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Abstract

We consider the unlabeled motion planning problem of m unit disc robots moving in a simple
polygonal workspace W of n edges. The goal is to find a motion plan that moves the discs
to a given set of m target positions. For the unlabeled variant, it does not matter which
robots reaches which target position as long as all target positions are occupied in the end. In
this thesis we show that this problem is always solvable assuming some minimum separation
between the start and target positions. Moreover, we describe an algorithm that can always
find a solution in O((m+ n) log(m+ n)) +mn+m2).

This result improves upon a previous work by Adler et al. [1] by showing that the problem is
still efficiently solvable while assuming less separation between the start and target positions.
Specifically, we have lowered the separation assumed between any pair of start and target
positions from four to three, and show that it can even be dropped entirely when the free
space consists of a single connected component. In addition, we prove that these separation
assumptions are tight, showing that the problem does not always have a solution for lower
bounds.
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1 Introduction

In the multi-robot motion planning problem the goal is to plan the motion of several robots
operating in a common environment, while avoiding collisions with obstacles and other
robots. Stated simply, the robots need to move from starting positions to target positions
as fast and efficient as possible without crashing. Although the problem might appear easy at
first, it can quickly become more complex once there are multiple robots and the environment
contains many obstacles.

Motion planning algorithms should take as input a description of the current state of the
robots, the environment, and a target state. It should produce as output a motion plan
for each robot to move from the current state to the target state. The robots are typically
assumed to be simple two-dimensional shapes, like discs, squares, or polygons, moving in a
two-dimensional environment, most often a polygon which may or may not contain holes (i.e.
obstacles). Though real-life robots are of course three-dimensional objects, their movement is
mostly two-dimensional. Therefore, it is reasonable to model the robots as two-dimensional
objects in a two-dimensional environment. We can think of this as looking at the robots and
their environment from a bird’s-eye view.

Most often, we assume the robot can move freely around the two-dimensional environment,
using actuators such as wheels. In some variants rotation or other manipulations of the
robot’s shape or size is also allowed to enable the robot to take paths it otherwise could not.
In general, the number of independent parameters which are necessary to describe a robot’s
state are called the degrees of freedom, and the difficulty of the problem increases the higher
degrees of freedom it has.

Robot motion planning has many applications and is highly relevant for a variety of fields.
There is a growing need for path planning algorithms that can efficiently handle multiple
robots and many new and exciting applications require multiple robots to work in a shared
space to achieve a common goal. For instance, transportation robots driving in a shared
storage room that need to move goods around as efficiently as possible without crashing
or getting stuck. Or for example multiple manipulators, like robotic arms, handling objects
traveling on a conveyor belt which need to coordinate their motion to achieve their desired
goal. Outside of robotics, the problem also has applications for computer simulations (e.g.
crowd simulation), artificial intelligence, biology, and many more.

The multi-robot motion planning problem is an extension of the single-robot motion planning
problem, by the (obvious) inclusion of more robots. For the single-robot motion planning
problem, we need to find a motion plan for a robot from its starting position to a target posi-
tion while avoiding collisions with obstacles. Here, the environment is static, which reduces
the complexity of the problem. Finding a solution to the single-robot motion planning prob-
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Figure 1.1: An example of a multi-robot motion planning problem. The robots, shown in
gray, need to find paths to the target positions, shown as dashed circles. In blue a potential
solution is given.

lem can therefore be done relatively easily by finding a path through the configuration space,
which is the region of all valid positions where the robot is allowed to be (i.e. it does not
collide with any obstacle).

However, the inclusion of multiple robots greatly increases the complexity of the problem
due to the high degrees of freedom that are introduced. The multi-robot motion planning
problem can be seen as planning a path through the composite configuration space, which is
the combined product of the individual configuration spaces of the robots. Unfortunately, the
composite configuration space grows exponentially with the number of robots, which means
finding an optimal solution quickly becomes infeasible once we have more than a handful of
robots. Thus, many motion planning algorithms instead focus on efficiently finding a valid
solution that is preferably still close to optimal.

Multiple variants of the multi-robot motion planning problem are studied. Different assump-
tions can be made on the shape of the robots and its environment, as well as the type of
movement (e.g. whether rotation is allowed). Furthermore, the most common variant is la-
beled robot motion planning, where each robot has a designated target position that it needs
to reach. In contrast, in the unlabeled variant each robot only needs to reach some target
position, such that at the end each target position is occupied by a robot. In this variant it
does not matter which robot occupies which target position, as long as all target positions are
occupied in the final state. There also exists a colored variant, which is a mix of the two where
a target position needs to be occupied by a robot with a certain “color” (i.e. type). In this
thesis we will study the unlabeled version of the problem, which has received considerably
less attention than the labeled variant.

Unfortunately, the unlabeled variant has been proven to be PSPACE-hard for unit-square
robots [16] and also for disc robots with two different radii [2]. Thus, it seems impossi-
ble for a computer to find a solution to the unlabeled problem both reliably and efficiently.
These hardness proofs, however, rely on constructions where the robots are positioned very
close together without much room for maneuvering, which is perhaps not a very realistic
scenario. Surprisingly, when we assume some minimum spacing between the start and tar-

2 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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get positions the problem for robots moving in a simple polygon always has a solution, and
the solution can be found in polynomial time, as shown by Adler, de Berg, Halperin, and
Solovey [1]. In their paper they assume a minimum distance of four between the start and
target positions for unit-disc robots. The separation, the minimum distance between the start
and target positions, thus plays a key role in the difficulty of the problem. The separation
bounds assumed by Adler et al. are not proven to be tight, however, so the question remains
for what separation bounds the problem is always solvable. The goal of this project is to find
the minimal separation necessary for which it is always possible to solve the motion planning
problem, and to describe an algorithm that can do so efficiently.

1.1 Related work

The multi-robot motion planning problem has received much attention over the years. Al-
ready in 1983, the problem was first described in a paper on the Piano Mover’s problem by
Schwartz and Sharir [13]. Later that year, an algorithm for the case of two or three disc-
robots moving in a polygonal environment was described, running in O(n3) and O(n13) re-
spectively [14]. This was then later improved by Yap [20] to O(n2) and O(n3) for two and
three robots using the retraction method. A general approach using cell decomposition was
later developed in 1991 by Sharir and Sifrony [15] that could deal with a variety of robot
pairs in O(n2).

Unfortunately, when the number of robots increases beyond a fixed constant, the problem
becomes hard. In 1984, a general (labeled) case of the multi-robot motion planning with
disc robots and a simple polygonal workspace was shown to be strongly NP-hard [18]. This
is a somewhat weaker result than the PSPACE-hardness for many other motion planning
problems. For rectangular robots in a rectangular workspace, however, the problem was
shown to be PSPACE-hard [7]. This result has later been refined to show that for PSPACE-
completeness it is sufficient to have only 1x2 or 2x1 robots in a rectangular workspace [6].

Despite the hardness results for the general problem, various heuristic and/or practical path
planners have been developed. Sampling-based techniques have shown to be reliable and
effective at traversing the high dimensional configuration space of the multi-robot setting.
In 1996, Kavraki, Svestka, Latombe, and Overmars [8] used a sampling approach based on
constructing a probabilistic roadmap of the composite configuration space which could find a
solution effectively with high probability. The probabilistic roadmaps can be widely applied
to explore the high dimensional configuration space, such as settings with a large number
of robots or robots with high degrees of freedom. However, in experiments by Sanchez and
Latombe [12] already for 6 robots with 36 degrees of freedom the algorithm requires minutes
to find the optimal solution. Thus, for large number of robots with high degrees of freedom,
such centralized, coupled algorithms are not sufficiently scalable even when using a sampling-
based approach.

Decoupled algorithms, where robots are first considered individually and issues are resolved
locally, provide a scalable solution but at the cost of theoretical properties such as optimality
and completeness. Therefore, many coupled algorithms have been proposed that combine
individual (probabilistic) roadmaps for robots in a way that remains scalable yet keeps cer-
tain theoretical guarantees [4, 5]. In particular, Dobson et al. [3] show an algorithm called
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dRRT* that builds a roadmap for each robot and then implicitly searches the tensor product
of these roadmaps in the composite space. They show that dRRT* is asymptotically-optimal,
meaning the probability of finding the optimal solution asymptotically increases to 1 when
the sampling size increases.

With respect to unlabeled motion planning, the problem was first considered by Kloder and
Hutchinson [10] in 2006. In their paper they provide a sampling-based algorithm which is
able to solve the problem. In 2016, Solovey and Halperin [16] have shown that for unit square
robots the problem is PSPACE-hard using a reduction from non-deterministic constraint logic
(NCL [6]). This PSPACE-hardness result also extends to the labeled variant for unit square
robots. Just recently, the unlabeled variant for two classes of disc robots with different radii
was also shown to be PSPACE-hard [2], with a similar reduction from NCL. In the reduction
they use robots of radius 1

2 and 1. In contrast, the earlier result for disc robots by Spirakis
and Yap [18] used discs of many sizes with larger differences in radii.

Fortunately, efficient (polynomial-time) algorithm can still exist when some additional as-
sumptions are made for the problem. Turpin, Michael, and Kumar [19] consider a variant
of the unlabeled motion planning problem where the collection of free configurations sur-
rounding every start or target position is star-shaped. This allows them to create an effi-
cient algorithm for which the path-length is minimized. In the paper by Adler et al. [1], an
O(n log n + mn + m2) algorithm is given for the unlabeled variant, assuming the workspace
is a simple polygon and the start and target positions are well-separated, which is defined as
minimum distance of four between any start or target position. Their algorithm is based on
creating a motion graph on the start and target positions and then treating this as an un-
labeled pebble game, which can be solved in O(S2) where S is the number of pebbles [11].
Furthermore, in the paper by Adler et al. [1] the separation bound 4

√
2−2 (≈ 3.646) is shown

to be sometimes necessary for the problem to always have a solution. When the workspace
contains obstacles, Solovey, Yu, Zamir, and Halperin [17] describe an approximation algo-
rithm which is guaranteed to find a solution when one exists, assuming also that the start and
target positions are well-separated and a minimum distance of

√
5 between a start or target

position and an obstacle.

In this thesis, we will explore under what setting the unlabeled multi-robot motion planning
problem always has a solution and provide an algorithm that can find such a solution in
polynomial time. Specifically, in this thesis we will focus on the exact separation bounds
between start and target position that are sometimes necessary and always sufficient for the
problem to be solvable. The goal is to improve upon the separation bounds that were assumed
by Adler et al. [1] and give an algorithm that relies on tighter separation assumptions.

1.2 Definitions and notation

We consider the problem ofm indistinguishable unit-disc robots moving in a simple polygonal
workspace W ⊂ R2 with n edges. The obstacle space O is defined as the complement of the
workspace O , R2 \W. We will refer to points x ∈ W as configurations, and we will say that
a robot is at configuration x when its center is positioned at point x ∈ W. For a given x ∈ R2

and r ∈ R+, we define Dr(x) to be the open disc of radius r centered at x. For convenience,
from this point we will use a green colored disc of radius one to denote a start configuration

4 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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Figure 1.2: An illustration of some important definitions using the example from Figure 1.1.
The workspace W is the outer polygon, the free space F is the inner gray area. The aura
of the start and target configurations is shown as a dashed circle of radius two (for unit-disc
robots).

in our illustrations and a purple disc of radius one for a target configuration.

The unit-disc robots are defined to be open sets, meaning a robot collides with the obstacle
space O if and only if its center is at a distance less than one from O. Thus, we can define
the free space F to be all configurations that are at distance of at least one from the obstacle
space, or formally F , {x ∈ R2 | D1(x)∩O = ∅}. The free space is therefore a closed set of all
configurations where a unit-disc robot does not collide with the obstacle space. Additionally,
we require that robots do not collide with each other. Since the robots are open sets, no two
robots are allowed to be less than a distance of 2 of each other. In other words, if a robot is at
configuration x then no other robot can be at a configuration y ∈ D2(x). For a configuration
x ∈ R2 we will define the open disc D2(x) to be the collision disc, or aura. Intuitively, the aura
of a configuration x contains all configurations where a robot would collide with a robot at
x. See Figure 1.2 for an illustration of the workspace W, the free space F and the unit-disc
robots with their auras. Furthermore, let δ(X) denote the boundary of some set X ⊂ R2.

