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Abstract

Online classifieds are advertisements posted online by private citizens for mostly used goods.
Customers often have specific requirements for the products they are trying to buy online, for
example, a certain RAM specification for a laptop or the brand of a car. Such specifications
of the products are called attributes. Classifieds consist of unstructured product descriptions
leading to poor search results and recommendations for the interested user. Attribute-level in-
formation enables a product description to be represented in a structured format. We propose
a semi-supervised solution for converting the unstructured classifieds product descriptions to
a structured format by representing the semantic meaning of words by their relationships.
Link Prediction has not been explored for predicting attributes from product descriptions to
the best of our knowledge. We present a novel approach to constructing a knowledge graph
using labeled and/or unlabeled product descriptions. Initial experiments conducted on a pub-
lic annotated data-set show that we obtain state-of-the-art results, compared to traditional
classification models. Next, we extend the link prediction approach to an unlabeled data-set
by constructing a knowledge graph using a heuristics-based method. Alternative strategies
are proposed to improve the baseline approach’s performance by modifying the model and
input data. We show that we achieved an increase in performance compared to the baseline
approach by applying the proposed strategies. The key contribution is towards having a sys-
tem contributing primarily to produce relevant search results and recommendations to the
user.
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Chapter 1

Introduction

Identifying the semantics of words automatically is relevant for various application areas such
as clustering [1], topic modeling [2]. Here, we want to model the relationship between the
words, its context and broader meaning. To conclude if the word “apple” refers to a fruit or a
brand is decided by the context. The relationships between words help in understanding text
and deciphering information. Explicitly creating relationships between words enables a system
to interpret language and also to define new relationships which the system has not seen before.
One of the benefits of extraction of relationship is to convert unstructured text to a structured
format, which is a major challenge in the case of online classifieds. Online classifieds are
advertisements posted on online platforms by private citizens for mostly used goods. Typical
examples of such platforms are OLX, and Ebay. Classifieds descriptions lack structure when
compared to descriptions from e-commerce marketplaces like Amazon, Flipkart, Best Buy, etc.
We propose an semi-supervised solution for converting the unstructured classifieds product
descriptions to a structured format by representing the semantic meaning of words by their
relationships.

1.1 Classifieds are an Information Desert

Customers often have specific requirements for the products they’re trying to buy online, for
example, a certain RAM specification for a laptop or the brand of a car. Such specifications
of the products are called attributes. These attributes can take one or more values. For
example, attribute colour, could be red, blue, or green. Similarly, a laptop can have 4GB,
8GB, or 16GB of RAM. In e-commerce marketplaces such as Amazon, Flipkart, merchants
often invest time in creating detailed and structured product descriptions, leveraging infor-
mation from the item’s manufacturer. Whereas, in online classifieds such as OLX and Ebay,
product descriptions are comparatively less structured. This is because sellers are more often
consumers themselves, not professional businesses and because all products are in a sense
unique (since they’re secondhand) as each product description is written by a different user
and each product is in a different condition compared to other products. Figure 1.1 shows dis-
tinction between product description from online classified and e-commerce marketplace. We
can see the online classifieds have unstructured product descriptions compared to e-commerce
marketplaces.

8
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Figure 1.1: Online Classified vs e-commerce marketplace product description. Left: Online
Classified description in unstructured format, Right: e-commerce marketplace description in
structured tabular format.

Extracting the attributes and values in an automated way would to provide structured infor-
mation to the buyers without burdening the seller with strict requirements such as asking the
user to fill in specific details about the product. In addition, having more structured product
descriptions enables the platform to provide:

• More relevant search results and recommendations: having an attribute based
product description enables the search system to retrieve items based on attribute level
information. It would also enable the platform to define search filters based on at-
tributes, allowing the user to find a product of their choice quickly. Also, more relevant
products can be recommended to users based on the history of products explored and
the attributes associated with them. For example, providing search results based on the
brand or color of a product.

• Better comparison between products: an attribute based product description
would help define a taxonomy for products that would allow comparison with other
related products and improve sales forecasts.

Having structured information of a product enable buyers to make an informed choice and
avoid the disappointment of receiving a product that does not live up to their expecta-
tions.

1.2 Problem Definition

Our goal is to parse the product descriptions from online classifieds and identify the attribute
associated with each target word. Figure 1.2 is a high-level diagram providing input and
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expected output. The input to the system is a product description and the output is a
collection of attributes and values.

Figure 1.2: High-level diagram: Input to the system is a product description and output is
pairs of attributes and values. Attributes are shown in dark blue, and values in red.

Traditionally the approach of extracting keywords from text falls under the umbrella of Infor-
mation Extraction (IE) and, in particular, an instance of Named Entity Recognition (NER)
[3]. Supervised machine learning-based systems have been the most successful in the NER
task [4]. Prior work explained in Section 2.2.1 provides several supervised machine learning
techniques for predicting attributes from product descriptions. However, these techniques
require correct annotations of product descriptions in large quantities for training. By anno-
tation we mean that the words in a product description are tagged with attributes. The task
of manually annotating text is labour-intensive and needs domain expertise as one needs to
know which attribute to tag for the values. One possible approach to deal with this problem
is to label small amounts of data and apply Transfer Learning [5]. However, our task is spe-
cific to predicting attributes based values from classifieds. Existing pretrained NER models
identify generic entity types (person, date, location, geopolitical entity, organisation, etc.);
hence Transfer Learning is not suitable.

Unsupervised machine learning techniques for extracting attributes from text has received
far less attention as compared to supervised techniques. The unsupervised approaches do
not require any manually annotated data unlike supervised approaches. The unsupervised
techniques assume that product descriptions follow a particular structure where values are
mentioned after attributes. We explain these techniques in more detail in Section 2.2.2.

In Section 2.2.3 we explore the semi-supervised approaches that are applicable for predicting
attributes from product descriptions. Knowledge graphs model information in the form of
entities and relationships between them. In this case, entities refer to target words, context,
attributes and relationships refer to the links between these entities. In Figure 1.3 we give
an example of a knowledge graph where the word “Apple” is used in two different contexts.
Suppose we know that when “Apple” is used in context with “iPhone” it refers to the Brand
and when “Apple” is used in context with “Bananas” we know it refers to a Fruit. Given that
apple is used in context with “Watch” can we predict if apple refers to a brand or fruit? Such
a problem of predicting missing links is considered as a knowledge graph completion problem.

10



Eindhoven University of Technology

The knowledge graphs can be represented in the form of a tensor and Link Prediction [6]
can be applied for predicting missing links. To the best of our knowledge no study has
been conducted so far for applying Link Prediction models to predict attributes from textual
descriptions. Link Prediction refers to the task of predicting the existence (or probability of
correctness) of edges in the graph. One possible approach for knowledge graph completion
is by applying Tensor Factorization [7]. Tensor Factorization models can capture semantic
representation of words and the level of interaction between these words.

Figure 1.3: Example of a knowledge graph completion problem where the model has to predict
whether Apple in context of Watch is a Brand or a Fruit. Bold lines refer to known links and
dotted lines refer to missing links.

1.3 Research Questions

We break down our problem statement into the following high-level research questions:

• RQ1: Is knowledge graph completion a suitable model for predicting attributes from
product descriptions? If yes, then what would be the best technique out of the existing
approaches that can be used?

• RQ2: If knowledge graph completion model can be applied to our use-case, can we
extend this approach to unlabeled data? How can we construct a knowledge graph
from unlabeled data?

• RQ3: How does the model performance change when data volume is scaled up? We
find the impact on the model’s performance by increasing the volume of training data.
This research question is relevant from the model deployment point of view.

In Section 3.2 we breakdown the above research problems into further sub-problems and give
a detailed insight into the problems that try to solve.
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1.4 Approach

To answer RQ1, we conducted experiments on public data-set and compare our model per-
formance to existing solutions. For RQ2, we provide an automated solution for constructing
knowledge graph from unlabeled data. By doing so, the data quality is lowered where most
of the facts are either not accurate or not relevant. To handle this noisy data, we propose
techniques for improving the performance of the model. To answer RQ3, we consider product
descriptions from from multiple categories and illustrate the impact on the model performance
by adding product descriptions from one category at a time.

1.5 Contributions

In this thesis, we propose an unsupervised solution for converting the unstructured classifieds
product descriptions to a structured format, representing the semantic meaning of words by
their relationships between them. In the task of achieving this goal we succeeded in making
the following contributions:

• We provide a novel approach for constructing a knowledge graph from unstructured
product descriptions.

• We provide a novel interpretable approach for combining the context words while making
prediction for the target word.

• We show that our approach outperforms state-of-the-art solution on a public, annotated
data-set.

• We define novel strategies for improving the performance of the system by modifications
of the model and input data.

1.6 Outline

The outline of the rest of this Master Thesis report is as follows:

• Chapter 2 provides preliminary knowledge and prior work in the domain of Attribute
Extraction from text and Link Prediction.

• Chapter 3 provides a deep-dive into the problem statement by breaking each research
question down into further sub-questions.

• Chapter 4 consists of the methodologies implemented to answer the first research ques-
tion.

• Chapter 5 contains the methodologies employed to answer the second research question.

• Chapter 6 provides the results associated with the research questions.

• Chapter 7 details our contributions, concluding remarks, and directions for future work.

12



Chapter 2

Background

2.1 Preliminaries

We use Tensor Factorization to obtain relationship information from natural language. In
this section, we review the definitions and properties of tensors as far as they are relevant for
the course of this thesis.

2.1.1 Introduction to Tensors

Tensors is an array of numbers, which typically come from a field (like R). A tensor is
typically represented by a three-dimensional array or a data cube, although it could also
be more than three dimensions. Below we will go through some of the terminologies and
operations associated with tensors.

• Tensor order: The order of a tensor is the number of its dimensions. Scalars can be
interpreted as zero-order tensors, vectors as first-order tensors, and matrices as second-
order tensors. Notation-wise, scalars are denoted by lower case letters x ∈ R, vectors
by bold letters x ∈ RI1 , matrices by upper case letters X ∈ RI1×I2 , and higher order
tensors by upper case bold letters X ∈ RI1×I2×I3 . Is denotes the number of elements in
the respective dimension. Figure 2.1 illustrates the transition from scalars to tensors.

13
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Figure 2.1: Visualisation of scalars, vectors, matrices and tensors respectively. x ∈ R,x ∈
R4, X ∈ R4×5,X ∈ R4×5×3.

• Tensor Indexing: We can create subarrays (or subfields) by fixing some of the given
tensor’s indices. Fibers are created when fixing all but one index. Slices (or slabs) are
created when fixing all but two indices. For a third order tensor the fibers are given as
X:jk = xjk (column), Xi:k (row), and Xij: (tube). The slices are given as X::k = Xk

(frontal), X:j: (lateral), Xi:: (horizontal). Figure 2.2 and Figure 2.3 depict the fibers
and slices of third order tensor.

Figure 2.2: Column, row, and tube fibers of a third order tensor. Fibers are created when
fixing all but one index.
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Figure 2.4: Outer product of two vectors results in a matrix. X = a⊗ b = abT

Figure 2.3: Lateral, horizontal and frontal slices of a third order tensor. Slices are created by
fixing all but two indices.

