
 Eindhoven University of Technology

MASTER

Scenario generation using a Generative Adversarial Network (GAN)

Sankar, Varun

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/add3fe33-0435-4082-92dd-2e16208e2e26

Scenario generation using
a Generative Adversarial

Network (GAN)

Master Thesis

Varun Sankar

Department of Mathematics and Computer Science
Electronic Systems Research Group

Supervisors:
Dr. Dip Goswami (Electronic Systems, TU/e)

ir. Anne van der Heide (Siemens Digital Industries Software)

Mentor:
Ph.D. Candidate Sajid Mohamed (Electronic Systems, TU/e)

Eindhoven, October 2020

Abstract

In the last decade, cars are progressively being equipped with Advanced Driver Assistance Sys-
tems (ADAS). They have the capability to enhance road safety and driver comfort. With rapid
increase in the usage of automated driver functionalities in vehicles, it is important that these
systems are sufficiently validated. It is not practical and safe to deploy the ADAS into vehicles
without proper validation as it can endanger human lives. Physically testing these systems in a car
and driving millions of kilometers are highly expensive and time consuming task. Hence testing
them in virtual environment can speed up the development of these systems. Automated vehicles
can be tested in a virtual environment on a large set of testing scenarios. Testing on the virtual
environment provides a safe and efficient means to design and evaluate ADAS systems. A scenario
consists of many elements, which can be divided into three main groups: the environment model
(all the static elements like road elements, buildings and traffic signs), the vehicle under test (the
ego vehicle), and the other road users. The presence of different components in a scenario leads
to huge parameter space which can be challenging to handle. A potential solution is to resort to
machine learning techniques.

In this work, we analyse the feasibility of generating scenarios using Generative Adversarial
Network (GAN). We study different types of GAN models available, analyse them both quantit-
atively and qualitatively and then select an appropriate type of GAN model to generate scenarios.
The scenario chosen for this project is parking lot occupation where we try to generate realistic
parking scenarios and demonstrate the generated scenarios on Simcenter PreScan software. With
this approach, we reduce the time taken to generate different test scenarios and hence this can
lead to faster testing and reduce time to market of the ADAS.

iii

Abbreviations

ADAS Advanced Driver Assistance Systems. 1, 3, 10, 11, 22, 57

AI Artificial Intelligence. 12

API Application Programming Interface. 23

CAN Controller Area Network. 6

CGAN Conditional Generative Adversarial Network. 18, 26, 29–31, 34, 67, 68

CoG Center of Gravity. 24, 26, 45, 48–52

DNN Deep Neural Network. 13, 16

EM Earth Mover’s. 19

FID Frechet Inception Distance. 9, 44

GAN Generative Adversarial Network. 3–5, 7–10, 14, 16–19, 21, 24, 26–29, 31, 34, 44, 45, 58,
65, 66

GPS Global Positioning System. 6

GUI Graphical User Interface. 22

HIL Hardware-in-the-loop. 11

JS Jenson-Shannon. 18, 19, 31

KDE Kernel Density Estimation. 3

KL Kullback-Leibler. 15, 16

SAE Society of Automotive Engineers. 1

SIL Software-in-the-loop. 11

TGAN Tabular Generative Adversarial Network. 9

UAV Unmanned Aerial Vehicle. 9

VAE Variational Autoencoder. 14, 16

WGAN Wasserstein Generative Adversarial Network. 19

WGAN-GP Wasserstein Generative Adversarial Network with gradient penalty. 5, 20, 26, 31–
35, 39, 43–46, 69, 70

iv

Contents

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 What is a scenario? . 2

1.2 Motivation . 3

1.3 Problem statement . 4

1.4 Research questions . 4

1.5 Thesis outline . 5

2 Related work 6

2.1 Scenario generation . 6

2.2 Generative Adversarial Networks (GANs) . 7

2.2.1 GANs for images and music generation . 7

2.2.2 GANs for tabular data generation . 9

2.2.3 Usage of GANs in autonomous driving fields 9

2.2.4 Evaluation of performance of GANs . 9

2.3 Simulation frameworks . 10

3 Background 12

3.1 Notations . 12

3.2 Machine learning . 12

3.3 Deep learning . 13

3.4 Generative models . 14

3.4.1 Autoencoders . 15

3.4.2 Variational Autoencoders (VAEs) . 15

3.4.3 Generative Adversarial Network (GAN) . 16

3.4.4 Conditional GAN (CGAN) . 18

3.4.5 Wasserstein GAN (WGAN) . 19

3.4.6 Wasserstein GAN with gradient penalty (WGAN-GP) 20

4 Methodology 21

4.1 Parking scenario use case . 21

4.2 Overview . 22

4.3 Simcenter Prescan simulation environment . 22

4.4 Data collection and dataset creation . 24

v

CONTENTS

5 Selection of suitable GAN model 26
5.1 Dataset for Generative Adversarial Network (GAN) model selection 26
5.2 Model using vanilla GAN . 26
5.3 Model using Conditional Generative Adversarial Network (CGAN) 29
5.4 Model using Wasserstein Generative Adversarial Network with gradient penalty

(WGAN-GP) . 31
5.4.1 Training . 31
5.4.2 Results . 33

5.5 Conclusion . 34

6 Optimization of WGAN-GP model 35
6.1 Model architecture for non-overlapping scenario for eight parking slots 35

6.1.1 Critic network . 35
6.1.2 Generator network . 35
6.1.3 Model hyperparameters . 39
6.1.4 Training and new scenario generation . 39

6.2 Model architecture for overlapping parking scenario for four parking slots 40
6.2.1 Training and new scenario generation . 43

7 Evaluation and results 44
7.1 Evaluation metrics . 44

7.1.1 Visual inspection . 44
7.1.2 Accuracy of the generated scenarios . 44
7.1.3 Number of duplicated and repeated scenarios generated 45

7.2 Results . 45
7.2.1 Loss plot . 45
7.2.2 Accuracy . 46
7.2.3 Duplicated and repeated scenarios generated 47
7.2.4 Visual inspection . 47

8 Conclusions 57
8.1 Summary . 57
8.2 Future work . 57

Bibliography 59

Appendix 65

A Architectures of GAN models 65

vi

List of Figures

1.1 Examples of autonomous driving functionalities [1] 2
1.2 SAE Levels of automation [8] . 2
1.3 An example of a scenario [62] . 3
1.4 Generative Adversarial Network framework [59] . 4

2.1 Comparison of a knowledge-driven and a data-driven approach for scenario gener-
ation [41] . 7

2.2 Generated anime images using GAN [33] . 8
2.3 Visual comparison between PGGAN-RES (a GAN model) and Neural Patch Syn-

thesis (NPS) on 512x512 paris street view dataset [20] 8
2.4 An example of manual inspection method used by researchers [50]. The authors

compared four different GANs by visualizing selected samples and manually in-
specting them. 10

2.5 Co-simulation framework for testing Advanced Driver Assistance Systems (ADAS)
[22] . 11

3.1 An illustration of a single neuron with n inputs, n+1 learnable weights and bias
parameters. After the affine transformation, activation function f is applied. 13

3.2 A three layer neural network . 14
3.3 Architecture of an Autoencoder . 15
3.4 Latent space of Autoencoder trained on MNIST dataset [60] 16
3.5 Architecture of Generative Adversarial Network . 17
3.6 Architecture of Conditional Generative Adversarial Network 18

4.1 Example of non-overlapping parking scenario . 21
4.2 Example of overlapping parking scenario . 21
4.3 Workflow . 22
4.4 The four stages of Prescan [27] . 23
4.5 Parking lot model in Simcenter Prescan . 23
4.6 Parameters of the car actor . 24
4.7 Parameters of parking slots . 25

5.1 Scatter plot showing the results of generation of coordinates from trained vanilla
GAN model for four parking slots . 28

5.2 Scatter plot showing the results of generation of coordinates from trained CGAN
model for four parking slots . 30

5.3 Scatter plot of 10 generated scenarios indicating greater than three or more cars
parked using CGAN model for four parking slots 31

5.4 Scatter plot showing the results of generation of coordinates from trained WGAN-
GP model for four parking slots with status information 33

6.1 Architecture of the critic network for non-overlapping parking scenario. 37

vii

LIST OF FIGURES

6.2 Architecture of the generator network for non-overlapping parking scenario. 38
6.3 Architecture of the critic network for overlapping parking scenario. 41
6.4 Architecture of the generator network for overlapping parking scenario. 42

7.1 An example of scenario generation across 4 slots. 45
7.2 Loss plot of WGAN-GP model non-overlapping scenario using Dataset1 for eight

parking slots . 46
7.3 Loss plot of WGAN-GP model for overlapping scenario using Dataset4 for four

parking slots . 46
7.4 Histogram and cumulative percentage of normalised x-Center of Gravity (CoG),

y-CoG and heading of slot1 of non-overlapping scenario 48
7.5 Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of

slot2 of non-overlapping scenario . 49
7.6 Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of

slot3 of non-overlapping scenario . 50
7.7 Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of

slot2 of overlapping scenario . 51
7.8 Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of

slot3 of overlapping scenario . 52
7.9 First non-overlapping scenarios of parked cars across eight slots 53
7.10 Second non-overlapping scenarios of parked cars across eight slots 53
7.11 Third non-overlapping scenarios of parked cars across eight slots 54
7.12 First overlapping scenarios of parked cars across four slots 54
7.13 Second overlapping scenarios of parked cars across four slots 55
7.14 Third overlapping scenarios of parked cars across four slots 55
7.15 Fourth overlapping scenarios of parked cars across four slots 56

A.1 Architecture of the generator network of vanilla GAN 65
A.2 Architecture of the discriminator network of vanilla GAN 66
A.3 Architecture of the discriminator network of CGAN 67
A.4 Architecture of the generator network of CGAN . 68
A.5 Architecture of the discriminator network of WGAN-GP 69
A.6 Architecture of the generator network of WGAN-GP 70

viii

List of Tables

4.1 Properties of each dataset. #D indicates the number of discrete/categorical columns,
#C the number of continuous columns. 25

5.1 Architecture of the generator network of vanilla GAN. Total number of trainable
parameters in generator network are 647. Architecture diagram is shown in Ap-
pendix A.1 . 27

5.2 Architecture of the discriminator network of vanilla GAN. Total number of trainable
parameters in discriminator network are 1746. Architecture diagram is shown in
Appendix A.2 . 27

5.3 Architecture of the generator network of CGAN. Total number of trainable para-
meters in generator network are 677. Architecture diagram is shown in Appendix
A.4 . 29

5.4 Architecture of the discriminator network of CGAN. Total number of trainable
parameters in discriminator network are 1796. Architecture diagram is shown in
Appendix A.3 . 29

5.5 Architecture of the generator network of WGAN-GP. Total number of trainable
parameters in the generator network are 13548. Architecture diagram is shown in
Appendix A.6 . 32

5.6 Architecture of the discriminator network of WGAN-GP. Total number of trainable
parameters in the discriminator network are 12161. Architecture diagram is shown
in Appendix A.5 . 32

6.1 Architecture of the critic network for non-overlapping parking scenario. Total num-
ber of trainable parameters in the critic model are 51969. The Figure is shown in
6.1 . 36

6.2 Architecture of the generator network for non-overlapping parking scenario. Total
trainable parameters in generator model are 53344. The Figure is shown in 6.2. . . 36

6.3 Hyperparameters chosen for the models for non-overlapping parking scenario . . . 39
6.4 Architecture of the critic network for overlapping parking scenario. Total number

of trainable parameters in the critic network are 12673. The Figure is shown in 6.3 40
6.5 Architecture of the generator network for overlapping parking scenario. Total num-

ber of trainable parameters in the generator network are 14160. The Figure is
shown in 6.4 . 40

6.6 Hyperparameters chosen for the models for overlapping parking scenario 43

7.1 Accuracy of generated non-overlapping scenarios for different dataset 46
7.2 Error in generated scenarios for different dataset 47
7.3 Number of duplicated and repeated scenarios generated for different datasets with

values of the features/columns truncated to one decimal place. 47

ix

Chapter 1

Introduction

Within the last decade, many innovations in autonomous driving are based on ADAS. Highly auto-
mated driving functions aim to support drivers in various situations. Most of the road accidents
occur due to human errors. These ADAS functions are developed to automate, adapt and enhance
vehicle systems to achieve a high level of road safety and better driving. Some of the driver assist
functions are shown in Figure 1.1. These functions are anticipated to be key in achieving a high
level of road safety, further reduction in harmful emissions, improving traffic flow and increasing
comfort and ensuring mobility for all [23]. The Society of Automotive Engineers (SAE) defines 6
levels of automation [9] ranging from 0 (fully manual) to 5 (fully autonomous), as shown in Figure
1.2.

1. Level 0 - No automation.

2. Level 1 - Driver assistance like adaptive cruise control, lane keep assist etc.

3. Level 2 - Partial automation, providing assist in controlling speed and steering.

4. Level 3 - Conditional automation where vehicles are capable of driving themselves, but only
under ideal conditions and with limitations. A human intervention is required to take over
if needed.

