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Master Thesis: Pattern formation algorithms for oblivious robots in

presence of measurement errors

Werner Kroneman

Abstract

Within the field of robotics, increasing interest is shown in the employment of distributed swarms of
cheap, identical robots, as opposed to expensive and specialized monolithic units. Approaches vary from
very practical to very theoretical; ranging from design of physical robots in the former case, to heuristics,
simulations and to formal analysis in the latter. The OBLOT model has served as a de-facto standard
framework for a subset of problems in the formal analysis setting.

However, while useful in the study of the theoretical boundaries of different problems and solutions, a
gap exists between abstract, formal models and the practical application of knowledge gathered therein
to simulations and real robots.

One such problem is that sensors may be inaccurate, seeing robots in a slightly different place than
they really are. In this thesis, we explore such measurement errors in detail, and build an intuition for
how to handle them by looking at how they affect specific solutions to the problems GATHERING and
CIRCLE FORMATION for three robots under the semi-synchronous scheduler, originally developed without
taking measurement errors into account, and adapt them to produce a robust, bounded approximation
of their original results.
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1 Introduction

Traditionally, many tasks in robotics are carried out by large, complex, and specialized robots. While the
use and availability of such specialized hardware has its advantages, it unfortunately proves problematic
when new tasks are encountered since the development and production of such robots is a highly-expensive
and labor-intensive task. Moreover, the risk of losing or damaging such a specialized piece of equipment is
significant.

Over the last few decades, a trend has emerged of scientists exploring an alternative to such monolithic units:
what if we could employ a large number of identical robots that, through their collective behavior, could
accomplish a wide variety of tasks? Such robots could be mass-produced, and hence be a lot cheaper and
replaceable individually. General-purpose units could prove to be more flexible as well by accomplishing new
tasks through re-programming or only relatively minor modifications, as opposed to task-specific redesigns.
They would especially be ideal in hostile and volatile environments such as disaster zones, where a swarm
of robots could be programmed to accomplish the given task despite the possible loss of a few units.

Research into such alternative fields of robotics comes in many different forms, ranging from the very practical
side of designing and manufacturing such robots, to the very theoretical side that explores what tasks can
fundamentally be accomplished under different circumstances. Methods in the more theoretical side of the
field range from more heuristics-based approaches that use simulations and experiments to highly-formalized
approaches. Such formalized approaches offer the means of more easily accounting for every edge case, and
are thus likely to produce highly-reliable results. These results, however, tend to be very theoretical; they
can be used to inform such choices about whether it is necessary to include a particular sensor in a robot,
but tend to not be easily applicable in the real world due to over-simplifications in the models used.

Among such formalized approaches, the OBLOT model [7] and variants thereof provide a de-facto standard
theoretical environment for the study of pattern formation problems in space: problems where robots must
either eventually form or converge to some particular geometric arrangement. In this model, robots are
typically modeled as mobile punctiform entities with unlimited memory and computational power, but with
extremely limited capabilities in terms of communication, mutual identification, synchronization, memory of
the past, and orientation.

Such constraints will typically include:

Disorientation Robots may lack an initial consensus on a frame of reference. This disagreement may
extend to the origin of the frame of reference, the orientation, the unit of measurement, or even the
distinction between clockwise and counter-clockwise rotation (chirality).

Anonymity Robots may be unable to identify one another in any way other than position. Compounded
by the possibility of disorientation, robots may be completely unable to designate or recognize any one
particular robot. This makes tasks like assigning roles to any particular robot difficult.

Silence Robots may be unable to directly communicate with each other, or may be extremely limited in
their ability to do so. While some variants of the OBLOT model allow robots a limited form of
communication such as through colored lights [5], they are usually incapable of any direct kind of
communication at all, such as through message-passing or even simple lights-based signaling. All that
robots know about each other is their relative positions in each observer’s local frame of reference.

Obliviousness Robots may lack any memory of the past, including positions of other robots, internal state,
or actions taken. This prevents the use of any distributed algorithms that explicitly rely on past state,
which may imply improved robustness against any transient problems or disturbances.

Reliability Robots may not always reliably perceive others or behave exactly as specified. Sometimes, a
robot may experience a crash failure where they stop moving, a byzantine failure where they display
arbitrary behavior, they may experience false-positives and false-negatives while observing others, have
limited sensor range, or suffer from errors in their movements and in measurements of the positions of
other robots.



As time goes on, robots will go through a potentially infinite sequence of Look- Compute- Move (LCM) cycles:
they repeatedly take a ”snapshot” of the positions of the robots around them, spend some time ”computing”
where to move based on this information, then move in accordance to this decision. The degree to which
such cycles are synchronized varies, to the point where robots may even take this “snapshot” while other
robots are moving, making that it has to accept a certain level of staleness or unpredictability in other
robots’ behavior. The OBLOT model is presented in greater detail in Section [2.1

Typically, solutions to problems or tasks within the OBLOT model are analysed in an adversarial context:
an intelligent adversary is imagined to be in control of any part of the model not fixed in advance which
tries to use this control to block attempts to solve the given task. Such a setting presents a real challenge
to algorithm designers, and any solutions found within such a context will therefore take into account any
kind of rare, unusual, worst-case scenarios that may be missed in a more experimental approach.

The academic interest in the study of these kinds of constraints lies in discovering and understanding just
how fundamentally limiting such constraints really are, and how they may be overcome. Such knowledge
can then be applied in robot design: while it is technically possible to resolve some of these issues using,
say, a compass sensor to enable consensus on orientation, technical solutions are sometimes problematic due
to driving up the cost, size and complexity of robots, if such a thing is even technically feasible in whatever
environment the robots will find themselves. It would therefore be interesting if an algorithmic solution can
be found instead, mitigating the issues caused by such adversarial conditions without complicating the robot
design.

In this thesis, we explore an extension to the OBLOT model: measurement errors, where a robot may perceive
other robots to be in a slightly different position than they actually are. While such sensing inaccuracies
have been studied previously by Cohen and Peleg [4], we build upon this work, presenting a more general
overview and theoretical framework for measurement errors. We present a simplified variant of their error
model. Then, through the presentation of two simple examples, we explore the notion of taking an existing
algorithm that functions in an error-free setting, and adapting it such that it still functions in an environment
with measurement errors.

Throughout this document, we will be led by the research question: “How do we model measurement errors,
what impact to they have on simple GATHERING and Circle Formation algorithms under SSYNC, and whether
it possible to develop algorithms that solve these problems while being robust against measurement errors.”

1.1 Related work

Distributed coordination problems with multiple identical robots have been studied extensively in literature
for at least three decades. One of the oldest works available on the topic dates back to 1990, where Sugihara
and Suzuki |12] describe methods to form shapes like circles and lines using a large number of distributed
mobile agents. Their approach was mainly based on heuristics, and tested out through simulations rather
than formal analysis. Later work, such as that by Suzuki and Yamashita [14], takes a more formal approach
to forming patterns and shapes, relying on formal analysis and proofs of correctness to ensure a full under-
standing of methods and results. This work already uses an an earlier version of the OBLOT model, which
continues to serve as a de-facto standard for the following decades, until being formalized in a more complete
manner by Floccini et al. [7].

In the rest of this section, we will explore some of the literature surrounding oblivious robots within the
OBLOT model and its different variants, where we single out two often-mentioned problems: GATHERING
(and the related problem of CONVERGENCE) and circle formation. Finally we conclude with a discussion of
existing literature on so-called measurement errors, which are the subject of this thesis.

Gathering The GATHERING problem, sometimes referred to as the POINT FORMATION, RENDEZVOUS,
AGGREGATION or the F-POINT problem, is the problem where a set of n autonomous mobile robots must,
within some finite amount of time, come to occupy an arbitrary single point in space. The problem was
first formally presented by Suzuki and Yamashita [14], where they introduce the problem as F-POINT in a



setting where LCM-cycles are synchronized but not all robots are active each round (an SSYNC scheduler,
see Section . They show that no oblivious algorithm can exist to solve the problem for n = 2 without
additional assumptions on the set of robots activated in each round, whereas they do provide an algorithm
that can solve the problem for any n > 3 under any SSYNC scheduler that guarantees that each robot is
always eventually activated (such a scheduler is said to be fair). The problem has been extensively studied
in literature under a variety of different constraints and settings, such as Agmon and Peleg [1] showing
that GATHERING is unsolvable in presence of Byzantine faults under SSYNC, but that some Byzantine faults
are tolerable under FSYNC, and that a limited number of crash-faults are tolerable under SSync. Also,
Floccini et al. |9] showed that GATHERING is possible if robots have a limited visibility range as long as they
have a compass. A general solution for any n > 2 under a fully asynchronous scheduler (ASYNC) is given
by Cieliebak et al. [3].

Since the GATHERING problem is not always solvable, such as with n = 2 robots, interest is also shown in
CONVERGENCE, which is a weaker problem where robots only need to asymptotically converge to a single
point. It was formally introduced as C-POINT by Suzuki and Yamashita |14], where it was pointed out
that C-POINT is solvable by any algorithm that solves F-POINT (since the problem is strictly weaker), and
that the n = 2 case can also simply be solved by having robots move to the middle point between their two
positions.

In order to build some intuition for how such algorithms work, consider the following argument that moving
to the midpoint indeed converges: suppose that two robots r1, 72 operate under an SSYNC scheduler and are
controlled by an algorithm that makes any active robot move to the midpoint between the two positions.
Then, during any round, the scheduler may choose to activate r1,72 or both. If only one is activated, it
simply moves to the point halfway between the original two positions, reducing the distance between both.
If both are activated, both will move to the midpoint, reducing the distance between the two to 0. In the
worst case, the distance between both is at least halved. Hence, as the rounds go on, the distance between
r1 and 79 decreases exponentially.

Circle formation Another problem frequently-encountered in literature is the one of CIRCLE FORMATION,
where all n robots must eventually form the vertices of a regular n-gon somewhere in space. Sugihara and
Suzuki [12] approach circle formation from a heuristic, experimental point of view. Their algorithm mostly
works, but the resulting formation sometimes approaches a Reuleaux triangle rather than a circle. This work
was further improved on by Tanaka [15], where the resulting configuration was a much better approximation
of a circle. The CIRCLE FORMATION problem in the semi-synchronous (SSYNC) setting was deterministically
solved by Dieudonné et al. [6] for n > 5, and later on in the fully asynchronous setting by Floccini et al [§].
Surprisingly, despite the apparent simplicity of the problem, the n = 4 case was only solved relatively recently
by Mamino and Viglietta [11] in the ASYNC setting with non-rigid movement.

Errors and Faults A lot of the work cited here does assume somewhat unrealistic conditions on the model
in which robots operate: robots are always detected reliably and consistently, and always move correctly in
accordance to the movement algorithm controlling them. While the work is still very useful from a theoretical
perspective, these assumptions are unfortunately far from realistic, as any real-world robots will necessarily
exhibit at least some degree of error in most aspects, which is likely to worsen as other design constraints
such as cost or size come into play.

Some work has been done, however, to study unpredictable faults in pattern formation algorithms. As
mentioned previously, there is the work by Agmon and Peleg [1] on crash-and-byzantine faults in the context
of gathering. Moreover, Bouzid et al [2] show that convergence can still be achieved in the presence of
a bounded number of crash faults or byzantine faults. From another angle, reliability of sensors has been
addressed to some extent by Heriban and Tixeuil [10], who consider the possibility of false-positives and
false-negatives, where robots are added or removed from the view in an unpredictable manner, possibly with
probabilities proportional to distance from the observer.



Measurement errors Of particular interest for this thesis is the problem of measurement errors: robots
can see the entirety of their environment, but must handle the possibility of the positions of other robots
being inaccurate within a known bound. Literature is somewhat sparse on this topic, but Cohen and Peleg 4]
present a formal approach to the problem: given a robot ry observing a robot r1, the position of r; received
by ro will be adversarially picked from anywhere within a region, proportional in size to the distance between
ro and r1, around the true position of r1, see the angle-distance error model in Section for more detail.
Within this model, they demonstrate certain bounds under which a purpose-built algorithm can achieve
CONVERGENCE under an SSYNC scheduler. They also come to the unfortunate conclusion that GATHERING
becomes impossible. Later on, Yamamoto et al. [17] present a variant of the error model used in [4] where,
within the view of one robot at a particular time, the angular error of all other robots is the same, and prove
some tighter bounds within this context.

1.2 Contributions

The contributions of this thesis consist of the following: a discussion about several different error models, as
well as some general observations, lemmas and comparisons surrounding these from Section onward. The
model mainly explored in this thesis, presented in Section is simplified compared to the one proposed in
[4] (discussed in Section, using only one parameter to simplify analysis. After this, we shall explore two
related problems, GATHERING and CIRCLE FORMATION. For both, we analyse the problem for three robots
under an SSYNC scheduler, explore relevant design possibilities, then take an example of an algorithm that
solves the problem in the absence of measurement errors. Using this algorithm as a basis, we then develop
a new algorithm that produces results that are a bounded approximation of the target pattern, featuring an
error parameter €y > 0 that can be adjusted based on the expected size of measurement errors. As ¢y goes
to zero, the algorithms become exact. We conclude with a discussion on the results of the thesis, draw a list
of general conclusions and recommendations, and present potential avenues for scaling and generalization.



2 Preliminaries

In this section, we shall present a few different concepts that are relevant to the rest of the thesis. First, in
Section we will formally present the OBLOT model as it is found in literature [7]. Then, in Section
we introduce a formal definition of a measurement error model as an extension to the OBLOT model, as
well as a few common properties and related concepts. In Section we introduce three error models: the
constant-radius disk error model in Section the angle-distance error model in Section [2.3.2] (which is
the one introduced in [4]), and the distance-proportional disk error model in Section m For each of the
models, we briefly discuss its strengths and weaknesses, and a few useful lemmas are presented. The section
concludes with a comparison of the different error models and a recap of the notation that will be used in
the remainder of the thesis.

2.1 The OBLOT model

The OBLOT model, as it is commonly found in literature (7], consists of a set R of n autonomous mobile
computational entities, referred to as robots, which exist and move around in R (we will only consider
R? in this thesis). Robots are shaped as points without any mass or area (punctiform), do not carry any
externally-visible identifying markers (identical), and may disagree on the reference frame in terms of origin,
orientation, unit of measure and even chirality (disoriented).

Their movements are directed by some algorithm, identical for each robot, which is a deterministic function
that maps from a robot’s view of the current configuration to a movement vector. Robots do not have any
other sources of information: the only input to the algorithm is the set of relative positions of the other
robots in the local (disoriented) reference frame of the given robot at the time of recording. Robots do
not communicate directly, neither through message-passing, nor central coordination; robots also do not
have any memory of the past. Robots are, however, considered to possess infinite computational power in
computing their movement vector during a round.

At a given point in time ¢, the set of locations of all robots is called the configuration, denoted as C* € C, where
C is the (usually infinite) set of all possible configurations, called the configuration space. A configuration
C* can be considered a function C* : R — R? which maps each robot to a point in space. For any robot
r; € R, the position of r; in C! is therefore C*(r;), which we denote ¢! for brevity. The superscript ¢ may
be omitted if only one point in time is considered. We call points that refer to the actual location of robots
within a configuration “c-points”.

2.1.1 Local reference frames

Note that robots do not necessarily agree on a frame of reference. Configurations, and the corresponding
c-points, are expressed in a global reference frame that exists only as a tool of analysis for the algorithm,
and is inaccessible to each robot.

As stated previously, robots cannot directly perceive any current configuration C* because they are disori-
ented: they may disagree on properties of the frame of reference, including the origin, the orientation, unit
of measure or even chirality. When expressed in the local frame of reference of a robot r; € R, we denote
such a configuration, referred to as a local configuration, as C* € C*. Here, C* is the set of possible local
configurations, given the number of robots.

Correspondingly, if 7; observes another robot r; € R in the local configuration C!*, we denote the local
position of r; as cz*l We refer to such points as c*-points. Like their counterparts in the global reference
frame, the time index ¢ and observer index ¢ can be dropped if these can be inferred from context. See Figure
for an example.

An important thing to note there is that, while the local reference frame of a robot can generally be considered
unpredictable, the relationship of some global configuration C* and a local representation thereof C''* (for
some observer r; € R) is simply a combination of translation, rotation, mirroring and uniform scaling. Hence,
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Figure 1: Example of two robots observing each other: ry in green on the top right observing 7 in
the bottom left. Both robots feature a local frame of reference, with different orientation and scaling
(represented by the axes originating from the robots), with a global frame of reference, known only to
an outside observer, depicted by the large axes. In this example, o observes r; as the relative vector
¢ o in its local frame of reference (purple arrow), whereas the position of 71 can also be expressed in
the global frame of reference through the vector ¢;.

distance ratios and angles are preserved.

Also, a robot will always observe itself at the origin of the configuration when in the local reference frame.
That is, for any observer r; € R, cf; = (0,0).

2.1.2 Adversarial context

As can be noted in the previous section, the relative transformation between reference frames is not fixed
in advance, nor are many other parts of the model entirely deterministic. Different constraints of different
strengths are given, but significant uncertainties will remain.

We approach these unknowns from an adversarial point of view. Namely, any solution to a problem expressed
in this model must accomplish its’ task under all possible different values of any variables or parameters not
specified in advance.

From an intuitive point of view, we could see this as an intelligent agent intentionally choosing non-
predetermined aspects of the modeling environment in such a way that, if at all possible, the solution
to a given problem fails. A solution that succeeds in an adversarial context will thus take into account every
possible value of the non-determined variables and parameters of the model.