• Outer Product: The vector outer product is defined as the product of the vector’s
elements. This operation is denoted by the ⊗ symbol. Figure 2.4 shows the illustration
that outer product of 2 vectors results in a matrix. Equation (2.1) shows the vector
outer product of two n-sized vectors a, b is defined as follows and produces the matrix
X:

X = a⊗ b = abT (2.1)

By extending the vector outer product concept to the general tensor product for N
vectors, we can produce a tensor X as shown in Equation (2.2):

X = a(1) ⊗ a(2) ⊗ a(3) ⊗ ...⊗ a(N) (2.2)

• Tensor Re-orderings-Matricization: Matricization is the operation that reorders
a tensor into a matrix. We will look into the mode-n matricization of a tensor. This
operation is also known as unfolding or flattening of a tensor. The mode-n matricization

15
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of a tensor X ∈ RI1×I2×I3×...×IN is denoted by X(n) ∈ RIn×(I1·...·IN ). Below we provide
an example for matricization. Let X be a tensor with the following frontal slices:

X::1 = X1 =

1 4 7 10
2 5 8 11
3 6 9 12

 X::2 = X2 =

13 16 19 22
14 17 20 23
15 18 21 24


Then the three mode matricizations are:

X(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24



X(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


X(3) =

[
1 2 3 4 .. 9 10 11 12
13 14 15 16 ... 21 22 23 24

]

This tensor operation is useful while understanding the Tensor Factorization model that
we describe in Section 4.3.

2.2 Related Work

In this section, we discuss the supervised, unsupervised and semi-supervised approaches for
attribute extraction from e-commerce product descriptions.

2.2.1 Supervised Approaches

Most research on attribute extraction from product descriptions has been carried out in the
field of supervised learning. The authors in [8] assume retail descriptions are represented as
attribute-value pairs. They present techniques for extracting attribute-value pairs for a small
set of attributes or labels like age group, degree of brand appeal, and price point. They apply
the Naive Bayes classifier [9] for each attribute. This approach is not scalable when dealing
with large volumes of data that consist of a large number of attributes as we have to have a
different classifier for each attribute leading to issues leading to difficulties in maintenance.
The work presented in [10] uses supervised approach for extracting attribute-values from
product descriptions related to electronic products using features that are manually defined.
The author compares three classification methods in this paper. The author trains a Support
Vector Machine (SVM)[11], Gradient Boosting Trees (GBT)[12] and Conditional Random
Field (CRF) [13] for classifying each token present in the product listing description.

In [14] the authors presents a technique for attribute-value extraction using a sequence labeling
classifier, using Structured Perceptron and Conditional Random Fields (CRF) similar to [15].
They generate a set of feature functions for extracting the brand from the listings. The
authors also present a normalization scheme to find the attribute despite the value having
multiple variations. A list of key-value pairs is maintained by a team of analysts, which
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contains the mapping of variants of value and their corresponding normalized value. This
list is maintained by a team of analysts and is, therefore, not a feasible approach for our use
case.

The author in [16] presents an approach of Attribute extraction on listings by utilizing Transfer
learning. Transfer learning is a general class of strategies where knowledge learned in one
domain (for example, a certain attribute) can assist learning in another domain. In this case,
the author already has a labeled data-set to begin with and later extends the model to the
remaining unlabeled data using Transfer learning. In our case we do not have any labeled
data-set to begin with hence this approach is not suitable for us. In [17] the authors present a
novel approach of incorporating active learning [18] along with the sequence labeling approach.
The authors tackle the Open World Assumption (OWA) problem, i.e., they extract attribute-
value pairs that the model has not encountered before. Their model can achieve state-of-the-
art performance for discovering attributes that it has not seen before. However, for initial
training, the model requires data with labels, which is done manually in this case.

Together these studies provide important insights into the challenges that the authors face
while extracting attributes from product descriptions. However, the approaches mentioned
thus far remain narrow in focus dealing only with manually labeled data. In our case we are
dealing with large volumes of unlabeled data which makes manual labeling labor-intensive and
time-consuming. This motivates us to explore some of the unsupervised techniques.

2.2.2 Unsupervised Approaches

Unsupervised approaches for extracting attributes and values have received much less atten-
tion compared to supervised approaches. The authors in [15] automatically extract popular
product attributes from a collection of customer reviews. Latent Dirichlet Allocation (LDA)
[2] is employed to discover latent concepts, which essentially refer to the popular features
of the products. Conditional Random Fields (CRF)[13] is used for extracting these popular
attributes from product descriptions. The drawback of this approach is that the quality of
the popular attributes depends on consumer reviews’ quality. Each product category would
have its own set of popular attributes; hence a different topic model would be required for
extracting popular attributes from customer reviews. The authors in [19] provide a novel ap-
proach of attribute extraction from text by constructing a graph using the word co-occurrence
statistics. Their approach is based on the hypothesis that similar products are described by a
similar set of attributes; hence the terms corresponding to attributes would be more frequent
than the remaining terms. However, this method can capture only the frequent attributes
and tends to miss the attributes that rarely occur in the description. The approach assumes
that attribute-value pairs occur together in the description, and a value follows the attribute.
However, this might not happen every time. The attribute is not mentioned most of the time
in the product description, especially in second-hand product descriptions.

In [20] the authors present a clustering-based approach for identifying attribute-values. They
extract noun phrases of n-grams from product descriptions and apply Dice’s coefficient [21] as
a distance measure for the Group Average Agglomerative Clustering(GAAC) [22] algorithm
for computing the clusters. This method’s drawback is that both the attribute and its value
should occur in the product description, which does not often happen with second-hand
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product descriptions.

When exploring unsupervised techniques, we notice that the data is required to follow a
particular structure, such as containing the attribute and values in the product description.
Although, this is not the case with online classifieds where product descriptions are written in
unstructured format. We also realize that supervised techniques achieve better performance,
compared to unsupervised techniques. The problem with supervised techniques is that they
require labeled data. We want to benefit from the better performance of supervised approaches
and also want the increased applicability of unsupervised approach which motivated us to
explore semi-supervised approaches for our use-case.

2.2.3 Semi-supervised Approaches

In [23] the authors propose a semi-supervised bootstrapped NER approach for extracting
attribute-values from Ebay’s clothing and shoe categories and develop an attribute extraction
system for four attribute types. They train a sequential classifier and evaluate the extraction
performance on a set of manually annotated product descriptions/listings. Their proposed
bootstrapped algorithm can identify new brand names corresponding to spelling variants or
typographical errors of the known brand names in initial list of attributes. This approach
would work for our case, if we had an initial list of attributes to identify.

Extracting attributes from text could be modeled as extracting relationships between words
and identifying which relationships are true or false, where true relations indicates words
having a semantic relationship. This is where Statistical Relational Learning (SRL) comes
into picture. Statistical Relational Learning is a subdiscipline in machine learning that is
concerned with knowledge graph representations. Thus the data is represented as a knowl-
edge graph, consisting of nodes (entities) and labeled edges (relationships between entities).
The main goals of SRL include the prediction of missing edges, prediction of properties of
nodes, and clustering nodes based on their connectivity patterns. In the context of knowledge
graphs, link prediction is also referred to as knowledge graph completion. It has been shown
that relational models that take the relationships of entities into account can significantly
outperform non-relational machine learning methods for this task [24][25]. This motivates us
to explore the knowledge graph completion models in more detail. The authors in [26] and
[27] utilise pre-trained language models such as BERT [28] for knowledge graph completion.
They treat the triples in the knowledge graph as textual sequences and translate the knowl-
edge graph completion problem into a sequence classification problem [29]. This approach
provides contextualized representation for entities and relations between them. Although
these models provide promising results across the standard knowledge graph data-sets, they
do not outperform the pre-existing link prediction models.

Numerous matrix factorization approaches to link prediction have been proposed. Matrix fac-
torization [30] is a class of collaborative filtering models [31]. Specifically, the model factorizes
a user-item interaction matrix (e.g., rating matrix) into the product of two lower-rank matri-
ces, capturing the low-rank structure of the user-item interactions. Many approaches to link
prediction have been based on different factorizations of a binary tensor representation of the
training triples. Tensor factorization models have been used for representing multi-relational
data. For example, the interaction between users in social networks can be considered multi-
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relational data, and applying tensor factorization algorithms allows the determination of the
inter-dependencies occurring on multiple levels simultaneously. This motivates us to explore
some of the tensor factorization models.

RESCAL [32] optimizes a scoring function containing a bilinear product between subject
and object entity vectors and a full rank relation matrix. Although a very expressive and
powerful model, RESCAL is prone to over-fitting due to its large number of parameters,
which increases quadratically in the embedding dimension with the number of relations in a
knowledge graph.

SimplE [33] is based on Canonical Polyadic (CP) decomposition [7] in which subject and object
entity embeddings for the same entity are independent SimplE’s scoring function alters CP to
make subject and object entity embedding vectors dependent on each other by computing the
average of two terms, first of which is a bilinear product of the subject entity head embedding,
relation embedding, and object entity tail embedding, and the second is a bilinear product
of the object entity head embedding, inverse relation embedding, and subject entity tail
embedding.

The Tucker decomposition [34] decomposes a tensor into a core tensor and multiple matrices.
Each factor matrix contains embeddings of subject, relation, and objects of the triple, and
the core tensor contains the weights for the interactions between the components of the triple.
Tucker is also known for its fully expressive nature which means that, for any ground truth over
all entities and relations, there exist entity and relation embeddings that accurately identify
true relations between entities. In [35] the authors show that Tucker decomposition, despite
being a linear model for link prediction achieves state-of-the-art results across all standard
data-sets. Considering all the approaches that we have explored so far, link prediction models
have not been used for predicting attributes in product descriptions. Given that Tucker
achieves state-of-the-art results across the standard knowledge graph data-sets, we choose
this model to fit the data. In Chapter 4 we explain the Tucker decomposition in more details
and its applicability for knowledge graph completion.
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Chapter 3

Problem Exposition

In this chapter we provide details regarding the data used to answer our research questions
and provides insights into the challenges we face while answering each research question.

3.1 Data Understanding

For performing our experiments and answering the research questions, we use the following
data-sets:

• Labeled data-set: Public data-set [36] with labeled data consisting of electronics e-
commerce product descriptions. It is composed of 941 product descriptions, where
some words from each product description are manually labeled (tagged) by experts.
The product descriptions are in the English language. Figure 3.1 is an illustration of a
labeled product description. We use the Best Buy data-set for answering RQ1 which
is to verify if knowledge graph completion is a suitable model for predicting attributes
from product descriptions.

Figure 3.1: Example of a labeled product description from Best Buy data-set. Car and stereo
are the values and Category is the attribute/label for these words.

• Unlabeled data-set: OLX [37] has provided us access to their listings with each listing
consisting of a title, description, and images of a product. Figure 3.2 shows a list-
ing of a binocular. The listings are unlabeled, i.e., the product descriptions do not
have any attributes/labels associated with the words. For our experiments, we use the
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title and description from every listing. Every product description in the OLX data-
set has category information associated with it. For example: the listing in Figure
3.2 is associated to category Consumer electronics/Photographic equipment/Binoculars
and telescopes/Binoculars. In RQ2 we pose the question of extending the knowledge
graph completion model to unlabeled data. For our experiments we consider product
descriptions from three categories from the domain of Consumer Electronics. Table
3.1 contains information about the number of listings and category information of the
product descriptions used to answer RQ2.