5. Level 4 - High automation where all driving functions are automated but constrained to
known use cases

6. Level 5 - Full automation

In the levels 0-2, human driver monitors the driving environment. The driver is in control of
driving whenever these support functions are engaged. The driver must steer, brake or accelerate
when needed to maintain safety. In the levels 3-5, the automated driving systems monitors the
driving environment. The driver is not driving the vehicle when the support functions are engaged.
These automated driving features will not require the driver to take over driving except in case of
level 3 where the driver must interfere to maintain safety.

With the rapid increase in usage of automated driver functionalities in vehicles to support
the driver, it is crucial that these systems are validated sufficiently to guarantee the safety of the
vehicle and other road users. According to Wachenfeld et al. [65], around 6 billion test kilometers
are needed for validation of automated driver functionalities. Therefore physically testing, driving
millions of kilometers, these systems in a car are expensive and very time-consuming task. To speed
up the development of automated driver functions and to increase the testing coverage, a scenario-
based approach would be an alternate effective solution for testing in a virtual environment.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of autonomous driving functionalities [1]

Figure 1.2: SAE Levels of automation [8]

1.1 What is a scenario?

A scenario consists of many elements, which can be divided into three main groups: the envir-
onment model (all the static elements like road elements, buildings and traffic signs), the vehicle
under test (the ego vehicle), and the other road users. In other words, a scenario is a quantitative
description of the ego vehicle, its activities and/or goals, its dynamic environment (consisting of
traffic environment and conditions) and its static environment [23]. From the perspective of the
ego vehicle, a scenario contains all relevant events.

There are three levels of abstraction for scenario representation [42]:

1. Functional Scenario: Functional scenario depicts the most abstract level of scenario repres-
entations. This includes operating scenarios on a semantic level. The representation includes
a linguistic and consistent description of entities and relationship between the entities.

2. Logical Scenario: Logical scenario depicts the detailed representation of functional scenarios
with the help of state-space variables. It represents the entities and relations of those entities
with the parameter ranges in state-space. Parameter ranges can be specified using probability
distributions.

3. Concrete Scenario: Concrete scenario describes the entities and relationship between the
entities using distinct values for each parameter in the state space. The concrete scenario is
the basis for test case generation in the testing phase.

2

CHAPTER 1. INTRODUCTION

While the functional scenario depicts the most abstract form of scenario representation under-
standable to humans, the logical and the concrete scenarios demand an efficient machine-readable
representation. The logical and the concrete scenario demand different levels of details for repres-
entation. On one hand, logical scenario asks for a scenario representation via parameter ranges in
state-space providing multiple degrees of freedom for the determination of concrete parameters.
On the other hand, the concrete scenario demands for a representation that includes concrete
parameter values of all entities involved. This form of representation is required for reproducible
test case execution. An example of a scenario is shown in Figure 1.3. The scenario depicts a
situation where the ego vehicle (blue car) tries to overtake vehicle ahead (black car) on a highway.
The first action performed by the ego vehicle is turn on the left indicator before making the lane
change. Then lane change action is performed by the ego vehicle where it moves to the left lane
on the highway. Then it follows the lane to overtake the black vehicle.

Figure 1.3: An example of a scenario [62]

1.2 Motivation

Testing on the virtual environment with simulation software provides a safe and efficient means to
design and evaluate ADAS systems. The simulated scenarios are completely quantifiable, repro-
ducible and controllable. Automated vehicles can be tested in a virtual environment on a large set
of testing scenarios. Scenarios are generated to test the decision-making capabilities of automated
vehicles.

In literature, there are two ways to generate scenarios. First is the data-driven approach, and
the second is the knowledge-based approach. In the data-driven approach, the main idea is to
collect measurement data and determine and categorize occurring scenarios. In general mathem-
atical functions (like Kernel Density Estimation (KDE) or polynomial functions) are created to
parameterize the scenarios. In the knowledge-based approach, scenarios are generated from exist-
ing knowledge like road traffic regulations, functional description, expert knowledge etc. First, the
knowledge is structured according to 5-layer model by Bagschik et al. [12], and then it is para-
meterized and converted to data formats required by simulation softwares like Simcenter Prescan
which uses OpenDRIVE [5] and OpenSCENARIO [6] that describe the road network and the
traffic participants and the environment. For a purely data-driven approach, the measurement
data do not describe all aspects of the scenario. Hence diversity of scenario generation is difficult.
The drawback of the knowledge-driven approach is that the process of transforming a functional
scenario to state-space representation takes considerable manual effort. Also, the presence of dif-
ferent components in a scenario leads to a huge parameter space which can be challenging to handle.

A potential solution is to leverage to machine learning techniques. One of the most recent and
promising machine learning frameworks is the GAN, as shown in Figure 1.4. GANs have emerged
as a powerful framework for learning complex data distributions and produce samples which are
as close to real data as possible. A GAN is a class of machine learning models that has two neural
network contest against each other in a mini-max game. So given a training dataset, this model

3

CHAPTER 1. INTRODUCTION

learns to reproduce new data that are statistically similar to the training dataset. Thus by using
GAN, we can generate variations of scenario. Using GANs allows us to generate relevant scenarios.
Also, complex scenarios can be modelled with considerable ease. The main advantage of using
GAN is that it increases the automation to generate scenarios.

Figure 1.4: Generative Adversarial Network framework [59]

1.3 Problem statement

This thesis aims to generate realistic parking scenarios using Generative Adversarial Network.
The generated parked cars location are done for various multiplicities using GAN. The number of
cars to be parked is given as input to the generator network. A variant of parking scenario, cars
overlapping two parking slots, is also generated. The generation of these scenarios is a non-trivial
task for various reasons. To begin with, the vast majority of Generative Adversarial Networks
focuses on images and are successful. They are used for tasks like texture synthesis [32] , image
super-resolution [71], image inpainting [20], image editing [72] and Image-to-Image translations
[73, 31]. Due to the strong spatial relationship of the inputs along with the quickly verifiable
generation quality, either with well-known scores or with a simple visual inspection, the GANs
have proven to work well with images. However, the same is not extensively used for tabular
data generation. For parking scenario generation in the virtual environment, the tabular based
inputs approach is taken instead of using image inputs to the generative model. As aforementioned
generative model work well with image-based datasets, this work approaches the task of generating
data in tabular form. The detailed approach is explained in sections 4, 5 and 6.

1.4 Research questions

Following research questions are defined, that guides towards achieving the goal of the project:

• Can Generative Adversarial Network be used to generate parking scenarios while preserving
the underlying distribution and patterns of the training data?

? Which Generative Adversarial Network model architecture can be used for generation
of scenario?

? How should the dataset look-like in order to achieve the goal of the project?

? How to evaluate the performance of the model generating new scenarios?

4

CHAPTER 1. INTRODUCTION

1.5 Thesis outline

This thesis consists of eight chapters. Chapter 1 provides the introduction to the topic and
provides a problem statement and research questions. The related work on the topic is discussed
in Chapter 2. Chapter 3 provides background information about the Generative Adversarial
Network and types of GAN. Chapter 4 elaborates about methodology chosen to approach the
problem. Chapter 5 explains the selection of a suitable GAN model to implement the parking
scenario. Chapter 6 explains the optimization of WGAN-GP model chosen to implement the
parking scenario. Chapter 7 provides the evaluation metrics and analysis of the results. Finally,
chapter 8 provides the conclusion to this thesis and future directions to this work.

5

Chapter 2

Related work

This chapter presents some of the research work done related to Generative Adversarial Networks
and scenario generation.

2.1 Scenario generation

In literature, there are currently two approaches for scenario generation. One approach is that
scenarios are generated through the data-driven approach, while the other one is through the
knowledge-driven approach.

In the data-driven approach, the main idea is to collect measurement data and determine and
categorize occurring scenarios. Data-driven approach is followed in [23], [19], [53]. In [47], [48],
[46], [18], [17], scenarios are identified based on the camera data. Streetwise method [23] uses a
continuous process of mining scenarios out of real-world data. These data are generated from the
sensor’s output of the ego vehicle like accelerometer, camera, radar and Global Positioning System
(GPS). Also, sometimes the contents of the scenario are extended by combining further on-board
information from the Controller Area Network (CAN) bus. From these data driving events and
activities are detected using hybrid techniques that combine physical/deterministic models with
data analytics. The detection method not only provides an overview of the type and frequency
of an event but also parameters describing it. Thus scenarios are parameterised. Pütz et al. [53]
present a similar approach that describes a concept for a toolchain to collect data (for example
measurement data and traffic simulation data), calculate metrics to characterize scenarios and
cluster them as logical scenarios. These logical scenarios are provided as a basis for generating
test cases.

In knowledge-based scenario generation, the main idea is to generate scenarios using existing
knowledge, like regulatory recommendations, and augment these scenarios. The first step, to
generate functional scenarios, the available knowledge has to be structured, varied on a semantic
level and described linguistically. Bagschik et al., [12] present a knowledge-based approach to
creating scenes using ontology. With functional scenarios as base scenarios are then represented in
terms of state-space variables. These are termed as logical scenarios. These logical scenarios are
later concretized by choosing a concrete value within the defined value range of the parameters.
The comparison between the two approaches is shown in Figure 2.1.

6

CHAPTER 2. RELATED WORK

Figure 2.1: Comparison of a knowledge-driven and a data-driven approach for scenario generation
[41]

2.2 Generative Adversarial Networks (GANs)

Generative Adversarial Networks [25] were introduced by Ian J. Goodfellow and his colleagues in
2014. Since its inception, the GANs have been described as “the most interesting idea in the last
ten years in Machine Learning” by Yann LeCun, a chief scientist at Facebook. Over the past few
years, GANs have become very prominent in the field of generative models.

2.2.1 GANs for images and music generation

Since the emergence of Generative Adversarial Networks [25], there have been constant improve-
ments in the field of data generation. GANs have gained more and more attention from the
scientific community especially, and a vast majority of GANs focuses on images. GANs are used
for many tasks like anime images generation [33], image inpainting [20], image-to-image transla-
tions [73, 31] and text to image synthesis [55]. Figure 2.2 shows the generated anime images using
GAN from the paper titled “Towards the Automatic Anime Characters Creation with Generative
Adversarial Networks”. Image inpainting is a technique used for repairing the images or refilling
missing parts. The aim of inpainting is to recontruct the damaged image without introducing
noticable changes. The author [20] proposes to use generative adversarial networks for image
inpainting. The Figure 2.3 shows the results of image inpainting using GAN. The effectiveness of
the new approaches to generate new related data is driving an increasing number of researchers
in this direction.

Research has also been done on various other fields, such as music [44] thanks to the spatial

7

CHAPTER 2. RELATED WORK

correlation of nearby values in time series, approaches employing Recurrent Neural Networks for
the generation of this type of data have been developed.

Figure 2.2: Generated anime images using GAN [33]

Figure 2.3: Visual comparison between PGGAN-RES (a GAN model) and Neural Patch Synthesis
(NPS) on 512x512 paris street view dataset [20]

8

CHAPTER 2. RELATED WORK

2.2.2 GANs for tabular data generation

With success on tasks related to images, GANs have also been used for generating tabular data.
Xu et al. [69] proposed Tabular Generative Adversarial Network (TGAN) which could gener-
ate tabular data like medical or educational records. The goal was to provide a model that is
capable of generating continuous and categorical data. MedGAN [16] generates high-dimensional
discrete variables(e.g., binary and count features) which uses a combination of an autoencoder and
generative adversarial networks. Park et al. TGAN [52] uses generative adversarial networks to
synthesize fake tables that are statistically similar to the original table. By generating fake tables,
the privacy concerns of sharing the data to public is overcome.

2.2.3 Usage of GANs in autonomous driving fields

In the autonomous driving fields, the main application where GANs are used are image-to-image-
translation[63] for style transfer across different conditions of lighting, weather etc. Since autonom-
ous driving systems have to be extremely robust and this requires training the model to all possible
scenarios which can happen in real life. Collecting such a dataset is quite infeasible in practice, but
provides a promising path to ameliorate this issue by generating realistic dataset. In VeGAN [35]
the author proposes to train a GAN to generate images of vehicles that look like images taken from
a top-down view of an Unmanned Aerial Vehicle (UAV). In data-driven maneuver modelling [36]
the author proposes to utilise unsupervised machine learning to train neural networks to solve the
modeling problem. In this paper, generative model architectures are adapted from image domain
to time series domain which focuses on lane-changing maneuvers on highways. The models learn
a small set of intuitive parameters without the need for labeled data and use them to generate
new realistic trajectories. The neural networks are based on the InfoGAN [15] and beta-VAE [29]
architectures

2.2.4 Evaluation of performance of GANs

GANs are generative models that are able to generate new samples, and researchers often evaluate
GAN generators via manual and visual inspection. This involves using a generator to create a
batch of synthetic images and then evaluating the quality and diversity of images generated com-
pared to its target data. This method is deployed in many research works [25][54][58][43][50]. The
Figure 2.4 shows visual inspection method used in one such work [50]. In this work, the authors
visualized 24 samples from four different GAN models and compared their performance via visual
inspection. Although manual inspection is the simplest method to evaluate the model it has few
limitations like subjective bias, requires knowledge of what is realistic and what is not part of
target domain and time consuming. A paper titled “Pros and Cons of GAN Evaluation” by Ali
Borji [14] reviews the list of quantitative and qualitative measures for evaluating generative models.