2.1.3 Robot control algorithm

Within the context of this thesis, we will frequently refer to the following:

Definition 1. A robot control algorithm (or algorithm for short) is a deterministic function that maps from
configurations in the local references frame of robots to movement vectors. This algorithm is identical for
all robots, which otherwise do not share memory or other such means of communication.

To be more specific, suppose that all robots are controlled by some algorithm A, and let ; € R be an
arbitrary robot among them. Every time ¢ where r; observes the look phase in its activation cycle (see
Section , it will receive a snapshot of the configuration C* in its local reference frame. (Note: In later
sections, S!* will designate snapshots that contain measurement errors.)



Then, from that snapshot, it will compute A(C?*), which will produce a movement vector m; in local space.
After compensating for the local orientation of the robot, we obtain the movement vector m; € R% in the
global frame of reference, which we then use in the analysis of how r; will behave during the subsequent
move phase.

As a consequence of the memoryless and deterministic nature of such robot control algorithms, such algo-
rithms are generally self-stabilizing: since they do not rely on any preservation of state or memory, most
finite transient disturbances made to the configuration, such as a robot being moved around, will eventually
result in the problem still being solved. As we will see in Section [4.1] configurations that contain dense points
or other types of symmetries may make solving certain problems impossible, implying that disturbances that
create such symmetries often cannot be recovered from.

2.1.4 Look-Compute-Move cycles

As time passes, each robot goes through a (possibly infinite) sequence of activation cycles (or cycles for
short) that consist of the following stages:

Sleep The robot is (optionally) immobile some finite amount of time.

Look The robot takes an instantaneous snapshot C* of its surroundings in its reference frame (see Section
2.1.1), where t is the current time.

As a modification to the standard OBLOT model used in literature, snapshots may also contain
adversarial noise in accordance to an error model, in which case we will instead denote them as S**

(see Section [2.2)).

Compute The robot is (optionally) immobile for some finite amount of time, during which time the snapshot
is retained but not acted upon.

Intuitively, this stage is meant to represent the period of time wherein a physical robot runs the
algorithm and computes its movement vector.

Move The robot moves in accordance to the previously-determined movement vector m* (or simply m if
we consider the global reference frame), possibly under the risk of interruption, see Definition [2] about
movement rigidity.

As noted in Section the robots are oblivious, meaning that no memory is retained in between activation
cycles. The only state preserved in between cycles is the global position of robots, to which they have no
direct access.

With regards to scheduling of the Mowve cycle, we generally distinguish rigid from non-rigid movement as
follows:

Definition 2. Movement rigidity refers to whether a robot is guaranteed to complete the movement vector
calculated by its algorithm.
Rigid In each Move cycle, the robot completely executes the movement decision made by the algorithm,

with the cycle ending only when the target it reached.

Non-rigid In each Move cycle, the robot may be deactivated at any time, possibly cutting short the
movement decision made by the algorithm. However, the Move cycle is assumed to at least last for
some positive constant amount of time, in which the robot will move at least some constant distance.

2.1.5 Scheduling

When these cycles occur and how long they take is determined by the scheduler, an adversarially-determined
activation policy. Some types of schedulers have stronger assumptions than others, but there are three that
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Figure 2: Example of part of an activation schedule for three robots rg, 71, 72 for each scheduler. Time
is represented horizontally, with each LCM cycle starting with an instantaneous Look phase (green
bar), a Compute phase in blue, and a Move phase in red. Sleep is represented in white. Note the
different levels of synchronization in each schedule.

are found somewhat frequently in literature. We define these below, and provide a graphical comparison in
Figure [2

Fully synchronous (FSync) The scheduler considered to have the strongest assumptions of the three.
With this scheduler, time is subdivided into distinct regions called rounds. During each round, all
robots are activated, and the LCM-cycles of all robots are synchronized.

Consequently, robots never observe the others while they are moving, and snapshots cannot be out of
date. For all intents and purposes, the robots can be considered as moving instantaneously, albeit that
their movements may or may not be interrupted, depending on movement rigidity (see Definition .

Under this scheduler, time may be considered discrete, with the configurations in the look phase of
each round being denoted as the sequence C°, C*, C? ...

Semi-synchronous (SSync) The SSYNC scheduler is a weakened version of the FSYNC scheduler where,
in each round, only an adversarially-chosen subset of robots is activated. However, the scheduler is still
generally assumed to be fair: at any point in time, every robot must always eventually be activated
after some finite amount of time.

A scheduler that is not fair could be seen as simulating crash faults, where a robot crashes and stops
moving indefinitely.

Asynchronous (ASync) Typically considered the scheduler with the weakest assumptions, it will cause
the stages of the activation cycle of a robot to occur at unpredictable times and last for durations of
unpredictable length. The LCM cycles of the robots are not synchronized, and may even overlap or
contain each other between different robots.

Like the SSYNC scheduler, it is also assumed to be fair. Moreover, it is also often assumed that a
robot’s move cycle takes at least some constant amount of time, and may or may not allow a robot to
complete its planned movement, depending on movement rigidity (see Definition .

This scheduler is considered the most adversarial scheduler among those presented here, as robots can
observe their environment while others are moving, and because the snapshot will be arbitrarily stale
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by the time the robot actually starts moving.

Furthermore, for the purpose of performance analysis, we introduce the notion of full rounds:

Definition 3. A full round is the smallest span of time in which every robot completes a full activation
cycle at least once.

The performance of an algorithm can be expressed as a function of the number of such rounds. In case of the
FSyNC scheduler, a full round take at most one (simple) round, whereas for the SSYNC scheduler, a single
full round will contain a non-zero, arbitrary number of rounds since SSYNC only guarantees to eventually
activate each robot.

2.2 Modeling measurement errors

In the original OBLOT model, the snapshots observed by robots (see Sections and [2.1.4) are simply
views of the current configuration at the time of the look phase.

Drawing upon earlier definitions, for the purpose of modeling measurement errors, we modify the OBLOT
model by introducing a measurement error function e, which will serve to formally determine the range of
options available to the adversary, defined as follows:

Definition 4. An error function e is a function from a configuration to a set of possible configurations
(snapshots) observed by some robot. The function e is typed as follows:

e:RxC—P(C)

where R is the set of all robots, C is the global configuration space, and P is the power set function.

Note: the formal error model describes measurement errors in the global reference frame. Given that robots
are disoriented, adding noise to the configuration must be done before transforming it to the robot’s local
reference frame. As we will see in Section whether this matters depends on the error model.

In other words, suppose we are given a configuration C' € C and a robot r; € R that observes it. By applying
the error function e(r;,C), we obtain a set of possible noisy snapshots: configurations derived from C by
adding measurement errors. The adversary picks one of these, denoted S;, which is then transformed to r;’s
local reference frame, yielding S}, and provided as the input for the algorithm. Within this context, the
observed location of some robot 7; in \S; is denoted s; ;, or s7 ; for that same position in 57, in the local frame
of reference of the observer r;. Moreover, in the local frame of reference, note that for a robot observing

itself, we have that c;, = s7, = (0,0).

Many different variations of such a function e could exist, consistent with a wide range of possible sensor
errors. However, we consider the following to be reasonable assumptions on any such error function e:

e The set returned by e will at least contain a snapshot without noise. That is, through luck, it is possible
for sensors to perceive robots where they actually are within the observer’s frame of reference. This
also meshes with the idea that algorithms can be built with certain safety margins in mind that are
often over-estimations of the actual magnitude of errors, and ideally should take advantage of this fact
to produce higher-quality output if given the chance.

Formally, for all observers r; € R and configurations C' € C*, we have that C € e(r;, C).

e The set returned by e is continuous in the sense that, if we look at the set of possible positions of a
robot 7; € R across all possible noisy snapshots that can be observed by an observer r; € R, this set
is a continuous region in space, called the noise region (see Definition @ of r;. In a more intuitive
sense, this means that an inaccurate or noisy sensor can perceive a robot anywhere within a given,
continuous area around a robot’s actual position.
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Note: The noise region is not to be confused with the uncertainty region (. Deﬁnition@ of a robot, which
is the set of possible actual relative locations of that robot within C* given its observed position (which
includes measurement errors). See Figure @

e To model that some noise is always to be expected, even with the best of sensors, the set returned by
e will generally contain infinitely many configurations (as a result of being continuous and containing
more than one configuration). Note that some exceptions may occur here, for instance if we consider
a measurement error that goes to zero as other robots approach the observer.

Independence of errors between robots As can be noted in Definition [d] an error function is defined
as operating on whole local configurations at a time, rather than on individual observed robots. Therefore,
we introduce the following:

Definition 5. Measurement errors are considered independent if, for a robot r; € R observing robots
rj,7x € R, the error in the observed position of r; provides no additional constraints on the error in the
observed position of r;. Otherwise, they are dependent.

An example of dependent measurement errors can be observed in [17], where the angular error is the same for
all robots within a snapshot. Such whole-configuration error models may also be useful in modeling strange
effects where one robot’s position affects the way another robot is measured. However, measurements errors
are usually simply modeled as independent from one another.

Noise region and uncertainty region Mainly for independent measurement errors (and perhaps, to a
more limited degree, dependent measurement errors), it helps to understand the range of measurement errors
that can occur given a real-world position of an individual robot and vice-versa, which is why we here define
the concept of noise region and its dual uncertainty region.

Definition 6. With r; € R, located at some point ¢;, observing a robot r; with known global (note: not
local) position ¢;, the noise region of r; is the set of all possible locations s; where r; may observe s; after
measurement errors are applied.

Definition 7. With r; € R observing a robot r; with measured relative (not global) location s, the
uncertainty region of f; is the set of all possible actual locations ¢} of 7; in the local frame of reference of r;
may yield such an observed location s7.

It should be noted, here, that the noise region is defined in the global coordinate space, because the amount
of noise in a measurement will typically be determined by the actual relative positions between robots. The
uncertainty region, on the other hand, is defined in terms of the local coordinate space of the observer,
because it is based on the knowledge of the observer, which is unaware of the global frame of reference.
Depending on the error model used, noise regions and uncertainty regions may translate across reference
frames.

Fairness of measurement errors and termination Depending on the task at hand, it may be desirable
for robots to eventually terminate. Unfortunately, without any further constraints, the adversary that
controls measurement errors may make this impossible. Take, for instance, the problem of forming an
equilateral triangle. Any algorithm that solves this problem will probably include some way of detecting
the existence of an equilateral triangle, and then decide to move or not to move based on the result of that
test. Due to measurement errors, the adversary can make any equilateral triangle look like a non-equilateral
triangle, and make a range of non-equilateral triangles look exactly equilateral. An initial attempt to solve
this problem would be to add a threshold value such that any configuration within that threshold is considered
“good enough”, and the robots won’t move if such a case is detected.

However, consider Figure[d] where an algorithm designer has implemented such a threshold. No matter what
threshold they pick, the adversary could place robots near the boundary of the approximation threshold,

12



Figure 3: Ilustration of the difference between the noise region and uncertainty region. Robot rq
observes another robot r; at position s;. The uncertainty region of ry is illustrated as the light blue

disk, with center u;. Different possible positions of r; with the hypothetical noise region (light green)
are displayed in accordance to the distance-proportional disk model (see Section [2.3). Notice how s1

lies in the interior of each of these regions.

Figure 4: Illustration of the impossibility of termination without some kind of fairness criterion. Robot
ro observes r1 and 75, where the adversary may choose to display the two robots at either the green
points, within the threshold boundary, or at the red points, outside the threshold boundary. Hence,
the adversary can choose when to make the robots detect certain properties about the configuration.

For example, whether the robots form the vertices of an equilateral triangle.

13



and then simply choose to either display a configuration that does conform to the threshold, or one that does
not. Given that the adversary can simply wait indefinitely to reveal the fact that the configuration does not
conform to the threshold, termination becomes somewhat ill-defined.

As a result, a certain fairness criterion emerges. An algorithm designer may make any of a number of choices
here, either assuming that the measurement errors eventually stop changing, hence guaranteeing that a
situation like the one previously described cannot occur, or weakening the success criterion to one where a
result is considered “good enough” at some point without entirely guaranteeing eventual stability.

2.3 Examples of error models

Up to this point, we explored a general definition of measurement errors. In this section, we will look at
three specific examples of error models: the constant-radius disk error model, the angle-distance error model,
and the distance-proportional disk error model. For each model we will define it formally through the error
function, explore some strengths and weaknesses, and establish a few useful lemmas about them.

2.3.1 Constant-radius disk error model

An intuitive first attempt at modeling measurement errors is what we will refer to as the constant-radius
disk error model. In this error model, the noise region of every robot, regardless of the observer, is simply a
disk of some constant radius €y > 0 centered at the robot.

Formally, given an observer r; and a configuration C' € C, the error function is defined as follows:
e(C,r;)) ={Vr; € R: if j # i then |c;,s;| < € else ¢; =s; | S € C},

where |p, g| is the Euclidean distance function between two points p and g.

Figure 5: Illustration of the constant-disk error model. The different robots are being observed by
the robot in green, with their actual position in black and observed position in light gray, the noise
region is also depicted in light gray with black dashed border. Note how the size of the noise region
does not change, and that if another robot is sufficiently close to the observer, the observer can even
find itself inside the noise region of that other robot.

Now, we follow up with a lemma formalizing the noise region:

Lemma 1. Given a robot 7; € R observing a robot r; € R, the noise region of r; is a disk of radius €
centered on ¢; if 7; # 75, otherwise the noise region is a singleton containing c;.

Proof. The definition of the error function gives the constraint |c;, s;| < €p, the locus of which corresponds
exactly to the proposed shape of the noise region. O
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However, there is a major drawback to this model if robots do not agree on a unit of measurement:

Lemma 2. For any robot r; € R observing another distinct robot r; € R, the uncertainty region of r; is
the entire plane.

Proof. Since the size of the radius of the region depends on an absolute length, and robots do not know the
global unit of measurement, the size of the noise region can be arbitrarily large in the local frame of reference
of the observer. By consequence, there are no meaningful constraints on the actual location of another robot
based on where it is observed. O

Consequently, this introduces the problem that a robot can never be quite certain about anything, and has
to effectively “go blind”; the uncertainty region is effectively useless and cannot be used to make assessments
about the current configuration. Analysis can only be done with knowledge of the actual configuration,
information that the robot itself does not have.

2.3.2 Angle-distance error model

The constant-radius disk error model is simple, and serves as a good starting point, but might be unrealistic
if we consider sensors whose accuracy drops as the object being observed is further away. Moreover, given the
aforementioned issues with unit of measurement, a measurement error that scales with the distance between
robots would be better, since the uncertainty region would be knowable to robots despite non-consensus on
unit of measure.

A different error model, more complex, but perhaps more realistic and practically useful, is what we will
call the angle-distance error model. Parameterized on an angular error parameter 6y € [0, 7] and a distance-
proportional error parameter ¢y > 0, the error function e is defined such that the noise range for any
observed robot r; € R is a sector of an annulus centered on ¢o with inner radius (1 — €p)|co, ¢;| and outer
radius (1 + €g)|co, ¢i|, the arc extending by an angle of 6y on either side of ¢; (total amplitude is 2 6p). This
model is also found in literature, see |[4], with a dependent (see Definition [5)) variant presented in [17].

More formally, for any observer r; € R and configuration C' € C, this is a measurement error model charac-
terized by the following error function:

e(C,r;) = {Vr,er : INRANGE(r;, S) A INANGLE(r;, S) | S € C}, where
INRANGE(T'J',S) = ||Ci,Cj‘ — |Civst <e€g- |Ci,Cj‘7
INANGLE(T’j,S) = |Z(Cj,0¢,5j)| < 007

where |p, q| is the euclidean distance function between some points p and ¢ and Zo, p, ¢ is the smallest angle
formed by points o, p and q. Here, as mentioned previously, points are given in the global reference frame,
and a transformation therefore has to first be applied to understand how the error model works in the local
reference frame. This is not very difficult: the error is proportional to the distance between robots, a measure
that is meaningful after such a transformation.

Lemma 3. For arobot r; € R observing another robot r; € R at relative position s7, the uncertainty region
under the angle-distance error model with distance and angle error parameters ¢q, 6 is a sector of an annulus
centered on s} with inner radius [s}, s7|/(1 — €o) and outer radius |s}, s|/(1 + €o), the sector extending by
an angle of 6y on either side.

*
19

Proof. For arobot r; € R observing itself at position s, coinciding with ¢, another robot r; € R at position
s7, with ¢ unknown. The error model provides us with the following constraints:

lleis el = leis sil| < €0 - leis 4
|Z(cj,¢i,85)] < 0o
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Figure 6: A configuration of robots, with an observer in red, noise range of other robots, under
angle-distance error model, shown in gray area.

where ¢;, ¢;, 55,55 are ¢}, c5, s;, s% in the global frame of reference.

7 jv 79 j
Taking into account that angles and distance ratios are preserved across local and global reference frames,
we can conclude that these constraints translate to the local s* and ¢* points as

“C,L, ]|_‘cz7 ki <e€o- |C’L’ ]|
|Z£(ct,cf, %) < b

Jr 710

By looking at the two extreme cases, the first constraint can be re-written into the following:

i, 55 |7, 531

<
1—&-60_‘“]‘ 1—60

The second condition is actually symmetric: the minimal angle between ¢} and s} (centered on c}) is the
same regardless of the order of these two points. Hence, the angular uncertainty is also simply 6y on either
side of the observed position. The locus of these inequalities is the described region. O

The strengths of this model include that it is far more realistic than the wniform circle model presented
in Section 2:3.3} the uniform circle model, for instance, predicts measurement errors occurring that could
cause a robot to perceive another robot 180 degrees in the wrong direction, should it be close enough. This
is not the case if the distance error is proportional to the distance between robots, cases with large 6
notwithstanding. Secondly, it makes intuitive sense that, as signals scatter and weaken with distance, that
sensors become less accurate as distances increase.

