described in [26] and [37] do
not have axis alignment between generative and latent factors, which
means the latent factors are not designated to encode a particular



generative factor. However, we need to disentangle individual gener-
ative factors for both intrinsic and extrinsic sets, where each extrinsic
factor has a corresponding latent factor.

For the uncertainty estimation BNN techniques [13], [4], [11]
and [35] require substantial modifications to the training procedure
which leads to computationally expensive solutions with slower
training [19]. Moreover, during test time for a single input, multiple
predictions are needed to be performed to be able to estimate the
uncertainty. Although ensemble methods [25] and [12] overcome
the computational challenges, they also require multiple predictions
during test time inference of the model. This scales the computation
time with the number of predictions which could be problematic for
real-time applications.

3 METHODOLOGY

We start this section, explaining how we achieve the disentanglement
of individual intrinsic and extrinsic factors within the representation
of observations. Then, we describe the methodology to quantify
the uncertainty of intrinsic factor prediction. We justify our choice
to quantify the uncertainty. Finally, we specify the details of the
inference pipeline. In particular, we explain how we evaluate the
extrinsic factors based on the extent they contribute to the prediction
uncertainty. Moreover, we describe how we propose the new extrin-
sic factor values, that underlies the new scene configuration for the
next observation. Note that we used the term inference to refer to the
model evaluation during test time as in the deep learning literature.

3.1 Disentanglement (DC-IGN)
Having a disentangled latent representation of the scene, where the
agent act upon, is a crucial requirement for the proposed solution.
Essentially, we are trying to capture the disentangled generative
factors of the scene. In the context of this thesis, we define the
generative factors as the combination of two subsets, namely in-
trinsic and extrinsic factors. Besides their semantic difference, one
can also highlight their difference with the notions of equivariance
and invariance. A transformation of the 3d scene space wrt to the
camera or ambient factors would also transform 2d image space.
Consequently, the latent space would also be transformed and some
aspects of it would be altered. The set of factors of the scene that
show immutability and kept unchanged for a given transformation
are said to be invariant to that transformation. Equivariant ones, on
the other hand, denote the factors that are modified in the latent space
linearly to the transformation exerted on scene space. The transfor-
mations we can perform in the scene consist of the extrinsic factors,
such that we can alter the position of the camera and the ambient
factors of the environment. Accordingly, the intrinsic factors should
have invariance for the transformations of extrinsic factors. This
behavior can also be described with the following equations where I
denotes the observation, hint(I) and hext(I) denote the intrinsic and
extrinsic factors of observation I respectively, and g() denotes the
extrinsic transformation.

hint(g(I)) = hint(I),
hext(g(I)) = g(hext(I)).

(1)

To obtain the disentangled latent representations, we followed
the method introduced in [24]. They also use the idea of equivari-
ance/invariance in their method to achieve disentanglement. More-
over, they managed to disentangle not only extrinsic and intrinsic
factors but further disentangle individual generative factors. In
other words, the training procedure they defined allows us to decide
which particular factors we encode in the latent space in a factorized
way. Essentially, they used a convolutional variational auto-encoder
(CVAE) network for which the training is performed via the VAE
objective, namely by maximizing ELBO. ELBO is defined in equa-
tion 2, where qφ (z|x) denotes approximate posterior distribution and

pθ (x|z) denotes generative distribution parameterized by encoder
and decoder networks of VAE. More precisely, the first term in equa-
tion 2 is the expected value of log-likelihood of input data (x) given
the latent variables (z) and the second term is the KL divergence
of approximate posterior and the true prior distribution of latent
variables.

Eqφ (z|x)[log pθ (x|z)]−DKL(qφ (z|x)||p(z)) (2)

There are two main traits of the training procedure used in dc-ign,
that leads to disentangled representations. Firstly, the network is
trained with mini-batches of data, where each mini-batch consists
of a particular set of images. The data in each mini-batch are the
sequence of images, that vary in terms of only a single generative
factor, while the remaining factors are kept constant. With a mini-
batch, the model receives a sequence of images that describe the
differences in the scene when the value of a generative factor is
consecutively altered.

In general, the goal is to represent generative factors by disjoint
sets of latent factors such that each set encodes information about a
particular generative factor throughout the training. During training,
given a mini-batch of a generative factor, its respective latent factors
are called active, while the latent factors belong to other generative
factors are called inactive. To achieve that, as the second trait,
the flow of information is modified in the latent space during both
forward and backward pass. For a mini-batch with a particular
generative factor, during the forward pass, all inactive latent factors
are altered. Particularly, each of the inactive latent factors is replaced
with their respective mean computed over the mini-batch, whereas
the active latent factors keep the values inferred from the encoder.
Since the inactive factors of the latent representations in a mini-
batch are equalized, they don’t provide any information about the
variations within the batch. Thus, the decoder network is forced
to reconstruct the variations within a mini-batch, using only the
information from active latent factors. Similarly, in the backward
pass, the gradient signal received by the latent factors is modified.
Again, only the active factors are allowed to be updated with the true
error signal. For the inactive factors, each error signal is replaced
with the difference of its inferred latent value (zi) and the respective
mean values computed during the forward pass. Hence, the encoder
network would learn to represent the variations within the batch
using only the active latent factors.

Consequently, with the described training procedure, we try to
achieve equivariance between the transformation of a generative
factor described within a mini-batch and the latent factors specified
for that generative factor. On the other hand, the latent factors, that
do not belong to the generative factor of the mini-batch, forced to
be invariant with respect to the transformation. Figure 1, describes
an example training procedure for a mini-batch whose generative
factor is attributed to the first factor of the latent representation.

Figure 1: The training procedure of dc-ign [24]. The unshaded
and shaded latent factors denote the active and inactive factors re-
spcetively. This figure demonstrates training with a mini-batch of k
images where only the first latent factor is set as active.



For our experiments, we defined six generative factors, light in-
tensity, light location, elevation and azimuth angles of the camera
w.r.t the car as extrinsic ones whereas color and model of the car
as intrinsic ones. We used latent factors z1,z2,z3,z4,z5 to encode
generative factors of light intensity, light location, elevation angle,
azimuth angle and color respectively, whereas the remaining latent
factors encode the car model. Although, we would not perform trans-
formations for intrinsic factors, there are latent factors in the learned
representations, that shows equivariance with intrinsic transforma-
tions. However, having latent factors designated for the car model
is essential since the defined task of estimating car type is directly
related to the geometry, hence to the model of the car. On the other
hand, the color of the car is chosen to demonstrate the difference
between extrinsic and intrinsic factors in terms of disentanglement
performance.

3.2 Uncertainty Estimation of Intrinsic Factor Predic-
tion

The main prediction task, for which we try to estimate and reason
about its uncertainty, is defined as car type prediction. To be more
precise, we try to classify the cars into different types that vary based
on the geometry and dimension of the car. Although this is different
from the actual task of visual inspection, we believe car type is
a good option to demonstrate to the usefulness of our method for
visual intrinsic factors prediction. This particular choice is due to the
lack of labeling of the car model intrinsic factor for the data set we
generated. Consequently, car type labeling is performed manually
by considering the general visual features of the cars such as the
shape and dimension of the cars.

As we defined the intrinsic prediction task as a multi-class clas-
sification in section 1.3, we used a regular neural network as the
classifier model. As motivated in section 2, described methods intro-
duce additional time requirement during test time. In our setting, this
is detrimental even further, since, in our inference pipeline, we need
to perform predictions one for original input and one for each extrin-
sic factor. Considering, we are required to perform the predictions
in real-time, the BNN and ensemble methods would overburden the
computation time.

