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Abstract

Recent years has seen a tremendous advancement in the field of Natural Language Processing.
More and more research is focused on processing and understanding of unstructured or free-
form text, primarily clinical and medical notes, due to their increasing availability and richness
in information. However, not a lot of work exists on using NLP for understanding narratives
related to personal sleep health. Sleep is one of the three pillars for a healthy life, and studies
have shown that regular sleep tracking and identifying sleep issues can help in improving sleep
health. In this work, we focus on developing techniques, for understanding narratives about
sleep health of people, that can be adopted for digital assistance and sleep monitoring. We
particularly focus on two types of narratives: narrative of people’s last night’s sleep and their
description of sleep related issues. To extract structured information from the sleep narrat-
ives, we propose a novel pipeline that extracts temporal sleep events and outputs a complete
structured timeline that can enable daily visual sleep tracking. We build our approach with
three components. For the first component, Temporal Expression Extraction, we train a se-
quence tagging model that learns to tag temporal entities associated with sleep events using
both word-level semantics and character-level morphological features. The second task of
Temporal Expression Normalization is solved by training a specialised neural machine trans-
lation model that learns how to translate extracted temporal expressions into normalized time
stamps. We adopt two strategies that we call Hybrid Tokenization and Context Condition-
ing that improve the translation results. Lastly, we adopt a rule-based Entity Parsing and
Linking algorithm to process the extracted entities into a complete and structured timeline of
sleep events. Moreover, we propose a novel architecture for multi-label text classification of
the sleep issues. Our proposed method aims at capturing the semantic relation between the
documents and the labels and leverages this relation to learn a document-aware label-to-label
correlation. We achieve this by proposing a novel Graph Interaction-Attention Network for
self-attention calculation. The results of our experiments show that our proposed method
outperforms current state-of-the-art methods. Altogether, we present techniques to extract
information from two types of sleep narratives that can be leveraged for building conversa-
tional assistants for monitoring sleep health and also contribute to the current research in
solving the multi-label text classification problem.
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Chapter 1

Introduction

The rise of Natural Language Processing (NLP) in the past decades is backed by a couple of
global developments, the universal hype around Artificial Intelligence, exponential advances
in the field of Deep Learning and an ever-increasing quantity of available text data. However,
most of these texts available are unstructured and in free-from. These unstructured texts
contain an unreasonable amount of information that can be used to gain domain knowledge
and bring quality solutions. One of the most prominent domains where information is largely
found in free-text form, either typed or dictated, is the medical and health care domain.
Health care research and operations consider free text medical and clinical notes to be a rich
source of information. This has lead to extensive research into solving the challenging prob-
lem of automatically and accurately extracting the rich and nuanced information contained
in free text.

The advancement in the field of Deep Learning in the recent years has lead to an upsurge
in research in the field of Computational Linguistics. NLP techniques allow automatic pro-
cessing of written human language through various tasks such as, text mining. These tasks
are difficult for a computer to perform, but a particularly challenging problem is Natural
Language Understanding (NLU). NLU, an integral part of any NLP task, is the ability of a
computer to understand natural human language by simulating a human’s ability to create
natural language text. NLU uses algorithms to reduce human speech into a structured onto-
logy. It is best to view NLU as the first step towards achieving NLP; the machine attempts
to understand the language first, before processing it.

But why is it a particularly challenging problem for machines to understand natural lan-
guage? We explain this by drawing upon the linguistic theory and decomposing the process
of linguistic analysis into three dimensions: syntactic, semantic and pragmatic [73]. Human
language is pervasively ambiguous and highly subjective owning to different perceptions of
humans. It leaves room for common errors such as mispronunciations or transposed letters or
words. Accessing language by aligning it with grammatical rules is a common way to derive
meaning out of it, but grammatical correctness alone hardly ever validates human language.
There is a need for a closer focus on multilevel semantics along with syntactic analysis to help
the machine in understanding the meaning and interpretation of words. However, to fully
understand the natural human language, the machine needs more than the literal meaning
semantics provide. A pragmatic level of understanding to uncover the intent and context of
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CHAPTER 1. INTRODUCTION

the text is necessary for completeness.

1.1 Business & Research Context

The thesis work presented here has been done in collaboration with Philips Research. Philips
is a leading health technology provider focused on improving people’s health and achieving
better outcomes across the health continuum, from healthy living and prevention to dia-
gnostics, treatment and home care. One of the leading research topics within Philips is
Personal Health. In Personal Health, the focus is on investigating technologies and solutions
that stimulate a healthy life, offering optimized personal care, and exploring ways to enhance
a fulfilling home and interactive lifestyle. Among various domains that are researched, sleep
health is one of them.

Sleep is vital for our well-being and is considered one of the three pillars for a healthy life.
Even a few nights of poor sleep can have severe effects on aspects of daily life like alert-
ness, memory, mood and cognitive function. While chronic sleep problems are often related
to other health conditions like high blood pressure, depression or obesity [19], many sleep
problems are caused by lifestyle and environmental factors. Some examples of these factors
are disturbed sleep due to noise or light in the bedroom, caffeine consumption throughout
the day, exercise, stress and irregular sleep cycle. Tracking sleep and identifying sleep issues
and their causes can help to raise awareness of such problems and to take steps to improve
sleep. However, people face certain barriers in their journey of improving sleep health that
sleep tracking alone does not solve [53]. They fail to identify causes for their sleep problem
if potential sleep contributing factors are not tracked. If people even identify the issues, they
are unclear about what action they could take to combat these issues.

Therefore, one of the main focus of research at Philips towards improving sleep health is
Digital Engagement. To enhance consumer engagement, Philips aims at offering digital in-
teractions as fully personalized experiences to each consumer. This serves as the basis for
the motivation to work towards a voice-driven conversational agent for sleep tracking and
dialogue-based sleep problem assessment. Current solutions within Philips only make use of
structured data. The broader goal is to have a conversational agent that can process and
understand unstructured form of data, especially in the form of speech for ease-of-use of the
consumer, and extract useful information that can help towards bringing solutions to the user
and improve their sleep health. Therefore, in this thesis, we focus on NLP based methods of
information extraction from sleep narratives.

1.2 Problem Formulation

Our aim with this thesis is to develop information extraction techniques that can process
free-text sleep narratives and help in monitoring sleep health. We deal with two types of
sleep narratives: accounts of the users’ last night’s sleep, where they mention the events of
their night specifying the time they went to bed or sleep, if they were disturbed, when they
eventually woke up and details of other sleep events during the night; and narratives of people
describing their sleep issues such as problems with staying awake, falling asleep or snoring.
Our problem at hand is two-fold and hence, we tackle it as two distinct tasks.

Information Extraction on Free-Text Sleep Narratives using Natural Language Processing 2



CHAPTER 1. INTRODUCTION

1.2.1 Sleep Timeline Extraction

Our first task is to extract a complete sleep timeline from the sleep narratives provided by
the user. This narrative would essentially be retrieved from the dialogue between the user
and the conversational agent and is either typed or dictated and is essentially in amorphous
form. We tackle this problem by breaking it down into sub-processes and simultaneously give
a formal definition of the problem:

1. Detecting temporal expressions and their related sleep event: Given the user’s textual
narrative of their sleep last night, the goal is to detect temporal expressions (or entities)
in the text and tag them with the type of sleep event they are associated with. This
problem can be modelled as a sequence tagging problem. Given a sequence of tokenized
text that represent the sleep narratives, we want to learn a function that can tag token
or spans of tokens that represent time expressions and tag them with the associated
sleep event. Eventually, we want to train a Named Entity Recognition (NER) model
that can learn to identify these temporal entities in the text and classify them into
pre-defined sleep events classes.

2. Normalising the temporal expression: As we mentioned before, human language is am-
biguous and hence leads to various representations of similar concepts. Same is the case
with temporal expressions. Different people write or mention time differently based on
their preferences. We need to formally define different kinds of temporal expressions and
learn a function that can translate different types of temporal expressions and different
representations of the same time into one normalized structure so they can be easily
manipulated further. This can be framed as a Neural Machine Translation (NMT)
problem where the model takes the chunks of temporal entities previously extracted
from the text and learns to translate it into a normalized form.

3. Parsing the extracted entities into a complete timeline: Users’ account of their sleep
is often not complete since they do not always recount every detail. However, it is
important to have a complete timeline, specially if we want to visualize it for sleep
tracking. Hence the extracted temporal entities need to be parsed into a structured and
complete timeline.

1.2.2 Identifying Sleep Issues

In addition to sleep timeline extraction, we focus on our second task of detecting sleep issues
and causes from the user’s dialogue. Based on the sleep issues text corpus, we pre-define
categories of sleep issues and formulate this as a Multi-Label Text classification (MLTC)
problem. Since label classes co-exist in MLTC problems, there is an inherent correlation
between them that is often not very apparent. Current research in MLTC works towards
learning these correlations in order to build better solutions for multi-label classification. We
continue on this path of the current research and focus on solutions that take into account
the correlation between labels.

When compared to binary or multi-class classification, multi-label classification faces an issue
of estimation of posterior probabilities during evaluation. The most common method is to use
a threshold. Several threshold selection strategies exist however they require cross-validation
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CHAPTER 1. INTRODUCTION

and human input. This is not scalable when we have a large MLTC problem with a growing
number of labels. Exploratory data analysis on the corpus (please refer to Section 4.1 for
more details) also reveals that a large percent of the data samples are classified to only one
label while the rest are classified to multiple labels. Training on this dataset will lead to the
model assigning a very high probability score to only label, and low probability scores to the
other labels. Finding an optimal threshold, in this case, becomes more challenging. Hence,
we focus on finding a suitable alternative that can overcome these problems.

Classifying issues will enable us to build a recommendation system that can recommend
articles and tips in how to combat the issues they are facing thereby breaking the barrier we
discusses in Section 1.1. However, we do not focus on building a recommendation system in
this thesis due to current lack of corpus of tips and helpful articles to combat sleep issues and
leave this as future work.

1.3 Research Questions

We define three research questions addressed in this thesis:

1. Can we develop a solution that can understand an individual’s sleep narrative and
extract a complete and structured timeline from it? Can this solution deal with the
inherent ambiguity in the human language?

2. Can we propose a solution for our sleep issues MLTC task that advances the current
state-of-the-art by taking into account the correlation of labels and words?

3. Can we conceive an alternative solution for estimation of posterior probabilities from
the MLTC model that requires no overhead of cross-validation and is scalable? Will
this solution handle the skewed distribution of the dataset?

1.4 Contributions

Overall, the objective of this thesis is to extract information from two types of sleep narratives
for the purpose of building a voice-driven agent that helps with sleep monitoring and sleep
health. The main contributions of our work are as follows:

1. We present a novel pipeline, Sleep Events Recognition and Normalisation (SERN), that
detects sleep related temporal entities in free text and extracts a complete and structured
timeline from the temporal entities.

(a) We develop a design for the Temporal Expression Extraction task that leverages
two state-of-the-art word-level and character-level embeddings for training a NER
model for extraction of temporal events.

(b) We propose two strategies, namely Hybrid Tokenization and Context Condition-
ing to improve the performance of the Transformer model that we adopt for the
Temporal Expression Normalization task.
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CHAPTER 1. INTRODUCTION

2. We propose a novel method called Multi-label Text Classification using Graph Interactive-
Attention Network, for performing MLTC tasks. Our method is based on a novel archi-
tecture we introduce, called the Graph Interaction-Attention Network that takes into
account the correlation between words and labels to further learns document-aware
label-label correlations for better prediction.

3. We adopt a new method for estimation of posterior probabilities that uses the pooled
features from BERT to predict the number of labels each instance of the data should
be classified into. We train a linear layer with a multi-class classification objective to
achieve this.

