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Abstract

With the advent of Industry 4.0, the complexity of cyber-physical systems (CPS) is ever increasing. These
systems are developed according to their corresponding scientific disciplines, which are predominantly
independent of each other. This separation of disciplines can no longer be sustained and needs to be
bridged. Thus, a tight coordination between different disciplines is needed and an integrated approach
must be taken for the design of these heterogeneous systems. The goal of this research is to bridge the
gap between functional level specification and software level implementation for the design of a CPS, in
particular, for flexible manufacturing systems (FMS). For an FMS, the functional level specifications are
described using the activity framework. At the software level, the Dezyne toolset is used, which is a model-
driven engineering toolset, to define its component behavior. A methodology is developed to automatically
generate the Dezyne code from the activity models for the determinate scenarios. The generated Dezyne
code is verified and validated to check correctness of the transformation made. Further, the solution is
extended to handle exceptions in the activity framework. The Dezyne code is automatically generated for
the various levels of criticality defined for exceptions and verified. The ”Factory Four” model is used as
a case study which represents a small scale FMS. It can simulate the ordering process, production process
and the delivery process.
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Chapter 1

Introduction

There have been multiple shifts in the past with new technological advances in the industry, leading to
various industrial revolutions. Industry 4.0, also known as the fourth industrial revolution, is a new vision
for the future consisting of new technologies like advanced digitization, smart factories and Internet of
Things, among others, aimed at achieving full automation of the manufacturing industry.

One of the enablers of Industry 4.0 are cyber-physical systems (CPS) where the digital and physical
domains merge. These systems are characterised by a tight coupling between the cyber part, that is, com-
putation, communication and control, with the physical processes, monitored and controlled by the cyber
part. Usually, these two parts are designed separately, each using a specific set of engineering methods,
tools, and technologies that are loosely coupled both on a syntactic and on a semantic level. These are
also heterogeneous systems as they assimilate physical dynamics (continuous domain) with computational
systems (discrete domain) [1]. These systems are ubiquitous and are commonly found in areas of auto-
motive (autonomous automobile systems), aviation (automatic pilot avionics), infrastructure (smart grid),
healthcare (medical monitoring) and manufacturing (flexible manufacturing systems).

Flexible manufacturing systems (FMS) are integrated, flexible and automated machines with a com-
puter controlled complex of automated material handling system that can simultaneously process medium-
sized volumes of a variety of part types [2]. These machines quickly adapt to changes in market demands
with minimum cost by manufacturing a variety of products with high productivity, low cost and high accur-
acy. These machines have multiple production routes which can adapt to configuration changes resulting in
the best product quality at the highest possible throughput. Therefore, there is a need for control software to
control the product routing and execution order of products, while ensuring various system requirements.
The design and control of an FMS can be viewed in terms of three layers: Plant, Process Control layer and
Supervisory Control layer (Figure 1.1). Plant consists of the physical components of an FMS, for instance,
a robotic arm, which is controlled by the Process Control layer. The Process Control layer usually consists

Figure 1.1: Platform-based control layers of an FMS

Supervisory control for flexible manufacturing systems 1



CHAPTER 1. INTRODUCTION

of embedded controllers which controls the operation of physical components, for instance, movement of
the robotic arm. The design automation for this layer is rather mature and is handled by control engineers.
The Supervisory Control layer is a layer on top of the Process Control layer. It controls the embedded
controllers and ensures system requirements, in addition to preventing unsafe behavior of the system, such
as collision of robotic arms. The development of supervisory controllers is a complex challenge due to ever
increasing complexity of the FMS. Unlike the process control layer, the design automation for this layer is
not mature and there is no universally accepted methodology for it.

1.1 Activity Framework

One of the design methodologies for supervisory control is the activity framework ([3], [4], [5]) which
is shown in Figure 1.2. In the activity framework, the physical components of a manufacturing plant are
decomposed into peripherals and resources, with resources being composed of peripherals. For instance, in
an FMS, a robot is a resource, and its arm and gripper form its peripherals. The resources perform actions
such as pick up a workpiece using robot. The dependencies between various actions is given by activities.
For instance, picking up a workpiece at a workstation and moving to another workstation forms an activ-
ity. These activities are defined as a partial order over actions, and cover various functional requirements
and constraints that need to be adhered to. The activities are combined to form scenarios. The activity

Figure 1.2: Activity Framework

framework enables modeling the requirements of an FMS at the functional level in terms of a scenario and
obtaining the optimum sequence for that scenario, with respect to throughput or makespan by performing
timing analysis on the specified scenario. Using this methodology, the functional requirements are mod-
ularly and concisely specified, which facilitates scalability. The toolset which provides a mechanism for
activity modeling is Logistics Analysis and Specification Tool (LSAT) [6].

The activity framework does not form a complete design flow yet. No systematic approach exists
to bridge the gap from the functional level requirements to the software code for an FMS. Thus, a gap
exists between the functional level specification and the software level implementation. In addition, only
determinate scenarios can be modeled at present. This methodology does not provide any mechanism to
deal with exceptions, for instance, concerning a system’s response in case of a collision of a robotic arm.
Thus, there is a need to devise a method for handling exceptions in the activity framework at the functional
level.

2 Supervisory control for flexible manufacturing systems
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1.2 Tools Considered
Since a void exists between the functional level specification and the software level implementation of an
FMS, it is imperative to work with tools which operate at these levels, in order to bridge the gap. The
research will be carried within the scope of the two toolsets: LSAT which operates at the functional level,
and Dezyne which operates at the software level. For the software level implementation, Dezyne toolset is
considered as it is used in commonly used in the industry to model software components for systems.

1.2.1 Logistics Specification and Analysis Tool
LSAT enables modeling of an FMS using the activity framework. Its workflow is shown in Figure 1.3.
An FMS is modeled by decomposing its parts into various peripherals and resources, and modeling the
specifications through actions and activities. The interaction between physical components are defined in
terms of actions and the dependencies between various actions is given by activities, which are partially
ordered over actions. The controller is defined at the activity level and defines the order in which these
activities must be deployed. In LSAT, the controller is specified using CIF 3.0 [7] in which activities are
defined as an automata. Using these activities, a state space is generated on which logistics and constraints
automata are imposed to reduce the size of the state space generated. The execution time of each action is
captured in (max,+) matrices. The (max,+) automata is obtained as a product of (max,+) matrices and the
automata representing activities. Once (max,+) automata is generated, it can be analysed to obtain optimal
dispatching sequence (which is a sequence of activities).

Figure 1.3: Workflow of LSAT

The analysis available in LSAT is in the form of throughput and makespan. Throughput is the steady-
state product output per unit time, while makespan gives the completion time for manufacturing of a batch
of products [8].

LSAT cannot be used to model non-deterministic activity sequences. It only models good-weather
behavior. While verification of LSAT models using mCRL2 is under development, it does not have any
mechanism for Dezyne code generation. But it does give an optimum dispatching sequence for through-
put/makespan for a happy flow of activity sequences. This enables exploration of various design choices at
earlier stages of the development process.
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Although LSAT provides a mechanism to model an FMS using the activity framework methodology, it
will not be used for this project since it has a lot of features for defining specifications which is not needed
for the software code generation. Hence, a separate Domain Specific Language (DSL) will be developed
to specify the requirements of an FMS.

1.2.2 Dezyne Toolset
Dezyne [9] is a model-driven engineering toolset that allows users to model interface behaviors and imple-
mentation behavior of the components and generate executable code from these (Figure 1.4). In addition,
it provides a built-in formal verification engine, using mCRL2 language [10], to check the conformance of
implementations to the modeled interfaces. The model can be scanned for errors and checks for unwanted
properties like deadlocks, livelocks, incomplete mapping of events and responses, race conditions, illegal
actions and compliance.

Figure 1.4: Dezyne software cycle

Dezyne support models that captures the behavior of the software system. The model serves as a means
of communication between software designer(s) and other stakeholders. It ensures that the requirements
formulated by the stakeholders are thorough, complete and effectively implemented. Dezyne also allows
the software engineer to simulate software behavior at every step of the development process, which helps
to verify whether the system meets the requirements. Once tested and verified, computer code is automat-
ically generated from the model. [11]

In Dezyne, systems are modeled in terms of interfaces, components and behavior. Conceptually, an
interface specification describes the sequence of allowed and expected events that can take place at a given
interface. An Interface consists of functions which are used to trigger events. The implementation for an
interface is provided by the components. Components define the behavior of systems in terms of states and
the allowed events. Once the system is modeled, it can be verified and sequence diagram can be generated to
check the behavior. This is complementary to the UML/SysML approach in which first sequence diagrams
are defined followed by the behavior of the system.

1.3 Problem context
The design of the supervisory controller for an FMS is a complex problem, with complexity increasing with
the size of these systems. In addition, the design automation for this layer is not mature yet, and there is no
universal methodology to design and control an FMS. In this project, the activity framework is used as a
methodology for the supervisory control of an FMS. This framework operates at functional level but is not
complete. It enables one to specify the functional behavior of the system and to analyze various scenarios
to obtain optimal throughput and/or makespan. For this purpose, an FMS is abstracted into peripherals,
resources, actions, activity, activity sequences and scenarios. However, the scope of this project will be
limited to abstraction levels of resources, actions and activities, since including peripherals and activity
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sequences have its own set of challenges. This framework also lacks a mechanism to generate executable
Dezyne code from the models and no systematic approach yet exists to generate executable Dezyne code.
Thus, a gap exists between the functional level specification and the software level implementation. In
addition, only determinate behavior can be specified at present. There is no method to deal with exceptions
that may interrupt the execution of activities at runtime.

At the software level, the Dezyne toolset provides a platform to specify, design, validate and formally
verify the system. It can automatically generate code that meets safety and security requirements. In
addition, a mechanism exists to handle exceptions that may occur in the system. However, specifications
are at a lower abstraction level- the software level, in the form of actions, rather than defined as activity
sequences.

Therefore, there is a need for systematic translation from functional level specifications to software
level implementation. This can be achieved by translating activity models to Dezyne code. Once this is
achieved, exception handling will be incorporated in models at the functional level.

1.4 Problem statement
There is no complete design flow yet for the design and control of an FMS, and a gap exists between
the functional level specifications and the software level implementation for it. There is no systematic
translation from the specifications described in terms of activities to the software code. Also, no mechanism
for handling exceptions is present in the activities.

1.5 Research questions
The answers to the following research questions narrow the gap between functional specifications and
software implementation for an FMS.

1. How to generate Dezyne code from activity models?

2. How to handle exceptions in the activity framework?

1.6 Case study
For reasons of cost and effort, it is not possible to get easy access to industrial machines for performing
experiments. Assumptions made and approaches proposed cannot be validated and may be unrealistic
for practical industrial platforms. Hence, a simulation model is needed to enable development of novel
techniques that are practical in nature.

The Factory Four model [12] of FischerTechnik (Figure 1.5) is a highly flexible, modular, cost-effective
and robust training model that can be used to carry out highly technical logistical processes. It is ideal
for the demonstration of industrial automation. It is a small scale manufacturing system that depicts the
ordering process, the production process and the delivery process.

The Factory Four model, made available for this project by the ICT Group, Netherlands, is a combin-
ation of models: a sorting line with color recognition, a multi-processing station with oven, an automated
high-rack warehouse and a vacuum suction robot. It has a closed material cycle: widgets are outsourced
from the high-bay warehouse, processed in the processing station, sorted by color in the sorting plant and
then stored again in the high-bay warehouse. This is a never-ending, repetitive cycle. Still, the work flow
can be divided into two main sequences:

1. Warehouse sequence: Moving the widget from the high-bay warehouse to the multi-processing sta-
tion.

2. color sorter sequence: Moving the widget from the sorting line back to the high-bay warehouse.

The subsystems are described in detail below: [13]
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Figure 1.5: Factory Four model

1. Automated high-bay warehouse: It is a storage shelf that saves space and allows storage and retrieval
of goods. It can hold 9 widgets at a time in a 3x3 arrangement. Each widget is stored in a box placed
on the shelf. In addition, it has a separate robotic arm which moves these boxes from the storage
space to the conveyor belt. This belt moves forward and pushes out the box, making the widget
available to the vacuum gripper robot for picking. Once the widget is picked, the empty box is stored
back into the storage space.

2. Multi-processing station with oven: The widgets automatically pass through several stations that
simulate different processes in the multi-processing station with oven. Conveyor mechanisms such as
a conveyor belt, a turntable and a vacuum suction gripper are used. These peripherals communicate
with each other to prevent collisions. To initiate processing, a widget is placed on the oven pusher, the
kiln door opens, retracts the kiln slider and the door is closed. Simultaneously, the vacuum suction
gripper, which brings the widget to the turntable after the firing process, is requested. Following the
firing process, the kiln gate is re-opened and the kiln slider is re-extended. The positioned vacuum
suction gripper, already in place, picks the widget up, transports it to the turntable and places it
there. The turntable positions the widget under the miller, waits there until the job is finished and
then moves the widget to the ejector. The ejector pushes the widget onto the conveyor belt, which
conveys the widget to the sorting system.

3. Sorting line with detection: The sorting path with color recognition automatically separates differ-
ently colored widgets. A conveyor belt feeds geometrically identical but differently colored compon-
ents into a color sensor, where they are separated according to color using an optical color sensor.
Once the color is recognised, the ejector pushes the widget to their respective bearing locations.

4. Vacuum gripper robot: Three-axis robot with vacuum suction gripper positions widgets quickly and
precisely in the three-dimensional space. It picks up the widget and moves it within the working
space. Positioning the suction gripper or transporting the widget can be defined as a point-to-point
movement or as a continuous path. Controlling the individual axes can take place sequentially and /
or in parallel and is significantly influenced by obstacles present in the work space.

1.7 Research Approach

The systematic translation from functional level specifications to the software level implementation for an
FMS will be achieved through the following steps:
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1. Define the functional requirements of an FMS: The functional requirements of an FMS is defined in
terms of activities, actions and resources, and specifying the dependencies between actions.

2. Develop a Domain Specific Language (DSL) to define activity models: Since the LSAT provides
specifications which are too descriptive for the purposes of this project, a new DSL is developed to
define specifications of an FMS. The activity model uses concepts of the activity framework, and
specifies the system in terms of resources, actions and activities.

3. Translating the activity model to Dezyne code: To obtain the translation, concepts of the activ-
ity framework is mapped to the Dezyne elements. This includes defining events for activities and
actions, and handling dependencies between actions. This translation is then generalised and an
algorithm is obtained.

4. Develop a Domain Specific Language (DSL) to define translation models: Another DSL is developed
to define the translation model that specifies information needed for the translation of an activity
model to the Dezyne code. This mainly contains defining events for the activity, and actions con-
tained in that activity. The algorithm obtained for translation is added to this DSL for automated
Dezyne code generation.

5. Handling exceptions: The solution is then extended for handling exceptions. The mechanism to
handle exceptions is incorporated in the activity framework by defining specification and semantics
for an exception. It is, then, added to the DSL defining the activity model. Next, the exception is
mapped to the Dezyne elements by defining events and handling dependencies between actions in
case an exception occurs. This is then generalised and an algorithm is obtained. This algorithm,
along with the events, is then added to the DSL of the translation model for automated Dezyne code
generation in case an exception occurs.

6. Validation: The translation is tested for accuracy using the Gantt charts obtained from modeling
activities in LSAT, which is then compared with the Gantt charts obtained from sequence diagrams
of the generated Dezyne code.

7. Verification of the generated code: The generated Dezyne code is verified for deadlock, livelock,
completeness, compliance, illegal events, non-determinism, and type and range error in the Dezyne
environment.
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Literature Study

2.1 Modeling an FMS

Development of FMS is a complex challenge since there is a gap that exists between functional level spe-
cifications and software level implementation. Systems are logical and physically divided, they need to run
on different platforms, meet specific execution times and address communication issues. The complexity
created by this gap between the problem domain and the deployment domain needs to be reduced through
various modeling techniques.

An automata based modeling language Compositional Interchange Format (CIF) [14] provides a method
for modeling a CPS and supports synthesis of a supervisory controller, along with simulation-based val-
idation and verification of models. The system is modeled as an uncontrolled plant on which control
requirements are superimposed to generate a supervisory controller. CIF language is used in LSAT to
specify the possible activity sequences in terms of automata, although it does not offer explicit support to
model activities.

UML and SysML also provide a mechanism to specify the behavior of a system in terms of activities
[15] which can be used to model a wide range of applications. UML supports structural modeling and
behavioral modeling. It defines the semantics of actions which serve as fundamental units of behavior
specifications. The sequence of action executions is defined by control flows or object flows which ad-
ditionally provide input to actions from outputs of other actions using tokens. Tokens are not explicitly
modeled in an activity, but are used for describing the execution order of actions in an activity. A graphical
representation of an activity is given by an activity diagram [16]. It consists of action nodes interlinked by
control flows. The control nodes such as forks, joins, decision and merge nodes are used to manage the
control flow in case of parallel execution and decision-based execution of action nodes.

A formal modeling approach using model based method to design FMSs is proposed in [3], [4] and
[5]. These form the basis for the activity framework. While the former two focus on design of throughput-
optimal supervisory controllers for FMS, the latter extends the work to makespan-optimal supervisory
controllers for FMS. A scenario based modeling method is introduced in which functioning of the system
is described using determinate activities. These activities represent run-time situations which are abstrac-
ted into scenarios. Activities capture various functional behaviors such as complete manufacturing of a
product. Using scenario based modeling approach a supervisory controller is synthesized which guaran-
tees functional correctness in addition to optimizing performance criteria. It restricts the model behavior to
ensure that only proper behavior is allowed. It builds upon activity models, and uses (max,+) algebra for
performance analysis and design-space exploration.

2.2 Handling exceptions in an activity

The activity framework does not have a mechanism to handle exceptions. UML provides two constructs
for handling exceptions in an activity: [17], [18]
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1. Interruptible region: In case of interruptible region construct, a raised exception is passed from the
point at which it is raised along the activity, until it reaches an action protected by an exception
handler which is contained in the interruptible region. All tokens are destroyed in the part of activity
from which raised exception passes through to reach the exception handler, after which the exception
handler is executed. This usually results in abandonment of the activity or a portion of it.

2. Exception parameters: The other exception handling facility concerns the exception parameters.
These provide output values to the outing control flow for actions. They destroy all the tokens in the
activity or action they flow out of. If an exception output is provided, the other outputs and outgoing
control are not, and the action must immediately terminate.

2.3 Code generation from activities
UML is not a fully formal language. It does not use a fully formalized semantics. In many places natural
language is used for model specification. This leads to a scenario where the precise model presentation is
difficult and leads to ambiguity during automatic implementation of UML models.

In order to use a UML diagram for code generation, it must be complemented with specification lan-
guages. One such language is the Object Constraint Language (OCL) [19] which is used in [20] for gen-
erating code from the activity diagrams. The activity diagram is considered a graph which supports the
traversal through the activity diagram and generate the overall execution logic of the system. OCL expres-
sions are included in the activity diagram to formally specify the constraints in a precise and concise way.
The system design is prepared in activity diagram and additional details are added using OCL expressions.
This system model is then converted to XML format, which after checking the OCL expressions, is passed
to the code generation module.

A model-driven engineering approach focussed on the generation of C++ code from UML models
is given in [21]. The behavior specifications of a system is modeled in terms of UML state-machine
diagrams using the Action Language for Foundational UML (ALF) [22] and follows component-based
pattern for code generation. The code generation process is composed of model-to-model transformation
that transforms the input into intermediate representations. These intermediate representations consists
of an instance model and an intermediate model. An instance model represents components and ports
instances for enabling correct generation of the communication links between components at code level.
The intermediate model contains all the required information, both structural and behavioral, derived from
the design model to generate full implementation code. Finally, the C++ implementation code is generated
through model to text transformation that entails both static and behavioral descriptions of the system.

In [4], a supervisory controller developed using the activity framework is translated into a controller
that directs the execution of activities on the physical platform in real-time. It can dynamically schedule
activities and respond to external triggers such as different types of products that are fed to the system.
The transformation is applicable to platforms that provide an event-driven programming architecture to
interact with the hardware. In this architecture, there is a main event loop that continuously checks for
the occurrence of the events. Event handlers are linked to this loop to perform actions when an event
occurs. The callbacks to all events that occur in the event loop are registered. The controller is linked to
the application programming interface (API) of the system that abstracts from the hardware details. The
precise implementation of the actions and the activities is dependent on the platform.
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Translation from Activity model to
Dezyne code

An FMS is modeled using the activity framework. The functional behavior is expressed as activities and
activity sequences. An activity consists of partially ordered actions performed by peripherals on various
resources. The specifications of an FMS are defined in LSAT in terms of peripherals, resources, actions and
activities. Since the scope of this project is restricted to resources, actions and activities, LSAT specific-
ations become too expressive in nature due to various specification features available for the peripherals.
To keep specifications concise, a new Domain Specific Language (DSL) is developed, which is a subset of
LSAT. Further, the semantics of executing an activity is explained and represented in terms of Gantt charts.

The software level implementation for these activities is expressed as Dezyne models. A model in
Dezyne has components which interact with interfaces through events. The activity is mapped to Dezyne
code by defining events for activity, and actions contained within that activity, while handling dependencies
between actions. Once this mapping is achieved, the rules for transformation is defined and an algorithm is
developed for automated translation of an activity model to the Dezyne code. The information needed for
translation and the algorithm is added to another DSL and automatic Dezyne code is generated.

3.1 Activity Framework
The activity framework is a scenario-based formal modeling approach for the design of an FMS. In this
framework, system functionality is described using determinate activities. These activities capture various
functional behaviors such as the complete manufacturing of a product. Using scenario based modeling
approach a supervisory controller is synthesized which guarantees functional correctness in addition to
optimizing the performance criteria.

The physical components of an FMS is abstracted in terms of peripherals, resources and actions. The
system consists of a set of peripherals which execute actions. The set of peripherals is aggregated into
resources. These resources can be claimed before performing an action and released after an action com-
pletes execution. On top of these actions, an activity is constructed to define functional behavior of the
system, for instance, a manufacturing operation. An activity is specified as a directed acyclic graph, which
consists of a set of actions executed on different resources, and a set of dependencies between those ac-
tions. A scenario captures more elaborate functional behaviors by considering multiple activities, such as
the complete manufacturing of a product in an FMS. It defines the order in which various activities are
executed.

The structure of an activity as a directed acyclic graph is shown using three example cases in Figure
3.1. The nodes in the graph represents either an action executed by a peripheral (shown in green), or the
claim or release of a resource (shown in orange).

Activity Act1 has one resource r1 executing two actions a and b. Action a is executed by peripheral p1
and action b is executed by peripheral p2. At the start of the activity, resource r1 is claimed and once the
actions complete execution, the resource is released.
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Figure 3.1: Activities Act1, Act2 and Act3

Similarly, activity Act2 has two resources r1 and r2 executing actions c and d respectively. Action c is
executed by peripheral p3 on resource r1 and action d is executed by peripheral p4 on resource r2. In this
activity, no dependency is defined between actions c and d. Hence, these actions can execute concurrently.

The dependency is defined for actions e and f in activity Act3. It has two actions e and f executed on
resources r1 and r2 respectively. However, action f must execute after action e. This dependency is shown
as an edge emanating from action e and ending at action f.

3.2 Specification of an activity

3.2.1 Logistics Specification and Analysis Tool (LSAT)
The model-based engineering tool which enables the design and analysis of an FMS using the activity
framework is the Logistics Specification and Analysis Tool (LSAT). In LSAT, an FMS is defined in terms
of resources, peripherals, actions, motion profiles, and activities which are a set of partially ordered actions
executed by the peripherals. The following types of specifications can be created in LSAT for a system: [8]

1. Machine specification: In this specification, physical components of a system is defined in terms
of resources, peripherals and actions. The specification starts with defining a peripheral which can
be either movable or unmovable in nature. Next, for each peripheral, the actions it can execute is
specified. For movable peripherals, for each action, set points and axes are defined. Set points specify
the physical coordinate system of the peripheral on which the motion profile settings are applied, and
axes relate to the symbolic coordinate system on which the physical locations are applied. An axis
specifies which set points change when its value changes.

After defining a list of peripherals with their corresponding actions, resources are specified for a
system. For each resource, the peripherals it contains are defined. For every movable peripheral in a
resource its symbolic positions are also specified. In case, a peripheral has multiple axes, a symbolic
position may be expressed in terms of its axes position.

Next, paths, and profiles for the defined paths are described. Paths refer to the moves that are allowed
in the system. If a path is declared between two locations the move is allowed using the speed profile
as specified by the path. A path can be a unidirectional path, a bidirectional path or a full mesh.