Consequently, for the intrinsic factor prediction task, we propose
to use the softmax output of the model as the predictive distribution.
This choice should be justified since the softmax output of a NN
might produce over-confident predictions [15]. For classification
problems, the confidence of a prediction is the highest probability
in the softmax output. Having calibrated confidences refers that
the confidence of the prediction is indicating the actual likelihood
that the prediction is correct [5]. In other words, well-calibrated
prediction confidence should reflect the empirical likelihood of the
predicted class [10].

It is argued that the depth of the network has a direct effect on
miscalibration [15]. Hence, we defined our intrinsic factor classifier
as a simple and shallow model. We used the latent representations
as input to the classifier rather than actual images. This allowed
us to exploit the information in the disentangled intrinsic latent
factor car model and achieve decent classification performance with
simpler and confidence calibrated models. While deciding model
parameters such as the number of layers and number of neurons, we
used expected calibration error (ECE) [31]. This metric measures
the expected error between the prediction confidences and the true
class probabilities.

To compute ECE, the confidences of the predictions over a set of
data, with N observations (images), are divided into M bins, where
the confidences within bin m fall into interval of (m−1

m , m
M ]. The

observations in a particular bin m are denoted by Bm. The accuracy
and confidence of Bm are computed as following where yi, ŷi, and p
are the true label, predicted label, and confidence of the prediction
respectively.

acc(Bm) =
1
|Bm| ∑

i∈Bm

1(ŷi = yi)

con f (Bm) =
1
|Bm| ∑

i∈Bm

(pi)

(3)

Having defined the accuracy and the confidence of a bin, ECE is
approximated as the following

ECE =
M

∑
m=1

|Bm|
N
|acc(Bm)− con f (Bm)| (4)

Assuming we have a classifier with well-calibrated prediction confi-
dences, we estimate the prediction uncertainty by computing entropy
value, given in equation 5, over the soft-max output (S).

H(S) =− ∑
pi∈S

pi log pi (5)

For a soft-max output where all classes have the same probability
would maximize the entropy. On the other hand, for confident
predictions where the probability of the predicted class is higher
than the remaining classes, we would obtain lower entropy.

3.3 Inference Pipeline
The inference pipeline describes the method that evaluates the predic-
tion uncertainty of the intrinsic factor for observation and describes
the new scene configuration for the next observation. It is expected
that the next observation leads to more confident predictions. Be-
sides exploiting uncertainty for this decision making, we also want
to improve the prediction accuracy. In that sense, we are assuming
the classifier is trained enough, such that confident (low entropy)
estimates would only be obtained by correct classifications. Hence,
we should expect an increase in the prediction performance as we
try to increase the confidence of the predictions. In other words, the
main idea of the inference pipeline is as following; given the data
distribution, we used to train the intrinsic factor classifier, it essen-
tially describes space of scene configurations where we are trying to
navigate the agent. We are trying to tailor our movements such that
we detect the places in that space, where predictions are confident
and hence correct with the least amount of steps. It should be noted
that the structure of this space might vary depending on the car type.
That means for different car types, the scene configuration of high
confidence can be different. Thus the proposed method should adapt
these variations.

The working mechanism of the pipeline is depicted in figure 2.
Particularly, for an initial observation, we start by obtaining the
disentangled latent representation using the encoder of the dc-ign
model. This representation is fed to the calibrated intrinsic factor
classifier to obtain its softmax output. We assess the prediction
uncertainty of this initial observation by computing the entropy over
its softmax distribution. Based on the entropy value, the gradient
values are computed and back-propagated to latent representation.
Assuming the extrinsic factors are disentangled, the gradient val-
ues for each of them would indicate the share they have for the
uncertainty. At this step, we scale the error signal of the gradient
with the learning rate. This value denotes the step size we apply
to the gradient values. We used the term learning rate since that is
one common name for that parameter in ML. Given the gradient
vector, we separately update each latent factor that corresponds to
true extrinsic factors by their respective gradient value. At this point,
we obtain transformed latent representations that correspond to the
observations with new scene configuration.

These transformed representations are used one by one to perform
intrinsic factor prediction again with the calibrated classifier, fol-
lowed by entropy calculation on their softmax outputs. The extrinsic



Figure 2: Inference Pipeline: The diagram depicts an example where elevation is found as extrinsic factors to be altered. Particularly, fintensity,
flocation, felevation, fazimuth denotes the true generative factors of the test image for which the latent representation, roriginal , is obtained. rintensity,
rlocation, relevation and razimuth are representing the transformed representations. Furthermore, textrinsic denotes the chosen extrinsic factor for
which the new proposed value ( f ′textrinsic

) is found using the disentangled extrinsic latent factors rtextrinsic{zintensity, zelevation, zelevation, zazimuth}

factor whose softmax gives the smallest entropy is chosen as the
factor that would reduce the uncertainty the most. Notice that, since
we used the gradient values to update the original representations, it
is certain that each of the transformed representations would result
in lower entropy than of the original observation.

So far, we have decided which extrinsic factor to manipulate in
the scene. However, we still need to tell the new value of the chosen
extrinsic factor, corresponding to the update performed on it. To
perform that we have defined an additional classifier, that maps the
latent value of a factor to its value in the data space. Hence, we
called them as latent to data maps. We defined a separate mapping
classifier for each extrinsic factors and trained them with the latent
factors, that correspond to extrinsic factors, as input. In other words,
we feed the factors of the latent representation, that are designated
for the extrinsic factors to the mapping classifier. Given the extrinsic
latent factors, the mapping classifier estimates the corresponding
true factor value. Thus, also the new scene configuration for which
the agent obtains the next observation to perform inference.

Having described the main working principle of the inference
pipeline, we have further defined other variations of the pipeline. Es-
sentially, we have three main decision points, that are transformation
technique, number of inference steps and stopping criteria.

Transformation technique characterize decisions about how the
extrinsic factors are transformed and consequently how the new
scene configuration is determined. Regular inference follows the
above-described procedure where for a single observation, only one
extrinsic factor is chosen and used to define the change in the config-
uration of the scene. The new value of the extrinsic factor is decided
based on its respective latent to the data map. Multiple transfor-
mation inference adopt a very similar approach where, instead of
focusing on a single extrinsic factor, the transformation in terms of
all extrinsic factors are considered at the same time. That means
the inference pipeline can propose a new scene configuration where
multiple extrinsic factors are altered. Again, the new values for all

extrinsic factors are decided based on their corresponding latent to
data map. Besides these transformation strategy alternatives, we
defined two intuitive alternatives. With best of each inference, we
allow again only one extrinsic factor to be transformed at a time.
Similar to other alternatives, the extrinsic factor is chosen based on
the estimated entropy reduction. However, instead of using latent
to data map, for each extrinsic factor, the value that has the lowest
mean entropy in the training set is assigned as the new value of the
chosen factor. We identified the values with the lowest mean entropy
for each extrinsic factor, based on the prediction uncertainties of
the training set. Lastly, for best of all inference, we identified the
scene configuration that has the lowest entropy among the entire
training set. Regardless of the evaluation of the extrinsic factors, this
strategy always proposes the scene configuration as the one with the
minimum.