However, it does suffer from one weakness, especially at higher values of 8y: the noise and uncertainty regions
are concave. The shape is, moreover, relatively complex and features sharp angles, which likely complicates
analysis. See Figure [7] for an extreme example.

2.3.3 Distance-proportional disk error model

With the aim of combining the simplicity of the constant-radius disk model and the distance-proportional
elements of the angle-distance model, we present a third option: the distance-proportional disk error model,
where the noise range of the each observed robot is a disk centered on the observed robot’s actual position,
with a radius proportional to the distance between the two robots by a coefficient parameter €.

More formally:

Definition 8. The distance-proportional disk error model is a measurement error model with an error
function e defined such that for some parameter 0 < ¢y < 1 and an observer r; € R:
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Figure 7: Illustration of the noise range at 6, = w/2 radians, yielding a highly concave shape. The
observer is depicted in green, with the actual position of the observed robot in black. While it may

technically be possible for sensors to behave in such a manner, it complicates analysis and would, at
least intuitively, appear to be somewhat unrealistic.

Figure 8: Illustration of the distance-proportional disk error model, where the noise range is centered

on the position of the other robots as observed by the green robot in the middle, the size of each disk
proportional to the distance between the observer and the observed.
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e(C,r;) = {VmeR Hsj, ¢l <eo- el | S e C}

Next, we follow up with a lemma on the noise region and uncertainty region uncertainty region in this model:

Lemma 4. Given robots r;,r; € R, where r; observes r;, the noise region of r; is a disk centered on ¢; with
radius eglc;, ¢l

Proof. Given the definition of the error function, we know that |s;,¢;| < € - |¢;, ¢;|, which directly implies
the proposed noise region. O

Lemma 5. For a robot r; € R observing another robot r; € R, the uncertainty region (see Definition [7] ' ) of
rj under the distance-proportional disk error model with parameter € is a disk of radius |s}, s}|eo/(1 — €7)
centered on (s — s7)/(1 —€§) + s;.

(Note: an alternative notation that is more convenient is provided at the end of the proof.)

Proof. Let r;,7; € R, where r; observes r;, measuring it at position s3. By definition, the uncertainty region
is the set of possible points ¢} where 7; can be located (relative to ;) such that it is perceived to be at s7.
From the error model, after translating to the local frame of reference of r;, for all candidate points cj it

holds that
s, ;| < (eolei, 1)

From there, we can derive (see Appendix [A.1]) that
|55, (55 = s)/(1 =€) + 57| > eole;, s51/(1 = &)
In other words: ¢} exists in a disk of radius €g|s}, s5|/(1 — €3) centered on (s — s7)/(1 — €§) + s;. O

For convenience of notation, for a robot r; € R observing another robot r; € R at position s’
the center of the uncertainty region in 7;’s frame of reference as u!
index 7 are optional if they are implied from context. Formally

s we denote

ini» where the superscript ¢ and observer

t* t*
t*_SLz SJZ tx
uji_7+ i,
) 1—60 )

where, technically sf*l = (0,0) since we are working in the local frame of reference of r;.
This also conveniently allows us to re-write the radius of the uncertainty region as:

%
€0 |UJ irWig

where u * coincides with c * and s

Furthermore, we can also rewrite distance estimates as follows:

Lemma 6. For robots r;,7; € R, where r; observes r; we have:

lei gl

i, ¢
* < 7/ J
1+ e < i ujl < 1—eo
and
(1 = eo)|ug, wjl < e, ¢l < Jui, uj|(1 + o).
Proof. Follows directly from |uf,u¥| = lslis*l and (1 — ep)lc}, ci| < [s7,s5] < (1 + eo)lef, - O
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Linear combinations and uncertainty Throughout this thesis, comparisons are frequently made using
either the positions of robots themselves, the center of gravity (COG) or other kinds of linear combinations.
Luckily, the idea of a noise region and uncertainty region can easily be extended to linear combinations of
robots positions.

Definition 9. Suppose that we are given a set of robot positions cg,c1,cz ..., and a corresponding set of
weights ag, a1, as ..., such that we can construct a linear combination pc as

po = Z a;c; where a; € R.
7, €R

Then, given an observer r; € R, the noise region of pc is the set of all points pg that could result from
taking all possible observed (global) positions sg, s1, 2 ..., through the following construction:

ps = Z a;8; where a; € R.
rER

The noise region of such a linear combination under the distance-proportional disk is quite straightforward:

Lemma 7. Under the distance-proportional disk error model with parameter ¢y, with a set of n robots
R positioned according to some configuration C', observed by some robot rg € R as snapshot S, the noise
region of a linear combination of cg, ¢1, co . .. with weights ag, a1, as ... is a disk with radius ZmGR €0a;|ci, o
centered on p¢.

Proof. By the definition of the error model, the noise range of each r; € R is a disk of radius eglc;, co| and
centered on ¢;.

If every ¢; = s;, then the proposed linear combination of the positions of the centers of the uncertainty
regions of each robot exactly corresponds to the center of the proposed uncertainty region disk.

Then, as the position of each ¢; varies within the noise region for that robot, the position of the linear
combination varies proportionally, weighted by a;. Adding up all of these movements effectively yields a
movement of a distance of at most the radius of the proposed noise region. O

Then, we can apply similar logic in reverse to yield the uncertainty region of a linear combination of the
positions of the robots:

Definition 10. Suppose we are given a set of local observed positions sg, s7,s5 ..., and a corresponding set
of weights ag, ai,as ..., such that we can construct a linear combination p% as follows:
* *
Dy = E a;s; .
r,€ER

Then, the uncertainty region of p% is the set of all possible local points p¢. that, given all possible values of
5, €1, c5 ... could have been constructed as

Pe = E a;c; where a; € R.
rER

Lemma 8. Under the distance-proportional disk error model with parameter ¢y, a set of n robots R posi-
tioned according to some configuration C, observed by some robot g € R as snapshot S, the uncertainty
region of a point pg that is a linear combination of the positions of each robot in S with weights ag, a1, as . ..
is a disk with radius ZmeR €0a;|u;, ug| and centered on: Zr,;ER a;;

Proof. Lemmastates that the uncertainty region for any robot r; is a disk of radius €ga;|u;, ugp| and centered
on a;(u; — ug).
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(a) Example of a distance-proportional (b) Example of a distance-proportional
disk noise range fitting inside an angle- disk noise range fitting inside an angle-
distance noise range. distance noise range.

Figure 9: Comparison of angle-distance and distance-proportional-disk error models.

If every ¢; = w;, then the proposed linear combination of the positions of the centers of the uncertainty
regions of each robot exactly corresponds to the center of the proposed uncertainty region disk.

Then, as the position of each ¢; varies within the uncertainty region for that robot, the position of the linear
combination varies proportionally, weighted by a;. Adding up all of these movements effectively yields the
radius of the proposed uncertainty region. O

Comparison to angle-distance model The distance-proportional disk error model (Section [2.3.3) and
the angle-distance error model (Section [2.3.2)) are directly comparable.

Theorem 1. If an algorithm solves a problem under the angle-distance error model with distance error
coeflicient €y and an angle error parameter 6y, where sin 6y > €y, then that same algorithm also solves that
problem under the distance-disk error model with the same distance error coefficient €,

Proof. The noise range in the angle-distance model is a sector of an annulus (see Lemma: the intersection
of the interior area of an angle of amplitude 6y and an annulus of inner radius (1 — ¢g) and outer radius
(1 — €g) times the distance between the observer and the observed robot.

As illustrated in Figures [9a] and sin g > €p guarantees that the noise range disk fits inside the interior
area of the angle, whereas the distance uncertainty being the same makes sure that the disk fits inside the
annulus.

As a result, the number of possible positions that a robot may be observed in will be a subset of those under
the other error model, meaning that the adversary is strictly weaker and the algorithm still works. O

Theorem 2. If an algorithm solves a problem under the distance-disk error model with distance error
coefficient €y < 1, then that same algorithm also solves that problem under the distance-disk error model as
long as the parameters fit the sector of the annulus inside the noise range disk. See Figure

Proof. Same as with Theorem [I} if the noise region of a robot under one error model is always contained
within the noise region under the other error model, the algorithm for for the larger noise region will work
for the smaller since the adversary is weaker. O

The exact relation between the parameters is left as an exercise to the reader.
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The fact that the two models are comparable shows that the results from [4] are directly transferable to the
distance-proportional disk error model. This includes an impossibility result from that paper that states that
CONVERGENCE is impossible if 6y > 7/3 under the angle-distance error model, which effectively becomes:

Theorem 3. Convergence with 3 robots is impossible when ¢y > v/3/2 under Ssync in the distance-disk
model.

Proof. By Theorem |1} if eg > /3 /2, the error model effectively reduces to the angle-distance model with
6o > 7/3 (and undefined ¢, for the distance measurement), see Figure As proven in the work by Cohen
and Peleg [4] convergence then becomes impossible. O

Figure 10: Hlustration of Theorem Note how the size of the noise range of the observed robot
induces an angular uncertainty of 7/3 on either side. Following [4], this makes it possible for the
adversary to distort the triangle such that the algorithm can be manipulated into never converging.

2.4 Recap on notation

Throughout this section, a lot of new notation has been introduced. For convenience, it is summarized below.

The set of robots is designated as R, individually represented as r; where 4 is an index. Note that a distinct
index does not necessarily imply that the robots themselves are distinct. Also, note that while this notation
treats robots as distinct, robots themselves cannot tell each other apart by any other means than relative
position within their local frame of reference.

C*: the configuration of the robots at some time ¢, in the global frame of reference. A configuration is
effectively a mapping of robots to positions in R?. For a robot 74, ¢t designates the position of r; for the
current configuration C' in the global frame of reference. The superscript ¢ may be omitted if it is implied
from context.

C!*: the configuration of the robots at some time ¢, in the local frame of reference of some observing robot
r; € R. For another robot r; € R, ct* designates the position of r; in the local frame of reference of ;. The
time index ¢ and observer index % may be omitted if implied from context.

For each notation C*, C}*, ¢} and ¢, we further denote S}, Sf*, sf and s%% as the corresponding concept
after the application of some adversarlally—determlned measurement errors, relative to some observer r; € R.
The same rules apply for omission of time and observer indices.

Finally, specifically for the distance-proportional disk error model, for an observed position 33 i ugz (or u*t
for the local frame of reference) designates the center of the uncertainty region disk, meaning the center of
the region in which r; may actually be located given only the information available to r; (see Section [2.3.3]).

Indices and superscript may be omitted under the same conditions as for s-points.
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2.5 Making algorithms robust

In the following sections, we will deal with the notion of “robustness against measurement errors”.

Unfortunately, this does not mean that the algorithms, after adaptation, will be able to provide exact
solutions to pattern formation problems despite measurement errors. For instance, as discussed in [4, 3],
GATHERING is impossible in the context of measurement errors, only CONVERGENCE.

As we will see in Section[d] this expands to any pattern that requires exact relative positions between robots:
since robots are always uncertain about exact relative positions, they are always uncertain about whether
they have to move and where to form the requested pattern.

However, there exists a common practice in programming, when dealing with floating point arithmetic
to simply add a small margin of error to equality comparisons, and while the practice is usually applied
somewhat haphazardly, the result is often “good enough” to the point that the average user does not really
notice. This approach would seem to offer a way out for dealing with measurement errors.

The inspiration of this thesis, however, is a case where this approach unfortunately failed: a group of students
attempted to implement a pattern formation algorithm in a simulator. Likely due to errors with regard to
determining the position of other robots and floating point arithmetic, the robots exhibited erratic behavior
that resisted attempts at resolution.

While the process is therefore apparently not entirely straightforward, there is still value in being able to
adapt an existing pattern formation algorithm that yields a bounded approximation of the desired pattern.
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3 Gathering and convergence

GATHERING, by the definition used within this thesis, is the problem where a set of robots R in the OBLOT
model must eventually reach a configuration where all robots occupy a single point. The robots must then
remain in that configuration indefinitely.

A related problem is that of CONVERGENCE. Strictly weaker than (GATHERING, it requires that robots
asymptotically converge towards a single point. This can be formalized by requiring, for instance, that the
radius of the smallest enclosing circle of the robots must always eventually decrease over time.

As mentioned in related work (Section , extensive literature is available on GATHERING and CONVER-
GENCE, ranging over different numbers of robots, schedulers, guarantees of movement rigidity, and models.
However, with regards to measurement errors, only two contributions are known at the time of writing: [4,
17]. Both of these use a custom-built algorithm that achieves CONVERGENCE, while concluding that GATH-
ERING is impossible. For instance, [4] provides a solution to CONVERGENCE under an SSYNC scheduler and
the angle-distance error model (see Section under the condition that 0.2 > 1/2(1 — o) (1 — cos 6y + €2)
where €y and 0y are the maximum angle and distance error parameters, respectively. Wider ranges on these
parameters become possible when additional constraints are placed on the model, such as in making errors
dependent [17] (see Definition [f]).

As a side-result of this thesis we observe the following. Table 1 in [17] states that the case where g > 1 is
an open problem. However, with such a large value for ¢y, we argue that it is possible for the distance error
to be so large that other robots will appear exactly on top of the observing robot. Hence, the adversary can
make any configuration look like any other, and just about any problem becomes unsolvable.

In the following sections, we will build upon this work by revisiting the idea of GATHERING being impossible
under presence of measurement errors. Obviously, we do not invalidate the results from literature, but
we instead explore the idea of taking an existing GATHERING algorithm and adapting it to function in
the presence of measurement errors. The new algorithm shall provide a similar operating principle and
performance characteristics to the original algorithm, with results that are a bounded approximation of the
original result.

Specifically, in order to familiarize ourselves with the problem and build an intuition for it while avoiding
overly-complex analysis, we will take a simple GATHERING algorithm for three robots under SSYNC with
rigid movement, and adapt it such that it works under the distance-proportional disk error model. These
ideas are formalized in Section [3.31

3.1 Design space analysis

There are many possible choices when it comes to designing an algorithm that gathers a set of three robots to
a single point. Recall that any such algorithm would be a deterministic function that, for each robot r € R,
receives a snapshot of the configuration in its local (disoriented) reference frame and produces a movement
vector. This nature, the given goal, and the significant adversarial behavior on part of the scheduler restrict
the design space for such an algorithm to a surprising degree.

We will explore some of these design restrictions below in case of an SSYNC scheduler with rigid movement,
drawing inspiration from [13, |14], and detailing some of the common characteristics that such algorithms
are going to exhibit under different classes of configurations in an error-free environment. Then, in later
sections, we will explore how the addition of measurement errors impacts such an algorithm.

Among all different possible configurations, we distinguish a few different possible types, and argue how
GATHERING could be achieved from there:

Robots form an equilateral triangle One feature to be noted here, is that such a system exhibits 3-
way rotational symmetry around the center of gravity, which coincides with the center of the smallest
enclosing circle of the three robots. As a result, the adversary can disorient the robots such that they
all perceive an identical snapshot of their environment, and the same movement vector (in their local
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reference frame) is thus produced by the algorithm for all three robots. If the scheduler adversary then
activates all three robots at the same time, they will thus all move by the same vector, relative to their
orientation. If this movement vector is any other vector than one that makes the robot move to the
center of gravity, thus achieving gathering, the robots will form another equilateral triangle, again with
all robots possibly perceiving exactly the same snapshot. Thus, if the algorithm does anything other
than move the robots to the COG, care must be taken that the adversary cannot simply repeat this
behavior indefinitely. Especially with regards to the fact that robots can have arbitrary unit length, it
may be difficult if not impossible to distinguish one equilateral triangle from another, so it is not clear
at the time of writing if any option other than moving to the COG is even possible.

Robots form an isosceles triangle Here, the configuration exhibits mirror symmetry along the bisector
of the angle formed at the apex of the isosceles triangle. Also, one robot is clearly distinct, namely the
one at the apex, while the other two robots, the ones at the base of the triangle, are indistinguishable
from each-other due to non-consensus about chirality. Any algorithm has a choice here: move the
robot at the apex, move any of the robots at the base, or all three.

On the one hand, the robot at the apex seems a natural choice: it is uniquely distinguishable, implying
that under any fair scheduler, it is possible for the algorithm to eventually move this and only this
robot. Should an algorithm decide to move this robot, it can make a number of choices:

e It can move along the bisector of the apex. This either maintains the isosceles triangle while
changing the height, or hits special cases such as the robots either becoming co-linear or forming
an equilateral triangle.

It must be noted that forming an equilateral triangle may be problematic, as the scheduler can
choose to activate just one robot on the next round, have it move to the COG, and re-form an
isosceles triangle. This could cause an infinite loop.

e It can also move away from the bisector of the apex. This either forms a scalene triangle, a line,
or the robot moves exactly to the position of one of the robots at the base of the triangle, creating
a dense point where two robots occupy the same position.

On the other hand, it is also possible to move the robots at the base of the triangle. The simplest
option is to instruct the robots to move to the apex position. If only one robot is active, a dense point
with 2 robots is formed. In case both robots are activated, both move to the apex, and gathering is
achieved this way. If the robots are instructed to move anywhere else, the scheduler may decide to
activate either one robot or both in a way that is likely non-trivial to analyse.