Most widely used evaluation metrics to capture the quality and diversity of generated images
are inception score [13] and Frechet Inception Distance (FID) score [28]. The inception score
metric gives a score to the generated output image that measures how realistic the GAN’s output
is. Higher the inception score better the generated output. FID measures the Wasserstein-2
distance [66] between feature vectors calculated for real and generated images. For FID score, the
lower scores correlate to a high quality of images generated.

9

CHAPTER 2. RELATED WORK

(a) GAN Model 1 (KL Divergence) (b) GAN Model 2 (Reverse KL)

(c) GAN Model 3 (Hellinger) (d) GAN Model 4 (Jensen)

Figure 2.4: An example of manual inspection method used by researchers [50]. The authors
compared four different GANs by visualizing selected samples and manually inspecting them.

2.3 Simulation frameworks

Exhaustive testing of ADAS is critical before introducing these systems in road cars. There are
several simulation softwares available to perform ADAS testing [22] [2] [45] [21]. Simcenter Prescan
software, developed by Siemens, provides a simulation platform to prototype, test and validate
ADAS. Several design iterations can be performed in a quick and cost-effective way by simply
modifying the system’s parameters and running the simulation again. Therefore, by using Sim-
center Prescan the amount of work needed to bring an ADAS to the market can be significantly
reduced. delivers robust initial designs in the concept phase, rapid optimization in the development
phase and a fast launch in the confirmation phase. Simcenter also supports industry standards
like OpenDRIVE [5] and OpenSCENARIO [6]

Son et al. [22] show a testing framework based on co-simulation of two softwares namely:
Siemens Simcenter Amesim and Simcenter Prescan for verification and validation of ADAS. The
simulation takes into account the account high fidelity vehicle dynamics, traffic environment, sensor
models, planning and control algorithms and are demonstrated on adaptive cruise control applic-
ation. Simcenter amesim focuses on the vehicle dynamics part such as powertrain, suspension
steering etc. and prescan focuses on the environment outside of the vehicle. Thus a combination
of both softwares provides a basis for verification and validation. The cosimulation stucture is
shown is Figure 2.5. The sensing layer gathers the input from sensors and applies algorithms to
detect scenes, objects etc. The planning layer is responsible for deciding the desired trajectories
of the vehicles and steer them along that trajectory. The vehicle dynamics offers plant modelling
and capabilities to connect to controls design and validate control strategies. There are two main
requirements in control design: stability and tracking. Stability is necessary to prevent the vehicle
from going off road and stabilization is obtained through feedback control design.

Roggero et al. [56] show different ways of generating virtual driving scenarios using MATLAB.
They include designing driving scenarios using both scripts and graphical user interfaces, import-
ing scenarios from existing libraries and generating scenarios using data recorded by in-vehicle
sensors. Also the paper describes how to create variations in existing scenario through program-
ming. After the scenario are generated they can be used in closed-loop simulations to model and
test controllers. MATLAB automated driving toolbox [2], also supports industry standards like
OpenDRIVE [5] and OpenSCENARIO [6].

10

CHAPTER 2. RELATED WORK

Figure 2.5: Co-simulation framework for testing ADAS [22]

The IMACS [45] simulation framework enables closed-loop simulation and validation of image-
based control systems, e.g. autonomous lane-keeping assist system. IMACS is a framework for
performance evaluation of image in the closed-loop system. IMACS allows both Software-in-the-
loop (SIL) simulation and Hardware-in-the-loop (HIL) validation. The scenarios can be created,
generated or imported from the associated physics simulation engine. IMACS currently supports
generating scenarios for different weather conditions, traffic situations, and road conditions [18].
The generated scenarios are then used in closed-loop simulations to validate the image-based con-
trollers.

dSPACE tool chain provides efficient possibilities for realistic scenario simulations of autonom-
ous driving. Deng et al. [21] developed a HIL simulation system for testing and validating
autonomous driving functionalities. The HIL system is a closed-loop system consisting of many
model, hardware components and other subsystems connected through electrical interfaces where
the host vehicle is modeled and executed under real time. This closed loop system uses dSPACE-
based HIL simulator for communication and executing the real-time vehicle models. This simulator
(which can be controlled via host PC) communicates with a hardware (dSPACE MicroAutobox)
which contains the control algorithm. MATLAB and simulink are used as modeling environment
for vehicles, sensors, actuators, and control algorithms. VehSimRT is used to represent a full
3D and nonlinear vehicle dynamics under real-time, to simulate vehicle dynamics. Gelbal et al.
[24] proposes to solve the freezing robot problem in autonomous vehicles by interaction with the
pedestrians. These autonomous vehicles are used to transport elderly or disabled people inside
buildings like airports. To achieve and validate the design the author proposes to simulink sim-
ulations and HIL testing. The HIL simulations were achieved by running simulation in real time
on main control unit called dSPACE MicroAutobox2.

11

Chapter 3

Background

In this chapter, a general understanding of the concepts used in this work is explained. At first, an
overview of machine learning and deep learning are provided. This is followed by an introduction
to generative models and types of generative models. Further, we elaborate on the concepts of
Generative Adversarial Networks and different types of Generative Adversarial Networks.

3.1 Notations

To avoid ambiguity and maintain clarity we will use the below notations throughout this thesis
work:

• pdata : Distribution of the real data

• pg : Distribution of the generated data

• pz : Distribution of noise variable z

• x : Sample from pdata

• z : Sample from pz

• G : Generator

• D : Discriminator

3.2 Machine learning

Machine learning is an application of Artificial Intelligence (AI) that gives the machines/systems
the ability to learn and improve from experience without being explicitly instructed. Machine
learning focuses on the development of computer programs that can access data and use it to
learn for themselves and carry out specific tasks. Machine learning algorithms build models that
take training data as input and usually return a classification, a label or a prediction related to
the training data.

The process of learning begins with detection of patterns in training dataset and applying them
to drive the decision making in the future. The primary aim is to allow the computers to learn
automatically without human intervention or assistance and adjust actions accordingly.

The machine learning algorithms are often categorised as supervised or unsupervised.

12

CHAPTER 3. BACKGROUND

1. Supervised machine learning algorithms are typically used for regression or classification
problems. The models are trained on the labeled training dataset, meaning the dataset
contains both the inputs and desired outputs, to predict about the output values. The
model, when sufficiently trained, can make predictions for any new input dataset. The
learning algorithm compares its predicted output with the ground truth and finds errors in
order to modify the model accordingly.

2. Unsupervised machine learning algorithms are used when the information available is not
labeled. Unsupervised learning studies how systems can infer a function to describe a hidden
structure from unlabeled data. The system does not figure out the right output, but it
explores the data and can draw inferences from datasets to describe hidden structures from
unlabeled data.

3. Reinforcement learning is a class of machine learning technique in which the system inter-
acts with its environment by producing actions in order to maximise its reward/perform-
ance. Richard S. Sutton and Andrew G. Barto in his book, “Reinforcement learning: An
introduction” [61] defines reinforcement learning as a machine learning technique where the
agent must learn the behaviour at run-time by interacting with the dynamic environment
using trial-and-error methods. Learning involves an interaction between the learner and the
environment.

3.3 Deep learning

Deep Learning is a sub-field of machine learning, which uses multiple layers of artificial neurons
to learn representation [38]. It has gained notable success in speech recognition, natural language
processing and many other fields including computer vision. The basic building blocks for most
deep learning approaches are artificial neurons with trainable parameters, and these parameters
are trained by the backpropagation procedure [37].

The most commonly used network architecture in deep learning is the Deep Neural Network
(DNN). A neural network consists of several layers of neurons. Figure 3.1 illustrates one such
neuron.

Figure 3.1: An illustration of a single neuron with n inputs, n+1 learnable weights and bias
parameters. After the affine transformation, activation function f is applied.

13

CHAPTER 3. BACKGROUND

Each neuron applies an affine transformation of the input x =
[
x1, x2, ..., xn

]T
:

u =

n∑
i=1

wixi + b (3.1)

where wi is the weight corresponding to xi and b is the bias. A non-linear activation function f is
applied after the affine transformation. Activation functions could be sigmoid, hyperbolic tangent
(tanh), ReLU [10] etc:

o = f(u) (3.2)

The output o is obtained after the affine transformation and the non-linear activation. By con-
necting multiple neuron across different layers a deep neural network is formed as shown in Figure
3.2

Figure 3.2: A three layer neural network

3.4 Generative models

In the recent past, the popularity of generative models has gained lots of interest due to staggering
improvement in the deep learning field. The generative models aim at learning the real distribution
of the training set so as to generate new data points with some variation. Although these models
rely on a huge amount of data, well-designed models are capable of producing stunning realistic
content of various kinds like images, texts, sounds etc. There are two prominent families of
generative models, namely: Variational Autoencoder (VAE)s and Generative Adversarial Networks
(GANs). While the VAE aims at maximising the lower bound of the data log-likelihood, the GAN
aims at achieving equilibrium between the generator and the discriminator networks. These are
discussed in detail below.

14

CHAPTER 3. BACKGROUND

3.4.1 Autoencoders

Before discussing Variational Autoencoders [67], let us discuss what an autoencoder does. Autoen-
coder is an unsupervised artificial neural network that learns to efficiently compress and encode
data and then learns how to reconstruct the data back from the reduced encoded representation to
a representation that is as close as possible to the original data. The architecture of the Autoen-
coder is shown in Figure 3.3. Autoencoder network consists of two connected neural networks:
the encoder and the decoder. The encoder model takes in an input and converts it into a smaller
and reduced encoded representation. The decoder model is responsible to reconstruct the data
from the reduced encoded representation to data as close to the original input as possible. These
networks are trained to reconstruction loss which is either mean-squared error or cross-entropy
loss [3] between the output and the input. Intuitively this loss measures how well the decoder is
performing and how close the output is compared to the original input.

Figure 3.3: Architecture of an Autoencoder

The fundamental problem of using the autoencoders for generation is that the conversion of
inputs to latent space may have gaps and discontinuities. This can be seen from Figure 3.4, where
clusters are visible. The figure shows the visualisation of encodings from 2D latent space of an
autoencoder trained on MNIST dataset. Clearly there are formation of various clusters. This lack
of regularity in the latent space is normal because there is nothing in the training of autoencoder
that enforces any regularity or organisation in latent space. Generation of a variation from a latent
space that has discontinuities will result in unrealistic output, because decoder has no idea how
to deal with the discontinuous region of the latent space.

3.4.2 Variational Autoencoders (VAEs)

The Variational Autoencoders differs from the autoencoders in the fact that their latent spaces
are continuous, allowing random sampling and interpolation. This property makes them effective
for generative modelling. So a variational autoencoder can be defined as an autoencoder whose
training is regularised in order to prevent overfitting, thereby ensuring the latent space has good
properties that enable the generative process. Continuous latent space generation is achieved by
the encoder network outputting two vectors mean µ and standard deviation σ instead of one in
case of the traditional autoencoder. While the mean vector governs where the encoding of an
input should be centered, the standard deviation controls how much the mean encoding can vary.
Thus the model can produce varying samples due to variation in the encoding. Ideally, we want
encodings that are as close as possible to each other while still being distinct allowing smooth
interpolation and enabling the construction of the new samples. This is achieved by introducing
Kullback-Leibler (KL) divergence into the loss function. The KL divergence quantifies between
two probability distribution i.e. how much they diverge from each other. By minimizing the KL
divergence, the probability distribution parameters (µ and σ) are optimized to resemble that of
the target distribution closely. The KL divergence between two probability distribution p and q

15

CHAPTER 3. BACKGROUND

Figure 3.4: Latent space of Autoencoder trained on MNIST dataset [60]

is defined as:

KL(p||q) =

n∑
i=1

pi. log
pi

qi
(3.3)

Thus the loss function (F) for the VAE is given by:

FVAE = L(x, x̃) +KL(d(x|z)||p(z)) (3.4)

where L is either mean-squared or cross-entropy error between x(input) and x̃(generated output),
d(x|z) is probability of x given z and p(z) is a prior Gaussian distribution usually standard normal
distribution.

In this loss function, the first term is the reconstruction error between the input and the
generated data, and the second term is the KL-divergence.

3.4.3 Generative Adversarial Network (GAN)

Generative Adversarial Network [25] (also known as vanilla GANs) was introduced by Ian Good-
fellow et al. in 2014. Since its introduction, GANs have become a hot field in machine learning.
GANs have had huge success as a generative model that is able to generate new meaningful con-
tent. To begin with, GANs are DNN/algorithmic architecture that uses two neural networks
competing against each other in a minimax game in order to generate new synthetic data that
mimic the distribution of the real data. The architecture of GAN is shown in Figure 3.5. The

16

CHAPTER 3. BACKGROUND

two neural networks are generator network (G) and discriminator network (D). G is trained to
generate realistic samples, while D is trained to distinguish the samples produced from G and
those belonging to real dataset. The generator network G takes z as input with density pz and
returns an output G(z) that should follow the distribution of data pdata. While the discriminator
tries to distinguish between real data x and generated data xg of density pg by outputting a class
probability D(x) ∈ [0,1] to indicate if samples are fake or real.