Besides the simple polygon W representing the workspace, we are also given the set of start
configuration S and the set of target configuration T , such that S, T ⊂ F . These represent
the start and target positions for the m robots in our problem. We require that the robots do
not overlap with one another when positioned at the start configurations for the problem to
be valid (non-collision constraint), and similarly when the robots are on the target configu-
rations. Formally, there should not exist two distinct start configurations s1, s2 ∈ S such that
s1 6= s2 and D1(s1) ∩ D1(s2) 6= ∅. And again, the same should be true for the set of target
configurations T .

The goal of the problem is now to plan a collision-free motion for each of our m unit-disc
robots from their starting configuration in S to some target configuration in T such that all
target configurations T will be occupied by some robot. Since the robots are indistinguish-
able (i.e. unlabeled), it does not matter which robot ends up at which target configuration.

5 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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t2t1

µ

µ
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Figure 1.3: A visualization of the two types of separation, namely monochromatic separation
denoted by µ and bichromatic separation denoted by β.

Formally, we wish to find continuous paths πi : [0, 1]→ F , for 1 ≤ i ≤ m, such that πi(0) = si
and

⋃m
i=1 πi(1) = T . Additionally, we require that the robots do not collide with each other

at any moment during their motion: For every 1 ≤ i 6= j ≤ m and every ε ∈ (0, 1), we require
D1(πi(ε)) ∩ D1(πj(ε)) = ∅.
For a subset Q ⊂ F of the free space, we will use s(Q) = {x ∈ S | x ∈ Q} for the set of start
configurations that reside in Q, and similarly let t(Q) = {x ∈ T | x ∈ Q} be the set of target
configurations in Q. We can then define the weight of Q as w(Q) = |s(Q)| − |t(Q)|. For the
entire free space we have that w(F) = 0, since there need to be an equal number of start and
target configurations for the problem to have a solution.

Furthermore, we will distinguish between two types of separability bounds: monochromatic,
namely between two start configurations or between two target configurations, which we de-
note by µ, and bichromatic„ namely between a start configuration and a target configuration,
which we denote by β. See Figure 1.3 for an illustration of the two types of separability
constraints.

1.3 Contributions

In this thesis we show that the unlabeled multi-robot motion planning problem is always solv-
able assuming monochromatic separation µ = 4 and bichromatic separation β = 3 for unit-
disc robots in a simple workspace. Moreover, we describe an algorithm that can always find
a solution in polynomial time. Furthermore, we prove that the separability bounds assumed
are tight, meaning it is sometimes necessary for the problem to have a solution. Additionally,
if the free space consists of a single component then the bichromatic separation constraint
can be dropped and the monochromatic separation is sufficient for the problem to always be
solvable. The results described improve upon the results by Adler et al. [1] which described
an algorithm that can always solve the problem assuming separation bounds of µ = β = 4.

In Chapter 2 we show that the separation bounds assumed are sometimes necessary for the
problem to have a solution. Namely, we show an instance where the problem is unsolvable
when the monochromatic separation is less than µ = 4, and similarly for when the bichro-
matic separation is less than β = 3. The latter proof relies on the free space consisting of

6 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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multiple connected components. We will show that when the free space consists of a sin-
gle connected component, bichromatic separation is not necessary for the problem to have a
solution. The proofs for the separability bounds provide the lower bound to show that the
assumed separation is tight.

Given the separation assumptions, we present two algorithms in Chapter 3 that can always
solve the problem for a single free space component. The algorithms restrict the robots to
be positioned on either a start or target configuration, and move one at a time between
these configuration by using a motion graph. This simplifies the problem from an algorithmic
perspective. The main difficulty lies in the lack of bichromatic separation (β < 4), since the
collision discs of start and targets are allowed to overlap. This can cause difficult situations
where a start and target configuration can together split the free space. Nonetheless, in this
section we show a matching-based algorithm and a divide-and-conquer algorithm that are
able to always solve the motion planning problem, and find a solution in polynomial time. In
Chapter 4 these algorithms are extended to handle multiple free space components.

7 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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2 Tighter separation bounds

In this chapter we will explore the amount of separation between the start and target config-
urations which is sometimes necessary for the problem to always have a solution. As men-
tioned, separation refers to the minimum distance which is assumed to be present between
any two start or target configurations. The minimum separation is a constraint we impose on
the problem in order to make it easier to solve, since the base problem is likely PSPACE-hard.
We will show that without a certain amount of separation there are instances of the problem
which cannot be solved, thus the separation is sometimes necessary for the problem to be
always solvable.

Adler et al. [1] describe an algorithm that can always find a solution to the unlabeled motion
planning problem for unit-disc robots in a simple workspace, assuming a separation of four
and that the number of start and target configurations is equal in every connected component
of the free space. They do not make a distinction between monochromatic and bichromatic
separation, so their result applies for µ = β = 4. In the paper they refer to the configurations
as well-separated to indicate this separation of four, however we will not be using this term.
Importantly, the minimum separation of four is not shown to be tight, since only an example
with separation of µ < 4

√
2− 2 (≈ 3.646) is given for which a solution does not exist. In this

chapter, we aim to tighten these separation bounds, as well as make a distinction between
monochromatic and bichromatic separation. For both µ and β, a lower bound will be given
for which a solution does not exists.

The lower bound instances given in this chapter were originally created by Bahareh Banyas-
sady, Mark de Berg, Kevin Buchin, Karl Bringmann, Henning Fernau, Dan Halperin, and
Yoshio Okamoto during the Lorentz-Center Workshop on Fixed-Parameter Computational Ge-
ometry in 2018. Their work was incredibly valuable as a starting point for this thesis, and for
this chapter in particular.

2.1 Monochromatic separation

As described in Section 1.2, monochromatic separation µ refers to the minimum distance
between any pair of start configurations or between any pair of target configurations. By the
non-collision constraint, µ should always be at least two for the problem to be valid, otherwise
the robots collide will collide at the initial state or at the goal state. We aim to find a tight
lower bound for µ for which there always exists a solution.

Lemma 1. For µ < 4 a solution does not always exist.

8 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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4− ε

2

s1 s2

t1 t2

2

A B

Figure 2.1: An instance to show that for µ < 3 there does not always exist a solution. The
two robots at the start configurations at the top have to move down the corridor to the two
target configurations at the bottom. However, they always obstruct one another from moving
into the corridor.

Proof. See Figure 2.1 for an instance where a solution does not exist when µ = 4− ε for some
arbitrarily small ε > 0.

In the example, two robots r1, r2 starting at start configurations s1, s2 need to move through
a narrow corridor of width 2 to reach the target configurations t1, t2. The separation between
s1 and s2 is the previously noted 4− ε. Let points A,B be the endpoints of the corridor closest
to s1 and s2, which in the example lie on the boundary of the robots at s1 and s2 respectively.
Clearly, both robots cannot move into the corridor simultaneously, therefore assume w.l.o.g.
that r1 moves across the line segment AB first. Thus, for such a solution r1 will need to rotate
around point A and then move down the corridor.

We observe that points A and B, the end points of the corridor, must be below the line
segment s1s2, given that the corridor has width 2 and the separation between s1 and s2 is less
than 4. Note then by the triangle inequality we must have that the distance between A and
s2 is less than 3. This means that the aura of r2 at s2 intersects the movement of r1 around A
and into the corridor. Furthermore, there is no point in the free space where r2 can move to
give space to r1, since any point obstructs the rotation of r1 around A. Therefore, no solution
exists for this instance.

Thus, for there to always exist a solution a monochromatic separation of µ = 4 is necessary.
Since we know an algorithm for when µ = β = 4, the monochromatic separation is tight.
Hence, we aim to reduce the bichromatic separation β.

9 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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2− δ

3− ε

s2 t2

s1 t1

2

BA

C

< 4

Figure 2.2: An instance to show that for β < 3 there does not always exist a solution. The
free space consists of two components and in each of them a robot has to move from left to
right. However, the robot in the top component always blocks the movement in the bottom.

2.2 Bichromatic separation

The bichromatic separation β refers to the minimum distance between any pair of a start and
a target configuration, as explained in Section 1.2.

Lemma 2. For β < 3 a solution does not always exist.

Proof. See Figure 2.2 for an instance where a solution does not exist when β = 3− ε for some
arbitrarily small ε > 0.

In the example, there are two connected components of the free space, both containing a start
and target configuration (s1, t1 and s2, t2 respectively). The free space components containing
the two robots are not connected, since points A andB have a distance of 2−δ for some δ > 0.
Here, we define δ such that δ < 2ε

3 . In this example, A lies on the boundary of D1(s1) and B
on the boundary of D1(t1). From these facts, it follows that A lies to the left of line segment
s1C and B lies to the right of line segment t1C. By the triangle inequality we know that the
distance from s1 to C must be less than 3, similarly for the distance from t1 to C.

The key characteristic is that no matter where the robot in the top component is, it will block
the movement from start to target of the robot in the bottom component. Since the top arc of
the workspace is a semi-circle with center at C and radius less than 4, there is no point in the
top component of the free space which does not block the movement in the bottom. Thus,
the robot at s2 can never reach t2, which means no solution exists for this example.

The non-existence of a solution when β < 3 stems from the interaction between start or
goal position in one connected component of the free space with the motion of a robot in
a neighboring component. However, when considering a single free space component, this
type of interaction is no longer possible. In fact, we were not able to create a lower bound
instance for a single free space component for which no solution exists. We therefore suspect

10 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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that bichromatic separation is not necessary for there to always be a solution to the problem
for a single free space component.

11 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds
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3 A single free space component

In this chapter we will consider the robot motion planning problem for a single maximal con-
nected component Fi of the free space F . Let Si , s(Fi) and Ti , t(Fi) be the start and
target configurations in Fi respectively. The conjecture is that, with the separation assump-
tions µ = 4 (and β = 0), the problem is always solvable as long as Fi contains an equal
number of start and target configurations.

Initially, we will assume the separation constraints of µ = 4 and β = 2. This makes the
problem somewhat easier since the separation constraints do not allow a configuration to
be inside the aura of another configuration. In Section 3.7 we will then describe how to
modify the algorithm(s) to handle the case when there is no bichromatic separation (β = 0).
Furthermore, in Chapter 4 we will describe how to adjust the algorithm(s) to handle the
entire free space F , which might consist of multiple free space components.

The issue with having less than four bichromatic separation is shown in Figure 3.1. The nar-
row corridor at the top can only be traversed if neither the start configuration s nor the target
configuration t is occupied, given that both auras intersect with the corridor. In particular,
the red area of the t’s aura blocks robots from moving through the corridor to the start s,
but there is also no direct path from the red area to t that does not intersect with another
configuration’s aura (since any path from the red area to t will cross the aura of s). Thus,
a robot at a start or target position can interfere with movement between other start/target
configurations from a “remote” location.

As a result, the algorithm from Adler et al. [1] that uses the separation assumption µ = β = 4
cannot be applied once we no longer assume β = 4. New algorithms will therefore have to
be designed that can handle such “blocking” configurations efficiently in order to solve the
motion planning problem.