2. Setting specification: The setting specification establishes the profiles and positions for the defined
peripherals. For a movable peripheral, it is required to set the motion profiles which can be either
a third-order profiles or a second-order profiles. There is also an option to specify settling time
per profile. For symbolic positions, a physical relative location is indicated which can be a set of
maximum, minimal and default values, or a fixed value. Next, for each action executed by the
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peripheral, timing must be specified. This timing can be either a fixed value or may vary in nature.
The varying timing value is usually indicated using distributions such as a normal distribution, a
triangular distribution or a PERT distribution.

3. Activity specification: In this specification, an activity is described by defining individual actions
and specifying dependencies between these actions. As a prerequisite, the initial positions of all
movable peripherals used in the activity is specified. Next, a list of actions contained in this activity
is defined. An action can be either a resource claiming action, a resource releasing action or an action
executed by a peripheral. A variable name is defined for each action. Subsequently, an action flow
is defined to specify dependencies between actions. These dependencies are indicated using arrows
− > and sync bars |. The arrows represent sequential execution of actions. For instance, a1− >a2
specifies that action a2 starts execution when action a1 completes. A sync bar is used to specify
synchronization points in an activity. For instance, a1− > |S1− >a2 and |S1− >a3 specifies that
actions a2 and a3 start execution concurrently after action a1 completes execution.

4. Activity dispatching specification: This specification enables the scheduling of a sequence of activ-
ities. Initially, the number of iterations specify the default number of iterations for all resources or
for a specific resource, in order to calculate the throughput. Next, an activity sequence is specified
within activities, which contains one or more activities. These activities are scheduled as parallel
as possible adhering to the claiming and releasing of resources. If activities cannot be scheduled in
parallel the order specified is applied. Optionally, an offset can be indicated which ensures that the
activities do not start before the offset time.

The analysis available in LSAT is in the form of throughput and makespan. Throughput is the steady-
state product output per unit time, while makespan gives the completion time for manufacturing a batch
of products. These parameters also enable improving performance by identifying where the specification
can be optimized. However, performance optimizations and analysis is not required for Dezyne code
generation, hence, these features become unnecessary.

In addition, for the purpose of this project, the specifications for activities provided by LSAT is rather
rich and even superfluous in nature. Since the scope of this project is limited to the activity level, the
specifications for activity sequences becomes expendable. This completely eliminates the need for activity
dispatching specification in the DSL. In addition, as only one activity is dealt with at a time, the need
for claiming and releasing of resources specified in activity specification is also eliminated. Furthermore,
LSAT is user-friendly in nature, hence, it has syntactic sugar such as sync bars to specify the dependencies
between various actions within an activity. However, these dependencies can be specified without the use
of sync bars, making them redundant for the purposes of this project.

In this project, resources form the lowest aggregation level of the physical components of an FMS,
rather than the peripherals. Since the concept of peripherals is excluded from the scope of this project, the
need for setting specification in LSAT is completely eliminated. Furthermore, in machine specification, the
various features related to peripherals which are available in LSAT, for instance, set points, symbolic and
axes positions, motion profiles, etc. become unnecessary for the purposes of this project.

LSAT only models determinate scenarios. It has no mechanism to deal with handling exceptions, that
is, specifying that an exception may occur in an activity and defining the response of the system when an
action fails. Since one of the goals of this project is to include exceptions in the activity framework, the
specification that an exception may occur must be included in an activity model. However, LSAT does not
provide a mechanism to do so.

For the reasons listed above, a Domain Specific Language (DSL) is developed as an intermediate step
towards Dezyne code generation (Figure 3.2). It contains concepts which form a subset of LSAT, in spe-
cific, resources, actions and activities, to describe the specifications of an FMS. It is further extended to
include exceptions in an activity model.
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Figure 3.2: Activity DSL as an intermediary for code generation

3.2.2 Developing a Domain Specific Language (DSL) to define activity models:
Activity DSL

Domain Specific Languages are specific languages created to capture or document the requirements and
behavior of a specific domain. It solves a limited set of problems and supports a definitive set of tasks
related to that domain. It is created for a limited sphere of applicability and use for a specific context, while
being powerful enough to represent and address the problems and solutions in that sphere. [23]

A textual DSL, called the Activity DSL, is developed to provide specification of an FMS using the
activity framework in terms of resources, actions and activity. This DSL acts as an intermediary to generate
Dezyne code from the specifications of an FMS.

Activity Model

To model an FMS, a list of Resources with their corresponding actions is defined. A resource is specified
with the keyword Resource followed by a name of that resource. Next, the type of actions executed on
that resource is defined. An action type is specified using the Action type keyword followed by a name
for that action. Once all the resources and their corresponding action types are specified for a system,
the activities can be defined. An activity is specified using the Activity keyword followed by its name.
Next, instances of action types running on different resources contained within that activity are specified
with a variable to denote each action. Each action type in the list refers to the resource it is executed on.
This is specified using a format variable: resource name.action type name. The Dependencies specify the
relationship between the various actions, that is, which actions must complete in order for the next actions
to start. This is specified using a -> syntax. In case multiple actions need to complete for an action to
start, each dependency must be specified individually. In case there is an action for which no dependency
is defined, it is executed in parallel since an activity is partially ordered over actions.

For an activity model, the following rules are defined in the Activity DSL:

1. Unique resource name: No model can have two or more resources with the same name.

2. Unique action names within a resource: Two or more actions within the same resource are not
allowed to have identical names. However, identical action names executed on different resources
are allowed.

3. Unique activity name: A user can specify multiple activities in an activity model but identical names
for two or more activities are not allowed.

4. Unique variables for actions within an activity: While defining the instances of actions in an activity,
no two or more actions are allowed to have same variables. In case there are two instances of the
same action in an activity, they can be specified using two different variables.

5. Self-dependency: A dependency from an action to itself is not allowed.

6. Duplicate dependencies: The case where a dependency between two actions is specified more than
once is not allowed.

The activity model for our example cases is shown below. There are two resources r1 and r2. As can
be seen from Figure 3.1, actions a, b, c and e are executed on resource r1. Actions d and f are executed
on resource r2. Next, activity Act1 is defined. It has two actions a and b running on the same resource r1.
The list of actions within the activity are indicated as A1: r1.a and A2: r1.b. Next, dependencies between
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actions are specified. The only dependency in this activity is that action b must execute after action a. This
is indicated in the DSL as A1 -> A2.

Similarly, activity Act2 is defined. It has two actions c and d running on different resources, resource
r1 and r2 respectively. The instances of action types within the activity is defined as A3: r1.c and A4: r2.d.
Next, dependencies between actions are specified. Since, there is no dependency between actions c and d,
they can execute concurrently.

Next, activity Act3 is defined. It has two actions e and f running on different resources, resource r1
and r2 respectively. The instances of action types within the activity are defined as A5: r1.e and A6: r2.f.
Next, dependencies between actions is specified. The only dependency in this activity is that action f must
execute after action e. This is indicated in the DSL as A5 -> A6.

The activity model for activities Act1, Act2 and Act3

1

2 Resource r1

3 Action type a

4 Action type b

5 Action type c

6 Action type e

7 Resource r2

8 Action type d

9 Action type f

10

11 Activity Act1

12 Criticality level 0

13 A1 : r1.a

14 A2 : r1.b

15 Dependencies

16 A1 -> A2

17

18 Activity Act2

19 Criticality level 0

20 A3 : r1.c

21 A4 : r2.d

22 Dependencies

23

24 Activity Act3

25 Criticality level 0

26 A5 : r1.e

27 A6 : r2.f

28 Dependencies

29 A5 -> A6

3.3 Semantics of an activity

The execution of an activity has two main aspects: synchronisation and delay. Synchronisation means
when an action waits for all incoming dependencies to complete, and delay means that the action takes a
fixed amount of time to execute. The activity framework has timing information on action level, activity
level, and activity sequence level. In LSAT, the timing for each action executed by a peripheral is specified
in setting specification. This is extracted in (max,+) matrices. Using this, the timing information at activity
level and activity sequence level is obtained. [5]

The execution time for each action in the examples is introduced in Figure 3.3. The actions running
on resource r1 take 1 time unit to execute whereas actions running on resource r2 take 2 time units. The
execution of the activities is shown as a Gantt chart in Figure 3.4. The time and resources are represented
on the X and Y axis respectively. Thick edges indicate the time at which resources are claimed and released
by the activity.

Activity Act1 uses only resource r1 which executes two actions a and b with execution time of 1 time
unit. Resource r1 is claimed at time stamp 0 and action a starts execution. It executes till time stamp 1.
Action b starts execution only after action a completes execution. Action a completes at time stamp 1 and
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Figure 3.3: Activities Act1, Act2 and Act3 with timing information

action b starts execution. Action b completes execution at time stamp 2, the resource r1 is released, and
activity Act1 completes execution. Thus, the execution time of activity Act1 is 2 time units.

Figure 3.4: Gantt chart for activities Act1, Act2 and Act3

Activity Act2 uses resource r1 and r2, which execute two actions c and d with execution time of 1 and
2 time units respectively. Since there is no dependency defined between actions c and d, these actions can
execute concurrently. Both resources are claimed at time stamp 0. Action c starts executing on resource r1
and simultaneously, action d starts executing on resource r2. Action c completes execution at time stamp
1 and resource r1 is released. Action d completes execution at time stamp 2, resource r2 is released and
activity Act2 completes execution. Thus, the execution time for activity Act2 is 2 time units.

Activity Act3 uses resource r1 and r2, which execute two actions e and f with execution time of 1 and 2
time units respectively. Since there is a requirement that action f must execute after action e, only resource
r1 is claimed at time stamp 0 and action e starts execution. It executes till time stamp 1 and resource r1 is
released. Once action e completes execution, resource r2 is claimed and action f starts execution. Action
f completes execution at time stamp 3, the resource r2 is released, and activity Act3 completes execution.
Thus, the execution time for activity Act3 is 3 time units.
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Figure 3.5: Dezyne abstraction levels

3.4 Dezyne Toolset
Dezyne is a model-driven software engineering tool that enables the design of the structure and behavior
of a software system. It provides software engineers with a methodology to create, explore and formally
verify component based designs for embedded and technical software systems. It provides a complete
environment for specifying, designing, testing, generating and building model based software components.
Graphical representations of component models in the form of state charts, event tables, system models
and sequence charts enable engineers to easily understand, navigate, communicate and document their
architectures and designs. Software components built with Dezyne are simple to reuse and easy to extend.

Dezyne has a formally specified semantic which enables the direct translation of a model into mathem-
atical representation which is then subjected to automated analysis using formal methods. If a design error
is found, the sequence of events that led to that error is displayed in the Dezyne simulator. [24]

3.4.1 Modeling in Dezyne

A Dezyne component is described using two model types, an interface specification model and a component
implementation model [25]. Interface specifications define the externally visible behavior of a component.
Implementation models contain the operational logic of a component which are verified against any inter-
face specification they provide or require, and can therefore, be easily composed into complete hierarchical
systems (Figure 3.5).

An interface contains the definition of the events, their direction (in or out) and, a specification of the
externally visible behavior of the component that will provide an implementation of the interface. It has
a behavior describing the protocol of its events. The direction of events is determined as seen from the
component providing the service. The stimulus that comes into the components is defined by in events
and the component’s response to it is given by out events. Components use or provide functionality via
interfaces and cannot directly interact with other components. Therefore, interface specifications does not
contain component implementation details.

A component implements a certain functionality or a component implementation may use the function-
ality offered by other components. The functionality that is offered by a component to others is defined
in that component’s interface. A component behaves according to its provided interface and makes use
of other components through their required interfaces. Communication between components is performed
through their ports, which are instances of interfaces. Each port has a direction according to its intention

16 Supervisory control for flexible manufacturing systems



CHAPTER 3. TRANSLATION FROM ACTIVITY MODEL TO DEZYNE CODE

(provides or requires).
The functionality of a component can be used by sending and receiving events to and from the com-

ponent through ports over the interface. The behavior contains a collection of statements that define the
actions that will be performed based on the events received. The behavior specifies which events can be
received and sent at which stages in the execution process, or in other words, the protocol a user of the
interface must obey. Actions can change the value of a variable, invoke a function, generate another event
or change to another state. In response to one event trigger, there can be different actions.

3.5 Translating an activity model to Dezyne code
An activity in the Dezyne environment is defined using an interface and a corresponding component for
it. The activity interface defines the start and end behavior of the activity. It defines the sequence
of allowed actions from various resources. These resources have a separate interface and a corresponding
component. The resource interface defines the actions which that resource can execute.

Transition into the next or the post action in the component is triggered by the completion of previous
actions. The action itself is defined in terms of events, in particular, the in and out events. Events often
originate from inside the system, such as finishing of a task. As soon as the incoming transition of an action
is triggered, its entry (in) event starts executing. Once the entry event has finished execution, the action is
considered to be complete. When the action is complete, the outgoing transition is enabled along with an
end (out) event. This out event triggers the execution of subsequent actions.

In case, multiple actions need to finish in order to execute the next action, Boolean variables can be used
to keep track of completion status of each action. The completion Boolean is initially set to false. When an
action completes execution, it is set to true. Before execution of the next action, the completion Booleans
of all incoming dependent actions are checked and if they are all true, then the action starts execution with
its in event triggered.

The behavior for the software component of the activities in the example cases can be represented in
terms of an activity diagram with events mapped to it as shown in Figure 3.7. Activity Act1 starts with the
StartAct1() event. This triggers action a to start execution which is the initial action of this activity, and
Start a() event is called. When action a completes execution Complete a() event is returned, which triggers
action b to start execution. Action b starts by calling Start b() event and forms a post action of action a as it
executes after a. When action b finishes Complete b() event is returned, and this triggers CompleteAct1()
event indicating the end of the activity.

Similarly, activity Act3 starts with the StartAct3() event. This triggers action e to start execution which
is the initial action of this activity, and Start e() event is called. When action e completes execution Com-
plete e() event is returned, which triggers action f to start execution by triggering Start f() event. Action f
is a post action of action e as it executes after e. When action f finishes Complete f() event is returned, and

Figure 3.6: Activity model mapped to Dezyne elements
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Figure 3.7: Activities Act1, Act2 and Act3 with events

this triggers CompleteAct3() event indicating the end of the activity.
Execution of activity Act2 differs from the other two activities. Act2 starts with the StartAct2() event.

There are two initial actions c and d which execute in parallel. The start of the activity triggers execution of
Start c() event and Start d() event. Since the activity should end only when both actions complete execu-
tion, actions c and d form a set of dependent actions for the completion of the activity. Boolean completion
variables are used to keep track of the status of these actions, for instance, c complete and d complete. Ini-
tially, both variables are set to false. When action c completes, Complete c() event is returned and variable
c complete is set to true. Similarly, when action d completes, Complete d() event is returned and vari-
able d complete is set to true. When both actions complete and their corresponding Boolean completion
variables are set to true, then activity completes execution with the event CompleteAct2().

3.5.1 Rules of translation
The mapping of an activity to Dezyne code follows the following set of rules:

1. Activity events ∈ {Start_A, End_A}.
For each activity, to define its start and end behavior in the activity interface, a tuple of two
events is defined: a start event Start_A defined as an in event, and an end event End_A defined as
an out event.

2. Activity interface states ∈ {idle, execute}.
Each activity interface has two states: idle and execute. The initial state is the idle state.
When the activity starts execution with the invocation of start event Start_A the state changes to
execute. Once the execution of the activity completes, the end event End_A is called and the state
reverts to the idle state.

3. Action events ∈ {start_action_event, end_action_event}.
For each action, to define its start and end behavior in the resource interface, a tuple of two
events is defined: a start event start_action_event defined as an in event, and an end event
end_action_event defined as an out event.

4. Action status variable ∈ {true, false}.
For each action, a Boolean variable action_complete is defined in the activity component to
represent its execution status; if an action completes execution its value corresponds to true otherwise
its false.

5. Dependencies between actions ∈ {Initial actions, dep, post}.
Initial actions are the actions triggered by the start of the activity.
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Dep(a) is a set of actions that need to complete before action a can start.
Post(a) is a set of actions triggered by the completion of action a.

6. Activity component states ∈ {idle, execute}.
Each activity component has two states: idle and execute.

(a) The initial state is the idle state. In the idle state, when the start event of the activity
Start_A is called, it triggers the execution of start_action_event of the corresponding
initial actions and the state changes to execute.

(b) In the execute state, the sequence of actions corresponding to different resources, following
the completion of initial actions, is executed. This sequence of actions is defined using
a set of dependencies. If an action completes execution, the end_action_event is triggered
and its corresponding Boolean completion variable is set to true. Then, its dependent actions
(dep) are checked for completion, and once completed, all post actions (post) are triggered
for execution using their corresponding start_action_event. Once all actions complete
execution, EndActivity function is invoked. This function contains the end event of the
activity End_A and a Reset function. The Reset function sets the action completion variables,
action_complete back to false, and reverts the activity component state to idle state.

3.5.2 Algorithm for translation
Using the above rules, an algorithm that translates an activity to the Dezyne code is given below.

1. Interface
Inputs: name of the activity <Activity_Name>, and two events defining the start and end of the
activity: <Start_A>,<End_A>

1 interface I<Activity_Name > {

2

3 // Define start and end events

4 in void <Start_A >();

5 out void <End_A >();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t {IDLE , EXECUTE };

10 //Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 // Define behaviour for start event of activity

15 on <Start_A >: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on <Start_A >: illegal;

22 on inevitable: {

23 // Return end event of activity

24 <End_A >;

25 state = Activity_states_t.IDLE;

26 }

27 }

28 }

29 }
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2. Component

Resource <resource_name> provides interface <interface_name>with the action <action_name>
which starts with <start_action_event> and ends with <end_action_event>.

1 import <resource_interface_name >.dzn;

2

3 component <Activity_Name >_Comp {

4

5 provides I<Activity_Name > p_<Activity_Name >;

6 requires <resource_interface_name > r_<resource_name >;

7

8 behaviour {

9

10 // Define two states

11 enum Activity_states_t {IDLE , EXECUTE };

12 // Set initial state to IDLE

13 Activity_states_t state = Activity_states_t.IDLE;

14 // For every action <action_name > define a boolean variable

15 bool <resource_name >_<action_name >_complete = false;

16

17 void Reset()

18 {

19 state = Activity_states_t.IDLE;

20 <resource_name >_<action_name >_complete = false;

21 }

22

23 void EndActivity () {

24 p_<Activity_Name >.<End_A >();

25 Reset();

26 }

27

28 [state.IDLE] {

29

30 // Define behaviour for start event of activity

31 on p_ <Activity_Name >.<Start_A >(): {

32 state = Activity_states_t.EXECUTE;

33

34 // Insert code to start the first actions

35 // For every action in initials

36 r_<resource_name >.< start_action_event >();

37

38 }

39 }

40

41 [state.EXECUTE] {

42

43 // Generate code following the activity dependencies

44 // Given a tuple <a, dep , post >

45 // a = an action of resource named <resource_name >

46 // dep = all actions that need to be completed before a can start

47 // post = all actions that need to be started when a completes

48

49 on r_ <resource_name >.<end_action_event >(): {

50

51 // For action a, change boolean to indicate a finishes execution

52 <resource_name >_<action_name >_complete = true;

53

54 if (<all actions in dep have their boolean to true >) {

55

56 // If post is not empty , start all post actions

57 // For all actions in post

58 r_<resource_name >.< start_action_event >();

59

60 // If post is empty , then complete the activity

61 EndActivity ();

62 }

63 }
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64 }

65 }

66 }

3.6 Developing a Domain Specific Language (DSL) to define trans-
lation model: Transformation DSL

After specifying activities in the Activity DSL, in order to generate Dezyne code, additional information is
needed which is specified in another DSL, called the Transformation DSL. This DSL defines translation
models. In a translation model, for each activity, its start event and end event are specified. For each
resource used within the activity, a resource interface is mentioned, and for each action executed in an
activity on that resource, a start event and an end event is specified. The translation model for the example
cases is shown below.

1 Activity Act1

2 StartEvent: StartAct1 ()

3 EndEvent: CompleteAct1 ()

4

5 Activity Act2

6 StartEvent:StartAct2 ()

7 EndEvent: CompleteAct2 ()

8

9 Activity Act3

10 StartEvent: StartAct3 ()

11 EndEvent: CompleteAct3 ()

12

13 Resource r1

14 Interface: Ir1

15

16 Action a

17 StartEvent: Start_a ()

18 EndEvent: Complete_a ()

19

20 Action b

21 StartEvent: Start_b ()

22 EndEvent: Complete_b ()

23

24 Action c

25 StartEvent: Start_c ()

26 EndEvent: Complete_c ()

27

28 Action e

29 StartEvent: Start_e ()

30 EndEvent: Complete_e ()

31

32 Resource r2

33 Interface: Ir2

34

35 Action d

36 StartEvent: Start_d ()

37 EndEvent: Complete_d ()

38

39 Action f

40 StartEvent: Start_f ()

41 EndEvent: Complete_f ()

3.7 Results
After specifying an activity model and a translation model in the Activity DSL and the Transformation
DSL respectively for the example cases, Dezyne code is generated as shown in figure 3.8. The Dezyne
code for resources r1 and r2 is given in section A.1.1 for reference.
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Figure 3.8: Dezyne code generation from Activity DSL and Transformation DSL

1. For Act1 the generated code is shown below.

(a) Interface
1 interface IAct1 {

2 // Define start and end events

3 in void StartAct1 ();

4 out void CompleteAct1 ();

5

6 behaviour {

7 // Define two states

8 enum Activity_states_t { IDLE , EXECUTE };

9 // Set initial state to IDLE

10 Activity_states_t state = Activity_states_t.IDLE;

11

12 [state.IDLE] {

13 // Define behaviour for start event of activity

14 on StartAct1: {

15 state = Activity_states_t.EXECUTE;

16 }

17 }

18

19 [state.EXECUTE] {

20 on StartAct1: illegal;

21 on inevitable: {

22 // Return end event of activity

23 CompleteAct1;

24 state = Activity_states_t.IDLE;

25 }

26 }

27 }

28 }

(b) Component
1 import IAct1.dzn;

2 import Ir1.dzn;

3

4 component Act1_Comp {

5 provides IAct1 p_Act1;

6 requires Ir1 r_r1;

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 // For every action define a boolean variable

15 bool r1_a_complete = false;

22 Supervisory control for flexible manufacturing systems



CHAPTER 3. TRANSLATION FROM ACTIVITY MODEL TO DEZYNE CODE

16 bool r1_b_complete = false;

17

18 void Reset() {

19 state = Activity_states_t.IDLE;

20 r1_a_complete = false;

21 r1_b_complete = false;

22 }

23

24 void EndActivity () {

25 p_Act1.CompleteAct1 ();

26 Reset();

27 }

28

29 [state.IDLE] {

30 // Define behaviour for start event of activity

31 on p_Act1.StartAct1 (): {

32 state = Activity_states_t.EXECUTE;

33

34 // Insert code to start the first actions

35 // For every action in initials

36 r_r1.Start_a ();

37 }

38 }

39

40 [state.EXECUTE] {

41 on r_r1.Complete_a (): {

42 r1_a_complete = true;

43 r_r1.Start_b ();

44 }

45

46 on r_r1.Complete_b (): {

47 r1_b_complete = true;

48 EndActivity ();

49 }

50 }

51 }

52 }

2. For Act2 the generated Dezyne code is shown below.

(a) Interface

1 interface IAct2 {

2 // Define start and end events

3 in void StartAct2 ();

4 out void CompleteAct2 ();

5

6 behaviour {

7 // Define two states

8 enum Activity_states_t { IDLE , EXECUTE };

9 // Set initial state to IDLE

10 Activity_states_t state = Activity_states_t.IDLE;

11

12 [state.IDLE] {

13 // Define behaviour for start event of activity

14 on StartAct2: {

15 state = Activity_states_t.EXECUTE;

16 }

17 }

18

19 [state.EXECUTE] {

20 on StartAct2: illegal;

21 on inevitable: {

22 // Return end event of activity

23 CompleteAct2;

24 state = Activity_states_t.IDLE;

25 }

Supervisory control for flexible manufacturing systems 23



CHAPTER 3. TRANSLATION FROM ACTIVITY MODEL TO DEZYNE CODE

26 }

27 }

28 }

(b) Component
1 import IAct2.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4

5 component Act2_Comp {

6 provides IAct2 p_Act2;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {

11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 // For every action define a boolean variable

17 bool r1_c_complete = false;

18 bool r2_d_complete = false;

19

20 void Reset() {

21 state = Activity_states_t.IDLE;

22 r1_c_complete = false;

23 r2_d_complete = false;

24 }

25

26 void EndActivity () {

27 p_Act2.CompleteAct2 ();

28 Reset();

29 }

30

31 [state.IDLE] {

32 // Define behaviour for start event of activity

33 on p_Act2.StartAct2 (): {

34 state = Activity_states_t.EXECUTE;

35

36 // Insert code to start the first actions

37 // For every action in initials

38 r_r1.Start_c ();

39 r_r2.Start_d ();

40 }

41 }

42

43 [state.EXECUTE] {

44 on r_r1.Complete_c (): {

45 r1_c_complete = true;

46 if (r2_d_complete) {

47 EndActivity ();

48 }

49 }

50

51 on r_r2.Complete_d (): {

52 r2_d_complete = true;

53 if (r1_c_complete) {

54 EndActivity ();

55 }

56 }

57 }

58 }

59 }
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3. For Act3 the generated Dezyne code is shown below.