Figure 3.2: Example of a listing from OLX data-set. We use the title and description from
the listing for our experiments.

Category Information # of listings

Ipod nano player 429
Meizu Phone 283
Binoculars and telescopes 255

Total 967

Table 3.1: OLX data-set information for RQ2. These categories are under the domain of
Consumer Electronics.

3.2 Detailed Research Questions

In Section 1.3, we pose the high-level research questions that we answer in this thesis. Here
we break our research questions down into further sub-questions. Each sub-question is repre-
sented as RQij where ij refers to the jth sub-problem in the ith research question (RQ).

• RQ1: in RQ1, we propose using knowledge graph completion for predicting attributes
from product descriptions. However, we cannot apply the knowledge graph completion
model directly to the data. We break the research question down into the following
sub-questions:

– RQ11: how to construct a knowledge graph using product descriptions and their
corresponding labels? The data needs to be provided in a triple format to apply
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knowledge graph completion model for predicting missing links. We present an
approach for constructing the knowledge graph in Section 4.1.

– RQ12: how can we apply the Tensor Factorization Tucker decomposition technique
to the knowledge graph for predicting attributes from product descriptions? This
research question was from an implementation point of view. Can we use the
already existing code-base for Tucker decomposition and begin our experiments?
The answer to this sub-question is provided in Section 4.3.

– RQ13: how can we use the surrounding/context words’ knowledge while making
predictions for a target word? In Section 4.4 we provide a novel approach for this
research question.

• RQ2: By answering RQ1, we show that we can extract attributes from product descrip-
tions by having labeled data. In RQ2, we want to apply the knowledge graph completion
technique to unlabeled data. How can we construct a knowledge graph from unlabeled
data? Can we use the same link prediction model used in RQ1? To answer this research
question, we break our research question down into the following sub-questions:

– RQ21: how to construct a knowledge graph from unlabeled data? Can we use an
external database to create a knowledge graph that we can apply to our use-case?
We answer this research question in Section 5.2.

– RQ22: can we use the same knowledge graph completion technique as RQ1 to
predict attributes from product descriptions, or do we need to provide alternative
strategies for improving the model and input data? We provide an answer to this
sub-question in Section 5.5.

• RQ3: how does the model performance change when data is scaled up? We find the
impact on the model’s performance by increasing the volume of training data. This
research question is relevant from the model deployment point of view. Is it better to
use one model to predict attributes from all categories of product descriptions or use
one model for each category of product descriptions? We provide the experiment and
results associated with this particular research question in Section 6.5.

3.3 High Level Approach

In Figure 3.3, we present the pipeline involved in extracting attributes from product descrip-
tions. Product descriptions are not by default in the triple format; hence, we need to figure
out how to represent product descriptions as a knowledge graph. We provide a solution to
this particular sub-problem in Section 4.1. Based on the literature survey, we decide to use
Tucker decomposition[34] for Tensor Factorization. Our goal is to extract attributes from
product descriptions. For obtaining prediction for a target word, we want to use the context.
We propose a novel approach for predicting an attribute for a target word by considering the
context words in Section 4.4. The author in [10] applies different classification methods on
the Best Buy public data-set for extracting attributes. We compare our model performance
to their approach in Section 6.3.
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Figure 3.3: High level diagram of the pipeline for predicting attributes from product descrip-
tions. We follow these steps while answering the research questions.

The pipeline remains the same while answering RQ2; however, the technical approach is
different. Since we deal with unlabeled data in RQ2, in Section 5.2, we provide a heuris-
tic rule-based solution to construct a knowledge graph from unlabeled product descriptions.
We apply the same Tensor Factorization technique as RQ1 to develop a baseline model for
our experiments. Based on the experiments’ observations and results, we propose numer-
ous strategies for improving the system’s performance. Details about these techniques are
mentioned in Section 5.5.
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Chapter 4

Link Prediction with Labeled
Data

In this chapter we answer RQ1 with each section tackling the sub-questions mentioned in
Section 3.2.

• In Section 4.1, we present an approach for representing the product descriptions as a
knowledge graph.

• Section 4.2 provides an approach for representing the knowledge graph as a binary
tensor.

• Section 4.3 gives insight into the Tucker Decomposition model applied to model the
semantic relationship between the words of product descriptions.

• Lastly, we tackle the problem of using the context information while predicting an
attribute for a target word in Section 4.4.

4.1 Product Descriptions as a Knowledge Graph

The first task is to express the product descriptions as a knowledge graph. We associate the
target word and its context to the label. In the knowledge graph, each connection can be
represented as a triple. Each triple consists of (target word, context word, label). In Figure
4.1 we show the target word, context words and labels in a product description. Target word
refers to the word which has an attribute/label, context words refers to the words surrounding
the target word and label refers to the attribute.
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Figure 4.1: Target word, context words and attribute/label in a product description. Target
word has an attribute/label, context words refers to the words surrounding the target word
and Brand refers to the attribute.

We formalize the knowledge graph creation approach by the following definition.

Definition: Let S be a sentence in the product description consisting of words (w1, w2, ..., wn)
where wi ∈ S be the tokenized version of S. Given an attribute/label α associated to a target
word wi, the triples are of the format, (wi, wj , α) where wi is the target word, wj are the
context words in the sentence S, where 1 ≤ j ≤ n.

Figure 4.2 illustrates the knowledge graph constructed using two product descriptions. Con-
sider the first product description in the figure below: “car stereo with bluetooth”. There are
two target words associated to label:“Category”. In this case, S = “car stereo with bluetooth”,
(w1, w2, ..., wn) = (car, stereo, with, bluetooth), and (α1, α2) are the labels (Category). The
target words are w1, w2, i.e., car, stereo. Context words correspond to the words around the
target word, i.e., (w1, w2, ..., wn). Similarly, for the second product description, S = “bmw car
with ac”, (w1, w2, ..., wn) = (bmw, car, with, ac), and (α1, α2) are the labels (Brand,Category).
We want to highlight that the target word is also considered as a context word while creating
the knowledge graph.

Nodes consisting of pairs of the target word and context words are constructed. We call these
nodes as the source nodes. Each source node consists of (target word, context word) pair.
Each attribute/label corresponds to a label node. The source nodes are connected to label
nodes if a target word is associated with a label. In this way, we create a knowledge graph
comprising the target word, context, and label. The arrows indicate the connection from the
source node to the target node. The knowledge graph can also be represented in a triple
format shown in Table 4.1.
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Figure 4.2: Knowledge Graph representation of product descriptions. The connections in
black and red are formed from first and second product description respectively.

target word context word label

(car, car, Category)
(car, stereo, Category)
(car, with, Category)
(car, bluetooth, Category)
(stereo, car, Category)
(..., ..., ...)

Table 4.1: Knowledge Graph representation as a list of triples. The triples are in the format
(target word, context word, label).

4.2 Constructing the Knowledge Graph Tensor

Section 4.1 helps us understand the process of transforming a product description and its
corresponding labels to a knowledge graph and represent it in a triple format. To apply
knowledge graph completion/link prediction models, the knowledge graph must be represented
in a suitable format for the model to process. We represent the triples in a third order or
three-dimensional tensor to apply the Tensor Factorization technique for knowledge graph
completion. The tensor has three axes associated with it that correspond to :

• Target word

• Context word

• Label

In the tensor, the position corresponding to (target word, context word, label) is set as 1 if
there is a connection between them in the knowledge graph. The cells containing ? symbol
correspond to the missing/unknown connections in the knowledge graph. The link prediction
model will predict the existence of these missing edges. The dimensions of the tensor is
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nt × nc × nl, where nt, nc, and nl are the number of unique target words, context words and
labels. Figure 4.3 illustrates the tensor that is constructed using the knowledge graph.

Figure 4.3: Binary Tensor representation of the knowledge graph. The 1’s indicate a valid
connection between (target word, context word, label) and ? indicate missing/unknown links.

4.3 Tucker Decomposition

The Tucker decomposition [34] factorizes a tensor into a core tensor and separate factor
matrices for each mode of the tensor. We want to decompose the binary tensor that is
constructed from the knowledge graph mentioned in 4.2. The Tucker decomposition of a
third-order tensor X ∈ Rn1×n2×n3 is defined as:

X̂ ≈ G×1 A×2 B ×3 C (4.1)

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

gijkak ⊗ bk ⊗ ck (4.2)

where G ∈ Rr1×r2×r3 is the core tensor of the decomposition and the matrices A ∈ Rn1×r1 ,
B ∈ Rn2×r2 , C ∈ Rn3×r3 are the factor matrices for the three modes and where (n1, n2, n3)
correspond to the dimensions of the input tensor and (r1, r2, r3) are the ranks of the factorized
components. When operating on unfolded tensors, Equation (4.1) can be rewritten as

X(1) ≈ AG(1)(C ⊗B)T ,

X(2) ≈ BG(2)(C ⊗A)T ,

X(3) ≈ CG(3)(B ⊗A)T .
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which is useful for the computation of the decomposition. Tucker decomposition is also known
as Higher-Order SVD (HOSVD), as introduced in [38] and three-mode PCA as introduced in
[39].

Figure 4.4: Visualization of a Tucker decomposition into its decomposed components. The
decomposed components consists of three matrices (A,B,C) each containing the embeddings
of the target word, context word and label. The core tensor G contains the level of interaction
between the embeddings in A,B,C.

In Link Prediction, we are given a subset of all true triples and the aim is to learn a scoring
function φ that assigns a score s = φ(eA, eB, eC) ∈ R which indicates whether a triple is true
with the ultimate goal of being able to correctly score all missing triples. (eA, eB, eC) are the
rows of A, B and C representing the embeddings of target words, context words and label.
The scoring function for Tucker is defined as:

φ(eA, eB, eC) = G×1 eA ×2 eB ×3 eC (4.3)

We apply sigmoid to each score φ(eA, eB, eC) to obtain the predicted confidence p of a triple.
The sigmoid function squishes the confidence score between [0, 1] indicating the probability of
a triple being true. The number of parameters increase linearly with respect to target words,
context words and label embedding dimensions. The number of parameters for G depends
only on embedding dimensionality of A, B and C and not on the number of target words
or context words. Following the training procedure introduced by [40] to speed up training,
we use 1-N scoring, i.e. we simultaneously score target-context word pairs with all labels
in contrast to 1-1 scoring where individual triples are trained one at a time. The model is
trained to minimize the Bernoulli negative log-likelihood loss function. A component of the
loss for one target-context word pair with all others labels is defined as:

L = − 1

nl

nl∑
i=1

(y(i) log(p(i)) + (1− y(i)) log(1− p(i))), (4.4)

where p ∈ Rnl is the vector of predicted confidence score for all the labels and y ∈ Rnl is the
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binary label vector.

4.4 Inference Stage

The link prediction model helps in predicting missing links in triples. In our case, we are
interested in identifying the right label for a target word given its context. We propose
a novel approach for using contextual information while making a prediction. Let S be a
sentence in the product description consisting of words (w1, w2, ..., wn) where wi ∈ S is the
tokenized version of S. To obtain the prediction for a word wi we perform the following
steps:

• Construct tuples of (wi, wj) where wi is the target word, wj are the context words in
the sentence S, where 1 ≤ j ≤ n. These tuples will be of the form: (wi, w1), (wi, w2),
..., (wi, wn).