Number of inference steps describes whether consecutive infer-
ence steps are allowed. In single step inference, there can be at most
one pass of inference pipeline, whereas with multi step inference,
we can keep applying the inference pipeline consecutively such that
observation from the proposed scene configuration of the previous
step, used as input of the next step. Intuitively, it only makes sense
to use the proposed configurations as long as they lead to an increase
in confidence.

Stopping criteria defines the conditions whether the result of the
inference pipeline should be performed in the scene via the agent.
The first intuitive condition is to check if the inference pipeline
suggests a new scene configuration. If the latent to data maps do
not output a different value for the chosen extrinsic factors than
the ones of the input observation, the agent cannot alter the scene
configuration. Hence, we stop the inference. Secondly, we assess the
usefulness of a proposed transformation in the sense that whether
the observation with the proposed scene configuration has lower
uncertainty.

In latent space strategy, we compare the prediction uncertainty of



input observation with the uncertainty of the prediction obtained by
transformed latent representation. If the intrinsic factor prediction
using the transformed representation has lower uncertainty, then the
inference pipeline returns corresponding uncertainty and predicted
class as the current uncertainty and prediction respectively. Notice
that with this strategy, since we evaluate the uncertainty reduction in
the latent space, we can assess the usefulness of new scene configu-
ration without actually performing the transformation. However, the
latent to data map may estimate the new value of the transformed
extrinsic factor falsely. Hence, there is the risk that the prediction
uncertainty might be different for the transformed representation
and for the actual observation defined by new scene configuration
which is determined using the transformed representation. The other
approach, data space strategy, use the same procedure from the in-
ference pipeline to decide proposed scene configuration. Yet, instead
of evaluating the usefulness based on latent space values, the agent
physically performs the transformation in data space and obtains
the observation with the new configuration. The new observation
is then compared with the previous one to check if it indeed has
lower uncertainty. If the uncertainty is lower we use the prediction
based on the newly observed image and its confidence as the current
prediction and confidence respectively. Here, with the cost of per-
forming an additional transformation, we eliminate the risk of falsely
associating a proposed observation and its prediction uncertainty
due to estimating uncertainty in the latent space.

4 EXPERIMENTAL SETTING

In this section, we will describe how we generated our data set and
specific details about the architectures and the training of the models
we used.

4.1 Dataset Generation
The model we used to obtain disentangled representations requires
a data set from which we can define mini-batches where only one
generative factor is altered. Since we defined our use case as the
visual evaluation of the cars, to collect images of real cars in an envi-
ronment where we have control over extrinsic factors is challenging.
Hence, we propose to use synthetic images. We use the CAD mod-
els of cars from modelnet40 data set [36] and we use Blender [7]
to generate rendered images of the cad models. With Blender, we
simulated an environment where we make observations about the
cars by taking pictures. We defined two factors to control the am-
bient properties of the environment that are light intensity and light
location and two factors to control the orientation of the camera w.r.t
the car, namely azimuth angle and elevation angle. Note that, the
position of the car is fixed at the origin of the environment and the
camera is always pointing at the car. These factors together define
extrinsic factors. In addition to the extrinsic ones, we have control
also over the color of the car, which is an intrinsic factor. However,
we also alter the color of the car in the data set to investigate the
disentanglement performance of an intrinsic factor and compare it
with the extrinsic ones.

Figure 3: Possible light location and azimuth angles in the scene

Each mini-batch contains 6 images corresponding to different
values of the modified factor. The factors can assume the following
values:

• Azimuth angle: {0°,36°,72°,108°,144°,180°}

• Elevation angle: {18.4°,22.6°,26.5°,30.25°,33.7°,36.9°}

• Light location is fixed along the y-axis in the environment, such
that we alter the location of the light only along the x-axis:
{−3,−2,−1,+1,+2,+3}

• Light intensity: {0.5,1.0,1.5,2.0,2.5,3.0}Watt/m2

• Color: green, cyan, blue, magenta, red, yellow

Figure 4: Possible elevation angles in the scene

For a single car model, we obtained renderings as a combination
of these 5 factors, which sums up to 7776 images. We generated
training, validation, and test sets with 40, 8, and 8 car models re-
spectively. As we mentioned in section 3.2, we don’t have the model
label for any of the cars. Rather, we manually labeled each car in-
stance based on the type of car it is. Specifically, we labeled the cars
into 4 classes as suv, sport, sedan and hatchback. Even though there
might be car models, where the distinction between these classes is
vague, we believe these classes cover the majority of the available
car models.

4.2 Model Architecture

In this thesis, we have used three different models as dc-ign, intrinsic
factor classifier and latent to data maps.

The dc-ign model is based on the configuration in the paper [24].
We followed the same configuration since our settings are similar
where we also used synthetic images with the same size of 150x150.
The encoder network has three convolutional blocks in which a
convolutional layer with a kernel size of 5 and 2x2 max pooling with
a stride of 2 is used. Differently from the original implementation,
we set the size of the latent space as 128. The decoder network is
defined as again three convolutional blocks and each block has 2x2
upsampling layer followed by a convolutional layer with kernel size
7. The training is performed for a maximum of 100 epochs. For
the intrinsic factor classifier and the latent to data maps, we have
explored many different model architectures. The ones described
below summarize the best-performing ones. The intrinsic factor
classifier is defined as a single layer network with 250 neurons and
can be trained for a maximum of 50 epochs. For the latent to data
maps, we used four identical multi-class classifiers where a model
has two dense layers with neuron numbers of 150 and 50. We again
defined the maximum number of epochs as 50. We trained all the
above-mentioned models with Adam optimizer [22] together with
early stopping that has a minimum loss decrease of 0.001 and a
patience value of 3.



5 RESULTS

As the proposed inference pipeline relies on proper disentanglement
of extrinsic factors as well as the well-calibrated intrinsic factor
classifier, in this section, we present our evaluations on these matters.
Moreover, we show both the quantitative and qualitative results of
the inference pipeline.

5.1 Disentanglement
We assess the outcome of the dc-ign in terms of disentanglement
using one quantitative method and two qualitative methods for which
the results give the same conclusions. We include the results only
about extrinsic factors in this section. For the disentanglement results
of the color as an intrinsic factor, we refer to the appendix 8.1.

5.1.1 Mutual Information Score
Measuring disentanglement quantitatively is an active research field.
Although there is not a single particular metric that excels among
others, each metric offers different advantages. For our case, the Mu-
tual Information Gap (MIG) [6] score is favorable since it provides
a metric of disentanglement performances for individual generative
factors using mutual information. Mutual information (MI) mea-
sures the relationship between two random variables in terms of the
amount of information they convey about each other. In other words,
MI between two random variables, tells how much information can
be obtained about one variable by observing the other. It can be
computed with the following equation

MI(z j, fk) = DKL(q(z j, fk)||q(z j)⊗ p( fk))

= Eq(z j , fk)

[
log

q(z j, fk)
q(z j)p( fk)

]
(6)

E [P(Y = y|p̂ = p)− p] (7)

where z j denotes the jth latent variable and fk denotes the kth

generative factor with distributions of q(z j) and p( fk) respectively.
In the case of total independence between latent and true gener-

ative variables MI(z j, fk) becomes 0. If the dependence between
them is maximum, such that the relationship is deterministic, the
mutual information is equal to the entropy of the true generative
factor MI(z j, fk) = H( fk). Semantically MI evaluates the axis align-
ment property of the disentanglement. Ideally, the information about
each generative factor should be encoded within a single latent vari-
able [6]. In our case, we should expect high MI (dependency) for a
generative factor and its corresponding latent factor and small values
for other latent factors.