Figure 3.5: Architecture of Generative Adversarial Network

At first the GAN is initialised with random weights. The aim is to train these initial random
weights in order to make the generated data look similar to the training data. The training of
GAN is done simultaneously on both G and D using an adversarial setting, where weights of the
G and D are updated alternatively. The D is trained to maximize the probability of assigning the
correct label to both real data and generated data from G, while G is trained to maximize D’s
uncertainty by minimizing log(1 - D(G(z))). This results in the minmax game with loss function
L(G,D) [25]:

min
G

max
D

L(G,D) = Ex˜pdata
[logD(x)] + Ez˜pz

[log(1−D(G(z)))]

= Ex˜pdata
[logD(x)] + Ex˜pg [log(1−D(x))]

(3.5)

The goal of the generator is to fool the discriminator, whereas the discriminator is responsible
for distinguishing between real and generated data. The GAN model converges when the D model
and G model reach the Nash equilibrium [30]. Nash equilibrium term is commonly used in game
theory. Nash equilibrium is a state in which no player can raise its individual gain by choosing
a different strategy. At this optimal point of the training, the ideal D is unable to distinguish
between real and generated data, meaning the ideal G generates data successfully approximated
to the real data distribution pdata.

For a fixed generator G, the optimum discriminator D* given a sample x is [25]:

D∗(x) =
pdata(x)

pdata(x) + pg(x)
(3.6)

The loss for a optimum discriminator would be [11]

L(G,D∗) = 2DJS(pdata||pg)− 2log2 (3.7)

17

CHAPTER 3. BACKGROUND

Essentially the loss function of generative adversarial network quantifies the similarity between
the generative data distribution pg and the real data distribution pdata by Jenson-Shannon (JS)
divergence [4] when the discriminator is optimal. The best G* that replicates the real data distri-
bution leads to the minimum L(G*, D*) = -2log2, which is aligned with equations above. Thus
when the model is trained to the optimal, the D outputs 0.5 for any sample of data.

A vanilla GAN model typically suffers from a phenomenon called mode collapse. Mode collapse
refers to a situation when the generator produces only a limited variety of samples. In other
words, the generator learns to output only a subset of possible realistic modes. Complete mode
collapse is very uncommon, but partial mode collapse occurs frequently. There are several ways
to overcome the mode collapse. Few of the techniques used are feature matching [58], minibatch
discrimination [58], One-sided label smoothing [58] etc. Some other frequently used techniques to
overcome mode collapse are discussed in 3.4.5 and 3.4.6. These models use different cost function,
which help prevent these mode collapse. Apart from these, there are other models which allow
conditional training and sampling like CGAN [51] and InfoGAN [15]. In CGAN, the labels act
as an extension to the latent vector z to generate and discriminate images better. To an extent,
these models could also be used to learn multi-modal generation.

3.4.4 Conditional GAN (CGAN)

CGAN [43] was introduced by Mehdi Mirza et al. in 2014. The main motivation of introducing
CGAN is that in unconditional GAN or vanilla GAN, there is no control over modes of data
being generated. By conditioning the model on additional information (like label, class, etc.) it
directs the generation process to a particular target. Using this additional information, such as
class label, improves the performance of GAN in terms of more stable training, faster training and
result in better quality data generation. The architecture of CGAN is similar to that of GAN with
the addition of label to both generator and discriminator network. The architecture of CGAN is
shown in Figure 3.6. Similar to vanilla GAN, a CGAN has the same generator G and discriminator
D network. The only difference compared to vanilla GAN is that additional labels are passed as
input to both G and D.

Figure 3.6: Architecture of Conditional Generative Adversarial Network

The loss function of the CGAN [43]:

18

CHAPTER 3. BACKGROUND

min
G

max
D

L(G,D) = Ex˜pdata
[logD(x|y)] + Ez˜pz

[log(1−D(G(z|y)))] (3.8)

3.4.5 Wasserstein GAN (WGAN)

Wasserstein Generative Adversarial Network (WGAN) [39] was introduced by Arjovsky et al. in
2017 and it is an adaptation from the vanilla GAN. This model uses an alternative way of training.
The model seeks to minimize the distance between the distribution of training data and generated
data. This distance measure is called 1-Wasserstein distance. The architecture of the WGAN
model is similar to the vanilla GAN model. It has two neural networks called critic (C) and
generator (G). The critic network is equivalent to the discriminator network in vanilla GAN, with
the difference being that the critic, instead of classifying data as real or fake, outputs a score of
how real or fake the data is. This small change results in a more stable training of the model. A
correlation between loss metric and generated sample quality (not possible in vanilla GAN) exists
as WGAN loss reflects on the generated sample quality. Lower the loss, better the quality of the
generated samples. The model also suffers no mode collapse and the results are often better than
vanilla GAN.

Wasserstein Distance

The Wasserstein distance or Earth Mover’s (EM) distance is the minimum cost of transporting
mass in converting from one data distribution to another. The Wasserstein distance for real data
distribution Pdata and the generated data distribution Pg is mathematically defined as follows [39]:

W (P data, P g) = inf
γ∈Π(Pdata,Pg)

E(x,y)˜γ [‖ x− y ‖] (3.9)

Π(Pr,Pg) denotes the set of all joint distributions γ(x,y) whose marginals are Pdata and Pg re-
spectively. In otherwords γ(x,y) represents amount of mass that needs be transported from x to
y to transform the distribution from Pdata to Pg.

The Wasserstein distance has advantages over JS-divergence. Even when two distributions are
located in lower-dimensional manifolds without overlaps, Wasserstein distance can still provide
a meaningful and smooth representation of the distance in-between. This is illustrated in the
WGAN paper [39].

The equation of Wasserstein distance is intractable due to the computation of the infimum.
The formula is re-formulated using the Kantorovich-Rubinstein duality [64]

W (P data, P θ) = sup
‖f‖L≤ 1

Ex˜pdata
[f(x)]− Ex˜pg [f(x)] (3.10)

where sup is the least upper bound and f is a 1-Lipschitz function that satisfy | f(x1)− f(x2) |≤|
x1 − x2 |. So to calculate the Wasserstein distance, we need to find the 1-Lipschitz function. A
deep network can be built to learn it but the ensure the Lipschitz constraint weight clipping is
needed for the Critic network.

ω ← clip(ω,−c, c)

Limitations of WGAN

The instability in the training of WGAN comes from the fact that the model performance is very
sensitive to weight clipping (ω) hyperparameter [39]. If clipping parameter is small, it can lead to
vanishing gradients, and if the clipping parameter is large, then it can take a long time to converge.
The clipping measure was chosen for its simplicity in implementation and good performance.

19

CHAPTER 3. BACKGROUND

3.4.6 Wasserstein GAN with gradient penalty (WGAN-GP)

Gulrajani et al. introduced WGAN-GP [26]. The weight clipping in the critic was a poor way
to ensure 1-Lipschitz continuity. Not only that the model performance is very sensitive to weight
clipping hyperparameter, it also reduces the capacity of the model and limits the capability to
model complex functions. Thus WGAN-GP uses gradient penalty to ensure the Lipschitz con-
straint instead of weight clipping. The WGAN-GP penalises the model if the gradient norm moves
away from its target norm value of 1. The loss function of the WGAN-GP [26]:

L = E
x̃˜Pg

[D(x̃)]− E
x˜Pr

[D(x)]︸ ︷︷ ︸
OriginalCriticLoss

+λ E
x̂˜Px̂

[(‖ ∇x̂D(x̂) ‖ 2 − 1)2]︸ ︷︷ ︸
Gradientpenalty

(3.11)

where x̂ sampled from x̃ and x with k uniformly sampled between 0 and 1. x̂=kx̃+(1-k)x with
0≤ k≤ 1. λ is set to 10.

The addition of gradient penalty adds to the computational complexity that may not be desir-
able, but it still produces some higher quality output and convergence compared to other models.

20

Chapter 4

Methodology

This chapter presents the chosen methods and approaches to execute the research. To begin
with, parking scenario is use case is explained followed by an overview of the workflow of this
thesis. Then, the simcenter prescan simulation environment is explained, which is used for the
demonstration of the scenario. This is followed by data collection from the simulation environment
for dataset creation. The artificial intelligence part of the workflow is explained in chapters 5 and
6

4.1 Parking scenario use case

For this work the scenario chosen for demonstration using GANs is parking lot occupation. The
main objective is to train a GAN model to create variations in realistic parking scenario. There are
two variants of parking scenario are selected: Non-overlapping parking and overlapping parking
scenarios. Non-overlapping parking refers to the case where cars are properly parked within a
particular parking slot. For non-overlapping parking scenario eight parking slots are considered
out of which four parking slots are on one row and other four parking slots are on the another
parallel row. Number of parked cars to be generated is given as label to the generator model. An
example non-overlapping parking scenario can be seen in Figure 4.1. Overlapping parking scenario
refers to a case when the cars are parked overlapping two adjacent parking slot. To implement
overlapping parking scenario four parking slots are considered. Similar to non-overlapping parking
scenario, number of parked cars to be generated is given as input to the generator model. An
example of overlapping parking scenario is shown in Figure 4.2.

Figure 4.1: Example of non-overlapping parking
scenario

Figure 4.2: Example of overlapping parking
scenario

21

CHAPTER 4. METHODOLOGY

4.2 Overview

Figure 4.3 explains the workflow of the thesis.

Build the environment model of parking lot in
Simcenter Prescan simulation software.

Extract the data from the environment model such
as length and breadth of parking slot needed for

dataset creation.

Create datasets for generating non-overlapping and
overlapping parking.

Build different GAN models to evaluate the best
choice of GAN architecture to implement scenarios.

Train and optimize the best GAN model to improve
the accuracy of new generated scenarios.

Import the generated scenarios in Simcenter
Prescan to view the generared scenarios

Figure 4.3: Workflow

4.3 Simcenter Prescan simulation environment

The simulation environment on which the demonstration of the scenario performed is Simcenter
Prescan. Prescan is a simulation environment for developing ADAS systems. We can use it
to validate the ADAS and automated driving functionalities virtually. The Prescan simulation
environment works as follows:

1. Build scenario

2. Model sensors

3. Add control systems

4. Run experiment

The first step is replicating the traffic scenario by using the elements of the prescan database
such as roads, infrastructure components, actors etc. using either Graphical User Interface (GUI)

22

CHAPTER 4. METHODOLOGY

or an Application Programming Interface (API). The second step is adding sensor models to ego-
vehicle to capture its interaction with the surroundings. Then control systems can be added to
design and verify algorithms for data processing, sensor fusion decision making and control. With
all these data, we can run experiments. The four stages of prescan are shown in Figure 4.4.

Figure 4.4: The four stages of Prescan [27]

For this project, we are interested in building parking scenario, and for this, we need an
environment model. In the Simcenter Prescan software, different library elements are available
which include actors (cars, animated humans, trucks, etc.), infrastructural elements (buildings,
roads, trees etc.) sensors and others. The necessary elements are chosen and dragged onto the
build area to build the environment. The snapshot of the environment model is shown in Figure
4.5. On this built environment, the parking scenario is demonstrated for a particular number of
parking slots.

Figure 4.5: Parking lot model in Simcenter Prescan

23

CHAPTER 4. METHODOLOGY

4.4 Data collection and dataset creation

Since no predefined datasets are available to generate parking scenarios, a relevant dataset has
to be generated in order to achieve the goal of the project. Two variants of parked scenarios are
intended to be generated. The first variant is parked cars scenario without overlap between two
slots and the second variant is cars overlapping the two slots.

When placing the object in the simulation environment, it is the centroid of the object that
determines its location. For an actor like the car, it is CoG. Apart from x and y-CoG coordinate,
there is also the orientation of the car, which is defined in terms of heading or yaw angle. The
parameters of the car are shown in Figure 4.6. The heading angle considered for this project
is 90◦ ± 5◦ and 270◦ ± 5◦. In the parking scenario, the cars must be placed within a slot, and
each parking slot has a defined area. The data, such as the length and breadth of a parking slot,
are determined from the created simulation environment. x-CoG, y-CoG and heading values of
a parking slot are chosen to have a normal distribution. The probability density function of the
normal distribution is given by:

f(x) =
1

σ
√

2π
e−

1
2 (x−µσ)2 (4.1)

where the parameter µ is the mean of the distribution and the parameter σ is the standard dis-
tribution.

(a) Center of gravity of a car (b) Heading of a car

Figure 4.6: Parameters of the car actor

For the first variant of the parking scenario without overlap, eight parking slots are considered.
To train the GAN a dataset is created. The dataset created is in the tabular form. Each parking
slot has four parameters, namely: x-CoG, y-CoG, heading and status. The first three parameters
are the same as described previously. The status contains discrete data 0 (to indicate not parked)
and 1 (to indicate parked). Each of these four parameters is stacked column-wise. Since there are
eight parking slots, there would be 32 columns in total. Additionally, there is one more column
added to the dataset, namely class which acts as the label to indicate the number of cars parked.
So, in this case, there are three classes. Class ’0’ indicates ≤ two cars parked, Class ’1’ indicates
three to five cars parked, and Class ’2’ indicates ≥ six cars parked. In total, there are 33 columns
in the dataset. A snapshot of parameters of parking slots in shown in Figure 4.7. Based on this
structure, three different datasets are created labeled as ’Dataset1’, ’Dataset2’, ’Dataset3’ with
1000, 3000 and 5000 rows of data respectively.