1.5 Thesis Outline

This chapter gave an introduction to Natural Language Processing and the Business and
Research Context of our research. We further formulated our problem, posed our research
questions and listed our main contributions. Chapter 2 gives some background on NLP over
the years and presents some related work done in the field. Chapter 3 describes our proposed
pipeline SERN for extracting structured timeline from free-text sleep narratives and our novel
methodology, MLTC-GIN to tackle the MLTC problem using Graph Interactive-Attention
Network to learn label correlations that are also document aware. Chapter 4 gives details
about the datasets used in our study along with the experimental setup used for evaluation.
We further present the results of our experiments in Section 4.3 that include performance
comparison and ablation studies and simultaneously discuss the outcomes. Lastly, Chapter
5 presents our conclusions, limitations of our work and suggestions for future works that can
follow.
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Chapter 2

Background & Related Work

In this chapter, we briefly focus on the core trends in NLP over the years, how the advances
in the field of Deep Learning affected NLP and its recent inflection points. We further discuss
some related works on natural language processing of clinical narratives, temporal information
extraction and normalization and multi-label text classification.

2.1 NLP Over The Years

In the core of many natural language processing tasks is Language Modelling. Given a
vocabulary of words, a Language Model learns the likelihood of occurrence of a word based on
the previous sequence of words used in the text. Mathematically, they provide the conditional
probability of the next word, given some previous words in the sequence. Classic approaches
to language modelling are based on n-grams and employ smoothing to deal with unseen n-
grams [48]. The first neural language model based on a feed-forward neural network was
proposed in 2001 [6].

2.1.1 Word Embeddings

For a long time, most techniques used to solve NLP tasks made use of hand-crafted and
time-consuming features. These high-dimensional, sparse vector representations of text, for
example bag-of-words model, lead to the problem of Curse of Dimensionality. Dense and low
dimensional representations of words or word embedding were introduced as early as 2001,
but the real breakthrough was witnessed with the introduction of Word2vec [62]. Offered
in two flavours, Skip-gram and Continuous Bag-of-words models, they gained popularity as
they could learn relatively high-quality word embedding with semantic information by per-
forming large scale training. Improvements over word2vec have also been introduced, such as
skip-gram with negative sampling and subsampling of frequent words [64]. While it captures
intuitive relations between words, word2vec also suffers from several limitations. It cannot
handle unknown and unseen words and cannot present phrases. It also does not take into
account polysemy and is not robust towards biases that may come through training data. It
is only able to learn word representations through the local context and lacks a global context.

Over time, much work has been done in studying different aspects of word embeddings and
how to overcome past limitations. Character level model was introduced to learn morpholo-
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gical information in words such as the characters and their combinations [47]. GloVe word
embeddings are another popular alternative to word2vec that uses matrix factorization to
learn representations of the words [77]. Unlike word2vec, it does not only rely on local con-
text window for local statistics but also uses global word co-occurrence to obtain word vectors.

2.1.2 First Inflection Point: Deep Learning

Soon after the reintroduction of neural networks and the rise of deep learning, neural network
models became a prime choice of method for NLP. Recurrent Neural Networks were the first
obvious choice due to their dynamic temporal behaviour [63]. They were quickly replaced by
models that were more resilient towards the problem of vanishing and exploding gradients
such as, Long-Short Term Memory (LSTM) models [35] and Gated recurrent Units (GRU)
network. Bidirectional LSTMs or BiLSTMs are also used when context on both the left and
the right side of the word is essential and effectively increases the amount of information avail-
able to the network [34]. Convolutional Neural Networks (CNNs) have been widely successful
for computer vision due to their ability to recognize shapes and patterns, and they have also
proved to be effective at NLP tasks as well [43, 46]. Their particular advantage over LSTMs
is that they can be parallelized and studies have used convolutions to speed up LSTM models
[10].

Sequence to sequence or Seq2Seq learning was introduced in 2014 for mapping one sequence
to another [94]. The framework consists of two neural models, encoder and decoder, where the
encoder processes the sequence token by token and outputs a compressed and information-rich
vector representation and the decoder takes this as the initial state and predicts the output,
token by token while taking the last predicted token as input. This framework was found
to be a perfect fit for Machine Translation. Different models can play the role of encoder
and decoder. The decoder can be conditioned on arbitrary representations instead of the se-
quence, and due to this flexibility, it has found itself many applications such as image caption
generation [102] and language translation [25]. [18] proposed RNN encoder-decoder model
that introduced the Gated Recurrent Units (GRU) instead of LSTMs for statistical machine
learning.

2.1.3 Second Inflection Point: Attention Mechanism and Pre-training Lan-
guage Models

The core of Neural Machine Translation (NMT) and the foundation for the next inflection
point in NLP are Attention networks introduced by [5]. The major drawback of previous
seq2seq models is that the entire context of the input sequence was condensed in a vector.
Attention mechanism overcomes this by allowing the decoder to look back at the hidden states
of the input sequence and leverage their weighted average as additional input. [5] proposed
the RNNsearch model that used their proposed attention mechanism to reduce ”information
compression” in a single vector and instead allow the decoder to look at the entire source
sentence (via its hidden states) at each decoding step. Attention is available in different forms
[60] and has a wide range of applications such as reading comprehension, one-shot learning
and image captioning, to name a few. The use of attention mechanism in NLP systems offers
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a great side effect by providing a glimpse into the inner workings of the model. It highlights
different parts of the high-dimensional input that are relevant for a particular output based
on the attention weights providing a model-agnostic local explanation [83]. Techniques such
as LIME [87] and SHAP [58] have been recently used to interpret NLP models.

Transformer is a simple network architecture based on the attention mechanisms that tackled
the problem of machine translation [100]. The model is made up of an encoder and decoder
component where each is a stack of the same number of encoder and decoder blocks, respect-
ively. The encoder’s inputs first flow through a self-attention layer, and then the outputs
are fed to a feed-forward neural network. The same feed-forward network is independently
applied to each position. The decoder has both those layers, but between them is an attention
layer that helps the decoder focus on relevant parts of the input sentence (similar to what
attention does in seq2seq models).1 The paper also introduces a very important refinement
on the self-attention mechanism, called Multi-head Attention. Rather than only computing
the attention once, the multi-head mechanism runs through the scaled dot-product attention
multiple times in parallel. The paper states that ”multi-head attention allows the model to
jointly attend to information from different representation sub-spaces at different positions.
With a single attention head, averaging inhibits this.”

Figure 2.1: The Transformer model architecture [100]

1An illustrated explanation of the Transformer model can be found here
http://jalammar.github.io/illustrated-transformer/
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The shift from pre-training word embeddings to pre-training language models was the final
catalyst that lead to the inflection point in NLP. Since language modelling is an unsupervised
task, their training can thus be scaled to billions of tokens, new domains, and new languages.
It was first proposed in 2015 [23] and soon proved to be beneficial for a wide range of tasks.
Pretrained language models have been used to derive deep contextualized word representa-
tions for target model [78] or were fine-tuned on supervised learning tasks [84], with study
showing these contextualized embeddings giving large improvements over the state-of-the-art
across several different tasks [37].

The OpenAI Transformer or GPT 2 combined two powerful ideas: the Transformer model
and unsupervised pre-training, resulting in a breakthrough scalable, a task-agnostic system
that achieved state-of-the-art performance on various language tasks [81]. Their goal of learn-
ing a universal representation by large scale unsupervised learning that transfers with little
adaptation to a wide range of tasks by fine-tuning was adapted by other studies resulting in
many powerful language models like the GPT2 [82], BERT [24] and GPT3 [11].

BERT has attained state-of-the-art performance in several NLP tasks. The core of BERT is
the Transformer encoder, but its critical technical innovation is the bidirectional training of
the language model. It proposed the novel technique of Masked Language Modelling (MLM)
that attains a profound sense of language context and flow as compared to unidirectional
language models 3. Development of the BERT model has also lead to several spin-off models
with improvements such as DistilBERT [89], a distilled version of BERT, a robustly optim-
ized BERT called RoBerta [56] and ALBERT [50], lite BERT for self-supervised learning. [2]
introduces the novel contextual string embeddings or FLAIR embeddings that leverages the in-
ternal states of a trained bidirectional character language model and significantly outperform
previous works on English and German named entity recognition (NER).

Figure 2.2: Named Entity Recognition using contextual string or FLAIR embeddings [2].

2Generative Pre-Training
3For a detailed explanation of BERT refer to http://jalammar.github.io/illustrated-bert/

Information Extraction on Free-Text Sleep Narratives using Natural Language Processing 9

http://jalammar.github.io/illustrated-bert/


CHAPTER 2. BACKGROUND & RELATED WORK

2.2 NLP on Clinical Narratives

Clinical narratives are the most dominant form of communication within the health care dis-
cipline; it allows for personalized account of the patient’s history and contains rich information
that is essential for clinical assessment and decision. Traditional NLP methods, especially
rule-based approaches, have long been used to extract knowledge from these texts [91]. Use
of these methods generally requires interaction with experts to gain domain knowledge. How-
ever, cutting-edge methods employing computational linguistics and machine learning have
proved themselves to be efficient and fruitful in dealing with clinical texts. Although machine
learning-enabled NLP solutions require a significant amount of annotated data to learn from,
it is argued that the time required to annotate this data for training may require the same
time to extract knowledge [36, 72].

A large number of tools and frameworks exist for general-purpose information extraction from
clinical dictionaries, such as cTAKES [90], NOBLE [98] and MedLee [28]. Most of the earlier
NLP methods used on clinical narratives are either rule-based approaches, traditional machine
learning-based approaches or a hybrid of them. Rule-based approaches include methods that
include a dictionary look-up [114, 70], identifying terminologies based on domain ontologies
[66, 1], different manually written rules [14, 97] and regular expression patterns [68, 105]. One
of the most widely used machine learning techniques is Support Vector Machines (SVM) used
for mortality prediction [30], detecting axial sPA from EHRs [104]. Naive Bayes is another
popular traditional method employed for heart disease prediction, classifying smoking status
and EHRs for obesity [26]. CRFs based approaches have been used frequently on clinical
narratives for Named Entity Recognition on disorders [51], identifying EHR notes concerning
diabetes [13]. Lastly, Random Forest was used for classification of notes for pain assessment
[27], cancer type classification [44] and predicting heart diseases [106].

Recently, studies have been employing deep learning-based methods for various tasks on
clinical narratives. Attentional convolutional neural networks have been used to extract In-
ternational Classification of Diseases (ICD) codes from clinical notes [112]. Writing styles of
clinical notes can vary greatly, and transformer-based architecture with generative modelling
algorithms were applied to tackle this issue [67]. Deep neural networks have also been ap-
plied to unstructured text notes for phenotyping youth depression. Several studies focus on
processing Electronic Health Records (EHRs) by using language model pre-training to im-
prove on hierarchical patient classification [45], learning the implicit graph structure of EHRs
[20, 21] or extracting features from the records and automatically predicting future risk [69].
[52] pre-trained a domain-specific language representation model, BioBERT, on large-scale
biomedical corpora which largely outperforms BERT and previous state-of-the-art models in
a variety of biomedical text mining tasks.

Rule-based regular expression method have been used to extract sleep data from free-text
notes [71] and identify sleep disorders [16]. Despite the growth of deep learning based solu-
tions for the processing of various types of unstructured clinical narratives, not a lot of work
has been done in processing on narratives related to sleep. In this work, we propose a novel
pipeline that combines pre-trained language modelling, deep learning and rule-based method
to extract temporal information from free-text sleep narratives and construct a complete
timeline from the temporal information.
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2.3 Temporal Information Extraction & Normalization

One of the critical aspects of clinical or study notes that is of interest is timeline. Extracting
a patient’s timeline can prove to be very beneficial in tracking progress, longitudinal effects
of treatment and predicting clinical outcomes. Temporal Information Extraction has been
long studied but was mainly addressed in the news domain. In the early 2000s, TimeML
marked a major milestone in the discipline as the first full temporal annotation scheme [80].
TimeML is a robust specification language for events and time expression with the primary
purpose of identifying and extracting events and their temporal anchoring from a text. The
interest in temporal extraction in medical domain developed with the introduction of the
i2b2 NLP Challenge in 2012, providing a corpus of discharge summaries annotated with
temporal information [93]. Several approaches have been devised in the literature for temporal
information extraction ranging from rule-based methods to fully supervised machine learning
approaches to deep learning approaches.