• For each tuple (wi, wj) we obtain the predicted confidence score for all the labels. Let
the confidence score for each label αk be Ck, where 1 ≤ k ≤ m, and m is the total
number of labels.

• This way we have n ×m triples of (wi, wj , αk) where wi is the target word, w1, ..., wn

are the context words and αk is the label. For each triple we have a confidence score
between [0, 1].

• We define an aggregation function to sum up the confidence score across all triples for a
particular label. These triples would be represented as (wi, wj , αk), with i, k fixed and
1 ≤ j ≤ n.

βk = φ(wi, wj , αk) =
n∑

j=1

Ck (4.5)

This aggregation function gives us an aggregated confidence score for each entity across
all the context words for a specific target word. The aggregated confidence score for
each label αk is represented by βk.

• We calculate a normalization constant for obtaining normalized confidence score across
all labels for the triples (wi, wj , αk). The normalization constant is represented by γ.

γ =

m∑
k=1

βk (4.6)

• Using Equation 4.5 and 4.6 we calculate the normalized confidence score between [0,1].
For each label αk the normalized confidence score Zk is calculated as follows:

Zk =
βk
γ

(4.7)

29



Eindhoven University of Technology

This approach provides us with numerous advantages. Firstly, it allows us to provide con-
textualized predictions for a target word. This is important as now the model can predict an
attribute/label for a target word based on the product description. Secondly, this approach
tells us the contribution of each context word towards a certain prediction. Equation (4.5)
allows us to calculate confidence score for each label across all context words and this feature
is used to make predictions interpretable.
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Chapter 5

Link Prediction with Unlabeled
Data

In this chapter we answer RQ2 with each section tackling the sub-questions mentioned in
Section 3.2.

• In Section 5.1, we propose using hypernyms to act as a substitute for attributes. Here
we give a brief introduction about Babelnet [41], which acts as an external knowledge
base for obtaining hypernyms.

• Section 5.2 provides an approach for creating a knowledge graph from unlabeled data.

• In Section 5.3 and 5.4, we briefly discuss representing the knowledge graph as a tensor
and apply Tucker decomposition, which we use as our baseline approach.

• In Section 5.5, we present several approaches for improving the model performance from
our baseline approach.

5.1 Hypernyms and Hyponyms

We want to identify the broad or the generic term associated with a word in the product
description. Since we deal with unlabeled data, we need a way to find these broader terms
that can be used as a proxy for attributes/labels. To do this, we use hypernyms. A hypernym
is a word with a broad meaning constituting a category into which words with more specific
meanings fall. For example, in Figure 5.1, we see that color is a hypernym of red, and red is
the hyponym.
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Figure 5.1: Hypernym-hyponym relationship for colors [42]. Color is the hypernym, and
purple, red, blue, green are hyponyms.

If we are able to find the right hypernym for our words then we can translate this prob-
lem to our previous research question. The question at hand is, how can we obtain these
hypernyms?

5.1.1 Babelnet

Several lexical ontology databases provide a hierarchical relationship between words such
as hypernym-hyponym relationships. Wordnet [43] and Babelnet [41] are the two of such
databases that we explored during our research. Babelnet is a multilingual encyclopedic
dictionary, with lexicographic and encyclopedic coverage of terms and a semantic network.
Compared to Wordnet, Babelnet is richer in vocabulary; hence we use it in our experiments.
In the following section, we explain how Babelnet is used to obtain the candidate hypernyms,
helping us construct the knowledge graph.

5.2 Constructing Knowledge Graph

The previous chapter explained creating a knowledge graph using product descriptions when
the label is already known. In this case, we do not have the labels provided to us; hence we
create a framework for constructing labeled data using Babelnet.

5.2.1 Data Pre-processing

Using raw data could hamper the quality of the model that we are building and reduce the
system’s performance. Data cleaning reduces variability in the information to give the model
the best chance of working correctly. Below are the pre-processing operations that we apply
to the product descriptions:

• Case standardization: Converting the listing to lowercase. This is done to reduce
variations between words, thereby reducing the size of the vocabulary in the data.

• Tokenization: is the process of segmenting running text into sentences and words. We
split the sentences into words based on blank spaces.

• Remove special characters: post tokenizing the listing, we identify the tokens which
correspond to punctuation or any special characters and remove them from the listing.
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We do not remove period (‘.’) punctuation from the listings. This is because a listing
can consist of multiple sentences that can explain different aspects of a product. In such
cases, these sentences can have different contexts; hence, keeping them separate was a
logical choice.

• Lemmatization: it is done to reduce a word into its base form or lemma. This is done
to reduce the size of the vocabulary.

• Standardizing numeric and alphanumeric characters: Numeric characters can
be associated with several broad terms or labels and are not restricted to a limited set of
labels; for example, numbers can be associated with model numbers of a mobile phone or
even the price of a product. Same goes with alphanumeric characters, hence we consider
these words to be out of our scope and replace them with < num > and < alphanum >
respectively.

Once the above pre-processing steps are done, we combine the tokens and obtain the product
description’s clean version. Figure 5.2 shows the steps that we undertook for cleansing the
data, along with an example showing the transformation of the product description at each
step of the operation.

Figure 5.2: Data pre-processing steps. On the left we have the data pre-processing steps, and
on the right we provide an example.

5.2.2 Extracting Hypernyms using Babelnet

Now that we have obtained the clean version of the product descriptions, our next step is to
obtain the broad or the generic terms that are associated with the words in our corpus. We
use Babelnet to extract the hypernyms. We create a knowledge base consisting of a word
and its corresponding hypernym. For every word in the product description, we obtain its
hypernym in the following manner:

• Word to Synset ID: Like WordNet, Babelnet groups words in different languages into
sets of synonyms, called Babel synsets. The first step is to find the Babelnet synset id
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Figure 5.3: Pipeline for creating mapping between word and its hypernym. For each word we
obtain its hypernyms using the above process.

for each word. A word can be used in many different ways and can be associated with
more than one meaning. Each word has a one to many relationships with synset ID.
This can be seen in Figure 5.4 for the word apple.

• Synset ID to Hypernym ID: Once we have obtained the synset id, the next step is
to find the hypernym associated with the synset id. Each synset id has one to many
relationship with hypernym id.

• Hypernym ID to Hypernym: For each hypernym id, we have one hypernym asso-
ciated with it. There is a one to one relationship between hypernym id and hypernym.

• Word to Hypernym: Now that we have the synset ID, hypernym ID, and hypernym
associated with each word, we map each word to its corresponding set of hypernyms.
To do so, we use the mappings, word to synset ID, synset ID to hypernym ID, and
hypernym ID to hypernym mapping.

Figure 5.3 is a high-level diagram of the process, and Figure 5.4 we give an example of the
above mappings for the word “Apple”.

In Figure 5.4, we can see that some of the hypernyms are of multiple words concatenated by
‘ ’ character. We flatten these hypernyms by removing the ‘ ’ character and treat each word
as the hypernym. This decision was taken because of how we construct our knowledge graph,
which we explain in the subsequent section.

5.2.3 Knowledge Graph Construction

At this stage, we have standardized product descriptions and word to hypernym mapping
that is constructed using Babelnet. Here we present the solution of creating the knowledge
graph. This approach is different compared to the approach mentioned in Section 4.1. Below
we present the heuristics for constructing the knowledge graph

• Create pairs of words or tuples consisting of every target word with the context in the
cleaned product description.

• For every tuple, we want to identify the candidate hypernym, which would be the la-
bel/attribute. Below are the set of heuristics that we apply for identifying the hypernym.

34



Eindhoven University of Technology

Figure 5.4: Example of hypernym extraction process for the word: apple. Each word can have
multiple meanings and for each meaning there is a hypernym. Word to hypernym mapping
is a one to many relationship.

Figure 5.5: Hypernyms consisting of multiple words are flattened for obtaining a better match.
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Figure 5.6: Knowledge graph construction for unlabeled data using Babelnet by finding the
common hypernym between target and context word.

– Check if the target word and context word have any hypernyms in common.

– If yes, then check if the hypernym exists in our vocabulary of the corpus. Here
corpus refers to the data-set that we use for our experiments, and vocabulary refers
to the set of unique words in the data-set. This acts as a filtering mechanism as
we do not want hypernyms, which have no association with our data-set.

– The hypernyms which pass the above filtering method are considered as the hy-
pernym for the tuple.

– Create triple with (target word, context word, hypernym)

– If we do not find any hypernym in common, we assign the tuple to an “〈unknown〉”
tag. In this case, the triple will be (target word, context word, 〈unknown〉)

In Figure 5.6, we illustrate a knowledge graph construction for a tuple using Babelnet.
The figure shows the steps of constructing the triple from the tuple of (apple, iphone).

5.3 Constructing Tensor

From the implementation standpoint, we represent this knowledge graph in the triple for-
mat consisting of (target word, context word, hypernym). The triples connected to the node
〈unknown〉 are treated as missing links that we want the model to predict, and the remaining
links are labeled as 1 in the tensor. The process of creating the tensor is in the same format,
as mentioned in Section 4.2.

5.4 Standard Tucker decomposition

We use the Tucker decomposition method that has been mentioned in Section 4.3 as our
baseline model. The dimensions of the input tensor are nt×nc×nl where ntandnc represent
the number of unique target words and context words and nl represent the unique number of
labels or hypernyms in this case.
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Figure 5.7: Top 20 hypernyms by frequency obtained using the heuristics mentioned in Section
5.2.3. Most of these hypernyms are not aligned with our task.

5.5 Strategies for Improving Model Performance

To improve the baseline approach, we propose multiple strategies for improving the model
and improving the input data, i.e., the triples in our case. The triples that were formed using
the heuristics mentioned in Section 5.2.3 are noisy in nature. By noisy, we mean that the
triples consisted of hypernyms that were not relevant for our use case. In Figure 5.7, we
illustrate the most frequent hypernyms that are obtained by our heuristics. We can see that
words such as album, rock, single, song, band are not relevant labels for electronic products.
To improve the performance of the model we suggest techniques for modifying the input data,
and the model.

5.5.1 Non-negative Tucker Decomposition

In the standard tucker decomposition, presented in 4.3 gives a confidence score between
[0, 1], providing the probability of true relation between the target word, context word, and
hypernym.

Tucker decomposition is the summation of the outer product of the vectors of factor matrices
(refer Equation (4.2)) which may lead to situations where certain target-context word pair has
a low score as certain features contribute negatively in the summation. These negative scores
would then hamper the effect of the features that contribute positive scores, which might
include the true labels. This leads to having incorrect predictions. By applying non-negative
constraints to the factor matrices and core tensor restricts the values between [0, 1] instead
of negative values. Restricting the values of Tucker components to [0,1] allows the positive
score to dominate over the negative scores.

Also, in the inference stage mentioned in Section 4.4, while predicting the labels for a par-
ticular target word, we aggregate the confidence score for each label (hypernym in this case)
obtained from the triple (target word, context word, hypernym). Having non-negative scores
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allows the context words that matter to contribute towards predicting the correct hyper-
nym.

