
 Eindhoven University of Technology

MASTER

Model inference for legacy software in component-based architectures

Hooimeijer, Bram J.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/18827b8a-e1b4-4d81-a3b4-5799eee60dc0

Series title:
Master graduation paper, Electrical Engineering

Commisioned by professors Group & chair Date of final presentation Report number
Jan Friso Groote, prof.dr.ir. (W&I, FSA)
Marc Geilen, dr.ir. (EE, ES)

Jeroen Voeten, prof.dr.ir.
Electronic Systems Group

21/10/2020 -

Model Inference for Legacy Software in Component-Based Architectures

by

B.J. (Bram) Hooimeijer

Internal supervisors: J.F. (Jan Friso) Groote, prof.dr.ir.,
M.C.W. (Marc) Geilen, dr.ir.

External supervisors : R.R.H. (Ramon) Schiffelers, dr.ir., ASML
L.J. (Bram) van der Sanden, dr.ir., TNO-ESI

Disclaimer. The Department of Electrical Engineering of the Eindhoven University of Technology accepts no responsibility for the contents of
M.Sc. theses or practical training reports.

Department of
Electrical Engineering

Den Dolech 2, 5612 AZ Eindhoven
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

https://www.tue.nl/en/

1

Model Inference for Legacy Software

in Component-Based Architectures

Thesis

Bram Hooimeijer
0852038, b.j.hooimeijer@student.tue.nl
bhooimei, bram.hooimeijer@asml.com

Abstract—Given their complexity, modern cyber physical
systems would greatly benefit from model-based engineering
techniques. Yet for these systems, models are often not
available, while model inference from observations only has
been proven to be impossible without either counter-examples
or additional assumptions.

We infer models of component-based cyber physical systems
by relying on the architecture, deployment and characteristics
of the system. Using these, we decompose the system in
components, which are in turn decomposed in services. We
show that, by inferring services, we can build up models which
cover generalizations that are valid for such systems.

We demonstrate the method using a case study at ASML, and
thereby give a practical approach to assess where assumptions
are violated and how to improve models in these cases. Finally, we
arrive at a model, orders smaller than the observation, with a rich
class of explainable generalizations, matching the characteristics
of component based systems.

I. INTRODUCTION

By using models for the design of software systems,

model-based systems engineering has been able to cope with

the increasing complexity of software [1]. The use of

models allows for e.g. formal verification [14, 15, 19], or

synthesis of software [39, 43, 50]. This increases the

efficiency, reliability and maintainability of software.

Model based techniques cannot be directly applied to

software of which no models exist. For example, complex

cyber physical systems are continuously improved, and

hence new revisions often rely on existing software

components [40]. Problems arise when these components are

based on obsolete technologies or lack up-to-date

documentation [47, 49]. For such legacy components, models

are not available, making it hard to predict performance or

verify correctness automatically.

We focus on component-based software systems, in which

legacy components are often complex. As this makes manual

modeling time consuming and error-prone, the question arises

whether it is possible to infer models algorithmically.

Model inference has been studied in the fields of model

learning [16] and process mining [44]. Both encompass a vast

body of research, and do not focus specifically on software.

Still, the techniques have been applied to software [20, 21, 45],

and specifically to legacy components [3, 28, 40].

There are key limitations to model inference: Mark Gold

has proven that generalizing a model beyond observations is

impossible based on observations alone [30]. Counter

examples, i.e. behavior outside the model, prevent the model

from over-generalizing. Though counter examples have been

used in e.g. software synthesis applications [20, 21], these

are often not directly available for legacy software.

Alternative to counter-examples, queries on the source

code (‘active learning’) can guarantee that the inferred

models match the software. Al Duhaiby concludes that this

captures both observed behavior, as well as ‘hidden

behavior’ [3], i.e. behavior which, though present in the

software, is practically never observed and thus deemed

irrelevant. The additional complexity can make models

difficult to interpret, can lead to scaling issues [7, 51], or can

be problematic if the hidden behavior is faulty, as can be the

case with legacy components [3, 7].

To learn from observations only, model inference and

process mining rely on heuristics [16, 44]. Often, these are

model assumptions which cannot be related to the system,

e.g. in [8], which makes it hard to justify the approach.

Additionally, parameters required for some heuristics [8, 16]

become difficult to tune, changing the issue of finding a

model into deciding which model is correct. Even when

assumptions relate to the system, there is often no formal

justification of the approach, as concluded in the survey as

part of [28].

Naturally, heuristics which do not capture characteristics

of the system lead to generalizations which do not capture

these characteristics either. For these algorithms, the order in

which generalizations are applied heavily influences the

result [21, 27]. This is especially the case for sparse systems,

i.e. where allowed behavior is limited w.r.t. all behavior over

the observed actions, such as software [13]. As a

consequence of this, additional observations can have a large

and unpredictable impact on the model [13], making it

difficult to iteratively refine the results.

One characteristic that is not captured well is concurrency,

which allows independent actions to commute, or

‘interleave’. Active learning does infer all different

commutations explicitly, yet this makes the inferred models

large and complex to interpret [3]. When learning without

queries on the contrary, a commutation must be observed to

infer concurrency [11, 28], and might therefore infer false

sequential dependencies between events when the

commutation is not observed.

2

We conclude that, though traditional inference approaches

generalize based on observations only, these generalizations

are not justified based on the target system. Thereby,

generalizations do not capture characteristics of the system,

are not relatable to the observation, and are not robust under

new observations.

This work addresses the issue of model inference for

complex cyber physical systems based on a component

based software architecture, using observations and without

relying on queries or counter examples.

Considering that observations alone are not sufficient to

generalize, we rely on the architecture, deployment and

characteristics of the system to propose a method for model

inference. Hence, we pose the following research question:

How can we utilize knowledge of the architecture,

deployment and characteristics of the target system to

formulate a justified model inference approach for

component based cyber physical systems?

The contribution of this work is a method which is:

Justified: We prove that generalizations made belong to a

system matching our assumptions, and discuss how to assess

whether the system adheres to our assumptions.

Appropriate: There is a clear relation between the

observation and the inferred model. The model clearly

relates to the architecture of the system and captures

essential characteristics.

Robust: If the set of observations is expanded, the impact

on the inferred models is predictable.

Extensible: Domain-specific knowledge or insights can be

used to manually extend the inference method.

This work is organized as follows. In Section II we recall

basic definitions, required for the literature review in

Section III. In Sections IV and V we propose and analyze an

approach to infer models of synchronous- and asynchronous

component-based systems respectively, which are the main

contributions of this work. In Section VI, we outline a

method to apply the approach, taking a case study at

ASML N.V. as example. Finally, we discuss our approach

and draw our conclusions.

II. PRELIMINARY DEFINITIONS

Let Σ be a finite set of symbols, called an alphabet. A word

w over Σ is a finite concatenation of symbols, with Σ∗ the set

of all finite words over Σ, including empty word ε.

Given a word w, we define its length to be |w|, with wi the

ith symbol in w. The function #a(w) denotes the number of

occurrences of a ∈ Σ in w. Iff there exists words u, v such

that uv = w, then u (v) is a prefix (resp. suffix) of w.

Given two languages K,L over the same alphabet, set KL
is {uv | u ∈ K, v ∈ L}. The repetition of a language is

recursively defined to be L0 = {ε}, Li+1 = LiL. Similarly,

the repetition of a word w is w0 = ε, wi+1 = wwi. We define

the iteration of L to be L∗ =
⋃∞

n=0 L
n, with L+ =

⋃∞
n=1 L

n.

We model the inferred systems using DFAs:

Definition II.1 (DFA) A deterministic finite automaton (DFA)

A is a 5-tuple A = (Q,Σ, δ, q0, F), with Q a finite set of

states, Σ an alphabet, δ : Q× Σ→ Q the transition function,

q0 ∈ Q the initial state and F ⊆ Q a set of accepting states.

The transition function is extended to words such that

δ : Q × Σ∗ → Q, by inductively defining δ(q, ε) = q and

δ(q, wa) = δ(δ(q, w), a), for w ∈ Σ∗, a ∈ Σ. Word w is

accepted by DFA A = (Q,Σ, δ, q0, F) iff state δ(q0, w) ∈ F .

If w is not accepted by A, it is rejected. The language of A
is the set L(A) = {w ∈ Σ∗ | A accepts w}.

We allow a DFA to have a partial transition function, δ :
Q × Σ →֒ Q, which is often denoted a partial DFA. Partial

DFAs are completed by adding a state qe, and extending the

transition function such that undefined edges go to qe. A partial

DFA accepts a word w iff its completed counterpart does.

A DFA with a finite language is acyclic, and denoted a

prefix tree acceptor (PTA). These are often used in a learning

context, where the automata are augmented to ternary

accepting conditions, i.e. A = (Q,Σ, δ, q0, F,R). In that

case, word w is accepted iff δ(q0, w) ∈ F , rejected iff

δ(q0, w) ∈ R and acceptance is unknown otherwise, with

LR(A) the set of rejected words.

Given two DFAs A1, A2 we define operations on the

DFAs as operations on their language, such that

A1 ∩A2, A1 ∪A2, A1 \A2 are given as DFAs with language

L(A1)∩L(A2),L(A1)∪L(A2),L(A1) \ L(A2) respectively.

In addition, we define synchronized parallel composition:

Definition II.2 (Synchronized Composition) Given two DFAs

A1 = (Q1,Σ1, δ1, q0,1, F1), A2 = (Q2,Σ2, δ2, q0,2, F2), their

synchronized composition, denoted A1‖A2, is the DFA:

A = (Q1 ×Q2,Σ1 ∪ Σ2, δ, (q0,1, q0,2), F1 × F2),

with δ((q1, q2), a) defined as:

(δ1(q1, a), δ2(q2, a)) if δ1(q1, a), δ2(q2, a) are both defined.

(δ1(q1, a), q2) if δ1(q1, a) is defined, and a /∈ Σ2.

(q1, δ2(q2, a)) if δ2(q2, a) is defined, and a /∈ Σ1.

undefined otherwise.

Two DFAs A1, A2 are language equivalent, A1 ⇔L A2,

iff L(A1) = L(A2). Under language equivalence, each of the

operators ⋄ ∈ {‖,∪,∩} is associative, i.e. (A1 ⋄A2) ⋄A3 ⇔L

A1 ⋄ (A2 ⋄A3) and commutative, i.e. A1 ⋄A2 ⇔L A2 ⋄A1.

In order to reason about components of a synchronized

composition, we define word projection:

Definition II.3 (Word projection) Given a word w over

alphabet Σ, and a target alphabet Σ′, we define the

projection πΣ′(w) : Σ∗ → Σ′∗ inductively as:

πΣ′(w) =





ε if w = ε

πΣ′(v) if w = va with v ∈ Σ∗, a 6∈ Σ′

πΣ′(v)a if w = va with v ∈ Σ∗, a ∈ Σ′

This definition is lifted to sets of words:

πΣ′(L) = {πΣ′(w) | w ∈ L}.

With word projection, we define synchronization of

languages, which is commutative and associative:

3

Definition II.4 (Synchronization) Given languages

L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2, the synchronization of L1 and L2 is the

language L1‖L2 over Σ = Σ1 ∪ Σ2 such that

w ∈ (L1‖L2)⇔ πΣ1
(w) ∈ L1 ∧ πΣ2

(w) ∈ L2

From the definitions we derive:

Proposition II.5 Given DFAs A1, A2, their synchronous

composition is homomorphic with the synchronization of

their languages: L(A1‖A2) = L(A1)‖L(A2)

Proof. Proofs are found in Appendix B.