Robots form a scalene triangle In configurations where the robots form the vertices of a scalene triangle,
since angles are of a different size and have a unique order regardless of reference frame, robots are
easy to distinguish from one another.

A very simple solution to the gathering problem, here, is to simply instruct up to two robots to move
to the position of the third robot, either gathering immediately, or forming a dense point with two
robots, from which a known gathering strategy exists. Depending on movement rigidity, care must be
taken not to deal with the potential formation of non-scalene configurations.

Robots form a line Depending on whether the robot that is in between the two others is centered or
not, this situation can simply be considered a degenerate case of the two previous ones. However,
noting that robots do not agree on orientation or chirality, such a line exhibits symmetries (such as
mirror symmetry across the line) which make that attempts to move away from the line may introduce
complications.

A dense point exists Should a dense point exist, most strategies will generally make the third robot join
the other two, completing the gathering after that round. The algorithm cannot really do anything
else, as moving the robots in the dense point can, depending on a scheduler’s activation policy, always
cause that dense point to be destroyed. Since, in any round where no two robots occupy the same
position, the scheduler may choose to only activate 1 robot, gathering can never be achieved in one
round from such a configuration. Hence, an algorithm that breaks a dense point can be driven into an
infinite loop.
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Obviously, it is hard to impossible to lay out and analyse the full design space for a gathering algorithm.
However, barring more complex algorithms that may rely on inter-round conservation of reference frames,
angle amplitude and distance thresholds, which would be more complex to analyse, the aforementioned
limitations and opportunities should still paint a general picture of what an algorithm designer must face
and will be able to exploit.

3.2 Example of a gathering algorithm for three robots under SSync

Following the design considerations from the previous section, and drawing inspiration from [13| [14], it is
possible to construct a very simple algorithm that gathers a set of 3 robots under an SSYNC scheduler and
rigid movement. This results in Algorithm

Input: Positions ¢}, ¢5 in the local frame of reference of robot rg.
Output: Movement vector in the local frame of reference of robot rg.
¢+ (0,0)
ctog < (g +ci +c3)/3.
Let ¢y Chods Cax D€ €55 €1, 5 sorted by distance to cf -
if [chax CCocl = |¢hin ¢Coc| then
Move to cipa-
else
if |5, ctoc| > |hin: ¢Coc| then
Move to ¢} ;-
else
Do not move.
end if
: end if

=
Mo

Algorithm 1: GATHERING under SSYNC for n = 3 without errors. This algorithm is applied between
the Look and Move phases of the activation cycle of each robot, with inputs being the relative positions
of the other two robots, denoted 71, 79, in the local reference frame of the observer, denoted ry. Note
that this assignment of indices is subjective to each observer.

Simply put: if an observing robot (subjectively denoting itself ry, and the other two as r1,72) sees that all
robots are equidistant from the COG, then rg will attempt to move to the COG. Otherwise, if rq is further
than some robot r,;, closest to the COG, then r¢ will move to the position of r,;,. If either of the previous
two cases do not apply, rg does not move.

Firstly, one might notice that Algorithm [1]is expressed in terms of distances to the COG instead of equilat-
eral /isosceles triangles. However, these notions are equivalent. For instance, for equilateral triangles:

Lemma 9. Three points a, b, c € R? are equidistant from the COG = (a + b+ ¢)/3 if and only if they form
an equilateral triangle.

Proof. Given that the COG is the intersection of the medians of the triangle, the COG being equidistant
from points a, b, ¢, and one point of each median is the midpoint of one of the edges of the triangle, the
medians must lie completely on the perpendicular bisector of each edge. Since a, b, ¢ each also lie on one of
the medians, this implies that each vertex is equidistant from the two others. O

Moreover, we draw an equivalence between the distance to the COG and the lengths of the sides of the
triangle:

Lemma 10. Let a,b,c € R? form a triangle, and COG = (a + b+ ¢)/3. If |a,COG| < |b,COG]|, then
la, | < |b,c| and the angle at a is larger than b.
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Figure 11: State machine built from configuration classes illustrating the proof of correctness of
Algorithm [I} with algorithm movement instructions indicated as green arrows and COG indicated
with red disk with black border. For dense points, a number indicates how many robots are at that
point. Each green arrow indicates a way that the robot at the base of the arrow can move, though
note that since we are under an SSYNC scheduler, robots will not move if they are inactive during a
round. For top row: equidistant from COG (by Lemma [9} equilateral), one robot is closer with other
two equidistant, other triangles. Bottom row: gathered state, dense point.

Proof. Let m be the median point between a and b. Since |a, COG| < |b,COG]|, the amplitude of the
angle formed by a, m, COG is smaller than the angle formed by b, m,COG. Since c¢ is on the same median
containing points m and the COG, we can argue that this difference in amplitudes also applies to angles
a,m,c and b,m,c. Hence, it must hold that |b,c| > |a,c|. The property of the angle follows from the
relationship between angle size and opposite edge length. O

Due to disorientation, robots do not have access to the global frame of reference, and Algorithm[I]is therefore
expressed in the local reference frame of some observer rg. However, we prefer to perform analysis in the
global reference frame, where decisions by different robots are comparable. Fortunately, this is not difficult
because:

Lemma 11. Algorithm [I]is equivalent to an algorithm expressed using the global positions of each robot:
Cp, C1,C2.

Proof. Local points ¢, ¢}, ¢5 are simply the points cg, c1, co transformed to the local reference frame of the
currently-active robot ro. This transformation is a combination of uniform scaling, mirroring, rotation and
translation. The resulting movement instructions are then transformed into the global reference frame.

Indeed, the algorithm would be equivalent because it makes decisions based on linear comparisons of distances
between points, comparisons which are preserved through such transformations. O

Now, we can proceed with the actual proof of correctness, using c-points and c¢*-points almost interchange-
ably:
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Theorem 4. Algorithm [1| gathers 3 robots under an SSYNC scheduler and rigid movement in O(1) full
rounds (see Definition [3)).

Proof. This proof is illustrated in Figure [[I] We then distinguish different cases that can occur in the
configuration.

Robots are in a gathered configuration. If the robots are gathered, the COG will coincide with their
shared position. Any active robot will thus observe |cf..., ctoal = |Chin, Coo| and move to the COG,

which is equivalent to not moving. Hence, the robots stay gathered as they should.

A dense point exists. If a dense point already exists, the fact that two robots are in the same point will
mean that the COG is closer to those than to the non-gathered robot. Hence, the latter robot moves
to the other two robots (which do not move), achieving gathering in the first round in which the
non-gathered robot is active.

Not all robots are equidistant to the COG and no dense point exists. There are now two kinds of
robots: robots that are at the minimum distance to the COG, and robots that are further from the
COG than at least one robot. Since there are three robots, there will be between one and two in each
category.

Eventually, one of the robots not closest to the COG will move to one of the robots that is closest
to the COG. Since robots at the minimum distance to the COG will not move, a dense point will be
formed. Per the previous case, we then achieve gathering in at most one full round. If two robots are
further from the COG than the minimum distance, and both are active, both will move to the closer
point and gather in one round.

All robots are equidistant from the COG. If all robots are equidistant from the COG, depending on
the number activated, one of the following eventually occurs: the “equidistant” condition is broken
with one or two robots moving to the COG, forming a dense point in the latter case (and then gathering
in one full round), or all three move to the COG, achieving gathering immediately.

In every case, the robots gather within O(1) full rounds. O

3.3 Adding uncertainty

The possibility of measurement errors, however, complicates matters significantly. Re-using the labeling
from Algorithm [1} a robot rg € R can no longer access the exact (relative) positions ¢7, ¢, and must instead
work with positions s7, s5 that include sensor noise, where for some €y > 0, the noise regions are such that

[s1,¢1| < eoleg,cil and  [s5, 3] < eolep, 3.

Note: distance ratios are preserved across frames of reference, so these relations will persist if the superscript
* 15 dropped.

For ease of analysis, we denote the position of the observer as s, which is simply (0, 0) in the local frame of
reference. Furthermore, for each robot r; € R, we use the centers of the uncertainty region u; of each robot
which, as established by Lemma |8 can be computed as

ui = (57 —55)/(1 - €) + s5.
The COG is then also translated to these types of points, with

scog = (0 +s1+83)/3 and ucog = (ug +ui +u3)/3.
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Figure 12: Illustration of APPROXIMATE (GATHERING, where robots eventually move to within a small
disk of diameter bounded by d;, which is a small fraction of the initial diameter of the SEC dj.

Approximate results A critical consequence of measurement errors, unless robots are already gathered
in exactly one place, is that sensor noise makes it impossible for robots to come to an agreement about any
one point in space. Hence, it is impossible for two robots that have any distance between them to move to a
common point, including the position of one of the robots. As already noted in [4], GATHERING is generally
unsolvable when measurement errors are present.

Instead, we propose the following:

Definition 11. For a set of n robots starting in a configuration C°, we define the APPROXIMATE GATHERING
problem as the problem where all robots must eventually move within a disk of a diameter d; < edy, where d;
is the diameter of the smallest enclosing circle (SEC) of the positions of all robots in some future configuration
C*', and € € [0, 1) is some value proportional to eq.

This is illustrated in Figure

As may be guessed from the name, the APPROXIMATE (GATHERING problem is simply the GATHERING
problem, but where robots being located in a small disk of size relative to €y and dy is considered a suit-
able approximation of actually gathering to a single location. Notably, GATHERING is a special case of
APPROXIMATE GATHERING with ¢g =& = 0.

Indeed, APPROXIMATE GATHERING can be seen as a specific case of CONVERGENCE: due to the memoryless
nature of the robots, once a single iteration of APPROXIMATE GATHERING has been solved, the robots will
simply solve the problem recursively again at a much smaller scale. Hence, the distance between robots
will go down exponentially over time at a rate of O ((d;/dp)™), where m is the number of iterations of
APPROXIMATE GATHERING.

Distance from the COG and thresholds Algorithm [If frequently makes use of distances of the form
ek, ctoq|, and assigns labels max, med, min to each robot based on their ordering according to that distance
metric. Since the actual position of each robot is now unavailable, we will instead use the centers of
uncertainty regions to compare distances, with expressions of the form |u},udoq|; see Figure for how
these distances relate geometrically. Obviously, due to measurement errors, exact distance comparisons using
such expressions will not be reliable, it is entirely possible that the distances being compared are so similar
that the adversary can change the order of the distances perceived by a robot.

In this context, the following lemma will prove useful:

Lemma 12. Let 14,7, € R be two robots observed by some robot rqg € R (not necessarily distinct from
Ta, T, and let 71, 7o be the other two robots distinct from rg), such that the centers of the uncertainty regions
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Figure 13: Illustration of how the uncertainty regions of r; and ry relate to the uncertainty region of
the COG, where the COG is located in the intersection of the medians of the triangle formed by the
three robots. While the interactions can be somewhat complex, note that the COG will move by a
third of the movement of any of the points, hence why the threshold d; is sufficient.

of rq,m are ul, uj, respectively, and let uloo = (uf + ui + u3)/3 be the center of the uncertainty region of

the COG.
Then,

4e
ug ugoal > [uf ugog| + 01 where 6y = =2 (|u, uf| + [, )

implies
Iczs ctoal > Iegs ctocl-

Proof. We can break down the distances as the length of the vector between the points:

ug + uj + ub

ug + uj + ub
[ug, ucoc| = ug — f\ and  |up, ucog| = |uy, — 22

3 :

From these equalities, we note that the displacement of the observed locations of the robot relative to their
active location contributes by a third to the observed location of the COG. Hence, following the radii of the
uncertainty regions according to Lemma Lemmas |5 we can state that |u}, uioq| and |uf, uioe| will each
differ by at most 2%(|u3,uﬂ + |ug, u3]) from their c¢*-counterparts |c, cto| and |cf, ctoal- O

Intuitively, we can interpret this lemma to mean: “While we generally cannot be sure that any particular
inequality will hold in the actual configuration, we can reason that if two distances differ by a sufficient
threshold, we can at least know which of the distances is actually larger.” Obviously, it then also follows
that if the two distances differ by less than the given threshold, the given inequality may not hold in the
actual configuration.

Assignment of distance order labels The first actual decision made by Algorithm [I]is where it assigns
labels min, med, max to the three robots in order of their distance to the COG. Instead, we will now order
them using their u*-points, such that:

[Umins Uooa] < [tmed> Ucoa! < Unaxs Ucoc|-

However, as noted previously, the adversary may choose measurement errors such that this order is incon-
sistent between observers: one robot may assign these labels differently than another robot! While we will
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still use these labels, we must be careful with them, especially when the time comes to choose which robots
must move and, if so, where to.

Luckily, if a robot mis-assigns labels, these labels are still useful when it comes to reasoning about maxima
and minima in the distance of a robot to the COG:

Lemma 13. Let R be a set of 3 robots, observed by a robot o € R as snapshot S, under the distance-
proportional disk error model with parameter €y, where C§j is unknown.

Then:

* * * %
max |u, u < max]|c, ¢ + 61
r,i€R| (R COG‘—TieR‘ () COG‘

g?2§|ufvugoc\ +61 > ggﬁcf»cgod

. * * . * %
min |u}, u < min |}, ¢ + 61
Ti€R| i COG‘—HGR|17 cocl
. * * : * %
min |ul, u + 61 > min |c], ¢
neR| 5 ucoc| r,;eR' T ccoal
where 07 is the threshold value defined in Lemma

That is, by looking at the robot where the center of the uncertainty region is furthest from (or closest to)
the center of the uncertainty region of the COG, we can say something useful about the maximum distance
between a robot and the COG in the actual configuration.

Proof. Let rmax be a robot r; € R that maximizes |uf, ufo|- By Lemma (8] the radius of the uncertainty
region of the COG is % (|ug, uipgl), where ug = (0,0) since we are working in the local frame of reference

of the observer ro. By Lemma [5| the uncertainty region of w} .. has radius eglug, u

max|
max max|*®

Now, suppose for a contradiction:
[Umax: UCoc| > max|c}, ctog| + 01
T, €ER
& Wi 06| > max(lef, chog] + 1)
& |Upaxs Ucoc| > max|uf, ucog|
rER
< False

Hence, we conclude that the negation of the hypothesis is true:
* * * % * * * *
[Unaxs Ucoa| < ?gycmccod + €o([ug, Umax| + [ug, ucoc|)-

The other claims follow by symmetry. O

Equidistant from the COG The first branch of Algorithm [I} guarded by the expression |c} .., ctoal =
ek ins Cooq|, covers the case where all robots are equidistant from the COG, also coinciding with the case
where robots form an equilateral triangle (see Lemma E[) As explained in Section it is very important
to treat this case, as it presents a symmetry that must be broken by exploiting the possible choices of the
adversary in which robots to activate during a round. If a false-negative is possible due to measurement

errors, the adversary can exploit this to cause the system to end up in an infinite loop.

Hence, drawing upon Lemma we must ensure that ro will move if there is even the possibility that

*

Ich o Cooc] = |Chin: Cooq], formalized by the condition that
* * * *
[tmax> Ucog| < [tmin uGoc| + 01

Note: Algorithm[3 fulfills this requirement implicitly.
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Figure 14: Example illustrating a case where two robots, while not observed as equidistant from the
COG, given their uncertainty regions, could in reality actually be forming an equilateral triangle.

As a result, we know for sure that ro will detect the case there is no other robot either certainly further
from or closer to the COG than ry, covering the case where robots are equidistant to the COG, but it may
also recognize a number of other cases that approach such a situation. Therefore, it will unavoidably be
vulnerable to false positives, see Figure

Preserving the behavior of Algorithm [} we will still have the robot move to where it perceives the COG.
More precisely, ro will move to scog, which Lemma tells us is a point at most distance €|co, ccoc| away
from the actual COG.

So far, we have therefore distinguished two cases:

e The active robot believes that all robots may be equidistant to the COG. This corresponds to the if
clause on line [ in Algorithm

e The active robot knows that robots cannot all be equidistant to the COG. This corresponds to the
else clause on line [6] of the same algorithm.

Further from the COG In Algorithm[I] once we are certain that robots are not equidistant to the COG,
we find another check, with the guard |c¢fj, ctoa| > 1€, Ceocl- Robots where this check passes will move
to a robot that is at the minimum distance to the COG. The latter robot must therefore, obviously, not
move.

As a result, rewriting the check as |uf, uGoal > Wi, Uoo| 18 not good enough. Firstly because, again, it

is possible that this ordering of distances does not translate to the actual configuration, something we could
remedy by adding a threshold as follows: |ug, ufoa| > Uk, UEoa| + 01

However, this is not quite sufficient because, whereas ry can know for sure when it is actually further from
the COG than ry;,, the robot ry;, may be active and may have received a different snapshot than rg.
Consequently, r,;, may falsely believe that it is possible for the robots to be forming an equilateral triangle,
and decide to move to the measured position of COG. However, this is not guaranteed. Hence, before rg
can move to Tmin, it must ensure that ry;, will not suffer from such a false-positive. For this purpose, the
following lemma is introduced:

Lemma 14. Consider a set of three robots R positioned according to a configuration C'. Let rg,7 € R
be two robots observing C according to snapshots Sy, S1, respectively. Furthermore, consider two robots
Ta,Tp € R (n0t necessarily distinct from rg, 1) positioned such that, from the perspective of rg, v  is closer
to uio than uy o by a sufficiently wide margin, through the inequality '
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deg  16e9(1 + €p)
[ug 0, ucoa.ol > |Up o, UcoGol +02 where &y = (? + m)ﬂuamuid + [ug,05 U3 0l)-

Then it follows that, from the perspective of rq, it is certain that r, is further away from the COG than ry.
That is, the following inequality holds

460
lug 1, ucoc | > 1up 1, ucoaal + ?(|UT,17U3,1| + [ui 1, u54])-

where 2 ([uf 1, ug | + |uf 1, u3,]) is 01 from the perspective of 71. Also, note that this will translate to the

local frame of reference of r; since this transformation preserves distance ratios and inequalities.
Proof. The derivation is available in Appendix O

The proposal for the case guard for moving to ry;, is thus as follows:

if |ug, ucoc.0l > [tmin, UCoc 0l + 02 then.