(a) Interface
1 interface IAct3 {

2 // Define start and end events

3 in void StartAct3 ();

4 out void CompleteAct3 ();

5

6 behaviour {

7 // Define two states

8 enum Activity_states_t { IDLE , EXECUTE };

9 // Set initial state to IDLE

10 Activity_states_t state = Activity_states_t.IDLE;

11

12 [state.IDLE] {

13 // Define behaviour for start event of activity

14 on StartAct3: {

15 state = Activity_states_t.EXECUTE;

16 }

17 }

18

19 [state.EXECUTE] {

20 on StartAct3: illegal;

21 on inevitable: {

22 // Return end event of activity

23 CompleteAct3;

24 state = Activity_states_t.IDLE;

25 }

26 }

27 }

28 }

(b) Component
1 import IAct3.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4

5 component Act3_Comp {

6 provides IAct3 p_Act3;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {

11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 // For every action define a boolean variable

17 bool r1_e_complete = false;

18 bool r2_f_complete = false;

19

20 void Reset() {

21 state = Activity_states_t.IDLE;

22 r1_e_complete = false;

23 r2_f_complete = false;

24 }

25

26 void EndActivity () {

27 p_Act3.CompleteAct3 ();

28 Reset();

29 }

30

31 [state.IDLE] {

32 // Define behaviour for start event of activity

33 on p_Act3.StartAct3 (): {
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34 state = Activity_states_t.EXECUTE;

35

36 // Insert code to start the first actions

37 // For every action in initials

38 r_r1.Start_e ();

39 }

40 }

41

42 [state.EXECUTE] {

43 on r_r1.Complete_e (): {

44 r1_e_complete = true;

45 r_r2.Start_f ();

46 }

47

48 on r_r2.Complete_f (): {

49 r2_f_complete = true;

50 EndActivity ();

51 }

52 }

53 }

54 }

Sequence diagrams of the generated Dezyne code

The behavior of the generated code is shown as a sequence diagram for activities Act1, Act2 and Act3 in
Figure 3.9, 3.10 and 3.11 respectively. It can be seen that the behavior obtained is same as in Figure 3.4.

Figure 3.9: Sequence diagram for activity Act1

3.8 Validation
Validation ensures that the output behavior obtained from the implementation is same as the specifications
defined for the input.

3.8.1 Correctness of translation made from activity model to the Dezyne code
The systematic translation from the activity model to the generated Dezyne code is considered accurate
if the behavior obtained from generated Dezyne code is identical to the specification of an activity. This
is validated using Gantt charts. The Gantt chart for an activity is obtained from the LSAT model, and is
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Figure 3.10: Sequence diagram for activity Act2

Figure 3.11: Sequence diagram for activity Act3

compared to the Gantt chart obtained from the sequence diagram of the generated code. In both cases, the
behavior exhibited must be same.

For activity Act1, Act2 and Act3, the Gantt chart obtained from LSAT are shown in Figures 3.12, 3.13
and 3.14.

The Gantt charts obtained from the Dezyne code generated are shown in Figure 3.15. It can be seen
that the Gantt charts obtained from LSAT and the Gantt charts obtained from Dezyne have similar behavior
in terms of ordering of actions. Hence, the translation made from the activity model to the Dezyne code is
successfully validated.

3.8.2 Scalability analysis

With each addition of a new action in an activity, it is expected that the state-space increases and so will the
length of the generated Dezyne code. However, this is not the case. For each action added in an activity,
in the Activity DSL an Action Type, action type’s instance and the action Dependencies are added. In the
Transformation DSL, the events for the action is defined. This translates to a generated code with code
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Figure 3.12: Gantt chart for activity Act1 obtained from the LSAT model

Figure 3.13: Gantt chart for activity Act2 obtained from the LSAT model

Figure 3.14: Gantt chart for activity Act3 obtained from the LSAT model
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Figure 3.15: Gantt chart for activity Act1, Act2 and Act3 obtained from Dezyne code

Figure 3.16: Activity diagram for activity Act4

length increasing by only few lines.
To validate this, a new activity Act4 is modeled. This activity is similar to activity Act1, with one more

action added to it. Act4 has three actions a, b and d. Actions a and b execute on resource r1, whereas action
d runs on resource r2. The activity diagram representing the dependencies between actions for activity
Act4 is shown in Figure 3.16.

The Dezyne code is generated for activity Act4 which is verified in the Dezyne environment. The result
of verification for the component of activity Act4 is shown in Figure 3.17. The verification result for the
component of activity Act1 is also shown for comparison purposes. It can be seen that the number of states
in the component of activity Act1 is 17 while for activity Act4 it is 39, which is almost double the number of
states. However, the Dezyne code length does not increase proportionally with the increase in state space.
The total lines of code in the component of activity Act1 is 52 (refer to activity component on page 22)
while for activity Act4 it is 66 (as shown below). This is because for each additional action, only a single
Boolean variable to represent its completion status, and one in and one out event to define the dependency
on other actions are added. Hence, it is seen that while the state space increases exponentially the increase
is code length does not. Nevertheless, with each action added in an activity, the readability of the generated
code reduces. Component for activity Act4 is shown below.

1 import IAct4.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4

5 component Act4_Comp {

6 provides IAct4 p_Act4;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {
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11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 // For every action define a boolean variable

17 bool r1_a_complete = false;

18 bool r1_b_complete = false;

19 bool r2_d_complete = false;

20

21 void Reset() {

22 state = Activity_states_t.IDLE;

23 r1_a_complete = false;

24 r1_b_complete = false;

25 r2_d_complete = false;

26 }

27

28 void EndActivity () {

29 p_Act4.CompleteAct4 ();

30 Reset();

31 }

32

33 [state.IDLE] {

34 // Define behaviour for start event of activity

35 on p_Act4.StartAct4 (): {

36 state = Activity_states_t.EXECUTE;

37

38 // Insert code to start the first actions

39 // For every action in initials

40 r_r1.Start_a ();

41 r_r2.Start_d ();

42 }

43 }

44

45 [state.EXECUTE] {

46 on r_r1.Complete_a (): {

47 r1_a_complete = true;

48 r_r1.Start_b ();

49 }

50

51 on r_r1.Complete_b (): {

52 r1_b_complete = true;

53 if (r2_d_complete) {

54 EndActivity ();

55 }

56 }

57

58 on r_r2.Complete_d (): {

59 r2_d_complete = true;

60 if (r1_b_complete) {

61 EndActivity ();

62 }

63 }

64 }

65 }

66 }
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Figure 3.17: Verification results showing the number of states for activity Act1 and Act4

3.9 Verification of the generated Dezyne code
Since the activity framework has no methodology for verification of activities, for this project, refinement
verification at the software level is used. In this methodology, it is checked whether the functionality of
an abstract system model is correctly implemented by a low-level implementation. The behavior of the
abstract model is translated into the behavior of the given interfaces and structures at the software design
level. This makes it possible to verify small parts of the low-level design in the context of the abstract
model. [26]

The activities modeled are verified in the Dezyne environment. Verification in Dezyne focuses on
verifying a component together with its provided and required interfaces. This ensures that the component
behaves correctly in its environment according to the specified behavior. The following properties are
verified in Dezyne: [27]

1. Completeness: It is a required that in every state of a model each event is enabled, either by being
unguarded, or by having a guard that evaluates to true for the given state.

2. Deterministic: Dezyne cannot handle non-determinism. All components are required to be determ-
inistic in nature. If a component has overlapping guards, that is, two different sets of actions for the
same event are specified, this will lead to non-determinism.

3. Illegal: It is required that there are no protocol violations between a component and its required
interfaces. If there is, an error is reported.

4. Range error: An integer type variable must always have a value that lies within its defined range. It
not, a range error is reported.

5. Type error: If an event has a return type defined, a value of the same return type must be replied, else
it leads to a type error.

6. Queue full: A Dezyne model with an interface of type provides defines a port that has a queue
where notification events are stored before they are processed. It is checked that this queue does not
overflow and remains non-blocking.

7. Deadlock: A deadlock occurs when none of the components in a system can make progress and
the system simply does not respond. It may occur when a component is waiting for some external
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Figure 3.18: Verification result for activity Act1

Figure 3.19: Verification result for activity Act2

Figure 3.20: Verification result for activity Act3

event which fails to occur or when two components require an action from each other before they
can perform any further action themselves.

8. Compliance: The compliance property checks whether the component together with the required
interfaces implements the behavior specified in the provided interfaces.

9. Livelock: A component is said to be livelocked when it is permanently busy with internal behavior
and ceases to serve clients specified by the provided interface. This is similar to deadlock except
that a deadlocked component does not perform any actions whereas a livelocked component might
be performing lots of actions, but none of them are visible to the component’s clients.

The verification results for Act1, Act2 and Act3 are shown in Figure 3.18, Figure 3.19 and Figure 3.20
respectively. Since there is a state-space explosion problem when the number of actions in an activity grow
too large, the verification is hampered for larger activities. One such case is Act combined which activity
model is given below.

1

2 Resource r1

3 Action type a

4 Action type b

5 Action type c

6 Action type e

7 Resource r2

8 Action type d

9 Action type f

10

11 Activity Act_combined

12 Criticality level 0
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13 a : r1.a

14 b : r1.b

15 c : r1.c

16 d : r2.d

17 e : r1.e

18 f : r2.f

19 a1 : r1.a

20 b1 : r1.b

21 c1 : r1.c

22 d1 : r2.d

23 e1 : r1.e

24 f1 : r2.f

25 a2 : r1.a

26 b2 : r1.b

27 c2 : r1.c

28 d2 : r2.d

29 e2: r1.e

30 f2 : r2.f

31 a3 : r1.a

32 b3 : r1.b

33 c3 : r1.c

34 d3 : r2.d

35 e3 : r1.e

36 f3 : r2.f

37 Dependencies

38 a -> b

39 b -> c

40 b -> d

41 c -> e

42 d -> e

43 e -> f

44 f -> a1

45 a1 -> b1

46 b1 -> c1

47 b1 -> d1

48 c1 -> e1

49 d1 -> e1

50 e1 -> f1

51 f1 -> a2

52 a2 -> b2

53 b2 -> c2

54 b2 -> d2

55 c2 -> e2

56 d2 -> e2

57 e2 -> f2

58 f2 -> a3

59 a3 -> b3

60 b3 -> c3

61 b3 -> d3

62 c3 -> e3

63 d3 -> e3

64 e3 -> f3

As expected, verification fails for activity Act combined because the verifier runs out of memory and
cannot allocate memory for actions anymore (Figure 3.21). Thus, with increasing size of activities, verific-
ation is hampered.
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Figure 3.21: Verification result for activity Act combined
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Chapter 4

Case Study: Translation from Activity
model to Dezyne code

The translation from the activity models to the Dezyne code is achieved using the following five steps:

1. Model an FMS using the activity framework.

2. Define the start and end events for the activity, and actions contained in that activity to specify the
software component for the activity model.

3. Model the system in the Activity DSL and in the Transformation DSL by specifying the activity
model and translation model for it.

4. Generate Dezyne code from the model.

5. Validate the translation made from the activity model to the Dezyne code.

6. Verify the generated code in the Dezyne environment.

4.1 Modeling an FMS using the activity framework
The first step in the translation of the activity model to the Dezyne code is to model the Factory Four
model using the activity framework. The Factory Four model has four resources: a sorting line with color
recognition, a multi-processing station with oven, an automated high-bay warehouse and a vacuum suction
robot, executing two main sequences: the Warehouse sequence and the Color Sorter sequence.

In the Warehouse sequence, the vacuum suction robot sends a request to the high-bay warehouse to
retrieve a widget contained in a box and waits for its acknowledgement. Simultaneously, the vacuum
suction robot sends a request to the processing station and waits for its response to verify if the processing
station is ready to receive the widget. Once the high-bay warehouse places the widget on its conveyor belt,
it sends the response back to the vacuum suction robot informing that the widget is available to be picked
up from its conveyor belt. When the multi-processing station is ready, the vacuum suction robot picks up
the widget from the high-bay warehouse. The empty box at the conveyor belt is moved back to its storage
location in the high-bay warehouse and, in parallel, the vacuum suction robot moves the picked widget to
the processing station. Once the vacuum suction robot places the widget at the processing station, it moves
back to its safe position.

In the activity framework, the behavior of moving a widget from the high-bay warehouse to the multi-
processing station by the vacuum suction robot represents an activity. This activity is a directed acyclic
graph which consists of actions such as pick up the widget by vacuum suction robot. The resources used
to implement this activity are the high-bay warehouse, the vacuum suction robot, and the multi-processing
station. This activity is represented using an activity diagram in Figure 4.1.
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Figure 4.1: Activity diagram for the Warehouse Activity

In the Color Sorter sequence, the vacuum suction robot sends a request to the color sorter to retrieve
a widget and waits for its acknowledgement. Simultaneously, the vacuum suction robot sends a request to
the warehouse and waits for its response to verify if the warehouse is ready to receive the widget. Once the
high-bay warehouse places the empty box on its conveyor belt, it sends the response back to the vacuum
suction robot informing that the box is available for storing the widget. The vacuum suction robot then
picks up the widget from the color sorter and moves the picked widget to the warehouse. Next, the vacuum
suction robot places the widget at the warehouse. The box with the widget at the conveyor belt is moved
back to its storage location in the high-bay warehouse and, in parallel, the vacuum suction robot moves
back to its safe position.

In the activity framework, the behavior of moving a widget from the color sorter to the high-bay ware-
house by the vacuum suction robot represents an activity. This activity is a directed acyclic graph which
consists of actions such as place the widget by vacuum suction robot. The resources used to implement
this activity are the high-bay warehouse, the vacuum suction robot, and the color sorter. This activity is
represented as an activity diagram in Figure 4.2.

Figure 4.2: Activity diagram for the Color Sorter Activity
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4.2 Defining the events

The start and end events for the activity and the actions within that activity are specified. Figure 4.3
illustrates the actions and their corresponding events for the Warehouse Activity.

Figure 4.3: Events in Dezyne mapped to the Warehouse Activity

Figure 4.4 illustrates the actions and their corresponding events for the Color Sorter Activity.

Figure 4.4: Events in Dezyne mapped to the Color Sorter Activity

4.3 Modeling the system in Activity DSL and Transformation DSL

Next, the Factory Four model is modeled in the DSLs by defining the activity model and the translation
model.
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4.3.1 Activity model
The activity model expressed in the Activity DSL for the Factory Four model is shown below.

1

2 Resource Robot

3 Action type MoveToWarehouseAndPick

4 Action type MoveToOvenAndPlace

5 Action type MoveToHomePosition

6 Action type MoveToColorSorterAndPick

7 Action type MoveToWarehouseAndPlace

8 Resource Warehouse

9 Action type RequestToRetrieve

10 Action type RequestToStore

11 Action type ReadyForNext

12 Action type ReadyForNextAction

13 Resource ProcessingStation

14 Action type Ready

15 Resource ColorSorter

16 Action type SorterRequestToRetrieve

17

18 Activity WarehouseActivity

19 Criticality level 0

20 a1 : Warehouse.RequestToRetrieve

21 a2 : ProcessingStation.Ready

22 a3 : Robot.MoveToWarehouseAndPick

23 a4 : Warehouse.ReadyForNext

24 a5 : Robot.MoveToOvenAndPlace

25 a6 : Robot.MoveToHomePosition

26 Dependencies

27 a1 -> a3

28 a2 -> a3

29 a3 -> a4

30 a3 -> a5

31 a5 -> a6

32

33 Activity ColorSorterActivity

34 Criticality level 0

35 b1 : Warehouse.RequestToStore

36 b2 : ColorSorter.SorterRequestToRetrieve

37 b3 : Robot.MoveToColorSorterAndPick

38 b4 : Robot.MoveToWarehouseAndPlace

39 b5 : Warehouse.ReadyForNextAction

40 b6 : Robot.MoveToHomePosition

41 Dependencies

42 b1 -> b3

43 b2 -> b3

44 b3 -> b4

45 b4 -> b5

46 b4 -> b6

4.3.2 Translation model
The translation model expressed in the Transformation DSL for the Factory Four model is shown below.

1 Activity WarehouseActivity

2 StartEvent: StartTransferAndProcessWidget(WidgetColorParam product)

3 EndEvent: TransferCompleted ()

4

5 Activity ColorSorterActivity

6 StartEvent: StartTransferAndStoreWidget(WidgetColorParam product)

7 EndEvent: TransferCompleted ()

8

9 Resource Robot

10 Interface: IRobot

11

12 Action MoveToWarehouseAndPick
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13 StartEvent: StartTransferFromWarehouseToProcessing ()

14 EndEvent: PickedUpAtWarehouse ()

15

16 Action MoveToOvenAndPlace

17 StartEvent: PlaceAtProcessing ()

18 EndEvent: DroppedAtProcessing ()

19

20 Action MoveToHomePosition

21 StartEvent: Homing ()

22 EndEvent: MoveCompleted ()

23

24 Action MoveToColorSorterAndPick

25 StartEvent: StartTransferFromColorSorterToWarehouse ()

26 EndEvent: PickedAtColorSorter ()

27

28 Action MoveToWarehouseAndPlace

29 StartEvent: PlaceAtWarehouse ()

30 EndEvent: DroppedAtWarehouse ()

31

32 Resource Warehouse

33 Interface: IWarehouse

34

35 Action RequestToRetrieve

36 StartEvent: RequestToRetrieve(WidgetColorParam widgetTransferred)

37 EndEvent: ReadyForPicking ()

38

39 Action ReadyForNext

40 StartEvent: Picked(widgetTransferred)

41 EndEvent: ReadyForNext ()

42

43 Action RequestToStore

44 StartEvent: RequestToStore(WidgetColorParam widgetTransferred)

45 EndEvent: ReadyForReceiving ()

46

47 Action ReadyForNextAction

48 StartEvent: Placed(WidgetColorParam product)

49 EndEvent: ReadyForNextAction ()

50

51 Resource ProcessingStation

52 Interface: IProcessingStation

53

54 Action Ready

55 StartEvent: Start()

56 EndEvent: ReadyForReceiving ()

57

58 Resource ColorSorter

59 Interface: IColorSorter

60

61 Action SorterRequestToRetrieve

62 StartEvent: SorterRequestToRetrieve(WidgetColorParam widgetTransferred)

63 EndEvent: SorterReadyForPicking ()

4.4 Generated Dezyne code
Once the specifications for the Factory Four model is defined and the events are specified, the Dezyne code
can be generated. For the Warehouse activity and the Color Sorter activity, the generated Dezyne code is
shown below. The interface code for the resources of Factory Four model is given in A.2.1 for reference.
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1. Warehouse activity

(a) Interface
1 import Definitions.dzn;

2

3 interface IWarehouseActivity {

4 // Define start and end events

5 in void StartTransferAndProcessWidget(WidgetColorParam product);

6 out void TransferCompleted ();

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 [state.IDLE] {

15 // Define behaviour for start event of activity

16 on StartTransferAndProcessWidget: {

17 state = Activity_states_t.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE] {

22 on StartTransferAndProcessWidget: illegal;

23 on inevitable: {

24 // Return end event of activity

25 TransferCompleted;

26 state = Activity_states_t.IDLE;

27 }

28 }

29 }

30 }

(b) Component
1 import IWarehouseActivity.dzn;

2 import IRobot.dzn;

3 import IWarehouse.dzn;

4 import IProcessingStation.dzn;

5

6 component WarehouseActivity_Comp {

7 provides IWarehouseActivity p_WarehouseActivity;

8 requires IRobot r_Robot;

9 requires IWarehouse r_Warehouse;

10 requires IProcessingStation r_ProcessingStation;

11

12 behaviour {

13 // Define two states

14 enum Activity_states_t { IDLE , EXECUTE };

15 // Set initial state to IDLE

16 Activity_states_t state = Activity_states_t.IDLE;

17

18 WidgetColorParam widgetTransferred;

19

20 // For every action define a boolean variable

21 bool processingStation_Ready_complete = false;

22 bool robot_MoveToHomePosition_complete = false;

23 bool robot_MoveToOvenAndPlace_complete = false;

24 bool robot_MoveToWarehouseAndPick_complete = false;

25 bool warehouse_ReadyForNextAction_complete = false;

26 bool warehouse_RequestToRetrieve_complete = false;

27

28 void Reset() {

29 state = Activity_states_t.IDLE;

30 processingStation_Ready_complete = false;

31 robot_MoveToHomePosition_complete = false;
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32 robot_MoveToOvenAndPlace_complete = false;

33 robot_MoveToWarehouseAndPick_complete = false;

34 warehouse_ReadyForNextAction_complete = false;

35 warehouse_RequestToRetrieve_complete = false;

36 }

37

38 void EndActivity () {

39 p_WarehouseActivity.TransferCompleted ();

40 Reset();

41 }

42

43 [state.IDLE] {

44 // Define behaviour for start event of activity

45 on p_WarehouseActivity.StartTransferAndProcessWidget(product): {

46 state = Activity_states_t.EXECUTE;

47

48 // Insert code to start the first actions

49 // For every action in initials

50 r_ProcessingStation.Start();

51 r_Warehouse.RequestToRetrieve(widgetTransferred);

52 }

53 }

54

55 [state.EXECUTE] {

56 on r_Warehouse.ReadyForPicking (): {

57 warehouse_RequestToRetrieve_complete = true;

58 if (processingStation_Ready_complete) {

59 r_Robot.StartTransferFromWarehouseToProcessing ();

60 }

61 }

62

63 on r_ProcessingStation.ReadyForReceiving (): {

64 processingStation_Ready_complete = true;

65 if (warehouse_RequestToRetrieve_complete) {

66 r_Robot.StartTransferFromWarehouseToProcessing ();

67 }

68 }

69

70 on r_Robot.PickedUpAtWarehouse (): {

71 robot_MoveToWarehouseAndPick_complete = true;

72 r_Warehouse.Picked(widgetTransferred);

73 r_Robot.PlaceAtProcessing ();

74 }

75

76 on r_Warehouse.ReadyForNext (): {

77 warehouse_ReadyForNextAction_complete = true;

78 if (robot_MoveToHomePosition_complete) {

79 EndActivity ();

80 }

81 }

82

83 on r_Robot.DroppedAtProcessing (): {

84 robot_MoveToOvenAndPlace_complete = true;

85 r_Robot.Homing ();

86 }

87

88 on r_Robot.MoveCompleted (): {

89 robot_MoveToHomePosition_complete = true;

90 if (warehouse_ReadyForNextAction_complete) {

91 EndActivity ();

92 }

93 }

94 }

95 }

96 }
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2. Color Sorter activity

(a) Interface
1 import Definitions.dzn;

2

3 interface IColorSorterActivity {

4 // Define start and end events

5 in void StartTransferAndStoreWidget(WidgetColorParam product);

6 out void TransferCompleted ();

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 [state.IDLE] {

15 // Define behaviour for start event of activity

16 on StartTransferAndStoreWidget: {

17 state = Activity_states_t.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE] {

22 on StartTransferAndStoreWidget: illegal;

23 on inevitable: {

24 // Return end event of activity

25 TransferCompleted;

26 state = Activity_states_t.IDLE;

27 }

28 }

29 }

30 }

(b) Component
1 import IColorSorterActivity.dzn;

2 import IRobot.dzn;

3 import IWarehouse.dzn;

4 import IColorSorter.dzn;

5

6 component ColorSorterActivity_Comp {

7 provides IColorSorterActivity p_ColorSorterActivity;

8 requires IRobot r_Robot;

9 requires IWarehouse r_Warehouse;

10 requires IColorSorter r_ColorSorter;

11

12 behaviour {

13 // Define two states

14 enum Activity_states_t { IDLE , EXECUTE };

15 // Set initial state to IDLE

16 Activity_states_t state = Activity_states_t.IDLE;

17

18 WidgetColorParam widgetTransferred;

19 WidgetColorParam product;

20

21 // For every action define a boolean variable

22 bool colorSorter_SorterRequestToRetrieve_complete = false;

23 bool robot_MoveToColorSorterAndPick_complete = false;

24 bool robot_MoveToHomePosition_complete = false;

25 bool robot_MoveToWarehouseAndPlace_complete = false;

26 bool warehouse_ReadyForNextAction_complete = false;

27 bool warehouse_RequestToStore_complete = false;

28

29 void Reset() {

30 state = Activity_states_t.IDLE;

31 colorSorter_SorterRequestToRetrieve_complete = false;
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32 robot_MoveToColorSorterAndPick_complete = false;

33 robot_MoveToHomePosition_complete = false;

34 robot_MoveToWarehouseAndPlace_complete = false;

35 warehouse_ReadyForNextAction_complete = false;

36 warehouse_RequestToStore_complete = false;

37 }

38

39 void EndActivity () {

40 p_ColorSorterActivity.TransferCompleted ();

41 Reset();

42 }

43

44 [state.IDLE] {

45 // Define behaviour for start event of activity

46 on p_ColorSorterActivity.StartTransferAndStoreWidget(product): {

47 state = Activity_states_t.EXECUTE;

48

49 // Insert code to start the first actions

50 // For every action in initials

51 r_Warehouse.RequestToStore(widgetTransferred);

52 r_ColorSorter.SorterRequestToRetrieve(widgetTransferred);

53 }

54 }

55

56 [state.EXECUTE] {

57 on r_Warehouse.ReadyForReceiving (): {

58 warehouse_RequestToStore_complete = true;

59 if (colorSorter_SorterRequestToRetrieve_complete) {

60 r_Robot.StartTransferFromColorSorterToWarehouse ();

61 }

62 }

63

64 on r_ColorSorter.SorterReadyForPicking (): {

65 colorSorter_SorterRequestToRetrieve_complete = true;

66 if (warehouse_RequestToStore_complete) {

67 r_Robot.StartTransferFromColorSorterToWarehouse ();

68 }

69 }

70

71 on r_Robot.PickedAtColorSorter (): {

72 robot_MoveToColorSorterAndPick_complete = true;

73 r_Robot.PlaceAtWarehouse ();

74 }

75

76 on r_Robot.DroppedAtWarehouse (): {

77 robot_MoveToWarehouseAndPlace_complete = true;

78 r_Warehouse.Placed(product);

79 r_Robot.Homing ();

80 }

81

82 on r_Warehouse.ReadyForNextAction (): {

83 warehouse_ReadyForNextAction_complete = true;

84 if (robot_MoveToHomePosition_complete) {

85 EndActivity ();

86 }

87 }

88

89 on r_Robot.MoveCompleted (): {

90 robot_MoveToHomePosition_complete = true;

91 if (warehouse_ReadyForNextAction_complete) {

92 EndActivity ();

93 }

94 }

95 }

96 }

97 }
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Figure 4.5: Sequence diagram for the Warehouse Activity

Figure 4.6: Sequence diagram for the Color Sorter Activity
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Sequence diagrams of the generated Dezyne code

The behavior obtained from the generated code is shown as a sequence diagram for both activities in Fig-
ures 4.5 and 4.6.