We present the results in table 1, where each column refers to
a generative factor fk and each row shows MI(z j, fk) for a latent
factor z j. The last row highlights the entropy for each generative
factor, which indicates the maximum possible MI between that factor
and any latent factor. For the ease of interpretation, we normalized
MI scores of each generative factor with their respective entropy
value. Hence, a MI score of 1 indicates total dependence, whereas
0 indicates no shared information between the generative and the
latent factor. We further highlighted the highest normalised MI for
each factor in table 1. At a first glance, we can see that each genera-
tive factor has the highest MI for its corresponding latent variable.
However, for each generative factor the degree of deviation, from
maximum possible value 1, varies. For light intensity and elevation,
the difference is smaller compared to azimuth and light location.
Moreover, we can compare the normalized MI score of a generative
factor with its designated latent factor and remaining latent factors.
For a given generative factor, the higher the MI difference between
its designated latent factor and the remaining ones, the better the
disentanglement. We see that intensity and elevation have higher
differences than azimuth and location. Consequently, light location

Generative Factors fk
light
intensity

light
location elevation azimuth

light
intensity 0.686 0.057 0.005 0.010

light
location 0.042 0.426 0.006 0.040

elevation 0.039 0.012 0.872 0.013

L
at

en
tF

ac
to

rs
z j

azimuth 0.054 0.037 0.006 0.523

H( fk) 1.7916 1.7917 1.7917 1.7917

Table 1: Normalised Mutual Information Scores

and azimuth are the factors that have relatively more dependency
with other latent variables which indicates entanglement of these
factors.

In the previous sections, the requirement for independence among
extrinsic factors is mentioned. Nevertheless, some of these factors,
by their nature, can be inherently entangled. In our setting, although
azimuth and light location can be manipulated separately, they affect
the shading in the scene together. Following a similar logic, we fur-
ther identified another inherent dependency between light location
and light intensity due to their common effect on the brightness in
the scene. Brightness in the scene can be identified by the luminosity
of the observations. Besides the straightforward relation of light in-
tensity and brightness, light location also affects brightness since, as
light moves away from the car, brightness also decreases as a result
of the lower angle of incidence of the light. These insights also align
with the MI scores. The latent variable with the second-highest MI
for light location and azimuth generative factors are light intensity
and light location respectively.

5.1.2 Traversing Latent Space

To further validate our findings of disentanglement, we used various
qualitative methods. The latent space traversal method is used for
the visual assessment of disentanglement. Given the latent represen-
tation of an observation, the value of a single latent dimension with
a known generative factor encoded in it is altered linearly within
a range. As that latent dimension is traversed, at each step the
altered representation is reconstructed using the decoder network.
Assuming disentanglement, these sequences of reconstructed images
should show only visual changes corresponding to the traversed gen-
erative factor while other visual aspects of the scene should remain
the same. We represented the results for all generative factors in
the appendix in figure 18, where we can see all factors have smooth
traversals.

Particularly, we investigated in detail the entangled cases for the
azimuth and light location to visualize our above-mentioned insights.
Figure 5, shows a partially entangled example for each of these
two extrinsic factors. The latent azimuth is traversed from 0° to
180°. Between the first and last two consecutive images, we can
observe the change in terms of only shading, which is due to light
location. This behavior visually validates that indeed azimuth and
light location remain entangled to each other. Similarly in the light
location traversal, the reconstructed images illustrate the change
in light location from −3 on the left-hand side of the car to 3 on
the right-hand side. During the first half of the traversal, it can be
noticed that the brightness in the scene is increasing despite altering
only the location. This investigation indicates that light location
has a dependency on the intensity. Additionally, in the last picture,
although the figure of the car is distorted the shading depicts that
the car is rotated counterclockwise. These conclusions agree with
the findings of MI scores as we detected dependency of the light
location to light intensity and azimuth angle.



Figure 5: Entangled latent space traversal of azimuth and light
location

5.1.3 Visualising Latent Space

Lastly, we visualized the alignment of disentangled factors in the
latent space for the test set. Latent space visualizations are obtained
by choosing a pair of disentangled factors and plotting the values
of corresponding latent dimensions for each image in the test set.
Each plot is colored based on the values of the true generative factor
displayed on the y-axis. Here, we presented and analyzed the results
for azimuth and light location as challenging cases. Whereas, we
demonstrate the behavior of properly disentangled factor with eleva-
tion. The visualization of other disentangled factors are presented in
the appendix 8.1 in figures 19 and 20.

Figure 6: Latent space visualization of Elevation-Intensity latent
factors. The coloring is based on true elevation values of the images
represented by dots. The sequence of the images on the right side
are the example images of the true elevation values. Each image
denotes the cluster with a particular color.

Disentangled factors show a clear separation of the true factor
values in the latent space. Elevation is such a factor, with the highest
MI score among extrinsic ones, as we can also see the obvious
distinction of different elevation values in figure 6. The latent space
alignment of both location and azimuth factors show the absence of
a clear structure in figure 9 and 11 respectively. The main reason for
this behavior is due to the varying shade in the scene caused by the
position of the light. Depending on whether the light is on the left or
the right side of the car, the shade is formed on the opposite sides.

Particularly for the location latent plot in figure 9, the overlapped
clusters on the side of the plot are highlighted with the red bound-
ing boxes. These overlapped clusters denote the similar views of
azimuth 0° and 180°. To be able depict this more clearly, we divided
figure 9 into three separate plots as two boundary azimuth angles
0°, 180° and middle angles (36°, 72°, 108°, 144°). In figure 7 the
embeddings for the boundary angles of figure 9 were separated into
those corresponding to images with azimuth 0° (left) and those cor-
responding to 180° (right). For both boundary angles, we can see

the alignment is more structured compared to the light location in
figure 9. We observe that even though the light locations can be
distinguished from the embeddings, the front (0°) and rear (180°) of
the car are indistinguishable due to the overlap.

Figure 9: Latent space visualization of Location-Azimuth latent
factors. The coloring is based on true light location values of the
images represented by dots. The clusters on the side of the plot,
specified by bounding boxes denote the boundary azimuth angles,
whereas the ones in the middle denote the middle azimuth angles

Figure 10: Separated latent space visualization of Location-Azimuth
factors. The plot denotes the examples with true azimuth angles
of 36°, 72°, 108°, 144°. The images below demonstrate the visual
difference when the light is on the left and right-hand side of the car
for the middle azimuth angles.

While the figure 7 underlies the reason for overlapping and also
shows the layout in the latent space for boundary (0◦ and 180◦)
azimuth angles, with figure 10 we reason about middle angles. Ac-
cording to figure 10, it can be said that the middle azimuth angles
illustrate a more organized layout than boundary angles without
further subdividing. Especially, the left-hand side light locations are
more scattered than right-hand side locations. This behavior can



Figure 7: Separated latent space visualization of Location-Azimuth factors. The left and the right plots denote the examples with true azimuth
angles 0° and 180° respectively. The pairs of images in the middle of the figure denotes similar views. Notice the shadings that are on the same
side of the scene and with similar geometries for each pair, which is why their latent representations are overlapped in figure 9. We further
highlighted pairs of images with bounding boxes that also match their corresponding clusters in the plots.