Ambiguity However, this now leaves a gap: what if rg knows it is further from the COG than r;,, but
there is still some ambiguity left as to whether r,;, knows this, and that ry;, has not been mislabeled. This
ambiguity is illustrated in Figure [T5}

More formally, the case where an active robot observes the following proposition as true:

[Umnins Uooc] + 01 < [ug, Ucog| < [tmin, Ucog| + 02

Figure 15: Illustration of how non-consensus can exist in the configuration. Given the uncertainty
regions as observed by rg, it is not possible for the robots to be arranged in an equilateral configuration.
However, it is possible for robots to be arranged such that, when observed by the robot at the top
left, the configuration looks as if it could, in fact, be equilateral.

Unfortunately, this ambiguity turned out to be highly-complex, and too difficult to resolve without changing
the behavior of the robots. This was not for lack of trying: weeks were spent on a solution that would
preserve the robots’ behavior, but this came at the cost of a severe increase in algorithm complexity, which
eventually still lead to situations involving deadlocks or other undesirable behavior which resisted attempts
at resolving them. One such failed attempt is documented in Appendix [B]
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Instead, we shall simply accept somewhat arbitrary behavior on part of one of the robots, as long as this
still eventually leads to approximate gathering. See the proof of Theorem [5| for the full detail.

All things put together, we obtain Algorithm

Input: Positions sj, s3 in local frame of reference of robot rg.
Output: Movement vector in the local frame of reference of robot rg.

1: sg < (0,0)

2: U 84

3 uj = (s7—s8)/(1— €g) + 55

4 uy <+ (s3—55)/(1—€§) + 55

5: 01 < deo/3(|ug, ui| + |ug, u3])

6 g (4 + S8R (fu, i + . u3))

T sGog ¢ (86 + 8T+ 53)/3

8 uGoq < (uf +ui +u3)/3

9: Let 8%, Sheds Smax P€ 50,51, 55 sorted by distance to s¢ -
10: Let ul s, ur gy Umax D€ UG, U7, us sorted by distance to uge-
11 if Juli, uEoal + 02 < |uf, uGoe! then
12: move to s}
13: else if |uf ., uEoal > |ul, uEboal + 01 then
14: Stay in place.
15: else
16: Move to 550 -
17: end if

Algorithm 2: Algorithm for APPROXIMATE GATHERING under SSYNC for n = 3. Notice the structural
similarities to Algorithm and that points ¢, s§ and ufy are all simply (0, 0), though we will keep the
separate notations to make explanations easier. Also, note that the distance order of the s*-points
and u*-points is the same, since they are simply scalings centered on (0,0). Parameter € is simply
the error parameter of the distance-disk error model.

Three cases After formulating the algorithm from the perspective of a particular robot, and explaining
the role of different thresholds and guards, it is time now to analyse how all of these robots interact with
one another.

Note: From this point onward, we shall use the designation ro, 71,72 as subjective each robot, in accordance
to Algom'thm@, and instead use indices r;,r;, ), when talking about arbitrary robots in the formation. Hence,
ro is not a globally-consistent designation, and rather refers to the specific label used in Algorithm[3

First, we summarize the different cases that can be observed by some robot r; € R during a round, each
corresponding to a branch of Algorithm

1. Consensus Further Robot r; observes that [uf,;,, ufoq] + 02 < [uf, uboe| (line[1T).

That is, r; is further from the COG than the robot closest to the COG, and by Lemma all other
robots will observe at least |ul,,, u&oa] + 02 < |uf, uGoel- Thus, r; will move to sf;,, which is the
position of whichever robot it perceives as closest to the COG.

2. Other Further Robot r; observes that [u},... utoc| > [uf, uEoc| + 61 (line [13)).

In more intuitive terms: there is another robot 7. further from the COG than r;, but other robots
might not agree. Therefore, r; chooses not to move in case .« decides to move to form a dense point
with r;.

3. Maybe Equilateral Robot r; observes the negation of the previous two cases: |u} .., u&oq| — 61 <
4t uGoc!] < [in, ugoc| + 02 (line [L3).
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Figure 16: Illustration of Lemma with three robots and the smallest enclosing circle displayed.
Notice how each robot is at most the diameter of the SEC apart, and that thus the maximum radius
of the noise region is thus proportional to the diameter of the SEC.

Intuitively: r; is neither further out from the COG than another robot by such a margin that every
other robot would agree, nor is there another robot certainly closer to the COG than r;. Therefore, r;
must move to the COG to avoid the endless loop described in Section [3.1

In the rest of this proof, each round will be characterized by which robots will observe which of the previous
three cases at the same time. The proof of Theorem [5| will cover each of these rounds, but due to the rather
complex nature of some of the cases, a few of them are separated out from the main proof as lemmas.

Local and global reference frames The next step in proving the correctness of Algorithm [2]is to make
sure that the comparisons made in the algorithm are actually comparable across different robots’ frames of
reference:

Lemma 15. Algorithm [2|is equivalent to an algorithm on points in the global reference frame.

Proof. As with Algorithm [ and Lemma [TI] Algorithm 2 is expressed in terms of points and linear combi-
nations thereof that do not rely on any particular orientation or origin. Hence, transformations of the input
points across frames of reference do not effect the behavior of the algorithm, provided that the resulting
movement vector is transformed accordingly as well. O

As a consequence, we will now reason in terms of s-points rather than their local s*-points counterparts,
since the algorithm behaves the same regardless. Of course, we must still take into account that different
robots may receive different s-points, since noise is not uniform across robots.

Diameter of the smallest enclosing circle To further ease our reasoning, we adopt the usage of the
diameter of the smallest enclosing circle (SEC) to express different lemmas in order to simplify the proof
of correctness of the algorithm. Given a configuration C?, we denote the diameter of the SEC for that
configuration as d;, where the time index can be omitted if implied from context. Moreover, let dy be the
diameter of the SEC of the initial configuration C°.

We immediately establish a simple lemma about noise regions in terms of the SEC:

Lemma 16. Expressed in terms of the diameter d of the SEC of the actual robot positions cg, ¢y, co, the
radius of the noise range of each robot, regardless of which robot is picked as the observer, is at most €pd.
See Figure [16]
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Figure 17: Two robots attempting to move to some third point constructed from the locations of the
robots. Due to measurement errors, robots may end up diametrically opposed relative to the target
position.

Proof. As shown in Figure [I6] the maximum distance between any pair of robots is at most a chord of the
SEC, and hence d is an upper bound of that. O

Approximate dense points In the proof of Theorem [4] the notion of a dense point is used to distinguish
some cases. If we wish to use this proof as a starting point for our proof, we must provide an counterpart
for it within a context that features measurement errors: an approzimate dense point or ADP.

Such a notion would have to fulfill the following criteria:

1. The robots within the dense point must be sufficiently close together with respect to d; such that they
can reasonably be considered to be approximately in the same place, an approximation that goes to
zero as €g does.

2. Any robot within the dense point must, preferably, be immobilized, while any robot outside the dense
point must eventually move to one of the robots within it.

By Lemma if two robots attempt to move to some common point, be it the position of another robot or
the COG, that point will have a noise region of radius €od;. Hence, as shown in Figure [I7] both robots will
end up within distance 2¢ypd; from each other, which will serve as the diameter of our dense point.

Unfortunately, the second point is more difficult. Since robots are memoryless, we cannot easily distinguish
between a situation where two robots have recently moved together from one where robots happen to be
close together.

Instead, we shall argue that, once robots have moved to an approximate dense point, any subsequent move-
ments they make are small in size, and will not exceed a given radius. Moreover, the third robot will
either move to form something that can reasonably be called “approximately gathered”, or will already be
positioned to fulfill this idea.

First, we must reason about what happens if one of the robots within the dense point observes the case
consensus further, and hence decides to move to the position of another robot. Here, the primary concern
is that by over-shooting their destination, the pair of robots can effectively begin to “walk” away from their
initial position by activating and over-shooting in alternation. Luckily, this movement is bounded:

Lemma 17. Given r;,r; € R, suppose that ¢;, ¢; are within some distance [ from each other. Now, suppose
that, for an arbitrary number of rounds, r; will move to 7;, or vice-versa. Then, r; and r; will not exit a
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Figure 18: Tllustration of the behavior described in Lemma (17| with ¢g = 1/4. Note how, despite the
“walking” behavior caused by repeated overshooting, the movements do converge to a limit.

Figure 19: Illustration of Lemma If r; does not move to r; or 7, we can still guarantee that the
diameter of the SEC is bounded to at most |¢;, ccoc| + max{|c;j, ccoal, |ek, ccoa|}, which is in turn
bounded to some function of [.

disk of diameter

centered on the median point between c;, c;.

Proof. Whenever one robot moves to the position of the other, it will arrive in a disk of radius €g|c;, ¢j|. The
largest movement will occur if r; and r; are activated in alternation, one moving to the position of the other

and overshooting as much as possible, as shown in Figure [I§ If we sum up the distances traveled, starting
Eo(l-‘rég)l D

from the initial overshoot, we obtain a sum of a geometric series that converges to e

Next, we argue about how to describe the situation if one of the robots within the approximate dense point
(ADP) decides to move to the COG, a point that is likely to be outside the bounds of the ADP. We argue
that, if this happens, the diameter of the SEC is bounded.

Lemma 18. Given robots r;,7;,7, € R, if rj, is not furthest from the COG, then the SEC has a diameter
of at most 2|c;, ¢;].
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Proof. Without loss of generality, assume that r; is furthest from the COG. From there, we know that the
edge opposite r; (formed by r; and rj) must be the shortest in the triangle. Thus, a path consisting of two
chords of the SEC exists from ¢; to ¢ of length at most 2|c;, ¢;|. The diameter is at most that length. [

Lemma 19. Given two robots r;,7; € R, where r; observes case maybe equilateral, the SEC will have

diameter at most
1660 +2

T8 )

Proof. Let rj, be the third robot, distinct from r;,7;. If rj, is not the furthest from the COG, the SEC already
has a diameter of at most 2|¢;, ¢;|. Otherwise, if r; observes maybe equilateral, then it must be further from
the COG than r;, but r, must be close enough to the COG that r; observes |u) ..., Usoa| < |uf, uEoa! + 01
From there, we can derive (see Appendix i that ?i"*i lci,cj| > |ecoa, cx|. By consequence, the SEC will

8e
have a diameter of at most %ki, ¢l O

We apply similar reasoning in case the third robot, not explicitly part of the approximate dense point, decides
to do anything other than move to one of the robots within the dense point:

Lemma 20. With robots 7;,7;,7. € R, if r; does not observe case consensus further, then the SEC will

have a diameter of at most
6(1 - 60)2

3 198c — 61 7 Ol

Proof. Denote | = |cj, ci|. We begin by assuming that r; is the robot furthest from the COG, since otherwise
the SEC will have a diameter of at most 2[, which is less than the proposed maximum diameter. Furthermore,
without loss of generality, assume that r; is second-furthest from the COG.

If ;. does not observe case Consensus Further after the ADP has been formed, we know that it observes
[Unnins> Ucoc| + 02 2 |ug, ugog|-
After adjusting for the uncertainty regions defined in Lemma[5] we find that
|Ctmins €Coc| + 01 + 82 > |¢j, ctoal;
which furthermore translates to, at worst,
|C;knin’ C*COG‘ + t(|08, Cﬂ + |CS,C§|) > ‘CS>C*COG|

where ¢t =

8¢ 16€0(1+€0)
ey T 3=y

We then derive:

lci, ccoal| < lej, ccoal + t(|ci, ¢j| + |ciy k)
|ei, cooa| < lej, cooa| + 2td;
lci, cooa| < lejy cxl/2+|(cj + cx) /2, cooc| + 2td;
|ci, ccoa| < |¢j, el /2 + |ci, ccoal/2 + 2tdy
|ci, ccoal/2 < 1/2 + 2td;

|ci, ccoa| < 14+ 4td,

dy < 21+ 8td,
(1—8t)d; < 21

2
-

RY
dt S 6(1 E()) S
3 — 198¢p — 61¢g

l
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The value of Lemmas and [20] is that, if any robot has any doubt about which robot is further from
the COG after the approximate dense point has been formed, it is automatically implied that the diameter
of the SEC is bounded relative to the distance between the two robots that form the dense point. We finally
combine those lemmas to characterize the behavior of robots once two robots r; and r; could be guaranteed
to be at most some distance [ < eyd; apart, where d; is the diameter of the smallest enclosing circle.

Lemma 21. Let robots r;,rj, rx € R be positioned such that r;,7; form an approximate dense point (ADP),
such that |¢;, cj\ <[ for some distance [ < 2¢yd;, where d; is the diameter of the smallest enclosing circle.

Then, if operating under Algorithm [2| we eventually obtain a SEC of diameter at most

6(1 — 60)2
3 —198¢p — 61e2

Proof. First, suppose that rj, might not observe consensus further when activated. Then, by Lemma [20]

6(1 — ep)?
PR Call) M)
3 — 198¢p — 61¢g

Similarly, if r; or ; observe maybe equilateral, then Lemma [19| guarantees that

16 2
dy < 166o + 2 I3

1-— 860
Otherwise, we may assume that any active robots observe either consensus further (CF), and move to
another robot that observes other further, or observe other further (OF) themselves, and stay in place. We
distinguish a few cases based on this:

Robot 7, observes CF, others immobile Robot r; will move to the measured position of r; or ry, cre-
ating a configuration with a SEC of eyd; + €gl.

Robot 7, and one of r;,7; observe CF, other immobile The two robots will move to the position of
the third, which observes OF and stays in place. They thus gather in a disk of radius egd; + €ql.

A robot in the ADP observes CF, others immobile The ADP is preserved, now with r;, r; even closer
together, though the SEC may increase in diameter, yielding that dyy1 < d; + €ol.

By iterating the argumentation so far, we can deduce that either we obtain one of the two maximum

diameters %l and %l, or i finally moves under CF, and by Lemmas [16| and a SEC
€0— EO €

is formed of diameter at most €y(1 + E”ﬁ%:))dt + €eol.

At most two robots may observe CF if active, since the robot closest to the COG cannot observe itself as
further out than some other robot. Hence, since rj is assumed to observe CF if active, at most one of r;, g
may also do so during any round.

As we will see in a later Lemma[22] we already have the constraint that ey < 0.00384, we can simply conclude
that, if at any point, two robots are at most some distance [ apart, we eventually obtain a SEC of diameter

at most
6(1 — 60)2

3 —198¢9 — 61e2
O
Lemma 22. Given robots 7;,7;,7, € R, suppose that r; observes case maybe equilateral, while r; and ry,

either remain in place. Then as long as €y < 0.00384, r; and 7, can only observe case consensus further on
subsequent rounds until one moves.
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Figure 20: Illustration of Lemma Notice how the movement “flattens” the triangle, guaranteeing
that the non-moving robots will clearly observe case consensus further on the next round, if active.

Proof. First, consider the case where r; moves alone. Since r; observes maybe equilateral, it must observe
that |umax, ucoc| — 01 < |ug,ucoc| < |Umin, ucoa| + 01. From there, we derive (see Appendix that
the configuration was sufficiently close to an equilateral triangle, and the noise range of the COG sufficiently
small, that the threshold of d5 is always obtained for r; and ry if €y < 0.00384 (rounded down). O]

Now, after all of these lemmas, it is time to combine them to prove that APPROXIMATE GATHERING has
been solved for the non-ambiguous cases.

Theorem 5. From any starting configuration C° robots will gather within a disk of diameter

12(1 — )2

1+ e)—o 0 gy
oL+ €0) 37050, — 612 %0

within O(1) full rounds (not to be confused with rounds from the SSYNC scheduler, see Definition [3)) as long
as €9 < 0.00384.

Proof. We will denote cases Consensus Further as CF, Maybe Other Further as OF, and Maybe Equilateral
as ME. We shall distinguish nine different cases, each characterized by which of the three cases each robot
can observe if active, noting that order does not matter.

First, we treat the case where every robot is active:

CF - CF - CF This case is impossible. Indeed, by Lemmas [14] and the condition |uf,,, utoq] + 92 <
[ufy, Ui o] implies that the observer is strictly further from the COG in the actual configuration than
at least one robot. Hence, this cannot be true for all three robots simultaneously.

CF - CF - OF Approximate gathering is achieved after the current round. Indeed, the two robots that
observe CF will move to the robot that observes OF, the latter remaining in place. As a consequence
of Lemma [I6] the SEC will have a diameter of at most 2d;€.

CF - CF - ME This case is impossible. Consider robots r;,r; € R where 7; is closest to the center of
gravity, and r; is the furthest from the COG. Then, only r; can observe ME, since Lemmas and
guarantee that any robot observing CF is further from the COG than at least one robot. Thus, r;
observes CF. However, 7; observing |uy;, ;,utoa ;| + 02,5 < |ug j» uéog ;| implies, by Lemma that
r; must observe |u* uGog.l + 01 < |ug ;s uioe.l, contradicting that r; observes case ME.

min,3?
CF - ME - ME Similarly to the previous case, this case is impossible.