We have considered multiple different algorithms for solving the single free space compo-
nent. All approaches will use a motion graph, described in Section 3.3, in order to solve
the problem. Very briefly, the motion graph captures “adjacencies” between the start/target
configurations and the algorithms will use this to only move robots one at a time between
the start/target configurations. This simplifies the problem, since after generating the motion
graph the free space can be ignored. Before we describe the algorithms, we will first define
some preliminaries in Section 3.1 and a useful graph data structure in Section 3.2. Then, the
motion graph is defined and we describe how it can be constructed in Section 3.3

Afterwards we discuss three algorithms, namely a greedy algorithm, a matching algorithm,
and a divide-and-conquer algorithm in Section 3.4, Section 3.5, and Section 3.6 respectively.
Two of these algorithms, the matching algorithm and the divide-and-conquer algorithm, are
proven to always be able to solve the motion planning problem for unit-disc robots in a sim-
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Fs

t

Figure 3.1: An instance where the lack of bichromatic separation poses a problem. No robot
can pass through the narrow corridor if either start s or target t is occupied. In particular, the
area shown in red blocks movement to the start s.

ple workspace. The reason we discuss multiple algorithms is that it shows different possible
approaches for finding a solution. In this thesis we have tried many possible routes for solving
the problem, both successful and unsuccessful, and in this chapter we present the results. We
think that showing the different approaches will provide the reader with a better understand-
ing of the problem. In the conclusion in Chapter 5 we will give a short comparison between
the different algorithms.

3.1 Preliminaries

Before discussing the algorithms for solving the motion planning problem, it is useful to first
introduce some concepts.

Let F ′i = Fi\
⋃
s∈S D2(s) be the portion of the free space which does not intersect with the aura

of any start configuration. In other words, F ′i is the portion of Fi after taking the complement
with the auras of the start configurations. The subset F ′i can consist of different connected
components, given that the aura around a start configuration might intersect the boundary
of Fi in more than one connected component, thus splitting Fi into multiple components.
The subset F ′i consists of two types of boundaries: the free boundary, which is the boundary
it shares with the free space F , and the aura boundary, which is the boundary of the aura
around a start configuration. Recall that the free space is a closed set and the aura is an open
set, thus both boundaries will be closed.

For each target configuration t ∈ T we define D′2(t) = D2(t) ∩ F ′i . In other words, the
region D′2(t) consists of the free space portion of the aura of t minus the aura of the start
configurations in Si. Recall that the bichromatic separation still allows the auras around start
and target configurations to intersect, thus the region D′2(t) can potentially consist of multiple
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F

s1

s2

t1

Figure 3.2: A target configuration t1 is shown, where the components of D′2(t1) which con-
tains t1 is shown in blue and the remote components are shown in red.

connected components. One of these components of D′2(t) will contain t itself. We will define
the components of D′2(t) that do not contain t as remote components. See Figure 3.2 for an
illustration of a target whose aura contains multiple remote components.

The key characteristic of a remote component of t is that a path that stays within D2(t)
between t and a point in a remote component will have to pass through the aura of at least
one start configuration. This can present issues when constructing the motion graph, which
we will see in Section 3.3. Let Ri be the set of remote components for all target configurations
Ti.

Furthermore, let a blocking area be a remote component that intersects the boundary of F ′i
in more than one connected component. The blocking area cuts F ′i into multiple different
connected components. Similarly, a target t which is associated with at least one blocking
area will be referred to as a blocker. A blocker target might have multiple associated blocking
areas, which is also illustrated in Figure 3.3. Let Bi ⊆ Ri be the set of blocking areas for all
target configurations.

For a blocking area bt ∈ Bi, let the blocking path be any path π ⊂ Fi which connects bt to
its associated blocker t ∈ Ti. By definition, this path will cross the aura of at least one start
configuration, otherwise the blocking area would be connected to the component of D′2(t)
which contains t.

Lemma 3. For a blocking area bt ∈ Bi and its associated blocker t, there exists some blocking
path π such that π ⊂ D2(t).

Proof. This follows from Lemma 2 from the paper by Adler et al. [1], which states that for any
x ∈ F we have that D∗(x) is connected, where D∗(x) is the part of D2(x) which is in the same
free space component as x. By definition, this means that there exists a path within D∗(t)
between any two points in D∗(t). The blocker configuration and any associated blocking area
are inside D2(t) and are both part of same free space component Fi. Thus, there must exist a
path connecting the two inside D∗(t).
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Fs

t

Figure 3.3: An example of a blocker t with multiple distinct blocking areas shown in red.

Lemma 4. There always exists some blocking path π between a blocker x and its blocking
area bx that stays within D2(x) and does not intersect the blocking area by of some other
blocker y.

Proof. This follows directly from Lemma 3 and the fact that µ = 4, since the blocking areas
bx and by should lie inside D2(x) and D2(y) respectively, and D2(x) ∩ D2(y) = ∅ with µ = 4.
Thus, there exists a blocking path π from x to bx that stays within D2(x) and therefore cannot
cross another blocking area by.

See Figure 3.4 for another illustration of a blocker and its blocking area.

Let Fi = Fi \ Ri be the portion of the free space component Fi that does not intersect any
remote components in Ri. By definition, a blocking area will intersect the boundary of Fi in
multiple components. Since some remote components will be blocking areas, the region Fi
can consist of multiple connected components. Let the maximal connected components of Fi
be referred to as residual components. Note that Fi is different from F ′i , which was the portion
of the free space that does not overlap with the aura of start configurations.

Additionally, let F ∗i = F ′i ∩ Fi = Fi \ (
⋃
s∈Si
D2(s) ∪ Ri) be the portion of the free space that

does not intersect with either the aura of a start configuration or a remote component of a
target configuration.

Lemma 5. The subsets of the free space F ′i , Fi, and F ∗i , the free space region of an aura
D2 and the remote components Ri all have complexity O(m + n) and can be computed in
O((m+ n) log(m+ n)).

Proof. The complement of the workspace polygon can be decomposed into O(n) trapezoids
by using a vertical decomposition. Let A be the union of these trapezoids and O(m) unit discs
centered at the start configurations. Note that all elements of A are pairwise disjoint. The
union of the elements in A Minkowski-summed with a unit disc is linear in the number of
elements plus the complexity of the elements [9]. Therefore, the region F ′i has complexity
O(m+ n) and can be generated in O((m+ n) log(m+ n)).
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s3

t2

s2

t3

s1

t1

Figure 3.4: An example of a blocker t2, with the blocking area shown in red. The start
configuration s3 separates the blocking area from t2.

The free space region of an aura D2 consists of sections of the free space Fi \
⋃
x∈Si∪Ti D2x.

These sections have complexity O(m + n), using a similar argument as for the free space
region F ′i . Thus the free space region of an aura has complexity O(m+ n).

Using the same logic, the remote components Ri and the free space subsets Fi and F ∗i all
use segments from existing sets with complexity O(m+ n), therefore their complexity is also
bounded by O(m+ n) and can be computed in O((m+ n) log(m+ n)).

3.2 The blocking area graph

In this section we will introduce a graph structure based on residual components and blocking
areas, as defined in Section 3.1.

Let Hi = (V H
i , EHi ) be a graph whose vertices V H

i equal the residual components of Fi.
Recall from Section 3.1 that Fi = Fi \ Bi is the portion of the free space component Fi that
does not intersect any blocking areas in Bi. An edge is drawn between two distinct residual
components v1, v2 ∈ V H

i if they are separated by a single blocking area bt ∈ Bi where the
associated blocker t resides in either v1 or v2. See Figure 3.5 for an example of the blocking
area graph.

Given the definition of a blocking area and the separability constraints, all configurations
reside in residual components of Fi. It is important to note that a single blocking area in
Bi can divide Fi into more than two connected components, see Figure 3.6 for instance.
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s2

s1

t1 s3 t2

t3

(a) An example with two blockers t1 and t2, with their associated blocking areas shown in red

Fi,1 Fi,2 Fi,3

(b) The corresponding blocking area graph Hi.

Figure 3.5: An example of the blocking area graph for an motion planning instance.

However, the definition of an edge in Hi requires the associated blocker to be in one of the
two components. Therefore, such a blocking area will not result in a cycle in Hi.

Lemma 6. Any blocking area bt ∈ B shares a boundary with the residual component contain-
ing t.

Proof. Follows directly from Lemma 4. There exist a blocking path π which connects bt to
t which does not cross any other blocking area. By definition of a residual component, the
blocking area must therefore be adjacent to the component containing t.

Lemma 7. The blocking area graph Hi is connected.

Proof. Assume for contradiction thatHi is not connected. Then there must be distinct residual
components x, y ∈ V H

i which are not connected by a path in Hi. Take arbitrary points px ∈ x
and py ∈ y. Since both px and py lie in Fi and Fi is connected, there exists a path π ⊂ Fi which
connects px with py. Additionally, given the monochromatic separation µ = 4, the blocking
areas of distinct blockers do not intersect, therefore π will alternate between a blocking areas
and residual components.

Take an arbitrary blocking area bt ∈ T that is traversed by π, which is associated with a
blocker target t. Let v and w be the residual components adjacent to bt that π traverses. We
now argue that v and w are connected in Hi.

The blocker t must be in a residual component adjacent to bt by Lemma 6. Let z be the
residual component containing t. If z is equal to either v or w, meaning the blocker t resides
in either v or w, then by definition there must be an edge between v and w as well, therefore
they are connected. The other possibility is if z is not v nor w, meaning t in a third residual
component not equal to v or w. In that case, there must be an edge between v and z and
between z and w, thus v and w are connected through z. Applying this logic to all blocking
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Fi,2

Fi,1

(a) The example with blocker t and the three residual components.

Fi,2

Fi,1 Fi,3

(b) The associated blocking
area graph.

Figure 3.6: An instance where a blocker cuts the free space in more than two components.

areas along π between residual components x and y, we can conclude that x and y must be
connected.

Lemma 8. The blocking area graph Hi is a tree.

Proof. Assume the graph Hi = (V H
i , EHi ) is not a tree. By Lemma 7 we know that Hi is con-

nected. For Hi not to be a tree it must therefore contain a cycle. Thus, there must exist some
circular set v1, . . . , vk of distinct vertices in the graph, where vi ∈ V H

i and (vi, vi+1) ∈ E for
i ∈ 1, . . . , k and k > 2. Given the cycle, there must exists some circular curve π ⊂ Fi through
the nodes v1, v2, . . . , vk, starting and ending in the same configuration and intersecting k
blocking areas.

Let A be the area enclosed by π. Given that the workspaceW is simple and π ⊂ Fi, we have
that A ⊂ Fi. Given the monochromatic separation µ = 4, the blocking areas π intersects are
disjoint. since we assumed that v1, . . . , vk correspond to different residual components and π
should cross each blocking area only once. However, in that case A cannot contain more than
one residual components, since the disjoint blocking areas can only split A if π intersects the
blocking area in more than one location. We arrive at a contradiction, thus the graph Hi must
be a tree.

3.3 The motion graph

The motion graph Gi = (V G
i , E

G
i ) is a graph where the vertices represent the start and target

configurations in Si ∪ Ti and the edges represent a path between “adjacent” configurations.
Edges between configurations should represent paths through the free space which only in-
tersect the aura of the source and destination configurations, such that a robot can move from
a source configuration along the path unobstructed to the destination configuration (as long
as the destination is unoccupied). See Figure 3.7 for a visualization of a simple motion graph.
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(a) Small motion planning instance.

s1

s2

t1

t2

(b) The motion graph.

Figure 3.7: Example of a motion graph capturing the adjacencies of the configurations.

The idea is to always have robots positioned on either a start or target configuration and have
them move one at a time between these configurations using the motion graph. This restricts
robots to 2m possible positions, which greatly reduces the problem’s complexity since we can
ignore the free space once the motion graph is constructed. We would then like to show that
the problem can still be solved efficiently using the motion graph. Ideally, we would create a
(connected) motion graph for the start and target configurations, and then solve the problem
by moving robots along this graph such that at the end all target configurations are occupied.

However, due to the lack of bichromatic separation, there can be cases where a start and target
configuration are too close such that both cut the free space, see for example Figure 3.1 or
Figure 3.3. In this case, any path through that part of the free space will have to intersect the
aura of both configurations. This causes problems for creating a connected motion graph on
all start and target configurations, since we require that an edge is always traversable as long
as the destination vertex is unoccupied. In other words, we would like to create paths that
do not cross the aura of other configurations except the source and destination vertices of an
edge, but this is not always possible while keeping the motion graph connected.