4.5 Validating the translation method
To validate the transformation made for the activities of the Factory Four model, Gantt charts from the
LSAT model (Figure 4.7 and 4.8 ) and the Gantt charts obtained from Dezyne (Figure 4.9 and 4.10) are
compared. It can be seen that in both cases the behavior obtained is identical.

Figure 4.7: Gantt chart for the Warehouse Activity obtained from the LSAT model

Figure 4.8: Gantt chart for the Color Sorter Activity obtained from the LSAT model
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Figure 4.9: Gantt chart for the Warehouse Activity obtained from Dezyne

Figure 4.10: Gantt chart for the Color Sorter Activity obtained from Dezyne

4.6 Verifying the generated code
The verification results for the Warehouse activity and the Color Sorter activity in the Dezyne environment
are shown in Figure 4.11 and Figure 4.12 respectively. It can be seen that both activities successfully pass
the verification checks in the Dezyne environment.

Figure 4.11: Verification result for the Warehouse Activity
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Figure 4.12: Verification result for the Color Sorter Activity
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Chapter 5

Handling Exceptions in an activity

Exceptions are external disturbances that may occur in an FMS while system operations are being executed.
When such an exception occurs, the response of the system must be defined in order to handle it. In this
work, four possible system responses are described based on three levels of criticality: low, medium and
high. Since the activity framework does not have a mechanism to deal with exceptions, these cannot be
specified in LSAT. The notion of an exception is introduced in the activity framework and is specified in
the Activity DSL using various criticality levels. The corresponding semantics for these criticality levels is
represented in the form of Gantt charts. The behavior of these criticality levels is mapped to Dezyne in the
form of failure events, which are defined for an activity and the actions contained in that activity. These
failure events are specified in the Transformation DSL. Further, the desired behavior in Dezyne is described
for different criticality levels. Once the behavior is known, the rules for transformation are defined and an
algorithm is developed for the automated translation from an activity model to the Dezyne code.

5.1 Exceptions in an activity
Exceptions are any unexpected failure occurrences that are not accounted for in a manufacturing system’s
normal operations. It is a condition that violates the original specifications of a system. These undefined
and unanticipated conditions may occur dynamically and disrupt the normal flow of operations. When the
system handles these exceptions improperly, it can lead to degradation of the system performance, may
cause interruption in the production process by causing errors in the schedule plan, or even lead to system
failures.

It is necessary to detect and diagnose the exceptions quickly, and recover the system by taking corrective
measures to avoid fault propagation. Exception handling is the process of defining the system’s response
to the occurrences of exceptions. Many exceptions can be anticipated when a system is designed, and
protection against these conditions can be incorporated into the specification of a system.

In an activity, an exception occurs when an action executed on a resource fails to complete execution.
For instance, picking up a workpiece by the robot can fail due to its arm being stuck or the gripper being
damaged. In this case, the exception handling mechanism must formulate what happens to the activity in
which an exception occurred, and its effect on the other activities in the sequence. Also, the exception
handling mechanism must prescribe different responses for different levels of exceptions that may occur.
For instance, the response must be different for the case when a workpiece is stuck on the conveyor belt,
which does not have a severe impact on the functioning of the system, as compared to when a part of the
machinery fails, affecting the system’s functionality.

Based on the possible levels of exceptions that may occur, caused due to the failure of an action, the
response of the system envisaged is divided into three levels of criticality. These criticality levels are
defined for the activity, rather than for each action, since the behavior of an activity is atomic in nature at
the activity sequence level. The response of the system for different criticality levels is as follows:

1. Low-level criticality: A low-level criticality is defined for exceptions which have minimal impact
on the functioning of the system. For instance, if a widget is deformed, it can still undergo various
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operations scheduled and can be discarded at the output. These exceptions do not need immediate
handling and the activity can continue execution under the determinate scenario. The only difference
is that in case of failure of an action, the error in the system is logged as a warning which is handled
during the next maintenance schedule. These kind of exceptions do not have any impact on the
scheduling and execution of other activity sequences. The system operations continue as normal and
other pipelined activities are executed according to the planned schedule.

2. Medium-level criticality: A medium-level criticality is defined for exceptions that have some degree
of impact on the system operations. For instance, a part of the machinery stuck in movement, such
as a robotic arm, unable to move from one workstation to another. In such a situation, an activity in
which an exception occurs completes execution, and sends a failure message to the controller which
is logged. The activity sequences already pipelined in the schedule for execution completes, but
further scheduling of the activities is cancelled. This is because the other activity sequences may
have some form of dependency on the activity in which an exception occurred.

3. High-level criticality: A high-level criticality is defined for exceptions which have severe impact
on the functioning of the system. For instance, if a part of the machinery breaks down, the manufac-
turing operations cannot continue. The handling of such exceptions can not be delayed and must be
addressed immediately. There are two ways in which a high-level criticality of an exception can be
handled.

(a) Complete shut down of the system: If an action fails, the activity stops in the middle of its
execution, and quits immediately. The complete system shuts down, the power is cut-off, and
the other activity sequences which are scheduled for execution, or are executing simultaneously,
also terminate. After fixing the error, the FMS can be restarted and initialized again.

(b) Go to error state: If an exception occurs, the whole system’s execution is paused, and the
activity execution moves to an error state. At the error state, the system waits for an input from
the operator who has two options as given below. In case no input is received from the operator,
after a fixed time period, the system shuts itself down.

i. Resume execution: The operator rectifies the error immediately, and the activity continues
execution. For instance, a workpiece stuck on a conveyor belt can be fixed manually by
the operator. In this case, the control goes back to the last known state before an exception
occurred, and activity resumes execution. The other activity sequences also continue as
scheduled.

ii. Restart execution: It might be that the operator cannot resolve the issue immediately, for
instance, due to the breakdown of the machinery. In this case, the response is to shut down
the whole system, and restart again when the issue is resolved.

A summary of the system’s response for various criticality levels is given in table 5.1. In this project,
the cases of low-level criticality and high-level criticality (complete shut down of the system) is considered.
Other cases can be included in the future work.

The activity framework currently has no mechanism to handle exceptions. To generate the Dezyne
code from the activity models handling exceptions, it is assumed that the activity framework must support
certain features, which can be included in the framework in the future. The assumptions are as follows:

1. Low-level criticality: The activity framework must support some sort of feedback mechanism in
order to know that an action, and hence the activity has failed to execute successfully.

2. High-level criticality (complete shut down of the system): In this criticality, the activity quits im-
mediately when an action fails to execute. The activity framework must be able to deal with the
action-level behavior to stop execution of an activity mid-way. Also, it must have a mechanism
to support the communication between various resources in order to convey that the activity has
terminated and the resources involved in the activity should stop execution.

An exception is represented in an activity as shown in Figure 5.1. Any action within an activity can
fail. For activity Act1, it is assumed that action a fails execution and an exception occurs. This is denoted
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Criticality
Effect on the activity in
which an exception occurs

Effect on the other activ-
ity sequences Example case

Low-level
Continue execution with
warning and log errors Continue execution Workpiece is damaged

Medium-level
Continue execution with
warning and log errors

Continue execution of the
activities that are already
scheduled and stop further
scheduling of the activities

Robotic arm is stuck

High-level

(a) Complete
shut down of
the system

Halt execution immediately Halt execution immediately
Machinery/part of ma-
chinery broke down

(b) Go to error
state

i) Resume
execution

Go to the last known state
before an exception oc-
curred and continue execu-
tion from that state

Continue execution
Widget is stuck on con-
veyor belt

ii) Restart
execution

Halt execution immediately Halt execution immediately
Machinery/part of ma-
chinery broke down

Table 5.1: Different levels of criticality for handling exceptions

by notation E. Similarly, in activity Act2 and activity Act3, it is assumed that an exception occurs because
action c and action e fail to execute respectively.

Figure 5.1: Activities Act1, Act2 and Act3 with exceptions
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5.2 Specification of exceptions in an activity
LSAT provides specifications only for determinate scenarios. The activity framework has no mechanism
to deal with exceptions, and there is no way to specify them in LSAT.

The exceptions are incorporated in the Activity DSL using various criticality levels. These criticality
levels describe the criticality of an activity. These levels are defined using the keyword Criticality level
followed by an integer which can take values 0, 1 or 2. The different cases criticality levels represent is as
follows:

1. Criticality level 0: This case represents activities modeled as determinate scenarios. It offers no
exception handling mechanism.

2. Criticality level 1: This case represents low-level criticality to handle exceptions.

3. Criticality level 2: This case represents high-level criticality, more specifically, the complete shut
down of the system, to handle exceptions.

The activity model for activities Act1, Act2 and Act3 is shown below.

1. Criticality level 1
1

2 Resource r1

3 Action type a

4 Action type b

5 Action type c

6 Action type e

7 Resource r2

8 Action type d

9 Action type f

10

11 Activity Act1

12 Criticality level 1

13 A1 : r1.a

14 A2 : r1.b

15 Dependencies

16 A1 -> A2

17

18 Activity Act2

19 Criticality level 1

20 A3 : r1.c

21 A4 : r2.d

22 Dependencies

23

24 Activity Act3

25 Criticality level 1

26 A5 : r1.e

27 A6 : r2.f

28 Dependencies

29 A5 -> A6

2. Criticality level 2
1

2 Resource r1

3 Action type a

4 Action type b

5 Action type c

6 Action type e

7 Resource r2

8 Action type d

9 Action type f

10

11 Activity Act1

12 Criticality level 2
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13 A1 : r1.a

14 A2 : r1.b

15 Dependencies

16 A1 -> A2

17

18 Activity Act2

19 Criticality level 2

20 A3 : r1.c

21 A4 : r2.d

22 Dependencies

23

24 Activity Act3

25 Criticality level 2

26 A5 : r1.e

27 A6 : r2.f

28 Dependencies

29 A5 -> A6

5.3 Semantics of handling exceptions in an activity
The effect of an exception on the execution of the activity is represented as Gantt charts. For criticality
level 1 it is shown in Figure 5.2. It is assumed that an exception occurs in action a for Act1, in action c
for Act2 and in action e for Act3. This exception is represented as a dashed line in the actions failing to
execute. Since criticality level 1 is the low-level criticality case, the system responds by logging the error
and continuing execution of the activity. Hence, action b, action d and action f continue to execute in Act1,
Act2 and Act3 respectively. The activities complete execution and the resources are released after executing
their corresponding actions.

Figure 5.2: Gantt charts for activities Act1, Act2 and Act3 for criticality level 1

Gantt charts for activities having exceptions of criticality level 2 is shown in Figure 5.3. This case
corresponds to high-level criticality in which the system stops execution immediately and shuts down
completely when an exception occurs. In Act1, when action a fails execution, the activity terminates
instantly and resource r1 is released at time unit 1 without executing action b. Similarly, in Act2, when
action c fails execution on resource r1, action d running concurrently on resource r2 is stopped mid-way.
Both resources are released at time unit 1 and the activity terminates. Similarly, in Act3, when action e fails
execution, resource r1 is released. Resource r2 is not claimed to perform action f and the activity quits
execution at time unit 1.
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Figure 5.3: Gantt chart for activities Act1, Act2 and Act3 for criticality level 2

5.4 Modeling exceptions in Dezyne
The exceptions can be modeled in Dezyne as failure events to specify that an action, and thus, the activity
failed to execute successfully. If an action starts execution, it can either complete execution with a complete
end event returned, or it can fail to execute. In case it fails to execute, an exception occurs and a failure end
event is returned. Similarly, an activity can either complete execution with a complete end event, or end
with a failure end event if an exception occurs in one of its actions. This is shown in Figure 5.4 where a
failure end event is added at the action level and at the activity level.

Figure 5.4: Activities Act1, Act2 and Act3 with failure events

5.4.1 Behavior in Dezyne for Criticality level 1

Activity Act1 starts with the StartAct1() event. This triggers action a to start execution and Start a() event
is called. When action a completes execution Complete a() event is returned, which triggers action b to
start execution by triggering Start b() event. In case action a fails to execute, Complete a failed() event
is returned, which also triggers action b to start execution by triggering Start b() event. When action b
finishes execution Complete b() event is returned. In case action b fails to execute, Complete b failed()
event is returned. The activity completes execution successfully only when Complete a() event and Com-
plete b() event is returned, and the activity ends with CompleteAct1() event. In case one of the actions fails
execution, CompleteAct1Failed() event is returned indicating the end of the activity with failure.
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Similarly, activity Act2 starts with the StartAct2() event. The start of the activity triggers execution of
Start c() and Start d(). When action c completes, Complete c() event is returned and variable c complete is
set to true. In case action c fails execution, Complete c failed() event is returned and variable c complete is
set to true. Similarly, when action d completes, Complete d() event is returned and variable d complete is
set to true. In case action d fails execution, Complete d failed() event is returned and variable d complete is
set to true. When both actions corresponding Boolean completion variables are set to true, then the activity
completes execution with CompleteAct2() event only if Complete c() event and Complete d() event is
returned, else CompleteAct2Failed() event is returned indicating the end of the activity with failure.

Activity Act3 starts with StartAct3() event. This triggers action e to start execution and Start e() event
is called. When action e completes execution Complete e() event is returned, which triggers action f to
start execution by triggering Start f() event. In case action e fails to execute, Complete e failed() event
is returned, which also triggers action f to start execution by triggering Start f() event. When action f
finishes execution Complete f() event is returned. In case action f fails to execute, Complete f failed()
event is returned. The activity completes execution successfully only when Complete e() event and Com-
plete f() event is returned, and the activity ends with CompleteAct3() event. In case one of the actions fails
execution, CompleteAct3Failed() event is returned indicating the end of the activity with failure.

5.4.2 Behavior in Dezyne for Criticality level 2
Activity Act1 starts with StartAct1() event. This triggers action a to start execution and Start a() event is
called. If action a fails to execute, Complete a failed() event is returned. This triggers the end of the activity
and CompleteAct1Failed() event is returned. Simultaneously, a reset event is sent to all the resources used
by the activity to communicate that the activity has terminated. In case action a completes execution,
Complete a() event is returned, which triggers action b to start execution by triggering Start b() event.
If action b fails to execute, Complete b failed() event is returned. This triggers the end of the activity
and CompleteAct1Failed() event is returned. Simultaneously, a reset event is sent to all the resources
used by the activity to communicate that the activity has terminated. In case action b finishes execution,
Complete b() event is returned, and this triggers CompleteAct1() event indicating the end of the activity.

Activity Act3 starts with StartAct3() event. This triggers action e to start execution and Start e() event
is called. If action c fails to execute, Complete c failed() event is returned. This triggers the end of
the activity and CompleteAct3Failed() event is returned. Simultaneously, a reset event is sent to all the
resources used by the activity to communicate that the activity has terminated. In case action e completes
execution, Complete e() event is returned, which triggers action f to start execution by triggering Start f()
event. If action f fails to execute, Complete f failed() event is returned. This triggers the end of the activity
and CompleteAct3Failed() event is returned. Simultaneously, a reset event is sent to all the resources
used by the activity to communicate that the activity has terminated. In case action f finishes execution,
Complete f() event is returned, and this triggers CompleteAct3() event indicating the end of the activity.

Similarly, activity Act2 starts with the StartAct2() event. The start of the activity triggers execution of
Start c() event and Start d() event. When action c completes, Complete c() event is returned and variable
c complete is set to true. In case action c fails execution, Complete c failed() event is returned. This trig-
gers the end of the activity and CompleteAct2Failed() event is returned. Simultaneously, a reset event is
sent to all the resources used by the activity to communicate that the activity has terminated. Similarly,
when action d completes, Complete d() event is returned and variable d complete is set to true. In case
action d fails execution, Complete d failed() event is returned. This triggers the end of the activity and
CompleteAct2Failed() event is returned. Simultaneously, a reset event is sent to all the resources used
by the activity to communicate that the activity has terminated. When both actions complete with Com-
plete c() event and Complete d() event, and their corresponding Boolean completion variables are set to
true, then the activity completes execution with event CompleteAct2().

5.5 Rules for translation
The mapping of an activity to the Dezyne code in order to handle exceptions must follow the following set
of rules:
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1. Activity events ∈ {Start_A, End_A, Failed_End_A}.
For each activity, to define its start and end behavior in the activity interface, a tuple of three
events is defined: a start event Start_A defined as an in event, a complete end event End_A defined
as an out event and a failed end event Failed_End_A defined as an out event.

2. Activity interface states ∈ {idle, execute}.
Each activity interface has two states: idle and execute. The initial state is the idle state.
When the activity starts execution with the invocation of start event Start_A the state changes to
execute. Once the execution of the activity completes, the end event End_A is called and the state
reverts to the idle state. If the execution of an activity fails, the failed end event Failed_End_A is
called and the state reverts to the idle state.

3. Activity failed status variable ∈ {true, false}.
For the activity a Boolean variable activity_failed is defined in activity component to rep-
resent failure of an action: if an action fails execution its value corresponds to true otherwise its
false.

4. Action events ∈ {start_action_event, end_action_event, failed_end_action_event}.
For each action, to define its start and end behavior in the resource interface, a tuple of three
events is defined: a start event start_action_event defined as an in event, a complete end event
end_action_event defined as an out event and a failed end event failed_end_action_event
defined as an out event.

5. Action status variable ∈ {true, false}.
For each action, a Boolean variable, action_complete is defined in the activity component to
represent its execution status: if an action completes execution its value corresponds to true otherwise
its false.

6. Dependencies of an action ∈ {Initial actions, dep, post}.
Initial actions are the actions triggered by the start of the activity.
Dep(a) is a set of actions that need to complete before action a can start.
Post(a) is a set of actions triggered by the completion of action a.

7. Activity component states ∈ {idle, execute}.
Each activity component has two states: idle and execute.

(a) The initial state is the idle state. In the idle state, when the start event of the activity,
Start_A is called, it triggers the execution of start_action_event of the corresponding
initial actions and the state changes to execute. The behavior in execute varies for
each criticality level.

(b) i. Criticality Level 1: In the execute state, the sequence of actions corresponding to dif-
ferent resources, following the completion of initial actions, is executed. This se-
quence of actions is defined using a set of dependencies. If an action completes execution,
the end_action_event is triggered and its corresponding Boolean completion variable
is set to true. If an action fails execution, the failed_end_action_event is triggered,
its corresponding Boolean completion variable and the activity failed status variable is set
to true. Then, for both cases, the action’s dependent actions (dep) are checked for com-
pletion, and once completed, all post actions (post) are triggered for execution using their
corresponding start_action_event.
Once all actions complete execution EndActivity function is invoked. This function
checks the value of activity failed status variable. If its value is true, then the Activity

Failed function is called which contains the failed end event of the activity, Failed_End_
A and a Reset function. The Reset function sets the action completion variables action_
complete and the activity failed status variable activity_failed back to false, and
reverts the activity component state to idle state. If the activity failed status variable
value is false, then the End_A event is returned and a Reset function is called.
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ii. Criticality Level 2: In the execute state, the sequence of actions corresponding to dif-
ferent resources, following the completion of initial actions, is executed. This se-
quence of actions is defined using a set of dependencies. If an action completes execution,
the end_action_event is triggered and its corresponding Boolean completion variable
is set to true. Then, its dependent actions (dep) are checked for completion, and once
completed, all post actions (post) are triggered for execution using their corresponding
start_action_event. If an action fails execution, the failed_end_action_event is
triggered, and the ActivityFailed function is called. This function calls the Failed_End_A
event, the Reset function and the ResetResources function. The Reset function sets
the action completion variables, action_complete back to false, and reverts the activity
component state to idle state. The ResetResources function resets the resources and
changes their state to idle.
If all actions complete execution, the EndActivity function is invoked. This function
contains the end event of the activity, End_A and a Reset function.