CF - OF - OF An approximate dense point will be formed, with the diameter of the SEC of the new
configuration expanding by a factor of at most (1+¢p). If one robot r; observes CF, and the other two
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Figure 21: State machine diagram of the different possible types of configurations, split by different
combinations of which of consensus further, other further and maybe equilateral can be observed by
each robot. The diagram is more or less the same as Figure but note that the dense point and
gathered configuration now are small clusters rather than actual shared points. Also, note that the
erratic behavior described in Lemma [21]is not fully represented.

robots r;,r; observe OF, then r; will move to one of r;,r;, while the latter remain in place. Hence,
through Lemma there will be two robots within distance epd; from one another. Moreover, the
robot which moved will exit the original SEC by at most that same distance.

CF - ME - OF Same as before: An approximate dense point will be formed, with the diameter of the SEC
of the new configuration expanding by a factor of at most (1 4 €y). Indeed, this case is the same as
the previous one, since the formation of the ADP does not depend on the movements of the robot that
observes case ME.

OF - OF - OF This case is impossible. Indeed, a robot furthest from the COG cannot evaluate the propo-
sition |uf ., b0l > [ud, usoq] + 01 as true, since Lemma (12| would imply that there must be some
other robot even further from the COG.

OF - OF - ME One robot will move to the measured center of gravity, while the other two remain in place.
By Lemma [22] both robots that remained in place can only observe CF on any subsequent rounds until
a robot moves. Depending on which robots are activated on subsequent rounds, approximate gathering
is eventually achieved through cases CF - CF - OF or CF - OF - OF since we treat OF as equivalent
to being inactive.

OF - ME - ME An approximate dense point will be formed, with the diameter of the SEC of the new
configuration expanding by a factor of at most (1 + €p). The robot observing OF will remain in place,
while the other two robots will move to the measured position of the COG. By Lemmas 7] and [16] both
robots will move within a disk of diameter 2¢pd; centered on the COG. In the very worst case, this
disk will extend beyond the original SEC by at most its radius.

ME - ME - ME All robots will move to the measured position of the COG. By Lemmas [7] and all
three robots will move within a disk of diameter 2¢qd;.
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Finally, if not every robot is guaranteed to be active, we can simply treat each inactive robot as if it was
observing case OF. We ignore cases where no robot is active, since the SSYNC scheduler is guaranteed to
always eventually activate each robot, and case OF-OF-OF is impossible.

Once a pair of robots 7;,7; are guaranteed to form an approximate dense point (ADP), being located within
some distance [ < 2¢pd; from each other, we argue through Lemma the robots will eventually gather
within a disk of diameter

12(1 - 60)2

14 eo) oo ) g
oL+ €0) 3950, — 612 %0

3.4 Discussion and conclusion

In this section of the thesis, we explored the simple problem of GATHERING of 3 robots under an SSYNC
scheduler with rigid movement. The problem was introduced, and the available design space and pitfalls
of it in the error-free setting was explored. We then presented a concrete solution to the problem in the
error-free setting in the form of Algorithm

Then, we introduced measurement errors under the distance-proportional error model, and went over Algo-
rithm (1} in detail, explaining exactly how it breaks as a result of these measurement errors. We introduced
the concept of thresholds, and how different thresholds can establish certainty about the actual configuration
(Lemma or certainty in other robots about the actual configuration (Lemma.

We then showed how these concepts could be applied, resulting in Algorithm [2| As proven in Theorem
this new algorithm indeed solves the APPROXIMATE GATHERING problem, moving all robots within a disk
that is a fraction of the size of the original smallest-possible disk that could enclose all the robots. At this
time, we do not see any reason that would prevent the algorithm from scaling to higher n, but the surprising
complexity of the problem and time constraints prevented exploration of this direction of research.

Unfortunately, the behavior of the robots does deviate somewhat strongly from that of Algorithm [1} allowing
one robot to move to the measured position of the COG while another moves to the position of a third robot.
An attempt was made to resolve this, the result of which can be seen in Appendix[B] though it unfortunately
proved unsuccessful. There does not appear to be any clear and consistent way to preserve robot behavior
at this time.
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4 Circle formation

Within the broader scope of pattern formation, CIRCLE FORMATION, is another classic, well-known and
well-studied problem.

Specifically, the CIRCLE FORMATION problem poses the requirement that a set of n robots R move to
eventually occupy positions relative to each other in order to form the vertices of a regular n-gon, a formation
that will increasingly approach a circle as n increases. This formation must then be maintained indefinitely.

As mentioned in Section [I.1] it has been extensively studied under different constraints and circumstances,
with new discoveries surprisingly still being made in what would seem rather basic circumstances, such as
the case with n = 4 under ASYNC by Mamino and Viglietta [16].

Unlike GATHERING and CONVERGENCE however, at the time of writing, there does not appear to be any
literature available on CIRCLE FORMATION and the convergence to that pattern specifically within the
context of measurement errors.

Within Section [d] we shall explore the CIRCLE FORMATION problem further, specifically within the simple
context of an SSYNC scheduler and n = 3 robots with rigid movement: the goal is thus to form an equilateral
triangle. We shall explore the available design space in depth for this particular setting in Section and
provide an example of a simple algorithm that solves the problem in an error-free setting in Section [£.2]

We will then go over this algorithm in detail, and present exactly in what ways CIRCLE FORMATION is
made impossible by the presence of measurement errors under the distance-proportional disk error model
in Section [1.3] We present the weakened problem of APPROXIMATE CIRCLE FORMATION and explain how
the previously-presented algorithm can be adapted to solve this problem instead. We finish with a brief
discussion in Section 4l

4.1 Design space analysis

As with GATHERING in Section the nature of the problem being solved provides a rather narrow design
space. As a reminder, an algorithm controlling the robots is a deterministic function that, for each robot,
maps the configuration at the time of the Look phase of the activation cycle to a movement vector, both in
the local disoriented reference frame of that robot.

Based on different symmetries that can exist, we can classify configurations in different ways:

A dense point exists
A dense point is defined as a position in which two or more robots are located. Regardless of any
design choices on the hand of an algorithm designer, an adversary can always present the exact same
snapshot to the robots in the dense point, implying that they will always produce the same movement
vector. Hence, in the next round, the dense point will still exist.

Given that, therefore, the adversary can maintain the dense point indefinitely, the CIRCLE FORMATION
problem is unsolvable from any configuration that features such a dense point, unless degenerate cases
are accepted where a single point is considered a valid circle.

Robots form an equilateral triangle
A requirement of the problem statement is that once the equilateral triangle is formed, it is also
maintained indefinitely. Given that robots are disoriented and do not agree on a unit of measure, it
is not really possible to distinguish one equilateral triangle from another based on size or orientation.
Hence, the only choice an algorithm designer has here is to instruct the robot not to move.

Robots form an isosceles triangle
As mentioned in Section [3.1} in a configuration where the robots form an isosceles triangle, mirror
symmetry exists along the bisector of the apex of the triangle. The robot at the apex is uniquely
distinguishable, whereas possible disagreements about chirality make the base robots indistinguishable.
An algorithm designer must choose which of them to move.
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If the algorithm moves the apex robot, it can:

e Move the robot along the bisector of the apex, which will change the height of the isosceles triangle
while maintaining the isosceles property.

Doing this, it can move the robot to hit special cases, such as forming a co-linear formation
with one robot at the median point between between the base robots, or moving it to form an
equilateral triangle, immediately completing the task.

e Move the robot away from the bisector, resulting in either the formation of a scalene triangle,
a line, or the formation of a dense point. Note that, as stated earlier, circle formation becomes
impossible in the latter case.

It is also possible for the algorithm to move the robots at the base of the triangle. However, given the
fact that these robots are potentially indistinguishable and that the scheduler may choose to activate
either one (or both) of the robots, an algorithm designer has to deal with some unpredictability here.
Depending on what the adversary chooses, this may end up breaking or maintaining the fact that an
isosceles triangle exists.

Robots form a scalene triangle
In configurations where the robots from the vertices of a scalene triangle, since angles are of a different
size and have a unique order regardless of reference frame, robots are easy to distinguish from one
another.

A straightforward solution to the circle formation problem here, is to simply pick one of the robots,
for example at the largest angle, and instruct it to form an equilateral triangle with the two others.
Since the scheduler is fair, this and only this robot will eventually make such a move.

Robots form a line
Unlike with the Gathering problem, the line configuration provides a symmetry that needs to be broken.
Still, this can be considered a degenerate case of the scalene or isosceles triangle, depending on whether
the middle robot is at the median point between the two others.

Overall, the design space of the circle-formation problem is fairly similar to the design space of the gathering
problem as shown in Section despite the goals being “inverted” in a sense.

4.2 Example of a simple circle formation algorithm

Given the information presented in the previous section, we present a fairly simple algorithm to solve CIRCLE
FORMATION for three robots under an SSYNC scheduler with rigid movement guarantees: the observing robot
ro checks whether, in the triangle formed by the three robots, it is opposite an edge of maximum length. If
80, it moves to form an equilateral triangle with the other two robots. This is formalized in Aglorithm

Input: Positions ¢}, ¢5 in the local frame of reference of robot rg.
Output: Movement vector in the local frame of reference of robot 7.
¢y < (0,0)
iF o7, c| = max{|csei]. efes]. esep |} then

Move to form an equilateral triangle with ¢} and cj.
else

Do not move.
end if

Algorithm 3: Formation of an equilateral triangle without measurement errors under an SSYNC sched-
uler and rigid movement. Inputs are the relative positions of the two others, with the position of the
observer ¢ = (0,0).
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Figure 22: Illustration of Algorithm

Theorem 6. Algorithm [3]solves the CIRCLE FORMATION problem under SSYNC with three robots and rigid
movement, assuming that no two robots start in the same position.

Proof. We split into three different cases based on the type of triangle formed by the three robots: a perfectly
equilateral triangle, a triangle with a distinct longest edge, and an isosceles triangle where the legs are longer
than the base.

Robots form an equilateral triangle
If all robots are arranged in an equilateral triangle, then forming an equilateral triangle with the other
robots is equivalent to staying in place.

Robots form a triangle with a unique longest edge
If the robots are arranged such that a unique longest edge exists, then the robot opposite that edge
will move to form an equilateral triangle.

Robots form an isosceles triangle with a base shorter than the other two sides
If the robots are arranged in an isosceles triangle where the base is shorter than the other two edges,
then both robots at the base will move if active. If the adversary activates only one, an equilateral
triangle is formed.

If the adversary activates both, both will move in a way that creates a unique longest edge in the
resulting triangle. We then achieve an equilateral triangle by a previous case.

In all of the cases above, the robots either maintain or eventually form an equilateral triangle. See Figure

for an illustration of how this works. O

4.3 Making the algorithm robust

Algorithm [3] can solve CIRCLE FORMATION for three robots in the absence of measurement errors. The
introduction of measurement errors (according to the distance-proportional-disk error model), however, com-
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Figure 23: Illustration of Lemma where the robot at the bottom constructs a third point that
forms an equilateral triangle with the positions of the two others. The noise regions add up to the
noise region of the third point, as depicted in red.

plicates matters considerably.

Approximate circle formation It must be noted here that for any pattern that is not simply a single
point, there is always some distance between any pair of robots. As a result, under most error models,
especially distance-dependant error models like the angle-distance error model and the distance-proportional
disk error model, it effectively becomes impossible to reliably detect whether a desired pattern has been
formed. The CIRCLE FORMATION problem is no exception, and therefore unfortunately cannot be solved
exactly.

Instead, we propose the following:

Definition 12. Given a set of n robots R, the APPROXIMATE CIRCLE FORMATION problem requires that
robots must eventually be positioned such that the configuration approaches a regular n-gon within some
defined degree of error proportional to €.

For n = 3, we shall define the degree of approximation as the ratio ¢y € [0,1] of the length of the shortest
edge of the triangle to the longest edge, where the closer ¢y is to 1, the better the approximation. Special
cases are tg = 1, where the triangle is equilateral, and ¢y = 0, where the triangle is degenerate with two
vertices coinciding.

Forming an equilateral triangle with the other robots As a result of the presence of measurement
errors, a robot can no longer access the exact relative position of other robots cj, ¢ directly, and must instead
move using positions affected by measurement errors: si,s5. As a reminder, ¢ = s = (0,0), but we shall
use s; for consistency.

We shall start making the algorithm robust by analysing the idea of forming an equilateral triangle through
the movement of a single, unique robot to a point constructed from the measured positions s, s5 of the two
other robots. We analyse the resulting location of that robot through Lemma 23}

Lemma 23. Let some robot r; € R, located at global position c;, observe two other robots r;,7, € R,
located at global positions c;, c;. Then, the noise range of the point closest to ¢; that forms an equilateral
triangle with the two robots is a disk of radius €o(|c;, ¢;| + |¢;, ck|) centered on a point that forms an exact
equilateral triangle with c; and c.

Proof. Given candidate values for points s; and s, we can obtain a point p that forms an equilateral triangle
with s; and s, by rotating s, by 7/3 radians around s; in whichever direction yields a point closer to c¢;.
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Figure 24: Example of the issue of two robots being close together: in this case, the robot further out
cannot know what is actually going on: the adversary can simply make the two robots coincide in
position if it wants, and the position of ”third point of an equilateral triangle” becomes unclear and
undefined. Moreover, even the optimal position cannot be reached, as doing so risks colliding with
another robot. The two robots closest together are the only ones in a position to resolve this situation
within O(1) full rounds.

Thus, if we pick a value for s;, and let s vary within the noise region of rj, we obtain that p simply varies
within that same noise region, rotated around s;. Now, if we vary s; within the noise region of r; as well, we
effectively obtain that p varies within the Minkowski sum of the two noise regions, centered around where p
would be if s; = ¢; and s = c¢;. We essentially employ a similar argument as we did in Lemmam O

Lemma 23] immediately leads to something that we must be careful about: the quality of the output greatly
depends on how far the robot that moves is from the other two robots, relative to the distance between those
robots. The further the observer is from the two robots which are close together, the larger the noise region
of the destination point will be compared to what would be a point that forms an equilateral triangle. See
Figure [24] for an especially severe example of this problem.

How to deal with this issue is up to the algorithm designer. At the very least, we will want to avoid collisions
between robots, and we would like to guarantee eventual termination, to the extent that this is possible under
the constraints lined out in Section However, actually reaching a bounded approximation of the target
pattern within O(1) full rounds is not always easy while preserving the original structure of the algorithm.

The perhaps somewhat odd design of Algorithm [3|is therefore not a coincidence: it has been designed to
to avoid movements like those in Figure While at this stage, an algorithm designer need not explicitly
take measurement errors into account, they should try to avoid moving a robot in such a way that it ends
up close to another robot, where a small error could mean a collision or other such issues.

Choosing whether to move Following the analysis of the idea of “moving to form an equilateral triangle”,
we also analyse the binary choice made in the algorithm:

le1, 3| = max{|cger], |er, 3l [ea, el }-

That is, the check passes if the observing robot is opposite an edge that is as long as the longest edge in the
triangle.

Obviously, once measurement errors are applied, the algorithm must be expressed in terms of points sj, s7, s5
instead of ¢f, ¢f, ¢5. Moreover, we introduce the centers of the uncertainty regions ug, uj, us (see Lemma [5]),
which shall be used when making distance comparisons.

What is important is that, however we check whether the current robot is opposite the longest edge of
the triangle, this check does not produce false-negatives. For instance, once the formation approaches an
equilateral triangle where the base is the shortest angle, the adversary may get the opportunity to distort
distances sufficiently to make the longest edge appear shorter than another edge, and thus make the robot
facing such a longest edge unable to move.

To remedy such a potential deadlock, based on the radii of the uncertainty regions (see Lemma we use the
threshold eq(|uf, ui|+ |ug, u3|) twice: once to prevent under-estimating the value of |cf, ¢5|, and once more to
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avoid over-estimating the length of the longest edge. This way, the following test ensures no false-negatives
oceur:
|ut, us| = max{|ug, ui], |u1, usl, [us, ugl} — 2€0(Jug, u| + |ug, us[)

However, even if false-negatives can no longer occur, it is inevitable that we will have to deal with at least
some false-positives. Specifically:

Lemma 24. If a robot rg observes that
ut, u3| > max{|ug, uil, [uf, u3l, |us, ugl} — 260 (|ug, ui| + [ug, u3|)
then
* % 860 * % % * %
et 5l = (1 - ﬁ)max{\cocﬂ, |cieal, leaeql}

Proof. Following the uncertainty region radii from Lemma

Jut, us| = max{|ug, uil, |u1, ual, [uz, ugl} — 2€0(Jug, u| + |ug, uz|)

= |e1, e5| = max{|egerl, [erea, [eacpl} — deo(lug, uil + Jug, ual)

460
= let, el = max{legerl; leres, [eacpl} = —(leo, exl + |ep e2))
1 eal = ( T 60)max{|cocl|7|0102|, |c3el}

O

Near-equilateral configurations False-positives can become quite problematic if the wrong robots start
moving. We start by analysing the case where three robots all see themselves as possibly being opposite a
longest edge.

For instance, the argument “if all robots are arranged in an equilateral triangle, then forming an equilateral
triangle with the other robots is equivalent to staying in place” no longer holds. This is because, as established
in Lemma 23] the optimal position to move to when forming an equilateral triangle with two other robots
is uncertain if the position of those robots is uncertain, and hence the adversary could manipulate this
position to move the robots out of the equilateral triangle. While the configuration may still remain close
to an equilateral triangle within a bounded degree of error, instability or diverging in size is likely to be an
undesirable outcome.