Proposition II.6 Given DFAs A,A1, A2 such that

A = A1‖A2, over alphabets Σ,Σ1,Σ2, resp., then we have:

w ∈ L(A)⇔ πΣ1
(w) ∈ L(A1) ∧ πΣ2

(w) ∈ L(A2)

III. LITERATURE REVIEW

A. Model Inference

We review literature on active- and passive model learning.

Dana Angluin introduced learning from queries (Active

Learning) [6], where the method aims to infer a target

language using two queries: Membership queries tell whether

a given word is in the target language. Equivalence queries

tell whether a given language is equal to the target language

and give a counter example otherwise.

The required queries are answered by the oracle, which

relies on inspection of the source code [41]. Due to this, all

behavior specified in the source code is learned, even when

it is not observable in practice [3]. Hence, though results are

exact, active learning is computationally intensive [7, 51].

E. Mark Gold defined the problem of learning from

observations (Passive Learning) [30]. Consider a target

language L in language class L, and a (possibly infinite)

sequence containing all, and only, words in L (a ‘text

sequence’). Gold defined that an algorithm can identify L in

the limit, iff for every such sequence, there exists a natural

number m such that for any n ≥ m, the algorithm correctly

identifies L from the first n words of the sequence.

Gold proved that any language class containing at least

one language of infinite cardinality, cannot be identified in

the limit from a text sequence. Instead, to identify such

language, the sequence should contain all words, with

annotation to denote which words are in L and which are

outside L (counter examples) [5].

To give some intuition to why this is true, consider an

infinite cardinality language L. The first n words of a text

sequence are all in L. However, those words are also in the

finite language L′, spanning exactly those n words. The

algorithm can never distinguish between L and L′, and

therefore cannot identify any language in the class

containing infinite cardinality language L. Put differently, the

algorithm cannot justify a generalization beyond the n words

it observed, without any counter examples.

Gold’s results imply that a DFA, which represents a

regular language, cannot be identified from observations

alone, as the class of regular language contains infinite

cardinality languages.

C1

Ia
C2

Iout

Fig. 1. A component-based system consisting of components C1 and C2.

State-of-the-art passive learning approaches, such as

EDSM [16, 27], first build a PTA which only accepts the

observation. Then it merges states to generalize, where loops

might be introduced. Counter examples are used to prevent a

merge when it would introduce a counter example in the

language of the automaton.

Without counter examples, heuristics are used to prevent

merging too aggressively [8, 16]. Examples are limiting the

number of states in the resulting model, or allowing the state

of the automaton to depend on at most the k most recently

observed symbols (k-parsability).

Passive learning methods are generally evaluated on a small

alphabet Σ, e.g. {a, b} in [27], where a large part of behavior

Σ∗ is allowed. For software, the opposite holds: software uses

a large alphabet where only sparse behavior is allowed. This

makes it harder to make correct generalizations [13, 21, 48].

B. Component-Based Software

The component-based architecture is attributed to

McIlroy [33]. It is composed of components, which are

independent units of deployment and encapsulate

functionality [42]. This allows for re-use, independent

development and easier verification [46].

Szyperski argues that components must be without

observable state [42], and that data should be part of the

component ‘instance’, separated from the component ‘plan’.

Szyperski admits that this leads to discussion [18, 42]. Still,

we use this in our approach in Section IV-B.

A component offers some pre-defined functionality, called a

service, over an interface. The interface is an implementation

of an interface contract, which specifies the allowed behavior

on the interface. This allows for independent development of

components [42, 46].

To offer a service over an interface, the component might

require another interface. As example, take the system in

Figure 1, where component C1 offers interface Ia, which is

required by component C2 to offer interface Iout. With

respect to Ia, we denote C1 the server and C2 the client.

A component-based architecture can be implemented in

various domains, and on various levels of granularity, see

e.g. [25, 29, 31, 37]. Though each systems comes with its

own constraints, component-based systems are generally

concurrent due to the independent deployment of

components.

C. Modeling Systems and Behavior

Modeling Behavior: Automata rely on strings to model

behavior as a sequential sequence of symbols. To model

concurrent behavior, string theory is generalized to

Mazurkiewicz Trace theory [32], which we introduce shortly.

4

Let a dependency D be any symmetric, reflexive relation.

The domain of D is denoted by the dependency alphabet ΣD,

and the relation ID = (ΣD × ΣD) \ D is the independency

induced by D. Trace equivalence for D is defined as the least

congruence ≡D in the monoid Σ∗
D such that for all a, b ∈ ΣD:

(a, b) ∈ ID ⇒ ab ≡D ba,

i.e. the smallest equivalence relation such that, in addition to

the above, u1 ≡D u2 ∧ v1 ≡D v2 ⇒ u1v1 ≡D u2v2.

Equivalence classes over ≡D are called traces, with the

trace corresponding to a word w denoted [w]D. This definition

is lifted to languages, such that [L]D = {[w]D | w ∈ L}.
Concatenation of [u]D, [v]D ∈ [Σ∗

D]D is defined as

[u]D[v]D = [uv]D, where [u]D is prefix of [w]D = [uv]D.

This definition extends language iteration to traces.

Given a set of traces T , linT is the set

{w ∈ Σ∗
D | [w]D ∈ T}. Generally, for any string language L,

we have L ⊆ lin[L]D. If L = lin[L]D, then L is consistent

with D. If the language L(A) of automaton A is consistent

with D, A has trace language T (A) = [L(A)]D.

As example, take D = {a, b}2 ∪ {a, c}2. Then,

ID = {(b, c), (c, b)}, which shows b and c can occur

independently. The word abbca is part of the trace

[abbca]D = {abbca, abcba, acbba}, which again shows that

commuting b and c results in the same trace.

The commutation of symbols is captured by binary relation

∼D, with u ∼D v iff there are x, y ∈ Σ∗
D and (a, b) ∈ ID

such that u = xaby and v = xbay. Clearly, ≡D is the reflexive

transitive closure of ∼D, i.e. u ≡D v iff there exists a sequence

(w0, . . . , wn) such that w0 = u, wn = v and wi−1 ∼D wi for

0 < i ≤ n.

In this text, we drop subscript D if it is clear from context.

We rely on an additional result from Mazurkiewicz [32]:

Proposition III.1 Given dependency D and words u, v ∈ Σ∗
D,

we have u ≡D v ⇒ πΣ(u) ≡D πΣ(v) for any alphabet Σ.

Component based systems and their concurrent behavior

are intuitively visualized using message sequence

charts [22]. We consider a subclass called Timed Message

Sequence Charts [24].

An example TMSC is visualized in Figure 2, with

Figure 2a the intuitive visualization of the TMSC, and

Figure 2b a representation closer to the formal definition,

which only captures events and dependencies.

The TMSC shows function executions, e.g. l, on

components, e.g. C1. Function executions are represented by

a start- (closed-) and end event (open dot), and can nest on

the same component. Communication between events is

visualized as arrow, which represents a dependency. Events

on a component are totally ordered, and hence dependent.

Formally, a TMSC is defined over a universe of events E =
C × F ×N

+ × S ×R
+
0 , where C is a finite set of component

labels, F is a finite set of function labels, N+ is the set of

positive numbers, S = {↑, ↓} and, R+
0 the set of non-negative

real numbers.

An event (c, f, i, s, t) ∈ E describes the start of the ith

execution of function f on component c if s = ↑ at time t, or

t0 1 2 3 4 5 6

C1 l
f1 f2 f3

C2 g
g1 g2

C3 h1 h2

call g

trigger h1 call h2 reply

reply

(a)

t0 1 2 3 4 5 6

C1

C2

C3

call g

trigger h1 call h2 reply

reply

(b)

Fig. 2. Two visualizations of the same TMSC.

end if s = ↓. Functions c(e), f(e), i(e), s(e), t(e) are used to

refer to c, f, i, s, t of e respectively.

Then, a Timed Message Sequence Chart T is a three tuple

T = (E, ,m), with E ⊂ E a finite set of events, ⊆
E × R

+
0 × E the set of dependencies, and m : →֒ M a

partial function that maps dependencies to messages.

We use e1
d
 e2 to denote (e1, d, e2) ∈ , where d models

the minimum time interval between e1, e2. We omit d if it is

not relevant. With Ec we denote {e ∈ E | c(e) = c}.
A path is a sequence of events e0, e1, . . . , en with n ≥ 1

where e0 e1 . . . en. We write e0
+ en iff there

exists a path from e0 to en. We write e0
+
c en iff there is a

path from e0 to en with e0, . . . , en ∈ Ec.

A TMSC T = (E, ,m) satisfies the following conditions:

1) Relation + is a strict partial order on E and for c ∈ C,

relation +
c is a strict total order on Ec.

2) If (c, f, i, s, t) ∈ E and (c, f, i, s, t′) ∈ E, then t = t′.
3) If c.f(i)↑ ∈ E, then for all 0 < j < i an event c.f(j)↑ ∈

E exists such that c.f(j)↑ +
c c.f(i)↑.

4) Event c.f(i)↑ ∈ E iff c.f(i)↓ ∈ E, and for all

c.f(i)↑, c.f(i)↓ ∈ E, c.f(i)↑ + c.f(i)↓.

5) For all c.f(n)↑, c.f(n)↓, c.g(m)↑, c.g(m)↓ ∈ E, if

c.f(n)↑ +
c c.g(m)↑ and c.g(m)↑ +

c c.f(n)↓ then

c.g(m)↓ +
c c.f(n)↓.

6) For all e1, e2 ∈ E, d ∈ R
+
0 , if e1

d
 e2, then t(e2) ≥

t(e1) + d.

The first condition ensures that dependencies are acyclic.

Due to this, and the finite size of E, a TMSC represents a

finite execution of the system. The second condition

prescribes that an event can be uniquely determined by its

component, function, index and type. Therefore we refer to

an event (c, f, i, s, t) ∈ E as c.f(i)s. The third condition

ensures that events are properly indexed. We define

σ : E → Σ as σ(e) = {(c(e), f(e), s(e)}, such that E is a

multiset over Σ, with index i(e) and timing annotation. The

fourth condition ensures that every end event c.f(i)↓ is

preceded by a start event of the corresponding function

execution, c.f(i)↑. Therefore, we denote (c.f(i)↑, c.f(i)↓) as

function execution c.f(i). The fifth condition ensures proper

nesting of function executions, yielding well-formed call

stacks. If function executions c.f(n), c.g(m), nest as defined

in this condition, this is denoted c.f(n) ≻ c.g(m). Execution

c.f(n) is a root execution iff there is no c.g(m) such that

c.g(m) ≻ c.f(n). Finally, the sixth condition ensures the

timing constraints prescribed by are met in the TMSC.

The Mazurkiewicz dependency corresponding to a TMSC

modulo timing annotation, t(e), is the symmetric, reflexive

5

closure of [35]. If the context requires us to, we distinguish

between the two types of dependencies explicitly. For brevity,

we assume the universe of events E to be defined implicitly

when dealing with a TMSC.

Modeling Systems: As component-based systems are

compositions of components, we consider modeling

techniques to preserve the separation of components as a

model of the system is inferred. In addition to synchronous

composition, we introduce asynchronous composition [2, 12].