See Figure 3.8 for an instance where a connected motion graph cannot be created. In the
figure, for the configuration s1 there does not exist a path to any other configuration which
does not cross the aura of a third configuration. Therefore, if we want to create a motion
graph we cannot connect s1 to any other vertex.

To deal with this issue, we will differentiate between regular unblockable edges and blockable
edges, the latter of which will be colored red. For blockable edges, we relax the constraint
that an corresponding path through the free space is only allowed to cross the aura of its
source and destination configuration. Instead, we allow these paths to also cross the blocking
areas in Bi. We will show that, with this relaxation, we can construct a connected motion
graph for all start and target configurations.

3.3.1 Construction

We will describe one method for constructing the motion graph Gi = (V G
i , E

G
i ). The vertices

V G
i are the set of start and target configurations Si ∪ Ti. For the rest of this chapter we will
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Figure 3.8: An instance where the lack of bichromatic separation (β < 4) makes it impossible
to create a path that connects the start s1 to any other configuration with a path that does not
intersect any other aura.

therefore use the terms configuration and vertex somewhat interchangeably, though they are
not strictly the same. The edges EGi in the motion graph are generated as follows:

Recall from Section 3.1 that F ∗i = Fi \ (
⋃
s∈Si
D2(s) ∪Ri) is the portion of the free space that

does not intersect with either the aura of a start configuration or a remote component of a
target configuration. We assume that the subset F ∗i was split into k connected components,
F ∗i,1, . . . , F

∗
i,k. These components contain all target configurations in Ti, since the aura of

a start configuration cannot contain any target by the bichromatic separation β = 2, and
a blocking area cannot either by definition. First, we will create edges for each connected
component of F ∗i . Second, blockable edges are added that traverse blocking areas to make
sure the motion graph is connected.

Take a single maximal connected component F ∗i,j ⊂ F ∗i . Although F ∗i,j is connected, it can
contain holes due to free-floating start configurations. For the boundary δ(F ∗i,j) we will create
an ordered, circular list Λj . For each target configuration t ∈ t(F ∗i,j) which intersects the outer
boundary δ(F ∗i,j) we pick a set of representative points Pt on each connected component of
δ(F ∗i,j) ∩ D2(t).

By definition, the subset F ∗i does not contain any remote components, thus there must always
exists a path from the target configuration t to each representative point p ∈ Pt which stays
within D2(t) and does not intersect the aura of another start or target configuration. The
representative points for each target which intersects the outer boundary of F ∗i,j are stored in
Λj based on their ordering along the boundary.

Next, we handle the target configurations in F ∗i,j that do not intersect the outer boundary
δ(F ∗i,j) as well as the start configuration that correspond to holes in F ∗i,j . For each such
configuration x, we shoot a ray vertically upwards until it either hits the outer boundary of
F ∗i,j or the aura of another configuration. Let px be the first intersection point with either
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(a) Example of a motion graph for a single component. A
path between adjacent targets is shown in red.
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(b) The associated motion graph.

Figure 3.9: Example of the motion graph for a single component F ∗i,j .

the outer boundary or the aura of another configuration. If it hits the outer boundary, the
intersection point px is added to Λj as a representative point of x.

Otherwise, if it hits the aura of another configuration y, we add an edge in the motion graph
between x and y. Given the definition of F ∗i , if the ray from x does not hit the outer boundary
then the configuration y is either a free-floating start or a target. Furthermore, if y is a target
configuration, then we know that the intersection point px cannot lie on a remote component.
For both cases, there is an unobstructed path from p to the configuration y.

Finally, the start configurations whose boundary touches the outer boundary of δ(F ∗i,j) are
handled. Take such a start configuration s. Pick a single representative point ps on the
intersection of the outer boundary of F ∗i,j and the aura of s. If there is an unobstructed
path from s to ps, we add the representative point ps to Λj based on its ordering along the
boundary. Otherwise, if the path must pass through the aura of a target t and the intersection
point does not lie in a remote component, we can add an edge directly between s and t. In
the last case, when a remote component obstructs any path from the configuration s to its
representative point ps, we will ignore s until we handle the blocking areas separately later.

Now, edges are added to EGi between any vertices whose representative points are adjacent
in Λj . Since a configuration might have multiple representative points in Λj , self loops might
be introduced but these can safely be ignored. In the same vein, multiple edges could be
created between the same two vertices but we can remove all but one to decrease complexity.
This concludes the construction for a single component F ∗i,j ⊂ F ∗i . See Figure 3.9 for an
illustration on the motion graph for a connected component of F ∗i .
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(a) Blocking area shown in gray, with free space boundary
in red.

t1 t3

t2s1
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(b) The associated motion graph, with
new edges in red.

Figure 3.10: Example of how a blocking area is handled with regards to the motion graph.

Finally, we have to incorporate paths through the blocking areas into our motion graph since,
as mentioned, these blockable edges are necessary to ensure the motion graph is connected.
Take a blocking area bt ∈ Bi. We will add blockable edges that cross through bt to the motion
graph as follows:

Take the boundary δ(bt) of the blocking area. The boundary is made up of free boundary,
namely portions of the boundary of the free space, and two types of aura boundary, namely
the boundary of the aura of t and the boundary of the aura of starts configurations in Si. For
each section of free boundary of δ(bt) we take the two endpoints, call them x and y, and add
edges to the motion graph based on the boundary type of the adjacent component. For each
endpoint we pick “adjacent” configuration(s) and we will add an edge between the adjacent
configuration of endpoints x and y.

If the endpoint lies on the boundary of a start configuration, this configuration is picked as
adjacent. Otherwise, if the endpoint lies on the boundary of the blocker’s aura, then the end-
point must lie on the boundary of a component of F ∗i , call it F ∗i,j . We can find the “adjacent”
configuration(s) of the endpoint using the associated Λj of F ∗i,j . We can find up to two con-
figuration that are adjacent in Λj with respect to the endpoint (one adjacent configuration in
both directions of δ(F ∗i,j)). We then add an edge pairwise between the adjacent configurations
of x and those of y.

For each blocking area, the adjacent vertices of the endpoints of each connected portion of its
free space boundary are found and are then connected with an edge. This procedure might
result in multiple edges between the same two vertices, however we can safely remove all
but one to reduce the complexity of Gi. See Figure 3.10 for an example of the procedure for
blocking areas.

A special case is when Λj is empty for an adjacent component F ∗i,j . In that case, if bt is the only
blocking area adjacent to the outer boundary of F ∗i,j we can safely ignore it since it does not
contain any configuration in Si ∪ Ti. Otherwise, the component F ∗i,j must share a boundary
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Figure 3.11: The special case when a blockable edge is added across two blocking areas.

with another blocking area bt′ . Following the free space boundary of F ∗i,j and the blocking
areas bt and bt′ , we can add a blockable edge for the “outer” endpoints of the two blocking
areas. This will result in a blockable edge added which has two associated blockers. See
Figure 3.11 for a illustration of this special case.

3.3.2 Translating graph edges to free space paths

Edges in the motion graph should correspond to paths in the free space in order to generate
a valid motion plan from edge traversals. The paths follow relatively straight-forward from
the construction in subsection 3.3.1.

First, we describe the paths for the edges created for the single component F ∗i,j ⊂ F ∗i . Take
an edge e ∈ EGi between vertices x and y. Its path will consists of (up to) three parts: The
motion from x to its representative point px, the motion from px to the representative point py
of y, and the motion from py to y. The motion to and from representative point px consists of
either the vertical ray with which px was generated or a path to the boundary of D2(x) ∩ F ∗i,j
followed by a path along this boundary to px. Motion between representative points is along
the boundary of F ∗i,j . If an edge was added directly (without using Λ), for example when a
ray intersects a free-floating configuration, then the path only consists of the motion from x
to the intersection point px and the motion from px to y.

For the blockable edges that traverse the blocking areas, the paths are constructed similarly.
Take a blocking area bt ∈ Bi. Each connected portion of free space boundary of bt will
contribute up to four edges between the adjacent vertices of the two endpoints. Take an edge
between vertices x and y that was generated for a portion of the free space boundary of bt
with endpoints a and b. A path for these edges consists of the motion from the configuration
x to the endpoint a, the motion between the endpoints a to b, and the motion from the other
endpoint b to the configuration y. The paths between a configurations and an endpoint are
generated similar to the edges above, while the motion between endpoints simply follows the
free space boundary of bt between a and b.
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3.3.3 Correctness

In this section we will show that the motion graph constructed in subsection 3.3.1 is valid and
has the properties we desire. For the algorithms discussed in the following sections it is crucial
that the motion graph is connected, such that there exists a path in the motion graph between
any two configurations. Additionally, it will be useful to show when two configurations are
connected by only unblockable edges, since then the algorithm can ignore the influence of
blockers.

Lemma 9. All paths in the motion graph created for a component F ∗i,j ⊂ F ∗i are unblockable.

Proof. We argue that each portion of a path created in F ∗i,j between two configurations x and
y is unblockable, meaning it does not cross the aura of any configuration besides x and y.

The motion from a configuration x to its representative point px cannot be blocked by its
construction. Given bichromatic separation β = 2, the configuration x itself is not inside the
aura of another configuration. If the path from x to px crosses some other aura at any point,
then the construction will update px to the intersection and connect x to this configuration.
Thus, the path from a configuration to its representative point cannot be blocked by another
configuration.

Given the monochromatic separation and the definition of F ∗i , a point on the boundary of
a F ∗i,j can only ever be in the aura of a single target configuration. Additionally, for each
segment of the boundary that intersects a target’s aura we choose a representative point.
Therefore, the portion of the boundary between representative points that are adjacent on Λj
can only intersect the aura of those two representative points. As a result, the motion along
the boundary of F ∗i,j between adjacent representative points px and py cannot intersect the
aura of a third configuration not equal to x or y, and thus it is unblockable.

Lemma 10. There always exists an unblocked path in the motion graph between two config-
urations that are inside the same residual component.

Proof. Take two configurations x, y ∈ V G
i that are inside the same residual component, as

defined in Section 3.1. This means that there exists a path π through the free space which does
not cross any blocking area. If x and y reside in the same component of F ∗i , then by Lemma 9
there exists an unblockable path and we are done. Otherwise, if x and y are in different
components of F ∗i , then π must cross some start configurations in Si that split F ∗i into multiple
components. Let s1, . . . , sk be the start configurations that π intersects. Then all adjacent
configurations in the sequence x, s1, . . . , sk, y will share a residual component that they either
reside in or have a boundary with. By Lemma 9, there must therefore exist an unblockable
path between each adjacent configuration in this sequence. Using those individual paths, the
vertices x and y are connected with a path that only uses unblocked edges.

Lemma 11. The motion graph Gi is connected.

Proof. By Lemma 10 we know there exists path in the motion graph between any configura-
tions in the same residual component. By Lemma 7, the blocking area graph Hi is connected.
The procedure done for each blocking area will ensure that two residual components that
are adjacent in Hi also have edges in the motion graph between two configurations in either
component. Combining these results, the motion graph Gi must be connected.
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3.3.4 Complexity analysis

Lemma 12. The number of edges |EGi | in the motion graph Gi is bounded by O(m).

Proof. The construction shown in subsection 3.3.1 will create edges for every connected com-
ponent of F ∗i and then additional edges are added for each blocking area. We will argue that
the edges added for both parts is bounded by O(m).

For each component of F ∗i,j ⊂ F ∗i the number of edges created is bounded by the target
configurations that reside in it plus the start configurations that share a border with it. A start
configuration can only add one or two edges per component of F ∗i it borders. The edges that
a target configuration contributes is slightly more complicated to analyze, since for a target t
we add a representative point for each connected component of δ(F ∗i,j) ∩ D2(t).

However, the number of connected components of δ(F ∗i,j) ∩ D2(t) is constant, since a con-
nected component of δ(F ∗i,j) ∩ D2(t) will have to intersect δ(D2(t)) in two points. Each point
x ∈ Fi ∩ δ(D2(t)) in the free space requires that D1(x) ∩ O = ∅. We can only fit a constant
number of unit circles on δ(D2(t)), therefore there can only be a constant number of seg-
ments of δ(D2(t)) that are in the free space Fi. Thus, the number of connected components
of δ(F ∗i,j) ∩ D2(t) is constant.