A simple way to deal with this problem is to add an extra check to make sure that the edge that appears
longest is actually longer than the shortest edge:

|uts up| > min{fug, uil, [ut, uz, [uz, ug|} + 260 (Jug, ui| + [ug, ua|)

At least one robot will be facing an edge in the triangle that is not strictly longer than the shortest edge in
the triangle, and will thus not move. Three robots moving at the same time is now no longer possible.

Moving both robots at the base of the approximate isosceles triangle We are left with the
possibility of two robots observing themselves as possibly being opposite a longest edge in the triangle.
Since robots must now be certain that they are not facing the shortest edge in the triangle, these will be the
robots facing the longest and second-longest edge in the triangle. Moreover, since there is confusion about
which edge is longest, these edges must close together in length, depending on the value of ¢y. Therefore,
this situation is actually not too different from the case where the robots form an equilateral triangle where
the base is the shortest edge, and both robots at the base are active (see the top case depicted in Figure .

We introduce a lemma to understand what exactly happens when measurement errors are added to the mix:
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Figure 25: If it is possible for all three to move at the same time, the adversary can cause the resulting
triangle to diverge in size or prevent stability, even if the overall eccentricity of the triangle is bounded.

Figure 26: The two robots that form the vertices of the shortest edge will both move to somewhere
within the two grey noise ranges. While the behavior is similar, the uncertainty in the resulting
formation does require a few extra checks.
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Lemma 25. Let rg,71,72 be three robots, located at cg, c1, co respectively, where

le1, ea] < max{|co, c1], |co, c2|}

and
min{|co, c1], |co, c2|} > t max{|co, 1], |co, c2}

for some 0 < ¢t < 1.

Now, suppose that r1, 7o both move in an attempt to form an equilateral triangle with the two other robots.
Then, after the move:

, . 9 1 9t . ,
minflef 4 b 5 > (0= B2 e )

Proof. Through Lemmal[23] we know that r1, 72 will both end up in disks of radius at most 2¢p max{|co, c1|, |e2, co|}

centered on points p1, ps, which would be two points forming equilateral triangles with cg, co and ¢, ¢1,respectively.
Therefore:

max{|ch™, ¢t bt st} > (1 — 2€0) max{|co, e1], |c2, col}
We employ that inequality in the derivation:

min{|co, c1|, [co, c2|} > t max{|co, 1], [co, c2|}
= min{|cgt!, ¢, g, 5T} + 260 max{|co, e1, |co, c2l}) > t(max{|cpt, ¢, [eptY, 5T |} — 260 max{|co, e, |co, c2|})
= min{|cf)'*'1 z"’1| |cl+1, ci;l\} > tmax{|ci+1 H'1| |cz+1,c§+1|} — (2teo + 2¢g) max{|co, 1], |co, ca|}

(2 + 2t>60

= min{lej*, o ] Jef 51} 2 (¢ - 55 m

ax{|ej™, it |t )

O

After they both moved, we wish to prevent r1,r, from moving again, leaving the robot that stayed in place
as the only robot that can move. Hence, we must simply specify that the robot may only move if the edge
that it is facing is larger than the shortest edge by such a margin that it could not have been one of the legs
of an approximately isosceles triangle on the previous round:

. % * (2+2t)60
min{|cs, i, leg, &2l le1, e} < (8 = == = )le1, [}

When adjusting for uncertainty regions, the algorithm simply needs to check that

(2 + Qt)EO

(2 + Zt)ﬁo
. W)(WS,UN + |ug, u3l)-

min{|ug, uyl, [ug, ua, fuy, up|} < (€ =
1—260

)ut, uz| — €1+t —

Ifwefillint=1-— 860 from Lemma [24] this becomes

1 — 15¢( + 38¢2 »

u 1860 +4060
(0 —1)(2¢g — 1)V

0 g (i

min{|ug, uil, [ug, ua, luy, up[} < ui| + [ug, u|).

Stability after one moving Finally, as a consequence of Lemma once we succeed in ensuring that
a single robot moves to form an approximate equilateral triangle, we should ideally be able to detect that
such a triangle has, in fact, been formed. If we do not do this, the resulting configuration can be unstable.

We derive a short lemma to help with this:
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Lemma 26. Let robot 79 € R located at ¢g, be observing robots 1,72 € R, at ¢1,ce such that |e1,ca| =
t max{|co, c1], |c1, 2l |2, col}, where 0 < ¢ < 1. Then, on the next round:

X{‘CH_l z+1| |Cz+1 1+1| |Cz+1 7.+1|}

mln{|cz+1 H—l‘ ‘CH_l z+1| |Cz+1 1+1|} 2601/L
1+

2€0t 1

Proof. Through Lemma ro will move to within distance ey max{|co,c1], |c1,¢2l, |c2, 0|} from a point
exactly equidistant from c¢; and cs, whereas 71,72 to not move. Hence

max{|c”1 z+1| |cz+1 z+1‘ |Cl+1’cé+1|} S (1+260t71)|01i+1’cé+1

and
min{|cé+1 z+1| |Cz+1 z+1| |cz+1’ z+1|}>(1_260t 1)|cz+1 é+1

This directly leads us to the given length ratio. O

Intuitively, what this lemma means is that, if the robot that ends up moving is not actually opposite the
longest edge in the triangle (false-positive), but instead one at least ¢ times as long, the degree of error in
the resulting formation is still bounded, avoiding a situation as depicted in Figure What we will want
to do, at this point, is avoid moving if the triangle could be such an approximately equilateral triangle.

For this, we require that the following passes before the robot is allowed to move:

1-— 2€Qt 1-— 260t71

e 14 20t
14 2e9t™ 1| uz, Uz = €of +1+260t*1

this becomes:

min{|ug, ugl, [uy, usl, [uz, ugl} < )(lug, ui| + [u1, uzl).

After filling in

7+ 3ep — 2¢2

e (1 s )

260+7
max{[ug, ], w3, g, g} —e a0 H D)

min{[ug, uil, [uy, u3|, [uz, ugl} e — 1) +7

Basically: “Do not move if the difference between the edge you are facing and the smallest edge is small
enough that the current formation could be the result of a single robot moving to form an equilateral
triangle.”

Bringing it together Summarizing, the robot should move if and only if all of the following hold:

1. The opposite edge could be the longest edge in the triangle:

Ju, us| > max{|ug, uil, |ul, us, [us, ugl} — 2€0(Jug, ui| + |ug, us|)
2. The opposite edge is actually longer than the shortest edge in the triangle:

|u, u| > min{fug, uyl, [ug, usl, [ug, ugl} + 2€0(fug, uil + |ug, us))
3. The robot was not one of two robots active on the previous round:

— 15€¢0 + 38¢5 18¢ + 40€2
< )@ - 1) el e ,36+23<|mun+mmww

min{fug, uil, [ug, uzl, [ut, us|} <

4. The current configuration is not the result of a single robot moving during some previous round:

7+ 360 — 26% 2(60 + 7)

mlulvuﬂ - Eom(|uo,ul| + |ui, uil).

min{lug, uy, [uy, ua; lug, upl} <
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Up to €y < 0.335 (rounded down), we can simply drop points 2 and 3, since number 4 implies those.

We then combine these checks into the final, resulting Algorithm:

Input: Positions s7, s5 in the local frame of reference of robot rg.
Output: Movement vector in the local frame of reference of robot rg.
1: s§ < (0,0)

2: ufy < (0,0)

*_ x
¥ S5175%0 *
3 uy 1= + sp

w_ox
* S2—5g *
Us 1= + S5

dmin = min{‘uauﬂa |u>{7 ’LL;|, |u37u3‘}

tnax <= max{lug, uil, [uf, uz], [uz, ug|}

A = ug, ui] + Jug, u3)|

if dinax — 2602 < |ul,ui| and dogn < %\uluﬂ — ot A then
Move to the closest point that forms an equilateral triangle with s} and s3.

10: else

11: Do not move.

12: end if

© P NPk

Algorithm 4: Formation an approximate equilateral triangle with measurement errors under SSYNC
with three robots. Since we are working in the local reference frame of rg, the positions ¢, s§ and ug
are simply (0,0), though we treat them separately for semantic reasons.

Theorem 7. Algorithm [4] solves APPROXIMATE CIRCLE FORMATION under SSYNC with 3 robots and rigid
movement, with a shortest-to-longest edge ratio in the triangle formed by the robots of

60¢y + 1363 — 268 -7
(0 —1)(—€o+2€2+7)

to =
with €9 < 0.335 (rounded down).

Proof. Moreover, by Lemma [24] the edge that appears longest is at least 1 — ¢y as long as the edge that is
actually longest.

Case: 1 robot moves The thresholds are designed such that no robot will move on subsequent rounds if
a single robot moves.

Case: 2 robots move By Lemma one of two things will happen: only the non-moving robot will see
itself as opposite the longest edge on subsequent rounds, reducing this to the case where one robot
moves, or no robot moves again, which is the last case in this analysis.

Case: 3 robots move This case cannot occur since no three robots can observe that the side of the triangle
formed by the two opposite robots is certainly strictly longer than the shortest edge of the triangle.

Case: No active robots move Robots will move if and only if both of the following are true:

7+360726(2) 2(ep+7)

max{|ug, uil, uf, us|, [us, ugl} — 2e0(|ug, ui| + |ug, us]) < |uf, us)
mmfﬂ@ - GOW(WS?Uﬂ + [ug, u3|)

min{|ug, uil, [uf, s, [u3, ug|} <

Either a robot does eventually move (see other cases), or the scheduler, being fair, will eventually
activate a robot which is facing an edge of maximum length in the triangle. For that robot, the first
check always passes, leaving us with the second one. If the robot does not move, we know that:

7 + 3eg — 2¢2
(e ci] + [ ) > 20— =D

* *
T T—eo+ 26 Jur vzl

. * * * * * * 2(€0+7)
min{ |ug, uy|, [uy, u3l, [u3, ugl} + mﬁo

o1




Which translates to:

460(60 + 7) % % N . 7 + 360 B 262
(1 —€0)(e0(26g — 1)+ 7) (Jug, ut] + |ug, u3l) > L0 0

lmin + =7 € ¥ 26% max

where Iy = min{|cg, c1], |c1, 2], |2, col} and lmax = max{|co, c1|, |c1, cal, |c2, co|}. We then further
condense this to a shortest-to-longest edge ratio of

60€o + 13€3 — 23 — 7
(0 —1)(—€o + 262+ 7)

2 3
In either case, we eventually achieve a longest-to-shortest edge ratio of at most %. If robots
do move, they can only move a finite number of times until they hit the case where only one robot moves,

and stability is guaranteed. Otherwise, stability is achieved by default. O

4.4 Discussion and conclusion

In this section of the thesis, we explored the CIRCLE FORMATION problem for three robots under an SSYNC
scheduler with rigid movement, and how this problem is affected by measurement errors.

We explored different possible kinds of configurations that could occur when dealing with three robots, such
as different kinds of triangles, lines or dense points, concluding that the latter makes CIRCLE FORMATION
impossible in an adversarial context. We then presented a very simple CIRCLE FORMATION algorithm that
moves the robots into an equilateral triangle in a constant number of full rounds.

Then, we added measurement errors to the mix. Immediately, we concluded that CIRCLE FORMATION is
impossible in this context because it requires exact distance measurements: robots cannot move to an exact
relative position if the data it uses to compute this position is inaccurate.

Subsequently, we defined the APPROXIMATE CIRCLE FORMATION problem as an approximation of the CIR-
CLE FORMATION problem, defining a metric of error between the exact and approximate formation for n = 3,
leaving the definition for higher n undefined.

An important result here, was that certain kinds of algorithms, even if they work fine without measurement
errors, cannot easily be made meaningfully robust without preventing collisions or guaranteeing any bounded
inaccuracy in the output.

Finally, we took the CIRCLE FORMATION algorithm that we established previously, and explored in detail
on which points it succeeds and fails when confronted with measurement errors. We established additional
thresholds to prevent it from deadlocking, and to ensure stability after an approximate equilateral triangle
was created to within a bounded degree of error.

The process of making the algorithm robust was comparatively simple in comparison to APPROXIMATE
GATHERING in Section [3] despite the apparent similarities between GATHERING and CIRCLE FORMATION.
However, it should be noted that Algorithm [3|is a bit simpler than Algorithm it does not contain the
second check where, once it has been established that the triangle is not equilateral, the role within the
formation must be determined, nor are any disambiguation movements necessary.

A likely cause for this simplicity is that Algorithm [3| does not explicit require coordination between robots,
where one robot must stay in place such that another may move to that position, instead simply allowing
robots to move, and reasoning about the consequences. While this reasoning breaks own a bit as we saw with
the issue where three robots activate at once in the presence of measurement errors, where the formation can
be unstable or grow and shrink, it apparently only requires adding a check to make sure that the triangle is
sufficiently eccentric to get a bounded approximation.
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5 Towards a general framework

Over the course of this document, we have presented some general information about the OBLOT model,
and how to extend it to feature measurement errors.

We then explored the problems of GATHERING and CIRCLE FORMATION for three robots under an SSYNC
scheduler and, for each, explained how an example algorithm could be made robust against measurement
errors in such a way that an approximation of the original result is obtained.

Obviously, the choice of just using three robots is somewhat limited. Nevertheless, the problems encountered
even in such a simple setting can be surprisingly numerous, and unfortunately often hard to reason about
and somewhat counter-intuitive.

For instance, consensus is difficult to reliably obtain, and there will always be a certain degree of “asymmetry”
when reasoning about which robot knows what about the situation; if some robot r; € R knows a proposition
to be true about a configuration, then this does not mean that another robot ro € R necessarily agrees and
that, even if ro € R does agree, that r; € R knows this. This is made even more difficult by the fact that
robots are oblivious, and hence cannot even remember what happened in the past and have to guess each
time based on noisy data.

As an example, take the problem outlined in Section [f] where two robots located at the base of an approx-
imately isosceles triangle must ensure that they do not move again on the next round. In this case, while
this task is not rendered impossible, the additional threshold directly comes at the cost of the quality of
the resulting formation, due to the false-positives that it creates. If these robots each had even a single
bit of memory about whether they had moved in the previous round, the solution could have been greatly
simplified.

So far, with the two given examples, a clear path towards generalization to patterns other than points or
circles remains elusive, as does any particular method for the preservation of robot behavior. However, a
few points do appear to emerge that could prove useful for future research:

e Analysis is simplified if any discrete decisions in the algorithm are made using the centers of uncertainty
regions rather than the actual measured positions of the robots.

This type of analysis goes a long way to understanding which robots will move under what circum-
stances, and is generation of thresholds is relatively straightforward.

e Continuous decisions such as computing the movement vectors is better done using the actual measured
relative positions of the other robots. Doing so takes advantage of the fact that these positions are
much easier to reason about when considering the robots collectively, as they are simply dependant on
the noise regions, which can be computed without considering each robot’s individual perspective.

Moreover, using these measured positions takes advantage of the fact that, should €y prove to be an
over-estimate for the actual size of the measurement errors, the algorithms will naturally converge
towards a more accurate result.

e Using thresholds and offsets relative to the error parameter (such as €y with the distance-disk error
model) allows for the creation of algorithms that can be adjusted for the expected size of the error,
and that converge to exact algorithms as €y approaches 0.

e Reasoning about the collective behavior of robots is best done by considering the discrete decisions
made by each robot as a mostly non-deterministic choice between any of the discrete branches of the
algorithm.

An earlier attempt to reason about the collective behavior of these robots from the perspective of an
individual robot, intuitively understood as asking questions like “A robot decides to do X, what choices
might other robots take, and what is the resulting configuration like?” yielded a somewhat complex
and redundant analysis of possibilities of the future. Analysis from the position of a neutral observer
that knows the actual configuration, but then faces an adversarial choice of the snapshot seen by each
robot, proved to be advantageous.
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e In situation where robots must rely on each other to perform a coordinated movement, robots should
only take action if they are certain that consensus exists about the current situation.

In Section [3]for instance, a robot 19 € R must avoid moving if another robot ry € R is certainly further
from the center of gravity than itself.

It does not matter if r; actually knows this: it might, therefore ro must not move or risk interfering
with r1’s attempt to move to 7y and form a(n approximate) dense point. It is then up to r; to ensure
that it does, in fact, eventually resolve the situation.

We take advantage here of a property of the non-robust original algorithm: it functions under an
SSYNC scheduler, and therefore can already deal with arbitrary robots not moving during any specific
round. If careful to ensure that some robot eventually moves, the robust version of the algorithm can
safely choose to not move certain robots in certain situations.

e The outcome of a certain movements may lead to uncertain situations

In Section [3]for instance, we see that the proof of Theorem [5| counter-intuitively contains an ambiguous
situation after a robot moved to the position of another robot, where a robot may observe disagreement
further, a situation where we’d expect any ambiguities to have been resolved.

For another example, in Sectionfd] the proof of Theorem 5] a two-robot movement could directly result
in the formation of an approximate equilateral triangle, rather than ending in a situation where one
could guarantee that the robot that was stationary on the last round would move. In effect, the robots
“skip” a step.

In either case, though, the problem was manageable: if the robots did not quite make the same choices
as they would do in the error-free setting, one can reason that the confusion between cases indicates
that the formation is already very close to the target.

e Some groups of configurations may require “thickening”.

For instance, one may propose that the formation of an isosceles triangle as an intermediate stage
towards some other formation. Once measurement errors are added, this effectively becomes impossible
since such a shape requires exact measurements. You would essentially be trying to hit an infinitely
small or thin target (a space with effectively no volume in the overall configuration space) without
knowing its’ exact location.