5.6 Algorithm for translation

1. Criticality level 1

(a) Interface
Inputs: name of the activity <Activity_Name>, and three events defining the start and end of
the activity: <Start_A>,<End_A>, <Failed_End_A>

1 interface I<Activity_Name > {

2

3 // Define start and end events

4 in void <Start_A >();

5 out void <End_A >();

6 out void <Failed_End_A >();

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t {IDLE , EXECUTE };

11 //Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 [state.IDLE] {

15 // Define behaviour for start event of activity

16 on <Start_A >: {

17 state = Activity_states_t.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE] {

22 on <Start_A >: illegal;

23 on inevitable: {

24 // Return end event of activity

25 <End_A >;

26 state = Activity_states_t.IDLE;

27 }

28

29 on inevitable: {

30 // Return end event of activity

31 <Failed_End_A >;

32 state = Activity_states_t.IDLE;

33 }

34 }

35 }

36 }
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(b) Component
Resource <resource_name> provides interface <interface_name> with the action
<action_name>which starts with <start_action_event> and ends with <end_action_event>
or <failed_end_action_event>

1 import <resource_interface_name >.dzn;

2

3 component <Activity_Name >_Comp {

4

5 provides I<Activity_Name > p_<Activity_Name >;

6 requires <resource_interface_name > r_<resource_name >;

7

8 behaviour {

9

10 // Define two states

11 enum Activity_states_t {IDLE , EXECUTE };

12 // Set initial state to IDLE

13 Activity_states_t state = Activity_states_t.IDLE;

14

15 bool activity_failed = false;

16

17 // For every action <action_name > define a boolean variable

18 bool <resource_name >_<action_name >_complete = false;

19

20 void Reset():

21 {

22 state = Activity_states_t.IDLE;

23 <resource_name >_<action_name >_complete = false;

24 activity_failed = false;

25 }

26

27 void EndActivity () {

28 if (activity_failed) {

29 ActivityFailed ();

30 }

31 else {

32 p_<Activity_Name >.<End_A >;

33 Reset();

34 }

35 }

36

37 void ActivityFailed ():

38 {

39 p_<Activity_Name >.<Failed_End_A >();

40 Reset();

41 }

42

43 [state.IDLE] {

44

45 // Define behaviour for start event of activity

46 on p_ <Activity_Name >.<Start_A >(): {

47 state = Activity_states_t.EXECUTE;

48

49 // Insert code to start the first actions

50 // For every action in initials

51 r_<resource_name >.< start_action_event >();

52

53 }

54 }

55

56 [state.EXECUTE] {

57

58 // Generate code following the activity dependencies

59 // Given a tuple <a, dep , post >

60 // a = an action of resource named <resource_name >

61 // dep = all actions that need to be completed before a can start

62 // post = all actions that need to be started when a completes
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63

64 on r_ <resource_name >.<end_action_event >(): {

65

66 // For action a, change boolean to indicate a finishes

execution

67 <resource_name >_<action_name >_complete = true;

68

69 if (<all actions in dep have their boolean to true >) {

70

71 // If post is not empty , start all post actions

72 // For all actions in post

73 r_<resource_name >.< start_action_event >();

74

75 // If post is empty , then complete the activity

76 // If post is empty , then complete the activity

77 EndActivity ();

78 }

79 }

80

81 on r_ <resource_name >.< failed_end_action_event >(): {

82

83 // For action a, change boolean to indicate a finishes

execution

84 <resource_name >_<action_name >_complete = true;

85 activity_failed = true;

86

87 if (<all actions in dep have their boolean to true >) {

88

89 // If post is not empty , start all post actions

90 // For all actions in post

91 r_<resource_name >.< start_action_event >();

92

93 // If post is empty , then complete the activity

94 EndActivity ();

95 }

96 }

97 }

98 }

99 }

2. Criticality level 2

(a) Interface
Inputs: name of the activity <Activity_Name>, and three events defining the start and end of
the activity: <Start_A>,<End_A>,<Failed_End_A>

1 interface I<Activity_Name > {

2

3 // Define start and end events

4 in void <Start_A >();

5 out void <End_A >();

6 out void <Failed_End_A >();

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t {IDLE , EXECUTE };

11 //Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 [state.IDLE] {

15 // Define behaviour for start event of activity

16 on <Start_A >: {

17 state = Activity_states_t.EXECUTE;

18 }

19 }
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20

21 [state.EXECUTE] {

22 on <Start_A >: illegal;

23 on inevitable: {

24 // Return end event of activity

25 <End_A >;

26 state = Activity_states_t.IDLE;

27 }

28

29 on inevitable: {

30 // Return end event of activity

31 <Failed_End_A >;

32 state = Activity_states_t.IDLE;

33 }

34 }

35 }

36 }

(b) Component
Resource <resource_name> provides interface <interface_name> with the action
<action_name>which starts with <start_action_event> and ends with <end_action_event>
or <failed_end_action_event>.

1 import <resource_interface_name >.dzn;

2

3 component <Activity_Name >_Comp {

4

5 provides I<Activity_Name > p_<Activity_Name >;

6 requires <resource_interface_name > r_<resource_name >;

7

8 behaviour {

9

10 // Define two states

11 enum Activity_states_t {IDLE , EXECUTE };

12 // Set initial state to IDLE

13 Activity_states_t state = Activity_states_t.IDLE;

14 // For every action <action_name > define a boolean variable

15 bool <resource_name >_<action_name >_complete = false;

16

17 void Reset()

18 {

19 state = Activity_states_t.IDLE;

20 <resource_name >_<action_name >_complete = false;

21 }

22

23 void EndActivity () {

24 p_<Activity_Name >.<End_A >;

25 Reset();

26 }

27

28 void ResetResources () {

29 r_<resource_name >.Reset ();

30 }

31

32 void ActivityFailed () {

33 p_<Activity_Name >.<Failed_End_A >();

34 Reset();

35 ResetResources ();

36 }

37

38 [state.IDLE] {

39

40 // Define behaviour for start event of activity

41 on p_ <Activity_Name >.<Start_A >(): {

42 state = Activity_states_t.EXECUTE;

43

44 // Insert code to start the first actions
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45 // For every action in initials

46 r_<resource_name >.< start_action_event >();

47 }

48 }

49

50 [state.EXECUTE] {

51

52 // Generate code following the activity dependencies

53 // Given a tuple <a, dep , post >

54 // a = an action of resource named <resource_name >

55 // dep = all actions that need to be completed before a can start

56 // post = all actions that need to be started when a completes

57

58 on r_ <resource_name >.<end_action_event >(): {

59

60 // For action a, change boolean to indicate a finishes

execution

61 <resource_name >_<action_name >_complete = true;

62

63 if (<all actions in dep have their boolean to true >) {

64

65 // If post is not empty , start all post actions

66 // For all actions in post

67 //If action completes successfully

68 r_<resource_name >.< start_action_event >();

69

70 // If post is empty , then complete the activity

71 EndActivity ();

72 }

73 }

74

75 on r_ <resource_name >.< failed_end_action_event >(): {

76 //If action fails execution

77 ActivityFailed ();

78 }

79 }

80 }

81 }

5.7 Adding Translation Model to the Transformation DSL
In order to handle exceptions, for an activity and each action within that activity, a failed end event is
specified in the translation model. The translation model is common for criticality level 1 and criticality
level 2, and is shown below.

1 Activity Act1

2 StartEvent: StartAct1 ()

3 EndEvent: CompleteAct1 ()

4 FailedEndEvent: CompleteAct1Failed ()

5

6 Activity Act2

7 StartEvent:StartAct2 ()

8 EndEvent: CompleteAct2 ()

9 FailedEndEvent: CompleteAct2Failed ()

10

11 Activity Act3

12 StartEvent: StartAct3 ()

13 EndEvent: CompleteAct3 ()

14 FailedEndEvent: CompleteAct3Failed ()

15

16 Resource r1

17 Interface: Ir1

18

19 Action a

20 StartEvent: Start_a ()
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21 EndEvent: Complete_a ()

22 FailedEndEvent: Complete_a_failed ()

23

24 Action b

25 StartEvent: Start_b ()

26 EndEvent: Complete_b ()

27 FailedEndEvent: Complete_b_failed ()

28

29 Action c

30 StartEvent: Start_c ()

31 EndEvent: Complete_c ()

32 FailedEndEvent: Complete_c_failed ()

33

34 Action e

35 StartEvent: Start_e ()

36 EndEvent: Complete_e ()

37 FailedEndEvent: Complete_e_failed ()

38

39 Resource r2

40 Interface: Ir2

41

42 Action d

43 StartEvent: Start_d ()

44 EndEvent: Complete_d ()

45 FailedEndEvent: Complete_d_failed ()

46

47 Action f

48 StartEvent: Start_f ()

49 EndEvent: Complete_f ()

50 FailedEndEvent: Complete_f_failed ()

5.8 Results
After specifying the activity model and the translation model for the example cases, Dezyne code is gen-
erated. The interface code for the resources of Act1, Act2 and Act3 for criticality levels 1 and 2 is given in
section A.1.2 and section A.1.3 respectively for reference.

1. Criticality level 1

(a) For Act1 the generated Dezyne code is shown below.

i. Interface
1 interface IAct1 {

2 // Define start and end events

3 in void StartAct1 ();

4 out void CompleteAct1 ();

5 out void CompleteAct1Failed ();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t { IDLE , EXECUTE };

10 // Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 // Define behaviour for start event of activity

15 on StartAct1: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on StartAct1: illegal;

22 on inevitable: {
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23 // Return end event of activity

24 CompleteAct1;

25 state = Activity_states_t.IDLE;

26 }

27

28 on inevitable: {

29 // Return failed end event of activity

30 CompleteAct1Failed;

31 state = Activity_states_t.IDLE;

32 }

33 }

34 }

35 }

ii. Component

1 import IAct1.dzn;

2 import Ir1.dzn;

3

4 component Act1_Comp {

5 provides IAct1 p_Act1;

6 requires Ir1 r_r1;

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 bool activity_failed = false;

15

16 // For every action define a boolean variable

17 bool r1_a_complete = false;

18 bool r1_b_complete = false;

19

20 void Reset() {

21 state = Activity_states_t.IDLE;

22 r1_a_complete = false;

23 r1_b_complete = false;

24 activity_failed = false;

25 }

26

27 void EndActivity () {

28 if (activity_failed) {

29 ActivityFailed ();

30 }

31 else {

32 p_Act1.CompleteAct1 ();

33 Reset();

34 }

35 }

36

37 void ActivityFailed () {

38 p_Act1.CompleteAct1Failed ();

39 Reset();

40 }

41

42 [state.IDLE] {

43 // Define behaviour for start event of activity

44 on p_Act1.StartAct1 (): {

45 state = Activity_states_t.EXECUTE;

46

47 // Insert code to start the first actions

48 // For every action in initials

49 r_r1.Start_a ();

50 }

51 }

52
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53 [state.EXECUTE] {

54 on r_r1.Complete_a (): {

55 r1_a_complete = true;

56 r_r1.Start_b ();

57 }

58

59 on r_r1.Complete_a_failed (): {

60 r1_a_complete = true;

61 activity_failed = true;

62 r_r1.Start_b ();

63 }

64

65 on r_r1.Complete_b (): {

66 r1_b_complete = true;

67 EndActivity ();

68 }

69

70 on r_r1.Complete_b_failed (): {

71 r1_b_complete = true;

72 activity_failed = true;

73 EndActivity ();

74 }

75 }

76 }

77 }

(b) For Act2 the generated Dezyne code is shown below.

i. Interface
1 interface IAct2 {

2 // Define start and end events

3 in void StartAct2 ();

4 out void CompleteAct2 ();

5 out void CompleteAct2Failed ();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t { IDLE , EXECUTE };

10 // Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 // Define behaviour for start event of activity

15 on StartAct2: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on StartAct2: illegal;

22 on inevitable: {

23 // Return end event of activity

24 CompleteAct2;

25 state = Activity_states_t.IDLE;

26 }

27

28 on inevitable: {

29 // Return failed end event of activity

30 CompleteAct2Failed;

31 state = Activity_states_t.IDLE;

32 }

33 }

34 }

35 }
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ii. Component

1 import IAct2.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4

5 component Act2_Comp {

6 provides IAct2 p_Act2;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {

11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 bool activity_failed = false;

17

18 // For every action define a boolean variable

19 bool r1_c_complete = false;

20 bool r2_d_complete = false;

21

22 void Reset() {

23 state = Activity_states_t.IDLE;

24 r1_c_complete = false;

25 r2_d_complete = false;

26 activity_failed = false;

27 }

28

29 void EndActivity () {

30 if (activity_failed) {

31 ActivityFailed ();

32 }

33 else {

34 p_Act2.CompleteAct2 ();

35 Reset();

36 }

37 }

38

39 void ActivityFailed () {

40 p_Act2.CompleteAct2Failed ();

41 Reset();

42 }

43

44 [state.IDLE] {

45 // Define behaviour for start event of activity

46 on p_Act2.StartAct2 (): {

47 state = Activity_states_t.EXECUTE;

48

49 // Insert code to start the first actions

50 // For every action in initials

51 r_r1.Start_c ();

52 r_r2.Start_d ();

53 }

54 }

55

56 [state.EXECUTE] {

57 on r_r1.Complete_c (): {

58 r1_c_complete = true;

59 if (r2_d_complete) {

60 EndActivity ();

61 }

62 }

63

64 on r_r1.Complete_c_failed (): {

65 r1_c_complete = true;

66 activity_failed = true;
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67 if (r2_d_complete) {

68 EndActivity ();

69 }

70 }

71

72 on r_r2.Complete_d (): {

73 r2_d_complete = true;

74 if (r1_c_complete) {

75 EndActivity ();

76 }

77 }

78

79 on r_r2.Complete_d_failed (): {

80 r2_d_complete = true;

81 activity_failed = true;

82 if (r1_c_complete) {

83 EndActivity ();

84 }

85 }

86 }

87 }

88 }

(c) For Act3 the generated Dezyne code is shown below.

i. Interface
1 interface IAct3 {

2 // Define start and end events

3 in void StartAct3 ();

4 out void CompleteAct3 ();

5 out void CompleteAct3Failed ();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t { IDLE , EXECUTE };

10 // Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 // Define behaviour for start event of activity

15 on StartAct3: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on StartAct3: illegal;

22 on inevitable: {

23 // Return end event of activity

24 CompleteAct3;

25 state = Activity_states_t.IDLE;

26 }

27

28 on inevitable: {

29 // Return failed end event of activity

30 CompleteAct3Failed;

31 state = Activity_states_t.IDLE;

32 }

33 }

34 }

35 }

ii. Component
1 import IAct3.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4
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5 component Act3_Comp {

6 provides IAct3 p_Act3;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {

11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 bool activity_failed = false;

17

18 // For every action define a boolean variable

19 bool r1_e_complete = false;

20 bool r2_f_complete = false;

21

22 void Reset() {

23 state = Activity_states_t.IDLE;

24 r1_e_complete = false;

25 r2_f_complete = false;

26 activity_failed = false;

27 }

28

29 void EndActivity () {

30 if (activity_failed) {

31 ActivityFailed ();

32 }

33 else {

34 p_Act3.CompleteAct3 ();

35 Reset();

36 }

37 }

38

39 void ActivityFailed () {

40 p_Act3.CompleteAct3Failed ();

41 Reset();

42 }

43

44 [state.IDLE] {

45 // Define behaviour for start event of activity

46 on p_Act3.StartAct3 (): {

47 state = Activity_states_t.EXECUTE;

48

49 // Insert code to start the first actions

50 // For every action in initials

51 r_r1.Start_e ();

52 }

53 }

54

55 [state.EXECUTE] {

56 on r_r1.Complete_e (): {

57 r1_e_complete = true;

58 r_r2.Start_f ();

59 }

60

61 on r_r1.Complete_e_failed (): {

62 r1_e_complete = true;

63 activity_failed = true;

64 r_r2.Start_f ();

65 }

66

67 on r_r2.Complete_f (): {

68 r2_f_complete = true;

69 EndActivity ();

70 }

71
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72 on r_r2.Complete_f_failed (): {

73 r2_f_complete = true;

74 activity_failed = true;

75 EndActivity ();

76 }

77 }

78 }

79 }

2. Criticality level 2

(a) For Act1 the generated Dezyne code is shown below.

i. Interface
1 interface IAct1 {

2 // Define start and end events

3 in void StartAct1 ();

4 out void CompleteAct1 ();

5 out void CompleteAct1Failed ();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t { IDLE , EXECUTE };

10 // Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 // Define behaviour for start event of activity

15 on StartAct1: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on StartAct1: illegal;

22 on inevitable: {

23 // Return end event of activity

24 CompleteAct1;

25 state = Activity_states_t.IDLE;

26 }

27

28 on inevitable: {

29 // Return failed end event of activity

30 CompleteAct1Failed;

31 state = Activity_states_t.IDLE;

32 }

33 }

34 }

35 }

ii. Component
1 import IAct1.dzn;

2 import Ir1.dzn;

3

4 component Act1_Comp {

5 provides IAct1 p_Act1;

6 requires Ir1 r_r1;

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 // For every action define a boolean variable

15 bool r1_a_complete = false;
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16 bool r1_b_complete = false;

17

18 void Reset() {

19 state = Activity_states_t.IDLE;

20 r1_a_complete = false;

21 r1_b_complete = false;

22 }

23

24 void EndActivity () {

25 p_Act1.CompleteAct1 ();

26 Reset();

27 }

28 void ResetResources () {

29 r_r1.Reset();

30 }

31

32 void ActivityFailed () {

33 p_Act1.CompleteAct1Failed ();

34 Reset();

35 ResetResources ();

36 }

37

38 [state.IDLE] {

39 // Define behaviour for start event of activity

40 on p_Act1.StartAct1 (): {

41 state = Activity_states_t.EXECUTE;

42

43 // Insert code to start the first actions

44 // For every action in initials

45 r_r1.Start_a ();

46 }

47 }

48

49 [state.EXECUTE] {

50 on r_r1.Complete_a (): {

51 r1_a_complete = true;

52 r_r1.Start_b ();

53 }

54

55 on r_r1.Complete_a_failed (): {

56 ActivityFailed ();

57 }

58

59 on r_r1.Complete_b (): {

60 r1_b_complete = true;

61 EndActivity ();

62 }

63

64 on r_r1.Complete_b_failed (): {

65 ActivityFailed ();

66 }

67 }

68 }

69 }
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(b) For Act2 the generated Dezyne code is shown below.

i. Interface
1 interface IAct2 {

2 // Define start and end events

3 in void StartAct2 ();

4 out void CompleteAct2 ();

5 out void CompleteAct2Failed ();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t { IDLE , EXECUTE };

10 // Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 // Define behaviour for start event of activity

15 on StartAct2: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on StartAct2: illegal;

22 on inevitable: {

23 // Return end event of activity

24 CompleteAct2;

25 state = Activity_states_t.IDLE;

26 }

27

28 on inevitable: {

29 // Return failed end event of activity

30 CompleteAct2Failed;

31 state = Activity_states_t.IDLE;

32 }

33 }

34 }

35 }

ii. Component
1 import IAct2.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4

5 component Act2_Comp {

6 provides IAct2 p_Act2;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {

11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 // For every action define a boolean variable

17 bool r1_c_complete = false;

18 bool r2_d_complete = false;

19

20 void Reset() {

21 state = Activity_states_t.IDLE;

22 r1_c_complete = false;

23 r2_d_complete = false;

24 }

25

26 void EndActivity () {

27 p_Act2.CompleteAct2 ();
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28 Reset();

29 }

30 void ResetResources () {

31 r_r1.Reset();

32 r_r2.Reset();

33 }

34

35 void ActivityFailed () {

36 p_Act2.CompleteAct2Failed ();

37 Reset();

38 ResetResources ();

39 }

40

41 [state.IDLE] {

42 // Define behaviour for start event of activity

43 on p_Act2.StartAct2 (): {

44 state = Activity_states_t.EXECUTE;

45

46 // Insert code to start the first actions

47 // For every action in initials

48 r_r1.Start_c ();

49 r_r2.Start_d ();

50 }

51 }

52

53 [state.EXECUTE] {

54 on r_r1.Complete_c (): {

55 r1_c_complete = true;

56 if (r2_d_complete) {

57 EndActivity ();

58 }

59 }

60

61 on r_r1.Complete_c_failed (): {

62 ActivityFailed ();

63 }

64

65 on r_r2.Complete_d (): {

66 r2_d_complete = true;

67 if (r1_c_complete) {

68 EndActivity ();

69 }

70 }

71

72 on r_r2.Complete_d_failed (): {

73 ActivityFailed ();

74 }

75 }

76 }

77 }

(c) For Act3 the generated Dezyne code is shown below.

i. Interface

1 interface IAct3 {

2 // Define start and end events

3 in void StartAct3 ();

4 out void CompleteAct3 ();

5 out void CompleteAct3Failed ();

6

7 behaviour {

8 // Define two states

9 enum Activity_states_t { IDLE , EXECUTE };

10 // Set initial state to IDLE

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {
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14 // Define behaviour for start event of activity

15 on StartAct3: {

16 state = Activity_states_t.EXECUTE;

17 }

18 }

19

20 [state.EXECUTE] {

21 on StartAct3: illegal;

22 on inevitable: {

23 // Return end event of activity

24 CompleteAct3;

25 state = Activity_states_t.IDLE;

26 }

27

28 on inevitable: {

29 // Return failed end event of activity

30 CompleteAct3Failed;

31 state = Activity_states_t.IDLE;

32 }

33 }

34 }

35 }

ii. Component

1 import IAct3.dzn;

2 import Ir1.dzn;

3 import Ir2.dzn;

4

5 component Act3_Comp {

6 provides IAct3 p_Act3;

7 requires Ir1 r_r1;

8 requires Ir2 r_r2;

9

10 behaviour {

11 // Define two states

12 enum Activity_states_t { IDLE , EXECUTE };

13 // Set initial state to IDLE

14 Activity_states_t state = Activity_states_t.IDLE;

15

16 // For every action define a boolean variable

17 bool r1_e_complete = false;

18 bool r2_f_complete = false;

19

20 void Reset() {

21 state = Activity_states_t.IDLE;

22 r1_e_complete = false;

23 r2_f_complete = false;

24 }

25

26 void EndActivity () {

27 p_Act3.CompleteAct3 ();

28 Reset();

29 }

30 void ResetResources () {

31 r_r1.Reset();

32 r_r2.Reset();

33 }

34

35 void ActivityFailed () {

36 p_Act3.CompleteAct3Failed ();

37 Reset();

38 ResetResources ();

39 }

40

41 [state.IDLE] {

42 // Define behaviour for start event of activity

43 on p_Act3.StartAct3 (): {
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44 state = Activity_states_t.EXECUTE;

45

46 // Insert code to start the first actions

47 // For every action in initials

48 r_r1.Start_e ();

49 }

50 }

51

52 [state.EXECUTE] {

53 on r_r1.Complete_e (): {

54 r1_e_complete = true;

55 r_r2.Start_f ();

56 }

57

58 on r_r1.Complete_e_failed (): {

59 ActivityFailed ();

60 }

61

62 on r_r2.Complete_f (): {

63 r2_f_complete = true;

64 EndActivity ();

65 }

66

67 on r_r2.Complete_f_failed (): {

68 ActivityFailed ();

69 }

70 }

71 }

72 }

Sequence diagrams of the generated Dezyne code

1. Criticality level 1
The behavior of the activities Act1, Act2 and Act3 is shown as sequence diagram in Figure 5.5, Figure
5.6 and Figure 5.7 respectively. It is assumed that action a, action c and action e fail in activities
Act1, Act2 and Act3 respectively.

2. Criticality level 2
The behavior of activities Act1, Act2 and Act3 is shown as sequence diagram in Figure 5.8, Figure
5.9 and Figure 5.10 respectively. It is assumed that action a, action c and action e fail in activities
Act1, Act2 and Act3 respectively.

72 Supervisory control for flexible manufacturing systems



CHAPTER 5. HANDLING EXCEPTIONS IN AN ACTIVITY

Figure 5.5: Sequence diagram for the activity Act1

Figure 5.6: Sequence diagram for the activity Act2
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Figure 5.7: Sequence diagram for the activity Act3

Figure 5.8: Sequence diagram for the activity Act1
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Figure 5.9: Sequence diagram for the activity Act2

Figure 5.10: Sequence diagram for the activity Act3
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5.9 Verification of the generated Dezyne code
The activities modeled are verified in the Dezyne environment for properties described in section 3.9.

1. Criticality level 1
The verification results for Act1, Act2 and Act3 is shown in Figure 5.11, Figure 5.12 and Figure 5.13
respectively.

Figure 5.11: Verification result for the activity Act1

Figure 5.12: Verification result for the activity Act2

Figure 5.13: Verification result for the activity Act3

2. Criticality level 2
The verification results for Act1, Act2 and Act3 is shown in Figure 5.14, Figure 5.15 and Figure 5.16
respectively.
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Figure 5.14: Verification result for the activity Act1

Figure 5.15: Verification result for the activity Act2

Figure 5.16: Verification result for the activity Act3
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Chapter 6

Case Study: Handling Exceptions

The translation from the activity models to the Dezyne code is achieved using the following five steps:

1. Define the events for handling exceptions, that is the failure event for the activity, and the actions
contained in that activity.

2. Incorporate exceptions in the Activity DSL and in the Transformation DSL by specifying criticality
levels in the activity model and adding failed events to the translation model.

3. Generate the Dezyne code from the model.

4. Verify the generated code in the Dezyne environment.

6.1 Defining the events for handling exceptions
When an exception occurs, the failure events need to be defined, in addition to the start and end events for
the activity’s software counterpart, and actions contained within that activity. The events defined for the
Warehouse Activity is shown in Figure 6.1.

Figure 6.1: Events in Dezyne mapped to the Warehouse Activity

Similarly, the events defined for the Color Sorter Activity is shown in Figure 6.2.
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Figure 6.2: Events in Dezyne mapped to the Color Sorter Activity

6.2 Incorporating the exceptions in the Domain Specific Language
Since exceptions can be handled in two different ways, there are two criticality levels that can be defined:
criticality level 1 and criticality level 2 in the Activity DSL.

6.2.1 Activity model
Criticality level 1

The activity model of the Factory Four model for criticality level 1 is shown below.