For a similar reason, a start configuration only borders a constant number of components of
F ∗i . So the number of edges created for all components of F ∗i is bounded by O(m).

A blocking area adds at most four edges to EGi per segment of free space boundary. By defini-
tion, a blocking area will intersect the free space boundary in at least two distinct connected
components. However, a target can only intersect the free space boundary in a constant num-
ber of connected components. Therefore, a blocking area has a constant amount of free space
boundary segments and all blocking areas in Bi will add O(m) edges.

Lemma 13. A path can be found in O(m) between any two vertices through the graph Gi
and the corresponding path in the free space will have complexity O(m+ n).

Proof. From Lemma 12, we know that the edges are bounded by the m robots. Using a simple
path-finding algorithm, like a breadth-first search (BFS), a path can be found between two
vertices in O(|V G

i |+ |EGi |) = O(m).

Any path between two vertices in the motion graph will take at most m − 1 edges. The cor-
responding path in the free space, after the translation discussed in subsection 3.3.2, will
consist of the free space boundary and the portion between a configuration and a representa-
tive point. Crucially, a section of the free space boundary will only be taken once in any path,
while the path between a configuration and its representative point is taken either once or
twice (e.g. potentially in both directions). Therefore, using Lemma 5 the entire path through
the free space will have complexity O(m+ n).

Lemma 14. The motion graph Gi can be created in O(mn+m2).

Proof. As argued in Lemma 12, the number of edges in the motion graph is bounded byO(m).
Each edge can be calculated using simple procedures described in subsection 3.3.1, that are
dependent on the components of F ∗i and the blocking areas Bi. By Lemma 5, the subset F ∗i
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of the free space and the set of blocking areas Bi both have complexity O(m+ n). Thus, the
entire procedure is bounded by O(mn+m2).

3.4 Greedy algorithm

In this section, we discuss a greedy algorithm for solving the motion planning problem. The
idea is to handle any issues with blocked edges locally by moving the robot at the blocker
configuration away to make traversal of a blocked edge possible. The approach uses the
motion graph, discussed in Section 3.3, and treats it as an unlabeled pebble game similar to
how this is done in Adler et al. [1].

In the unlabeled pebble game there are indistinguishable “pebbles” that occupy vertices in
the motion graph Gi, and which can move one-at-a-time along an edge if the destination is
not occupied. At the start of the pebble game each start configuration contains a pebble. A
solution to the pebble game is then a series of moves along edges such that at the end all
target vertices contain a pebble. Kornhauser [11] proved that the unlabeled pebble-motion
problem is always solvable and can be found in O(S2

i ) time.

However, if there are blockable edges in the motion graph then extra care is necessary to
ensure the edges are only traversed if the associated blocker configuration is not occupied
by a robot. The O(S2

i ) running time algorithm will therefore need to be adapted to handle
blockable edges properly. One way of this issue is, whenever a blockable edge needs to
be traversed, to move away an associated blocker target to another position. The greedy
approach taken is thus to try to handle blockers “on-the-fly” by moving the robot at the
blocker position to another unoccupied vertex in the motion graph. In this section we explore
whether there is a simple and efficient method that can always handle blockers.

3.4.1 Handling blocked edges

The pebble moves along edges in our motion graph are not as straight-forward as in the
standard pebble game. As mentioned, the blockable edges need extra attention when moving
pebbles along the motion graph. In this section we try to show how to handle blockers on-
the-fly.

Assume that we need to make a series of single pebble moves along a path in our pebble
graph. Let s be the start vertex of our path and t the target vertex. The path from s to t might
have to use blockable paths in the motion graph. The associated blockers will be handled one
by one. We describe how to solve the blocking in two cases:

If the residual component of Hi that the blocker tb resides in contains at least one unoccupied
vertex x, we can make a series of pebble moves along the path from t to x. Since both the
blocker and the unoccupied configuration are in the same residual component, by Lemma 10
there is an unblocked path between the two vertices. The vertex x might also be a blocker,
so we have to be careful that we do not move the blocking robot to another blocker of the s-t
path. See Figure 3.12 for an illustration of this procedure.

Otherwise, if the residual component of Hi containing the blocker does not contain an un-
occupied node, there is unfortunately little more to do than to reverse pebble moves up to
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(a) A simple instance of a blocker t1 that obstructs movement between s1 and t2.
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(b) The procedure for moving a robot at blocker t1 to allow movement across the edge from s1 to t2.
Afterwards, the robot at s2 moves back to t1.

Figure 3.12: An example of how a robot at a blocker target configuration can be moved to
another node in the same residual component of Hi to allow traversal of a blocked edge.
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that point until the blocker is no longer occupied. Moving the blocker to a vertex outside its
residual component might run into additional blocked edges. Then perform the motion along
the s-t path, and finally redo the previous pebble moves in order.

3.4.2 The algorithm

See Algorithm 1 for pseudocode on the greedy algorithm. The algorithm will continuously
pick an unoccupied target and try to occupy it by finding a nearby occupied start. Any
blocked edges on the path between the start and target will be handled as described in sub-
section 3.4.1.

Algorithm 1 Pseudo code for the greedy algorithm for a single free space component Fi.
procedure MOTIONPLANNINGGREEDY(W, Si, Ti)

Calculate free space Fi
Compute blocking areas Bi and blocking area graph Hi = (V H

i , EHi )
Create the motion graph Gi = (V G

i , E
G
i )

while exists unoccupied target t do
Find nearest occupied start s (BFS)
Calculate path π from s to t in motion graph Gi
for each blocker b corresponding to a blocked edge in π do

Handle robot at blocker b by either:
• If possible, move b to unoccupied vertex x in same residual component.

Make sure x does not block π as well.
• Else, reverse moves until b no longer occupied.

end for
Make pebble move(s) from s to t
for each pebble move reversed do

Execute pebble move, handling blockers same as above.
end for

end while
end procedure

3.4.3 Analysis

The correctness of the greedy algorithm is dependent on its ability to handle blockers locally.
In the first case, we deal with an occupied blocker by moving the robot to another configu-
ration in Hi. However, the pebble graph can be in a state where there is no clear procedure
to unblock. For such instances, the second case tries to resolve the blocking by reversing the
pebble moves done up to that point. Since in the initial state all target configurations are
empty, this will eventually get to a state where the blocker is no longer occupied. Once such
a state is found the pebble move is executed, after which all moves which have been reversed
have to be redone.

However, the destination t of the pebble move(s) might also block some of the moves that
were reversed. As a result, this procedure has the potential to cause an endless cycle, where
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Figure 3.13: A instance where there can be a potential cyclical blocking, if s2 is matched to
t1 and s3 is matched to t2. In red the blocking area and in blue potential paths that cause a
cyclical blocking.

moves are continuously reversed and redone in different orderings. If there exists an instance
where the greedy algorithm uses a start-target matchings whose paths form a cyclical blocking,
meaning each target blocks the next path in the cycle, the algorithm might not terminate.
Formally, there are pairs (s1, t1), . . . , (sk, tk) fin the matching or some k, where a target tj−1
blocks the path in the motion graph between (si, ti) cyclically for some k. An example can be
seen in Figure 3.13.

Theorem 1. For a single connected component Fi ⊂ F containing an equal number of start
and target configurations, the greedy algorithm will always find a solution to the unlabeled
motion planning problem for unit-disc robots in a simple workspace, when assuming µ = 4
and β = 2 and there do not exist any start-target matching which contain a cyclical blocking.

Proof. If no start-target matching exists which contains a cyclical blocking, that means that
for each matching the algorithm picks there must exist some (topological) ordering which
avoids blockings. Thus, when executing the matching in the topological ordering the solution
will never encounter pebble moves across blocked edges where the blocker is occupied.

The greedy algorithm solves an arbitrary start-target pair, which means it does not necessarily
solve a matching in this topological ordering. In the worst case, no blockings it encounters
can be locally resolved and the algorithm will always have to perform the second case. This
requires reversing/redoing all previous moves for each start-target pair until they are in topo-
logical ordering. However, by always moving a start-target move to the first position when-
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ever we detect a blocking, this procedure is guaranteed to eventually find the topological
ordering.

Thus, the greedy algorithm is only guaranteed to find a solution when there does not exists a
matching for the problem with a cyclical blocking. However, instances exist where matchings
contain cyclical blockings, see Figure 3.13. This issue was the reason for us to abandon
the greedy approach in favour of dealing with the matching and blockers more robustly.
In Section 3.5 it is shown how to calculate a matching which does not have any cyclical
blockings.

It could be that there exists some greedy method of matching start/target vertices that would
avoid any cyclical blockings. There can potentially be made a case that you would never get
into a cyclical blocking, for example by always picking the closest start target pairs. Perhaps
there also exists a more clever way of resolving local blockings which does not run into this
issue. However, we decided to not pursue this approach any further, and instead focus on
less greedy methods. An additional factor is that even without cyclical blockings, the running
time of the greedy algorithm is not very efficient since the algorithm might need to reverse
and redo many robot moves whenever it tries to make pebble moves for a new start-target
pair. Nonetheless, we hope this section shows the difficulty of the problem and the issues one
can encounter when trying to solve the motion graph greedily.

3.5 Matching algorithm

In this section we explore an algorithm based on finding a matching between the start and
target configurations Si ∪ Ti and then calculating an ordering for solving each start-target
pair. The idea is to order the pairs such that no pebble moves will be blocked when executing
the start-target paths in the motion graph. The approach follows from the issue of cyclical
blockings in Section 3.4, where it was shown that an arbitrary matching might not always
provide a valid solution no matter the order in which it is executed. Thus, in this section we
explore whether it is always possible to find a matching where no cyclical blockings occur.

3.5.1 The algorithm

We take a minimal matching M on the start and target configuration Si∪Ti, where the weight
is equal to the number of blocking areas that are minimally traversed for paths between the
matched pairs. The idea behind the distance function is to ensure that the matching minimizes
the amount of blockings that occur due to blockable edges. Formally, the distance function is
defined as follows:

w(M) =
∑

(s,t)∈M

w(s, t) =
∑

(s,t)∈M

#blocked areas traversed in path s to t (3.1)

After calculating a minimal matching, the algorithm will handle each cyclical blocking by
performing a swap. The algorithm finds a start configuration that is located “inside” the cycle.
The start configuration is then swapped with an arbitrary target of the cycle. An example of
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Figure 3.14: An example where a cyclical blocking can be resolved by making a swap in
the matching. In blue the matched pairs are shown (the blue lines give an indication of the
motion plans, but are not entirely accurate with the actual motion graph construction).

such a swap is shown in Figure 3.14. See subsection 3.5.2 for the proof why this removes the
cyclical blocking. Once all cyclical blockings are removed, there exists a topological ordering
to solve each matched pair which will not cause any blockings.

See Algorithm 2 for the pseudo-code.

3.5.2 Correctness

The matching algorithm attempts to find a matching which does not contain any cyclical
blockings. Initially, the minimal matching is calculated according to the weight function in
Equation 3.1, which minimizes the blocking areas traversed. This minimal matching might
still contain cyclical blockings, which will need to be removed by making swaps between pairs
of the matching. We will argue that the algorithm can always make a valid swap which will
remove a cyclical blocking and therefore the algorithm will find a matching that does not
contain any cyclical blockings.

Lemma 15. The minimal matching M cannot have paths that cross a blocking area between
the same residual components in opposite directions.