For the second variant of the scenario considering overlapping between two slots, four parking
slots are considered. Again in this case each parking slot has four parameters as in the case of
non-overlapping parking. Like the other case each parameters are stacked columnwise. Since there
are four parking slots there would be 16 columns in total. One additional label column is added
at the end. For this case only one label is considered indicating ≥ three cars parked. For this
dataset, labeled as ’Dataset4’, 3000 rows of data are taken. In all datasets for each slot, x-CoG,
y-CoG and heading are treated as continuous values and status is treated as discrete/categorical
value. The summary of datasets are tabulated in Table 4.1:

24

CHAPTER 4. METHODOLOGY

Figure 4.7: Parameters of parking slots

Dataset #Features #D #C #Rows #Classes/labels
Dataset1 32 8 24 5000 3
Dataset2 32 8 24 3000 3
Dataset3 32 8 24 1000 3
Dataset4 16 4 12 3000 1

Table 4.1: Properties of each dataset. #D indicates the number of discrete/categorical columns,
#C the number of continuous columns.

The status parameter of each slot are discrete columns since it is binary with two values 0 or
1. The x-COG, y-COG and heading of each slot are continuous columns since they have a range
of values. The units of x-COG and y-COG parameters are in meters (m) and unit of heading is
in degree (◦).

25

Chapter 5

Selection of suitable GAN model

In this chapter, a detailed analysis is done on which type of GAN model to be chosen for the
final implementation. Three different types of GAN models are considered namely vanilla GAN,
CGAN and WGAN-GP. Each model architecture is described and the reasons why each model
could or could not be used.

5.1 Dataset for GAN model selection

To determine the best suitable GAN, we create two datasets. The first dataset is used to train
vanilla GAN and CGAN. This dataset has two parameters x-CoG and y-CoG (and additional label
added to data for CGAN). This dataset is created to achieve the generation of a good distribution
of parking location for four slots.

The second dataset is used to train CGAN and WGAN-GP. The dataset is created for four
slots. For each slot, three parameters are used namely x-CoG, y-CoG and status. Each of these
values is stacked column-wise resulting is a tabular dataset. A class label is added to the dataset
to indicate three or more cars parked. After the dataset is created, normalisation of the data
is done in the range of [-1,1] as a data preprocessing step. The goal of the normalisation is to
change the values of the features in the dataset to a common scale without distorting differences
in the range of values. The main reason for normalisation is that gradient descent [70] converges
much faster, resulting in faster training. Min-max normalisation, one of the most common ways
to normalise data, is used. For each feature, x-COG, y-COG and status, the minimum value of
that feature gets transformed into -1, and maximum value of that feature gets transformed into
+1, and every other value lies in the range of -1 and 1.

5.2 Model using vanilla GAN

The first step before training a Generative Adversarial Network is to define the generator and
discriminator networks. The main idea is to define the simplest neural network architectures for
both generator and discriminator networks. Both the generator and discriminator networks are
simple feedforward networks with an input layer, 3-4 hidden layers and an output layer. Since
the dataset lacks any spatial structure amongst the variables, densely connected layers are used
instead of convolutional layers. The neurons in densely connected layers are connected to every
input and output of the layer, allowing the network to learn its own relationships among the
features. For the discriminator network, LeakyReLU activation function [40], [68], [7] is used on
hidden layers. For the generator network, ReLU activation function [49], [7] is used on hidden
layers. These activation functions are chosen as suggested in the GAN literature [54]. The output
of the generator layer uses tanh activation function [10] and the output of the discriminator network
uses sigmoid activation function [10]. The sigmoid function is used to classify the image as real or

26

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

fake. The architecture of the generator and discriminator networks are shown in Tables 5.1 and
5.2, respectively.

Layer Layer Type Output dimensions Description
Input Layer Input (None,2) Latent vector (None,2)

Hidden Layer 1 Dense (None,30)
Dense layer with 30 neurons
followed by ReLU activation

function

Hidden Layer 2 Dense (None,15)
Dense layer with 15 neurons
followed by ReLU activation

function

Hidden Layer 3 Dense (None,5)
Dense layer with 5 neurons followed

by ReLU activation function

Output Layer Dense (None,2)
Dense layer with 2 neurons followed

by tanh activation function

Table 5.1: Architecture of the generator network of vanilla GAN. Total number of trainable
parameters in generator network are 647. Architecture diagram is shown in Appendix A.1

Layer Layer Type Output dimensions Description
Input Layer Input (None,2) Input data (None,2)

Hidden Layer 1 Dense (None,50)
Dense layer with 50 neurons

followed by LeakyReLU activation
function

Hidden Layer 2 Dense (None,25)
Dense layer with 25 neurons

followed by LeakyReLU activation
function

Hidden Layer 3 Dense (None,10)
Dense layer with 10 neurons

followed by LeakyReLU activation
function

Hidden Layer 4 Dense (None,5)
Dense layer with 5 neurons followed
by LeakyReLU activation function

Output Layer Dense (None,1)
Dense layer with 1 neuron followed

by sigmoid activation function

Table 5.2: Architecture of the discriminator network of vanilla GAN. Total number of trainable
parameters in discriminator network are 1746. Architecture diagram is shown in Appendix A.2

Training

The code implemented for building the GAN framework and training the model is in python lan-
guage with the Keras and TensorFlow libraries. Basically, once the generator and discriminator
networksgra are defined, the training has to be done until the generator learns the distribution
similar to that of the real dataset.

The Algorithm 1 describes the training procedure of vanilla GAN [25]. For this research, the
models are trained for 1000 epochs, and the algorithm is designed to save the model of the weight
after every 200 epochs and losses after every epoch.

27

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

Algorithm 1: Training of GAN with stochastic gradient descent [57]. k is the number of
times the discriminator network is updated for each generator update. n is the minibatch
size [57], and w and θ are parameters of discriminator D and generator G respectively.
In this algorithm, Adam optimizer [34] is used with hyperparameters: learning rate α =
0.0015, exponential decay rate for first moment β1=0, exponential decay rate for second
moment β2=0.9

1 for number of training iterations do
2 for k steps do
3 Sample a minibatch of n noise samples z ∼ pz

4 Sample a minibatch of n real data samples x ∼ pdata

5 Update the discriminator:

6 w← Adam(∇w
1
n

∑n
i=1−logD(x)− log(1−D(G(z))))

7 end
8 Sample a minibatch of n noise samples z ∼ pz

9 Update the generator:

10 θ ← Adam(∇g
1
n

∑n
i=1 log(1−D(G(z))))

11 end

Results

After the training is complete, the saved weights of the generator model are loaded to generate
new parking locations. Initial results show that the model suffered from a phenomenon called
mode collapse. Mode collapse is a phenomenon where the generator produces only a subset of
all possible modes of data as described in 3.4.3. This can be seen in Figure 5.1. From the 100
generated points, 35 points generated are in slot 4, and 12 are in slot 1 and the remaining 53 points
are not in any of the four slots. Also, there are no points in slot 2 and slot 3. It shows that the
generator model has not completely learnt the distribution of real data. Since there are no points
generated in slot2 and slot3 and most points are in slot4 we say that mode collapse phenomenon
has occurred.

Figure 5.1: Scatter plot showing the results of generation of coordinates from trained vanilla GAN
model for four parking slots

28

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

5.3 Model using CGAN

CGAN is a variant of vanilla GAN where new data generation can be conditioned on a class label.
In vanilla GAN, there is no control over the modes of data to be generated. Since strong mode
collapse was observed in the results using vanilla GAN model, an additional parameter (label/class)
is fed to the generator to generate the samples corresponding to the label. The labels are also
added to the discriminator input to distinguish the real data better. The only difference between
the vanilla GAN and CGAN architecture is that additional label inputs to both generator and the
discriminator model. Rest of the model architecture remains the same. The model is trained to
the loss function as described in 3.5. The architecture of the generator and discriminator networks
are shown in Tables 5.3 and 5.4, respectively.

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,3)
Concatenation of latent vector

(None,2) + label (None,1)

Hidden Layer 1 Dense (None,30)
Dense layer with 30 neurons
followed by ReLU activation

function

Hidden Layer 2 Dense (None,15)
Dense layer with 15 neurons
followed by ReLU activation

function

Hidden Layer 3 Dense (None,5)
Dense layer with 5 neurons followed

by ReLU activation function

Output Layer Dense (None,2)
Dense layer with 2 neurons followed

by tanh activation function

Table 5.3: Architecture of the generator network of CGAN. Total number of trainable parameters
in generator network are 677. Architecture diagram is shown in Appendix A.4

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,3)
Concatenation of input data
(None,2) + label (None,1)

Hidden Layer 1 Dense (None,50)
Dense layer with 50 neurons

followed by LeakyReLU activation
function

Hidden Layer 2 Dense (None,25)
Dense layer with 25 neurons

followed by LeakyReLU activation
function

Hidden Layer 3 Dense (None,10)
Dense layer with 10 neurons

followed by LeakyReLU activation
function

Hidden Layer 4 Dense (None,5)
Dense layer with 5 neurons followed
by LeakyReLU activation function

Output Layer Dense (None,1)
Dense layer with 1 neuron followed

by sigmoid activation function

Table 5.4: Architecture of the discriminator network of CGAN. Total number of trainable para-
meters in discriminator network are 1796. Architecture diagram is shown in Appendix A.3

Results

After training is complete, the generator model is used to generate new parking locations. Addi-
tional information in the form of class labels resulted in improvement in GAN in the form of more

29

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

stable and faster training and eliminated mode collapse to a large extent. This can be seen in
Figure 5.2. From the plot, we can see that now the CGAN model is able to generate coordinates
in all the four slots with most of the points falling within the appropriate designated slots with
few points (represented by orange points in figure) falling outside the range of a slot indicating
wrong samples.

Figure 5.2: Scatter plot showing the results of generation of coordinates from trained CGAN
model for four parking slots

Next, the model is trained with the second dataset, which includes the status of the parking
for each slot. On implementing this with CGAN, it was observed that some of the intra modes
within a class were not captured by the model. In other words, the mode collapse issue was not
entirely solved by using CGAN. This can be seen in figure 5.3. This plot shows the generation of
10 parking scenarios for three or more cars parked. With four slots, there could be four possible
combinations which can indicate three or more cars parked amongst those four slots. The matrix
below the plot indicates the status of the slot where 1 indicates parked, and 0 indicates free slot.
There are ten rows of data in the matrix indicating the status for ten scenarios. From the matrix,
we see that only one combination of 3 or more cars parked is being generated where cars would
be parked in slots 1, 2 and 4 and no car on slot 3. However, the other three possible combinations
are missing indicating mode collapse.

30

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

Figure 5.3: Scatter plot of 10 generated scenarios indicating greater than three or more cars parked
using CGAN model for four parking slots

5.4 Model using WGAN-GP

WGAN-GP is a variant of GAN that uses Wasserstein distance with gradient penalty as described
in 3.4.6, rather than JS-divergence, to measure the difference between the model and the target
distribution. Using this metric, the drawbacks of vanilla GAN such as slow training and mode
collapse problems are overcome. Architectures are defined for the critic/discriminator and the
generator networks. Both the critic and the generator are a simple feedforward network with an
input layer, three hidden layers and an output layer. All the hidden layers are dense/fully connec-
ted layers. The activation functions of hidden layers of the critic network are ReLU activation, and
the activation function of the hidden layers of the generator network is the LeakyReLU activation
function. On the output layer, the activation function on the critic network is linear activation,
and the activation function on the generator function is tanh activation. The architecture of the
generator and discriminator networks are shown in 5.5 and 5.6, respectively.

5.4.1 Training

The code implemented for building the WGAN-GP framework and training the model is in python
language with the Keras and TensorFlow libraries. After the generator and discriminator models
are defined, the training has to be done until the generator learns the distribution similar to that
of the real dataset.

The Algorithm 2 describes the training procedure of WGAN-GP [26]. For this research, the
models are trained for 10000 epochs, and the algorithm is designed to save the model weights after
every 2000 epochs and losses after every epoch to check the intermediate results as well.