For an asynchronous composition of DFAs A1, . . . , A2,

we assume the following: Component Ai has alphabet Σi,

partitioned in sending-, receiving- and internal-symbols,

Σ!
i,Σ

?
i ,Σ

τ
i resp. Each message has a unique sender,

Σ!
i ∩ Σ!

j = ∅ for i 6= j, a unique receiver, Σ?
i ∩ Σ?

j = ∅ for

i 6= j, and this receiver is assumed to exist,

a ∈ Σ!
i ⇒ ∃j 6=i : a ∈ Σ?

j . Finally, we assume internal actions

are unique to a component, Στ
i ∩ Σj = ∅, i 6= j. We denote

an alphabet under these assumptions as Σ!,?,τ
i .

The components communicate via buffers, denoted Mi,

which represent either a FIFO buffer or a bag buffer. FIFO

buffers are modeled as a list of symbols, with ε the empty

buffer, where messages are added to the tail of the list and

consumed from the head of the list. Then, the asynchronous

composition using FIFO buffers is defined as:

Definition III.2 Consider n DFAs A1, . . . , An, with

Ai = (Qi,Σ
!,?,τ
i , δi, q0,i, Fi). The asynchronous composition

A using FIFOs of A1, . . . , An, denoted A = ‖i(Ai‖Mi), is

given as (possibly infinite) state machine:

A = (Q,∪iΣi, δ, (q0,1, ε, . . . , q0,n, ε), F1 × . . .× Fn)

with Q = Q1×(Σ
?
1)

∗×. . . Qn×(Σ
?
n)

∗ and δ ⊆ Q×Σ×Q such

that for q = (q1, c1, . . . , qn, cn) and q′ = (q′1, c
′
1, . . . , q

′
n, c

′
n)

we have:

(send) (q, a!, q′) ∈ δ if ∃i,j : (i) a ∈ Σ!
i∩Σ

?
j , (ii) (qi, !a, q

′
i) ∈ δi,

(iii) M ′
j = Mja, (iv) ∀k : k 6= j ⇒ Mk = M ′

k and (v)

∀k : k 6= i⇒ q′k = qk.

(consume) (q, a?, q′) ∈ δ if ∃i : (i) a ∈ Σ?
i , (ii) (qi, ?a, q

′
i) ∈ δi,

(iii) Mi = aM ′
i , (iv) ∀k : k 6= i ⇒ Mk = M ′

k and (v)

∀k : k 6= i⇒ q′k = qk.

(internal) (q, a, q′) ∈ δ if ∃i : (i) a ∈ Στ
i , (ii) (qi, a, q

′
i) ∈ δi, (iii)

∀k : Mk = M ′
k and (iv) ∀k : k 6= i⇒ q′k = qk.

Bag buffers are defined as multiset over Σ?
i . To use bag-

instead of FIFO buffers, we change: the states corresponding

to a single buffer to multiset Σ?
i , the send rule clause (iii)

to M ′
j = Mj ∪ {a}, the consume rule clause (iii) to a ∈

Mj ,M
′
j = Mj − {a}.

With unbounded buffers, asynchronous compositions have

infinite state spaces and are Turing expressive. When channels

are bounded, the communication models can be represented by

a DFA [36], and hence the composition is equal to a DFA.

We bound buffer Mi to k places, denoted Mk
i , by adding the

requirement |Mj | < k (s.t. |M ′
j | = k) to the send rule.

We do not discuss the construction of a DFA Bk
i

representing Mk
i , as it follows from the definition above.

Using Bk
i , synchronous composition Ai‖B

k
i is equivalent to

asynchronous composition Ai‖M
k
i , where we note that a

synchronous composition requires us to differentiate a! and

a? to prevent synchronization.

The question whether there is a bound on the buffers such

that every word on the unbounded composition can be

computed on the bounded composition is called boundedness

and is generally undecidable [17]. However, if the

asynchronous composition is ‘deadlock free’, i.e. a final state

can be reached from every reachable state [26], then it is

decidable for a given b whether the asynchronous

composition is bounded to b.
We rely on two tools to model and analyse automata: CIF

is an interchange format defined in [43] which incorporates

finite automata, timed automata [4], and data expressions. As

data types in CIF are limited in range, state-spaces are finite in

size. mCRL2 is a process algebra with fast support for state-

space exploration and verification [19]. Translations from CIF

to mCRL2 are available [43].

IV. INFERRING COMPONENT MODELS

In Section III-B we concluded that component-based

systems are composed of components, which in turn offer a

collection of (mutually independent) services. We use this

two-layered architecture to break down the inference

problem. We first discuss decomposition in components,

followed by decomposition in services.

Throughout this section we assume the system is a DFA

A = (Q,Σ, δ, q0, F) synchronously composed of n DFAs,

A = A1‖ . . . ‖An, and that observation W ⊆ L(A) is

available to infer an approximation A′ of A. Hence, we

assume communication is modeled by synchronized events,

which we revisit in Section V. We use subscripts and accents

to refer to component- and inferred instances resp.

A. Decomposition in Components

To decompose the system in components we assume

component alphabets Σi are known a-priori and can be used

to project the observation on each component. With these,

we prove composition A′ of inferred components generalizes

to traces, while maintaining under-generalization, i.e.

L(A′) ⊆ L(A), in Propositions IV.2 and IV.3 resp.

The methods discussed in Section III used an algorithm

PTA(W) to obtain a DFA A′ with L(A′) = W [20, Alg 1].

We show our results for this algorithm, by learning

components A′
i instead, using PTA(πΣi

(W)). As then

L(A′
i) = πΣi

(W) for each i, and by Proposition II.6, we

know that composition A′ = A′
1‖ . . . ‖A

′
n still accepts W .

We use trace theory to show how DFA A′ generalizes:

Proposition IV.1 Given a dependency D =
⋃n

i=1(Σ
2
i) and

two words u, v ∈ Σ∗, Σ =
⋃n

i=1 Σi, we have:

u ≡D v ⇔ ∀i : πΣi
(u) = πΣi

(v)

Proposition IV.2 Consider a synchronous composition A =
A1‖ . . . ‖An, then L(A) = lin[L(A)]D for D = ∪i(Σ

2
i).

Proposition IV.2 shows that learning a PTA per component

generalizes L(A′) from W to [W]D. As the same holds for

6

A, we conclude A′ is an under-generalization. Generally, it is

sufficient to show this for the components only:

Proposition IV.3 If L(A′
1) ⊆ L(A1) and L(A′

2) ⊆ L(A2),
then L(A′

1‖A
′
2) ⊆ L(A1‖A2).

For component decomposition, we can describe L(A′),
show it be an under-generalization, L(A′) ⊆ L(A) and prove

it to be robust under additional observations:

Theorem IV.4 Consider DFA A = ‖iAi and a set W ⊆ L(A).
DFA A′ = ‖iA

′
i, with A′

i = PTA(πΣi
(W)) has L(A′) =

[W]D for D = ∪i(Σ
2
i) and L(A′) ⊆ L(A).

Theorem IV.5 Consider DFA A′ = ‖iA
′
i, with

A′
i = PTA(πΣi

(U) and U an observation. DFA A′′,

composed and obtained similarly from observation V ,

U ⊆ V , has L(A′) ⊆ L(A′′).

The results show that component decomposition

generalizes to trace-equivalence and does so correctly.

However, the allowed behavior is still limited to words of

length equal to some observation, as trace equivalence

preserves word length.

B. Decomposition in Tasks

To generalize component behavior to longer and (possibly)

shorter executions, we further decompose components in the

collection of services offered. In Section III-B, we discussed

how components offer services based on some request, that

service executions carry no observable state and are therefore

mutually independent. We model these as tasks for now, which

we assume can be distinguished from observations:

Definition IV.6 (Task) Let Σ be an alphabet partitioned in

function- and return-alphabets Σf ,Σr resp., denoted Σf,r.

Word w ∈ Σ∗ is a task iff w = va with v ∈ Σf∗ and a ∈ Σr.

We model DFAs without observable state beyond tasks:

Definition IV.7 (Task DFA) A DFA A = (Q,Σf,r, δ, q0, F) is

a Task DFA iff F = {q0} and ∀q∈Q : a ∈ Σr ⇔ δ(q, a) = q0.

From the definition, we see that after computing a task,

a Task DFA A returns to the initial, accepting, state. Hence,

language L(A) is the iteration of some set T of tasks, L(A) =
T ∗. Elements of T ∗ are task sequences:

Definition IV.8 (Task Sequence) Given alphabet Σf,r, a word

w ∈ Σ∗ is a Task sequence iff w = w1 . . . wn with each

wi, 1 ≤ i ≤ n, a task w.r.t.Σf,r. The set {wi} is the task set

corresponding to w and is denoted T (w).

The definition is lifted to sets of strings,

T (W) =
⋃

w∈W T (w), with T (L(A)) written as LT (A).
Hence, for a Task DFA A we have L(A) = LT (A)

∗.

A composition of Task DFAs is not generally a Task DFA.

If a symbol is only in return alphabets, transitions over that

symbol might not go to the accepting state (e.g. abac over

Figure 3a). Yet, by Proposition II.5, we know that any word

in the language of A represents executions of tasks on

components. Therefore we extent task words to traces:

(a) (b)

Fig. 3. (a) Two TDFAs and their composition. (b) Two TDFAs.

Definition IV.9 (Task Trace) Consider a dependency

D =
⋃
Σ2

i and partitions Σf,r
i . A trace [t] ∈ [Σ∗

D] is a task

sequence (trace) iff ∀i : πΣi
(t) is a task sequence w.r.t. Σf,r

i .

Iff, additionally, there are no task sequences [u], [v] ∈ [Σ+
D]

such that [uv] = [t], then [t] is a task (trace) and T ([t]) is

given as {[tj] | [t1...tm] = [t] and [tj] a task for 1 ≤ j ≤ m}

Proposition IV.10 Given a composition A of n task DFAs,

A = ‖ni=0Ai and D =
⋃

Σ2
i , then [t] ∈ T (A) is a task

sequence, [t] ∈ T (A) ⇔ T ([t]) ⊆ T (A) and

T (A) = T (T (A))∗.

Considering the DFAs in Figure 3a, Mazurkiewicz traces

allow us to define T (A) = T ([abacbc])∗, as we have

T ([abacbc]) = {[abc]} while T (abacbc) = {abacbc}.
With these definitions it is straightforward to infer a Task

DFA from an observation W : First, we collect the observed

tasks on a component, T (πΣi
(W)), and then construct DFA

A′
i which accepts the iteration of these tasks, i.e.

L(A′
i) = T (πΣi

(W))∗. The algorithm, TDFA(W,Σf,r
i), is

given in Appendix A. We prove the algorithm to be correct,

and A′
i to be a Task DFA and an under-generalization:

Proposition IV.11 Consider DFA A composed of Task DFAs,

A = ‖iAi and a set W ⊆ L(A). Algorithm TDFA(W,Σf,r
i),

returns a Task DFA A′
i such that L(A′

i) = T (πΣi
(W))∗ and

L(A′
i) ⊆ L(Ai).

Proposition IV.3 shows that composition A′ = ‖iA
′
i is an

under-generalization. From Propositions II.6 and IV.11 we see

that W ∈ L(A′). Additionally, we prove that TDFA is robust

under additional observations:

Theorem IV.12 Consider DFA A′ composed of Task DFAs,

A = ‖iA
′
i, with A′

i = TDFA(U,Σf,r
i) and U an observation.