5.5.2 Orthogonal Regularizer

In this section, we briefly introduce regularization and provide details about the regularization
technique applied to our use-case. Regularization is the process of regularizing a machine
learning model’s parameters and preventing the model from over-fitting. Figure 5.8 shows
two curves incurring zero losses as they both fit the red points perfectly. However, we can say
that the green curve is probably over-fitting, and the curve in blue has more generalization
capability. We want to avoid a scenario where our model has the nature of the green curve,
and to do so; we introduce an orthogonal regularizer.

Figure 5.8: Understanding over-fitting: The green and blue functions both incur zero loss on
the given data points. The blue function generalises better than green function [44].

In linear algebra, orthogonality refers to the property of perpendicularity between two vectors.
Orthogonality is also used for the specific separation of features in a system. One way to
express orthogonality in a matrix is

XXT = I

where XT is the transpose of X and I is the identity matrix. On observing the predictions
obtained from the baseline model, we observed biased predictions towards certain words such
as album, rock, band. This is because the embeddings for these hypernyms/labels is dense, and
each feature contributes towards the confidence score. The orthogonal regularizer introduces
sparsity in the embeddings. We want to penalize the overlap between the columns of XXT .
Hence we apply the orthogonal regularizer to the hypernym factor matrix C. For the factor
matrices related to target words (A) and context words (B) we apply L2 regularization. L2
regularization for vector x with n features is defined as the sum of the squares of all the
feature weights as shown in Equation (5.1):
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||x||2 = x21 + x22 + x23 + ..+ x2n (5.1)

Considering the ideas mentioned above, below is the regularizer that we apply to our model
is presented in Equation (5.2).

λ1||A||2 + λ2||B||2 + λ3(||CCT ||2 − ||C||2), (5.2)

where λ1, λ2, and λ3 are the regularization parameters, and A,B,C are the factor matrices
from Tucker decomposition.

5.6 Modifying Input Data

One way to improve the performance of the system is by improving the quality of input data.
In our case, the input data corresponds to triples of (target word, context word, hypernym).
This section suggests strategies to improve the quality of input data by obtaining relevant
hypernyms.

5.6.1 Using Category Information

Every product description in the OLX data-set has a category associated with it. Figure 5.9
shows an example of a listing with its category information. The category information is used
as a feature for identifying the relevant hypernyms for a tuple of (target word, context word).

Babelnet consists of synsets that are labeled to domains. Each synset in Babelnet is associated
with a domain. Figure 5.10 illustrates hypernyms and domains associated with the word
apple.

Figure 5.9: OLX listing with the Category Information. The Category Information can be
used to find relevant hypernyms.
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Figure 5.10: Left: Hypernyms of apple, Right: Domains for the word apple. We use the
domains to find the relevant hypernym associated to the (target word, context word).

Given a tuple of (target word, context word) we use the technique as mentioned in Section
5.2.3 to find the candidate hypernyms. Category information is tokenized, and domains
associated with each token is retrieved. The domains are aggregated based on the frequency,
and the hypernyms associated with the top two domains are considered. Figure 5.11 shows
the process mentioned above for the tuple (apple, apple). In Section 6.4.4 we present the
impact of using category information on model performance.

5.6.2 Using Windowing

In Section 5.2.3, we state that a target word’s context is the surrounding words in a sentence.
We alter this approach by introducing a window size and consider a fixed number of words as
the context and not the entire sentence. We apply this approach to reduce the amount of noise
or the number of hypernyms we create using our baseline approach. Reducing the noise would
improve the quality of the data, which can help us improve the model’s performance.

While constructing tuples for a target word, we consider the context words based on window
size. We show the process of constructing tuples for the word apple and iphone while con-
sidering window size as 2. We consider the target word and the set of context words while
constructing tuples, as shown in Figure 5.12. In Section 6.4.5, we show the impact of window
size on model performance.

5.6.3 Using Pre-trained Embeddings

In Natural Language Processing (NLP), while processing text for tasks such as classification
or clustering, we need to represent or encode the text in a vectored format to be consumed by
the downstream systems. We hypothesized that using pre-trained embedding models would
help find the most semantically close hypernym for the tuples in our input data. We explored
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Figure 5.11: Using Category Information to find the relevant hypernyms for the tuple (ap-
ple,apple). Here we see process of refining the set of hypernyms obtained for a tuple by using
domain information from Babelnet and Category Information from the listing.

Figure 5.12: Restricting the context words based on window size while constructing tuples.
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Figure 5.13: Word2Vec and GloVe embedding models cannot capture multiple representations
for a single word. Contextualized word embeddings can capture multiple representations for
a single word.

some of the popular word embedding algorithms that would be suitable for our use-case and
help find the relevant hypernym.

Word embedding algorithms such as Continuous Bag Of Words (CBOW), Skipgram [45], and
GloVe [46] do not capture contextual information; instead, provide a global representation
for each word. Word ambiguity or polysemy (the coexistence of many possible meanings for
a word or phrase) cannot be captured by these models. In Figure 5.13, we can see that Apple
can have more than one meaning; however, word embedding algorithms such as GloVe and
Word2Vec can capture only a single representation of each word.

Due to the limitation mentioned above, we look into deep contextualized word representation
models such as ELMo [47] and BERT [28] that can handle polysemy. These models are
highly sensitive, capturing even the slightest change in the context, resulting in different
target words’ representations. This would lead to a large number of representations for a
single word when, in reality, the word is only used in a handful of different contexts. Hence,
fixed embeddings for the words cannot be obtained directly by these models. We want our
embeddings to be contextualized and fixed per meaning, which is provided by Adaptive Skip-
gram [48]. Adaptive Skip-gram (AdaGram) model (which extends the original Skip-gram
[45]) automatically learns the required number of prototypes for each word using a Bayesian
non-parametric approach. With adaptive skipgram, we have separate vectors for different
meanings of a single word. For example, apple can have one representation referring to apple
as a fruit and the other with apple being used in electronics. Figure 5.14 shows the nearest
neighbors for the word apple being used in these two contexts.

We use the AdaGram embeddings and combine with our heuristics mentioned in Section 5.2.3
to find the most semantically associated hypernyms. We find the common hypernyms for every
tuple and calculate the similarity between the candidate hypernyms and the tuple. We use
cosine distance as the similarity metric to find the most semantically associated hypernym.
Cosine similarity between two vectors, x and y can be defined using the dot product and
magnitude of the two vectors:
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(a) Nearest Neighbours for Apple fruit. (b) Nearest Neighbours for Apple brand.

Figure 5.14: Visualization of Nearest neighbours for AdaGram Embeddings. PCA is used to
represent high dimension embeddings in three dimensions.

Cosine Similarity(x, y) = x.y =
x.y

||x||||y||
(5.3)

Let x andy be the vector representation for the tuple of (target word, context word) and z be
the vector representation of a candidate hypernym. The hypernym would be considered only
if the cosine similarity between the tuple and hypernym exceeds a certain threshold which is
decided by experiments in Section 6.4.6. The cosine similarity is defined as follows:

Similarity =
cos sim(x, z) + cos sim(y, z)

2
, (5.4)

where cos sim(x, z) and cos sim(y, z) is the cosine similarity between vector x, z and y, z
defined in Equation (5.3).
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Chapter 6

Evaluation

In this chapter, we explain the experimental setup used to evaluate our model. This includes
the data-sets, implementation details, and the evaluation metrics used.

6.1 Evaluation metrics

To evaluate the model for the task of link prediction, we use metrics standard across the link
prediction literature. Hits @k to measure measures the percentage of times a true triple is
ranked within the top k candidate triples.

To evaluate the inference stage method we evaluate precision @k, recall @k and F1 @k for each
attribute/label. Precision @k is the proportion of recommended attributes/labels in the top-k
set that are relevant. Recall @k is the proportion of relevant attributes/labels found in the
top-k recommendations. For measuring these metrics we need to following quantities:

• True positives @k (TP @k): True attributes/labels occurs in the top k system generated
entities.

• False positives @k (FP @k): This is the case when true attributes/labels does not occur
in the top k system-generated attributes/labels. We consider the system generated
entities as false positives in this case.

• False negatives @k (FN @k): This is the case when the true attributes/labels do
not occur in the top k system-generated attributes/labels. We consider the true at-
tributes/labels as a false negative in this case.

Based on the above quantities we can calculate the following metrics for each entity as fol-
lows:

Precision @k =
TP @k

TP @k + FP @k
(6.1)
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Recall @k =
TP @k

TP @k + FN @k
(6.2)

F1 @k = 2 ∗ Precision @k ∗Recall @k

Precision @k +Recall @k
(6.3)

6.2 Setup

To answer the research questions, we conducted experiments on two data-sets mentioned in
Section 3.1.

• To answer RQ1, we use the labeled public data-set. The data-set consists of 941 product
descriptions. We compare our model’s performance with the baseline provided in [10].

• To answer RQ2, we use the unlabeled data-set. We consider three distinct categories of
products consisting of 967 product descriptions. These product descriptions fall under
the umbrella of consumer electronics. For testing the performance of the link prediction
model, we randomly sample 20 product descriptions from each category and manually
construct triples. For evaluating the performance of the inference stage, we manually
construct the labels for the words in product descriptions of 50 randomly sampled
product descriptions.

• To answer RQ3, we use 4 distinct domains consisting of 9131 product descriptions
from the unlabeled data-set. These product descriptions fall under the umbrella of
consumer electronics, cars, footwear, and furniture. For evaluating the link prediction
performance, we manually construct the labels for the words in product descriptions of
50 randomly sampled product descriptions from each category.

• The standard Tucker decomposition model is considered as our baseline model. We use
the codebase provided by [35] and extend it for our use-case. Tucker decomposition is
implemented in PyTorch [49].

• The experiments are conducted on NVIDIA DGX station using Tesla V100 32GB/GPU.
We use https://www.comet.ml for experiment management purposes.

6.3 Results from Labeled Data-set

In this section, we report the results of the experiments conducted on the labeled public
data-set and answer RQ1. Figure 6.1 shows the frequency distribution of the labels in the
data-set. Due to the imbalanced distribution of the labels, we report results for the most
frequently occurring entities, which are Brand, category, and ModelName.

45

https://www.comet.ml


Eindhoven University of Technology

Figure 6.1: Frequency distribution of the labels. Out of seven labels, three are most frequently
occurring in the data-set. We report the results for the labels Category, ModelName, and
Brand.

We split the data-set into 800 product descriptions for training and 141 for testing. The hyper-
parameters are chosen by the random search based on performance on the training set. The
target word, context, and label/attribute embedding dimensionality or the rank of the Tucker
components are experimented with two values: {100, 300}. We use batch normalization [50] to
speed up the training phase of the model. Batch Normalization is a technique that mitigates
the effect of unstable gradients within deep neural networks. Batch normalization introduces
an additional layer to the neural network that performs operations on the inputs from the
previous layer. The learning rate is set to {0.0005}. Unlike [35], we do not use dropout in
our training process because tensor factorization decomposes the input tensor into its latent
factors, and using dropout would mean not using these latent factors, which could hamper the
learning process for the model. We also train the model by applying non-negative constraints,
as mentioned in Section 5.5.1. We refer to this model as NTD in the tables below and compare
its performance with the baseline model. To evaluate model for the task of link prediction
we use metrics Hits @k, where k ∈ {1, 3, 5}. Table 6.1 provides the results on the test set
for the models trained under different settings of embedding dimensions and baseline vs.
non-negative constraints on the factor components of Tucker decomposition.