Temporal Extraction

Rule-based approaches have proved to be efficient in extracting temporal entities due to the
low diversity of realizations in the text. HeidelTime, a multilingual, domain-sensitive tem-
poral tagger, is one of the most popular rule-based approach [92]. It extracts temporal expres-
sions from documents and normalizes them according to the TIMEX3 annotation standard.
Another rule-based approach, SUTime, was introduced by the Stanford NLP Group for re-
cognizing and normalizing time expressions and is part of the StanfordCoreNLP pipeline
[12]. However, these approaches suffer from a limitation that they fail to detect temporal
expressions when they have not been explicitly expressed, or they are expressed in relation to
another temporal entity. They also fail to detect explicitly written temporal expression when
there is absence on indicators usch as ”AM”, ”PM” or ”o’clock”.

Machine Learning approaches tackle this task by solving it as a sequence labelling task.
Conditional Random Fields (CRF) is a very popular probabilistic model often applied in pat-
tern recognition and sequence labelling. [42] tackle the TempEval time expression extraction
task by modelling it as a sequence labelling problem and using CRF to label each token in
the corpus. [7] uses a similar approach on the same shared task but instead employs the SVM
model. Bidirectional LSTM-CRF (BiLSTM-CRF) model was introduced by [40] for sequence
tagging that combines the complexity, non-linearity and bidirectional property of BiLSTMs
with the ability of CRFs to capture the relationships at label level and predicting optimal,
joint prediction of all labels. BiLSTM-CRFs have since been widely used by studies for se-
quence tagging tasks, specifically Named Entity Recognition (NER) [59, 79, 54]. NER is the
subtask of Information Extraction with the goal of locating and identifying names entities in
free text into pre-determined classes. It has also been used to identify time and date entities.
SpaCy, an open-source library for advanced Natural Language Processing in Python, provides
support for NER. SpaCy’s NER tool is trained on the OntoNotes v5.0 corpus [107] and can
detect 18 different entities including time (times shorter than a day) and date (absolute or
relative dates or periods). As mentioned in Section 2.1.3, FLAIR embedding has shown im-
pressive results on NER tasks, and experiments showed significant performance improvement
when BiLSTM-CRFs were used as the sequence tagging model as compared to a feed-forward
linear architecture or a feed-forward linear architecture with CRF [2].
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Temporal Information Normalization

Rule-based approached, HiedelTime and SUTime map detected time entities into TIMEX
format. However, identifying temporal entities using sequence labelling requires an addi-
tional step of normalizing the time. One of the first approaches towards normalizing time
expressions was TempEx [61] and was later extended to handle time expressions based on
the TimeML TIMEX3 standard and released as GUTime. TIMEN was introduced as a
framework for time expression normalization making use of Knowledge Base (KB) and rule
matching [57]. Machine learning-based related works on time expression extraction discussed
in the last section use TIMEN for time normalization.

Events corresponding to the time entities are generally extracted using event extraction meth-
ods [38]. However, in our work, we jointly extract the time and corresponding event by
identifying time entities and classifying them into pre-determined event classes (refer 3.1.1).
Our approach is suitable for our study due to our niche domain and a definite number of
events. Moreover, time expression normalization methods discussed above fail to normalize
time when time indicators AM or PM are not mentioned, or they fail to detect expressions
that express relative time duration, for example, ”after 10 minutes”. They also fail to handle
misspelt words and abbreviations. We address these issues by taking a deep-learning ap-
proach by training a model that can learn these rules but can also generalize on new unseen
examples and be robust to misspellings and errors. Hence, we employ an attention-enabled
sequence-to-sequence model trained on our artificial dataset to translate time expressions into
normalized versions (refer 3.1.2).

2.4 Multi Label Text Classification

Multi-Label Text Classification (MLTC) is the task of classifying each data sample in the
corpus into one or more categories. This makes it both a challenging and essential NLP
task. MLTC has been used in a wide variety of settings such as, sentiment analysis [55],
tag recommendation [29] and information retrieval [33] to name a few. MLTC tasks have
been using traditional machine learning methods as well as deep learning-based methods. We
present these related works by categorizing them into two following types.

2.4.1 Problem Transformation Methods

Problem transformation methods handle the MLTC problem by dividing the multi-label prob-
lem into one or more conventional single-label problems and then applying any single label
classification algorithm. The baseline approach is Binary Relevance (BR) [9], which trans-
forms the multi-label classification problem into several single-label classification problems.
This approach is problematic since it completely ignores the correlation between the labels.
Another problem transformation approach is Label Powerset (LP) [99]. LP transforms the
multi-label classification problem to a multi-class problem by creating a binary classifier for
every label combination present in the training set. LP considers label correlation but still
suffers from several limitations such as the problem of label imbalance, especially when the
number of distinct label sets is high compared to the number of instances in the dataset. LP
can only predict label combinations that occur in the training set and therefore would have
to be trained with an addition binary classifier each time a new combination is observed. The
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complexity of both BR and LP increases in the case of a huge number of labels.

Another transformation method is the Classifier Chains (CC) [86], which transforms the
multi-label problem to a chain of single-label problems. Each model predicts in the order
specified by the chain using all of the available features provided to the model plus the pre-
dictions of models that are earlier in the chain. This approach is similar to BR but takes
label correlation into consideration. CC still suffers from a drawback since it depends heavily
on the order of the chain. Different order of the chain results in a difference in prediction and
the performance of the model. This limitation was tackled by Ensemble of classifier chains
[85] that randomly orders the classifier chains.

2.4.2 Problem Adaptation Methods

Algorithm adaptation adapts the algorithms to handle multi-label data directly, instead of
transforming the data. The popular C4.5 algorithm [88] was adopted by [22] to handle multi-
label classification by constructing a decision tree and developing re-sampling strategies. SVM
ranking was adapted to create a multi-label ranking algorithm called Rank-SVM [41] although
it does not account for label correlation. [111] adapted the popular K nearest neighbour
algorithm [4] and proposed a lazy learning approach called ML-KNN. However, the algorithm
is limited to utilizing only the first or second-order correlation between labels.

2.4.3 Neural Network Models

More recently, different neural networks have been adopted to solve the MLTC problem. Back
Propagation for Multi-Label Learning (BP-MLL) [65] adapted traditional feed-forward net-
work and optimized a loss function similar to ranking loss. [110] proposed a model, Hierarch-
ical Attention Network (HAN) that uses GRU gating mechanism with hierarchical attention.
However, these models perform poorly on high dimensional, large-scale data.

Several studies used the CNN [46] and LSTM architecture for multi-label classification tasks
and achieved state-of-the-art performance; however, they use logistic regression for each la-
bel independently and fail to learn label difference. Recurrent Convolutional Neural Network
(RCNN) [49] and sequence learning models like Ensemble model CNN-RNN [17] and Sequence
Generation Model (SGM) [108] that generates possible label classes using an RNN-based de-
coder have been adopted for MLTC tasks. However, they neglect the correlation between
labels.

Several works have been focused on taking label correlation into account. Works by [32]
and [31] leverage the hierarchical and graphical structures among labels. [113] proposed hier-
archical SVM with orthogonal transfer to learn the hierarchy in labels, [76] use graph networks
to get the graph-of-words representation of text to tackle the hierarchical MLTC problem.
These methods take into account the label correlation at only at pair level.

BERT language model [24] achieves state-of-the-art performance in many NLP tasks and
can be adapted to perform MLTC. [74] proposed an attention-based graph neural network,
MAGnet. They use Graph Attention Network (GAT) [101] to capture the attentive depend-
ency structure among the labels. [39] proposed a hybrid attention neural network, LAHA,
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that considers both document content and label structure to create a label aware document
representation. They introduce an interaction-attention mechanism to explicitly compute the
semantic relation between the words and labels. We take inspiration from the MAGnet and
LAHA models and propose a novel framework, MLTC-GIN, to solve our problem of MLTC
on sleep issues corpus.

Compared to binary or multi-class classification, multi-label classification faces an issue of
estimation of posterior probabilities during evaluation. The most common method is to
use a threshold. Studies have proposed several threshold selection strategies such as PCut,
SCut and RCut [3, 109]. However, these parametric strategies have an overhead of expensive
cross-validation or human involvement. We adopt a simple alternative for the estimation of
posterior probabilities that requires no overhead of selecting this parameter via validation. It
turns out our idea closely resembles the work done by [96] where they use an OnevsRest SVM
to get the score denoting the class membership of each data point and use another OnevsRest
SVM to predict the number of labels based on the scores. However, there have been incred-
ible advancements in NLP techniques since then, such as the BERT language model showing
state-of-the-art performance. Therefore, we propose to use the pooled features extracted from
BERT to train a linear layer to predict the number of labels for each instance.
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Chapter 3

Proposed Methodology

In this chapter, we present our proposed methodologies to advance the natural language
understanding of sleep narratives.

1. We address the timeline extraction task by proposing a novel pipeline, Sleep Events
Recognition and Normalization. The pipeline takes a divide-and-conquer approach by
splitting up the problem into two key sub-problems: temporal expression extraction
and temporal expression normalization. For each sub-problem, we propose a specialized
machine learning approach. We also write a rule-based algorithm to parse the extracted
temporal entities into a complete structured timeline.

2. We also propose a novel graph interaction-attention network based multi-label text
classification model that accounts for the semantic connection between words and labels.
We also adopt a simple strategy for evaluation of posterior probabilities that overcomes
the drawback of using a threshold.

3.1 Sleep Events Recognition and Normalization

Given the user’s description of last night’s sleep, our proposed pipeline uses a combination
of deep learning-based and rule-based methods to extract a complete timeline of the sleep
events. First, the free-text narrative of the user’s last night’s sleep is fed into a time expression
extraction model that extracts nine classes of sleep-related time events that may be present in
the text. This is tackled as a named entity recognition task. Next, the extracted time entities,
along with their class category, are fed to a time normalization model that translates the time
into a normalized form in 24-hour format. The extracted and normalized time expressions
from the given text are then parsed, making sure there are no gaps in the timeline and non-
explicit type of time expressions are converted to explicit type by using a rule-based algorithm.
Finally, the entities are linked, forming a complete timeline. Figure 3.1 shows a high-level
overview of our approach.

Before we dive deep into the details of our approach, we define the set of temporal events
that we want to focus on and subsequently use as categories for temporal tagging.

• bed time: This is the time the user goes to bed or their bedroom for the intention of
going to sleep.
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Figure 3.1: High-level Architecture of the Sleep Events Extraction and Normalization pipeline.

• lights off: This is the time the user switches off their light before going to sleep.

• sleep time: This is the time when the user actually falls asleep.

• sleep latency: This is the duration of time it takes for the user to go from being fully
awake to sleeping.

• sleep disturbed: These are the times when the user’s sleep is disturbed either natur-
ally or due to external factors like noise, light or other individuals.

• duration of disturbance: This is the amount of time the user was disturbed from
their sleep.

• wake up: This is the time the user finally wakes up from their sleep intending to get
up from the bed and start their day.

• out of bed: This is the time when the user finally gets out of the bed.

• sleep duration1: This is the duration of time the user was asleep.

We discuss each component of the approach in the following sections. It is important to
note that for the scope of this thesis, we only focus on sleep descriptions of the individual’s
previous night’s sleep and therefore, we focus on temporal entities at day-level and not focus
on higher level temporal entities such as day, month or year.