Figure 8: Separated latent space visualization of Azimuth-Intensity factors. The left and the right plot exhibit structure when light is on the left
and the right-hand side of the car respectively.



be attributed again to the shade of the car. As it is also depicted
with images in figure 10, when light is on the right-hand side, the
shade is occluded by the car itself, whereas for left-hand side light
locations the shadings are visible. When the light is on the left-hand
side, the properties of the shade cause additional visual variations
in the scene which are affected by multiple factors such as the light
intensity or elevation. When light is on the right-hand side, there is
no shadow and thus the visual appearance of the images does not
vary as much with light intensity or elevation.

Figure 11: Latent space visualization of Azimuth-Intensity latent
factors. The coloring is based on true azimuth values of the images
represented by dots.

As another not fully disentangled factor, latent space visualization
of azimuth vs light intensity in figure 11 exhibits an unstructured
alignment with no interpretability. Nevertheless, dividing again
into sub-cases reveals the underlying structure. Specifically, we
investigated figure 11, in more detail by dividing the images based on
the true location values as left-hand side (−3,−2,−1) and right-hand
side (1,2,3). As displayed in figure 8, each case pictures an obvious
distinction among different azimuth values but in reverse order.
Hence, it would indicate the azimuth latent variable indeed captured
information about the azimuth generative factor. The sequences of
images on the left and right side of the figure 8 varies in terms of
only the shading in the scene. Although we cannot deduce physical
interpretation, it seems the existence of the shading in the scene
reverses the alignment. Moreover, as depicted in the right plot of
figure 8, again due to the occluded shading for middle azimuth
angles when light is on the right-hand side, the azimuth latent values
for these images has less disparity. The effect of this can be observed
even between the boundary and middle azimuth angles for the right-
hand side light location as displayed in the right plot of figure 8.

5.2 Uncertainty Estimation

5.2.1 Calibration Error

In the context of this thesis, the intrinsic factor prediction task is
defined as the classification of the type of the car. The type classifier
achieved 89% accuracy on both the training and the test set. This
indicates that the classifier does not over-fit to the train set and thus
it can generalize its performance. Furthermore, we presented the
f1-score, precision and recall on the test set for each type class in
table 2.

suv sport sedan hatchback

f1-score 0.81 0.98 0.94 0.84
precision 0.97 0.98 0.94 0.75
recall 0.70 0.97 0.94 0.96
support 15552.00 15552.00 15552.00 15552.00

Table 2: Car type prediction results of test set

Besides the classification results of the intrinsic model, the con-
fidence calibration of the predictions should be evaluated. We esti-
mated the uncertainty of the predictions using the soft-max output of
the intrinsic classifier. To validate this approach, we need to make
sure that on average the intrinsic factor classifier is neither over nor
under-confident with its predictions, this corresponds to a confidence
calibrated classifier. Prediction confidences of a classifier are cali-
brated if its prediction confidence is equal to the prediction accuracy
values. To this end, we have tested the confidence calibration [15]
of our intrinsic classifier. In figure 12, the reliability diagram can be
found which depicts the confidence and accuracy levels for the bins
computed for ECE, as described in section 3.2. Figure 12 shows that,
except for the first bin, almost all confidence intervals have accuracy
and confidence similar. Despite the relatively higher difference of
the first bin, this has an insignificant effect on the final calibration
of the model, since there are only 5 examples that fall to this bin.
Moreover, the difference between accuracy and confidence has a
decreasing trend as the confidence of the predictions increases.

Figure 12: Reliability diagram of car type classifier

The intrinsic classifier also achieved 0.0105 ECE. This metric
does not offer a certain threshold such that below that value, it
can be said the model is calibrated enough. However, to evaluate
our level of calibration we compared with a model in the literature
that performs a similar task on a similar data set and for which the
calibration results are known. In particular, we chose ResNet 50
model with Stanford Cars [23] data set. This choice can be justified
since the prediction task is quite similar to ours, where it is multi-
class classification on the images of cars in terms of their make,
model, or year. As presented in [16], ResNet 50 on Cars data set
has 0.0430 ECE without any additional calibration method. Even
with additional calibration methods presented in [16], the lowest
ECE of Resnet 50 on Cars data set is 0.0174. Consequently, our
intrinsic classifier has ECE about less than two-third of the best
ECE of ResNet 50 on cars data set. This concludes that our intrinsic
classifier has calibrated confidences.

5.2.2 Statistical Analysis of Uncertainty
Given that the intrinsic classifier is calibrated, uncertainty is es-
timated by the entropy of the soft-max output. Additionally, we
should check that the entropy does depend on the different values of



the extrinsic generative factors. Thus, when we vary the values of a
factor we expect entropies to be different. If the extrinsic generative
factors do not affect the prediction uncertainty then across different
values of a generative factor the distribution of entropies should be
the same. This assumed difference can be confirmed by assessing
the distributions of prediction entropy for different values of each
extrinsic factor. The estimation of entropy values indicates expo-
nential distribution. For ease of presentation, we used log-entropy
values to picture the distributions in figures 21, 22, 23 and 24.

Figure 13: Error-bar plot of log entropy of prediction for azimuth
extrinsic factor

To obtain a more clear picture of the distribution differences, we
used error-bar and violin plots. We presented results for the azimuth
extrinsic factor in this section. whereas the visualisation of the
remaining extrinsic factors is given in appendix 8.2 with figures 25,
26 and 27. In figure 13, the bars, and the error lines denote the mean
and the variation of entropy values for each azimuth angle subset.
Among different azimuth angles, 144° has the lowest mean entropy,
which indicates that on average, images with azimuth angle 144°
lead to more confident predictions w.r.t. other angles. Although we
can see that these subsets have different mean entropy values, it still
does not inform if these subsets have different distributions. Hence,
by also visualizing the distribution using violin plots as shown in
figure 14, we can compare these distributions in terms of their shape.
Parallel to the figure 13 where angle 36° and 72° have closer means,
in figure 14 it can be seen the shapes of these distributions are also
alike. Moreover, in figure 14, the angle with the smallest mean
entropy (144°), has also the narrowest shape, which implies, this
azimuth angle provides the highest confidence among others.

Figure 14: Violin plot of log entropy of prediction for azimuth
extrinsic factor

We also performed statistical tests to ensure the distributions
of the entropy depend on the extrinsic factor values. Since the
distributions do not appear to be normal as seen in figures 21, 22,
23 and 24, we used Mann Whitney U (MWU) test, which does not

require normality, to identify whether the distributions of the entropy
for two values of a factor are statistically significant. The null
hypothesis of the test is that the calculated entropies for two factors
come from the same distribution (i.e. they are equally distributed).
Since MWU is a pairwise test, we performed the test between the
entropy estimated for pairs of extrinsic factor values.

Azimuth 0° 36° 72° 108° 144° 180°

0° - 0.000 0.000 0.000 0.000 0.000
36° 0.000 - 0.190 0.000 0.000 0.001
72° 0.000 0.190 - 0.000 0.000 0.003
108° 0.000 0.000 0.000 - 0.000 0.000
144° 0.000 0.000 0.000 0.000 - 0.000
180° 0.000 0.001 0.003 0.000 0.000 -

Table 3: p-values of MWU test of azimuth latent factor

The test results of azimuth latent factor are presented in table 3,
and of the remaining extrinsic factors again in appendix 8.2 in tables
7, 8 and 9. The test results are symmetric thus, the upper and lower
half of the table 3 are the same. As highlighted in the table only
for the tests between angle 36° and 72° the null hypothesis cannot
be rejected with a p-value of 0.19. This means that except for the
angles 36° and 72°, the distribution of entropy values are statistically
different from each other. Therefore the entropy does depend on the
values of the extrinsic factors. This finding also matches with the
conclusions we made form figures 13 and 14.