Proof. Assume for contradiction that M does contain two pairs s1, t1 and s2, t2 whose paths
cross two components Fi,j , Fi,k ∈ V H

i in opposite order. Let bt be the blocker between Fi,j
and Fi,k. Additionally, let the paths in the motion graph between the pairs have the shape
s1, . . . , x1, y1, . . . , t1 and s2, . . . , x2, y2, . . . , t2 such that x1, x2 ∈ Fi and y1, y2 ∈ Fj and the pair
x1, y1 is connected in the motion graph by an edge which intersects bt, similarly for x2, y2. We
can then make a swap in the matching such that we instead have pairs s1, t2 and s2, t1. By
Lemma 10, there exists an unblocked path between x1 and x2, similarly for y1, y2. Thus the
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Algorithm 2 Pseudo code for the matching algorithm for a single free space component Fi.
procedure MOTIONPLANNINGMATCHING(W, Si, Ti)

Calculate free space Fi
Find blocking areas Bi
Create the motion graph Gi = (V G

i , E
G
i )

Create initial minimal matching M on start/target pairs Si ∪ Ti,
where the weight: w(s, t) = #blocking areas in s− t path

Calculate paths for each pair in M and detect blockings
for each blocking cycle do

Find start configuration sb inside cycle
Perform swap with sb and arbitrary target t of cycle
Recalculate paths

end for
Execute matching in topological order of blockings

end procedure

paths s1, . . . , x1, x2, . . . , t2 and s2, . . . , y2, y1, . . . , t1 have a strictly smaller weight, since they
no longer intersect the blocking area of bt.

Lemma 16. For a cyclical blocking (s1, t1), . . . , (sk, tk), all targets of the cycle lie in the same
residual component.

Proof. Assume for contradiction that the targets do not all lie inside the same residual com-
ponent. Then there must exist some adjacent pairs (sj , tj) and (sj+1, tj+1) in the cycle whose
targets lie inside distinct residual components. Let bt be a blocking area that separates these
distinct residual components. Since the blocking area graph Hi is a tree and a targets block-
ing area is adjacent in Hi by Lemma 6, the path between si+j and ti+j will traverse bt. Since
we have a cyclical blocking there exists a sequence of blockings which eventually return to
block the path between sj and tj . Thus, there thus must be some path that returns through bt.
This is a contradiction with Lemma 15, which states that bt cannot be traversed in opposite
direction in the matching M .

By Lemma 16, we know that all targets t1, . . . , tk lie inside the same residual component, call
it Fi,j . Since all paths between the start-target pairs are blocked, all start configurations in the
cycle must therefore lie outside Fi,j . No blocking area of the targets t1, . . . , tk is traversed by
two different paths, since the blocking areas are adjacent Fi,j by Lemma 6. Thus, a minimal
path only needs to traverse one blocking area to enter Fi,j .

Lemma 17. For a cyclical blocking (s1, t1), . . . , (sk, tk), there exists a swap between two start-
target pairs which will remove the cycle without creating additional cycles.

Proof. By definition, a target and their blocking area are separated by a start configuration.
Thus, there should exist at least one start configuration inside Fi,j which separates the targets
from their blocking areas. Call this start sx, and its matched target configuration tx. Since sx
and the target configurations in our cycle are inside Fi,j (Lemma 16), there is an unblocked
path from sx to any target configuration in the cycle. The path from sx to tx also cannot cross
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the blocking area of any target configuration in the cycle, since that would mean the block-
ing area would be crossed in opposite directions, which cannot happen due to Lemma 15.
Similarly, tx cannot be a blocker for any path in the cycle.

We can take some start-target pair (si, ti) from the cycle and swap it with (sx, tx) in the
matching. Given that both sx and ti are in Fi,j , by Lemma 10 we know there exists an
unblocked path in the motion graph connecting the two. This removes the current cycle,
since ti can block other paths but its path cannot be blocked. What remains to be shown is
that the new path from si to tx does not create any additional cycles.

Given the original cycle, the path from si to tx will be blocked by the start-target pair
(si−1, ti−1) (among potential other blockers). If tx does not reside in Fi,j than the fact that
ti−1 is a blocker does not matter, since we have established that for a blocking cycle to exist all
targets should reside in the same residual component. Thus, it will not lead to any additional
blockings.

The remaining case is if tx resides in Fi,j . Assume for contradiction that because of the
additional blocking from ti−1 there now exists a new cycle. Since tx is in Fi,j and it must be
part of the new cycle, all targets in the new cycle must reside in Fi,j . The target ti−1 must
be part of the new cycle. Since it was also part of the previous cycle, there must exist at
least one start-target pair in the new cycle which is blocked by more than one blocker in Fi,j .
However, this is impossible, since all blocking areas are adjacent to their residual component
by Lemma 6 and it is always possible to cross only a single adjacent blocking area to enter
Fi,j .

Theorem 2. For a single connected component Fi ⊂ F containing an equal number of start
and target configurations, the matching algorithm always finds a solution to the unlabeled
motion planning problem for unit-disc robots in a simple workspace, assuming monochro-
matic separation µ = 4 and bichromatic separation β = 2.

Proof. By Lemma 17, whenever there exists a blocking cycle a swap can be made between a
target configuration in the cycle and a start configuration “inside” the cycle, which removes
the cycle and creates no additional cycles. This procedure can thus be repeated until all cycles
are removed from the minimal matching. A start-target pair can only be part of one cycle,
since all targets of a cycle are in the same residual component and a start-target path can
only be blocked by a single blocker in one residual component. Therefore, the algorithm
will eventually terminate. The algorithm will thus find a matching which does not have any
cyclical blockings, and therefore there exists an ordering of executing the matching which
never encounters a blocked edge. In other words, when solving the start-target pairs in this
ordering no path will be blocked.

3.5.3 Complexity analysis

Lemma 18. The matching algorithm finds a solution to the unlabeled motion planning prob-
lem in O((m+ n) log(m+ n) +mn+m3).

Proof. Calculating the free space components Fi and the blocking areas Bi is bounded by
O((m+n) log(m+n)) by Lemma 5. The motion graph can then be calculated in O(mn+m2)
by Lemma 14.
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An initial minimal weight matching can be found using a naive algorithm in O(m3) by taking
an arbitrary matching and swapping matched pairs until there is no longer any improvements
to be made. Likely there is a less naive solution to finding this minimal weight matching,
perhaps by taking advantage of the tree structure of the blocking areas. However, for our
purpose a pessimistic upper bound is sufficient to show the algorithm can find a solution in
polynomial time.

For each matched pair we have to calculate a path through the free space and store which
blockers, if any, the path passes. The paths can be calculated in O(m), shown in Lemma 13.

The procedure for removing the cyclical blockings from the matching is bounded by O(m2).
A cycle can be found in O(m), for example by starting from a matched pair and following all
blockings (similar to a depth-first search). The cycle is then removed by performing a local
swap with an adjacent start configuration and two new paths have to be calculated, which is
also bounded by O(m), see Lemma 13. Since each start-target pair can initially only be part
of a single cycle, there can be at most O(m) cyclical blockings which need to be removed.
Therefore, removing cyclical blockings can be done in O(m2).

The final topological ordering can be found inO(m) once we have a matching without cyclical
blocking by performing a simple in-order tree walk of the matched pairs and their blockings.
The resulting paths for each robot will have complexity O(m+n), therefore the entire motion
plan will have complexityO(mn). Thus, the algorithm can find a solution inO((m+n) log(m+
n) +mn+m2).

3.6 Divide-and-conquer algorithm

In this section a divide-and-conquer approach is described for solving the motion planning
problem for each robot. The general idea is to use the blocking area graph Hi, which is
a tree, in order to split the problem into smaller subproblems. The procedure will pick a
specific residual component of the graph, occupy its target positions, and then remove the
nodes and its edges from the graph. Afterwards, we recurse on the remaining subtrees.

3.6.1 The algorithm

The algorithm will use the blocking area graph Hi = (V G
i , E

G
i ), described in Section 3.2, to

recursively solve the motion planning problem. The reason why the blocking area graph is
used is that, by Lemma 10, the robots inside a residual component of Hi can always be moved
to targets without being blocked. The main idea is then to pick a residual component such
that after solving it no robots need to move across its adjacent blocking areas, meaning we
do not have to deal with any blockers in solved residual components.

Initially, if there is an edge which splits Hi into zero weight subtrees, meaning the two re-
maining trees have an equal number of robots and target configurations, then the edge is
removed and the algorithm will recurse on the two remaining subproblems.

However, if no such edge is found, then we pick a vertex of Hi which requires robots to
move across each edge in Hi to balance its weight. For this purpose, let Di = (V D

i , E
D
i )

be a directed graph where V D
i is equal to VH . Let there be an edge between two residual
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(a) An instance with two blocker targets t1 and t4, with blocking areas shown in gray.
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(b) The corresponding directed graph Di, with the weight of each residual component in red.

Figure 3.15: An example of the directed graph Di for an instance with two blockers and
three residual components.

components u and v if there exists an undirected edge in Hi between the components. The
edge is directed from u to v if, after removing the edge between u and v in Hi, the subtree
containing u has a positive weight, and directed from v to u if it has a negative weight. See
Figure 3.15 for an illustration of this directed graph.

The algorithm will then pick a sink node of Di, which always exists (see Lemma 19). Let
σ be this sink node. This component is now solved as follows: First, all robots inside σ are
moved to unoccupied target configurations. Given that σ is a sink, all edges adjacent to σ are
pointing inwards, therefore each edge requires at least one robot to move into σ. For each
edge the required number of robots are moved into σ across the blocking area. If the blocker
which is associated with blocking area is occupied (thus the blocker has to reside in σ), we
move this robot to our original target and the (now unoccupied) blocker becomes the new
target.

Once all target configurations of σ are filled, the component and its edges are removed from
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Hi and we recurse on the remaining subgraphs. Given the way σ was selected and how the
robots were moved into σ, each subgraph should have an equal number of robots and target
configurations. Note that certain start configurations might now be unoccupied.

Algorithm 3 Pseudo code for the divide-and-conquer algorithm for a single free space com-
ponent Fi.

procedure MOTIONPLANNINGDIVIDECONQUER(W, Si, Ti)
Calculate free space Fi
Compute blocking areas and create blocking area graph Hi = (V H

i , EHi )
Create the motion graph Gi = (V G

i , E
G
i )

if there exists edge e ∈ EHi which divides Hi into zero weight parts then
Cut Hi on e and recurse on parts

else
Create a directed graph Di = (V D

i , E
D
i ) from Hi

Find sink node σ ∈ Di

for each start s ∈ σ do
Find nearest unoccupied target t ∈ σ
Make pebble move from s to t

end for
for each edge e ∈ EDi that points to σ do

for each robot at start s that needs to move in across e do
find unoccupied target t ∈ σ
if A blocker tb ∈ σ blocks movement from s to t then

Make pebble move(s) from tb to t
Make pebble move(s) from s to tb

else
Make pebble move(s) from s to t

end if
end for

end for
remove σ from Hi and Di and recurse on subproblems

end if
end procedure

See Algorithm 3 for pseudocode.

3.6.2 Correctness

In this section we argue that the divide-and-conquer algorithm always finds a solution. The
algorithm uses the blocking area graph Hi to divide the problem into subproblems. If there is
an edge that splits the problem evenly, then these are first removed to split Hi into as many
smaller subproblems as possible. Otherwise, the directed graph Di = (V D

i , E
D
i ) is created

by directing all edges in Hi from positive weight subgraphs to negative weight. Here, a sink
node σ is then selected and solved.

Lemma 19. There always exists a sink vertex in directed graph Di
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Proof. Since there are no edges that split Hi into zero weight subgraphs, every edge in Di has
a defined direction. The blocking area graph Hi is a tree, by Lemma 8, and Di is created by
directing all edges. Thus, Di is a directed acyclic graph (DAG) and must contain at least one
sink vertex

Theorem 3. For a connected free space component Fi ⊂ F containing an equal number of
start and target configurations, the divide-and-conquer algorithm always finds a solution to
the unlabeled motion planning problem for unit-disc robots in a simple workspace, assuming
monochromatic separation µ = 4 and bichromatic separation β = 2.

Proof. We argue correctness using induction on the number of vertices of Hi:

If Hi consists of a single residual component Fi,j , then the algorithm will treat Fi,j vacuously
as a sink. All target configurations will then be filled greedily by finding the nearest unoccu-
pied target for each start, and by Lemma 10 there is an unblocked path in the motion graph
between any two such configurations. Thus, it always finds a valid solution.