Model Embedding Dimensions Hits @1 Hits @3 Hits @5

Baseline 100 0.9776 1 1
Baseline 300 0.9708 1 1
NTD 100 0.9799 1 1
NTD 300 0.9754 1 1

Table 6.1: Link Prediction Performance on Test set. Baseline model refers to standard Tucker
decomposition and NTD refers to Tucker decomposition with non-negative constraints. It is
apparent from this table that Tucker decomposition model is good at predicting true triples,
with NTD model having embedding dimension as 100 giving the best results.

To evaluate the inference stage method presented in Section 4.4 we calculate precision @k,
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recall @k and F1 @k, (k = 1) for the most frequently occurring labels: Category, ModelName,
and Brand. Based on the performance shown in Table 6.1 we choose model trained on
non-negative constraints (NTD) with embedding dimension: 100 as the candidate model for
calculating classification metrics, Precision @1, Recall @1, F1 @1 for the labels Category,
ModelName, and Brand. In Table 6.2 we compare the results of our model with [10].

Model Label Precision Recall F1 score

Brand 0.895 0.486 0.630
SVM Category 0.667 0.531 0.591

ModelName 0.800 0.431 0.560

Brand 0.793 0.697 0.742
GBT Category 0.603 0.620 0.611

ModelName 0.727 0.480 0.578

Brand 0.818 0.614 0.701
CRF Category 0.621 0.711 0.663

ModelName 0.631 0.746 0.684

Brand 0.8947↑ 0.8095↑ 0.85↑
NTD Category 0.9594↑ 0.8068↑ 0.8765↑

ModelName 0.9594↑ 0.8068↑ 0.8765↑

Table 6.2: Classification metrics on test set for most frequently occurring labels. What stands
out in the table is the performance of the non-negative Tucker decomposition model (NTD).
It is significantly better than the approaches mentioned in [10].

6.4 Results from Unlabeled Data-set

In this section, we report the results of the experiments conducted on the unlabeled data-
set for answering RQ2. Since the data-set is unlabelled, we construct the knowledge graph
using the heuristics mentioned in Section 5.2. We use the link prediction metrics (hits @k)
to identify the best model.

6.4.1 Tucker Decomposition

To establish baseline performance, we apply the Tucker decomposition mentioned in Section
4.3. Table 6.3 shows the link prediction results obtained from the test set. Interestingly, the
results indicate that the model has a hard time predicting the true triple. The next section
presents the results that are obtained by implementing the strategies mentioned in Section
5.5.

Model Hits @15 Hits @10 Hits @5 Hits @3

Baseline 0.4146 0.3219 0.2487 0.1756

Table 6.3: Baseline Tucker decomposition performance on unlabeled data. Interestingly, the
results indicate that the model is having a hard time to predict the true triple.
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6.4.2 Non-negative Tucker Decomposition

Based on the results obtained from the previous section, we proposed strategies for modi-
fications of the model and input data in Section 5.5. In Section 5.5.1, we indicate that by
introducing non-negative constraints in the factor matrices and core tensor, we allow the
true/correct relations to dominate over incorrect/false relations. In Table 6.4, we present
the results of non-negative Tucker decomposition (NTD) and compare it with the baseline
model performance on the test set. We observe an improvement in the performance from
the baseline approach by applying non-negative constraints. Hence, our justification for in-
troducing non-negative constraints was corroborated by the results. At this point, we decide
to use non-negative constraints on the model and use it as a baseline while adding further
modifications.

Model Hits @15 Hits @10 Hits @5 Hits @3

Baseline 0.4146 0.3219 0.2487 0.1756
NTD 0.4780↑ 0.3707↑ 0.2634↑ 0.2048↑

Table 6.4: Non-negative Tucker decomposition (NTD) vs Baseline performance. There is an
improvement in the performance of the model by applying non-negative constraints.

6.4.3 Using Orthogonal Regularizer

In Section 5.5.2 we provide the motivation for adding a regularizer to the model with the
primary purpose being to enhance the generalizing capability of the model and reduce bias
towards certain hypernyms by introducing sparsity into the hypernym factor matrix. Table
6.5 presents the results on the test set obtained by adding regularizer to the pre-existing
model with non-negative constraints (NTD). Results indicate an improvement in the metrics
over the previous approaches. We believe this is due to the reduction in bias, causing the true
hypernyms to have a higher confidence score over the hypernyms, which were being introduced
due to the bias of the model. Considering the results, we decide to use the regularizer along
with the non-negative constraints approach while conducting further experiments. These
are the results that we obtain by providing strategies for improving the model. In the next
sections, we provide the results of the model by implementing strategies for improving input
data.

Model Hits @15 Hits @10 Hits @5 Hits @3

Baseline 0.4146 0.3219 0.2487 0.1756
NTD 0.4780 0.3707 0.2634 0.2048
NTD + regularizer 0.5365↑ 0.4439↑ 0.2975↑ 0.2243↑

Table 6.5: Link prediction results by using orthogonal regularizer. The results are better
compared to the previous approaches.

6.4.4 Using Category Information

Here we provide the model results by using the category information associated with product
descriptions and finding relevant hypernyms. In Section 5.6.1, we present the approach for
using category information as a filtering mechanism while obtaining hypernyms. To analyze
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the impact of using the category information on the input data, we show the number of triples
before and after using category information as a filtering mechanism. In Figure 6.2, we observe
the drop in the number of triples by 30% by using Category Information. In Figure 6.3, we
show the impact of using Category Information on the number of distinct hypernyms. We
observe a drop of 45% in the number of distinct hypernyms by using category information.
This is because the hypernyms are being limited to the domains decided by the category
information. In Table 6.6, we present the link prediction results by using category information
and compare it with the results from our previous approaches. We want to highlight that
we are also applying the non-negative constraints and orthogonal regularizer to the model
while considering category information to train the model. We observe an increase in the
model’s performance by using category information for Hits @{3,5,10}, which indicates our
success in improving the quality of input data by focusing on the relevant hypernyms, thereby
reducing noise. Surprisingly, we observe a slight drop in Hits @15 by 0.38% compared to the
previous approach of using non-negative constraints and orthogonal regularizer; however, the
performance has improved for the lower values of Hits @k, which is of greater significance,
as we want the true triple to have a higher confidence score. Overall, based on the positive
results obtained, we decide to use category information while constructing triples.

Figure 6.2: Number of triples in Baseline approach and using category information. Baseline
refers the heuristics mentioned in Section 5.2.3 for creating triples. We observe a drop in the
number of triples by 30% by Using Category Information.
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Figure 6.3: Number of distinct hypernyms in Baseline approach and Using Category Informa-
tion. We observe a 45% drop in the number of distinct hypernyms. This clearly shows that
by using Category Information we are limiting the number of hypernyms while constructing
triples.

Model Hits @15 Hits @10 Hits @5 Hits @3

Baseline 0.4146 0.3219 0.2487 0.1756
NTD 0.4780 0.3707 0.2634 0.2048
NTD + regularizer 0.5365 0.4439 0.2975 0.2243
Using category information 0.5327↓ 0.4785↑ 0.3216↑ 0.2447↑

Table 6.6: Link prediction results by using Category Information. We observe an improvement
in performance of the model by using category information for Hits @{3,5,10} which indicates
that we have been successful in improving the quality of input data. Note: Using category
information model uses the non-negative constraints and orthogonal regularizer.

6.4.5 Using Windowing

In Section 5.6.2, we present an approach for constructing triples by restricting the number of
context words for a target word. To decide the optimal window size, we conduct experiments
with different window sizes like {1,2,3,5,10,15}. In Figure 6.4 we present the link prediction
results for different window sizes. We observe window sizes {2,5} provide similar results
compared to the remaining window sizes. In Table 6.7, we present the results of the windowing
approach in comparison with the previous approaches. There is no improvement in the
performance of the model by applying the windowing approach. However, we also do not
observe a drastic drop in performance when compared to the previous approach of using
category information.
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Figure 6.4: Choosing the right window size based on Hits @k. Window size {2,5} provide
similar performance compared to remaining window sizes and are the best candidate models.

Model Hits @15 Hits @10 Hits @5 Hits @3

Baseline 0.4146 0.3219 0.2487 0.1756
NTD 0.4780 0.3707 0.2634 0.2048
NTD + regularizer 0.5365 0.4439 0.2975 0.2243
Using category information 0.5327 0.4785 0.3216 0.2447
Using windowing-size 2 0.5268↓ 0.4536↓ 0.3170↓ 0.2447
Using windowing-size 5 0.5268↓ 0.4780↓ 0.3073↓ 0.2341↓

Table 6.7: Link prediction results by using windowing. Window size {2,5} provide simi-
lar performance, however the performance is not better than the approach using category
information.

6.4.6 Using Pre-trained Embeddings

In Section 5.6.3, we present an approach for using existing pre-trained models to find the most
semantically associated hypernym for a target word and context word. We use the embeddings
of pre-trained Adaptive Skip-gram model [51] for our experiments. We consider {0.3,0.4,0.5}
as the similarity threshold between the target word, context word, and the hypernyms. Figure
6.5 shows the link prediction model’s performance by varying the similarity threshold. We
observe that the 0.3 similarity threshold provides the highest hits @k score; hence we choose
the 0.3 threshold while constructing input data.

In Figure 6.6, we compare the results of using pre-trained embeddings with previous ap-
proaches. Comparing the results, it can be seen that using pre-trained embeddings does not
yield a performance higher than Using Category Information. Overall, using pre-trained em-
beddings did not improve the performance compared to the previous approaches; hence we
do not consider this approach while constructing input data.
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Figure 6.5: Identifying the optimal similarity threshold. On increasing the similarity threshold
we observe a drop in the performance of the model. Similarity threshold of 0.3 gives the best
performance.

Figure 6.6: Comparing results of using pre-trained embeddings to previous approaches. Using
pre-trained embeddings gives better performance than the baseline approach, however it does
not perform better than the approach Using Category Information.

6.4.7 Hyper-parameter Optimisation

A hyper-parameter is a parameter that is set before the learning process of a model begins.
These parameters can be tuned and can directly affect how well a model trains. A set of
candidate values were chosen for each hyper-parameter, and experiments were conducted to
select the best value for each parameter.

• Rank of factor matrices: This hyper-parameter is concerned with the size of the
embeddings for each of the factor matrices. For simplicity purpose we consider de =
dr = do. In Figure 6.7, we choose five different values for the rank and calculate the
hits @10 score for each model and look for the rank, which gives the highest hits @10
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score. We observe that at rank=100, we get the highest hits @10 score and reach the
ceiling. Increasing the rank beyond 100 does not yield a higher hits @10 score.

Figure 6.7: Choosing the rank of the factor matrices. The highest Hits @10 score is obtained
for rank=100.