Among the remaining extrinsic latent factors, we also found that
for both elevation and light location except one pair of values, the dis-
tributions of the intrinsic factor prediction entropies are statistically
different from each other. On the other hand, for the light intensity,
all pairs of values indicates statistically significant differences for
distribution of the entropy. In detail results of the significance test
of other factors can be found in appendix 8.2 in figures 7, 8 and 9.

5.3 Inference Pipeline

We performed extensive experiments with combinations of differ-
ent inference variations and different learning rates. All possible
combinations of different variations give 16 settings of the inference
pipeline. However, we experimented with 12 inference settings. This
is because multi transform and best of all inference, where multiple
extrinsic factors can be altered at once, cannot be applied with latent
space strategy. In the latent space strategy, the final intrinsic factor
prediction is decided based on one of the transformed latent repre-
sentations. Hence, in case the transformed representations output
different car type predictions, it would cause ambiguities for the
final intrinsic factor prediction.

We have evaluated the usefulness of the inference pipeline,
both quantitatively and qualitatively. We have tested the inference
pipeline with the 12 different settings explained in section 3. As dis-
cussed earlier, we introduced the learning rate parameter within the
inference pipeline to scale the error signal. We expect that the learn-
ing rate affects the behavior of the inference pipeline greatly. Thus,
to detect the optimum learning rate, we have performed experiments
with 12 different learning rates, with each inference setting on the
validation set. Particularly, we evaluated the results on the validation
set, based on the change of f1-score caused by the inference pipeline.
To be precise, we apply the inference pipeline on the validation
set and we computed the f1-score on the final predictions of the
inference pipeline. The results can be seen in figure 28 where each
plot belongs to one of the inference variations. We further denoted
the best performing learning rate with a marker for all variations.
When deciding optimum learning rates, we sought a value where
the performance either peaks or reaches a plateau. According to the



table 28, the only settings, that did not lead to an improvement, are
single step regular and best of each inference with latent strategy.

Notice that in figure 28, the plots for best of all inference do
not show a change in the performance for different learning rates
since this inference baseline, does not use the gradient information,
however it is just plotted for comparison. Moreover, multi-step and
single-step inferences do not differ, since we have, no change in
any extrinsic factor, as a stopping criterion and best of all inference
proposes the same scene configuration even with multi-step.

Having the optimum learning rate for all inference settings, we
have assessed the performance of the inference pipeline on the test
set. The results are exhibited in table 10. The table contains for
each setting the optimum learning rates that are found based on the
validation set performance. It also shows the number of correctly
classified and misclassified images by inference pipeline, among
the images classified correctly by the original intrinsic classifier.
Similarly, we also present in table 10 the number of images that
were initially classified wrong and after the inference pipeline either
classified correctly or remain misclassified. In other words, initial
correct-inference wrong indicates the detriment due to the inference
pipeline whereas initial wrong-inference correct marks the improve-
ment caused by the inference pipeline. To be able to demonstrate
difference in the prediction performance, we present the the change
in terms of precision, recall and f1-score w.r.t. the original classifier
for each inference setting. We further present for each inference
setting the highest decrease in entropy among the images from the
test set as well as how entropy changes on average. Lastly, for the
multi-step settings, we presented the maximum number of inference
steps applied to a single image and the average number of inference
steps.

Additionally, table 10 shows the performance of the original
classifier, as it predicted 55444 images correctly and 6764 of them
incorrectly while achieving 91%, 89%, and 89% precision, recall,
and f1 score respectively. The results presented in table 10 point
that 9 out of 12 settings improve the classification. Particularly,
both single and multi-step regular inference and single-step best
of each inference with latent strategy degrade the classification
results. Moreover, as highlighted on table 10, multi-step multi-
transformation inference with data strategy achieved the highest
improvement where precision, recall and f1 score has increased by
5.17%, 6.81% and 6.88% respectively. Consequently, with the best
performing setting, we achieved 96.1% precision, 95.8% recall, and
95.7% f1 score. Moreover, with this setting, the inference pipeline
managed to reduce the uncertainty in the best case by 1.37 and on
average by 0.13 while spending at most 6 and on average 1.45 steps
on an image.

number of
inf. steps

percentage of inf.
steps caused
config. change

percentage of images
with a new config.

total number
of transformations

90255 57.9% 38.9% 79049

Table 4: Additional statistics for the best performing inference set-
ting

To give more insight into the behavior of the multi-step multi-
transformation inference with data strategy, we have computed the
statistics in table 4. Given that there are 62208 images in the test
set, the total number of inference steps applied is 90255. However,
only 57.9% of inference steps caused a transformation in at least
one of the extrinsic factors. The main reason for this difference
is the additional step requirement of data strategy to be able to
evaluate the proposed transformation. In other words, out of 90255
steps, for 42.1% of them inference pipeline decided the proposed
transformation does not lead to lower entropy. With this inference
setting, since it is allowed to alter multiple extrinsic factors within a

single inference step, 57.9% of the total number of inference steps
caused transformation of an extrinsic factor 79049 times. Moreover,
due to the multi-step property of this setting, 57.9% of the inference
steps that caused a change in the scene configuration result in a new
scene configuration for 38.9% of the total images in the test set.

In addition to the statistic from table 4, we also presented the
distribution of the extrinsic factors among in total of 79049 transfor-
mations in table 5. It can be seen that number of times the inference
pipeline utilized transformations of intensity, location, and elevation
are close, where azimuth is preferred slightly fewer times.

intensity location elevation azimuth

20175 20164 20027 18683

Table 5: Number of transformation per extrinsic factor

In addition to the evaluation of the effect of the inference pipeline
with classification metrics, we tried to convey the advantages of the
proposed method visually. In figures 15 and 16 we visualised the
transformations proposed by the inference pipeline. For both figures,
the images in the first column are the original images that are fed to
the inference pipeline. The captions on top of each image in the first
column denotes the chosen extrinsic factor to alter and the initial val-
ues for each extrinsic factor. The images in the remaining columns
denote the transformations of the extrinsic factor annotated at the
top of each column. Furthermore, the new values of the transformed
image are given on top of each image. For each inference example,
the chosen transformation is highlighted with the red frame.

Figure 15: Visual evaluation of inference pipeline with intuitive
results

The results presented in figure 15 and 16 are the results of single-
pass regular inference with data strategy. We used regular inference
since the multi-transformation inference might pick multiple extrin-
sic factors. Hence that would prevent us to analyse the results in
terms of each extrinsic factor separately. On the other hand, the
choice of single-pass is to also demonstrate the usefulness of the
inference pipeline when only one step is allowed. In particular, the
images in figure 15 depict the cases where inference results are also
visually intuitive to humans. As can be seen, for each example in
figure 15, the chosen transformation indeed provides a better scene
configuration such that we can infer the type of the car easier com-
pared to other ones. Whereas, in figure 16, we presented examples
where the choices of inference pipelines are not intuitively better for
the car type prediction task. However, it should be noted that the
inference pipeline pays attention to the preferences of the intrinsic
classifier. Hence, the intrinsic classifier might have different prefer-
ences of the best scene configuration for car type classification than
common human sense.