31

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,21)
Concatenation of latent vector

(None,20) + label (None,1)

Hidden Layer 1 Dense (None,128)
Dense layer with 128 neurons
followed by ReLU activation

function

Hidden Layer 2 Dense (None,64)
Dense layer with 64 neurons
followed by ReLU activation

function

Hidden Layer 3 Dense (None,32)
Dense layer with 32 neurons
followed by ReLU activation

function

Output Layer Dense (None,12)
Dense layer with 12 neurons

followed by tanh activation function

Table 5.5: Architecture of the generator network of WGAN-GP. Total number of trainable para-
meters in the generator network are 13548. Architecture diagram is shown in Appendix A.6

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,13)
Concatenation of input data
(None,12) + label (None,1)

Hidden Layer 1 Dense (None,128)
Dense layer with 128 neurons

followed by LeakyReLU activation
function

Hidden Layer 2 Dense (None,64)
Dense layer with 64 neurons

followed by LeakyReLU activation
function

Hidden Layer 3 Dense (None,32)
Dense layer with 32 neurons

followed by LeakyReLU activation
function

Output Layer Dense (None,1)
Dense layer with 1 neuron followed

by linear activation function

Table 5.6: Architecture of the discriminator network of WGAN-GP. Total number of trainable
parameters in the discriminator network are 12161. Architecture diagram is shown in Appendix
A.5

32

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

Algorithm 2: WGAN with gradient penalty. Gradient penalty λ = 10, number of critic
iterations per generator iteration ncritic = 5. In this algorithm, Adam optimizer [34] is
used with hyperparameters: learning rate α = 0.0015, exponential decay rate for first
moment β1=0, exponential decay rate for second moment β2=0.9

1 while θ has not converged do
2 for j=1 to ncritic do
3 for i=1 to m do
4 Sample real data sample x ∼ pdata

5 Sample noise samples z ∼ pz

6 Sample a random number ε ∼ U [0, 1]
7 x̃← G(z)
8 x̂←εx+(1-ε)x̃

9 L
(i)
D ← Dw(x̃)−Dw(x) + λ(‖ ∇x̂Dw(x̂) ‖ 2 − 1)2

10 end

11 w← Adam(∇w
1
m

∑m
i=1 L

(i))

12 end
13 Sample a batch of m noise samples of z ∼ pz

14 θ ← Adam(∇θ 1
m

∑m
i=1−Dw(Gθ(z)))

15 end

5.4.2 Results

The plot in the Figure 5.4 shows the generation of 10 parking scenarios for three or more cars
parked. From the Figure 5.4, it can be seen that for class label 3, the model can generate all
possible combinations of 3 cars parked across four parking slots.

Figure 5.4: Scatter plot showing the results of generation of coordinates from trained WGAN-GP
model for four parking slots with status information

33

CHAPTER 5. SELECTION OF SUITABLE GAN MODEL

5.5 Conclusion

Based on experiment results we can conclude that vanilla GAN and CGAN suffers from mode
collapse problem wherein only a subset of all modes of scenarios are being generated. However,
when we use WGAN-GP with gradient penalty, the mode collapse issue is no longer observed, and
thus it is the best choice of the model. Further implementations are carried out using WGAN-GP
model.

34

Chapter 6

Optimization of WGAN-GP
model

This chapter describes the architectural details of final model designed along with the hyperpara-
meters chosen to implement both the variants of parking scenario (Non-overlapping and overlap-
ping parking). The final model is based on WGAN-GP 3.4.6 as concluded in section 5.

6.1 Model architecture for non-overlapping scenario for eight
parking slots

6.1.1 Critic network

The architecture of the critic network is shown in Table 6.1. The critic network is a simple
feedforward network. The input to the critic network is concatenation of data (real or generated)
and a label parameter. The network has four hidden layers. All are followed by LeakyReLU
activation function and dropout layer. Firstly dense/fully connected layers are in hidden layers.
This is because since the dataset lacks spatial structure amongst its variables. The neurons
in densely connected layers are connected to every input and output of the layer, allowing the
network to learn its own relationships amongst the features. The leakyReLU activation function
is used for hidden layers of critic network because it helps the gradient to flow easier through the
network architecture. The term dropout refers to dropping of neurons in a neural network layer at
random during the training phase. The dropout layer is used to prevent the model from overfitting
and improve generalisation error. This is very computationally cheap and effective regularisation
technique used. The output of the critic network has one neuron with linear activation function.
Total trainable parameters in critic model are 51969.

6.1.2 Generator network

The architecture of the generator network is shown in Table 6.2. Similar to the critic network, the
generator network is a simple feedforward network. The input to generator network is a random
vector z (called latent/noise vector) and a label. The network has four hidden layers. All hidden
layers are followed by ReLU activation and dropout layer. Similar to critic network dense layers
are used for the same reasons as in critic network. ReLU activation is used because they seem
to work better on generator network [54]. The dropout layer is used to prevent the model from
overfitting and improve generalisation error. The output of the generator network has 32 neurons
with tanh activation function. Total trainable parameters in generator model are 53344.

35

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,33)
Concatenation of input data
(None,32) + label (None,1)

Hidden Layer 1 Dense (None,256)
Dense layer with 256 neurons

followed by LeakyReLU activation
function and dropout layer

Hidden Layer 2 Dense (None,128)
Dense layer with 128 neurons

followed by LeakyReLU activation
function and dropout layer

Hidden Layer 3 Dense (None,64)
Dense layer with 64 neurons

followed by LeakyReLU activation
function and dropout layer

Hidden Layer 4 Dense (None,32)
Dense layer with 32 neurons

followed by LeakyReLU activation
function and dropout layer

Output Layer Dense (None,1)
Dense layer with 1 neuron followed

by linear activation function

Table 6.1: Architecture of the critic network for non-overlapping parking scenario. Total number
of trainable parameters in the critic model are 51969. The Figure is shown in 6.1

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,51)
Concatenation of latent vector

(None,50) + label (None,1)

Hidden Layer 1 Dense (None,32)
Dense layer with 32 neurons
followed by ReLU activation
function and dropout layer

Hidden Layer 2 Dense (None,64)
Dense layer with 64 neurons
followed by ReLU activation
function and dropout layer

Hidden Layer 3 Dense (None,128)
Dense layer with 128 neurons
followed by ReLU activation
function and dropout layer

Hidden Layer 4 Dense (None,256)
Dense layer with 256 neurons
followed by ReLU activation
function and dropout layer

Output Layer Dense (None,32)
Dense layer with 32 neurons

followed by tanh activation function

Table 6.2: Architecture of the generator network for non-overlapping parking scenario. Total
trainable parameters in generator model are 53344. The Figure is shown in 6.2.

36

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

Figure 6.1: Architecture of the critic network for non-overlapping parking scenario.

37

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

Figure 6.2: Architecture of the generator network for non-overlapping parking scenario.

38

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

6.1.3 Model hyperparameters

After defining architectures of the models used, the hyperparamters chosen for training process
are defined. A hyperparameter is a parameter whose values is set before the training of the
model begins. All the hyperparamters of the models are tabulated in Table 6.3. Some of the
hyperparameters are chosen by performing several iterations of training experiments and some of
the hyperparameters are same as in literature [26]. ncritic and λ were chosen from WGAN-GP
literature and the values were chosen to be same as it was used in original paper. Rest of the
hyperparameters were experimentally decided. Experiments were conducted to decide the values
of hyperparameters and the ones which were giving high accuracy was chosen to be the final value.

Hyperparameter Value Description

Batch Size 512
Number of samples processed
before the model parameters

(weights and biases) are updated

Learning rate for generator Network 0.0015

Tuning parameter that determines
the step size at each iteration while

moving towards a minimum of a
loss function

Learning rate for critic Network 0.0015

Tuning parameter that determines
the step size at each iteration while

moving towards a minimum of a
loss function

Number of epochs 50000
Number of complete passes through

the entire training dataset.
Latent dimensions 50 Size of the latent space

Dropout rate 0.2 Fraction of the input units to drop

ncritic 5
Number of critic iterations per

generator iteration

λ 10
Gradient penalty lambda

hyperparameter

Optimizer Adam optimizer
Adam optimizer [34] with default

parameters

Table 6.3: Hyperparameters chosen for the models for non-overlapping parking scenario

6.1.4 Training and new scenario generation

The WGAN-GP model is trained using the Algorithm 2 for 50000 epochs. The datasets used
for training of this model are Dataset1, Dataset2 and Dataset3 as described in section 4.1. The
model is trained separately on each of the three datasets. The batch size is set to 512 samples.
The weights of the critic and generator network are updated using Adam optimizer [34]. For
every 5 updates of the critic network, the generator network is updated once. Once the training
is complete the trained generator model is used to generate new scenarios.

After training, firstly the weights trained generator network is loaded. Then we feed labels
and number of new scenarios to be generated by the model. In this case we generate 1000 new
scenarios. After the new scenarios are generated, they are firstly denormalised of the generated
data is performed. This is done such that generated data are available in expected original form.
Once the generated data is denormalised they can be used for further analysis. Each of the 1000
scenarios are then visualised on the Simcenter Prescan simulation environment and evaluation is
performed on those 1000 scenarios. The results of the generated scenarios are shown in chapter 7.

39

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

6.2 Model architecture for overlapping parking scenario for
four parking slots

The overlapping parking scenario is generated considering four parking slots. The architectures
of the critic and generator networks are shown in Tables 6.4 and 6.5. The main difference in
architecture of critic and generator compared to non-overlapping scenario is that it has 1 less
hidden layer since only four slots are considered instead of eight slots in case of non-overlapping
scenario. And since only four slots are considered the output neurons in generator model is 16
neurons instead of 32 neurons in non-overlapping scenario. Rest of the architecture is similar to
non-overlapping scenario.

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,17)
Concatenation of input data
(None,16) + label (None,1)

Hidden Layer 1 Dense (None,128)
Dense layer with 128 neurons

followed by LeakyReLU activation
function and dropout layer

Hidden Layer 2 Dense (None,64)
Dense layer with 64 neurons

followed by LeakyReLU activation
function and dropout layer

Hidden Layer 3 Dense (None,32)
Dense layer with 32 neurons

followed by LeakyReLU activation
function and dropout layer

Output Layer Dense (None,1)
Dense layer with 1 neuron followed

by linear activation function

Table 6.4: Architecture of the critic network for overlapping parking scenario. Total number of
trainable parameters in the critic network are 12673. The Figure is shown in 6.3

Layer Layer Type Output dimensions Description

Input Layer Concatenate (None,51)
Concatenation of latent vector

(None,50) + label (None,1)

Hidden Layer 1 Dense (None,32)
Dense layer with 32 neurons
followed by ReLU activation
function and dropout layer

Hidden Layer 2 Dense (None,64)
Dense layer with 64 neurons
followed by ReLU activation
function and dropout layer

Hidden Layer 3 Dense (None,128)
Dense layer with 128 neurons
followed by ReLU activation
function and dropout layer

Output Layer Dense (None,16)
Dense layer with 16 neurons

followed by tanh activation function

Table 6.5: Architecture of the generator network for overlapping parking scenario. Total number
of trainable parameters in the generator network are 14160. The Figure is shown in 6.4

40

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

Figure 6.3: Architecture of the critic network for overlapping parking scenario.

41

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

Figure 6.4: Architecture of the generator network for overlapping parking scenario.

42

CHAPTER 6. OPTIMIZATION OF WGAN-GP MODEL

6.2.1 Training and new scenario generation

The hyperparameters for the models defined for overlapping scenarios are shown in Table 6.6.
The WGAN-GP model is trained using the algorithm 2 for 50000 epochs. The dataset used for
training of this model is Dataset4 as described in section 4.1. The batch size is set to 512 samples.
The weights of the critic and generator network are updated using Adam optimizer [34]. For
every 5 updates of the critic network, the generator network is updated once. Once the training
is complete the trained generator model is used to generate new scenarios.

After training, firstly the weights trained generator network is loaded. Then we feed labels
and number of new scenarios to be generated by the model. In this case we generate 1000 new
scenarios. After the new scenarios are generated, they are firstly denormalised of the generated
data is performed. This is done such that generated data are available in original expected form.
Once the generated data is denormalised they can be used for further analysis. Each of the 1000
scenarios are then visualised on the Simcenter Prescan simulation environment and evaluation
is performed on those 1000 scenarios. The results of the new generated scenarios are shown in
chapter 7.

Hyperparameter Value Description

Batch Size 512
Number of samples processed
before the model parameters

(weights and biases) are updated

Learning rate for generator Network 0.0015

Tuning parameter that determines
the step size at each iteration while

moving towards a minimum of a
loss function

Learning rate for critic Network 0.0015

Tuning parameter that determines
the step size at each iteration while

moving towards a minimum of a
loss function

Number of epochs 50000
Number of complete passes through

the entire training dataset.
Latent dimensions 50 Size of the latent space

Dropout rate 0.2 Fraction of the input units to drop

ncritic 5
Number of critic iterations per

generator iteration

λ 10
Gradient penalty lambda

hyperparameter

Optimizer Adam optimizer
Adam optimizer [34] with default

parameters

Table 6.6: Hyperparameters chosen for the models for overlapping parking scenario

43

Chapter 7

Evaluation and results

This chapter outlines the different evaluation methods that have been used to evaluate the per-
formance of generated scenarios by the WGAN-GP model as discussed in chapter 6. Also, the
results of the WGAN-GP models to implement overlapping and non-overlapping parking scenarios
are presented.

7.1 Evaluation metrics

When evaluating the generated output, we check for two aspects, the diversity and the quality.
From the diversity perspective, we check the ability of the generator to produce diverse samples
capturing different modes in the real data and from the quality viewpoint, we evaluate the gen-
erator’s ability to generate realistic samples. Most widely used evaluation metrics are inception
score [13] and FID score [28]. The inception score metric gives a score to the generated output
image that measures how realistic the GAN’s output is. Higher the inception score better the
generated output. Frechet Inception Distance measures the Wasserstein-2 distance [66] between
feature vectors calculated for real and generated images. For FID score, the lower score correlate
to a high quality of images generated. These scores can be used only on image datasets and since
tabular dataset is used for this work, we cannot use these standard evaluation procedures.