1This time event is extracted for keeping statistics and does not play a role in creating a timeline.
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3.1.1 Temporal Expression Extraction

We use a combination of contextual word-level and character-level embeddings, namely BERT
[24] and FLAIR embeddings [2], that is pre-trained on a large corpus. Each sentence in the
training set is passed to the bidirectional LSTMs-based character-level neural language model.
For every word, the internal character states are retrieved to form the contextual string embed-
dings. From various contextual embeddings discussed in Section 2.1.3, we adopt the FLAIR
embeddings for our approach due to their use of character-level features. [2] state that pre-
trained contextual character-level features are particularly helpful for NER tasks since entities
are an open vocabulary of names that are often indicated by character features (such as cap-
italization or endings), as well as their contextual use. We further hypothesis that pre-trained
contextual character-level features as opposed to using only contextual word-level features are
particularly suitable since they can learn the useful orthographic and morphological structure
of numeric characters in time expressions. For our pipeline, we stack the FLAIR embeddings
with BERT embeddings to add greater latent word-level semantics. This eventually means
that the embeddings obtained from both FLAIR and BERT are concatenated for each word
and passed through a linear layer to obtain the final feature representation vector.

The final feature vector is passed to a BiLSTM-CRF for sequence labelling. The BiLSTM
takes the embedddings, and the forward and backward output states of the BiLSTM are
concatenated and fed to the CRF. We adopt BiLSTM as they have shown to be effective for
various sequence labelling tasks. In contrast to a linear classifier that models the product of
the conditional probability of a label given a token for each token in the sequence, CRF mod-
els the conditional probability of the entire sequence of labels y given the entire sequence of
tokens X. This is because the regular classifier assumes that there is no dependence between
adjacent positions in the sequence. Let rfi be the forward output state and rbi be the backward
output state for the ith word, where i ∈ [1, 2, 3, ..., n] and n is the number of tokens. Then,
the input to the CRF is given by:

ri :=

[
rfi
rbi

]
(3.1)

The final sequence probability is then given by a CRF over the possible sequence labels y
(Equation 3.2). Finally, the Viterbi algorithm [103] is adopted for decoding the optimal
output sequence.

P̂ (y|r) =
n∏

i=1

exp(Wyi−1,yi ri + byi−1,yi) (3.2)

where, Wyi−1,yi is the m × m transition matrix with m being the number of labels in the
training set and gives the cost of transition from label yi−1 to label yi. We choose to adopt
a CRF later because the CRF layer considers the correlations between the current label and
neighbouring labels and adds syntactic constraints to the final predicted labels to ensure they
are valid. These constrains are learned by the CRF layer through the transition matrix auto-
matically from the training dataset during the training process.
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Figure 3.2: Architecture of the method adopted for the Temporal Expression Extraction task:
two embeddings BERT [24] and FLAIR[2] are stacked to extract word-level and character-level
features respectively. BiLSTM CRF model is used to tag the sequences.

3.1.2 Temporal Expression Normalization

The previous component of our pipeline detected the temporal entities in the text and pre-
dicted the sleep event it was associated to. Since the detected temporal entities are still
spans of the original text, representation of the same time can vary across different data
samples due to different ways humans use language to represent time textually. For example,
21:00 can be expressed in different ways such as 9 PM, 9 o’clock or 9.00 p.m., depending on
the individual’s preference. Moreover, established rule-based algorithms fail to detect, and
subsequently, normalize time expressions when they are vaguely defined or when indicators
AM/PM is not explicitly mentioned. Therefore, it is essential to translate these temporal
entities into a normalized form.
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Normalisation Taxonomy

Establishing a taxonomy of time expressions is an essential step before going into details of
our methodology. We define five types of time expressions observed when users’ describe their
sleep:

• Explicit: Time expressions are stated explicitly in terms of hours and/or minutes and
can be directly translated to HH:MM format. For example, ”10:30”, ”8 pm”, ”at 9”.

• Durative and/or Relative: Time expressions that are expressed in duration either in
absolute form or relative to another time expression. These are normalized as +HH:MM

or -HH:MM with the +/- indicating the relative nature meaning that this duration of
time needs to be added or subtracted to a relative time to obtain the exact time of the
event. For example, ”after 10 mins”, ”two hours”, ”40 minutes later”.

• Frequency: Time expressions that are durative and regularly recurring. These are
normalized as *HH:MM with the * indicating the recurring nature of the expression. For
example, ”every 5 minutes”, ”every half an hour”.

• Range: Time expressions that are expressed as range between two explicit time expres-
sions. These are normalized as HH:MM-HH:MM. For example, ”from 2:00 to 4:00 am”, ”9
- 10 pm”.

• Quantitative: These expressions are particularly used to define the number of times
an event occurred. These are normalized as Tn, where n is the number of times the
event occurred. For example, ”5 times”, ”2-3 times”.

• Vague: These are durative time expressions are used when the user is unsure about
the time or duration. These are normalized as +HH:MM and we use heuristics to deal
with them. For example, ”a few minutes later”, ”a couple of hours”.

We adopt the neural machine translation (NMT) approach for our temporal normaliza-
tion task. We create an artificial dataset by generating different time expressions for each
sleep event by defining some regular expressions based on common representations of time as
used by humans. For each data sample, we also generate its normalized time form in 24-hour
format as ground truth for our training. To define this more formally, let {(ti, ci, t̂i)}ni=1 be
our set of labelled training data, where ti is the ith time entity, ci is the sleep event cat-
egory associated with the ith time entity. In the scope of this component of the pipeline, we
also call this as the context to the NMT model. And finally, t̂i is the ith normalized time entity.

We use the attention-based sequence-to-sequence model, Transformer by [100]. The input
to the model is the extracted time expressions, ti and the model learns to translate it to the
normalized time expression, t̂i. Moreover, we also feed the associated sleep event ci, or the
context to the model so that the translated result is conditioned based on the context, and
hence, we call it Context Conditioning. It is often hard to determine the time in the 24-hour
clock format, especially when time indicators AM or PM are not mentioned. For example, in
the text ”I woke up at 8” which results to extracted time expression and sleep event ”8” and
bed time respectively, it is not clear for the model if ”8” is 8 AM or 8 PM. However, adding
the context that ”8” is associated to the time of going to bed, the model learns that it is
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Figure 3.3: Architecture of the adopted Transformer model[100] for Temporal Expression
Normalization: We use 3 layers of encoder and decoder each and propose 2 key strategies,
Hybrid Tokenization and Context Conditioning

more probable that time mentioned is in the morning, leading to the result ’20:00’. Similarly,
”8 o’clock” with the context of wake up helps the model to learn that this is ’08:00’ in the
morning. This serves as our motivation for adding the context as an additional input to the
model.

Tokenization

Tokenization plays a significant role in dealing with text data. It is a way of separating a piece
of text into smaller units called tokens. Tokens can be either words, characters, or subwords.

For tokenizing the input temporal expressions, we take a hybrid approach. We first tokenize
them into word pieces and then further tokenize the words that contain numbers or punctu-
ation into characters. Simply put, words that take the form of temporal prepositions (e.g.
on, in or at), temporal conjunctions (e.g. before or after) or prepositions signaling modal-
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ity (e.g. to) are represented at word-level and tokens with numerical characters which are
essentially the absolute time expressions (for example, 10:00, 9pm, 23.00 and so on) are rep-
resented at character-level. Since these time expressions have a probability of having high
out-of-vocabulary (OOV) rates, character-level representations are more suitable. They also
capture useful orthographic and morphological information.

The sleep events or context do not need tokenization since they are one-word entities, and
the target normalized time expressions are tokenized as characters for the same reasons as
mentioned before. Start-of-sentence and end-of-sentence tags are added at the start and end
of tokenized sequence of input temporal expressions, context and tokenized sequence of target
normalized temporal expressions.

We take the sequence of tokenized temporal expression ti = {ti1 , ti2 , ti3 , ..., tiki+2
}, where

ki is the number of tokens, and context ci = {ci1 , ci2 , ci3}2 and concatenate them as,

srci = [ti1 ti2 ti3 ... tiki+2
ci1 ci2ci3 ] (3.3)

The srci is fed to the encoder which compresses it into a sequence of context vectors zi =
(zi1 , zi2 , zi3 , ..., zim), where m = k + 5 3. The tokens are first passed through the embedding
layer. Since this model is not recurrent, [100] uses a fixed static embedding to implement
the idea about the order of the tokens. However, we implement the idea of the order of
tokens by using a second embedding layer called the Positional Embedding Layer as used in
modern Transformer architectures like BERT [24]. This is a standard embedding layer where
the input is the position of the token within the sequence. The standard and positional em-
beddings are summed and fed to N encoder layers to obtain the sequence of context vectors zi.

Each encoder layer comprises of the multi-head attention layer followed by a dropout layer.
Multi-head Attention is a novel concept introduced by the original paper. A residual con-
nection is applied and fed to the Layer Normalization layer. The output is passed to a
Position-wise feed-forward layer followed by dropout. Another residual connection is then
applied, followed by another Layer Normalization layer. The output from each encoder layer
is fed to the next one, and parameters are not shared between layers.

The encoded representation zi is fed to the decoder layers that decodes it into predicted
tokens in the target sentence t̂i. The decoder layers are similar to the encoder layers; how-
ever, they have two multi-head attention layers instead of one, a masked multi-head attention
layer over the target sequence and a multi-head attention layer which combines decoder rep-
resentation and the encoder representation zi. During training, the target tokens, shifted
right, are fed to the standard and positional embedding layer (similar to the encoder) and the
embeddings are summed and fed to the decoder made of N decoder layers. The representation
from the last decoder layer is fed to a linear layer followed by a softmax layer resulting in the
output probabilities. We present a higher level of understanding of the Transformer model.
For more details of each layer, please refer to the original paper [100].

2ti1 and ci1 are start-of-sentence tags and tiki+2 and ci3 are end-of-sentence tags
3The size of the sequence of context vector is equal to the size of the src vector
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At inference, start-of-sentence token is fed to the decoder as the initial input. The decoder
outputs the vector of probabilities yimi

and the token ˆtimi
is given by,

ˆtimi
= argmax yimi

(3.4)

where, yimi
∈ {0, 1}d and mi is the the number of tokens in the ith target and d is the

length of vocabulary of target. The predicted token is added to the input at every step till the
end-of-sentence token is predicted resulting in our translated target sequence t̂i and inference
is stopped.

3.1.3 Time Entity Parsing and Linking

We now have normalized temporal expressions along with their associated sleep event. Before
visualizing the timeline, we need to parse the temporal entities in order to get a complete
timeline. Specifically, we need to:

• Fill the gaps: Users often do not mention the time of certain sleep events for either
brevity or due to forgetfulness. For example, in the following text description, ”I went
to bed at 10:00 and fell asleep after 20 minutes. I remember waking up around 2 am
to drink some water. I finally woke up at 7 in the morning and got up to get ready.”,
the user does not mention when they went back to bed after ”2 am”, creating a gap in
the timeline. If enough information is not provided in the text, these gaps need to be
filled by either asking follow up questions, or using heuristics, e.g. adding a sleep time
event after 5 minutes.

• Deal with durative and relative types of expressions: When these expressions are en-
countered, the time duration needs to be added or subtracted from the last or next
observed explicit time to determine the absolute value of time.

We also need to deal with the following two types of temporal events that are often observed
in the case of disturbed sleep in conjunction with range type of expressions:

• Deal with frequency type of expressions: If mentioned, sleep disturbed events are regu-
larly added with the mentioned frequency between the given range of time.

• Deal with quantitative type of expressions: If the occurrence of the disturbance is quan-
tified, sleep disturbed events are added given number of times between the given range
of time.

If frequency or quantitative types of expressions are observed in the absence of a range
type, sleep disturbed are created between the time the user first went to sleep and when they
finally woke up from their sleep.

After the resolution of these points, we get a complete timeline that is ready to be visu-
alised. We define the periods between two consecutive events as follows:

1. Bed time - Light off (or vice-versa): In bed

2. Lights off - Sleep time or Bed time - Sleep time: Ready for sleep

3. Sleep time - Wake up or Sleep time - Sleep disturbed: Slumber
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4. Sleep disturbed - Sleep time: Sleep disturbed

5. Wake up - Out of bed: Awake in bed

These rules are implemented by writing an algorithm that parses the extracted entities and
results in a complete timeline. In Appendix C, we present the complete rule-based parsing.