DFA A′′, composed and obtained similarly from observation

V , U ⊆ V , has L(A′) ⊆ L(A′′).

To characterise generalizations made, Proposition IV.2

shows that A′ generalizes to trace equivalence, [W] ∈ T (A′).
Proposition IV.10 proves even more generalization: all task

traces in W can be repeated in any order T ([W])∗ ⊆ T (A′).

However, A′ generalizes beyond T ([W])∗. Consider the

DFAs in Figure 3b, which are inferred from w = abcacd.

Here, [w] is a task, as aad cannot be split, yet the

composition also accepts w′ = abcabcd and w′′ = acacd,

outside T ([W])∗. If a component accepts multiple tasks (here

ac, abc) which synchronize equally, the tasks can be

interchanged. These generalizations make characterising the

full generalization an open problem.

7

C1 f

g

C2 k

req1 rep1

req2 rep2

(a)

C1 f

g

hz

C2 k

req1 rep1

req2
rep2

(b)

Fig. 4. Two ways of handling a message req1. Figure (a) Message req1 is
handled synchronously through task fg. Figure (b) Message req1 is handled
asynchronously through tasks fg and h.

Observation Task Extraction

Mining Composition Model

Directly Injected Automata

(a)

Fig. 5. Approach to add additional information to model inference approach.

Concluding, we decomposed component behavior in a

sequence of mutually independent tasks. This allows us to

infer models which generalize to longer, and possibly

shorter, executions covering the same tasks. We have proven

these generalizations to be valid for the original system.

To infer the complete system A, the task sets of its

components, LT (Ai) should at least be finite, as we

enumerate these tasks in approximations A′
i. If all tasks of A

are observed, the full system is inferred.

C. Stateful Task Inference

To infer a component as a collection of tasks, we assumed

the tasks to be mutually independent. This does not always

hold in practice, as visualized by an example in Figure 4, using

a TMSC as introduced in Section III-C. To infer a model, a

full function stack is considered a task.

In Figure 4a, g sends a request and receives a reply. To allow

for other computations during req1, C1 collects the reply in

a separate task, h, in Figure 4b, and req1 is asynchronously

handled. Now, h can only be initiated once fg is executed,

which is ensured by C2 but not captured in the model for C1.

We conclude that we cannot model a service as a single task,

but rather as a, possibly singleton, sequence. Put differently,

we should infer a component model A which allows a subset of

LT (A)∗. To connect tasks, we require additional information.

Injecting Additional Information: We give a structural

approach to improve the inferred models based on injection

of domain knowledge. Given that many varieties of

component-based systems exist, this allows the approach to

be adopted to the target system, rather than being tailored to

our case of Section VI. The approach is based on

Beschastnikh’s InvariMint [10] and visualized in Figure 5.

For the approach we compose the results of the task

extraction with additional, small, automata which show

explicitly which behavior we add, constrain or remove.

Composition is done using the operators introduced in

Section II: union, intersection, synchronized composition and

(symmetrical) difference. The automata are either directly

(a) (b)

Fig. 6. Automata used to model domain properties: (a) B1 (b) B2.

injected, or obtained using a procedure on the observation,

denoted a miner conform with [10].

We demonstrate the approach using two examples. A first

characteristic of component-based systems is that a service

is requested by one request and returns one reply, which we

model with automaton B1 in Figure 6a. DFA B1 runs over

{Req,Reply}, which represent a request and reply resp.

To enforce the property on the system, we should compose

the inferred Task DFAs, A′
i, with B1 for every request, reply

in the system. To do so, we define substitution:

Definition IV.13 (Substitution) Given a DFA

A = (Q,Σ, δ, q0, F), a symbol a ∈ Σ and a symbol b, the

substitution of a with b in A, denoted A[a := b], is defined

as A[a := b] = (Q, (Σ \ {a}) ∪ {b}, δ[a := b], q0, F), with

δ[a := b] defined as:

δ[a := b](q, c) =

{
δ(q, a) if c = b and δ(q, a) is defined.

δ(q, c) otherwise.

We note that A[a := a] = A, which is an identity operation.

However, A[a := b][b := a] 6= A in general, as for a state q
in A with transitions over both a and b, the transition over b
will be lost. The order of substitutions is important, and are

applied left to right.

With the substitution operator, we can use B1 as a

‘blueprint’ for the domain knowledge, which captures a

relation between domain elements. Its use in the composition

function allows us to specify to which domain elements the

blueprint applies:

A′′ = (‖iA
′
i) ‖ (‖a∈reqsB1[Req := a][Reply := R(a)]) (1)

where reqs is the set of requests, and R : Σ → Σ is a map

relating requests to their corresponding replies. We assume

both reqs and R are available from domain knowledge.

Proposition II.6 shows that for any a ∈ reqs we have

π{a,R(a)}(L(A
′′)) = {a.R(a)n | n ∈ N}. This specification

corresponds to the assumption given informally, with the

addition that only one request a can be outstanding.

The second example property enforces that while

executing a service, any nested request should be returned

before finishing the service. It is modeled using DFA B2 in

Figure 6b, which captures incoming- and outgoing requests

(inReq , outReq resp.) as well as incoming- and outgoing

replies (inReply , outReply resp.).

Upon requesting a service, the incoming request puts DFA

B2 in state 2. If during this service, a request is sent, this

request has to be met with a reply to get DFA B1 out of state

3 and allow the original service to reply.

Two issues are at play here. First, as we substitute over

two sets of requests, the number of automata grows

considerably. Many automata might not be relevant, as

8

during a given incoming requests, not all outgoing requests

can occur. This makes the composition unnecessarily large.

Secondly, it is possible that two requests are handled

asynchronously and interleave. Then, the outgoing request of

one service might be wrongly attributed to the other service.

This requires us to actually constrain the composition to

those nested requests that are actually relevant, and assume

they nest consistently.

To cover both issues, it is essential to use knowledge of

the deployment to formulate a composition function which

only captures incoming-, outgoing-request pairs which can

nest. Whether an incoming and outgoing request can nest

can also be determined from the observation, if we assume

that the outgoing request is placed in the same task as the

incoming request is received. In that case, a procedure on the

observation can be used to select which incoming-,

outgoing-request pairs are relevant, which is denoted a miner

in Figure 5. Consider that in this case, the miner assesses

which instances run the risk of over-generalizing, and the

injected automaton constrains the actual over-generalization

from occurring.

The examples covered show that additional information

can be added explicitly and in a straightforward manner. The

substitution operator allows assumptions to be bound to a

wide class of instances. Note that this approach does not

infer any state by itself, nor does it infer relations between

these states, as all information is supplied.

V. MODELING INTER-COMPONENT COMMUNICATION

Whereas in Section IV we inferred systems communicating

synchronously, we now discuss asynchronous systems.

Throughout the section, we assume the target system is a

DFA A, asynchronously composed of components Ai and

buffers Mi each bounded to bi, A = ‖i(Ai‖M
bi
i). We

assume Ai has alphabet Σ!,?,τ
i as discussed in Section III-C,

and Mi has alphabet ΣMi
= Σ!

Mi
∪Σ?

Mi
. Clearly, Σ?

Mi
= Σ?

i

and Σ!
Mi

= {a! | a? ∈ Σ?
i}. We base our inference on

observation W ⊆ L(A), and specifically, a symbol a ∈ Σ
along w ∈W , such that w = uav, u, v,∈ Σ∗.

We infer A′ by inferring A′
i using the techniques of

Section IV. In addition, we model each buffer as DFA B′bi
i ,

as discussed in Section III-C, for which we require the buffer

type and bound. A lower bound of buffer Mi is inferred

from W , by considering the required buffer space along each

word, that is bi,w = maxa∈w |πΣ!

i
(ua)| − |πΣ?

i
(ua)| with u

the prefix of w up to a. The overall lowerbound of Mi is

then bi = maxw∈W bi,w. Assuming the buffer type is known,

A′ is given as synchronous composition A′ = ‖i(A
′
i‖B

′bi
i).

Just as for the synchronous case, we prove A′ is an under-

generalization trace conform with W , robust under additional

observations:

Proposition V.1 Given DFA A = ‖i(Ai‖Mi) with Mi a FIFO

(bag), and set W ⊆ L(A), then DFA A′ = ‖i(A
′
i‖B

′bi
i), with

A′
i = TDFA(W ,Σ r ,f

i) and B′bi
i a FIFO (bag) with bi =

maxw∈W bi,w, has W ⊆ L(A′) ⊆ L(A). DFA A′′, similarly

obtained from observation V,W ⊆ V , has L(A′) ⊆ L(A′′).

Synchronized

FIFO

R-FIFO FD-FIFO

R-FD-FIFO

Bag

⊆̃

⊆⊆
⊆ ⊆

⊆

Fig. 7. Language inclusion for buffers.

C1 f

C2 f

C3 f

g

C4 g

reqf repf

reqg repg

reqC2

Fig. 8. Limited commutations.

A remaining issue is that we require to know a-priori what

kind of buffers are used in our system. Conversely, we can

use trace conformance as an experiment to assess the

communication structure. We discuss various alternatives,

shown in Figure 7. Given that we check our observation for

trace conformance to these models, we include the language

inclusion relation between buffer types in our discussion.

Synchronous communication is included in FIFO

communication, if we substitute a synchronized event a by

two events ‘a! followed by a?’. This constitutes a send

followed immediately by a receive. Similarly, the language

of a bag buffer is a superset of that of a FIFO buffer, as in

Definition III.2 a FIFO receive requires a symbol to be at the

head of the buffer queue (M ′
j = aMj), whereas a bag buffer

requires it to be anywhere in the buffer (a ∈Mj).

Using a FIFO buffer in a component-based system leads to

an issue shown in Figure 8. Would in this situation reqC2
be

sent before repg , a strict FIFO order would enforce reception

of the former before the latter, while the Task DFA itself has to

handle the latter before starting a new service with the former.

To solve the issue, we partition the function alphabet in a

call alphabet and a reduced function alphabet, such that any

task starts with a symbol from the call alphabet. Then, we can

split the buffer in a FIFO buffer handling symbols from the

call alphabet, which start a new task, and a bag buffer handling

symbols from the reduced function and return alphabet, which

are required to finish the task. We denote this an R-FIFO.

Another issue, highlighted in [2, 12], is that travel time

variations might change the order of incoming messages

from different components. To abstract from this, the FIFO

buffer for component i can be composed of n − 1 FIFO

buffers, one for each peer component, also called Full

Duplex and here denoted FD-FIFO. We use subscript i, j to

denote the link from Ai to Aj . The R-FD-FIFO assesses

both issues, and hence has two buffers per component pair,

totaling in up to 2(n− 1) buffers per component.

From Proposition IV.2, we know the inferred system A′ =
‖i(A

′
i‖B

′bi
i) is consistent with D = ∪i(Σ

2
i ∪Σ

2
Mi

). As Σ2
Mi
⊆

D, we cannot commute a send- and receive action, e.g. C2.f
↑

and C3.g
↓ in Figure 8, even though we know this is allowed.

To better characterise the inferred generalizations, we give

alternative formulations for D. We only consider the buffers,

and hence maintain Σ2
i ⊆ D for any component A′

i.

1) FD-FIFO: We first give the definition from [26, 35].