7.1.1 Visual inspection

For this work, we visually inspect the similarity between the distributions of each column (attrib-
ute) between the generated and real data. We plot the histogram and cumulative percentage of
each column of real and generated data on top of each other in order to compare them. By plotting
them, we can gain some insight into a column distribution, and this works for both categorical
and continuous columns.

Secondly, after the new scenarios are generated, they are imported on the prescan environment
using MATLAB where they can be observed visually on the environment. From this, we can quite
evidently evaluate the generated scenarios. We evaluate generated scenarios both in terms of the
diversity and the quality aspect. The variations in generated scenarios are easily detectable, and
thus we can examine the ability of the GAN to generate diverse samples. Also, the content of
images is relatively simple and easy to compare. Therefore, we can evaluate the GAN’s ability to
generate high-quality sample by comparing them to ground-truth data.

7.1.2 Accuracy of the generated scenarios

Another evaluation metric used to assess the generated scenarios is in terms of accuracy. This
metric is used only for non-overlapping scenario generation. In order to determine the accuracy
of the model, we first generate ’n’ scenarios from trained GAN model. After the scenarios are

44

CHAPTER 7. EVALUATION AND RESULTS

generated a scatter plot between the x-CoG and y-CoG is plotted, which indicate where they are
lying within each parking slot. For example, Figure 7.1 shows an example of 3 different parking
scenarios across four slots using a scatter plot. Each scenario has 4 coordinates points representing
x-CoG and y-CoG of the car in each of the 4 slots. From this figure, we can see that there are 12
points in total for 3 scenarios out of which 2 points are lying outside the valid bounded area of each
slot. Valid bounded area refers to the area of a each parking slot. There are two different accuracy
metric calculated. First accuracy metric is determined by the ratio of the number of generated
data points lying within the valid bounded area of all slots to the total number of points generated.

Accuracypoints =
Number of generated data points lying within the valid bounded area of slots

Total number of generated points
(7.1)

Figure 7.1: An example of scenario generation across 4 slots.

Secondly, we determine the accuracy of the complete valid scenario. In Figure 7.1, out of the
three generated scenarios, only scenario3 is valid scenario because scenario3 have no data point
lying outside bounding area and each of the scenario1 and scenario2 has a data point lying outside
the valid bounding area of a slot. When a data point in a scenario lies outside the bounding area,
it results in a case where a car is not parked within a slot. Thus, the scenario is invalidated.

Accuracyscenario =
Number of valid scenarios

Total number of generated scenarios
(7.2)

Second accuracy metric is a very stringent metric because even if the one coordinate in a
scenario lies outside the bounding box we consider the complete scenario to be invalid.

7.1.3 Number of duplicated and repeated scenarios generated

Another metric considered to evaluate the generated output is based on the number of duplicated
and repeated scenarios generated. In order to determine duplicated and repeated scenarios, we
first generate some ’n’ number of scenarios from trained GAN model. Each scenario is a row of
generated data. So firstly, we compare whether a row of generated data is identical to any row of
data in training/real data. If so then the scenario is duplicated. Ideally, it is not desired to have
duplicates of real data being generated by the model. Similarly, we check if there are any row of
generated data being repeated. Ideally, it is desired to have n distinct scenarios being generated
from the model.

7.2 Results

This section presents the detailed analysis and results of the experiments as described in chapter
6.

7.2.1 Loss plot

The Figure 7.2 shows the loss plot of the WGAN-GP model for eight slots non-overlapping scenario
and the Figure 7.3 shows the loss plot of the WGAN-GP model for four slots overlapping-scenario

45

CHAPTER 7. EVALUATION AND RESULTS

as described in section 6. The Wasserstein loss function seeks to increase the gap between the
scores of the real and the fake data by the critic. From the plots, this is quite evident. The red
line indicates the critic score for the real data and the green line indicates the critic score for
the fake data and from the plot we can see a clear distinction in the gap between the scores of
the real/training and the fake data. The purple line in the plots indicates the gradient penalty
value and the blue line is the total critic loss as discussed in chapter 3.4.6. The orange line
indicates the generator loss. We expect generator loss to have similar value to that of critic score
for real/training data because the generator tries to generate samples of similar distribution to
real/training data. The Wasserstein loss function is not an absolute and comparable loss. This
means there is no fixed value that defines how much this loss should be for it to be classified as a
good loss. Rather this depends on the model configuration and dataset. The only thing what is
important is that convergence behaviour must be observed. This can be seen the plots. Although
the loss plot is different for both the models and we see convergence after 25000 epochs in 7.2 and
after 35000 epochs in 7.3 clearly evident from the plot.

Figure 7.2: Loss plot of WGAN-GP model non-
overlapping scenario using Dataset1 for eight
parking slots

Figure 7.3: Loss plot of WGAN-GP model for
overlapping scenario using Dataset4 for four
parking slots

7.2.2 Accuracy

We use the accuracy metric to evaluate the non-overlapping parking scenario. Table 7.1 shows the
accuracy of the generated non-overlapping parking scenarios for eight parking slots for different
datasets. After training of the model 1000 scenarios are generated for each dataset. Each dataset
differ in terms of number of samples of training data with 5000, 3000 and 1000 samples respect-
ively. The accuracy of the generated scenarios are calculated as discussed in 7.1.2.

Dataset Scenario Accuracypoints Accuracyscenario

Dataset1 (5000 samples) Non-overlapping (8 slots) 95-97% ∼75%
Dataset2 (3000 samples) Non-overlapping (8 slots) 93-95% ∼70%
Dataset3 (1000 samples) Non-overlapping (8 slots) 85-88% ∼30%

Table 7.1: Accuracy of generated non-overlapping scenarios for different dataset

We can see that for dataset1 (5000 samples) the Accuracypoints is about 95-97% and Accuracyscenario

is about 75%. For dataset2 (3000 samples), Accuracypoints is about 93-95% and Accuracyscenario

is about 70%. Similarly for dataset3 (1000 samples), Accuracypoints is about 85-88% and
Accuracyscenario is only 30%. We can see that as the number of training samples in the dataset
decreases the total accuracy of the generated scenarios also decreases. By having more number of
samples in the dataset, the model was able to learn the distribution better and generalise, thus
resulting in better accuracy.

46

CHAPTER 7. EVALUATION AND RESULTS

Dataset Scenario
Mean distance of data points

outside bounding box (in meters)
Variance of data points outside

bounding box (in meters)
Dataset1 (5000 samples) Non-overlapping (8 slots) 0.136 0.0133
Dataset2 (3000 samples) Non-overlapping (8 slots) 0.152 0.026
Dataset3 (1000 samples) Non-overlapping (8 slots) 0.114 0.0096

Table 7.2: Error in generated scenarios for different dataset

For each of the point lying outside the valid bounded area of a slot, the distance measure was
done to check how far it is lying outside. The mean and variance were calculated for those points
lying outside the valid bounded area of a slot. The table 7.2 shows the mean distance and variance
of all the generated points lying outside the bounded area of slots. We see that the mean distance
of generated points outside is 0.136 meters for a model trained with Dataset1. Also, the mean
distance of generated points lying outside for the models trained with Dataset2 and Dataset3 is
0.152 meters and 0.114 meters respectively. Although there were some points lying outside the
bounding area of the slot they are not very far outside the slot and rather lie just outside the edge
of the slots. Thus we can say that model has learnt the distribution well.

7.2.3 Duplicated and repeated scenarios generated

Table 7.3 shows the number of duplicated scenario generated compared to training dataset as
well as the number of repeated scenario generated by the model. The duplicated and repeated
scenarios are checked on the generated scenarios by truncating x-COG, y-COG and heading angle
values to one, two and three decimal places for every slot. It was observed that scenarios with
features/columns truncated to even one decimal place there were no duplication or repetition.
This suggests that the model did a good job in generating new scenarios and also ensuring that
there are no repeated scenarios generated.

Dataset Scenario
Number of duplicated

scenarios
Number of repeated scenarios

Dataset1 (5000 samples) Non-overlapping (8 slots) 0 0
Dataset2 (3000 samples) Non-overlapping (8 slots) 0 0
Dataset3 (1000 samples) Non-overlapping (8 slots) 0 0
Dataset4 (3000 samples) Overlapping (4 slots) 0 0

Table 7.3: Number of duplicated and repeated scenarios generated for different datasets with
values of the features/columns truncated to one decimal place.

7.2.4 Visual inspection

The visual inspection of the results provides some insight into the generated scenario. Figures
7.4, 7.5 and 7.6 shows the histogram and cumulative percentage of few of the individual columns
of the generated samples and training samples of non-overlapping scenario. And Figures 7.7 and
7.8 shows the plot for overlapping scenario .The generated samples are represented in yellow and
training samples are represented in blue. From the inspection, we can see that the distribution of
the generated data follows the distribution of the real/training data. Thus we can say that there
are no signs of mode collapse occurring.

47

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.4: Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of
slot1 of non-overlapping scenario

48

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.5: Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of
slot2 of non-overlapping scenario

49

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.6: Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of
slot3 of non-overlapping scenario

50

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.7: Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of
slot2 of overlapping scenario

51

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.8: Histogram and cumulative percentage of normalised x-CoG, y-CoG and heading of
slot3 of overlapping scenario

52

CHAPTER 7. EVALUATION AND RESULTS

After the scenarios are generated, they are imported to the Simcenter Prescan software to
visualise the output on the simulation environment. Figures 7.9, 7.10 and 7.11 show some non-
overlapping parking scenarios across eight parking slots. Figures 7.12, 7.13, 7.14, 7.15 show some
overlapping parking scenarios across four parking slots.

Figure 7.9: First non-overlapping scenarios of parked cars across eight slots

Figure 7.10: Second non-overlapping scenarios of parked cars across eight slots

53

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.11: Third non-overlapping scenarios of parked cars across eight slots

Figure 7.12: First overlapping scenarios of parked cars across four slots

54

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.13: Second overlapping scenarios of parked cars across four slots

Figure 7.14: Third overlapping scenarios of parked cars across four slots

55

CHAPTER 7. EVALUATION AND RESULTS

Figure 7.15: Fourth overlapping scenarios of parked cars across four slots

56

Chapter 8

Conclusions

8.1 Summary

In this thesis, we investigated the feasibility of scenario generation for testing autonomous vehicles
using Generative Adversarial Networks (GANs). The goal of the project was to generate realistic
parking scenarios. Two variants of parking scenario were generated, namely:- overlapping and
non-overlapping parking scenario. The approach to this work was not trivial since GANs are
typically used on image datasets, but for this work, it was not the case. For this work, the dataset
is in tabular form. Since dataset was not readily available to approach the work, suitable datasets
had to be generated to achieve the goal of the project.

Different GAN models were studied and analysed, and several experiments were performed in
order to determine the suitable model for the final implementation. Vanilla GAN and conditional
GAN models suffered from mode collapse problem. The model with Wasserstein GAN with gradi-
ent penalty overcomes the mode collapse problems. Thus for final scenario generation, Wasserstein
GAN with gradient penalty models were designed with simple architectures for generator and dis-
criminator networks.

After training the models, the generator network was used to generate new scenarios. The
new scenarios generated were evaluated on several metrics such as accuracy, visual inspection
and number of duplicated and repeated scenarios to evaluate the performance of the generator
network. We observed that we were able to achieve good accuracy for non-overlapping scenarios,
and there were no duplicate or repeated scenarios being generated by the model. Finally, newly
generated scenarios were imported and demonstrated on the Simcenter Prescan environment.

To conclude, a framework was successfully developed to demonstrate the parking scenario using
Generative Adversarial Network. Using this approach we could reduce the time taken to generate
new scenarios and hence this can lead to faster testing and reduce time to market for ADAS.

8.2 Future work

1. Currently this parking scenario has been developed for one particular car model (Audi Sedan
A8) used in Simcenter Prescan environment. This can be extended for different car models
by adding additional label parameter in the training dataset to indicate the model of the
car.

2. Current model demonstrates the parking scenario for eight slots in case of non-overlapping
and four slots in case of overlapping scenarios. This can be extended to a higher number of
parking slots.

57

CHAPTER 8. CONCLUSIONS

3. We could investigate the parking scenario generation using GAN in an alternate way by using
image datasets. In order approach this, the images of different parking scenarios needs to be
captured from the environment model by placing camera to create the dataset. This dataset
can be used to train the GAN models. After training, the parameters (x-COG, y-COG and
heading angle) of the car is needed to be extracted from the new generated scenario image
which would require lot of postprocessing and could be cumbersome. However, it would be
interesting to see the results by this approach if it could achieve better results compared to
the work done in this thesis.