Figure 16: Visual evaluation of inference pipeline with counter-
intuitive results

6 DISCUSSION

It should be noted that the success of the inference pipeline depends
on both the disentanglement and reliability of the uncertainty esti-
mation. This is because we exploit the disentangled characteristic to
assess the potential of each extrinsic factor to change the uncertainty
of intrinsic factor prediction.

The various evaluations of disentanglement indicate that although
we manage to capture the majority of the detail about each extrinsic
factor with their respective latent factor, light location and azimuth
preserve dependency to some extent. During the inference pipeline,
we assess the contribution of each extrinsic factor with the assump-
tion that they are disentangled.

Thus, if a latent factor encodes information about multiple extrin-
sic factors, by assessing the contribution of this latent factor to the
prediction uncertainty, extrinsic factors other than its designated one
would interfere. In other words, we might alter both extrinsic factors
whenever we intend to manipulate only one of them. However, it
should be noted this behavior is natural. Because these extrinsic
factors indeed depend on each other in the data space. This problem
might be tackled by defining extrinsic factors, such that they are
inherently independent.

We reasoned about the validity of our estimation of predictive
uncertainty using expected calibration error (ECE) and reliability
diagrams. Even though ECE gives a single metric to assess the
calibration of the model, it does not tell details about the calibration.
On the other hand, the reliability diagram in figure 12 indicates that
even for the intervals with a relatively high accuracy-confidence
difference the confidence values are lower, which indicates under-
confidence. Although this is not the preferred behavior, having
under-confident predictions would be preferred compared to over-
confidence. Since we are trying to detect the ambiguous cases, that
are predictions with low confidence, by being under-confident we
avoid the risk of falsely evaluating examples as confident. This
can be also seen as avoiding false positives where the positive case
denotes the observations with confident predictions. It should be
further noted that under-confidence mostly occurs to predictions
with low confidence, which refers to ambiguous cases.

It would be possible to have a more accurate classifier with a
network that has more hidden layers and more neurons for each
layer. Nonetheless, that would harm the confidence calibration, as
it is known that the depth of the network and calibration error is
proportional [15]. Moreover, having a more powerful classifier with
higher accuracy would affect the behavior of the inference pipeline.
Following the assumption that low uncertainty predictions imply
correctness of the predictions, as the accuracy increases the entropy
of predictive distribution decreases. Hence, in the inference pipeline,
we would receive lower gradient values which eventually means

smaller updates on the latent representation of the input observation.
Consequently, we would obtain a relatively lower decrease in entropy.
In other words, our inference pipeline would be more beneficial for
classifiers with lower performance.

The results in section 5.3 indicate that there is an obvious per-
formance difference between data and latent strategy. These two
approaches differ from each other based on how it is decided whether
the proposed scene configuration leads to lower uncertainty. Fol-
lowing the latent-space heuristic during the inference might lead
to an incorrect mapping between the entropy of the transformed
latent representation and the proposed scene configuration. In other
words, latent space strategy might underestimate the entropy of
the proposed scene configuration which would lead the agent in a
position where entropy is higher than the previous configuration.
The main reason for that behavior is the limitation of latent-data
map classifiers to capture the change in data-space extrinsic values
based on the change we apply in the latent space. The most intuitive
solution for that problem would be to map the latent values to data
space factors values in a continuous manner, rather than the grid
approach. This way, we could obtain the true change in the data
space rather than forcing the update in the latent space to be mapped
to one of six discrete values. More precisely, given the transformed
representation in the latent space we could obtain the values of the
corresponding factors according to the following equation:

extnew = extold −
∂H

∂ zext

∂ zext

∂ fext
α (8)

The first derivative term in the right-hand side of the equation
is, the corresponding extrinsic component of the gradient vector we
used during the inference. The second derivative term is essentially
the coefficient of the linear function (zext = a fext + b) that maps
the values of the true factors to latent space values. By having
this linear function for each extrinsic factors, we could obtain the
results of the inference pipeline in terms of continuous data space
factor values. However, as also depicted in figure 11 and 9, the
relationship between the factors of light location, azimuth and their
latent values has a non-linear nature which prohibits us to fit a linear
function. Thus, due to the limited disentanglement for these factors,
the alignment for them in the latent space lost the semantics that
exists in the data space.

Following the above-mentioned reasoning, another indication to
favor the data space strategy would be the superior performance of
the data strategy when multiple inference steps are allowed. When
compared with the original classifier, despite the slightly lower per-
formance of latent strategy with single-step inference, it exhibits a
considerable degraded performance with multi-step inference. This
behavior can be explained by the fact that latent strategy might un-
derestimate the entropy of the new configuration. Furthermore, by
allowing this for multiple steps, the inference pipeline propagates
this error and might end up in a configuration with higher entropy
and possibly misclassified. In figure 17, we see an example of this
behavior with multi-step regular inference. As seen in figure 17,
although both strategies converge until the fourth step, the latent
strategy obtains a transformed latent representation with lower en-
tropy and falsely associates it with the new scene configuration
found by the latent to data map. Hence, the inference ended up with
increased entropy and misclassification. On the other hand, the data
strategy obtains the actual image with the proposed configuration
and stops the inference due to an increase in entropy. This finding
also aligns the results of the multiple-step regular inference with the
latent strategy represented in table 10. With this inference setting
the entropy increased on average and the inference pipeline made
correct predictions as incorrect more than it did vice versa.

As shown in table 10, the best of all inference, as an intuitive
inference baseline, performs well with both single and multi-step
settings. More precisely, the performance of best of all inference is



Figure 17: Performance difference between latent and data strategy

invariant through different learning rates and inference step settings
since it proposes only one configuration regardless of the inference
heuristics. It should be noted that the usefulness of this baseline
is dependent on the number of car models that exist in the data-
set. In the current setting, there are four extrinsic factors and six
different values for each of them, which makes 64 different scene
configurations. Instinctively, the chance of having one configuration
that gives correct predictions with low entropy for all different car
models would decrease as we increase the number of car models.

The best of each inference, as another baseline, behaves simi-
larly to other inference methods as its performance is better with
data strategy. Apart from being a baseline, the performance of this
method demonstrates the benefits of the heuristic we developed for
the inference pipeline. Despite the fixed transformations for each
extrinsic, the best of each inference uses the proposed method for
attributing the uncertainty of the prediction to extrinsic factors and
identifying which extrinsic factor to modify. By looking at the re-
sults of this method especially with data strategy in table 10, we
see approximately 2% increase in the f1 score even with single-step
inference. Hence, we can deduce that the idea of performing trans-
formations on the latent representations and using the uncertainty
of their predictions to decide the most rewarding extrinsic is indeed
beneficial.

One major limitation of this study is the requirement of addi-
tional work to be able to use it with real-world images. It should
be noted that the described methodology needs a data-set with cer-
tain requirements which would be hard to obtain with real images.
Using rendered images would allow us to replicate the environment
with particular extrinsic factors on which the agent has control. We
could decide on which extrinsic factors to control, to represent the
real-world environment in the best way. Hence, the agent would
optimize its performance for the given real-world environment. By
increasing the number of extrinsic factors and the number of possi-
ble values they can be assigned to in the rendering environment, we
can generalize to more real-world environments. At this point, the
lack of generalization from rendered images to real ones is called
domain gap. As described in [33], domain randomization tries to
solve domain gap by augmenting the synthetic images with realis-
tic lighting conditions (brightness, contrast) and real background
images. To maximize the efficacy of this technique, the rendering
should be performed on textured 3d objects. Using textured objects
and rendering them with the highest settings, photo-realistic and
high-quality images can be obtained. Consequently, the success of
the domain randomization would be maximized. However, being
able to render high-quality images is a rather computation-intensive
process. Thus, given the high number of configurations we need to
render for each car type, it limited the applicability of the method.