• Number of epochs: The number of epochs is a hyper-parameter that defines the num-
ber of times that the learning algorithm will work through the entire training data-set.
One epoch means that each sample in the training data-set has had an opportunity to
update the internal model parameters. An epoch is comprised of one or more batches.
For example, as above, an epoch that has one batch is called the batch gradient descent
learning algorithm. To determine the optimal number of epochs, we conducted experi-
ments with different values and looked for points where the model reached convergence.
Figure 6.8 shows that choosing the number of epochs as 200 is ideal for our experiments.

Figure 6.8: Choosing number of epochs. Training the model till 200 epochs leads to having
the highest Hits@10 score, beyond 200 epochs we observe a plateau.

• Batch size: The batch size is a hyper-parameter that defines the number of samples to
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work through before updating the internal model parameters. A training data-set can
be divided into one or more batches. In [52], the authors state that that smaller batch
sizes yield lower loss function values, which is a common belief among the researchers.
We choose a batch size of 64 for our experiments.

• Learning rate: The learning rate is a hyper-parameter that controls how much to
change the model in response to the estimated error each time the model weights are
updated. Choosing the learning rate is challenging as a value too small may result
in a long training process that could get stuck, whereas a value too large may result
in learning a sub-optimal set of weights too fast or an unstable training process. We
consider the learning rates mentioned in [35] for our experiments. Although, we settled
for the learning rate {5− e3}.

• Regularization parameter λi: Since we consider L2 loss for regularization, we keep
the λ values on the lower side to avoid the norms to be very high. The λ value selected
was {5e− 5}.

To summarize the above section, Table 6.8 shows the chosen hyper-parameters for our exper-
iments.

de = dr = do # of epochs batch size lr λi

100 200 64 5e-3 5e-5

Table 6.8: Model Hyper-parameters selected based on the experiments.

6.4.8 Inference stage: Classification metrics

The link prediction model helps us identify the right label, given a target word and context
word. In Section 4.4, we present an approach for predicting the label for a target word by
considering context words in the sentence. With our experiments on the unlabeled data-set,
we not only consider all the context words but also restrict the number of context words based
on a window size while making predictions. For our experiments we consider window size:
{1, 2, 5, None} where 1 refers to considering 1 word to the left and right of a target word
and None refers to considering all the context words in a sentence. For evaluation, create a
test set consisting of 50 randomly sampled listings from the Consumer Electronics category.
We choose the model which provides the best link prediction results; hence the model Using
Category information is used for evaluation. For each product description, we construct the
labels manually. We calculate precision @k and recall @k which helps us calculate F1 @k,
(k ∈ 3, 5, 10, 15) for the labels. Table 8.1 contains the results for the labels for different
window sizes used in the inference stage.

In Figure 6.9, 6.10, 6.11 and 6.12 we present the F1 score @k for the labels for k values 3,5,10,
and 15 respectively. Interestingly, we observe across all the results that considering 1 or 2
surrounding words around the target words provides better results than considering all the
surrounding words in the sentence. We also observe that some of the labels like color, device,
and condition do not show up in the top 3 predictions for the model. Overall, we want to
improve the F1 score @k (k ∈ 3, 5) as we want our model to make the right predictions with
a high confidence score.
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Figure 6.9: F1 Score @3 for the labels. We observe certain labels like color, device and
condition are not showing up in the top 3 predictions. Overall we see window size 1 and 2
are providing the highest F1 score.

Figure 6.10: F1 Score @5 for the labels. We observe certain labels like color, condition are
not showing up in the top 5 predictions. Overall we see window size 1 and 2 are providing
the highest F1 score.
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Figure 6.11: F1 Score @10 for the labels. Restricting the window size to 1 and 2 is showing
the best results.

Figure 6.12: F1 Score @15 for the labels. Clearly, restricting the window size 1 and 2 is
providing the highest F1 score for most labels.

6.5 Impact on Performance by Scaling Data

In this section, we answer RQ3 by analyzing the model’s behavior when data volume is scaled
up. Input data for the link prediction model is constructed using heuristics, which introduces
certain irrelevant hypernyms while constructing triples. We refer to these irrelevant hyper-
nyms as the noise in our data-set. We analyze the impact on the model’s performance by
increasing the volume of input data, thereby adding noise as well. To conduct this experi-
ment, we consider product descriptions from the domains of consumer electronics, furniture,
footwear, and cars. Table 6.9 shows the categories and the number of product descriptions
that we considered for this experiment.

For this experiment, the volume of data is increased by adding product descriptions, one
category at a time. To avoid bias in the order in which the product descriptions are added,
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Category information # of product descriptions

Consumer Electronics 967
Furniture 937
Footwear 1246
Cars 5981

Total 9131

Table 6.9: Categories and the number of product description. For answering RQ3 we consider
product descriptions from 4 different domains.

we create combinations of {1,2,3,4} categories of product descriptions and train the model.
By doing so, we provide an unbiased result of models that are trained. The test set for
each category is manually constructed by randomly sampling 50 product descriptions. In
Figure 6.13, we present the results obtained from our experiments. In the figure, the x-axis
corresponds to the number of categories of product descriptions we consider in the model
training process, and the y-axis refers to hits @10 metric for link prediction. Each data point
corresponds to the model’s performance for a certain number of distinct categories of product
descriptions. For example, we consider four different categories of product descriptions; hence
we see 4 data points where the number of categories is equal to 1; we create combinations of
2 categories for the number of categories = 2. Hence we see 6 data points (4C2 = 6) and so
on.

We observe a linear decay in the model’s performance as more data is added for training. We
can see the effect of more noise on the performance of the model. However, we do not observe
a drastic drop in the performance of the model, which tells us that the Tucker decomposition
model is able to learn and predict true triples despite the presence of noise. This result
is relevant for answering the question of whether to use a single model for all the product
descriptions or one model per category of product descriptions.

Figure 6.13: Impact on performance of the model by scaling up data. We observe a linear
decay in the performance of model as the volume of training data is scaled up.
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6.6 Discussion

The experiments set out with the aim of answering the research questions and understanding
the behavior of the Tucker decomposition model. RQ1 sought to determine if the Tensor
factorization model is suitable for extracting attributes/labels from product descriptions.
The results in Table 6.1 indicate that the Tucker decomposition model with non-negative
constraints performs better than the classification models mentioned in [10]. This makes
our approach achieve state-of-the-art results for the labeled data-set. We observe that our
model has higher precision than recall. This means that our model is picky when it comes
to classifying attributes as high precision indicates that when the model predicts a particular
label, it is usually right; however, it also misses true labels. In summary, these results indicate
that knowledge graph completion is a suitable model for predicting attributes from product
descriptions, thereby answering RQ1.

The main challenge in RQ2 was to achieve a similar quality of data as the labeled data-set used
to answer RQ1. In Table 6.10, we summarize the results obtained from all the experiments
conducted on the unlabeled data-set while answering RQ2. We presented several strategies
for modifying the input data and the model to improve the system’s performance. From
the table, we see that using non-negative constraints, orthogonal regularizer, and category
information provides the best link prediction results.

One unanticipated finding was the model performance by using pre-trained embeddings to
construct triples. We hoped to find more semantically relevant hypernyms; however, we
could not achieve results better than using category information. Since we used embeddings
trained on Wikipedia corpus, which is also what Babelnet is built on, using pre-trained
embeddings led us to identify a similar set of hypernyms that were being constructed through
the heuristics. Hence, we could not see an improvement in the performance by using pre-
trained embeddings.

The results obtained by using windowing while constructing the triples differ from the results
of using category information by less than 1%. Interestingly, we observe that the number of
triples for training reduces by one-third when using windowing. The effect of the different
approaches on the number of triples can be seen in Figure 6.14. We see that by using
category information, and windowing approach with window size 5, and 2, we see the number
of triples reduce by a factor of ∼ 29%, 47%, and 58% respectively compared to the baseline
approach.

The number of triples for training the model is directly proportional to the time taken for
a model to train. In Figure 6.15, we see the time taken for a model to train based on the
approach taken for constructing input data. We see that by applying each strategy, the
training time reduces as compared to the baseline approach, with window size 2 having the
least training time. This makes sense as the number of triples for window size 2 is also the
least amongst all the candidates in Figure 6.14. From Figure 6.14, 6.15, we can conclude
that the windowing approach reduces the number of triples, which in turn reduces the time
taken to train a model while maintaining the link prediction performance. These results
will be useful to decide which approach to consider while constructing the input data when
constructing triples for a large volume of data.
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In Table 6.10 and Figure 6.16 we have summarized the link prediction results obtained from
experiments on unlabeled data-set. We have improved from our baseline approach by 7%,
8%, 15%, 12% in hits @{3,5,10,15} respectively. From all of the suggested approaches using
category information along with non-negative Tucker decomposition and orthogonal regular-
izer has provided us with the best results. However, if we consider large volumes of data,
then the windowing approach should be considered a candidate.

Figure 6.14: Process of Constructing Triples vs Number of triples. We see that by using
category information, windowing approach with window size 5 and 2 we see the number of
triples reduce by a factor of ∼ 29%, 47% and 58% respectively compared to baseline approach.

Figure 6.15: Impact on model training time by improving input data. We see that by applying
each strategy the training time reduces as compared to the baseline approach.
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Approach Results

Baseline NTD Orthogonal Category Windowing Pre-trained Hits Hits Hits Hits
Regularizer Information Embeddings @15 @10 @5 @3

X - - - - - 0.4146 0.3219 0.2487 0.1756

- X - - - - 0.4780 0.3707 0.2634 0.2048

- X X - - - 0.5365 0.4439 0.2975 0.2243

- X X X - - 0.5327 0.4785 0.3216 0.2447

- X X X X - 0.5268 0.4536 0.3171 0.2447

- X X X X X 0.4439 0.3804 0.2878 0.2341

Table 6.10: Summary of Link Prediction results. Using category information along with the
modifications on the model yield the best results.

Figure 6.16: Journey of Tucker decomposition. Using category information provides the best
results.
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Chapter 7

Conclusion

In this thesis, we proposed a semi-supervised solution for converting unstructured classifieds
product descriptions to a structured format by understanding the semantic meaning of words
by extracting the relationship between them.

We proposed a novel approach for constructing a knowledge graph from product descriptions
and using the context words for predicting attribute/label for target words. We demonstrated
that Tensor Factorization is a suitable approach for predicting missing attributes/labels. Our
approach leads to achieving state-of-the-art performance on the public data-set that has
labeled data.

We proposed a novel approach for constructing a knowledge graph for unlabeled product
descriptions by using Babelnet to assign attribute/label to words. When using the Tensor
Factorization technique, the Tucker decomposition model was considered as the baseline ap-
proach. We proposed strategies for improving the performance of the system by modifying
input data and the model. On applying the proposed strategies, we achieved an increase in the
performance by 7%,8%,15%,12% in hits @{3,5,10,15} respectively compared to the baseline
approach. When constructing the knowledge graph, we evaluated the influence of window
size for considering context words on solution performance. We found that a window size
of {1,2} achieves the best results for predicting an attribute from product descriptions, and
we do not need to consider all the surrounding words in the sentence. However, the window
size may vary across different languages as it depends on the structure for that particular
language.