Otherwise, assume that Hi consists of more than one residual component. We assume that
the algorithm is correct for any blocking area graph H ′ with fewer vertices than Hi (induction
hypothesis). We now show that the algorithm will reduce Hi into smaller subproblems which
can be solved.

If there exists edge e ∈ EH which divides Hi into zero weight subtrees the algorithm cuts e
from Hi and recurse on both subproblems. Since both subtrees have strictly fewer vertices
and an equal number of start and target configurations, both subtrees can be solved according
to the induction hypothesis.

If no such edge exists, the algorithm finds a “sink” residual component σ where all adjacent
edges in Hi require robots to move into σ. By Lemma 19, there always exists such a sink
component. Since σ has only edges pointed inwards, it means that all edges require one
or more robots to move into σ in order to fill its target configurations. This means the free
space associated with σ will have at least one more target configuration compared to start
configurations for every adjacent edge.

Before moving robots into σ, the robots that already reside in σ will be moved to target
configurations. By Lemma 10, there exists a path in the motion graph that cannot be blocked
and thus this is always possible. Afterwards, the required number of robots are moved in
across every edge adjacent to σ in Hi. These paths can cross blocking areas, however, only
targets inside σ can be occupied. Thus, if the robots have to cross the blocking area of an
occupied blocker bt inside σ, the algorithm will first move the robot at bt to the original target
configuration (which is always possible by Lemma 10) and then move the robot outside σ to
tb instead.

Once σ is completely solved, the algorithm will remove σ and all its adjacent edges from Hi.
All remaining connected components are strictly smaller and have an equal number of start
and target configurations, thus we have assumed the algorithm is able to solve them.
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3.6.3 Complexity Analysis

Lemma 20. The matching algorithm finds a solution to the unlabeled motion planning prob-
lem in O((m+ n) log(m+ n) +mn+m2).

Proof. Similar to before, calculating the free space component Fi and the blocking areas Bi is
bounded by O((m+ n) log(m+ n)) by Lemma 5. The motion graph can then be calculated in
O(mn+m2) by Lemma 14. The blocking area graph follows from the calculated components,
and can similarly be generated within O((m+ n) log(m+ n)).

In total, the divide-and-conquer algorithm will calculate a path for each target configuration,
which is bounded by O(m) by Lemma 13, thus calculating all paths can be done in O(m2).
A path sometimes requires the additional movement of a robot at a blocker position, but this
does not influence the O(m) bound. The resulting paths for each robot will have complexity
O(m+ n), therefore the entire motion plan generated will have complexity O(mn).

The number of iterations for the recursive algorithm is bounded by O(m), since it always
either occupies a target configuration or removes an edge from Hi. Since Hi is a tree by
Lemma 8, the number of edges is bounded by O(m). Detecting an edge in Hi to remove
can be done efficiently in O(m) by rooting the graph Hi and for each vertex storing the
weight of the subtree rooted at that vertex. An edge that splits Hi into zero weight parts will
then correspond to an edge where the subtree rooted at the “child” vertex has a weight of
zero. Similarly, storing the weight for each subtree of Hi allows us to find the sink vertex σ
efficiently. After σ is solved and removed, updating the weight can be done in O(m).

Thus, the algorithm can find a solution in O((m+ n) log(m+ n) +mn+m2).

3.7 No bichromatic separation

So far, we have given two algorithms that can solve the unlabeled robot motion planning
problem for unit-disc robots in a simple workspace, for a single connected component of the
free space and assuming monochromatic separation of µ = 4 and bichromatic separation of
β = 2.

However, we have only shown in Chapter 2 that µ = 4 is sometimes necessary for the problem
to have a solution. Thus, we would like to further extend the algorithms such that they no
longer require any bichromatic separation, as we have theorized that bichromatic separation
is not necessary given a the free space consists of a single connected component. Recall that
in Chapter 2 the lower bound β = 3 was only shown necessary for an instance with multiple
free space components.

Fortunately, the extension to β = 0 is relatively straight-forward. The monochromatic separa-
tion restricts the configurations such that configurations closer than a distance of two to each
other only come in pairs of one start and one target configuration.

Lemma 21. For any configuration u ∈ Si ∪ Ti, there is at most one other configuration
v ∈ S ∪ T that resides inside its aura D2(u), where u 6= v.

Proof. Assume for contradiction that there exists some configuration u which has more than
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Figure 3.16: Illustration for Lemma 22. The light green and pink discs represent the auras of
y and x respectively, while A∗ is contained within the red unit-disc K.

one start/target configuration inside its aura. Assume w.l.o.g. that u is a start configuration.
Since µ = 4, we know that the configurations inside the aura of u must then be target
configurations. Let v, w be two of such target configurations inside D2(u). Using the triangle
inequality, we find that d(v, w) ≤ d(v, u) + d(u,w) < 2 + 2 < 4, given that the aura is
defined as an open set. Since v and w are both target configurations, this contradicts with the
monochromatic separation µ = 4.

In addition to the fact that configurations closer than a distance two together only come in
pairs, such pairs also have an unobstructed path between them.

Lemma 22. For any two configurations x, y ∈ Si ∪ Ti such that y ∈ D2(x) and x 6= y, there
exists a path π ⊂ Fi ∩ D2(x) ∩ D2(y) connecting x and y.

Proof. The proof is similar to Lemma 2 in the paper by Adler et al. [1]. Take x, y ∈ Si ∪ Ti
such that y ∈ D2(x) and x 6= y. By this lemma, there exists a path π′ ⊂ Fi ∩D2(x) connecting
x and y. Assume the line segment xy does not lie in the free space, since otherwise the path
π = xy stays within Fi ∩ D2(x) ∩ D2(y). Take configurations x′, y′ on xy such that x′, y′ ∈ Fi
and the distance ||x− y|| is minimized. Let A be the area enclosed by π ∪ xy and A∗ = A \ Fi
be the part of A which lies in the obstacle space. We claim that A∗ ⊂ D2(x) ∪ D2(y).

Assume w.l.o.g. that y lies directly above x and that π to the left of xy. Let K be the unit circle
which intersects both x and y. Note that K must lie to the right of xy. The region A∗ must
then be entirely enclosed within K ∩ A, which must be within D2(x) ∪ D2(y). Thus, a path
consisting of xx′, δ(A∗), and y′y connects x and y through Fi and stays within D2(x)∩D2(y).

See Figure 3.16 for an illustration of this proof.

The bichromatic separation was previously only used for the creation of the motion graph,
where it is used to show that target configuration all reside in residual components of the
free space after taking the complement of the start configurations. The algorithms only make

39 Unlabeled Multi-Robot Motion Planning with Tighter Separation Bounds



Eindhoven University of Technology

use of the motion graph and the bichromatic separation is not needed for those. Therefore,
we can make use of the fact that start-target configurations within distance two only come in
pairs to adjust the motion graph and the algorithms.

Theorem 4. For a single connected free space component Fi ∈ F containing an equal num-
ber of start and target configurationss, there always exists a solution to the unlabeled motion
planning problem for unit-disc robots in a simple workspace, assuming monochromatic sepa-
ration µ = 4.

Proof. By Theorem 2 and Theorem 3, the matching and divide-and-conquer algorithms both
find a solution assuming also bichromatic separation β = 2. We will now show how to adjust
the algorithms and the construction of the motion graph once this assumption no longer
holds.

Let Q ⊆ S be the set of start configurations for which there exists a target configuration in
their aura. By Lemma 21, we know that each s ∈ Q has a unique target configuration t ∈ T ,
which we will denote with ts. Let T (Q) =

⋃
s∈Q ts be the set of target configurations residing

in the aura of some start in Q. For the construction of the motion graph we ignore all target
configurations in T (Q). The start configurations in Q will be handled the same as regular
start configurations. This will leave all start configurations and all targets with bichromatic
separation of β = 2, meaning the motion graph can be generated as before.

For the algorithms the only adjustment is that the start configurations in Q need to be treated
as both a start and target. For the matching algorithm (see subsection 3.5.1), this simply
means the initial matching M should match each node associated to start configuration s ∈ Q
to itself. Removing cyclical blockings remains unchanged, since the path between a node
matched to itself can never be blocked thus also not be part of a cyclical blocking (note that
a swap which such a node can still be made).

For the divide-and-conquer algorithm, the start configurations only play a role when solving
a residual component of the blocking area graph. However, we can again simply treat the
start configuration as a target when solving a component. The start configuration can never
act as a blocker by definition, and thus no additional problems arise.

After the initial algorithms are finished, the robots will be at target configurations Ti \ T (Q)
and at all start configurations in Q. What remains is then to move the robots from the start
configurations in Q to their matched targets in T (Q) such that at the end each target in T is
occupied. By Lemma 22 for each start configuration s ∈ Q there exists a path π from s to ts
which stays within Fi∩D2(s)∩D2(t). Given the monochromatic separation µ = 4, π does not
cross the aura of another configuration in Si ∪ Ti besides s and ts. Therefore, we can move
the robot at s to ts across π without interference from another configuration. Doing this for
all starts in Q will result in all target configurations in Ti being occupied.
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4 Multiple free space components

In this chapter we will consider the case where the free space F consists of multiple connected
components. In Lemma 2 of Chapter 2, it was already shown that when β < 3 a solution does
not always exist if the free space contains more than one connected component. Thus, we will
assume the separation bounds of µ = 4 and β = 3. The algorithm(s) discussed in Chapter 3
can be applied to find motion plans for single free space components Fi ∈ F . Thus, the
remaining difficulty lies in the interaction between free space components. Even though the
free space is disconnected, robots in one free space component might still block a valid path
in another component. An example can be seen in Figure 4.1. In this chapter, we will describe
how to order the motion plans for each single connected component such that we can solve
the unlabeled multi-robot motion planning problem for multiple free space components.

In the paper by Adler et al. [1], a procedure is shown for defining an order of solving the free
space components. This procedure can be described as follows:

Let Fi, Fj be two distinct components of F , and let x ∈ Fi be such that D2(x) \ Fj 6= ∅. We
then call x an interference configuration from Fi to Fj , and define the interference set from Fi
to Fj as I(i,j) , {x ∈ Fi : D2(x) \ Fj 6= ∅}. We also define the mutual interference set of Fi, Fj
as I{i,j} , I(i,j) ∪ I(j,i). Intuitively, an element of the interference set from Fi to Fj is a point
in Fi which, when a robot occupies it, could block a path in Fj , and the interference set is
the set of all such points. The mutual interference set of Fi, Fj is the set of all single-robot
configurations in either component which might block a valid single-robot path in the other
component.

To obtain the ordering of free space components, a directed graph representing the structure
of F is defined, called the directed-interference forest G = (V,E), where the nodes in V
correspond to the components Fi. We add the directed edge (Fi, Fj) to E if either there exists
a start configuration s ∈ S such that s ∈ I(i,j), or there exists a target configuration t ∈ T
such that t ∈ I(j,i). Intuitively, a directed edge (Fi, Fj) shows that if Fi is not solved before
Fj , interference will occur.

In lemma 3 of the paper by Adler et al. [1], it is shown that for any mutual interference set
I{i,j} and any two configurations x1, x2 ∈ I{i,j} we have D2(x1) ∩ D2(x2) 6= ∅. Together with
the separation constraints µ = β = 4 that is assumed in the paper, there cannot be more than
one start of target configuration in I{i,j}. This avoids loops of size 2. Since W is simple, loops
of size 3 or larger are also impossible. Thus, G is a DAG and a topological ordering can be
found that respects interference between components.

However, with a tighter separation of β = 3, the claim that the mutual interference set I{i,j}
can at most contain a single start or target configuration is no longer valid. Since µ remains
4, it is still true that the mutual interference set cannot hold two or more start configurations
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Figure 4.1: An example of a configuration (t2) blocking movement (s1 to t1) in another free
space component.

or two or more target configurations. However, it does allow the mutual interference set
to contain both a start and a target configuration. See Figure 4.2 for an example of this
interference. If both start and target configuration in the mutual interference set belong to
the same free space component, the directed graph G contains a loop of size 2. This breaks
the topological ordering.