1 Resource Robot

2 Action type MoveToWarehouseAndPick

3 Action type MoveToOvenAndPlace

4 Action type MoveToHomePosition

5 Action type MoveToColorSorterAndPick

6 Action type MoveToWarehouseAndPlace

7 Resource Warehouse

8 Action type RequestToRetrieve

9 Action type RequestToStore

10 Action type ReadyForNext

11 Action type ReadyForNextAction

12 Resource ProcessingStation

13 Action type Ready

14 Resource ColorSorter

15 Action type SorterRequestToRetrieve

16

17 Activity WarehouseActivity

18 Criticality level 1

19 a1 : Warehouse.RequestToRetrieve

20 a2 : ProcessingStation.Ready

21 a3 : Robot.MoveToWarehouseAndPick

22 a4 : Warehouse.ReadyForNext

23 a5 : Robot.MoveToOvenAndPlace

24 a6 : Robot.MoveToHomePosition

25 Dependencies

26 a1 -> a3

27 a2 -> a3

28 a3 -> a4

29 a3 -> a5

30 a5 -> a6
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31

32 Activity ColorSorterActivity

33 Criticality level 1

34 b1 : Warehouse.RequestToStore

35 b2 : ColorSorter.SorterRequestToRetrieve

36 b3 : Robot.MoveToColorSorterAndPick

37 b4 : Robot.MoveToWarehouseAndPlace

38 b5 : Warehouse.ReadyForNextAction

39 b6 : Robot.MoveToHomePosition

40 Dependencies

41 b1 -> b3

42 b2 -> b3

43 b3 -> b4

44 b4 -> b5

45 b4 -> b6

Criticality level 2

The activity model of the Factory Four model for criticality level 2 is shown below.

1 Resource Robot

2 Action type MoveToWarehouseAndPick

3 Action type MoveToOvenAndPlace

4 Action type MoveToHomePosition

5 Action type MoveToColorSorterAndPick

6 Action type MoveToWarehouseAndPlace

7 Resource Warehouse

8 Action type RequestToRetrieve

9 Action type RequestToStore

10 Action type ReadyForNext

11 Action type ReadyForNextAction

12 Resource ProcessingStation

13 Action type Ready

14 Resource ColorSorter

15 Action type SorterRequestToRetrieve

16

17 Activity WarehouseActivity

18 Criticality level 2

19 a1 : Warehouse.RequestToRetrieve

20 a2 : ProcessingStation.Ready

21 a3 : Robot.MoveToWarehouseAndPick

22 a4 : Warehouse.ReadyForNext

23 a5 : Robot.MoveToOvenAndPlace

24 a6 : Robot.MoveToHomePosition

25 Dependencies

26 a1 -> a3

27 a2 -> a3

28 a3 -> a4

29 a3 -> a5

30 a5 -> a6

31

32 Activity ColorSorterActivity

33 Criticality level 2

34 b1 : Warehouse.RequestToStore

35 b2 : ColorSorter.SorterRequestToRetrieve

36 b3 : Robot.MoveToColorSorterAndPick

37 b4 : Robot.MoveToWarehouseAndPlace

38 b5 : Warehouse.ReadyForNextAction

39 b6 : Robot.MoveToHomePosition

40 Dependencies

41 b1 -> b3

42 b2 -> b3

43 b3 -> b4

44 b4 -> b5

45 b4 -> b6
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6.2.2 Translation model
The translation model of the Factory Four model is expressed in the Transformation DSL. The translation
model is same for criticality level 1 and criticality level 2, which is shown below.

1 Activity WarehouseActivity

2 StartEvent: StartTransferAndProcessWidget(WidgetColorParam product)

3 EndEvent: TransferCompleted ()

4 FailedEndEvent: TransferFailed ()

5

6 Activity ColorSorterActivity

7 StartEvent: StartTransferAndStoreWidget(WidgetColorParam product)

8 EndEvent: TransferCompleted ()

9 FailedEndEvent: TransferFailed ()

10

11 Resource Robot

12 Interface: IRobot

13

14 Action MoveToWarehouseAndPick

15 StartEvent: StartTransferFromWarehouseToProcessing ()

16 EndEvent: PickedUpAtWarehouse ()

17 FailedEndEvent: PickedUpAtWarehouseFailed ()

18

19 Action MoveToOvenAndPlace

20 StartEvent: PlaceAtProcessing ()

21 EndEvent: DroppedAtProcessing ()

22 FailedEndEvent: DroppedAtProcessingFailed ()

23

24 Action MoveToHomePosition

25 StartEvent: Homing ()

26 EndEvent: MoveCompleted ()

27 FailedEndEvent: MoveCompletedFailed ()

28

29 Action MoveToColorSorterAndPick

30 StartEvent: StartTransferFromColorSorterToWarehouse ()

31 EndEvent: PickedAtColorSorter ()

32 FailedEndEvent: PickedAtColorSorterFailed ()

33

34 Action MoveToWarehouseAndPlace

35 StartEvent: PlaceAtWarehouse ()

36 EndEvent: DroppedAtWarehouse ()

37 FailedEndEvent: DroppedAtWarehouseFailed ()

38

39 Resource Warehouse

40 Interface: IWarehouse

41

42 Action RequestToRetrieve

43 StartEvent: RequestToRetrieve(WidgetColorParam widgetTransferred)

44 EndEvent: ReadyForPicking ()

45 FailedEndEvent:ReadyForPickingFailed ()

46

47 Action ReadyForNext

48 StartEvent: Picked(widgetTransferred)

49 EndEvent: ReadyForNext ()

50 FailedEndEvent: ReadyForNextFailed ()

51

52 Action ReadyForNextAction

53 StartEvent: Placed(WidgetColorParam product)

54 EndEvent: ReadyForNextAction ()

55 FailedEndEvent: ReadyForNextActionFailed ()

56

57 Action RequestToStore

58 StartEvent: RequestToStore(WidgetColorParam widgetTransferred)

59 EndEvent: ReadyForReceiving ()

60 FailedEndEvent: ReadyForReceivingFailed ()

61

62 Resource ProcessingStation

63 Interface: IProcessingStation
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64

65 Action Ready

66 StartEvent: Start()

67 EndEvent: ReadyForReceiving ()

68 FailedEndEvent:ReadyForReceivingFailed ()

69

70 Resource ColorSorter

71 Interface: IColorSorter

72

73 Action SorterRequestToRetrieve

74 StartEvent: SorterRequestToRetrieve(WidgetColorParam widgetTransferred)

75 EndEvent: SorterReadyForPicking ()

76 FailedEndEvent: SorterReadyForPickingFailed ()

6.3 Generated Dezyne code
Once the criticality levels for Factory Four model is defined and the events are specified, Dezyne code is
generated.

6.3.1 Criticality level 1
For criticality level 1, the generated Dezyne code is shown below. The interface code for the resources of
Factory Four model for criticality level 1 is given in A.2.2 for reference.

1. Warehouse Activity

(a) Interface
1 import Definitions.dzn;

2 interface IWarehouseActivity {

3 // Define start and end events

4 in void StartTransferAndProcessWidget(WidgetColorParam product);

5 out void TransferCompleted ();

6 out void TransferFailed ();

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 [state.IDLE] {

15 // Define behaviour for start event of activity

16 on StartTransferAndProcessWidget: {

17 state = Activity_states_t.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE] {

22 on StartTransferAndProcessWidget: illegal;

23 on inevitable: {

24 // Return end event of activity

25 TransferCompleted;

26 state = Activity_states_t.IDLE;

27 }

28

29 on inevitable: {

30 // Return failed end event of activity

31 TransferFailed;

32 state = Activity_states_t.IDLE;

33 }

34 }

35 }

36 }
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(b) Component

1 import IWarehouseActivity.dzn;

2 import IRobot.dzn;

3 import IWarehouse.dzn;

4 import IProcessingStation.dzn;

5

6 component WarehouseActivity_Comp {

7 provides IWarehouseActivity p_WarehouseActivity;

8 requires IRobot r_Robot;

9 requires IWarehouse r_Warehouse;

10 requires IProcessingStation r_ProcessingStation;

11

12 behaviour {

13 // Define two states

14 enum Activity_states_t { IDLE , EXECUTE };

15 // Set initial state to IDLE

16 Activity_states_t state = Activity_states_t.IDLE;

17

18 WidgetColorParam widgetTransferred;

19

20 bool activity_failed = false;

21

22 // For every action define a boolean variable

23 bool processingStation_Ready_complete = false;

24 bool robot_MoveToHomePosition_complete = false;

25 bool robot_MoveToOvenAndPlace_complete = false;

26 bool robot_MoveToWarehouseAndPick_complete = false;

27 bool warehouse_ReadyForNext_complete = false;

28 bool warehouse_RequestToRetrieve_complete = false;

29

30 void Reset() {

31 state = Activity_states_t.IDLE;

32 processingStation_Ready_complete = false;

33 robot_MoveToHomePosition_complete = false;

34 robot_MoveToOvenAndPlace_complete = false;

35 robot_MoveToWarehouseAndPick_complete = false;

36 warehouse_ReadyForNext_complete = false;

37 warehouse_RequestToRetrieve_complete = false;

38 activity_failed = false;

39 }

40

41 void EndActivity () {

42 if (activity_failed) {

43 ActivityFailed ();

44 }

45 else {

46 p_WarehouseActivity.TransferCompleted ();

47 Reset();

48 }

49 }

50

51 void ActivityFailed () {

52 p_WarehouseActivity.TransferFailed ();

53 Reset();

54 }

55

56 [state.IDLE] {

57 // Define behaviour for start event of activity

58 on p_WarehouseActivity.StartTransferAndProcessWidget(product): {

59 state = Activity_states_t.EXECUTE;

60

61 // Insert code to start the first actions

62 // For every action in initials

63 r_ProcessingStation.Start();

64 r_Warehouse.RequestToRetrieve(widgetTransferred);

65 }

66 }
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67

68 [state.EXECUTE] {

69 on r_Warehouse.ReadyForPicking (): {

70 warehouse_RequestToRetrieve_complete = true;

71 if (processingStation_Ready_complete) {

72 r_Robot.StartTransferFromWarehouseToProcessing ();

73 }

74 }

75

76 on r_Warehouse.ReadyForPickingFailed (): {

77 warehouse_RequestToRetrieve_complete = true;

78 activity_failed = true;

79 if (processingStation_Ready_complete) {

80 r_Robot.StartTransferFromWarehouseToProcessing ();

81 }

82 }

83

84 on r_ProcessingStation.ReadyForReceiving (): {

85 processingStation_Ready_complete = true;

86 if (warehouse_RequestToRetrieve_complete) {

87 r_Robot.StartTransferFromWarehouseToProcessing ();

88 }

89 }

90

91 on r_ProcessingStation.ReadyForReceivingFailed (): {

92 processingStation_Ready_complete = true;

93 activity_failed = true;

94 if (warehouse_RequestToRetrieve_complete) {

95 r_Robot.StartTransferFromWarehouseToProcessing ();

96 }

97 }

98

99 on r_Robot.PickedUpAtWarehouse (): {

100 robot_MoveToWarehouseAndPick_complete = true;

101 r_Warehouse.Picked(widgetTransferred);

102 r_Robot.PlaceAtProcessing ();

103 }

104

105 on r_Robot.PickedUpAtWarehouseFailed (): {

106 robot_MoveToWarehouseAndPick_complete = true;

107 activity_failed = true;

108 r_Warehouse.Picked(widgetTransferred);

109 r_Robot.PlaceAtProcessing ();

110 }

111

112 on r_Warehouse.ReadyForNext (): {

113 warehouse_ReadyForNext_complete = true;

114 if (robot_MoveToHomePosition_complete) {

115 EndActivity ();

116 }

117 }

118

119 on r_Warehouse.ReadyForNextFailed (): {

120 warehouse_ReadyForNext_complete = true;

121 activity_failed = true;

122 if (robot_MoveToHomePosition_complete) {

123 EndActivity ();

124 }

125 }

126

127 on r_Robot.DroppedAtProcessing (): {

128 robot_MoveToOvenAndPlace_complete = true;

129 r_Robot.Homing ();

130 }

131

132 on r_Robot.DroppedAtProcessingFailed (): {

133 robot_MoveToOvenAndPlace_complete = true;
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134 activity_failed = true;

135 r_Robot.Homing ();

136 }

137

138 on r_Robot.MoveCompleted (): {

139 robot_MoveToHomePosition_complete = true;

140 if (warehouse_ReadyForNext_complete) {

141 EndActivity ();

142 }

143 }

144

145 on r_Robot.MoveCompletedFailed (): {

146 robot_MoveToHomePosition_complete = true;

147 activity_failed = true;

148 if (warehouse_ReadyForNext_complete) {

149 EndActivity ();

150 }

151 }

152 }

153 }

154 }

2. Color Sorter Activity

(a) Interface
1 import Definitions.dzn;

2 interface IColorSorterActivity {

3 // Define start and end events

4 in void StartTransferAndStoreWidget(WidgetColorParam product);

5 out void TransferCompleted ();

6 out void TransferFailed ();

7

8 behaviour {

9 // Define two states

10 enum Activity_states_t { IDLE , EXECUTE };

11 // Set initial state to IDLE

12 Activity_states_t state = Activity_states_t.IDLE;

13

14 [state.IDLE] {

15 // Define behaviour for start event of activity

16 on StartTransferAndStoreWidget: {

17 state = Activity_states_t.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE] {

22 on StartTransferAndStoreWidget: illegal;

23 on inevitable: {

24 // Return end event of activity

25 TransferCompleted;

26 state = Activity_states_t.IDLE;

27 }

28

29 on inevitable: {

30 // Return failed end event of activity

31 TransferFailed;

32 state = Activity_states_t.IDLE;

33 }

34 }

35 }

36 }
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(b) Component

1

2 import IColorSorterActivity.dzn;

3 import IRobot.dzn;

4 import IWarehouse.dzn;

5 import IColorSorter.dzn;

6

7 component ColorSorterActivity_Comp {

8 provides IColorSorterActivity p_ColorSorterActivity;

9 requires IRobot r_Robot;

10 requires IWarehouse r_Warehouse;

11 requires IColorSorter r_ColorSorter;

12

13 behaviour {

14 // Define two states

15 enum Activity_states_t { IDLE , EXECUTE };

16 // Set initial state to IDLE

17 Activity_states_t state = Activity_states_t.IDLE;

18

19 WidgetColorParam widgetTransferred;

20 WidgetColorParam product;

21

22 bool activity_failed = false;

23

24 // For every action define a boolean variable

25 bool colorSorter_SorterRequestToRetrieve_complete = false;

26 bool robot_MoveToColorSorterAndPick_complete = false;

27 bool robot_MoveToHomePosition_complete = false;

28 bool robot_MoveToWarehouseAndPlace_complete = false;

29 bool warehouse_ReadyForNextAction_complete = false;

30 bool warehouse_RequestToStore_complete = false;

31

32 void Reset() {

33 state = Activity_states_t.IDLE;

34 colorSorter_SorterRequestToRetrieve_complete = false;

35 robot_MoveToColorSorterAndPick_complete = false;

36 robot_MoveToHomePosition_complete = false;

37 robot_MoveToWarehouseAndPlace_complete = false;

38 warehouse_ReadyForNextAction_complete = false;

39 warehouse_RequestToStore_complete = false;

40 activity_failed = false;

41 }

42

43 void EndActivity () {

44 if (activity_failed) {

45 ActivityFailed ();

46 }

47 else {

48 p_ColorSorterActivity.TransferCompleted ();

49 Reset();

50 }

51 }

52

53 void ActivityFailed () {

54 p_ColorSorterActivity.TransferFailed ();

55 Reset();

56 }

57

58 [state.IDLE] {

59 // Define behaviour for start event of activity

60 on p_ColorSorterActivity.StartTransferAndStoreWidget(product): {

61 state = Activity_states_t.EXECUTE;

62

63 // Insert code to start the first actions

64 // For every action in initials

65 r_ColorSorter.SorterRequestToRetrieve(widgetTransferred);

66 r_Warehouse.RequestToStore(widgetTransferred);

86 Supervisory control for flexible manufacturing systems



CHAPTER 6. CASE STUDY: HANDLING EXCEPTIONS

67 }

68 }

69

70 [state.EXECUTE] {

71 on r_Warehouse.ReadyForReceiving (): {

72 warehouse_RequestToStore_complete = true;

73 if (colorSorter_SorterRequestToRetrieve_complete) {

74 r_Robot.StartTransferFromColorSorterToWarehouse ();

75 }

76 }

77

78 on r_Warehouse.ReadyForReceivingFailed (): {

79 warehouse_RequestToStore_complete = true;

80 activity_failed = true;

81 if (colorSorter_SorterRequestToRetrieve_complete) {

82 r_Robot.StartTransferFromColorSorterToWarehouse ();

83 }

84 }

85

86 on r_ColorSorter.SorterReadyForPicking (): {

87 colorSorter_SorterRequestToRetrieve_complete = true;

88 if (warehouse_RequestToStore_complete) {

89 r_Robot.StartTransferFromColorSorterToWarehouse ();

90 }

91 }

92

93 on r_ColorSorter.SorterReadyForPickingFailed (): {

94 colorSorter_SorterRequestToRetrieve_complete = true;

95 activity_failed = true;

96 if (warehouse_RequestToStore_complete) {

97 r_Robot.StartTransferFromColorSorterToWarehouse ();

98 }

99 }

100

101 on r_Robot.PickedAtColorSorter (): {

102 robot_MoveToColorSorterAndPick_complete = true;

103 r_Robot.PlaceAtWarehouse ();

104 }

105

106 on r_Robot.PickedAtColorSorterFailed (): {

107 robot_MoveToColorSorterAndPick_complete = true;

108 activity_failed = true;

109 r_Robot.PlaceAtWarehouse ();

110 }

111

112 on r_Robot.DroppedAtWarehouse (): {

113 robot_MoveToWarehouseAndPlace_complete = true;

114 r_Warehouse.Placed(product);

115 r_Robot.Homing ();

116 }

117

118 on r_Robot.DroppedAtWarehouseFailed (): {

119 robot_MoveToWarehouseAndPlace_complete = true;

120 activity_failed = true;

121 r_Warehouse.Placed(product);

122 r_Robot.Homing ();

123 }

124

125 on r_Warehouse.ReadyForNextAction (): {

126 warehouse_ReadyForNextAction_complete = true;

127 if (robot_MoveToHomePosition_complete) {

128 EndActivity ();

129 }

130 }

131

132 on r_Warehouse.ReadyForNextActionFailed (): {

133 warehouse_ReadyForNextAction_complete = true;
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134 activity_failed = true;

135 if (robot_MoveToHomePosition_complete) {

136 EndActivity ();

137 }

138 }

139

140 on r_Robot.MoveCompleted (): {

141 robot_MoveToHomePosition_complete = true;

142 if (warehouse_ReadyForNextAction_complete) {

143 EndActivity ();

144 }

145 }

146

147 on r_Robot.MoveCompletedFailed (): {

148 robot_MoveToHomePosition_complete = true;

149 activity_failed = true;

150 if (warehouse_ReadyForNextAction_complete) {

151 EndActivity ();

152 }

153 }

154 }

155 }

156 }

6.3.2 Criticality level 2
For criticality level 2, the generated Dezyne code is shown below. The interface code for the resources of
the Factory Four model for criticality level 2 is given in A.2.3 for reference.

1. Warehouse Activity

(a) Interface
1 import Definitions.dzn;

2

3 interface IWarehouseActivity {

4 // Define start and end events

5 in void StartTransferAndProcessWidget(WidgetColorParam product);

6 out void TransferCompleted ();

7 out void TransferFailed ();

8

9 behaviour {

10 // Define two states

11 enum Activity_states_t { IDLE , EXECUTE };

12 // Set initial state to IDLE

13 Activity_states_t state = Activity_states_t.IDLE;

14

15 [state.IDLE] {

16 // Define behaviour for start event of activity

17 on StartTransferAndProcessWidget: {

18 state = Activity_states_t.EXECUTE;

19 }

20 }

21

22 [state.EXECUTE] {

23 on StartTransferAndProcessWidget: illegal;

24 on inevitable: {

25 // Return end event of activity

26 TransferCompleted;

27 state = Activity_states_t.IDLE;

28 }

29

30 on inevitable: {

31 // Return failed end event of activity

32 TransferFailed;

33 state = Activity_states_t.IDLE;
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34 }

35 }

36 }

37 }

(b) Component
1 import IWarehouseActivity.dzn;

2 import IRobot.dzn;

3 import IWarehouse.dzn;

4 import IProcessingStation.dzn;

5

6 component WarehouseActivity_Comp {

7 provides IWarehouseActivity p_WarehouseActivity;

8 requires IRobot r_Robot;

9 requires IWarehouse r_Warehouse;

10 requires IProcessingStation r_ProcessingStation;

11

12 behaviour {

13 // Define two states

14 enum Activity_states_t { IDLE , EXECUTE };

15 // Set initial state to IDLE

16 Activity_states_t state = Activity_states_t.IDLE;

17

18 WidgetColorParam widgetTransferred;

19

20 // For every action define a boolean variable

21 bool processingStation_Ready_complete = false;

22 bool robot_MoveToHomePosition_complete = false;

23 bool robot_MoveToOvenAndPlace_complete = false;

24 bool robot_MoveToWarehouseAndPick_complete = false;

25 bool warehouse_ReadyForNext_complete = false;

26 bool warehouse_RequestToRetrieve_complete = false;

27

28 void Reset() {

29 state = Activity_states_t.IDLE;

30 processingStation_Ready_complete = false;

31 robot_MoveToHomePosition_complete = false;

32 robot_MoveToOvenAndPlace_complete = false;

33 robot_MoveToWarehouseAndPick_complete = false;

34 warehouse_ReadyForNext_complete = false;

35 warehouse_RequestToRetrieve_complete = false;

36 }

37

38 void EndActivity () {

39 p_WarehouseActivity.TransferCompleted ();

40 Reset();

41 }

42 void ResetResources () {

43 r_Robot.Reset ();

44 r_Warehouse.Reset();

45 r_ProcessingStation.Reset();

46 }

47

48 void ActivityFailed () {

49 p_WarehouseActivity.TransferFailed ();

50 Reset();

51 ResetResources ();

52 }

53

54 [state.IDLE] {

55 // Define behaviour for start event of activity

56 on p_WarehouseActivity.StartTransferAndProcessWidget(product): {

57 state = Activity_states_t.EXECUTE;

58

59 // Insert code to start the first actions

60 // For every action in initials

61 r_ProcessingStation.Start();
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62 r_Warehouse.RequestToRetrieve(widgetTransferred);

63 }

64 }

65

66 [state.EXECUTE] {

67 on r_Warehouse.ReadyForPicking (): {

68 warehouse_RequestToRetrieve_complete = true;

69 if (processingStation_Ready_complete) {

70 r_Robot.StartTransferFromWarehouseToProcessing ();

71 }

72 }

73

74 on r_Warehouse.ReadyForPickingFailed (): {

75 ActivityFailed ();

76 }

77

78 on r_ProcessingStation.ReadyForReceiving (): {

79 processingStation_Ready_complete = true;

80 if (warehouse_RequestToRetrieve_complete) {

81 r_Robot.StartTransferFromWarehouseToProcessing ();

82 }

83 }

84

85 on r_ProcessingStation.ReadyForReceivingFailed (): {

86 ActivityFailed ();

87 }

88

89 on r_Robot.PickedUpAtWarehouse (): {

90 robot_MoveToWarehouseAndPick_complete = true;

91 r_Warehouse.Picked(widgetTransferred);

92 r_Robot.PlaceAtProcessing ();

93 }

94

95 on r_Robot.PickedUpAtWarehouseFailed (): {

96 ActivityFailed ();

97 }

98

99 on r_Warehouse.ReadyForNext (): {

100 warehouse_ReadyForNext_complete = true;

101 if (robot_MoveToHomePosition_complete) {

102 EndActivity ();

103 }

104 }

105

106 on r_Warehouse.ReadyForNextFailed (): {

107 ActivityFailed ();

108 }

109

110 on r_Robot.DroppedAtProcessing (): {

111 robot_MoveToOvenAndPlace_complete = true;

112 r_Robot.Homing ();

113 }

114

115 on r_Robot.DroppedAtProcessingFailed (): {

116 ActivityFailed ();

117 }

118

119 on r_Robot.MoveCompleted (): {

120 robot_MoveToHomePosition_complete = true;

121 if (warehouse_ReadyForNext_complete) {

122 EndActivity ();

123 }

124 }

125

126 on r_Robot.MoveCompletedFailed (): {

127 ActivityFailed ();

128 }
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129 }

130 }

131 }

2. Color Sorter Activity

(a) Interface
1 import Definitions.dzn;

2

3 interface IColorSorterActivity {

4 // Define start and end events

5 in void StartTransferAndStoreWidget(WidgetColorParam product);

6 out void TransferCompleted ();

7 out void TransferFailed ();