3.2 MLTC-GIN

In this section, we propose a graph interactive-attention network based multi-label text classi-
fication model or MLTC-GIN. Our inspiration for this model comes from the MAGnet model
[74] that uses graph attention network to model the dependencies or correlations among la-
bels often observed in MLTC tasks, and the LAHA model [39] that proposed the notion of
interactive-attention to explore the semantic relationship between each document and labels
by taking advantage of both document content and label correlation. Based on these two
key concepts, we introduce Graph Interaction-Attention Network. In this novel approach, the
label features directly interact with the word features of the training documents to calculate
interaction attention. This is further used to learn label-to-label correlation by calculating self-
attention. We combine the label feature representation from the Graph Interaction-Attention
Network with word features extracted from the BERT model to output the predicted labels.
The architecture of our MLTC-GIN model is shown in Figure 3.4. We start with a set of train-
ing data {(xi, yi)}ni=1 where xi ∈ RD are the input features with D dimension, yi ∈ {0, 1}C
is the target vector with C being the number of classes and finally, n is the number of data
samples. Target vector yi has 1 in the jth position if it belongs to the jth class. The MLTC
problem can then be modelled as finding the optimal sequence of labels y∗ that maximises
the conditional probability p(y|x) by,

p(y|x) =

n∏
i=1

p(yi | y1, y2, y3, ..., yi−1, x) (3.5)

We employ the BERT model to extract the representation of tokens Xi ∈ Rs×r and also
the pooled representation of all tokens Xipooled ∈ R1×r by,

Xi, Xipooled = fBERT (xi, θBERT ) (3.6)

where s is the maximum sequence length of the input and r is the dimension of the token
embedding.

We introduce the Graph Interaction-Attention Network (GIN), based on the original Graph
Attention Network [101] to determine the semantic relation between words and labels in the
same latent space and leverage this to capture the dependencies between the labels. GIN
takes node features and adjacency matrix that represent the graph data as input. Here, the
labels are the nodes in the graph. Since the labels in our data do not have an inherent
graph structure, we learn the adjacency matrix during the training phase, hoping that the
model will determine the graph, thereby learning the correlation of the labels. We use the
pre-trained BERT model to obtain embeddings for each label and use it as our node features.
GIN provides us with the attended label features, which are then combined with features
extracted by BERT to give the final probability scores.
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Figure 3.4: Architecture of our proposed model, MLTC-GIN for Multi-label Text Classifica-
tion tasks using Graph Interaction-Attention Network: Interaction Attention is implemented
in a Graph Attention Network to better learn the correlation within the label by also inter-
acting with input features from the text.

3.2.1 Graph Interaction-Attention Network

GIN leverages the attention mechanism to identify label importance in correlation graph
by considering the importance of their neighbour labels. We use multi-head attention that
uses K different heads. Each layer is independently replicated, meaning they do not share
parameters and the outputs are aggregated feature-wise by taking an average,

H l+1
i = f(

1

K

K∑
k=1

∑
j∈N(i)

αi,j,kH
l
jW

l
q) (3.7)

where, αi,j is the attention coefficient of label j to label i, N(i) represents the neighborhood
of label i in the graph and f is Exponential Linear Unit (ELU) activation function. W l

q is

the bridge mapping matrix (see next section) for the lth GIN layer. A cascade of GIN layers
are used in the model and the output from the previous GIN layer is fed into the successive
GIN. The first layer takes the label embedding M ∈ RC×r (C is the number of classes and r
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is the embedding dimension) as input,

H1
i = f(

1

K

K∑
k=1

∑
j∈N(i)

αi,j,kMW 0
q ) (3.8)

If L number of cascading GIN layers are used, the final attended label features are given
as,

HL
i =

1

K

K∑
k=1

∑
j∈N(i)

αi,j,kH
L−1
i WL−1

q︸ ︷︷ ︸
attended label features

(3.9)

Calculating Attention

We propose a new method of calculating the attention coefficients that interact with word
representations so that the model not only take advantage of the label correlation but also
the document content. As mentioned in the previous section, we use BERT embeddings to
represent words and labels in the r-dimensional latent space as Xi and M respectively.

Similar to the work of [39], we align the latent space of words and labels by using a bridge
mapping matrix Wq ∈ Rr×d and train this matrix with the following objective:

QL = WqM (3.10)

Key vectors for the word embeddings Xi are calculated by QW = WxXi, where Wx is a
trainable weight matrix. We then use the attention queries for each label and key vectors for
the words to calculate the interactive matching score M (x) ∈ Rm×s as,

M (x) = QL QT
W (3.11)

We then calculate the label attention with document context A(I) ∈ Rm×m from the inter-
active matching score by using another trainable weight matrix, Ws ∈ Rs×m,

A(I) = M (x)Ws (3.12)

We then use softmax to normalise A(I) and get our attention coefficients αi,j as,

αi,j =
exp (A

(I)
i,j )∑n

i=1 exp (A
(I)
i,j )

(3.13)

Calculating Final Prediction Score

The pooled output Xipooled from BERT is passed through a Multi-layer perceptron to get the

final feature vector F in d dimension. If Hgin ∈ Rm×d are the attended label features from
GIN, then the final prediction score is given by their multiplication,
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ŷ = F �Hgin (3.14)

where, � represents the multiplication function and ŷ ∈ RC .

Loss Function

We use Binary Cross Entropy as the loss function. Given the ground-truth labels as y ∈
{0, 1}C and ŷ is the final predicted score, the loss is calculated as:

L =
C∑
c=1

yc log(σ(ŷc)) + (1− yc) log(1− σ(ŷc)) (3.15)

where, σ is the Sigmoid activation function.

3.2.2 Predicting the Number of Labels

The instance-wise prediction of number of labels is modelled as a multi-class classification
problem. We use the pooled features from BERT as input and train a linear layer to predict
the number of labels for each instance. Given the ground-truth labels as yi ∈ {0, 1}C and
pooled features from the BERT model Xipooled , we train a linear layer as:

k̂ = WlXipooled + b (3.16)

where, Wl are the weights and b is the bias associated to the linear layer and k̂ ∈ RC is
the probability score. We take the argmax of the prediction score to find the most probable
number of labels for each instance,

yk = argmax k̂ (3.17)

During evaluation and inference, the Top-K method is used to select the top yki probabilities
score from the multi-label predictions where yki is the number of labels predicted for ith

instance.
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Chapter 4

Experiments & Results

In this chapter, we discuss our experiments and present our results and discussions. We
first discuss the various datasets used for training and give detail about their collection and
processing in Section 4.1. We then discuss the details of implementation and state the setting
of our experiments in Section 4.2. In Section 4.3, we present our results by comparing the
performance of the adopted and proposed methods against baselines and state-of-the-art
methods. Moreover, we present the results of our ablation studies and simultaneously discuss
the outcome. Lastly, we do a qualitative analysis of our proposed pipeline by observing its
performance on a sampled set of examples.

4.1 Data

In this section, we describe the datasets used in this thesis and give details about their source
and collection. We also describe the pre-processing steps are taken and labelling tools used.

4.1.1 Sleep Narratives Dataset

The Sleep Narratives dataset is a small dataset containing 600 free-text accounts of people’s
sleep of the previous night. The data was collected by Philips Research using Amazon Mech-
anical Turk (MTurk). MTurk is a crowdsourcing website for businesses (known as Requesters)
to hire remotely located ”crowdworkers” to perform discrete on-demand tasks that computers
are currently unable to do. The participants were asked to provide information about their
sleep of the previous night via an open question, ”Please describe, in a few lines, your sleep
last night”.

Table 4.1: Examples of the type of response expected from the open question “Please describe,
in a few lines, your sleep last night”

Yesterday, I went to bed at 10:00 and got up at 6 this morning. It took me around 30
minutes to fall asleep. I only woke up once at around 3 o’clock in the morning, due to
some noise in the street. I would rate my sleep of this night with an 8.

Last night I slept very badly. I went to bed too late at around half past midnight and
could not fall asleep until 3 o’clock in the morning. And at 6 my alarm clock went off. I
think I could not fall asleep because of stress at work.
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Table 4.2: Examples of the IOB2 or BIO tagging scheme

Tokens I went to bed at 10:00 pm and got up at 6
Tags O O O O O B-bed time I-bed time O O O B-wake up I-wake up

The collected free-text data was then pre-processed by removing all accented characters
and converting the text to all lower case. NER datasets require the entities in the text to
be tagged for the purpose of training. We use the IOB2, or simply BIO, tagging format for
tagging temporal expressions in our dataset with their corresponding sleep event class (see
Section 3.1 for the list of sleep event classes). This tagging format helps deal with entities that
are composed of more than one word. The B-tag, which stands for beginning, is used when
the token begins an entity, I-tag, which stand for inside, is used when the token is followed by
a token of the same entity, indicating that its inside the entity and finally the O-tag, which
stands for outside, is used when the token does not belong to any entity, indicating that its
outside the entity. Table 4.2 shows an example of the BIO tagging scheme.

We use Label-Studio1, an open-source data-labelling tool, to annotate our dataset. The
annotations are exported in CoNLL 20032 file format which has two columns, one for the
tokens of text and the second for corresponding tags in the BIO format. Figure 4.1 shows the
document frequency and term frequency of sleep event entities. For our problem, we define
the document frequency of a label as the number of data samples that include an entity tagged
with that label. The term frequency of a label is defined as the total number of entities that
are tagged with that label in the entire dataset. We use 80% as training set, 10% as validation
set and 10% as test set.

Figure 4.1: Barplot showing the distribution of the Sleep Narratives dataset over the defined
classes

1https://labelstud.io/
2https://www.clips.uantwerpen.be/conll2003/ner/
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Figure 4.2: Dataset annotation using Label Studio

4.1.2 Time Normalisation Synthetic Dataset

As we have mentioned before, popularly used rule-based time extractors (or taggers) and
normalization tools such as HiedelTime and SUTime fail to detect vague or durative type
of time expressions. Taking an example of a simple sleep narrative, ”I went to bed at 10
and fell asleep 10 mins later”, HiedelTime fails to detect both ”at 10” and ”after 10 mins”.
Therefore, we adopt the Transformer model that can learn these rules by training while also
generalize on newer data. However, we lack access to a dataset that focuses on non-explicit
types of temporal expression, and that can enable our model to learn how to normalize them.
Therefore. we create a dataset artificially using regular expressions that focuses on the types
of expressions we defined in subsection 3.1.2. We define several regular expression patterns
for each sleep event and generate a large number of examples for each type using a random
number generator. We make sure to generate a random number for each regular expression
in a way that leads to the generation of a valid time expression.

For each generated time expression, their normalized equivalent in 24-hour format is gen-
erated. When time indicator AM or PM are not generated for the time expressions, we
deduce the correct time by using the sleep event class as context. Appendix A presents the
different regular expressions created to generate the dataset along with the list of sleep event
classes they are used for and the format we use to generate their normalized versions. In
total, we generated 30,800 unique triples consisting of the time expression, the sleep event
class and normalized time expression. We use 70% as train set, 15% as validation set and
15% as test set.
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Figure 4.3: Distribution of the Sleep Issues MLTC dataset: Number of data samples per each
class category (left) and Number of data samples having multiple labels (right)

4.1.3 Sleep Issues MLTC Dataset

The Sleep Issues dataset is a collection of 18,256 free-text narratives of people describing their
sleep-related issues. The data was collected by Philips Research using Amazon Mechanical
Turk (MTurk). The participants were asked to imagine that they are having a conversation
with a nurse or health-care professional because of some issues they are experiencing related
to their sleep. Their narratives were retrieved as an response to the open question , ”Can you
tell me a bit about your sleep issue?”. The collected free-text data was then pre-processed
by removing all accented characters and converting the text to all lower case. The processed
data was analyzed and manually classified into 8 classes, where any given free-text narrative
can belong to more than one class category. Figure 4.3 gives the distribution of the data over
8 class categories and statistics of number of data samples having multiple labels. We use
80% as training set, 10% as validation set and 10% as test set.