Finally, we demonstrated that the solution performs the best when trained on a product
description for a single category of products. When training data is extended with multiple
product categories, we observed a linear decay in the model’s performance.

7.1 Future Work

The evaluation of the developed solution demonstrated that the results of the experiments
on the unlabeled data-set are not at par with the results obtained on the labeled data-set.
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That is likely caused by the insufficient quality of labels that we create when constructing the
knowledge graph. The future work shall investigate alternative approaches for creating the
knowledge graph.

In the scope of our thesis, we have considered product descriptions in the English language.
Further research should be undertaken to investigate if our proposed approach for constructing
the knowledge graph and inference stage pipeline is suitable for other languages. The authors
in [53] and [54] state that knowledge graph completion models are uncalibrated. It means
that the confidence score obtained for a triple being true or false does not represent the
true confidence score. The authors propose techniques like Platt Scaling [55] and Isotonic
regression [56] to calibrate knowledge graph completion models. Further studies and research
to make our knowledge graph completion model approach reliable, it is recommended to
pursue the topic of probability calibration.
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Chapter 8

Appendix

8.1 Inference Stage Results

Label k value Inference
window
size

TP FP FN Precision
@k

Recall
@k

F1 @k

company 3 1 12 8 6 0.6 0.6667 0.6316
commercial 3 1 12 20 5 0.375 0.7059 0.4898
computer 3 1 15 13 3 0.5357 0.8333 0.6521

color 3 1 1 0 8 1 0.1111 0.2
value 3 1 22 0 7 1 0.7587 0.8627

optical 3 1 4 5 0 0.4444 1 0.6153
device 3 1 0 0 24 - 0 -

instrument 3 1 4 4 0 0.5 1 0.6667
software 3 1 10 9 5 0.5263 0.6667 0.5882
condition 3 1 0 2 6 0 0 -
company 5 1 13 10 5 0.5652 0.7222 0.6341

commercial 5 1 12 17 5 0.4138 0.7059 0.5217
computer 5 1 15 12 3 0.5556 0.8333 0.6667

color 5 1 1 0 8 1 0.1111 0.2
value 5 1 22 1 7 0.9565 0.7586 0.8461

optical 5 1 4 1 0 0.8 1 0.8889
device 5 1 8 0 16 1 0.3333 0.5

instrument 5 1 4 0 0 1 1 1
software 5 1 11 19 4 0.3667 0.7333 0.4889
condition 5 1 0 1 6 0 0 -
company 10 1 13 6 5 0.6842 0.7222 0.7027

commercial 10 1 13 16 4 0.4483 0.7647 0.5652
computer 10 1 15 14 3 0.5172 0.8333 0.6383

color 10 1 3 0 6 1 0.3333333330.5
value 10 1 22 2 7 0.9167 0.7586 0.8301
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TP FP FN Precision
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Recall
@k

F1 @k

optical 10 1 4 1 0 0.8 1 0.8889
device 10 1 13 0 11 1 0.5417 0.7027

instrument 10 1 4 0 0 1 1 1
software 10 1 15 35 0 0.3 1 0.4615
condition 10 1 4 0 2 1 0.6667 0.8
company 15 1 16 9 2 0.64 0.8889 0.7441

commercial 15 1 13 5 4 0.7222 0.7647 0.7429
computer 15 1 15 4 3 0.7895 0.8333 0.8108

color 15 1 8 0 1 1 0.8889 0.9412
value 15 1 26 3 3 0.8966 0.8966 0.8966

optical 15 1 4 0 0 1 1 1
device 15 1 13 0 11 1 0.5417 0.7027

instrument 15 1 4 0 0 1 1 1
software 15 1 15 25 0 0.375 1 0.5455
condition 15 1 5 0 1 1 0.8333 0.9091
company 3 2 12 11 6 0.5217 0.6667 0.5853

commercial 3 2 12 20 5 0.375 0.7059 0.4898
computer 3 2 15 13 3 0.5357 0.8333 0.6522

color 3 2 0 0 9 - 0 -
value 3 2 22 2 7 0.9167 0.7586 0.8302

optical 3 2 4 4 0 0.5 1 0.6667
device 3 2 0 0 24 - 0 -

instrument 3 2 4 4 0 0.5 1 0.6667
software 3 2 10 6 5 0.625 0.6667 0.6452
condition 3 2 0 2 6 0 0 -
company 5 2 13 9 5 0.5909 0.7222 0.65

commercial 5 2 13 16 4 0.4483 0.7647 0.5652
computer 5 2 15 11 3 0.5769 0.8333 0.6818

color 5 2 1 0 8 1 0.1111 0.2
value 5 2 23 3 6 0.8846 0.7931 0.8363

optical 5 2 4 1 0 0.8 1 0.8889
device 5 2 8 0 16 1 0.3333333330.5

instrument 5 2 4 1 0 0.8 1 0.8889
software 5 2 11 7 4 0.6111 0.7333 0.6667
condition 5 2 0 1 6 0 0 -
company 10 2 13 6 5 0.6842 0.7222 0.7027

commercial 10 2 13 14 4 0.4815 0.7647 0.5909
computer 10 2 15 11 3 0.5769 0.8333 0.6818

color 10 2 3 0 6 1 0.3333 0.5
value 10 2 25 4 4 0.8621 0.8621 0.8621

optical 10 2 4 1 0 0.8 1 0.888888889
device 10 2 13 0 11 1 0.5417 0.7027

instrument 10 2 4 0 0 1 1 1
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software 10 2 15 27 0 0.3571 1 0.5263
condition 10 2 3 0 3 1 0.5 0.6667
company 15 2 16 9 2 0.64 0.8889 0.7442

commercial 15 2 13 8 4 0.6190 0.7647 0.6842
computer 15 2 15 4 3 0.7894 0.8333 0.8108

color 15 2 8 0 1 1 0.8889 0.9412
value 15 2 26 5 3 0.8387 0.8966 0.8667

optical 15 2 4 0 0 1 1 1
device 15 2 13 0 11 1 0.5417 0.7027

instrument 15 2 4 0 0 1 1 1
software 15 2 15 23 0 0.3947 1 0.5660
condition 15 2 4 1 2 0.8 0.6667 0.7272
company 3 5 12 8 6 0.6 0.6667 0.6316

commercial 3 5 10 15 7 0.4 0.5882 0.4761
computer 3 5 15 16 3 0.4839 0.8333 0.6122

color 3 5 0 0 9 - 0 -
value 3 5 10 7 5 0.5882 0.6667 0.625

optical 3 5 4 4 0 0.5 1 0.6667
device 3 5 0 0 24 - 0 -

instrument 3 5 4 4 0 0.5 1 0.6667
software 3 5 10 7 5 0.5882 0.6667 0.625
condition 3 5 0 1 6 0 0 -
company 5 5 13 9 5 0.5909 0.7222 0.65

commercial 5 5 10 14 7 0.4167 0.5882 0.4878
computer 5 5 15 17 3 0.46875 0.8333 0.6

color 5 5 0 0 9 #DIV/0! 0 -
value 5 5 22 5 7 0.8148 0.7586 0.7857

optical 5 5 4 2 0 0.6667 1 0.8
device 5 5 7 0 17 1 0.2917 0.4516

instrument 5 5 4 3 0 0.5714 1 0.7272
software 5 5 11 17 4 0.3929 0.7333 0.5116
condition 5 5 0 1 6 0 0 -
company 10 5 14 6 4 0.7 0.7778 0.7368

commercial 10 5 14 16 3 0.4667 0.8235 0.5957
computer 10 5 15 11 3 0.5769 0.8333 0.6818

color 10 5 3 0 6 1 0.3333 0.5
value 10 5 23 8 6 0.7419 0.7931 0.7667

optical 10 5 12 0 12 1 0.5 0.6667
device 10 5 4 1 0 0.8 1 0.8889

instrument 10 5 4 1 0 0.8 1 0.8889
software 10 5 14 31 1 0.3111 0.9333 0.4667
condition 10 5 2 0 4 1 0.3333 0.5
company 15 5 16 6 2 0.7272 0.8889 0.8
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commercial 15 5 14 9 3 0.6087 0.8235 0.7
computer 15 5 15 5 3 0.75 0.8333 0.7895

color 15 5 7 0 2 1 0.7778 0.875
value 15 5 26 6 3 0.8125 0.8966 0.8525

optical 15 5 4 1 0 0.8 1 0.8889
device 15 5 13 0 11 1 0.5417 0.7027

instrument 15 5 4 1 0 0.8 1 0.8889
software 15 5 15 28 0 0.3488 1 0.5172
condition 15 5 4 0 2 1 0.6667 0.8
company 3 None 12 9 6 0.5714 0.6667 0.6154

commercial 3 None 10 16 7 0.3846 0.5882 0.4651
computer 3 None 15 17 3 0.4687 0.8333 0.6

color 3 None 0 0 9 - 0 -
value 3 None 23 12 6 0.6571 0.7931 0.7188

optical 3 None 4 4 0 0.5 1 0.6667
device 3 None 0 0 24 - 0 -

instrument 3 None 4 4 0 0.5 1 0.6667
software 3 None 9 4 6 0.6923 0.6 0.6429
condition 3 None 0 1 7 0 0 -
company 5 None 14 10 4 0.5833 0.7778 0.6667

commercial 5 None 10 16 7 0.3846 0.5882 0.4651
computer 5 None 15 18 3 0.4545 0.8333 0.5882

color 5 None 0 0 9 0.4545 0.6667 0.5405
value 5 None 23 16 6 0.5897 0.7931 0.6765

optical 5 None 4 2 0 0.6667 1 0.8
device 5 None 9 0 15 1 0.375 0.5454

instrument 5 None 4 3 0 0.5714 1 0.7272
software 5 None 10 12 5 0.4545 0.6667 0.5405
condition 5 None 0 0 7 - 0 -
company 10 None 15 5 3 0.75 0.8333 0.7895

commercial 10 None 13 12 4 0.52 0.7647 0.6190
computer 10 None 15 13 3 0.5357 0.8333 0.6522

color 10 None 3 0 6 1 0.3333 0.5
value 10 None 24 15 5 0.6154 0.8276 0.7059

optical 10 None 4 1 0 0.8 1 0.8889
device 10 None 12 0 12 1 0.5 0.6667

instrument 10 None 4 1 0 0.8 1 0.8889
software 10 None 14 20 1 0.4118 0.9333 0.5714
condition 10 None 3 0 4 1 0.4286 0.6
company 15 None 17 6 1 0.7391 0.9444 0.8292

commercial 15 None 14 9 3 0.6087 0.8235 0.7
computer 15 None 15 7 3 0.6818 0.8333 0.75

color 15 None 7 0 2 0.4545 1 0.625
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value 15 None 27 12 2 0.6923 0.9310 0.7941
optical 15 None 4 1 0 0.8 1 0.8889
device 15 None 13 0 11 1 0.5417 0.7027

instrument 15 None 4 1 0 0.8 1 0.8889
software 15 None 15 18 0 0.4545 1 0.625
condition 15 None 4 0 3 1 0.5714 0.7272

Table 8.1: Inference Stage results: Classification Metrics. TP,FP,FN refers to True Positive,
False Positive and False Negative respectively. The hyphen (-) indicates that specific metric
cannot be calculated because of division by 0.
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