Thus, for β = 3 the ordering breaks for the case where a start and a target configuration
in one free space component both interfere with the another component. In this case no
direct ordering can be made since the component interferes when its start configurations are
occupied as well as when its target configurations are occupied.

However, interference does not always affect the connectivity of the affected free space com-
ponent. Therefore, we define a remote blocker as a target or start configuration that intersects
the boundary of a free space component, other than the one it resides in, in more than one
connected component. By definition, all remote blockers between two free space components
are in the mutual interference set.

Lemma 23. If the unlabeled motion planning problem has no remote blockers, then there is
always a solution.

Proof. We can create a motion plan for each free space component separately, using (one of)
the algorithm(s) in Chapter 3.

Let x be an element of the interference set I(i,j) between free space components Fi and
Fj . Given the separation bounds µ = 4 and β = 3, the aura of a x cannot contain another
start/target configuration, thus any robot path π that intersect the aura of x does so in at least
two points. In other words, any path through the aura of x must also leave the aura. Since x
is not a remote blocker, its aura intersects the boundary of Fj in one connected component.
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Figure 4.2: Example of start and target configuration both interfering with another free space
component.

Therefore, every path π that crosses the aura of x can be modified to use δ(D2(x)) instead.
After modifying the paths for each element in the interference sets we will arrive at a valid
solution.

Identifying the remote blockers in the mutual interference set shows us which configurations
can break the connectivity and therefore potentially the solvability of the destination free
space component. Looking at remote blockers, we can again try to find an ordering to the
components that will satisfy the direction of the blockings.

Lemma 24. The interference set I(i,j) of free space components Fi, Fj cannot contain a start
configuration x1 and target configuration x2 that are both remote blockers of Fj .

Proof. Let Fi be a free space component containing a start configuration x1 and a target
configuration x2 and let Fj be another free space component such that x1, x2 ∈ I(i,j). For a
contradiction, we assume that both configurations are remote blockers for Fj . From Lemma
3 from the paper by Adler et al. [1], we know that D2(x1)∩D2(x2) 6= ∅. Together with β = 3,
we conclude that 3 ≤ d(x1, x2) < 4, where d() is the euclidean distance function.

We take y1 ∈ δ(D2(x1))∩δ(Fj) and y2 ∈ δ(D2(x1))∩δ(Fj) such that the d(y1, y2) is maximized.
We assume w.l.o.g. that x1 lies to the left of x2 and that the line segments x1y1 and x2y2 do
not intersect (in such a case we could choose x1 and x2 differently such that their distance
does not decrease and the line segments do not intersect). See Figure 4.3 for an illustration.

Since y1 ∈ F ∩ D2(x1), we know that x1y1 ∈ W, similarly for x2y2. Given that x1, x2 ∈ Fi,
there exists a path π1 ⊂ Fi between x1 and x2. Similarly, there exists a path π2 ⊂ Fj between
y1 and y2. We now define the curve λ , π1 ∪ x1y1 ∪ π2 ∪ x2y2 for which we can conclude that
λ ⊂ W. Let A be the area enclosed by λ. SinceW is simple and λ ∈ W, we have A ⊂ W.

We now define points x′1, y
′
1 to be points on x1y1 such that x′1 ∈ Fi and y′1 ∈ Fj and the

distance d(x′1, y
′
1) is minimized. We do similar for x′2 and y′2 for the line segment x2y2. Take a

unit-disc K1 such that K1 lies to the left of x1y1 and passes through x′1 and y′1. Similarly, take
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Figure 4.3: Illustration of Lemma 24. The collision disk D2(x1) is shown in green, D2(x2) in
purple. The disks K1,K2 are shown in red. For simplicity we have shown when x1 = x′1 and
x2 = x′2.

a unit-disc K2 for x′2 and y′2 that lies to the right of x2y2. We define A∗ , A \ F . Then we
have that A∗ ⊂ K1 ∪K2. From this we can conclude that K1 ∩K2 6= ∅, otherwise Fi and Fj
are connected. Thus, we know that d(K1,K2) < 2.

Since d(x1, x2) ≥ 3 and d(K1,K2) < 2, we can conclude that d(y1, y2) < 1. Let z be the inter-
section between the line through x1 and y1 and the line through x2 and y2. Then, d(y1, z) < 1,
and similarly d(y2, z) < 1.

By how we defined y1, we know there exists w1 ∈ O ∩ D1(y1) and that w1 lies on or to the
right of the line x1y1 (otherwise there exists a point y′′1 ∈ δ(D2(x1) ∩ δ(Fj) to the left of y1
which would mean d(y1, y2) < d(y′′1 , y2)). Similarly, for y2 there exists w2 ∈ O ∩D1(y2) which
lies to the left of line segment x2y2. However, this contradicts with the fact that intersection
z lies within distance 1 of both y1 and y2.

Since the interference set cannot contain more than one remote blocker by Lemma 24, we can
find a topological ordering of solving the free space components such that the motion plan for
a free space component Fi is never blocked by a robot in a component Fj 6= Fi. Intuitively,
since we cannot have both a start and target configuration as a remote blocker from one free
space component to the other, there is a well-defined direction regarding remote blockers
between two components.

Note that a configuration that is not a remote blocker can still interfere, however any path in
the motion plan that crosses the aura of an interfering configuration can be modified to use
the boundary of the aura instead, see Lemma 23.

Theorem 5. Given m unit-disc robots in a simple polygonal workspace W ∈ R2, with start
and target configurations S, T and separation constraints µ = 4 and β = 3. Assuming each
maximal connected component Fi of the free space F for a single unit-disc robot in W con-
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tains an equal number of start and target configurations, there exists a collision free motion
plan for the robots starting at S such that all target configurations in T will be occupied after
execution.

Proof. We can create a motion plan for each connected components Fi ⊂ F of the free space
using one of the algorithm discussed in Chapter 3 (Theorem 2, Theorem 3). We can then use
the fact that only a single configuration can be a remote blocker between two components
of F by Lemma 24 to find an ordering for solving the free space components that respects
remote blockers.

To obtain the ordering of free space components, a directed forest G = (V,E) is created such
that the nodes in V correspond to the free space components Fi ∈ F . We add the directed
edge (Fi, Fj) to E if either there exists a start configuration s ∈ Fi such that s is a remote
blocker for Fj , or there exists a remote blocker target configuration t ∈ Fj such that t is a
remote blocker for Fi.

Given the fact that an interference set cannot contain two remote blocker by Lemma 24 and
the workspace W is simple, the graph G is a DAG. Therefore, G has a topological ordering
that respects remote blocking between components.

Lastly, the motion plan of one free space component might still encounter interference from
other free space components. But since these are not remote components, we are able to mod-
ify all paths that pass the aura of an interfering configuration to take the boundary instead,
as explained in Lemma 23.
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5 Conclusion

In this thesis we have shown that the unlabeled multi-robot motion planning problem for
unit-disc robots in a simple workspace can always be solved using monochromatic separation
of four and bichromatic separation of three, as long as each connected component of the
free space contains an equal number of start and target configurations. When the free space
consists of a single component, the bichromatic separation constraint can even be dropped
and only monochromatic separation of four is necessary for the problem to have a solution.
These separation bounds are tight, which improves upon what was previously shown by Adler
et al.[1]. In Chapter 2 it was shown that monochromatic separation of four is sometimes
necessary for the problem to always have a solution, and similarly that bichromatic separation
of three is sometimes necessary when the free space consists of multiple components.

The lack of bichromatic separation bounds when β < 4 makes the problem significantly
more difficult, since the auras of start and target configurations can overlap. This results
in situations where start/target configurations can block part of the free space together, see
blocking areas in Section 3.1. We have looked at several ways of handling blockers to still
always be able to find a solution to the motion planning problem.

We explored different algorithms to solve the multi-robot motion planning problem for a
single free space component in Chapter 3, first assuming the monochromatic separation of
four and a bichromatic separation of two. In Section 3.7 it was then shown how to adapt the
algorithm to handle the case without any bichromatic separation.

In Chapter 3 we discussed three separate approaches for solving the problem. A greedy
algorithm which tries to handle blockers “on-the-fly”, a matching algorithm which calculates
a matching without cyclical blockings, and a divide-and-conquer algorithm that recursively
solves the problem using the blocking area graph. In the end, the matching and the divide-
and-conquer algorithm proved to always be able to solve the problem in polynomial time.

Though the greedy approach showed some promise, there were potential issues with cyclical
blockings and the running time. For the matching algorithm it was proven that cyclical block-
ings could always be removed, and thus a topological ordering for solving start-target pairs
can be found that does not result in any blockings. For the divide-and-conquer algorithm, the
blocking area graph could be used to split the instance into subproblems and solve the sub-
problems recursively. Thus, we have presented two algorithms that can always find a solution
to the unlabeled robot motion planning problem for unit-disc robots in a simple workspace.
Moreover, they can find such a solution in polynomial time.

Comparing the algorithms, we proved a better theoretical upper bound for the complexity
of the divide-and-conquer algorithm, though the upper bound for the matching algorithm is
likely overly pessimistic. The total complexity of both algorithms is also for a large part deter-
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mined by the construction of the free space, its derivative components, and motion graph plus
the complexity of the final paths generated, which they have in common. Nonetheless, we
suspect the divide-and-conquer algorithm will perform better on average than the matching
algorithm, simply by its recursive nature. The divide-and-conquer has the potential to split
the problem into many smaller subproblems, which will be more efficient to solve. For a better
comparison, both algorithms would have to be implemented to provide some experimental
evidence.

In Chapter 4 we described how to extend the algorithms for a single free space component
to handle multiple free space components. The bichromatic separation of three was assumed
since it was shown that this is sometimes necessary for the problem to be solvable. With these
separation bounds, we showed that there can never be a cyclical blocking between separate
free space components and thus a topological ordering of solving these components always
exists.

Overall, the work done in this thesis is a small but important step in the field of multi-robot
motion planning. It gives us more knowledge under what assumptions the problem is effi-
ciently solvable and what properties make the problem hard. Given the many applications of
robot motion planning, for example in robotics, a good theoretical understanding is crucial
for the development of efficient algorithms.

5.1 Future work

In this thesis we have focused on the separation constraints for a particular variant of the
unlabeled motion planning problem, namely with disc-shaped robots in a simple workspace.
Assuming the free space components contain an equal number of start and target configu-
rations, we have given algorithms that can always solve this problem for stricter separation
bounds than was previously shown [1],

Additionally, the separation bounds are strict in the sense that a solution does not always
exist for less separation. This result is in contrast with the general unlabeled motion planning
problem, which was shown to be PSPACE-hard [2] for disc-shaped robots, though this proof
uses two classes of robots with different radii. Thus, the question still remains what the exact
complexity is for this variant of unlabeled robot motion planning with just a single class of
disc-shaped robots, in case we do not assume any separation.

It would be interesting to see if it is possible to create efficient algorithms that can solve the
problem with less separation. We have shown that the separation is necessary for the problem
to always have a solution, but an algorithm could still be used to find a solution, in case it
exists. If the problem is shown to be NP-hard or PSPACE-hard, perhaps an algorithm can be
designed whose running time depends in some way on the separation that is assumed.

Another direction would be to apply the separation assumptions to other variant of the motion
planning problem. Perhaps we can use a certain separation constraint to design a polynomial
algorithm for other variants, for example when the robots are square or polygonal. What
challenges arise when the workspace is no longer simple and contains obstacles? Intuitively,
obstacles seem to pose an issue when defining an ordering for solving multiple free space
components, since configurations can interfere between components at multiple locations.
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From a practical side, an implementation of the algorithm(s) proposed could provide addi-
tional insight as well as a good comparison based on their performance. We suspect that the
recursive algorithm would perform better than the matching algorithm in many cases, since
it has the possibility to split the problem up efficiently into small subproblems. Additional
difficulties or edge cases could present themselves that were not considered in this thesis.
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