4.1.4 Toxic Comment Classification Dataset

We also evaluate the performance of our novel MLTC-GIN model by comparing its perform-
ance to state-of-the-art models on a benchmark dataset. We use the toxic comments dataset
provided by Kaggle for their Toxic Comments Classification Challenge. The dataset consists
of a large number of comments from Wikipedia talk page edits. Human raters have labelled
them for toxic behaviour. Eight labels are used to classify a comment, toxic, severe toxic,
obscene, threat, insult, identity hate and non-toxic. Due to the limitations in the hardware
capacity available to us, we limit the size of our training set to 154,545. However, we use the
original test set of size 61,600. We use the same train and test sets for all experiments and
use 10% of the train set for validation.
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4.2 Implementation Details

We use Python 3.7 as the programming language for all our implementations. All experiments
were run five times, and the averaged results have been presented.

We train the BERT+FLAIR BiLSTM-CRF model using the framework 3 developed by [1].
It does away with all embedding-specific engineering complexity and allows researchers to
“mix and match” various embeddings with little effort, enabling easy stacking of different
embeddings. It also provides support for using BiLSTM-CRF as our sequence tagging model.
We stack the FLAIR embeddings pre-trained on 1-billion word corpus [15], and BERT-base
uncased embeddings provided by the framework for our implementation. We train the model
for 150 epochs with mini-batch size equal to 32. We use SGD optimizer with an annealing
learning rate with the initial value set to 0.1 and is reduced with the anneal factor of 0.5 if
the training loss does not improve for three epochs. If the minimum learning rate is reached
before the complete training, the training is stopped early.

The Transformer model for time normalization was implemented using the PyTorch and
torchtext libraries. We train our model for 30 epochs with the early stopping criteria with
patience equal to 3. We use Adam optimizer with a fixed learning rate of 0.0005 and use the
batch size of 128.

We implement our entity parsing algorithm using pure Python 3.7. We use the Matplot-
lib library to visualize our sleep timeline. Finally, our proposed pipeline is constructed by
using the trained BERT+FLAIR BiLSTM CRF model and Transformer model.

We implement our proposed MLTC-GIN model in PyTorch. We wrap the PyTorch model in
an sklearn wrapper for future use of grid search and active learning tools such as ModAL that
provide support for sklearn estimators. We train the model for 100 epochs with early stopping
criteria with patience 10, meaning the training stops when the chosen metric, F1-score does
not improve for 10 epochs.

List of hyper-parameters used for each architecture are presented in Appendix B.

3https://github.com/flairNLP/flair
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4.3 Results & Discussion

In this section, we present the results of our experiments by doing performance comparisons
and performing several ablation studies. Moreover, we qualitatively analyse the performance
of our SERN pipeline by running inference on some sampled texts and visualizing the extracted
tiemlines.

4.3.1 Performance Comparison

In this section, we present and discuss the results of our experiments and compare the per-
formance of our adopted and proposed algorithms with existing baselines and state-of-the-art
methods.

Temporal Expressions Extraction by Sequence Tagging

Table 4.3 shows a comparison of overall F1 scores and CoNLL F1-scores per class category
for the Time Extraction NER task using BERT embedding, FLAIR embedding and their
combination. The CoNLL F1 score is a strict version of the standard F1 score where a true
positive is scored only if all the tokens of a given entity are classified correctly (including their
B- and I- tags). Conversely, every incorrect B- prediction is counted as a false positive. When
comparing the performance of models that only use either BERT or FLAIR, BERT embedding
performs better (↑ 3.36%) indicating that character-level features alone cannot outperform
models that learn from word-level features. However, stacking word-level BERT embedding
with character-level FLAIR embeddings gives the best performance with an overall F1 score
of 66.40, significantly improving over the model that only uses word-level features (↑ 3.68%).
This validates our hypothesis that additional use of character-level features as opposed to just
using word-level features is particularly helpful for this task.

Focusing on class-wise CoNLL F1-scores, we see that sleep latency, and out of bed
score lower which can be attributed to the fact that their term and document frequencies are
significantly lower when compared to other classes (see Figure 4.1). sleep time class also
scores low even though their document and term frequencies are high. However, an important
detail to note is that we use the class sleep time to indicate two types of sleep time: when
the person first goes to sleep after going to bed, and when the person goes to sleep after
having their sleep disturbed, making it a particularly challenging class and we attribute the
lower score to this fact. Comparing the class-wise performance of the three types of embed-
ding, few classes benefit more from either just word-level BERT features or character-level
FLAIR features. Temporal entities belonging to class bed time are mostly of explicit type
which are purely numeric in nature and the absolute time can be extracted without the need
for temporal prepositions or conjunctions. This may be a reason why entities from this class
benefit from a purely character-level embedding. Temporal entities belong to lights off,
sleep time, out of bed and sleep duration seem to benefit more from only word-level
features. Time expressions belonging to these classes often are of non-explicit types using sup-
porting words that are temporal prepositions or conjunctions. This leads us to believe that a
better way of integrating the two types of embeddings (instead of simply stacking them) may
lead to improvements. Another factor affecting the class-wise behaviour we observe could be
inconsistencies in ground-truth annotations across the train and test sets due to human error,
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Table 4.3: Performance evaluation of BERT, FLAIR, and BERT+FLAIR based NER archi-
tectues on the Sleep Narratives test set: Class-wise CoNLL F1-scores are reported and in the
last two rows, overall F1-micro averaged and Accuracy scores are reported for each of the
three architectures.

Models BERT FLAIR FLAIR+BERT

F1 Bed time 54.55 74.42 73.33
F1 Lights off 78.57 56.25 68.97
F1 Sleep time 56.18 50.55 47.37
F1 Sleep disturbed 76.47 61.82 81.82
F1 Duration of disturbance 64.52 56.60 70.18
F1 wake up 69.81 66.02 74.29
F1 Out of bed 51.85 42.86 42.86
F1 Sleep latency 37.50 46.81 47.37
F1 Sleep duration 85.71 57.14 75
Overall F1-score 62.72 59.36 66.40
Overall Accuracy 95.67 95.59 96.23

Temporal Expression Normalization by Neural Machine Translation

To evaluate the performance of our time normalization NMT model, we use BLEU and Exact
Match. The Bilingual Evaluation Understudy Score or BLEU [75] for short was developed
for quick, inexpensive and language-independent evaluation of automatic machine translation
systems that closely relates to human evaluation. Exact Match (EM) is the strictest metric
which scores a translation 1 if it is an exact match to the ground truth and 0 otherwise. This
metric is often too strict for general NMT tasks e.g. language translation, since there can
exist multiple correct translations for a sentence. However, this metric is well suited for our
time normalization task since there is always one possible normalized translation for a time
expression.

We compare the performance of Transformer model, that we adopt for our pipeline, with some
baselines such as, Seq2Seq, RNN Encoder-Decoder, and RNNsearch. Table 4.4 presents the
results of five NMT architectures on our time normalization task. RNN encoder-decoder shows
significant improvement over Sequence-to-sequence model (BLEU ↑ 4.01%, EM ↑ 10.31%),
indicating that replacing LSTMs with GRU and relieving information compression leads to
improved performance. RNN-search Transformer model performs remarkably well than the
other models validating the advantage of using the multi-head attention mechanism.

Multi-Label Text Classification of Sleep Issues

The evaluation measures for multi-label are inherently different than for single-label. In multi-
label classification, a misclassification is not entirely wrong or right. A prediction containing
a subset of the actual classes should be considered as partially correct and better than a
prediction that contains none of them, i.e., predicting two of the three labels correctly this is
better than predicting no labels at all. We use multiple metrics to evaluate the performance
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Table 4.4: Performance evaluation of several NMT architectures on our Artificial Time Nor-
malization Dataset: BLEU and Exact Match scores are reported for each architecture.

Models BLEU-score Exact Match

Seq2Seq 81.67 38.14
RNN Encoder-Decoder 85.68 48.45
RNN-search 85.35 47.29
Transformer 98.07 97.58

of our MLTC experiment. Firstly, we use general evaluation metrics such as accuracy and
micro-averaged F1 score. We also use Hamming Loss which gives the fraction of the wrong
labels to the total number of labels. Since this is a loss function, its optimal value is zero,
and its upper bound is one. To incorporate a measure of the ranking quality, we use a rank
sensitive metric, Normalized Discounted Cumulative Gain (nDGC), which has been a popular
choice of metric for information retrieval tasks and in many multi-label classification tasks as
well. This ranking metric yields a high value if true labels are ranked high by the probability
estimates. Lastly, we adopt Exact Match (also known as Subset Accuracy) as the strictest
measure for our evaluation.

We compare the performance of our proposed method with two kinds of existing architectures:
baselines and state-of-the-art. We draw comparisons with baselines such as Binary Relevance
(BR) [9], Label Powerset (LP) [99], Classifier Chains (CC) [86], Recurrent Neural Networks
(RNN), Recurrent CNN (RCNN) [49] and Hierarchical Attention Networks (HAN) [110]. We
implement BR, LP and CC by using Scikit-Multilearn [95], an open-source library for the
multi-label classification tasks, and use linear-SVM as the base classifier. We use existing im-
plementations of RNN, CNN, CRNN, RCNN and HAN for our experiment4. We also compare
our proposed method to models that have achieved state-of-the-art performance for various
MLTC tasks such as BERT [24], MAGnet [74] and LAHA [39]. Our humble expectation from
our proposed method was that it performs significantly better than baseline methods and at
least comparable to state-of-the-art methods.

Table 4.5 shows the performance of baseline, state-of-the-art and our proposed methods for
the MLTC task on our Sleep Issues dataset. Firstly, our proposed method, MLTC-GIN, out-
performs all baseline methods. Results also show that in comparison to state-of-the-art mod-
els BERT, MAGnet and LAHA, MLTC-GIN improves on the accuracy (↑ 0.08%, ↑ 0.05%, ↑
1.16%), F1-score (↑ 0.38%, ↑ 0.23%, ↑ 3.56%), Hamming loss (↓ 0.0007, ↓ 0.0004, ↓ 0.0116%)
and nDCG score (↑ 0.2%, ↑ 0.03%, ↑ 2.41%). On the strictest metric, Exact Match, it out-
performs BERT (↑ 0.12%) and LAHA (↑ 9.61%) models while slightly under performs when
compared to MAGnet (↓ 0.2%). Figure 4.4 shows the comparison of performance of our pro-
posed model and the state-of-the-art models on the validation set over 60 epochs.

The essential difference in the architecture of MLTC-GIN and MAGnet model is the integra-
tion of interactive attention and the use of MLP instead of BiLSTM for feature generation.

4https://github.com/RandolphVI/Multi-Label-Text-Classification
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Figure 4.4: Performance of the BERT, MAGnet, LAHA and our proposed model MLTC-GIN
on the validation set over 60 epochs on the Sleep Issues dataset.

We can see from the results that adopting these techniques improves the performance on the
MLTC dataset. Moreover, the superior performance of MAGnet and MLTC-GIN over the
LAHA model can be attributed to the use of GloVe embedding in the latter instead of BERT.

To strengthen our claim, we also compare the performance of MLTC-GIN to the MAGnet
on the Toxic Comments Dataset. The results of this experiment are presented in Table 4.6.
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Table 4.5: Performance evaluation of various architectures on the Sleep Issues MLTC test
set: the first seven rows present performance from baseline architectures, the next three rows
present performance of state-of-the-art methods and the last row reports the performance of
our proposed methodology. Five evaluation metrics are used, Accuracy, F1-micro, Hamming
Loss, Exact Match and Normalized Discounted Cumulative Gains. The symbol “+” indicates
that the higher the value is, the better the model performs. The symbol “-” indicates the
opposite.