8

9 behaviour {

10 // Define two states

11 enum Activity_states_t { IDLE , EXECUTE };

12 // Set initial state to IDLE

13 Activity_states_t state = Activity_states_t.IDLE;

14

15 [state.IDLE] {

16 // Define behaviour for start event of activity

17 on StartTransferAndStoreWidget: {

18 state = Activity_states_t.EXECUTE;

19 }

20 }

21

22 [state.EXECUTE] {

23 on StartTransferAndStoreWidget: illegal;

24 on inevitable: {

25 // Return end event of activity

26 TransferCompleted;

27 state = Activity_states_t.IDLE;

28 }

29

30 on inevitable: {

31 // Return failed end event of activity

32 TransferFailed;

33 state = Activity_states_t.IDLE;

34 }

35 }

36 }

37 }

(b) Component
1 import IColorSorterActivity.dzn;

2 import IRobot.dzn;

3 import IWarehouse.dzn;

4 import IColorSorter.dzn;

5

6 component ColorSorterActivity_Comp {

7 provides IColorSorterActivity p_ColorSorterActivity;

8 requires IRobot r_Robot;

9 requires IWarehouse r_Warehouse;

10 requires IColorSorter r_ColorSorter;

11

12 behaviour {

13 // Define two states

14 enum Activity_states_t { IDLE , EXECUTE };

15 // Set initial state to IDLE

16 Activity_states_t state = Activity_states_t.IDLE;

17

18 WidgetColorParam widgetTransferred;

19 WidgetColorParam product;
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20

21 // For every action define a boolean variable

22 bool colorSorter_SorterRequestToRetrieve_complete = false;

23 bool robot_MoveToColorSorterAndPick_complete = false;

24 bool robot_MoveToHomePosition_complete = false;

25 bool robot_MoveToWarehouseAndPlace_complete = false;

26 bool warehouse_ReadyForNextAction_complete = false;

27 bool warehouse_RequestToStore_complete = false;

28

29 void Reset() {

30 state = Activity_states_t.IDLE;

31 colorSorter_SorterRequestToRetrieve_complete = false;

32 robot_MoveToColorSorterAndPick_complete = false;

33 robot_MoveToHomePosition_complete = false;

34 robot_MoveToWarehouseAndPlace_complete = false;

35 warehouse_ReadyForNextAction_complete = false;

36 warehouse_RequestToStore_complete = false;

37 }

38

39 void EndActivity () {

40 p_ColorSorterActivity.TransferCompleted ();

41 Reset();

42 }

43 void ResetResources () {

44 r_Robot.Reset ();

45 r_Warehouse.Reset();

46 r_ColorSorter.Reset();

47 }

48

49 void ActivityFailed () {

50 p_ColorSorterActivity.TransferFailed ();

51 Reset();

52 ResetResources ();

53 }

54

55 [state.IDLE] {

56 // Define behaviour for start event of activity

57 on p_ColorSorterActivity.StartTransferAndStoreWidget(product): {

58 state = Activity_states_t.EXECUTE;

59

60 // Insert code to start the first actions

61 // For every action in initials

62 r_Warehouse.RequestToStore(widgetTransferred);

63 r_ColorSorter.SorterRequestToRetrieve(widgetTransferred);

64 }

65 }

66

67 [state.EXECUTE] {

68 on r_Warehouse.ReadyForReceiving (): {

69 warehouse_RequestToStore_complete = true;

70 if (colorSorter_SorterRequestToRetrieve_complete) {

71 r_Robot.StartTransferFromColorSorterToWarehouse ();

72 }

73 }

74

75 on r_Warehouse.ReadyForReceivingFailed (): {

76 ActivityFailed ();

77 }

78

79 on r_ColorSorter.SorterReadyForPicking (): {

80 colorSorter_SorterRequestToRetrieve_complete = true;

81 if (warehouse_RequestToStore_complete) {

82 r_Robot.StartTransferFromColorSorterToWarehouse ();

83 }

84 }

85

86 on r_ColorSorter.SorterReadyForPickingFailed (): {
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87 ActivityFailed ();

88 }

89

90 on r_Robot.PickedAtColorSorter (): {

91 robot_MoveToColorSorterAndPick_complete = true;

92 r_Robot.PlaceAtWarehouse ();

93 }

94

95 on r_Robot.PickedAtColorSorterFailed (): {

96 ActivityFailed ();

97 }

98

99 on r_Robot.DroppedAtWarehouse (): {

100 robot_MoveToWarehouseAndPlace_complete = true;

101 r_Warehouse.Placed(product);

102 r_Robot.Homing ();

103 }

104

105 on r_Robot.DroppedAtWarehouseFailed (): {

106 ActivityFailed ();

107 }

108

109 on r_Warehouse.ReadyForNextAction (): {

110 warehouse_ReadyForNextAction_complete = true;

111 if (robot_MoveToHomePosition_complete) {

112 EndActivity ();

113 }

114 }

115

116 on r_Warehouse.ReadyForNextActionFailed (): {

117 ActivityFailed ();

118 }

119

120 on r_Robot.MoveCompleted (): {

121 robot_MoveToHomePosition_complete = true;

122 if (warehouse_ReadyForNextAction_complete) {

123 EndActivity ();

124 }

125 }

126

127 on r_Robot.MoveCompletedFailed (): {

128 ActivityFailed ();

129 }

130 }

131 }

132 }

Sequence diagrams of the generated Dezyne code

1. Criticality level 1
The sequence diagram for the Warehouse activity and the Color Sorter activity is shown in Figures
6.3 and 6.4. It is assumed that actions Processing Station ready and Move to Warehouse and Pick
fail in the Warehouse activity. Similarly, in the Color Sorter activity it is assumed that actions Move
to Warehouse and place and Warehouse ready for next action fail to execute.

2. Criticality level 2
The sequence diagrams for the Warehouse activity and the Color Sorter activity are shown in Figure
6.5 and 6.6. It is assumed that action Request to retrieve and box available fails in the Warehouse
activity. Similarly, in the Color Sorter activity it is assumed that action Move to Color Sorter and
Pick fails to execute.
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Figure 6.3: Sequence diagram for the Warehouse Activity for criticality level 1

Figure 6.4: Sequence diagram for the Color Sorter activity for criticality level 1
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Figure 6.5: Sequence diagram for the Warehouse Activity for criticality level 2

Figure 6.6: Sequence diagram for the Color Sorter activity for criticality level 2
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6.4 Verifying the generated code
The verification results for the Warehouse activity and the Color Sorter activity in the Dezyne environment
is shown below for different criticality levels.

1. Criticality level 1
For criticality level 1, the verification results are shown in Figure 6.7 and Figure 6.8 for the Ware-
house activity and the Color Sorter activity respectively.

Figure 6.7: Verification result for the Warehouse Activity

Figure 6.8: Verification result for the Color Sorter Activity

2. Criticality level 2
The verification results for the Warehouse activity and the Color Sorter activity in the Dezyne envir-
onment is shown in Figure 6.9 and Figure 6.10 respectively.

Figure 6.9: Verification result for the Warehouse Activity
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Figure 6.10: Verification result for the Color Sorter Activity
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Chapter 7

Conclusions and future work

The following sections conclude the work discussed in this report and suggest improvements for the solu-
tion which can be included in the future work.

7.1 Conclusion
The answers to the following research questions for an FMS is provided as follows:

1. How to generate Dezyne code from activity models?
An FMS is modeled using the activity framework in terms of resources, actions and activities, which
can be specified in LSAT. However, LSAT has features which are not required for Dezyne code
generation. Hence, a textual Domain Specific Language is developed which acts as an intermediary
towards Dezyne code generation from activity models. In the Activity DSL, FMS specifications can
be described using the features from the LSAT. Next, the semantics of the activities is represented
in terms of Gantt charts to explain what it means to execute an activity. Then modeling concepts
used in Dezyne are explained. A model in Dezyne is specified in terms interfaces, components and
events. These events are mapped to the activity and actions contained within that activity. Next,
transformation rules are defined to obtain the transformation from the activity model to the Dezyne
code and an algorithm is developed. Using this algorithm, Dezyne code is generated from the activit-
ies. The correctness of the transformation is validated as well as the scalability of the results in terms
of increasing state-space. Finally, the generated code is verified in the Dezyne environment for any
errors.

2. How to handle exceptions in the activity framework?
To handle exceptions in an FMS, various responses of the system are described in terms of varying
degrees of criticality. The notion of an exception is introduced in an activity and its specification is
incorporated in the Activity DSL in terms of criticality levels. Next, the semantics of an activity is
explained in terms of Gantt charts for the low-level criticality and the high-level criticality (complete
shut down of the system) cases. The exceptions are then modeled in Dezyne using failure events
which are defined for the activity and its actions. The behavior that the Dezyne model must exhibit
for various criticality levels is also defined. Once the behavior is known, the rules of transformation
are defined and an algorithm is developed, which is added to the Transformation DSL for automated
Dezyne code generation to handle exceptions in an activity model. In the end, generated code is
verified in the Dezyne environment for any errors.

7.2 Future Work
The scope of this project is limited to defining resources, actions and activities, for defining the specifica-
tions of an FMS. This scope can be extended to include activity sequences and peripherals.
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At the level of activity sequences, multiple activities are scheduled and deployed at the runtime. This
necessitates that the resources are shared by multiple activities during execution. This dynamic sharing of
resources is implemented using claims and releases in the activity framework. When a resource is claimed
by an activity, it can execute its actions. However, while a resource is claimed, other activities must wait for
the resource to be released in order to execute their actions. Also, in each activity a resource can be claimed
and released only once. This leads to performance optimizations in terms of throughput and makespan. Re-
specting the semantics for the sharing of resources by multiple activities at the component level is a chal-
lenge. Models in Dezyne have a strictly layered architecture. In addition, the run-to-completion semantics
of incoming events enforce that any sequence of incoming events is serialized.

The solution can be further extended to include peripherals. Peripherals are physical components that
constitutes a resource. Modeling an FMS which defines specifications in terms of peripherals comes with
its own sets of challenges. The component level design must ensure that all actions mapped to the same
peripheral must be sequentially ordered to avoid self-concurrency. In addition, different peripherals within
a resource must be allowed to execute actions simultaneously.

The activities with two or more instances of the same action type can be defined in the Activity DSL.
However, the systematic translation for such cases is not included in the Dezyne code generation. In future,
the work can be extended to handle activities with multiple instances of the same action type in Dezyne by
changing states such that each state handles only one instance of that action.

Further, the solution can be extended to handle exceptions of medium-level and high-level criticality
(error state case). For this, the activity framework must be extended to include a mechanism for exception
handling.

Considering the state-space explosion problem with addition of each action in an activity, there are
scalability challenges in the verification process of the generated Dezyne code. Therefore, the verification
process must be raised from the software component level to the functional level specifications.
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Appendix A

Dezyne Code for Resources

A.1 Resources of activities Act1, Act2 and Act3
The Dezyne code for interfaces of resource r1 and r2 is given below for different levels of criticality.

A.1.1 Critical level 0
1. Resource r1

Interface
1 interface Ir1

2 {

3 in void Start_a ();

4 out void Complete_a ();

5

6 in void Start_b ();

7 out void Complete_b ();

8

9 in void Start_c ();

10 out void Complete_c ();

11

12 in void Start_e ();

13 out void Complete_e ();

14

15 behaviour {

16 enum Activity_states_t { IDLE , EXECUTE_a , EXECUTE_b , EXECUTE_c ,

EXECUTE_e };

17 Activity_states_t state = Activity_states_t.IDLE;

18

19 [state.IDLE] {

20 on Start_a:

21 {

22 state = Activity_states_t.EXECUTE_a;

23 }

24

25 on Start_b:

26 {

27 state = Activity_states_t.EXECUTE_b;

28 }

29

30 on Start_c:

31 {

32 state = Activity_states_t.EXECUTE_c;

33 }

34

35 on Start_e:

36 {

37 state = Activity_states_t.EXECUTE_e;
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38 }

39 }

40

41 [state.EXECUTE_a]

42 {

43 on Start_a , Start_b , Start_c , Start_e: illegal;

44 on inevitable:

45 {

46 Complete_a;

47 state = Activity_states_t.IDLE;

48 }

49 }

50

51 [state.EXECUTE_b]

52 {

53 on Start_a , Start_b , Start_c , Start_e: illegal;

54 on inevitable:

55 {

56 Complete_b;

57 state = Activity_states_t.IDLE;

58 }

59 }

60

61 [state.EXECUTE_c]

62 {

63 on Start_a , Start_b , Start_c , Start_e: illegal;

64 on inevitable:

65 {

66 Complete_c;

67 state = Activity_states_t.IDLE;

68 }

69 }

70

71 [state.EXECUTE_e]

72 {

73 on Start_a , Start_b , Start_c , Start_e: illegal;

74 on inevitable:

75 {

76 Complete_e;

77 state = Activity_states_t.IDLE;

78 }

79 }

80 }

81 }

2. Resource r2
Interface

1 interface Ir2

2 {

3 in void Start_d ();

4 out void Complete_d ();

5

6 in void Start_f ();

7 out void Complete_f ();

8

9 behaviour {

10 enum Activity_states_t { IDLE , EXECUTE_d , EXECUTE_f };

11 Activity_states_t state = Activity_states_t.IDLE;

12

13 [state.IDLE] {

14 on Start_d:

15 {

16 state = Activity_states_t.EXECUTE_d;

17 }

18

19 on Start_f:
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20 {

21 state = Activity_states_t.EXECUTE_f;

22 }

23 }

24

25 [state.EXECUTE_d]

26 {

27 on Start_d , Start_f: illegal;

28 on inevitable:

29 {

30 Complete_d;

31 state = Activity_states_t.IDLE;

32 }

33 }

34

35 [state.EXECUTE_f]

36 {

37 on Start_d , Start_f: illegal;

38 on inevitable:

39 {

40 Complete_f;

41 state = Activity_states_t.IDLE;

42 }

43 }

44 }

45 }

A.1.2 Critical level 1
1. Resource r1

Interface

1 interface Ir1

2 {

3 in void Start_a ();

4 out void Complete_a ();

5 out void Complete_a_failed ();

6

7 in void Start_b ();

8 out void Complete_b ();

9 out void Complete_b_failed ();

10

11 in void Start_c ();

12 out void Complete_c ();

13 out void Complete_c_failed ();

14

15 in void Start_e ();

16 out void Complete_e ();

17 out void Complete_e_failed ();

18

19 behaviour {

20 enum Activity_states_t { IDLE , EXECUTE_a , EXECUTE_b , EXECUTE_c ,

EXECUTE_e };

21 Activity_states_t state = Activity_states_t.IDLE;

22

23 [state.IDLE] {

24 on Start_a:

25 {

26 state = Activity_states_t.EXECUTE_a;

27 }

28

29 on Start_b:

30 {

31 state = Activity_states_t.EXECUTE_b;

32 }

33
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34 on Start_c:

35 {

36 state = Activity_states_t.EXECUTE_c;

37 }

38

39 on Start_e:

40 {

41 state = Activity_states_t.EXECUTE_e;

42 }

43 }

44

45 [state.EXECUTE_a]

46 {

47 on Start_a , Start_b , Start_c , Start_e: illegal;

48 on inevitable:

49 {

50 Complete_a;

51 state = Activity_states_t.IDLE;

52 }

53 on inevitable:

54 {

55 Complete_a_failed;

56 state = Activity_states_t.IDLE;

57 }

58 }

59

60 [state.EXECUTE_b]

61 {

62 on Start_a , Start_b , Start_c , Start_e: illegal;

63 on inevitable:

64 {

65 Complete_b;

66 state = Activity_states_t.IDLE;

67 }

68 on inevitable:

69 {

70 Complete_b_failed;

71 state = Activity_states_t.IDLE;

72 }

73 }

74

75 [state.EXECUTE_c]

76 {

77 on Start_a , Start_b , Start_c , Start_e: illegal;

78 on inevitable:

79 {

80 Complete_c;

81 state = Activity_states_t.IDLE;

82 }

83 on inevitable:

84 {

85 Complete_c_failed;

86 state = Activity_states_t.IDLE;

87 }

88 }

89

90 [state.EXECUTE_e]

91 {

92 on Start_a , Start_b , Start_c , Start_e: illegal;

93 on inevitable:

94 {

95 Complete_e;

96 state = Activity_states_t.IDLE;

97 }

98 on inevitable:

99 {

100 Complete_e_failed;
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101 state = Activity_states_t.IDLE;

102 }

103 }

104 }

105 }

2. Resource r2
Interface

1 interface Ir2

2 {

3 in void Start_d ();

4 out void Complete_d ();

5 out void Complete_d_failed ();

6

7 in void Start_f ();

8 out void Complete_f ();

9 out void Complete_f_failed ();

10

11 behaviour {

12 enum Activity_states_t { IDLE , EXECUTE_d , EXECUTE_f };

13 Activity_states_t state = Activity_states_t.IDLE;

14

15 [state.IDLE] {

16 on Start_d:

17 {

18 state = Activity_states_t.EXECUTE_d;

19 }

20

21 on Start_f:

22 {

23 state = Activity_states_t.EXECUTE_f;

24 }

25 }

26

27 [state.EXECUTE_d]

28 {

29 on Start_d , Start_f: illegal;

30 on inevitable:

31 {

32 Complete_d;

33 state = Activity_states_t.IDLE;

34 }

35 on inevitable:

36 {

37 Complete_d_failed;

38 state = Activity_states_t.IDLE;

39 }

40 }

41

42 [state.EXECUTE_f]

43 {

44 on Start_d , Start_f: illegal;

45 on inevitable:

46 {

47 Complete_f;

48 state = Activity_states_t.IDLE;

49 }

50 on inevitable:

51 {

52 Complete_f_failed;

53 state = Activity_states_t.IDLE;

54 }

55 }

56 }

57 }
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A.1.3 Critical level 2
1. Resource r1

Interface
1 interface Ir1

2 {

3 in void Start_a ();

4 out void Complete_a ();

5 out void Complete_a_failed ();

6

7 in void Start_b ();

8 out void Complete_b ();

9 out void Complete_b_failed ();

10

11 in void Start_c ();

12 out void Complete_c ();

13 out void Complete_c_failed ();

14

15 in void Start_e ();

16 out void Complete_e ();

17 out void Complete_e_failed ();

18

19 in void Reset();

20

21 behaviour {

22 enum Activity_states_t { IDLE , EXECUTE_a , EXECUTE_b , EXECUTE_c ,

EXECUTE_e };

23 Activity_states_t state = Activity_states_t.IDLE;

24

25 on Reset: {

26 state = Activity_states_t.IDLE;

27 }

28

29 [state.IDLE] {

30 on Start_a:

31 {

32 state = Activity_states_t.EXECUTE_a;

33 }

34

35 on Start_b:

36 {

37 state = Activity_states_t.EXECUTE_b;

38 }

39

40 on Start_c:

41 {

42 state = Activity_states_t.EXECUTE_c;

43 }

44

45 on Start_e:

46 {

47 state = Activity_states_t.EXECUTE_e;

48 }

49 }

50

51 [state.EXECUTE_a]

52 {

53 on Start_a , Start_b , Start_c , Start_e: illegal;

54 on inevitable:

55 {

56 Complete_a;

57 state = Activity_states_t.IDLE;

58 }

59 on inevitable:

60 {

61 Complete_a_failed;

62 state = Activity_states_t.IDLE;
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63 }

64 }

65

66 [state.EXECUTE_b]

67 {

68 on Start_a , Start_b , Start_c , Start_e: illegal;

69 on inevitable:

70 {

71 Complete_b;

72 state = Activity_states_t.IDLE;

73 }

74 on inevitable:

75 {

76 Complete_b_failed;

77 state = Activity_states_t.IDLE;

78 }

79 }

80

81 [state.EXECUTE_c]

82 {

83 on Start_a , Start_b , Start_c , Start_e: illegal;

84 on inevitable:

85 {

86 Complete_c;

87 state = Activity_states_t.IDLE;

88 }

89 on inevitable:

90 {

91 Complete_c_failed;

92 state = Activity_states_t.IDLE;

93 }

94 }

95

96 [state.EXECUTE_e]

97 {

98 on Start_a , Start_b , Start_c , Start_e: illegal;

99 on inevitable:

100 {

101 Complete_e;

102 state = Activity_states_t.IDLE;

103 }

104 on inevitable:

105 {

106 Complete_e_failed;

107 state = Activity_states_t.IDLE;

108 }

109 }

110 }

111 }

2. Resource r2
Interface

1 interface Ir2

2 {

3 in void Start_d ();

4 out void Complete_d ();

5 out void Complete_d_failed ();

6

7 in void Start_f ();

8 out void Complete_f ();

9 out void Complete_f_failed ();

10

11 in void Reset();

12

13 behaviour {

14 enum Activity_states_t { IDLE , EXECUTE_d , EXECUTE_f };
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15 Activity_states_t state = Activity_states_t.IDLE;

16

17 on Reset: {

18 state = Activity_states_t.IDLE;

19 }

20

21 [state.IDLE] {

22 on Start_d:

23 {

24 state = Activity_states_t.EXECUTE_d;

25 }

26

27 on Start_f:

28 {

29 state = Activity_states_t.EXECUTE_f;

30 }

31 }

32

33 [state.EXECUTE_d]

34 {

35 on Start_d , Start_f: illegal;

36 on inevitable:

37 {

38 Complete_d;

39 state = Activity_states_t.IDLE;

40 }

41 on inevitable:

42 {

43 Complete_d_failed;

44 state = Activity_states_t.IDLE;

45 }

46 }

47

48 [state.EXECUTE_f]

49 {

50 on Start_d , Start_f: illegal;

51 on inevitable:

52 {

53 Complete_f;

54 state = Activity_states_t.IDLE;

55 }

56 on inevitable:

57 {

58 Complete_f_failed;

59 state = Activity_states_t.IDLE;

60 }

61 }

62 }

63 }

A.2 Resources of Factory Four simulation model
Similarly, the Dezyne code for interfaces of resources in the Factory Four simulation model, that is, the
high-bay warehouse, the vacuum suction robot, the color sorter and the processing station is given below
for different levels of criticality.