Dependency D for B′b
i,j is defined over ΣD = ΣMi,j

×
{0, . . . , b− 1}. Word w = uav is mapped to ΣD, by mapping

9

C1

a!(0) a!(1) b!(2)

c!(0)

C2

B3
1→2

a?(0) a?(1) b?(2) c?(0)

Ensures |B3
1→2| ≤ 3 Ensures t(c!) < t(c?)

Fig. 9. Commutation bounds for c! given by Mazurkiewicz dependency D.

a to (a, n) with n = |πΣ!

M,i,j
(u)| mod b if a ∈ Σ!

M,i,j , and

n = |πΣ?

M,i,j
(u)| mod b for a ∈ Σ?

M,i,j .

Two symbols (a, n), (b,m) ∈ ΣD are related in D,

(a, n)D(b,m), iff (i) n = m, or, (ii) a and b are on the same

component: a, b ∈ Σi or a, b ∈ Σj .

By preventing commutation of send (resp. receive) actions,

requirement (ii) ensures FIFO ordering is maintained over

trace equivalence. As communicating events have the same

annotation, they cannot commute by requirement (i),

ensuring the send event precedes the receive event. As we

annotate modulo b, equally annotated events which do not

communicate are b buffer places apart. As these cannot

commute, requirement (i) prevents buffer overflow. This is

visualized in Figure 9.

2) FIFO Buffer: We extend the work of [26, 35] to a

regular FIFO buffer B′b
i , where we rely on the same

annotation, though with alphabets Σ!
Mi

,Σ?
Mi

which are

larger for a FIFO receiving from all peers.

Requirement (i) is unchanged to prevent overflow and

ensure sending precedes receiving. Requirement (ii) has to

change to a, b ∈ Σ!
Mi

or a, b ∈ Σ?
Mi

, to prevent send (resp.

receive) actions of commuting, thereby breaking the FIFO

ordering, as the FIFO serves multiple sending components.

Note that this still allows and a send and a receive symbol to

commute, withstanding requirement (i).

3) Bag buffer: Extending the dependency to bags can be

done using the same annotation though with a larger alphabet.

A bag buffer does not enforce a FIFO ordering. Hence,

we drop requirement (ii). Requirement (i) is still required to

prevent overflow and ensure sending precedes receiving.

We discussed Mazurkiewicz Dependencies with which

Bag, FIFO and full duplex FIFO buffers are consistent.

Given that the R-FIFO is a composition of a bag and a

FIFO, the Mazurkiewicz dependency for this buffer follows

from the union of the dependencies of both parts.

The formulations given for D, corresponding to each

buffer model, ensure that whenever a word w is accepted by

a buffer Bbi
i , i.e. πΣBi

(w) ∈ L(Bbi
i), we have

[πΣBi
(w)]D ∈ T (B

bi
i). Similarly, for an inferred component

A′
i, we know [w]D is accepted by A′

i too. Therefore, for

inferred composition A′, we have [w]D ⊆ T (A′) by

Proposition II.5. This shows the characterization of traces

under the weaker dependencies introduced in this section.

VI. MODEL INFERENCE IN PRACTICE

We demonstrate the inference approach by applying it to a

case study at ASML. ASML designs and builds machines for

lithography, which is an essential step in the manufacturing of

0.0 1.0 2.0 3.0 4.0 5.0

C2 g

C1 f

S a b
req1 reply

req2
reply

(a)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

C2 g

C1 f

S ab
req1 reply

req2 reply

(b)

Fig. 10. Two clients C1, C2 making concurrent requests to a server S, shown
under two different timings.

computer chips. We infer a model of the exposure subsystem,

which exposes each field (die) on a wafer.

System Characteristics & Assumptions

A TMSC is used as observation of the system, spanning

approx. 100k events over 33 components. This implies the

system is a composition of sequential components bearing

nested, fully traced, function executions. The TMSC is

obtained using methods described in [24].

Message dependencies in the TMSC represent either a

request, reply, trigger or notification. Requests and trigger

request a service from a component, whereas a request is

answered by a reply, and a trigger is unanswered.

Notifications are sent by a server to a client during service

execution, to notify the client. Each service has one incoming

request (or trigger) and one (resp. zero) outgoing replies.

Given that components are sequential, requests can only

be handled once the component is idle, and prior requests are

finished, that is, requests are handled non-preemptively. Hence,

the order in which services are executed depend on the order

in which messages are received, as visualized in Figure 10. We

assume requests and triggers are handled at the start of a root

execution, i.e. a function execution which is not nested.

A. Stateless Task Extraction

Though a TMSC describes asynchronous communication,

we first apply synchronous task extraction. From Section V,

we know a synchronous composition has the most limited

behavior, and hence the smallest state space. The resulting

model can therefore be analyzed for issues more easily,

while these issues apply to both the synchronous and the

asynchronous case.

To apply synchronous inference, we require an observation

W and alphabets Σf,r
i . We obtain these from as follows:

Function σ maps TMSC events to alphabet Σ as discussed

in Section III-C. We define alternative mapping

σ′(e) = σ(e) ∪ {σ(e′) | e e′ or e′ e, c(e) 6= c(e′)}, to

ensure communicating events synchronize. We extend σ to

σ : 2E → Σ∗, such that σ(E) = σ(e)Σ(E \ {e}), where e is

the minimal event according to and t(e).
Given that the order of root executions depends on

communication, we define a root execution to be a task.

Hence, Σr
c = {σ(e) | (e′, e) a root execution on c}.

With partition Σr,f
c for each component, and w = σ(E) as

observation, we apply task extraction. Figure 11 shows the size

of the resulting model, in states, for our case study. Clearly,

for most components, the model is two orders of magnitude

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

component

100

101

102

103

104
#States
#Events

Fig. 11. Number of states in the task extracted model of each component,
compared to the number of events in the observation of this component.

more compact than the observation itself, showing repetitive

execution of root executions in these components.

Component 1 has a model of the same size as the original

observation, because it spans a single, 5000 event, task. This

component orchestrates the wafer exposure. For components

26–33, the small reduction is due to the small observation.

B. Model Analyses & Reductions

We analyze the resulting models to assess whether these

are indeed stateless across tasks and if not, which knowledge

must be added. Though we cannot guarantee it to be stateless

across tasks, we aim to give general handles on how to find

issues.

First, we analyze the structure of the resulting model. For

instance, the number of tasks is interesting to consider. If the

number of tasks is large, but the reduction is small, this could

imply that there is a lot of variation in the execution of a

task, and therefore execution depends on some state which is

not captured. This is especially the case when tasks share a

common prefix.

Another structural issue to look out for is tasks starting

without request, even without incoming message. Given that

services are assumed to start with a request, this indicates that

this task relies on another task to initiate the service.

Secondly, we analyze the behavior of the model by

exploring its state space. We use mCRL2 [19] as it is very

efficient in exploring state spaces. As mCRL2 does not

distinguish accepting states, we apply a prefix closure and

partial minimization [9] to the resulting DFAs, to match the

semantics of mCRL2. This is a post-processing step, as

domain injection relies on accepting states to correct models.

We utilize CIF for the conversion [43].

Given that the size of the resulting state space is still too

large for the tools to explore, we discuss two reductions.

We concluded that component 1, C1, still spans > 5000
states, in a single task w. To reduce the size of this

component, we analyze w for repetitions and reduce these

repetitions using [38]. In other words, we aim to find

x, y, z ∈ Σ∗
C1

such that w = xynz for some n. Then, we can

create a reduced model AC′

1
with language

L(AC′

1
) = (xyz)∗, reducing the number of states by

approximately |y|n−1 to 600.

As a second reduction, we remove DFA transitions which

do not communicate and originate from a state which has a

single successor state, i.e. does not allow for a choice in the

process. Hence, we apply the following process algebra

C7 f
h g

gr hr
fr

S1 g

S2 h

reqf repf

reqh

repg
reqg

reph

(a)

C7 f
h g

hr gr
fr

S1 g

S2 h

reqf repf

reqh
repgreqg

reph

(b)

Fig. 12. Component C7 requires both repg and reph to reply to its client.

axiom: a.τ.b = a.b, where τ is an action which does not

synchronize [34]. For asynchronous composition, these

symbols are in Στ . Examples in Figure 12, are C7.g
↓ and

C7.f
↓. This reduces C1 from 600 to approx. 300 states. All

other components are reduced as well, and therefore

exploring the resulting state space is considerably easier.

With the two reductions discussed, we explore the state

space of the composition and analyze it for deadlocks: states

in the partial model from which no outgoing transition is

present. Given that Task DFAs are strongly connected, we do

not expect deadlocks. If a deadlock arises, it is due to a

synchronizing symbol, which counterpart cannot be reached.

Any deadlocks found are either an issue in the system

itself, an issue arising from applying synchronous

communication to an asynchronously communicating system,

or issues arising due to the stateless across tasks assumption.

We mainly uncover the third type, which we use to improve

the model. Only a single deadlock of the second type has

been found, which has been dealt with pragmatically to

continue searching for other deadlocks.

C. Model Improvements: Adding State

We discuss some issues found using state space exploration.

The first type of issue is shown in Figure 12, where

component C7 requests two services g, h concurrently. Both

are handled asynchronously and can return in either order,

with the last reply allowing f to reply.

The inferred, stateless, model does not capture the

dependency between replies repg , reph and repf . When both,

or neither, incoming replies are followed by repf , the system

deadlocks. This is solved by enforcing nested services to be

finished before finishing f , as discussed in Section IV-C.

If we only observe replies coming in in one order, we do

not infer how to respond when the replies commute, which

is allowed by the generalization made. This requires us to

compose the union of the model and the missing task.

The second issue is shown in Figure 13, where component

C14 deals with server S∗
1 . However, we do not observe S∗

1

directly, but merely through the messages obtained at C14,

with S∗
2 not observed at all. This is because the lower logical

layers are not observed. A possible perspective of the actual

system is shown in Figure 13b.

As we do not observe S∗
1 and S∗

2 , we miss the

dependency between functions g and e2, in S∗
1 . Now, e2 can

start ‘spontaneously’, which leads to deadlocks as well.

From domain knowledge, we know the dependency between

g and e2. The dependency is added with a one-place buffer

similar to Figure 6a, extended to multiple places as needed.

11

C14 f
g

k e2
kr

S∗
1 g e2

reqf
repf

reqk
repk

n2
reqg repg

(a)

C14 f
g

k e2
kr

S∗
1 g

h
e1
e2

S∗
2 h

e1

reqf
repf

reqk
repk

n2

n1

reqg repg

trgh

(b)

Fig. 13. Component C14 communicates with components outside the
observation, which leads to a lack of dependencies.

D. Model Improvements: Analyzing Choice

The model inferred for Figure 12 contains tasks which

have a common prefix. Namely, we have hr↑hr↓ as well as

hr↑fr↑fr↓hr↓. One could say that a choice arises after the

first symbol, hr↑. The inferred systems still contains some of

these choices, as for instance g is optional in Figure 12.

Regardless of the absence of deadlocks, this ‘choice’ still

enlarges the state space and might not represent reality.

To gain insight in these choices, we rerun the inference

approach. During construction of the PTA, a word can either

move from h↓ to g↑, or skip g and go to f↓. Then, we assert

whether the choice depends on another piece of state in the

observation. This could be a state that is observable in the

model, as for example the state from which f on C7 is called

might vary. This can propagate to the caller of the caller, etc.

The choice might also depend on a piece of state that is not

inferred, such as the duration of the previous function. Domain

experts can easily pose an hypothesis, which can be verified

against the observation.