Models Accuracy (+) F1-micro (+) HL (-) EM (+) nDCG (+)

BR 94.68 66.81 0.6681 0.6681 0.6681
LP 94.67 75.25 0.7525 0.7525 0.7525
CC 94.25 73.55 0.6681 0.6681 0.6681
RNN 93.32 75.23 0.0674 0.6989 0.8717
CNN 92.15 73.67 0.0727 0.6670 0.8603
RCNN 94.12 77.87 0.0614 0.7130 0.8842
HAN 93.47 75.28 0.0692 0.6763 0.8690
BERT 95.56 83.98 0.0443 0.7908 0.9241
MAGnet 95.59 84.13 0.0440 0.7940 0.9258
LAHA 94.48 80.80 0.0552 0.6959 0.9020
MLTC-GIN 95.64 84.36 0.0436 0.7920 0.9261

Table 4.6: Performance evaluation of MAGnet and MLTC-GIN models on the Toxic Com-
ments test set: Five evaluation metrics are used, Accuracy, F1-micro, Hamming Loss, Exact
Match and Normalized Discounted Cumulative Gains. The symbol “+” indicates that the
higher the value is, the better the model performs. The symbol “-” indicates the opposite.

Models Accuracy (+) F1-micro (+) HL (-) EM (+) nDCG (+)

MAGnet 95.14 87.98 0.0385 87.17 95.19
MLTC-GIN 96.70 89.75 0.0329 88.74 95.62

4.3.2 Ablation Study

Impact of the CRF Layer

In section 3.1.1, we stated our motivation to use the CRF layer for our time expression
extraction model. We perform the NER experiments again on our dataset but replacing the
CRF layer with a feed-forward layer. Table 4.7 shows the results of the overall F1 score.
Removing the CRF layer from the model architecture results to a decrease in performance for
each architecture. This strongly suggests that adding the CRF layer helps the model learn
the correlations between the current label and neighbouring labels using the learnt transition
matrix.

Impact of Hybrid Tokenkization and Context Conditioning on Time Normaliza-
tion NMT model

In Section 3.1.2, we discussed our motivation to use a hybrid tokenization scheme for input
temporal expressions and the use of their associated sleep event class as an additional input
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Table 4.7: Ablation Study of the NER architectures on Sleep Narratives test set to measure
the impact of the CRF layer: F1-scores of FLAIR, BERT and FLAIR+BERT based archi-
tectures are reported after removing the CRF layer. ↓ indicates the decrease in performance
in percentage points.

Models F1-score

FLAIRw/o CRF 37.27 (↓ 22.09)

BERTw/o CRF 60.47 (↓ 2.25)

FLAIR+BERTw/o CRF 60.51 (↓ 5.89)

for context. To validate our motivation, we train the Transformer sequence-to-sequence model
without the addition of context vector and switching to word-level and character-level token-
izers and analyze their performance. Table 4.8 shows the results of Transformer model on the
test set with and without context conditioning using hybrid, word-level and character-level
tokenizer for each. Transformer model with context conditioning with hybrid tokenization
performs the best with BLEU score of 98.07 and Exact Match score of 97.58. The performance
drastically reduces when the hybrid tokenizer is replaced with either a word-level tokenizer
(BLEU ↓ 30.39, EM ↓ 58.45) or character-level tokenizer (BLEU ↓ 8.38, EM ↓ 44.74). Per-
forms also drops significantly when context conditioning is not adopted. However, using the
hybrid tokenizer still gives the best performance even when context conditioning is not adop-
ted.

Table 4.8: Ablation Study of the NMT architectures on the Artificial Time Normalization
test set to measure the impact of adopting hybrid tokenization and Context Condiitoning:
BLEU and Exact Match scores of the Transformer model were reported with and without
context conditioning with the combination of using hybrid tokenization or replacing it with
word-level tokenization and character-level tokenization.

Models BLEU score EM

Transformer +context vector

w/ hybrid tokenizer 98.07 97.58
w/ char tokenizer 89.69 52.84
w/ word tokenizer 67.68 39.13

Transformer -context vector

w/ hybrid tokenizer 88.44 51.05
w/ char tokenizer 87.68 50.92
w/ word tokenizer 64.67 36.04

We further analyze the impact of context conditioning by visualizing the attention weights
from the Transformer model when the context vector is used. Figure 4.5 visualizes attention
weights as a heat map for two examples from the test set. The relation between the context
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Table 4.9: Ablation Study of the proposed MLTC-GIN model against the state-of-the art
architectures on Sleep Issues MLTC test set that have more than one ground truth label to
analyse the efficacy of the model in learning label correlation: Five evaluation metrics are used,
Accuracy, F1-micro, Hamming Loss, Exact Match and Normalized Discounted Cumulative
Gains. The symbol “+” indicates that the higher the value is, the better the model performs.
The symbol “-” indicates the opposite.

Models Accuracy (+) F1-micro (+) HL (-) EM (+) nDCG (+)

BERT 85.38 68.24 0.1461 20.28 87.12
MAGnet 85.08 68.12 0.1492 20.77 86.83
LAHA 81.96 48.05 0.1803 14.58 78.51

MLTC-GIN 86.23 70.54 0.1377 23.19 88.06

vector and the hours (HH) of the normalized translation can be clearly visualized. In the
example, when the context is Bed time and the input temporal expression is ”9:30”, no
time indicator such as AM or PM is mentioned, but from the provided context, the model
predicts the normalized time as 21:30 i.e., in 24-hour format which is much likely than 09:30

since its a person’s bedtime. Attention heads 1, 5, 6, 7, 8 and 9 capture this relation between
the context Bed time and hour tokens ”2” and ”1”.

Inference of Non-Singleton Label Examples

As seen from Figure 4.3, the Sleep Issues MLTC dataset is highly skewed since ≈87% of the
text examples only belong to one label, leaving only ≈13% of examples that actually belong
to multiple labels. Since results from the single label examples have a large contribution, it is
hard to judge if the model actually learns label correlation or if it only improves on predicting
single labels correctly. Therefore, we run inference on the subset of the test data that are
assigned to more than one label class and see if how well our proposed method has learned to
predict multiple labels as compared to the state-of-the-art methods. We present the results
in Table 4.9.

Our proposed method MTLC-GIN significantly outperforms the previous state-of-the-
art models, including on the strictest evaluation metric Exact Match score. Even with a
relatively small fraction of multi-label examples to learn from, MLTC-GIN does a better job
at predicting multi-label classes.
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Figure 4.5: Attention weights from 8 attention heads of the Transformer model visualized
as heat maps on inference: The temporal expression ”9:30” and sleep event class bed time
was provided as input and context respectively. The model correctly predicts the translated
normalisation as ”21:30”.
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4.3.3 Analysis of the SERN Pipeline

We also analyze the results from the Sleep Events Recognition and Normalisation pipeline.
It is not feasible to perform a quantitative evaluation on the pipeline since we do not have
ground truth timeline extractions to make a comparison with the results from the pipeline.
Therefore, we sample some examples from the test data and use the pipeline to extract the
timeline. We perform a qualitative analysis on the output and also probe into the intermediate
results of the pipeline, i.e., results from the temporal expression extraction and normalization,
respectively. Table 4.10 presents the intermediate and final results obtained from the SERN
pipeline on 5 sleep narratives randomly sampled from the test set. The overall performance
of the pipeline seems satisfactory, and it delivers results that are expected of it. When key
sleep events such as sleep time and wake up or bed time in the absence of light off
are missing, the pipeline asked a follow up question to the user to retrieve these time expres-
sions and complete the timeline (e.g. 1st, 2nd and 3rd narratives in Table 4.10). Moreover, it
handles vague type of time expressions well by using heuristics that seem appropriate (e.g.
1st narrative in Table 4.10). However, we note that the time expression extraction compon-
ent that uses a BERT and FLAIR embeddings based NER model is the bottleneck of our
pipeline. In the 5th narrative, e.g., the time expression ”45 minutes” from the phrase ”it took
me 45 minutes to fall back asleep” is mislabeled as sleep latency instead of sleep time
since these events are quite similar with the difference being that a durative sleep time is
observed after disturbance in the sleep and sleep latency is observed after bedtime or time
when the lights are turned off. This error is further propagated in the pipeline. Since the
presence of sleep latency after disturbed sleep is not possible and therefore not expected by
the parsing algorithm, this breaks the cycle of sleep disturbance as the algorithm assumes
that there are no further disturbances since the next time event is neither sleep disturbed,
duration of disturbance or sleep time. As a result, the next disturbed time i.e., ”4:30”
is skipped.

Figure 4.6 shows the visualizations of the extracted timelines presented in Table 4.10. We
plot the span between two sleep events as bars and use lollipop graphs to visualize the time
of the sleep event with the x-axis centered around midnight (00:00).
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Table 4.10: Final and intermediate results from the SERN pipeline upon inference on 5
randomly samples test examples: The first column presents the processed sleep narratives
and the subsequent rows present the extracted time expression and associated sleep event
class, the normalised time expression and finally the parsed completed timeline respectively.

Sleep Narrative Extracted Temporal Entities Normalised Entities Extracted Timeline
Sleep Event Extracted Timex Sleep Event Norm Timex Sleep Event Timex

i went to sleep about 11 p.m. the room
was quiet and dark and the temperature
was comfortable. it took me a few minutes
to get to sleep as i was thinking about the
plot in a program i had been watching. the
next thing i remember is waking up this
morning when the alarm went off, feeling
somewhat groggy but refreshed.

bed time 11 p.m. bed time 23:00 bed time 23:00

sleep time a few minutes sleep time +00:05 sleep time 23:05

wake up6 8:00 wake up 08:00

i went to bed at about 9:30. stayed up un-
til about 11, which is late for me, watch-
ing the basketball game. the lights went
out shortly after that. i fell asleep soon
after taking the tylenol. after that i slpet
good until i wok up at 5:45. i felt fairly
refreshed after waking up.

bed time about 9:30. bed time 21:30 bed time 21:30

wake up 5:45 sleep time6 23:15 sleep time 23:15

wake up 05:45 wake up 05:45

i went to bed around 12 am. this morn-
ing. i did not switch off the lights as i fell
asleep on the couch watching a movie. i
went to sleep fairly quickly. i woke up this
morning around 6:30 am. overall, i got
about 6 hours of sleep and feel very good
this morning.

bed time 12 am bed time 00:00 bed time 00:00

wake up 6:30 am sleep time6 00:20 sleep time 00:20

sleep duration 6 hours wake up 06:30 wake up 06:30

i turned the lights off at 9:30 p.m. and
fell asleep at approximately 11:10 p.m. i
woke up for the first time at 2:30 a.m. and
used the bathroom. i was quite groggy. i
lied back down and took approximately 45
minutes to fall back asleep. i then woke
up again at 4:30, felt slightly better, and
fell back asleep at 5:00 a.m. i woke up
for good around 5:50 a.m. and lied in bed
until 6:10 a.m. overall, it was a struggle to
get out of bed, as my sleep was not very
restful.

lights off 9:30 p.m. lights off 21:30 lights off 21:30

sleep time 11:10 p.m. sleep time 23:10 sleep time 23:10

sleep disturbed 2:30 a.m. sleep disturbed 02:30 sleep disturbed 02:30

sleep latency 45 minutes sleep latency +00:45 sleep time 02:35

sleep disturbed 4:30, sleep disturbed 04:30 wake up 05:50

sleep time 5:00 a.m. sleep time 05:00 out of bed 06:10

wake up 5:50 a.m. wake up 05:50

out of bed 6:10 a.m. out of bed 06:10

i was in the bed at 9 o’clock. normally
it takes me 2 - 3 hours to get to sleep.
but last night i went to sleep around 9:30.
it was raining last night so that kind of
soothed me to fall asleep a little quicker
than normal. i got up once at 12:30 to get
something to drink then i feel back asleep
1 a.m. then i woke up at 5:10 am

bed time 9 o’clock. bed time 21:00 bed time 21:00

sleep latency 2 - 3 hours sleep latency +02:03 sleep time 21:30

sleep time 9:30 sleep time 21:30 sleep disturbed 00:30

sleep disturbed 12:30 sleep disturbed 00:30 sleep time 01:00

sleep time 1 a.m. sleep time 01:00 wake up 05:10

wake up 5:10 am wake up 05:10
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Figure 4.6: Visualizations of the timelines extracted in Table 4.10
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Conclusions

We present two main contributions for information extraction from free-text sleep narratives
that can be adopted for digital sleep monitoring. We first introduced a novel pipeline SERN
for Sleep Events Recognition and Normalization. The SERN pipeline takes in free-text sleep
narrative of an individual’s previous night’s sleep and extracts a complete and structured
timeline that can be visualized for sleep tracking. The pipeline does this in three stages.
We first train a NER model that stacks state-of-the-art word-level BERT embeddings and
character-level FLAIR embeddings to extract features from the text and then use a BiLSTM-
CRF architecture for sequence tagging. The model detects temporal entities in the text and
tags them with their associated sleep event class. Our experiments showed that using BERT
and FLAIR together gave a better overall performance as compared to using either one of
them alone. To normalize the ambiguity that comes with natural human language, we train
the Transformer model for temporal expression normalization. We propose two strategies, Hy-
brid Tokenization and Context Conditioning that improves on the performance of the model.
We also write a rule-based parsing algorithm that parses the extracted and normalized tem-
poral entities to fill in any gaps in the timeline and handle non-explicit types of temporal
expressions. We then visualize the sleep timeline from the extracted structured timeline.