58

Bibliography

[1] Advanced Driver Assistance System. URL: http://tadviser.com/index.php/Product:
LG ADAS %28Advanced Driver Assistance System%29. vii, 2

[2] Autonomous Driving System Toolbox. URL: https://nl.mathworks.com/products/
automated-driving.html#scenario-generation. 10

[3] Cross entropy loss. URL: https://machinelearningmastery.com/cross-entropy-for-
machine-learning/. 15

[4] Jensen-Shannon and Kullback-Leibler divergence. URL: https://medium.com/datalab-
log/measuring-the-statistical-similarity-between-two-samples-using-jensen-

shannon-and-kullback-leibler-8d05af514b15. 18

[5] OpenSCENARIO. URL: http://www.opendrive.org/. 3, 10

[6] OpenSCENARIO. URL: http://www.openscenario.org/. 3, 10

[7] ReLU, LeakyReLU and Sigmoid activation functions. URL: https://medium.com/
@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-

for-neural-networks-and-deep-8d9c70eed91e. 26

[8] SAE Levels of Automation. URL: https://www.news24.com/fin24/Finweek/Featured/
autonomous-vehicles-its-time-to-get-out-of-the-drivers-seat-20180228. vii, 2

[9] SAE Levels of Driving Automation. URL: https://www.sae.org/news/press-room/2018/
12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-

of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles. 1

[10] Understanding activation functions. URL: https://medium.com/the-theory-
of-everything/understanding-activation-functions-in-neural-networks-

9491262884e0. 14, 26

[11] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative ad-
versarial networks, 2017. 17

[12] Gerrit Bagschik, Till Menzel, and Markus Maurer. Ontology based scene creation for the
development of automated vehicles. 06 2018. 3, 6

[13] Shane Barratt and Rishi Sharma. A note on the inception score, 2018. 9, 44

[14] Ali Borji. Pros and cons of gan evaluation measures, 2018. 9

[15] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable representation learning by information maximizing generative ad-
versarial nets. Advances in Neural Information Processing Systems, pages 2180–2188, 2016.
9, 18

59

http://tadviser.com/index.php/Product:LG_ADAS_%28Advanced_Driver_Assistance_System%29
http://tadviser.com/index.php/Product:LG_ADAS_%28Advanced_Driver_Assistance_System%29
https://nl.mathworks.com/products/automated-driving.html##scenario-generation
https://nl.mathworks.com/products/automated-driving.html##scenario-generation
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://machinelearningmastery.com/cross-entropy-for-machine-learning/
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
http://www.opendrive.org/
http://www.openscenario.org/
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://www.news24.com/fin24/Finweek/Featured/autonomous-vehicles-its-time-to-get-out-of-the-drivers-seat-20180228
https://www.news24.com/fin24/Finweek/Featured/autonomous-vehicles-its-time-to-get-out-of-the-drivers-seat-20180228
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

BIBLIOGRAPHY

[16] Edward Choi, Bradley Malin, and Jon Duke. Generating Multi-label Discrete Patient Records
using Generative Adversarial Networks. 68:1–20, 2017. 9

[17] S. De, S. Mohamed, K. Bimpisidis, D. Goswami, T. Basten, and H. Corporaal. Approximation
trade offs in an image-based control system. In 2020 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1680–1685, 2020. 6

[18] Sayandip De, Sajid Mohamed, Dip Goswami, and Henk Corporaal. Approximation-aware
design of an image-based control system. IEEE Access, 2020. 6, 11

[19] E. de Gelder and J. Paardekooper. Assessment of automated driving systems using real-life
scenarios. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 589–594, 2017. 6

[20] Ugur Demir and Gozde Unal. Patch-Based Image Inpainting with Generative Adversarial
Networks. 2018. vii, 4, 7, 8

[21] W. Deng, Y. H. Lee, and A. Zhao. Hardware-in-the-loop simulation for autonomous driving.
In 2008 34th Annual Conference of IEEE Industrial Electronics, pages 1742–1747, 2008. 10,
11

[22] Tong Duy Son, Ajinkya Bhave, and Herman Van der Auweraer. Simulation-based testing
framework for autonomous driving development. 03 2019. vii, 10, 11

[23] Hala Elrofai, Jan-Pieter Paardekooper, and Erwin de Gelder. Streetwise: Scenario-based
safety validation of connected and automated driving. page 28, 2018. 1, 2, 6

[24] Ş. Y. Gelbal, E. Altuğ, and E. F. Keçeci. Design and hil setup of an autonomous vehicle
for crowded environments. In 2016 IEEE International Conference on Advanced Intelligent
Mechatronics (AIM), pages 1370–1375, 2016. 11

[25] Ian J Goodfellow, Jean Pouget-abadie, Mehdi Mirza, Bing Xu, and David Warde-farley.
Generative Adversarial Nets. pages 1–9. 7, 9, 16, 17, 27

[26] Ishaan Gulrajani. Improved Training of Wasserstein GANs. 20, 31, 39

[27] F. Hendriks, Martijn Tideman, R. Pelders, R. Bours, and X. Liu. Development tools for
active safety systems: Prescan and vehil. pages 54 – 58, 08 2010. vii, 23

[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Ho-
chreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium,
2018. 9, 44

[29] Irina Higgins, Loic Matthey, Xavier Glorot, Arka Pal, Benigno Uria, Charles Blundell, Shakir
Mohamed, and Alexander Lerchner. Early visual concept learning with unsupervised deep
learning, 2016. 9

[30] Charles A. Holt and Alvin E. Roth. The nash equilibrium: A perspective. Proceedings of the
National Academy of Sciences, 101(12):3999–4002, 2004. 17

[31] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 4, 7

[32] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture Synthesis with Spatial Gen-
erative Adversarial Networks. (ii), 2016. 4

[33] Yanghua Jin and Yingtao Tian. Towards the Automatic Anime Characters Creation with
Generative Adversarial Networks. 92(Summer 2017):1–16. vii, 7, 8

60

BIBLIOGRAPHY

[34] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. 28,
33, 39, 43

[35] Robert Krajewski and Tobias Moers. VeGAN : Using GANs for Augmentation in Latent Space
to Improve the Semantic Segmentation of Vehicles in Images from an Aerial Perspective. 2019
IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1440–1448,
2019. 9

[36] Robert Krajewski, Tobias Moers, Dominik Nerger, and Lutz Eckstein. Data-Driven Maneuver
Modeling using Generative Adversarial Networks and Variational Autoencoders for Safety
Validation of Highly Automated Vehicles. IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC, 2018-November:2383–2390, 2018. 9

[37] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4):541–551, 1989. 13

[38] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44, 05 2015.
13

[39] S. Chintala M. Arjovsky and L. Bottou. Wasserstein GAN. 2017. 19

[40] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013. 26

[41] Till Menzel, Gerrit Bagschik, Leon Isensee, Andre Schomburg, and Markus Maurer. From
functional to logical scenarios: Detailing a keyword-based scenario description for execution
in a simulation environment, 2019. vii, 7

[42] Till Menzel, Gerrit Bagschik, and Markus Maurer. Scenarios for development, test and
validation of automated vehicles. 2018 IEEE Intelligent Vehicles Symposium (IV), Jun 2018.
2

[43] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014. 9, 18

[44] Olof Mogren. Continuous recurrent neural networks with adversarial training. (Nips), 2016.
7

[45] S. Mohamed, S. De, K. Bimpisidis, V. Nathan, D. Goswami, H. Corporaal, and T. Basten.
IMACS: A Framework for Performance Evaluation of Image Approximation in a Closed-loop
System. In MECO, pages 1–4, 2019. 10, 11

[46] Sajid Mohamed, Asad Ullah Awan, Dip Goswami, and Twan Basten. Designing image-based
control systems considering workload variations. In 58th IEEE Conference on Decision and
Control (CDC), 2019. 6

[47] Sajid Mohamed, Dip Goswami, Vishak Nathan, Raghu Rajappa, and Twan Basten. A
scenario-and platform-aware design flow for image-based control systems. Microprocessors
and Microsystems, 75:103037, 2020. 6

[48] Sajid Mohamed, Diqing Zhu, Dip Goswami, and Twan Basten. Optimising quality-of-control
for data-intensive multiprocessor image-based control systems considering workload vari-
ations. In 21st Euromicro Conference on Digital System Design (DSD), pages 320–327, 2018.
6

[49] Vinod Nair and Geoffrey Hinton. Rectified linear units improve restricted boltzmann machines
vinod nair. volume 27, pages 807–814, 06 2010. 26

61

BIBLIOGRAPHY

[50] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization, 2016. vii, 9, 10

[51] Simon Osindero. Conditional Generative Adversarial Nets. pages 1–7. 18

[52] Noseong Park, Mahmoud Mohammadi, Hongkyu Park, and Youngmin Kim. Data Synthesis
based on Generative Adversarial Networks. 11(10), 2018. 9

[53] Andreas Pütz, Adrian Zlocki, Julian Bock, and Lutz Eckstein. System validation of highly
automated vehicles with a database of relevant traffic scenarios. 2017. 6

[54] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks, 2016. 9, 26, 35

[55] Scott Reed, Zeynep Akata, Xinchen Yan, and Lajanugen Logeswaran. Generative Adversarial
Text to Image Synthesis. 2016. 7

[56] Tripp W. Corless M. Roggero M, Sharma S. and Chaganti S.K. Creation and variation of
traffic scenarios for virtual validation of automated driving systems. 2020. 10

[57] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017. 28

[58] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans, 2016. 9, 18

[59] Thalles Silva. An intuitive introduction to generative adversarial networks. URL:
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-
adversarial-networks-gans-7a2264a81394/. vii, 4

[60] Irhum Skafkat. Intuitively Understanding Variational Autoencoders, 2018. vii, 16

[61] R. Sutton and A. Barto. Reinforcement learning: An introduction. IEEE Transactions on
Neural Networks, 16:285–286, 2005. 13

[62] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer. Defining and substantiating the
terms scene, situation, and scenario for automated driving. In 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, pages 982–988, 2015. vii, 3

[63] Michal Uricar, Pavel Krizek, David Hurych, Ibrahim Sobh, Senthil Yogamani, and Patrick
Denny. Yes, we gan: Applying adversarial techniques for autonomous driving, 2019. 9

[64] Cédric Villani. Optimal transport – Old and new, volume 338, pages xxii+973. 01 2008. 19

[65] Walther Wachenfeld and Hermann Winner. The Release of Autonomous Vehicles, pages 425–
449. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. 1

[66] L. Wasserstein. Markov processes over denumerable products of spaces describing large sys-
tems of automata. 1969. 9, 44

[67] Max Welling. An Introduction to Variational Autoencoders. 2019. 15

[68] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations
in convolutional network, 2015. 26

[69] Lei Xu and Kalyan Veeramachaneni. Synthesizing Tabular Data using Generative Adversarial
Networks. 9

[70] Jiawei Zhang. Gradient descent based optimization algorithms for deep learning models
training, 2019. 26

62

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

BIBLIOGRAPHY

[71] Lijun Zhao, Huihui Bai, Jie Liang, Bing Zeng, Anhong Wang, and Yao Zhao. Simultan-
eous color-depth super-resolution with conditional generative adversarial networks. Pattern
Recognition, 88:356–369, 2019. 4

[72] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual
manipulation on the natural image manifold. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision – ECCV 2016, pages 597–613, Cham, 2016. Springer
International Publishing. 4

[73] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In The IEEE International Conference
on Computer Vision (ICCV), Oct 2017. 4, 7

63

Appendix A

Architectures of GAN models

Figure A.1: Architecture of the generator network of vanilla GAN

65

APPENDIX A. ARCHITECTURES OF GAN MODELS

Figure A.2: Architecture of the discriminator network of vanilla GAN

66

APPENDIX A. ARCHITECTURES OF GAN MODELS

Figure A.3: Architecture of the discriminator network of CGAN

67

APPENDIX A. ARCHITECTURES OF GAN MODELS

Figure A.4: Architecture of the generator network of CGAN

68

APPENDIX A. ARCHITECTURES OF GAN MODELS

Figure A.5: Architecture of the discriminator network of WGAN-GP

69

APPENDIX A. ARCHITECTURES OF GAN MODELS

Figure A.6: Architecture of the generator network of WGAN-GP

70

	Contents
	List of Figures
	List of Tables
	Introduction
	What is a scenario?
	Motivation
	Problem statement
	Research questions
	Thesis outline

	Related work
	Scenario generation
	Generative Adversarial Networks (GANs)
	GANs for images and music generation
	GANs for tabular data generation
	Usage of GANs in autonomous driving fields
	Evaluation of performance of GANs

	Simulation frameworks

	Background
	Notations
	Machine learning
	Deep learning
	Generative models
	Autoencoders
	Variational Autoencoders (VAEs)
	Generative Adversarial Network (GAN)
	Conditional GAN (CGAN)
	Wasserstein GAN (WGAN)
	Wasserstein GAN with gradient penalty (WGAN-GP)

	Methodology
	Parking scenario use case
	Overview
	Simcenter Prescan simulation environment
	Data collection and dataset creation

	Selection of suitable GAN model
	Dataset for gan model selection
	Model using vanilla gan
	Model using cgan
	Model using wgangp
	Training
	Results

	Conclusion

	Optimization of WGAN-GP model
	Model architecture for non-overlapping scenario for eight parking slots
	Critic network
	Generator network
	Model hyperparameters
	Training and new scenario generation

	Model architecture for overlapping parking scenario for four parking slots
	Training and new scenario generation

	Evaluation and results
	Evaluation metrics
	Visual inspection
	Accuracy of the generated scenarios
	Number of duplicated and repeated scenarios generated

	Results
	Loss plot
	Accuracy
	Duplicated and repeated scenarios generated
	Visual inspection

	Conclusions
	Summary
	Future work

	Bibliography
	Appendix
	Architectures of GAN models