Instead, one will want to loosen the definition of such an isosceles triangle, such that even if a robot that
tries to form such a triangle actually misses the mark by some margin, robots observing the resulting
configuration will still conclude that such a triangle has been formed.

Moreover, depending on how important it is that this triangle is detected, one may have to loosen the
margins such that the shape is never missed, at the cost of having to deal with false-positives. This
was done with the “equilateral triangle” cases in both Sections [3| and [

To see to what extent these approaches generalize, it may prove useful to explore either a larger number
of robots, or different starting algorithms or assumptions. Time constraints, combined with the surprising
complexity of the problem and counter-intuitive interactions between robots, unfortunately did not permit
such explorations for this thesis, but could be the subject of future work. As shown by the failed attempt
in Appendix we must be very careful about the information asymmetry between different robots: the
ambiguous situations were highly counter-intuitive, and presented many apparent solutions that turned out
to lead to a deadlock or more erratic behavior. We do not rule out that modifications could be made to the
algorithm in that attempt to make it work properly, but these are apparently hard to find.

As algorithms grow more complex, the error handling may grow more complex as well, possibly in a non-
linear fashion. Especially if a large number of robots must interact, in a way where each has a unique role,
it can be expected that an equally large number of potentially overlapping thresholds and complex analysis
will be necessary. However, specifically for the case with Approzimate Gathering, we do not currently see
any obvious barriers that would prevent the algorithm from scaling to higher n.
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As a concluding remark, the author of this thesis hopes that this work helps the reader understand and
gain an intuition for measurement errors. We furthermore learn that we should be somewhat careful when
reasoning about the applicability of solutions formulated in the OBLOT model: while we understand that
their purpose is primarily to explore theoretical properties of this computational model, it may nonetheless
be tempting to implement the algorithms in a simulator, or on real-life robots. Depending on the situation
and environment, these will indeed exhibit varying amounts of sensor inaccuracy, and one can therefore
indeed expect to run into the problems described in this thesis. Caution is, therefore, advised.
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A Derivations

The following appendix contains derivations that are part of the proofs of some of the lemmas in the thesis,
but were too long to fit well into the main text. Variables and notation are declared in the lemma referenced
in the title of each derivation.

A.1 Derivation of Lemma [5]

Recall that, in the local frame of reference of an observer r;, that ¢ and s} are both simply the origin point
(0,0), and can be used interchangeably. We start from the noise region in the local frame of reference, which

is a disk of radius €g|c}, ¢ j| around c;. However remember that ¢} is generally unknown to the observer.

Given this noise region, the boundary is simply the curve corresponding to the equation |s , € | = eolct, ¢t c;

157, = eolef €]
<ls], ]|2 = €2lct, J|2 where ¢y > 0
S (s —cp)? + (54— ¢y)? = €5(c2 + CZ) where (cz,c,) =c; and (sz,8,) = s
82 42— 28,0, + s2 + 02 —2s,¢, = ea(c2 + 02)
o824+ (1—e)c? — 25,0, + s +(1- 60) —2syc, =0
S (1—eg)ss+ (1 —€g)’ch — 2500 (1 =€) + (1 — €)si + (1 — €5)cy — 25, (1 —€5) =0
Ss2 4 (1 —€2)? —2s,c,(1 —€2) + 5?2; +(1- 6(2))202 —2s,c,(1 —€2) = ea(s2 + si)
82 /(1= )+ = 2,0, /(1= )+ 52/(1— )2+ &2 = 2s,0,/(1— ) = (52 + s2)/(1 - e0)?
o (ca— 50/(1 = )% + (6 — 59/ (1 — ) = (52 + 52)/(1 - €0)?

el 55/ (1= )l* = eglst, 5717/ (1 — eo)?

<:>|C]’ z/( 60)|_‘Sz7 ]|€0/<1_60)
The locus of that equation is simply the boundary of a disk centered on s} /(1 —€3) with radius |s}, s}|eo/(1—

€2), both of which are entirely known to the observer r;.

A.2 Derivation of Lemma [14]

Here, we start from the assumption made in Lemma [14] that robot rg observes that

deg  16€9(1 + €p)
U0, uCoc ol > [0, ucoaol + (? W)(\US,O,UT,M + [ug,05 U5 0l)-

After compensating for the uncertainty regions (see Lemmas , substituting that Vr; € R : |co,co| <
lug, uF|(1+ €), and noting that distance ratios and angles are preserved across reference frames, we get that

1660

|ca, ccoc| > |ev, ccoa| + 30— 60)(|00701| + |co, c2).

Then, thanks to the triangle inequality, we know |cg, ¢1| + |co, c2| > (Je1, co| + |e1, ¢2])/2. So we can rewrite

|cas ccoa| > |cy, ccoa| + 8 (le1, ol + |e1s eal)-

__¢
3(1 - 60)

After re-applying the uncertainty radii in the opposite direction, now in the reference frame of ry, we obtain
that
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460 *
3 (|u1,17

luy 1, uGoaal > |up 1, usogal + — u3 1.

Hence: r; can know for sure that r, is indeed further from the COG than r,. Also, note that the transition
from local u*-points to global c-points is valid given the nature of the transformation.

A.3 Derivation of Lemma [22]

Given robots 74,7, 7, where r; observes that

Uy maxs ool — 01 < [ui, ucoa! < U mins ucoal + 01
we know that the difference in distances from any robot to the COG is bounded as follows:

860 t ot + 860

|Cmax: Ccoc] — m(\ciacﬂ + Iei, b)) < lehs ccogl < lemins ccocl + mﬂcﬁ,cﬂ + |, ).

Then, we compare the distances of r; and r; to the COG, treating 1, by symmetry.

t+1  t+1
|CJ »Ccoa

> (Robot 71 immobile, COG moves by third of r¢)
€
T eines| + leisenl)
> (Minimum is always smaller.)

I, cboal — 1| , —
1 Ccoa 3 Cz,CCOG|

. 1 €0
glel%@?céod - §|Cfactcoc| - g(\d’cj\ + |ci, b))

> (Applying the known bound on distances to the COG.)

€0 860
(2/3)|¢is ccoa| — (g + m)(\cicﬂ + |ci, b))

> (Split |cj, ccoel into (1/6)(|ci, ci| + i, c3]).)
860

€0
(1/3)I¢}, ccog] + (1/18 — 3t m)ﬂcﬁ,cﬂ + |ci, b))

t+1 t+1 |- 2€9

> (mcoq = my/3, therefore (|¢;"", cipa

(|C§7C§| + |Cf7ct2|)) < ‘cgﬂctCOGVg)

8e
1 1 0
it cCoal(1/18 — e — m)(IC?CH + \05703\)

> (ro approaches the COG, hence |ct, ci| + |ct, ch| < |ctJr1 t+1| + |ct+1 CZH )

860
e coal + (/18 = e+ ga— )i ¢ i )

> (Re-center the uncertainty on r; (or ro by symmetry).)

860

|Ct+1 CtCJrolG| + (1/2)(1/18 — €9 + m

e, el e )

Hence, until any robot moves, r; and rj; are guaranteed to observe themselves as further out by threshold
09 as long as

4 16e0(1+
8€o 5 6(01( 506)0*) deg

W28 ot g §) 2~ 3(1—eo)’

which works out to a bound of ¢y < 0.00384 (rounded down).
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A.4 Derivation of Lemma [19]

Robot r; observes robots r;, 7y, under the premise that
* * * *
[ui, ucog| + 01 2 |Upax: ucoal
which, after compensating for uncertainty regions, means that

860
|ci, ccoa| + ?(|Cz‘70j| + |ci, ekl) > |ew, ccocl-

From there, employing the fact that the COG is exactly two thirds of the way down each of the medians of
the triangle and the triangle inequality, we reason

860
|ci, ccoa| + ?(|Ciacj| + leisexl) > ek, ccoa]

861‘
= |ei, (e +¢5) /2] + |(ci + ¢5) /2, ccoa| + ?(\Ciacﬂ + lei, (ei +¢5) /2] + (ci + ¢5)/2, cl) > |ex; ccoa
8¢
= |ei,¢jl/2 + ek, ccoal/2 + ?0((3/2”01"61\ + (3/2)|ccoa; ckl) = |ex; ccoal
= (1/2 + 4eo)|ci, ¢j| > (1/2 — 4eo)|ccoa, ekl
8ep+ 1
1 — 860

i, ¢j| > |ccoa, cil
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Figure 27: Example illustrating a case where two robots, while not observed as equidistant from the
COG, given their uncertainty regions, could in reality actually be forming an equilateral triangle.

B Previous attempt at Section (algorithm deadlocks)

This appendix documents a previous attempt at Section [3.3] where we attempted to preserve robot behavior
from Algorithm[I] However, this turned out to be quite difficult, and with robots displaying erratic behavior
and deadlocks, despite attempts to regulate this type of behavior. Instead, we chose to allow for robot
behavior to diverge from the original algorithm, and analysed the resulting situation.

Equidistant from the COG We first attempted to directly adapt the check for the robots forming an
equilateral triangle. The first branch of Algorithm (I} guarded by the expression |cf ... ctoa| = ¢, Ceoal;
covers the case where all robots are equidistant from the COG, also coinciding with the case where robots
form an equilateral triangle (see Lemma @ As explained in Section it is very important to treat this
case, as it presents a symmetry that must be broken by exploiting the possible choices of the adversary
in which robots to activate during a round. If a false-negative is possible due to measurement errors, the
adversary can exploit this to cause the system to end up in an infinite loop.

Hence, drawing upon Lemma we must rewrite the case guard to cover the possibility that |c},., ccoal =
* *
|Cmin7 CCOG| as
* * * *
[Ufnax: Ucoa!| < Tumin, cCcoal + 01
where delta; is defined in Lemma,

Rewritten as such, even under the worst measurement errors, the observer ry will never fail to detect whether
an equilateral triangle has been formed by the robots.

Preserving the behavior of Algorithm [I] we decided to still have the robot move to where it perceives the
COG. More precisely, rg will move to scog, which Lemmam tells us is a point at most distance eg|co, ccoc|
away from the actual COG.

A natural consequence of adding such thresholds is that the check will unavoidably be vulnerable to false
positives, see Figure 27]

So far, we therefore had distinguished two cases:

e The active robot believes that all robots may be equidistant to the COG. This corresponds to the if
clause on line [ in Algorithm
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e The active robot knows that robots cannot all be equidistant to the COG. This corresponds to the
else clause on line [6] of the same algorithm.

Further from the COG In Algorithm ] once we are certain that robots are not equidistant to the COG,
we find another check, with the guard: |c§, ctoal > | Cooc|- Robots where this check passes will move
to a robot that is at the minimum distance to the COG. The latter robot must therefore, obviously, not
move.

*

As a result, rewriting the check as |uf, uGHoal > [Ukin, Ueoc| is not good enough. Firstly because, again, it
is possible that this ordering of distances does not translate to the actual configuration, something we could
remedy by adding a threshold as follows: |ug, ufoc| > Ui, Uaoa| + 01

However, this is not quite sufficient because, whereas ry can know for sure when it is actually further from
the COG than rp;,, the robot 7y, may be active and may have received a different snapshot than rg.
Consequently, rni, may falsely believe that it is possible for the robots to be forming an equilateral triangle,
and decide to move to the measured position of COG. However, this is not guaranteed. Hence, before rg
can move to rpyin, it must ensure that ry;, will not suffer from such a false-positive. For this purpose, the
following lemma is introduced:

The proposal for the case guard for moving to 7, is thus as follows:

if |ug, uGoe.0l > [Unins Uooa 0| + 02 then.

Ambiguity However, this now leaves a gap: what if ro knows it is further from the COG than 7y, but
there is still some ambiguity left as to whether r,;, knows this, and that ry;, has not been mislabeled. This
ambiguity is illustrated in Figure 28

More formally, the case where an active robot observes the following proposition as true:

[Ummins Uooc] + 01 < [ug, ucog| < [Umin, Ucog| + 02

Figure 28: Illustration of how non-consensus can exist in the configuration. Given the uncertainty
regions as observed by rg, it is not possible for the robots to be arranged in an equilateral configuration.
However, it is possible for robots to be arranged such that, when observed by the robot at the top
left, the configuration looks as if it could, in fact, be equilateral.

An initial proposal would be that rg does one of two things:

e Robot 7y chooses not to move. However, in this case, r,;, may be waiting for r¢ to move towards it.
Hence, a deadlock could occur.
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e Robot rg moves to scoa. However, this would make it possible that one robot approximately moves
to the COG, while another moves to the position of the third robot. This significantly diverges from
Algorithm

Instead, we wanted to preserve the behavior of the robots under Algorithm [I] as much as possible, since
this allows us to use the original analysis as a starting point for the analysis of the adapted version. We
attempted to accomplish this by introducing the concepts of main and ambiguous cases, as well as a heuristic
for dealing with them.

Definition 13. A main case is a case observed by an individual robot that maps to one of the branches of
the original algorithm.

Definition 14. An ambiguous case is a case observed by an individual robot that maps to a set of snapshots
that mark an ambiguous boundary between two or more main cases caused by measurement errors. When
observing such a case, a robot may be certain about its own situation, but is uncertain about the state of
consensus among robots.

For an example of these, in the context of making Algorithm [I] robust, a main case would be where a robot
r; observes itself as further away from the COG than another robot by such a margin that, no matter what
the adversary does, every other robot must agree that r; is indeed further out (but not by how much).
Conversely, an ambiguous case would be where such an observer knows that it is further from the COG than
some other robot, but the margin is small enough as to be lost after considering the different snapshots that
other robots may receive about the situation.

In the analysis of the algorithm that has been made robust, these main cases can be used as a starting point
to adapt the logic from one proof to the next, as we shall see in the proof of Theorem

We then formulated a general heuristic to deal with these: a robot that observes an ambiguous case shall
not make large movements to avoid interfering with other robots that do observe a main case in the current
round. It must, however, ensure that at least one robot eventually observes a main case to avoid deadlocks.
If necessary, the robot may perform a disambiguation movement to exit the ambiguous situation; such a
movement will typically be designed to be easily dealt with in the analysis of the main cases.

Since ry not moving would induce a deadlock, we were left with the option of a disambiguation movement.
We have two more-or-less equivalent possible choices here:

e Move towards the COG to induce a situation where robots are equidistant from the COG. Unfortu-
nately, hitting this target is difficult without using an approximate definition of equidistance, compli-
cating analysis, so this approach was used here.

e Move away from the COG in order to, should no other robot move, achieve the ds threshold on the
next round. This is the approach we will use here.

We defined such a “step away” movement as a movement by vector a(s§—stoq), where a > 0 would be some
scalar function of €, large enough to ensure that whichever robot made such a movement would observe
itself as further away from the COG by threshold d,.

Furthermore, to simplify future analysis and prevent the current robot from moving if another robot may
move to the current robot, we added the condition |uf, uboa| + 01 > |Ulax, Ueoal- Using threshold 41, as
established in Lemmal[I2] this condition would prevent the step away movement if another robot was clearly
further away from the COG than the observer. Since this condition cannot be true for the robot furthest
from the COG, a deadlock is avoided.

All things put together, we obtain Algorithm
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Figure 29: Hlustration of a step away movement, where one or both robots move away from the COG
by a small step. Notice how the triangle becomes more “flat” as robots move away from the COG,
and how movement by one robot complements, rather than interferes with the other.

Input: Positions s7, s3 in local frame of reference of robot rg.
Output: Movement vector in the local frame of reference of robot rg.

1: 83« (0,0)

20 ug S84

3. uj < (s —0)/(1—€)) + 55

4 uj = (55— 55)/(1 = €§) + s

5: 01 460/3(|U0,U1| + |Uo,u2|)

6: g < (4% + %) (Juo, ur] + |uo, ual)

12e2+16¢0
1712687526875560
8 sGoa < (55 + 81 +53)/3
9: ugoq  (ug +ui +u3)/3
10: Let sk, 8% ods Smax D€ 85, 81, 85 sorted by distance to s¢ -

11: Let ul i, Ur oqs Umax D€ Ug, U7, u5 sorted by distance to ugq-

>

a <

min’
12 i [uga0 uGoe| < Ui Usocl +01 then
13: move to &
14: else
15: if |uli, uéoal + 02 < |uf, uioe| then
16: move to s}
17 else if |uf, ugoel + 01 <|ug, ugoel and |ug, ugoal + 61 = [uhay, o then
18: move by vector a(s§ — s&oq)
19: else
20: stay in place
21: end if
22: end if

Algorithm 5: Algorithm for APPROXIMATE GATHERING under SSYNC for n = 3. Notice the structural
similarities to Algorithm and that points ¢, s§ and ufy are all simply (0, 0), though we will keep the
separate notations to make explanations easier. Also, note that the distance order of the s*-points
and u*-points is the same, since they are simply scalings centered on (0,0).

Unfortunately, in this version, Algorithmsuffers from a deadlocking condition. Indeed, note that |u},,., u&Hoa| <
[k iy Usoa| + 01 only requires that some robot appears further from the COG than some other robot, but

does not specify which.
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As a result, suppose that robots r;,r;, 7 are positioned such that the formation approaches an equilateral
triangle, with r; and r; approximately equidistant from the COG and 7}, closest to the COG. Now, suppose
that the adversary provides a snapshot to r; showing that r; is certainly further from the COG, but suggests
that r; may be closest to the COG. It provides a similar snapshot to r;, though showing 7; as further out
instead of ;. Both r; and r; will thus observe maybe equilateral and stay in place, inducing a deadlock.
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