For the example, g was only skipped on a single

occurrence. This happens to be related to the repetitions we

observed for C1, with g skipped on one particular iteration.

Domain experts confirm and understand this conclusion. The

model is corrected by renaming the prefix of f , both in C7

as well as in the right iteration of C1.

E. Asynchronous Communication

We extend the model using asynchronous communication

as described in Section V. Due to the issues described there,

we modeled the communication buffers as R-FD-FIFOs: we

should allow for travel time variations due to hick ups in the

communication network, and allow the task to define the order

of messages that are not handled at a root execution.

The buffers in the model require a bound of either one- or

two-, with the exception of component C2 requiring 24. The

low number of buffer places required is due to the extensive

synchronization on replies, with C2, the log component, only

receiving logging triggers.

We verified that the resulting, improved, asynchronous

model is trace-conform with the input TMSC.

VII. DISCUSSION

In this work, we introduced an approach to infer a model

of a component-based system, by considering the system to

be a composition of components and buffers. The components

have been further decomposed in a collection of tasks.

By giving a trace-theoretical foundation to our method, we

have shown the benefits when inferring a system matching

the assumptions of the method. Decomposition in

components allows us to generalize to trace equivalence,

while avoiding the need to observe or capture concurrency

explicitly. Conventional methods cannot do so, let alone

prove the generalization to be included in language of the

system, again withstanding assumptions.

Further decomposition in tasks is also important, given the

length of the observation as seen in Section VI. Decomposing

a component in tasks allow us to generalize to executions of

longer or shorter length, while our inference result is based

on a single observation.

More importantly, we have discussed in Section VI that

tasks can be interchanged depending on the order of

incoming messages. Such generalizations are not made by

conventional methods, and require us to use characteristics

of the system. Conversely, if a task f on some client

requests tasks, say g followed by h, on the same server,

conventional methods would infer a dependency between g
and h on this server. After all, these tasks always follow

each other. Only by relying on system characteristics, we

recognize that this is due the structure of f on the client, and

says nothing about the server.

To decompose a component in a collection of tasks

required us to assume that these tasks are mutually

independent. Section VI has shown this assumption to be

false for our target system. As it holds for a large portion of

the tasks, and allows for the generalizations discussed, we

mended it by analyzing the state space for missing

dependencies rather than dropping the assumption altogether.

We conclude that the method can benefit from a better

approach to relate tasks and services. Hence, the system

should be considered as three-layers instead of two, where

task sequences make up services, which in turn make up

components. The results in this work show that two features

can aid in inferring services from tasks on a component: (1)

tasks with common symbols, and especially common

prefixes, are often related. (2) tasks which are connected

through message dependencies running transitively through

servers are often related.

In Section IV, we made limited assumptions on the

system, to aid the generality of the results. To distinguish

services and tasks, future work might be aided by additional

assumptions. Examples are explicitly distinguishing a call

alphabet, in addition to function and return alphabets (see

Section V), and relating call symbols to requests and triggers

as introduced in Section VI.

Given that our target system is unknown, it is difficult to

assess whether the inferred models are ‘correct’. For the 33

components, only a single model was available for inspection

(which was a superset of the inferred model due to lack of

observations). Hence, the only notion of correctness available

in model inference is obtained by posing assumptions on the

target system, and showing generalizations to be ‘correct’,

i.e. valid for such a system, under these assumptions. This is

12

the approach we took in Sections IV and V. Still, this is a

theoretical notion of correctness.

In practice, we do not know whether the system is correct,

as we do not know whether the services of the improved model

are all mutually independent. Given the absence of deadlocks,

and tasks sharing a prefix which is not directly constrained by

communication, we do have strong confidence in the results.

It is our strong believe that a good inference approach is

proven to be correct under assumptions, where the assumptions

1) capture the essential characteristics of the system closely

and 2) are easily verifiable. The first requirement allows for

a rich generalization, while the second ensure the proofs to

hold on the system in practice. Decomposition in components

succeeded well on the latter, where decomposition in tasks

succeeded well on the former.

Above correctness, it is most important that the models

serve their need, as inference is only a means to an end. In

this work, we did not discuss a specific use case. However,

future work is already exploring whether the inferred models

can be used to assess the impact of changes made to the

software, before deploying the software at a customer. In

addition, the inference of interface contracts (see

Section III-B) from the models is explored.

In addition to the opportunities mentioned, future work

can extend the models with timing. Given that each symbol

represents multiple dependencies in the TMSC, these

dependencies can be analyzed for typical timings, e.g.

average or minimal timings, for use in the timed model.

Together with a client-server hierarchy, this might allow

analyzing the system for minimal timespan schedules. While

there is work considering the makespan of a TMSC [23],

this work does not allow for task commutations. Our work

does allow tasks to be commutated based on the order of

incoming messages. As can be seen in Figure 10, this can

influence the makespan. Similarly, an assumption on a

client-server hierarchy might allow more specific results on

the asynchronous composition, e.g. to analyze the inferred

model for boundedness.

Finally, we revisit our research question: How can we utilize

knowledge of the architecture, deployment and characteristics

of the target system to formulate a justified model inference

approach for component based cyber physical systems?

We conclude that the knowledge can be used to

decompose the system in components, which are

decomposed in services, and allows us to capture essential

characteristics of such system, such as commutations of

function executions and concurrency between components.

More generally, we note that the approach allowed us to

iteratively refine the models using analysis, as we proved it

to be robust under additional observations. For such complex

systems and without the availability of counter examples, this

iterative approach with a human in the loop is essential, as

we do not expect to formulate a method that can capture all

intricacies of such systems.

We argue that our method is

Fast and scalable: Given that our method has linear

complexity, this is guaranteed.

Justified: We have clear proofs demonstrating which

properties are ensured by the inferred models, and under

which assumptions.

Appropriate: As a component model captures the Kleene-

star closure of the set of observed tasks, the relation between

observation and model is very clear. Essential characteristics

such as commutations of tasks or independent symbols are

captured.

Robust: Adding observations will preserve the tasks that

have already been inferred, while it adds new tasks to the

component model.

Extensible: The domain injection approach, combined with

substitution, can add new knowledge at various places in the

model.

These characteristics are essential to iteratively improve

models, and obtain a clear and insightful description of the

system.

VIII. CONCLUSIONS

This work introduces a new approach for inferring models

from observations, by relying on the architecture of the

observed system. This limits the method to system with a

component-based architecture, and thereby ensures that the

inferred models account for features specific to this

architecture.

The approach infers concurrency among components,

without needing to observe commutations, or capture the

concurrency explicitly in the model. Rather, the inference

approach resembles the original composition to capture

concurrency.

The method also accounts for the non-preemptive nature

of components, and allows services executed on these

components to be commutated. Here, the approach accounts

for influence of communication on the behavior of the

system.

By capturing the characteristics in assumptions, we have

proven that the generalizations belong to a system matching

these assumptions. Thereby, we gave a trace theoretical

foundation to our work.

The method has been demonstrated by applying it to a

case study at ASML. We showed how to assess the validity

of the assumptions, though a definite method to verify the

assumption is still required. Still, we have shown that the

issues are easily mended, and that we arrive at a model

where all generalizations are explained.

Contrary to many traditional approaches, the inference

approach does not rely on parameters. Instead, a single

model is inferred, even from a single observation. There is a

clear link between the model and the observation, as we

capture all observed services in a component model. This

makes the approach robust under new observations.

Combined with the demonstrated approach to refine the

model, the robustness and transparency allow for iterative

refinements of the model based on new insights. This is

essential to create models of complex, cyber-physical

systems.

13

ASML stakeholder feedback:

• “The ability to analyze the behavior of our software at a

very high level of abstraction, as well as zooming in on

the details is extremely cool”

• “With many possible applications, ranging from

architectural reasoning to patch qualification, this

technology has the potential to contribute significantly

to improving the quality of our software”

• “Very useful method, can be applied to several use cases”

APPENDIX A

ALGORITHMS

Algorithm 1 Constructs a PTA from a set of samples:

PTA (W).

Require: A set W of positive samples belonging to target

language W ⊆ L∗ ⊆ Σ∗.

Ensure: DFA A = (Q,Σ, δ, q0, F) for which L(A) = W .

1: A ← (Q = {q0},Σ, δ = ∅, q0, F = ∅) ⊲ Create DFA.

2: for all w ∈W do ⊲ Iterate over all samples.

3: q ← q0 ⊲ Track the current state of the automaton.

4: for all wj ∈ Σ : w1 . . . w|w| = w do

5: if (q, wj , q
′) /∈ δ for some q′ ∈ Q then

6: create q′ ⊲ Ensure transition with wj exists.

7: Q ← Q ∪ {q′}
8: δ ← δ ∪ (q, wj , q

′)
9: end if

10: q ← δ(q, wj) ⊲ Take the transition with wj .

11: end for ⊲ After processing all of w
12: F ← F ∪ {q} ⊲ make the tracked state accepting.

13: end for

14: return {Ai}

Algorithm 2 Constructs a task DFA from executions of a

system composed of task automata: TDFAs (W,Σf,r
i).

Require: A set W of words from a composition A of n
Task DFAs, A = A1‖ . . . ‖An,W ⊆ L(A), and the

(function,return) alphabet of a component Ai in the

composition of A, 1 ≤ i ≤ n.

Ensure: A Task DFAs A′
i, for which L(A′

i) = T (πΣi
(W))∗.

1: A′
i = (Q′

i,Σi, δ
′
i, q

′
0,i, F

′
i) ← PTA(T (πΣi

(W)))
2: for all (q, a, q′) ∈ δ′i, q ∈ Q, a ∈ Σr

i , q
′ ∈ F do

3: δ′i ← (δ′i \ (q, a, q
′)) ∪ (q, a, q′0,i)

4: end for

5: Q,F ← Q \ (F \ {q′0,i}), {q
′
0,i}

6: return A′
i

APPENDIX B

PROOFS

Proposition B.1 Given two DFAs A1, A2, the synchronous

composition of these DFAs is homomorphic with the

synchronization of their languages.

L(A1‖A2) = L(A1)‖L(A2)

Algorithm 3 Determine buffer bound in asynchronous

composition: B(w,Σ,Σ!,?
i)

Require: A sample w ∈ L(A), alphabets Σ!,?
i of a buffer Mi

of synchronous composition A.

Ensure: For a buffer Mi the maximal occupancy bi during

execution of w.

1: bi ← 0
2: bi,max ← 0
3: for all 1 ≤ j ≤ |w| do ⊲ For each letter in w
4: if wj ∈ Σ!

i then ⊲ If message is sent

5: bi ← bi + 1 ⊲ Increase occupancy

6: else if wj ∈ Σ?
i then ⊲ If message is received

7: bi ← bi − 1 ⊲ Decrease occupancy

8: end if

9: if bi > bi,max then ⊲ Track the maximum occupancy

10: bi,max ← bi
11: end if

12: end for

13: return bi,max

Proof. From Definitions II.2 and II.3 it is clear that

δA1‖A2
(q0, w) ∈ FA1‖A2

⇔ δA1
(q0,A1

, πΣA1
(w)) ∈ FA1

∧ δA2
(q0,A2

, πΣA2
(w)) ∈ FA2

as transitions are made for a state in the state tuple of

A1‖A2 iff the symbol is in the alphabet of the corresponding

component. The rest follows from Definition II.4.