7 CONCLUSION

In this thesis, we pursued to develop a method to improve the per-
formance of intrinsic factor predictions by using the uncertainty to
identify conditions of observations with higher confidence. The
proposed inference pipeline relies on disentanglement to separate
the extrinsic factors and evaluate each factor for their potential to
reduce the uncertainty of the prediction. We used an existing dis-
entanglement method and showed that we could capture the latent
representations in a factorized way. Nevertheless, we concluded that
some of the extrinsic generative factors naturally depend on each
other and cannot be entirely disentangled using the method we de-
ployed. We qualitatively and quantitatively assessed the confidence
calibration of our model, with which we estimate the uncertainty of
intrinsic factor prediction. The usefulness of the method we devel-
oped is assessed both qualitatively and quantitatively. We showed
that the strategy we defined for the inference pipeline leads to an
improvement in the majority of the settings we experimented with.
With the best performing inference setting, compared to the infer-
ence performance of the original classifier, we achieved an increase
of 5.1%, 6.8%, and 6.8% for precision, recall, and f1-score respec-
tively.
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8 APPENDIX

8.1 Disentanglement

Figure 18: Smooth latent Space Traversal Reconstructed Images

Generative Factors fk
light
intensity

light
location elevation azimuth color

light
intensity 0.686 0.057 0.005 0.010 0.004

light
location 0.042 0.426 0.006 0.040 0.007

elevation 0.039 0.012 0.872 0.013 0.004
azimuth 0.054 0.037 0.006 0.523 0.005

L
at

en
tF

ac
to

rs
z j

color 0.022 0.010 0.007 0.013 0.910

H( fk) 1.7916 1.7917 1.7917 1.7917 1.7916

Table 6: The additional normalised MI score for the color intrinsic factor implies that this is the best disentangled generative factor. This can be
also visually validated in 20 as the separation of the clusters corresponding to true color values is distinctive.



Figure 19: Latent space visualization of Intensity-Elevation latent factors. The coloring is based on true intensity values of the images
represented by dots. The sequence of the images on the right side are the example images of the true intensity values. Each image denotes the
cluster with a particular color.

Figure 20: Latent space visualization of Color-Intensity latent factors. The coloring is based on true color values of the images represented by
dots. The sequence of the images on the right side are the example images of the true color values. Each image denotes the cluster with a
particular color.



8.2 Uncertainty Estimation

Figure 21: Distribution of Prediction Log-Entropy per Azimuth Angle. We use log entropy values to improve the visualisation since entropy
values originally has exponential distribution.

Figure 22: Distribution of Prediction Log-Entropy per Elevation Angle. We use log entropy values to improve the visualisation since entropy
values originally has exponential distribution.



Figure 23: Distribution of Prediction Log-Entropy per Light Location. We use log entropy values to improve the visualisation since entropy
values originally has exponential distribution.

Figure 24: Distribution of Prediction Log-Entropy per Intensity Value. We use log entropy values to improve the visualisation since entropy
values originally has exponential distribution.



Figure 25: Error-bar and violin plots of log entropy of prediction for the elevation extrinsic factors

Figure 26: Error-bar and violin plots of log entropy of prediction for the location extrinsic factors

Figure 27: Error-bar and violin plots of log entropy of prediction for the intensity extrinsic factors



Elevation 18.4 22.6 26.5 30.25 33.7 36.9

18.4 - 0.000 0.000 0.000 0.000 0.045
22.6 0.000 - 0.198 0.000 0.000 0.000
26.5 0.000 0.198 - 0.000 0.000 0.000
30.25 0.000 0.000 0.000 - 0.000 0.000
33.7 0.000 0.000 0.000 0.000 - 0.000
36.9 0.045 0.000 0.000 0.000 0.000 -

Table 7: p-values of MWU test of elevation generative factor: The results indicate for elevation the prediction uncertainties of all angles are
statistically different, except for angles 22.6° and 26.5°

Location -3 -2 -1 1 2 3

-3 - 0.000 0.000 0.000 0.000 0.000
-2 0.000 - 0.000 0.000 0.142 0.000
-1 0.000 0.000 - 0.000 0.000 0.000
1 0.000 0.000 0.000 - 0.000 0.000
2 0.000 0.142 0.000 0.000 - 0.000
3 0.000 0.000 0.000 0.000 0.000 -

Table 8: p-values of MWU test of location generative factor: For location, only for −2 and 2, the test did not find statistically significant
difference.

Intensity 0.5 1.0 1.5 2.0 2.5 3.0

0.5 - 0.000 0.000 0.000 0.000 0.000
1.0 0.000 - 0.000 0.000 0.000 0.000
1.5 0.000 0.000 - 0.000 0.000 0.000
2.0 0.000 0.000 0.000 - 0.000 0.000
2.5 0.000 0.000 0.000 0.000 - 0.000
3.0 0.000 0.000 0.000 0.000 0.000 -

Table 9: p-values of MWU Test of intensity generative factor: The differences of uncertainty distributions found significant between each pair
of intensity values.



8.3 Inference Pipeline

Figure 28: Inference results of each setting with various learning rates



Table 10: Inference results

settings learning
rate

initial correct
inference correct

initial correct
inference wrong

initial wrong
inference correct

initial wrong
inference wrong ∆ Precision ∆ Recall ∆ f1 max. entropy

reduction
avg. entropy
reduction

max.
inf. step

avg.
inf. step

Original classifier - 55444 - - 6764 0.91 0.89 0.89 - - - -

latent strategy
single step
regular inf.

1 55442 2 0 6764 -0.000020 -0.000032 -0.000034 0.114021 0.003292 - -

latent strategy
multi step
regular inf.

500 50718 4726 2049 4715 -0.041091 -0.043033 -0.045224 1.317900 -0.087570 10 1.31195

data strategy
single step
regular inf.

750 54097 1347 1748 5016 0.005335 0.006446 0.006041 1.248863 0.074173 - -

data strategy
multi step
regular inf.

750 54300 1144 1687 5077 0.007627 0.008729 0.008238 1.317900 0.084894 4 0.429913

latent strategy
single step
best of each inf.

1 55413 31 19 6745 -0.000147 -0.000193 -0.000215 0.121739 0.007627 - -

latent strategy
multi step
best of each inf.

2 53549 1895 2707 4057 0.003157 0.013053 0.012763 1.360743 0.068796 4 1.08062

data strategy
single step
best of each inf.

5 54679 765 1976 4788 0.013629 0.019467 0.019204 1.360743 0.107427 - -

data strategy
multi step
best of each inf.

2 54738 706 2052 4712 0.015568 0.021637 0.021319 1.360743 0.122264 4 0.656829

data strategy
single step
multi trans. inf.

1000 54301 1143 5182 1582 0.048553 0.064927 0.065606 1.367100 0.118521 - -

data strategy
multi step
multi trans. inf.

500 54489 955 5196 1568 0.051756 0.068175 0.068890 1.373707 0.131404 6 1.45086

data strategy
single step
best of all inf.

1 53132 2312 6243 521 0.052917 0.063191 0.063551 1.374287 0.208947 - -

data strategy
multi step
best of all inf.

1 53132 2312 6243 521 0.052917 0.063191 0.063551 1.374287 0.208947 - -
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