Sleep tracking alone is not beneficial for digital sleep monitoring, and improvement and
detecting of issues faced by individuals is essential. Hence, for our second contribution, we
propose a novel architecture called MLTC-GIN or Multi-label Text Classification using Graph
Interactive-Attention Network that aims at leveraging the relations between the words of the
text and labels to capture the dependencies between the labels. Our experiments revealed
that MLTC-GIN outperforms baseline architectures and state-of-the-art models on our Sleep
Issues dataset and outperforms the current state-of-the-art on benchmark Toxic Comments
dataset. We do further experiments on only multi-label examples and prove that our proposed
method is better at learning the dependencies within the labels.
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5.1 Limitations

The methods presented in this thesis suffer from some limitations as well. The biggest limita-
tion of our proposed SERN pipeline is the absence of an end-to-end evaluation of the pipeline
since that would require a dataset that has a structured timeline as ground truth values which
we lack. Moreover, our adopted choice of NER architecture, BERT+FLAIR does not perform
better than its standalone counterparts on some class labels. This could be attributed to our
next limitation, which is a low number of training examples and possible inconsistencies in
ground truth annotations due to human error. Lastly, our parsing algorithm finds it hard to
construct an accurate structured timeline when sleep disturbed patterns are very intricate and
involve multiple non-explicit type of temporal expressions. The need for a parsing algorithm
comes from the fact that we normalize time expression individually instead of in one pass
with the expressions passed as a sequence. However, we are unable to do that since learning
such a mapping requires curation of a dataset that can enable such a mapping which was not
a possibility for this thesis due to time constraints.

Although our proposed MLTC-GIN model outperforms the current state-of-the-art on our
Sleep Issues dataset and the Toxic Comments dataset by Kaggle, its performance is yet to be
evaluated on datasets with a large number of labels. Datasets with a larger number of labels
result in the training of a larger correlation matrix and hence is out of our scope due to our
limited hardware capacity.

5.2 Future Work

Several possible directions can be taken for future work. First, new techniques to integrate the
BERT and FLAIR embeddings could be adopted instead of simple concatenation which may
result in better feature representation. For our work, we use linear annotations and format to
label and normalize our NER data, respectively. However, in the future, hierarchical annota-
tion and compositional structures for normalization, like the SCATE scheme by [8] can be
used of the temporal expressions which can help in dealing with complex time concepts. We
believe adopting a more intricate normalization structure would also result in the formation
of more accurate rules for the parsing algorithm.

For our multi-label text classification task, we train on a dataset that is highly skewed since a
large percent of the samples belong to only one label. In the future, data augmentation meth-
ods can be adopted to balance the dataset and possibly improve on performance. Moreover,
the efficacy of MLTC-GIN should also be tested on a dataset with larger labels. We believe
that the exploration of an effective solution to elevate the difficulty of training larger cor-
relation matrices is a critical path to take in the future. Knowing that correlation matrices
generally have sparse connections, adopting Sparse Neural Networks could be an interesting
approach.
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Appendix A

Data Creation for Time
Normalization

Table A.1: Regular expression patterns used to generate synthetic data for training the
Transformer model to translate time expressions to normalised time expressions: The first
column lists the regular expression patterns used to generate different types of temporal
expressions, in the second column we list the sleep event classes that the generated data
would be classified in and the next column presents the normalization format adopted for
each type.

Regex Expression Sleep Event Normalization
Format

Example

Timex Normalized

[0-1]?[0-9][:,.][0-5][0-9]

?((a.?m.?)|(p.?m.?)|(hrs?)|(hours?))?

bed time
lights off
sleep time
sleep disturbed
wake up
out of bed

HH:MM 9.00 am 21:00

[0-1]?[0-9] o’clock

bed time
lights off
sleep time
sleep disturbed
wake up
out of bed

HH:MM 8 o’clock 22:00

((at)|(around)|(until)|(by))

[0-1]?[0-9]

bed time
lights off
sleep time
sleep disturbed
wake up
out of bed

HH:MM at 9 21:00

((quarter past)|((half|halve)

past)|(quarter to)) [0-1]?[0-9]

bed time
lights off
sleep time
sleep disturbed
wake up
out of bed

HH:MM half past
nine

21:30
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Regex Expression Sleep Event Normalization
Format

Example

Timex Normalized

((a couple of)|(a few )|(several))

((minutes?)|(mins?)|(hours?)|(hrs?)|)

?((after)|(later)|(after)|(before))?

bed time
lights off
sleep time
sleep latency
sleep disturbed
wake up
out of bed

+HH:MM a few mins
later

+00:05

[0-9][0-9]?-?([0-9][0-9]?)?

?((hrs?)|(hours?)|(minutes?)|(mins?))

sleep duration +HH:MM 2-3 hours +02:00

((after)|(within)|(before))?

[0-9][0-9]? ?((((hrs?)|(hours?))

( and a half)?)|(minutes?)|(mins?))

((after)|(later)|(before))

bed time
lights off
sleep time
sleep latency
sleep disturbed
wake up
out of bed

+HH:MM 2 hours
before

-02:00

(around )?[0-9][0-9]?

?((((hrs?)|(hours?))( and a

half)?)|(minutes?)|(mins?))

((after)|(later)|(before))?

bed time
lights off
sleep time
sleep latency
sleep disturbed
wake up
out of bed

+HH:MM after 40
mins

+00:40

[0-9]*-?[0-9]* times?
duration of
disturbance

Tn 5-6 times T5

((several)|(a lot of)|(many)|(couple

of)) times?

duration of
disturbance

Tn a lot of
times

T3

every [0-9]*-?[0-9]*?

((minutes?)|(mins?)|(hours?)|(hrs?))

duration of
disturbance

*HH:MM every 20
minutes

*00:20

([0-1]?[0-9][:,.]?([0-5][0-9])?)

texttt?((to)—-) ?([0-1]?[0-9][:,.]?
([0-5][0-9])?) ?((a.?m.?)|(p.?m.?))

duration of
disturbance

HH:MM-HH:MM 2:30 to
3:30

02:30-03:30
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Appendix B

List of Hyper-parameters

Table B.1: List of hyper-paramters for the FLAIR+BERT+BiLSTM-CRF NER model

Vocab Size Embedding Size BiLSTM Hidden Size
FLAIR BERT Stacked (FLAIR+BERT)

28 4096 768 4196 256

Table B.2: List of hyper-parameters for the Transformer model for Time Normalisation

Encoder
Hidden Dim # of Layers # of Attention Heads Positional Embedding Dim
256 3 8 512

Decoder
Hidden Dim # of Layers # of Attention Heads Positional Embedding Dim
256 3 8 512

Table B.3: List of hyper-parameters for the MLTC-GIN model

Vocab Size Embedding Size Hidden Dim # of Attention Heads # of GIN layers
30522 768 200 8 2
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Appendix C

Entity Parsing Algorithm

This chapter presents the Entity Parsing algorithm used for structuring the extracted tem-
poral entities from the text into as complete timeline. Algorithm 1 is the main algorithm and
uses supplementary algorithms 2, 3, 4 and 5.

Algorithm 1: Parsing Extracted Temporal Event Entities

Result: Extracted timeline of sleep events
Input: A tuple containing two lists: E list of event classes, and T list of normalized time

expressions.
1 Initialize empty list TIMELINE.
2 if bed time not in E or bed time in E is durative then
3 bed time ← ask bed time()
4 end
5 else
6 bed time ← bed time timex in T
7 end
8 Add bed time to TIMELINE
9 if lights off in E then

10 if lights off is durative then
11 lights off ← Add/Subtract lights off timex in T to last time in recorded in

TIMELINE
12 end
13 else
14 lights off ← lights off timex in T
15 end
16 Add lights off to TIMELINE

17 end
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18 if sleep time in E then
19 if last time observed in Timeline is lights off, sleep latency or bed time then
20 if sleep time is durative then
21 sleep time ← Add/Subtract sleep time timex in to last time in recorded in

TIMELINE
22 end
23 else
24 sleep time ← sleep time timex in T
25 end

26 end

27 end
28 else if sleep latency in E then
29 sleep time ← Add/Subtract sleep latency timex in T to last time in recorded in

TIMELINE
30 end
31 else
32 sleep time ← ask sleep time()
33 end
34 Add sleep time to TIMELINE
35 if wake up in E then
36 if wake up is durative then
37 wake up ← Add wake up timex in T to last time in recorded in TIMELINE
38 end
39 else
40 wake up ← wake up timex in T
41 end

42 end
43 else
44 wake up ← ask wake up()
45 end
46 TIMELINE ← get sleep disturbed patterns(TIMELINE, E, T, wake up)
47 Add wake up to TIMELINE
48 if out of bed in E then
49 if out of bed is durative then
50 out of bed ← Add out of bed timex in T to last time in recorded in TIMELINE
51 end
52 else
53 out of bed ← out of bed timex in T
54 end
55 Add out of bed to TIMELINE

56 end
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Algorithm 2: get sleep disturbed patterns(TIMELINE, E, T, wake up): Parsing
sleep disturbance events

Result: TIMELINE
Input: Intermediate TIMELINE constructed E list of event classes, and T list of normalized

time expressions.
1 Initialize nrange ← wake up − last time in TIMELINE
2 Initialize nduration ← +00:05

3 if duration of disturbance in E then
4 if range type then
5 nrange ← duration of disturbance timex in T
6 end
7 if is type(e) == quantitative then
8 n← duration of disturbance timex in T Add sleep disturbance n times

within nrange to TIMELINE
9 end

10 if is type(e) == frequency then
11 f ← duration of disturbance timex in T Add sleep disturbance at every f

time within nrange to TIMELINE
12 end
13 if durative type then
14 nduration← duration of disturbance timex in T
15 end

16 end
17 for e, t in (E, T) do
18 if e == sleep disturbed then
19 Add sleep disturbed at t to TIMELINE
20 if next e == sleep time then
21 Add sleep time at next t to TIMELINE
22 end
23 else
24 Add sleep time at nduration to TIMELINE
25 end

26 end

27 end

Algorithm 3: ask bed time()

Result: bed time

Input: Given:
1 Trained Transformer model g() for translating the timex into a normalized form bed time ←

Get the bed time from the user via chatbot
2 bed time ← g(bed time)

Algorithm 4: ask sleep time()

Result: sleep time

Input: Given:
1 Trained Transformer model g() for translating the timex into a normalized form sleep time

← Get the time of sleeping from the user via chatbot
2 sleep time ← g(sleep time)
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Algorithm 5: ask wake up()

Result: wake up

Input: Given:
1 Trained Transformer model g() for translating the timex into a normalized form wake up ←

Get the time of waking up from the user via chatbot
2 wake up ← g(wake up)

Information Extraction on Free-Text Sleep Narratives using Natural Language Processing60



Appendix D

Publications

[1] Fotedar. S, Vannisselroij. K, Khalil. S and Ploeg. B, StoryTelling AI: A Generative
Approach to Story Narration, ”IJCAI 2020 workshop: AI4Narratives”
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