Corollary B.2 Given a DFA A composed of two automata

A1, A2, i.e. A = A1‖A2, over alphabets Σ1,Σ2, respectively,

then we have

w ∈ L(A)⇔ πΣ1
(w) ∈ L(A1) ∧ πΣ2

(w) ∈ L(A2)

Proof. Follows directly from Proposition II.5 and

Definition II.4.

Proposition B.3 Given a dependency D =
⋃n

i=1(Σ
2
i) and two

words u, v ∈ Σ∗, Σ =
⋃n

i=1 Σi, we have:

u ≡D v ⇔ ∀i : πΣi
(u) = πΣi

(v)

Proof. For ⇒: As u ≡D v, we have πΣi
(u) ≡D πΣi

(v) by

Proposition III.1. Then there exists a sequence

πΣi
(u) ∼D . . . ∼D πΣi

(v). We assume, towards a

contraction, that πΣi
(u) 6= πΣi

(v). However, as any symbols

a, b in πΣi
(u) are constrained in D, any commutation does

not affect the projection, and hence we arrive at a

contradiction.

For ⇐: For u = v the proposition is trivially true, so we

consider u 6= v. As u, v ∈ (
⋃

i Σi)
∗, and

⋃
i Σi spans the

whole domain of D, πΣi
(u) and πΣi

(v) can be equal for all

i iff |u| = |v|, and #a(u) = #a(v) for all a ∈ Σ. Hence if

u 6= v, u must be a permutation of v, i.e. there exists a

sequence u ∼D′ . . . ∼D′ v, with D′ the identity relation on

Σ. Assume, towards a contradiction, that u 6≡D v. Then at

least one commutation along this sequence has (a, b) ∈ ID′

and (a, b) /∈ ID. If (a, b) /∈ ID, then a, b ∈ Σi for some i, by

14

definition of D. This implies πΣi
(u) 6= πΣi

(v), a

contradiction.

Corollary B.4 Consider a synchronous composition A of n
DFAs, A = A1‖ . . . ‖An, with each component a DFA Ai

over alphabet Σi. Language L(A) is consistent with D =⋃n

i=1(Σ
2
i), i.e. L(A) = lin[L(A)]D, and therefore A has trace

language T (A) = [L(A)]D.

Proof. This follows from Proposition IV.1 and Corollary II.6.

Theorem B.5 Consider a synchronous composition A of n
DFAs Ai, A = A1‖ . . . ‖An, as well as a set W of words,

W ⊆ L(A). The approximation A′ of A, composed of

components A′
i, A′ = A′

1‖ . . . ‖A
′
n, obtained through

PTAs(W,Σ0, . . . ,Σn), has the following language:

L(A′) = lin[W]D, with D =

n⋃

i=0

(Σ2
i).

Proof. By correctness of Algorithm 1 and Proposition II.5 we

know W ⊆ L(A′) and hence lin[W]D ⊆ L(A′) by

Corollary IV.2. To prove L(A′) ⊆ [W]D, take any w ∈ L(A′)
and any 1 ≤ i ≤ n. Then we have πΣi

(w) in L(A′
i), and

thus in πΣi
(W) by correctness of Algorithm 1. Then we

know w ∈ [W]D by Proposition IV.1.

Theorem B.6 Consider a synchronous composition A of n
DFAs Ai, A = A1‖ . . . ‖An, as well as a set W of words, W ⊆
L(A). The approximation A′ of A, composed of components

A′
i, A

′ = A′
1‖ . . . ‖A

′
n, each obtained through PTA(W,Σi),

is an under-generalization, i.e. L(A′) ⊆ L(A).

Proof. We have: W ⊆ L(A) ⇒ lin[W] ⊆ L(A) ⇒ L(A′) ⊆
L(A) by Corollary IV.2 and Theorem IV.4 respectively.

Theorem B.7 Consider DFA A′ composed of DFAs A′
i,

A = A′
1‖ . . . ‖A

′
n, obtained from observation U through

PTAs(U,Σ0, . . . ,Σn). DFA A′′, composed and obtained

similarly from observation V , U ⊆ V , has L(A′) ⊆ L(A′′).

Proof. From Definition II.3 and correctness of Algorithm 1, we

know U ⊆ V ⇒ πΣi
(U) ⊆ πΣi

(V) ⇒ L(A′
i) ⊆ L(A

′′
i)

for any 1 ≤ i ≤ n. Apply Proposition IV.3 to get L(A′) ⊆
L(A′′).

Proposition B.8 Given a composition A of n task DFAs, A =
‖ni=0Ai and D =

⋃
Σ2

i , then [t] ∈ T (A) is a task sequence,

[t] ∈ T (A)⇔ T ([t]) ⊆ T (A) and T (A) = T (T (A))∗.

Proof. For [t] ∈ T (A), we have ∀i : πΣi
(t) ∈ L(Ai) by

Corollaries II.6 and IV.2. As L(Ai) is a task DFA, πΣi
(t) is a

task sequence and hence [t] is a task sequence trace.

(⇒) As [t] ∈ T (A) is a task sequence, [t] = [t1..tm], with

[tj] a task word for 1 ≤ j ≤ m. By Corollaries II.6 and IV.2,

we know ∀i : πΣi
(t) ∈ L(Ai), and hence

∀i : πΣi
(t1..tm) ∈ L(Ai). From Definition IV.9 we know

πΣi
(tj) is a task sequence w.r.t Σf,r

i for any j, hence

∀i : πΣi
(tj) ∈ L(Ai) by definition of a Task DFA. Finally,

this implies [tj] ∈ T (A) for all j, and therefore

T ([t]) ⊆ T (A).

(⇐) If T ([t]) ⊆ T (A), then [t] is a task sequence trace with

[t] = [t1..tm], and ∀j : [tj] ∈ T (A). As A is a composition

of Task DFAs, it has a single accepting state, which is also

the initial state, by Definition II.2 and IV.7. Hence ∀j : [tj] ∈
T (A) implies [t] ∈ T (A).

The equation T (A) = T (T (A))∗ follows directly from this.

Proposition B.9 Consider a DFA A composed of n Task

DFAs Ai such that A = A1‖ . . . ‖An. Given a set W of

words W ⊆ L(A), algorithm TDFAs(W,Σf,r
1..n) returns Task

DFAs A′
i such that:

L(A′
i) = T (πΣi

(W))∗, and L(A′
i) ⊆ L(Ai)

Proof. By correctness of Algorithm 1, we know A′
i in line 2

has L(A′
i) = T (πΣi

(W)). As a task cannot have a prefix

which is also a task by Definition IV.6, every final state has

no outgoing transitions. Therefore, the Kleene star closure is

applied by making the initial state accepting (line 6) and

routing all transitions with symbols a ∈ Σr
i to this initial

state (line 4). By construction, the resulting DFA is a Task

DFA, adhering to Definition IV.7. As W ⊆ L(A) and Ai is a

Task DFA, we have T (πΣi
(W))∗ ⊆ L(Ai).

Proposition B.10 If L(A′
1) ⊆ L(A1) and L(A′

2) ⊆ L(A2),
then L(A′

1‖A
′
2) ⊆ L(A1‖A2).

Proof. We use Definition II.4 and the premise, then we have:

w ∈ L(A′
1‖A

′
2)⇔ πΣ1

(w) ∈ L(A′
1) ∧ πΣ2

(w) ∈ L(A′
2)

⇒ πΣ1
(w) ∈ L(A1)

∧ πΣ2
(w) ∈ L(A2)

⇔ w ∈ L(A1‖A2)

Theorem B.11 Consider a DFA A composed of n Task DFAs

Ai such that A = A1‖ . . . ‖An. Given a set W of words W ⊆
L(A), algorithm TDFA(W,Σf,r

i) returns Task DFAs A′
i such

that DFA A′ = A′
1‖ . . . ‖A

′
n has L(A′) ⊆ L(A)

Proof. From Propositions IV.11 and IV.3 we know L(A′
i) ⊆

L(Ai), and L(A′) ⊆ L(A).

Theorem B.12 Consider DFA A′ composed of DFAs A′
i,

A = A′
1‖ . . . ‖A

′
n, obtained from observation U through

TDFAs(U,Σf,r
i). DFA A′′, composed and obtained similarly

from observation V , U ⊆ V , has L(A′) ⊆ L(A′′).

Proof. By Definition IV.8, we see for any 1 ≤ i ≤ n,

U ⊆ V ⇒ T (πΣi
(U)) ⊆ T (πΣi

(V)). Hence L(A′
i) ⊆ L(A

′′
i)

by Proposition IV.11, and L(A′) ⊆ L(A′′) by

Proposition IV.3.

Proposition B.13 Given a composition A of n Task DFAs

A1, . . . , An communicating through bounded FIFO (bag)

buffers Mi. Given a set W ⊆ L(A), synchronous

composition A′ = ‖i(A
′
i‖B

′bi
i), with A′

i obtained through

TDFAs(W ,Σ r ,f
i) and B′bi

i a FIFO (bag) buffer

approximating Mi with bound bi given by

bi = maxw∈W B(w,Σ!,?,τ
i), has W ⊆ L(A′).

Proof. From Proposition IV.11, we know πΣi
(W) ⊆ L(A′

i).
By Algorithm 3, we know computing any w ∈ W over B′bi

i

15

requires B(w,Σ!,?,τ
i) spaces in the buffer, which are available

by construction. Hence we know πΣMi
(W) ⊆ L(B′bi

i), and

by Proposition II.5, W ⊆ L(A′).

Theorem B.14 Given a composition A of n Task DFAs

A1, . . . , An communicating through bounded FIFO (bag)

buffers Mi. Given a set W ⊆ L(A), synchronous

composition A′ = ‖i(A
′
i‖B

′bi
i), with A′

i obtained through

TDFAs(W ,Σ r ,f
i) and B′bi

i a FIFO (bag) buffer

approximating Mi with bound bi given by

bi = maxw∈W B(w,Σ!,?,τ
i), has W ⊆ L(A′) ⊆ L(A).

Proof. From Theorem B.11 we know L(‖iA
′
i) ⊆ L(‖iAi).

Given that observation W requires Mi to have at least bound

bi, and we know the type of buffer a-priori, we have

L(B′bi
i) ⊆ L(Mi). Applying Proposition IV.3 results in

L(A′) ⊆ L(A).

Theorem B.15 Consider DFA A′ synchronously composed

of n Task DFAs, A′
i, 1 ≤ i ≤ n, and buffers B

′b′i
i ,

A′ = ‖i(A
′
i‖B

′b′i
i), with A′

i, B
′b′i
i reconstructed using

TDFAs(U ,Σ f ,r
i) and b′i = maxw∈U B(w,Σ!,?,τ

i) resp. from

observation U . Given A′′ composed and obtained similarly

from observation V , U ⊆ V , we have L(A′) ⊆ L(A′′).

Proof. The proof of Theorem IV.12 is extended to the

asynchronous case by considering

U ⊆ V ⇒ maxw∈U B(. . .) ≤ maxw∈V B(. . .), hence

L(B
′b′i
i) ⊆ L(B

′′b′′i
i), together with Proposition IV.3.

REFERENCES

[1] D. Akdur, V. Garousi, and O. Demirörs, “A survey on modeling and
model-driven engineering practices in the embedded software industry,”
Journal of Systems Architecture, vol. 91, no. October, pp. 62–82, 2018.