A.2.1 Critical level 0
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1. Resource high-bay warehouse
Interface

1 import Definitions.dzn;

2

3 interface IWarehouse

4 {

5 in void RequestToRetrieve(WidgetColorParam product);

6 out void ReadyForPicking ();

7

8 in void Picked(WidgetColorParam product);

9 out void ReadyForNext ();

10

11 in void RequestToStore(WidgetColorParam product);

12 out void ReadyForReceiving ();

13

14 in void Placed(WidgetColorParam product);

15 out void ReadyForNextAction ();

16

17 behaviour

18 {

19 enum WarehouseSRHState { READY , RETRIEVE_FULL_BOX , STORE_EMPTY_BOX ,

WAIT_WIDGET_PICKED , RETRIEVE_EMPTY_BOX , STORE_FULL_BOX ,

WAIT_WIDGET_PLACED };

20 WarehouseSRHState state = WarehouseSRHState.READY;

21

22 [state.READY]

23 {

24 on Picked , Placed : illegal;

25 on RequestToRetrieve:

26 {

27 state = WarehouseSRHState.RETRIEVE_FULL_BOX;

28 }

29 on RequestToStore:

30 {

31 state = WarehouseSRHState.RETRIEVE_EMPTY_BOX;

32 }

33 }

34

35 [state.RETRIEVE_FULL_BOX]

36 {

37 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

38 on inevitable:

39 {

40 ReadyForPicking;

41 state = WarehouseSRHState.WAIT_WIDGET_PICKED;

42 }

43 }

44

45 [state.RETRIEVE_EMPTY_BOX]

46 {

47 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

48 on inevitable:

49 {

50 ReadyForReceiving;

51 state = WarehouseSRHState.WAIT_WIDGET_PLACED;

52 }

53 }

54

55 [state.WAIT_WIDGET_PICKED]

56 {

57 on RequestToRetrieve , RequestToStore , Placed: illegal;

58 on Picked:

59 {

60 state = WarehouseSRHState.STORE_EMPTY_BOX;

61 }

62 }

63
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64 [state. WAIT_WIDGET_PLACED]

65 {

66 on RequestToRetrieve , RequestToStore , Picked: illegal;

67 on Placed:

68 {

69 state = WarehouseSRHState.STORE_FULL_BOX;

70 }

71 }

72

73 [state.STORE_EMPTY_BOX]

74 {

75 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

76 on inevitable:

77 {

78 ReadyForNext;

79 state = WarehouseSRHState.READY;

80 }

81 }

82

83 [state.STORE_FULL_BOX]

84 {

85 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

86 on inevitable:

87 {

88 ReadyForNextAction;

89 state = WarehouseSRHState.READY;

90 }

91 }

92 }

93 }

2. Resource vacuum suction robot
Interface

1 import Definitions.dzn;

2

3 interface IRobot

4 {

5 in void StartTransferFromWarehouseToProcessing ();

6 out void PickedUpAtWarehouse ();

7

8 in void PlaceAtProcessing ();

9 out void DroppedAtProcessing ();

10

11 in void StartTransferFromColorSorterToWarehouse ();

12 out void PickedAtColorSorter ();

13

14 in void PlaceAtWarehouse ();

15 out void DroppedAtWarehouse ();

16

17 in void Homing ();

18 out void MoveCompleted ();

19

20 behaviour

21 {

22 enum RobotSRHState{ IDLE , PICKATWAREHOUSE , PICKED ,

PLACEATPROCESSINGSTATION , HOMING , HOMED , PICKATCOLORSORTER , PLACED

, PLACEATWAREHOUSE };

23 RobotSRHState state = RobotSRHState.IDLE;

24

25 [state.IDLE]

26 {

27 on PlaceAtProcessing , Homing , PlaceAtWarehouse : illegal;

28 on StartTransferFromWarehouseToProcessing:

29 {

30 state = RobotSRHState.PICKATWAREHOUSE;

31 }
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32 on StartTransferFromColorSorterToWarehouse:

33 {

34 state = RobotSRHState.PICKATCOLORSORTER;

35 }

36 }

37

38 [state.PICKATWAREHOUSE]

39 {

40 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtProcessing ,

PlaceAtWarehouse , StartTransferFromColorSorterToWarehouse:

illegal;

41 on inevitable:

42 {

43 PickedUpAtWarehouse;

44 state = RobotSRHState.PICKED;

45 }

46 }

47

48 [state.PICKATCOLORSORTER]

49 {

50 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtProcessing ,

PlaceAtWarehouse , StartTransferFromColorSorterToWarehouse:

illegal;

51 on inevitable:

52 {

53 PickedAtColorSorter;

54 state = RobotSRHState.PLACED;

55 }

56 }

57

58 [state.PICKED]

59 {

60 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtWarehouse ,

StartTransferFromColorSorterToWarehouse: illegal;

61 on PlaceAtProcessing:

62 {

63 state = RobotSRHState.PLACEATPROCESSINGSTATION;

64 }

65 }

66

67 [state.PLACED]

68 {

69 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtProcessing ,

StartTransferFromColorSorterToWarehouse: illegal;

70 on PlaceAtWarehouse:

71 {

72 state = RobotSRHState.PLACEATWAREHOUSE;

73 }

74 }

75

76 [state.PLACEATPROCESSINGSTATION]

77 {

78 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtProcessing ,

PlaceAtWarehouse , StartTransferFromColorSorterToWarehouse:

illegal;

79 on inevitable:

80 {

81 DroppedAtProcessing;

82 state = RobotSRHState.HOMING;

83 }

84 }

85

86 [state.PLACEATWAREHOUSE]

87 {

88 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtProcessing ,

PlaceAtWarehouse , StartTransferFromColorSorterToWarehouse:

illegal;
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89 on inevitable:

90 {

91 DroppedAtWarehouse;

92 state = RobotSRHState.HOMING;

93 }

94 }

95

96 [state.HOMING]

97 {

98 on StartTransferFromWarehouseToProcessing , PlaceAtProcessing ,

PlaceAtWarehouse , StartTransferFromColorSorterToWarehouse :

illegal;

99 on Homing:

100 {

101 state = RobotSRHState.HOMED;

102 }

103 }

104

105 [state.HOMED]

106 {

107 on StartTransferFromWarehouseToProcessing , Homing , PlaceAtProcessing ,

PlaceAtWarehouse , StartTransferFromColorSorterToWarehouse:

illegal;

108 on inevitable:

109 {

110 MoveCompleted;

111 state = RobotSRHState.IDLE;

112 }

113 }

114 }

115 }

3. Resource color sorter
Interface

1 import Definitions.dzn;

2

3 interface IColorSorter

4 {

5 in void SorterRequestToRetrieve(WidgetColorParam widgetColor);

6 out void SorterReadyForPicking ();

7

8 behaviour

9 {

10 enum SorterState {IDLE , EXECUTE };

11 SorterState state = SorterState.IDLE;

12

13 [state.IDLE]

14 {

15 on SorterRequestToRetrieve:

16 {

17 state = SorterState.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE]

22 {

23 on SorterRequestToRetrieve: illegal;

24 on inevitable:

25 {

26 SorterReadyForPicking;

27 state = SorterState.IDLE;

28 }

29 }

30 }

31 }
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4. Resource processing station
Interface

1 import Definitions.dzn;

2

3 interface IProcessingStation

4 {

5 in void Start();

6 out void ReadyForReceiving ();

7

8 behaviour

9 {

10 enum OvenState {IDLE , EXECUTE };

11 OvenState state = OvenState.IDLE;

12

13 [state.IDLE]

14 {

15 on Start:

16 {

17 state = OvenState.EXECUTE;

18 }

19 }

20

21 [state.EXECUTE]

22 {

23 on Start: illegal;

24 on inevitable:

25 {

26 ReadyForReceiving;

27 state = OvenState.IDLE;

28 }

29 }

30 }

31 }

A.2.2 Critical level 1
1. Resource high-bay warehouse

Interface

1 import Definitions.dzn;

2

3 interface IWarehouse

4 {

5 in void RequestToRetrieve(WidgetColorParam product);

6 out void ReadyForPicking ();

7 out void ReadyForPickingFailed ();

8

9 in void Picked(WidgetColorParam product);

10 out void ReadyForNext ();

11 out void ReadyForNextFailed ();

12

13 in void RequestToStore(WidgetColorParam product);

14 out void ReadyForReceiving ();

15 out void ReadyForReceivingFailed ();

16

17 in void Placed(WidgetColorParam product);

18 out void ReadyForNextAction ();

19 out void ReadyForNextActionFailed ();

20

21 behaviour

22 {

23 enum WarehouseSRHState { READY , RETRIEVE_FULL_BOX , STORE_EMPTY_BOX ,

WAIT_WIDGET_PICKED , RETRIEVE_EMPTY_BOX , STORE_FULL_BOX ,

WAIT_WIDGET_PLACED };

24 WarehouseSRHState state = WarehouseSRHState.READY;
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25

26 [state.READY]

27 {

28 on Picked , Placed: illegal;

29 on RequestToRetrieve:

30 {

31 state = WarehouseSRHState.RETRIEVE_FULL_BOX;

32 }

33

34 on RequestToStore:

35 {

36 state = WarehouseSRHState.RETRIEVE_EMPTY_BOX;

37 }

38 }

39

40 [state.RETRIEVE_FULL_BOX]

41 {

42 on Picked , Placed , RequestToRetrieve , RequestToStore: illegal;

43 on inevitable:

44 {

45 ReadyForPicking;

46 state = WarehouseSRHState.WAIT_WIDGET_PICKED;

47 }

48 on inevitable:

49 {

50 ReadyForPickingFailed;

51 state = WarehouseSRHState.WAIT_WIDGET_PICKED;

52 }

53 }

54

55 [state.RETRIEVE_EMPTY_BOX]

56 {

57 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

58 on inevitable:

59 {

60 ReadyForReceiving;

61 state = WarehouseSRHState.WAIT_WIDGET_PLACED;

62 }

63 on inevitable:

64 {

65 ReadyForReceivingFailed;

66 state = WarehouseSRHState.WAIT_WIDGET_PLACED;

67 }

68 }

69

70 [state.WAIT_WIDGET_PICKED]

71 {

72 on RequestToRetrieve , Placed , RequestToStore: illegal;

73 on Picked:

74 {

75 state = WarehouseSRHState.STORE_EMPTY_BOX;

76 }

77 }

78

79 [state. WAIT_WIDGET_PLACED]

80 {

81 on RequestToRetrieve , RequestToStore , Picked: illegal;

82 on Placed:

83 {

84 state = WarehouseSRHState.STORE_FULL_BOX;

85 }

86 }

87

88 [state.STORE_EMPTY_BOX]

89 {

90 on Picked , Placed , RequestToRetrieve , RequestToStore: illegal;

91 on inevitable:
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92 {

93 ReadyForNext;

94 state = WarehouseSRHState.READY;

95 }

96 on inevitable:

97 {

98 ReadyForNextFailed;

99 state = WarehouseSRHState.READY;

100 }

101 }

102

103 [state.STORE_FULL_BOX]

104 {

105 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

106 on inevitable:

107 {

108 ReadyForNextAction;

109 state = WarehouseSRHState.READY;

110 }

111 on inevitable:

112 {

113 ReadyForNextActionFailed;

114 state = WarehouseSRHState.READY;

115 }

116 }

117 }

118 }

2. Resource vacuum suction robot
Interface

1 import Definitions.dzn;

2

3 interface IRobot

4 {

5 in void StartTransferFromWarehouseToProcessing ();

6 out void PickedUpAtWarehouse ();

7 out void PickedUpAtWarehouseFailed ();

8

9 in void PlaceAtProcessing ();

10 out void DroppedAtProcessing ();

11 out void DroppedAtProcessingFailed ();

12

13 in void StartTransferFromColorSorterToWarehouse ();

14 out void PickedAtColorSorter ();

15 out void PickedAtColorSorterFailed ();

16

17 in void PlaceAtWarehouse ();

18 out void DroppedAtWarehouse ();

19 out void DroppedAtWarehouseFailed ();

20

21 in void Homing ();

22 out void MoveCompleted ();

23 out void MoveCompletedFailed ();

24

25 behaviour

26 {

27 enum RobotSRHState{ IDLE , PICKATWAREHOUSE , PICKED ,

PLACEATPROCESSINGSTATION , HOMING , HOMED , PICKATCOLORSORTER , PLACED

, PLACEATWAREHOUSE };

28 RobotSRHState state = RobotSRHState.IDLE;

29

30 [state.IDLE]

31 {

32 on PlaceAtProcessing , Homing , PlaceAtWarehouse: illegal;

33 on StartTransferFromWarehouseToProcessing:

34 {
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35 state = RobotSRHState.PICKATWAREHOUSE;

36 }

37 on StartTransferFromColorSorterToWarehouse:

38 {

39 state = RobotSRHState.PICKATCOLORSORTER;

40 }

41 }

42

43 [state.PICKATWAREHOUSE]

44 {

45 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse: illegal;

46 on inevitable:

47 {

48 PickedUpAtWarehouse;

49 state = RobotSRHState.PICKED;

50 }

51 on inevitable:

52 {

53 PickedUpAtWarehouseFailed;

54 state = RobotSRHState.PICKED;

55 }

56 }

57

58 [state.PICKATCOLORSORTER]

59 {

60 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse ,

StartTransferFromColorSorterToWarehouse: illegal;

61 on inevitable:

62 {

63 PickedAtColorSorter;

64 state = RobotSRHState.PLACED;

65 }

66 on inevitable:

67 {

68 PickedAtColorSorterFailed;

69 state = RobotSRHState.PLACED;

70 }

71 }

72

73 [state.PICKED]

74 {

75 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing , PlaceAtWarehouse

: illegal;

76 on PlaceAtProcessing:

77 {

78 state = RobotSRHState.PLACEATPROCESSINGSTATION;

79 }

80 }

81

82 [state.PLACED]

83 {

84 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , StartTransferFromColorSorterToWarehouse:

illegal;

85 on PlaceAtWarehouse:

86 {

87 state = RobotSRHState.PLACEATWAREHOUSE;

88 }

89 }

90

91 [state.PLACEATPROCESSINGSTATION]
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92 {

93 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse: illegal;

94 on inevitable:

95 {

96 DroppedAtProcessing;

97 state = RobotSRHState.HOMING;

98 }

99 on inevitable:

100 {

101 DroppedAtProcessingFailed;

102 state = RobotSRHState.HOMING;

103 }

104 }

105

106 [state.PLACEATWAREHOUSE]

107 {

108 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse ,

StartTransferFromColorSorterToWarehouse: illegal;

109 on inevitable:

110 {

111 DroppedAtWarehouse;

112 state = RobotSRHState.HOMING;

113 }

114 on inevitable:

115 {

116 DroppedAtWarehouseFailed;

117 state = RobotSRHState.HOMING;

118 }

119 }

120

121 [state.HOMING]

122 {

123 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , PlaceAtProcessing ,

PlaceAtWarehouse: illegal;

124 on Homing:

125 {

126 state = RobotSRHState.HOMED;

127 }

128 }

129

130 [state.HOMED]

131 {

132 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , PlaceAtProcessing ,

Homing , PlaceAtWarehouse: illegal;

133 on inevitable:

134 {

135 MoveCompleted;

136 state = RobotSRHState.IDLE;

137 }

138 on inevitable:

139 {

140 MoveCompletedFailed;

141 state = RobotSRHState.IDLE;

142 }

143 }

144 }

145 }
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3. Resource color sorter
Interface

1 import Definitions.dzn;

2

3 interface IColorSorter

4 {

5 in void SorterRequestToRetrieve(WidgetColorParam widgetColor);

6 out void SorterReadyForPicking ();

7 out void SorterReadyForPickingFailed ();

8

9 behaviour

10 {

11 enum SorterState {IDLE , EXECUTE };

12 SorterState state = SorterState.IDLE;

13

14 [state.IDLE]

15 {

16 on SorterRequestToRetrieve:

17 {

18 state = SorterState.EXECUTE;

19 }

20 }

21

22 [state.EXECUTE]

23 {

24 on SorterRequestToRetrieve: illegal;

25 on inevitable:

26 {

27 SorterReadyForPicking;

28 state = SorterState.IDLE;

29 }

30 on inevitable:

31 {

32 SorterReadyForPickingFailed;

33 state = SorterState.IDLE;

34 }

35 }

36 }

37 }

4. Resource processing station
Interface

1 import Definitions.dzn;

2

3 interface IProcessingStation

4 {

5 in void Start();

6 out void ReadyForReceiving ();

7 out void ReadyForReceivingFailed ();

8

9 behaviour

10 {

11 enum OvenState {IDLE , EXECUTE };

12 OvenState state = OvenState.IDLE;

13

14 [state.IDLE]

15 {

16 on Start:

17 {

18 state = OvenState.EXECUTE;

19 }

20 }

21

22 [state.EXECUTE]

23 {
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24 on Start: illegal;

25 on inevitable:

26 {

27 ReadyForReceiving;

28 state = OvenState.IDLE;

29 }

30 on inevitable:

31 {

32 ReadyForReceivingFailed;

33 state = OvenState.IDLE;

34 }

35 }

36 }

37 }

A.2.3 Critical level 2
1. Resource high-bay warehouse

Interface

1 import Definitions.dzn;

2

3 interface IWarehouse

4 {

5 in void RequestToRetrieve(WidgetColorParam product);

6 out void ReadyForPicking ();

7 out void ReadyForPickingFailed ();

8

9 in void Picked(WidgetColorParam product);

10 out void ReadyForNext ();

11 out void ReadyForNextFailed ();

12

13 in void RequestToStore(WidgetColorParam product);

14 out void ReadyForReceiving ();

15 out void ReadyForReceivingFailed ();

16

17 in void Placed(WidgetColorParam product);

18 out void ReadyForNextAction ();

19 out void ReadyForNextActionFailed ();

20

21 in void Reset();

22

23 behaviour

24 {

25 enum WarehouseSRHState { READY , RETRIEVE_FULL_BOX , STORE_EMPTY_BOX ,

WAIT_WIDGET_PICKED , RETRIEVE_EMPTY_BOX , STORE_FULL_BOX ,

WAIT_WIDGET_PLACED };

26 WarehouseSRHState state = WarehouseSRHState.READY;

27

28 on Reset: {

29 state = WarehouseSRHState.READY;

30 }

31

32 [state.READY]

33 {

34 on Picked , Placed: illegal;

35 on RequestToRetrieve:

36 {

37 state = WarehouseSRHState.RETRIEVE_FULL_BOX;

38 }

39

40 on RequestToStore:

41 {

42 state = WarehouseSRHState.RETRIEVE_EMPTY_BOX;

43 }

44 }
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45

46 [state.RETRIEVE_FULL_BOX]

47 {

48 on Picked , Placed , RequestToRetrieve , RequestToStore: illegal;

49 on inevitable:

50 {

51 ReadyForPicking;

52 state = WarehouseSRHState.WAIT_WIDGET_PICKED;

53 }

54 on inevitable:

55 {

56 ReadyForPickingFailed;

57 state = WarehouseSRHState.WAIT_WIDGET_PICKED;

58 }

59 }

60

61 [state.RETRIEVE_EMPTY_BOX]

62 {

63 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;

64 on inevitable:

65 {

66 ReadyForReceiving;

67 state = WarehouseSRHState.WAIT_WIDGET_PLACED;

68 }

69 on inevitable:

70 {

71 ReadyForReceivingFailed;

72 state = WarehouseSRHState.WAIT_WIDGET_PLACED;

73 }

74 }

75

76 [state.WAIT_WIDGET_PICKED]

77 {

78 on RequestToRetrieve , Placed , RequestToStore: illegal;

79 on Picked:

80 {

81 state = WarehouseSRHState.STORE_EMPTY_BOX;

82 }

83 }

84

85 [state. WAIT_WIDGET_PLACED]

86 {

87 on RequestToRetrieve , RequestToStore , Picked: illegal;

88 on Placed:

89 {

90 state = WarehouseSRHState.STORE_FULL_BOX;

91 }

92 }

93

94 [state.STORE_EMPTY_BOX]

95 {

96 on Picked , Placed , RequestToRetrieve , RequestToStore: illegal;

97 on inevitable:

98 {

99 ReadyForNext;

100 state = WarehouseSRHState.READY;

101 }

102 on inevitable:

103 {

104 ReadyForNextFailed;

105 state = WarehouseSRHState.READY;

106 }

107 }

108

109 [state.STORE_FULL_BOX]

110 {

111 on Picked , RequestToRetrieve , RequestToStore , Placed : illegal;
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112 on inevitable:

113 {

114 ReadyForNextAction;

115 state = WarehouseSRHState.READY;

116 }

117 on inevitable:

118 {

119 ReadyForNextActionFailed;

120 state = WarehouseSRHState.READY;

121 }

122 }

123 }

124 }

2. Resource vacuum suction robot
Interface

1 import Definitions.dzn;

2

3 interface IRobot

4 {

5 in void StartTransferFromWarehouseToProcessing ();

6 out void PickedUpAtWarehouse ();

7 out void PickedUpAtWarehouseFailed ();

8

9 in void PlaceAtProcessing ();

10 out void DroppedAtProcessing ();

11 out void DroppedAtProcessingFailed ();

12

13 in void StartTransferFromColorSorterToWarehouse ();

14 out void PickedAtColorSorter ();

15 out void PickedAtColorSorterFailed ();

16

17 in void PlaceAtWarehouse ();

18 out void DroppedAtWarehouse ();

19 out void DroppedAtWarehouseFailed ();

20

21 in void Homing ();

22 out void MoveCompleted ();

23 out void MoveCompletedFailed ();

24

25 in void Reset();

26

27 behaviour

28 {

29 enum RobotSRHState{ IDLE , PICKATWAREHOUSE , PICKED ,

PLACEATPROCESSINGSTATION , HOMING , HOMED , PICKATCOLORSORTER , PLACED

, PLACEATWAREHOUSE };

30 RobotSRHState state = RobotSRHState.IDLE;

31

32 on Reset: {

33 state = RobotSRHState.IDLE;

34 }

35

36 [state.IDLE]

37 {

38 on PlaceAtProcessing , Homing , PlaceAtWarehouse: illegal;

39 on StartTransferFromWarehouseToProcessing:

40 {

41 state = RobotSRHState.PICKATWAREHOUSE;

42 }

43 on StartTransferFromColorSorterToWarehouse:

44 {

45 state = RobotSRHState.PICKATCOLORSORTER;

46 }

47 }

48
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49 [state.PICKATWAREHOUSE]

50 {

51 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse: illegal;

52 on inevitable:

53 {

54 PickedUpAtWarehouse;

55 state = RobotSRHState.PICKED;

56 }

57 on inevitable:

58 {

59 PickedUpAtWarehouseFailed;

60 state = RobotSRHState.PICKED;

61 }

62 }

63

64 [state.PICKATCOLORSORTER]

65 {

66 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse ,

StartTransferFromColorSorterToWarehouse: illegal;

67 on inevitable:

68 {

69 PickedAtColorSorter;

70 state = RobotSRHState.PLACED;

71 }

72 on inevitable:

73 {

74 PickedAtColorSorterFailed;

75 state = RobotSRHState.PLACED;

76 }

77 }

78

79 [state.PICKED]

80 {

81 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing , PlaceAtWarehouse

: illegal;

82 on PlaceAtProcessing:

83 {

84 state = RobotSRHState.PLACEATPROCESSINGSTATION;

85 }

86 }

87

88 [state.PLACED]

89 {

90 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , StartTransferFromColorSorterToWarehouse:

illegal;

91 on PlaceAtWarehouse:

92 {

93 state = RobotSRHState.PLACEATWAREHOUSE;

94 }

95 }

96

97 [state.PLACEATPROCESSINGSTATION]

98 {

99 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse: illegal;

100 on inevitable:

101 {

102 DroppedAtProcessing;

103 state = RobotSRHState.HOMING;
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104 }

105 on inevitable:

106 {

107 DroppedAtProcessingFailed;

108 state = RobotSRHState.HOMING;

109 }

110 }

111

112 [state.PLACEATWAREHOUSE]

113 {

114 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , Homing ,

PlaceAtProcessing , PlaceAtWarehouse ,

StartTransferFromColorSorterToWarehouse: illegal;

115 on inevitable:

116 {

117 DroppedAtWarehouse;

118 state = RobotSRHState.HOMING;

119 }

120 on inevitable:

121 {

122 DroppedAtWarehouseFailed;

123 state = RobotSRHState.HOMING;

124 }

125 }

126

127 [state.HOMING]

128 {

129 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , PlaceAtProcessing ,

PlaceAtWarehouse: illegal;

130 on Homing:

131 {

132 state = RobotSRHState.HOMED;

133 }

134 }

135

136 [state.HOMED]

137 {

138 on StartTransferFromWarehouseToProcessing ,

StartTransferFromColorSorterToWarehouse , PlaceAtProcessing ,

Homing , PlaceAtWarehouse: illegal;

139 on inevitable:

140 {

141 MoveCompleted;

142 state = RobotSRHState.IDLE;

143 }

144 on inevitable:

145 {

146 MoveCompletedFailed;

147 state = RobotSRHState.IDLE;

148 }

149 }

150 }

151 }

3. Resource color sorter
Interface

1 import Definitions.dzn;

2

3 interface IColorSorter

4 {

5 in void SorterRequestToRetrieve(WidgetColorParam widgetColor);

6 out void SorterReadyForPicking ();

7 out void SorterReadyForPickingFailed ();

8
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9 in void Reset();

10

11 behaviour

12 {

13 enum SorterState {IDLE , EXECUTE };

14 SorterState state = SorterState.IDLE;

15

16 on Reset : {

17 state = SorterState.IDLE;

18 }

19

20 [state.IDLE]

21 {

22 on SorterRequestToRetrieve:

23 {

24 state = SorterState.EXECUTE;

25 }

26 }

27

28 [state.EXECUTE]

29 {

30 on SorterRequestToRetrieve: illegal;

31 on inevitable:

32 {

33 SorterReadyForPicking;

34 state = SorterState.IDLE;

35 }

36 on inevitable:

37 {

38 SorterReadyForPickingFailed;

39 state = SorterState.IDLE;

40 }

41 }

42 }

43 }

4. Resource processing station
Interface

1 import Definitions.dzn;

2

3 interface IProcessingStation

4 {

5 in void Start();

6 out void ReadyForReceiving ();

7 out void ReadyForReceivingFailed ();

8

9 in void Reset();

10

11 behaviour

12 {

13 enum OvenState {IDLE , EXECUTE };

14 OvenState state = OvenState.IDLE;

15

16 on Reset : {

17 state = OvenState.IDLE;

18 }

19

20 [state.IDLE]

21 {

22 on Start:

23 {

24 state = OvenState.EXECUTE;

25 }

26 }

27

28 [state.EXECUTE]

Supervisory control for flexible manufacturing systems 125



APPENDIX A. DEZYNE CODE FOR RESOURCES

29 {

30 on Start: illegal;

31 on inevitable:

32 {

33 ReadyForReceiving;

34 state = OvenState.IDLE;

35 }

36 on inevitable:

37 {

38 ReadyForReceivingFailed;

39 state = OvenState.IDLE;

40 }

41 }

42 }

43 }
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