[2] L. Akroun and G. Salaün, “Automated verification of automata
communicating via FIFO and bag buffers,” Formal Methods in System

Design, vol. 52, no. 3, pp. 260–276, 2018.

[3] O. al Duhaiby, A. Mooij, H. van Wezep, and J. F. Groote, “Pitfalls in
Applying Model Learning to Industrial Legacy Software,” in Leveraging

Applications of Formal Methods, Verification and Validation. 8th

International Symposium, ISoLA, T. Margaria and B. Steffen, Eds., vol.
11247 LNCS. Springer International Publishing, 2018, pp. 121–138.

[4] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[5] D. Angluin, “Inductive inference of formal languages from positive
data,” Information and Control, vol. 45, no. 2, pp. 117–135, 1980.

[6] ——, “Queries and Concept Learning,” Machine Learning, vol. 2, pp.
319–342, 1988.

[7] K. Aslam, L. Cleophas, R. Schiffelers, and M. van den Brand, “Interface
protocol inference to aid understanding legacy software components,”
Software and Systems Modeling, vol. 19, no. 6, pp. 1519–1540, 2020.
[Online]. Available: https://doi.org/10.1007/s10270-020-00809-2

[8] F. Avellaneda and A. Petrenko, “Inferring DFA without Negative
Examples,” in 14th International Conference on Grammatical Inference

(ICGI), 2019, pp. 17–29.

[9] M.-P. Béal and M. Crochemore, “Minimizing incomplete automata,”
Finite-State Methods and Natural Language Processing (FSMNLP’08),
no. April 2008, pp. 9–16, 2008. [Online]. Available: http://igm.
univ-mlv.fr/{∼}beal/Recherche/Publications/minimizingIncomplete.pdf

[10] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
A. Krishnamurthy, “Unifying FSM-inference algorithms through
declarative specification,” Proceedings - International Conference on

Software Engineering, pp. 252–261, 2013.

[11] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with CSight,”
Proceedings - International Conference on Software Engineering, pp.
468–478, 2014.

[12] D. Brand and P. Zafiropulo, “On Communicating Finite-State Machines,”
Journal of the ACM (JACM), vol. 30, no. 2, pp. 323–342, 1983.

[13] O. Cicchello and S. C. Kremer, “Beyond EDSM,” in The 6th

International Colloquium on Grammatical Inference (ICGI 2002), vol.
LNAI 2484, 2002, pp. 37–48.

[14] E. Clarke, “Model Checking,” in International Conference on

Foundations of Software Technology and Theoretical Computer Science,
S. Ramesh and G. Sivakumar, Eds. Berlin Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 54–56.

[15] E. Clarke, O. Grumberg, D. Kroening, and D. A. Peled, Model Checking.
Cambridge, Massachusetts: MIT Press, 2000.

[16] C. de la Higuera, Grammatical Inference, 1st ed. New York: Cambridge
University Press, 2010.

[17] B. Genest, D. Kuske, and A. Muscholl, “On communicating automata
with bounded channels,” Fundamenta Informaticae, vol. 80, no. 1-3, pp.
147–167, 2007.

[18] B. Gröne, A. Knöpfel, and P. Tabeling, “Component vs. component:
why we need more than one definition [system component and software
component],” Engineering of Computer-Based Systems, 2005. ECBS’05.

12th IEEE International Conference and Workshops on the, pp. 550–552,
2005.

[19] J. F. Groote and M. R. Mousavi, Modeling and Analysis of

Communicating Systems. Cambridge, Massachusetts: The MIT Press,
2014.

[20] M. J. Heule and S. Verwer, “Exact DFA Identification Using
SAT Solvers,” in Grammatical Inference: Theoretical Results and

Applications, 10th International Colloquium, ICGI 2010, Valencia,

Spain, Proceedings, 2010, pp. 66–79.

[21] ——, “Software model synthesis using satisfiability solvers,” Empirical

Software Engineering, vol. 18, no. 4, pp. 825–856, 2013.

[22] ITU-TS, “Recommendation Z.120, Message Sequence Charts,” Geneva,
1999.

[23] R. Jonk, J. Voeten, M. Geilen, T. Basten, and R. Schiffelers,
“SMT-based verification of temporal properties for component-
based software systems,” Eindhoven University of Technology,
Department of Electrical Engineering, Electronic Systems Group,
Eindhoven, Tech. Rep. ES Reports, 2020. [Online]. Available:
http://www.es.ele.tue.nl/esreports/esr-2020-01.pdf

[24] R. Jonk, J. Voeten, M. Geilen, and R. Theunissen, “Inferring
Timed Message Sequence Charts from Execution Traces of Large-
scale Component- based Software Systems,” Eindhoven University of
Technology, Department of Electrical Engineering, Electronic Systems
Group, Eindhoven, Tech. Rep. ES Reports, 2019.

[25] I. Kurtev, M. Schuts, J. Hooman, and D. J. Swagerman, “Integrating
interface modeling and analysis in an industrial setting,” Proceedings

of the 5th International Conference on Model-Driven Engineering and

Software Development, no. Modelsward, pp. 345–352, 2017.

[26] D. Kuske and A. Muscholl, “Communicating Automata,” Submitted

for peer review (Journal unknown), 2019. [Online]. Available:
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted

[27] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo
one DFA learning competition and a new evidence-driven state merging
algorithm,” in ICGI 1998: Grammatical Inference, vol. LCNS 1433,
1998, pp. 1–12.

[28] M. Leemans, “Hierarchical Process Mining for Scalable Software
Analysis,” Ph.D. dissertation, Eindhoven University of Technology,
2018.

[29] R. Loose, B. van der Sanden, M. Reniers, and R. Schiffelers,
“Component-wise Supervisory Controller Synthesis in a Client/Server
Architecture,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 381–387, 2018.
[Online]. Available: https://doi.org/10.1016/j.ifacol.2018.06.329

[30] E. Mark Gold, “Language identification in the limit,” Information and

Control, vol. 10, no. 5, pp. 447–474, 1967.

[31] V. Matena, B. Stearns, and L. Demichiel, Applying Enterprise

JavaBeans: Component-Based Development for the J2EE Platform,
2nd ed. Pearson Education, 2003.

[32] A. Mazurkiewicz, “Introduction to Trace Theory,” in The Book of Traces,
V. Diekert and G. Rozenberg, Eds. Singapore: World Scientific, 1995,
ch. 1, pp. 3–41.

[33] M. McIlroy, “Mass Produced Software Components,” in Software

Engineering, Report on a conference sponsored by the NATO Science

Committee 7th to 11th October 1968, P. Naur and B. Randell, Eds.
Garmisch, Germany: Scientific Affairs Division, NATO, 1968, pp. 138–
155.

[34] R. Milner, Communication and Concurrency. River, NJ, United States:
Prentice-Hall, Inc., 1989.

https://doi.org/10.1007/s10270-020-00809-2
http://igm.univ-mlv.fr/{~}beal/Recherche/Publications/minimizingIncomplete.pdf
http://igm.univ-mlv.fr/{~}beal/Recherche/Publications/minimizingIncomplete.pdf
http://www.es.ele.tue.nl/esreports/esr-2020-01.pdf
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted
https://doi.org/10.1016/j.ifacol.2018.06.329

16

[35] R. Morin, “On regular message sequence chart languages and
relationships to Mazurkiewicz trace theory,” in Foundations of Software

Science and Computation Structures, 4th International Conference, vol.
2030, Genova, Italy, 2001, pp. 332–346.

[36] A. Muscholl, “Analysis of communicating automata,” in LATA 2010:

Language and Automata Theory and Applications, 2010, pp. 50–57.
[37] J. Muskens, M. R. Chaudron, and J. J. Lukkien, “A component

framework for consumer electronics middleware,” Lecture Notes in

Computer Science, vol. 3778, pp. 164–184, 2005.
[38] A. Nakamura, T. Saito, I. Takigawa, and M. Kudo, “Fast algorithms

for finding a minimum repetition representation of strings and trees,”
Discrete Applied Mathematics, vol. 161, no. 10-11, pp. 1556–1575,
2013. [Online]. Available: http://dx.doi.org/10.1016/j.dam.2012.12.013

[39] P. J. Ramadge and W. M. Wonham, “Supervisory Control of a Class of
Discrete Event Processes.” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[40] M. Schuts, J. Hooman, and F. Vaandrager, “Refactoring of Legacy
Software using Model Learning and Equivalence Checking: an Industrial
Experience Report,” in Integrated Formal Methods: 12th International

Conference, 2016, pp. 311–325.
[41] W. Smeenk, J. Moerman, F. Vaandrager, and D. N. Jansen, “Applying

Automata Learning to Embedded Control Software,” in ICFEM 2015:

Formal Methods and Software Engineering, M. Butler, S. Conchon, and
F. Zaı̈di, Eds. Springer International Publishing, 2015, pp. 67–83.

[42] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond

Object-Oriented Programming, 1st ed. Boston, MA, USA: Addison-
Wesley, 1998.

[43] D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski,
J. M. Van De Mortel-Fronczak, and M. A. Reniers, “CIF 3: Model-based
engineering of supervisory controllers,” Lecture Notes in Computer

Science, vol. 8413 LNCS, pp. 575–580, 2014.
[44] W. van der Aalst, Process Mining, 2nd ed. Berlin Heidelberg: Springer-

Verlag Berlin Heidelberg, 2016.
[45] W. M. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,

G. Schimm, and A. J. Weijters, “Workflow mining: A survey of issues
and approaches,” Data and Knowledge Engineering, vol. 47, no. 2, pp.
237–267, 2003.

[46] P. Vitharana, “Risks and Challenges of Component-Based Software
Development,” Communications of the ACM, vol. 46, no. 8, pp. 67–72,
2003.

[47] C. Wagner, Model-Driven Software Migration: A Methodology.
Springer Vieweg, 2014.

[48] N. Walkinshaw, K. Bogdanov, C. Damas, B. Lambeau, and P. Dupont,
“A framework for the competitive evaluation of model inference
techniques,” in MIIT 2010 - Proceedings of the 1st International

Workshop on Model Inference In Testing, Held in Conjunction with ACM

SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2010, 2010, pp. 1–9.
[49] I. Warren, The Renaissance of Legacy Systems. London: Springer-

Verlag London, 1999.
[50] W. M. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-

event systems : A brief history,” Annual Reviews in Control, vol. 45,
pp. 250–256, 2018.

[51] N. Yang, K. Aslam, R. Schiffelers, L. Lensink, D. Hendriks, L. Cleophas,
and A. Serebrenik, “Improving Model Inference in Industry by
Combining Active and Passive Learning,” SANER 2019 - Proceedings

of the 2019 IEEE 26th International Conference on Software Analysis,

Evolution, and Reengineering, pp. 253–263, 2019.

http://dx.doi.org/10.1016/j.dam.2012.12.013

	Introduction
	Preliminary Definitions
	Literature Review
	Model Inference
	Component-Based Software
	Modeling Systems and Behavior

	Inferring Component Models
	Decomposition in Components
	Decomposition in Tasks
	Stateful Task Inference

	Modeling Inter-Component Communication
	FD-FIFO
	FIFO Buffer
	Bag buffer

	Model Inference in Practice
	Stateless Task Extraction
	Model Analyses & Reductions
	Model Improvements: Adding State
	Model Improvements: Analyzing Choice
	Asynchronous Communication

	Discussion
	Conclusions
	Appendix A: Algorithms
	Appendix B: Proofs
	References

