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Abstract

Given a graph G, equipped with a weight function w : V(G) — N and integers k and ¢, the
NP-hard parameterized decision problem MAXIMUM WEIGHTED INDEPENDENT SET corresponds
to whether G contains an independent set of size exactly k and weight at least ¢. In other words,
the task is to decide whether there is a vertex subset X C V(G) of size k such that there are no
edges between vertices of X and the total weight of vertices in X is at least t. On general graphs,
this problem is known to be W{l]-hard. In this paper, we consider this problem for planar graphs.
We introduce reduction rules to obtain an equivalent problem, in which the treewidth of the input
graph is bounded. Then, we apply a dynamic programming algorithm to solve the problem on
planar graphs in a running time only sub-exponential in complexity parameter k.

In the second part we present a kernel with O(k®) vertices. Kernelization is a provably effective
technique for efficient preprocessing the input for the algorithm and has a lot of applications.
A kernel is obtained by deleting vertices that would never be part of a solution. This way an
equivalent instance of the problem is obtained, whose graph has at most O(k®) vertices.

Finally, we discuss generalizations of the techniques to the similar problems MAXIMUM WEIGHTED
INDUCED SUBGRAPH and MAXIMUM WEIGHTED INDUCED D-SCATTERED SUBGRAPH.
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1 INTRODUCTION

1 Introduction

1.1 Background and motivation

An independent set, also known as a stable set, is a subset of the vertices of a graph, such that no
two vertices share an edge. In MAXIMUM INDEPENDENT SET, the goal is to find an independent
set of maximum cardinality. This is one of the most iconic NP-hard problems and it has both
theoretical and practical applications [1]. Its equivalent counterpart, the clique problem, is one of
the famous 21 NP-complete problems described by Karp in 1972 [2].

In this paper we will focus on a natural generalization, MAXIMUM WEIGHTED INDEPENDENT SET.
Here the vertices have an integer weight and instead of the largest independent set, we are now
interested in the heaviest independent set of a fixed size. Note that MAXIMUM INDEPENDENT
SET is equivalent to MWIS if the vertices have identical weight. This generalization and variants
have plenty of natural applications and have been studied thoroughly in the past decades [3, 4, 5].
The notion of fixed-parameter tractability (FPT) has been introduced to develop algorithms for
NP-hard problems, which are efficient when a so-called complezity parameter is small [6]. It is for
example not too difficult to check whether there exists an independent set of size 5 in a planar
graph, regardless of the size of the graph. We will apply this framework to investigate the com-
plexity of MWIS.

One of the main aspects of parameterized complexity is dealing with NP-hard problems, problems
we believe cannot be solved efficiently. One way of obtaining FPT algorithms is by efficiently
reducing a problem to an equivalent instance whose encoding length is bounded by a function
of the complexity parameter k. We can for example delete the irrelevant parts of the graph. A
brute-force algorithm can then be used on this so-called kernel to solve the problem. The resulting
notion of kernelization can also be used as a model of provably effective preprocessing, which is
of independent interest. Formal definitions are given in Section 2.

An important theorem states that a decidable problem is in the complexity class FPT, when it
admits a kernel that is bounded by a function of k. The key insight for this theorem is that any
vertex subset of the vertices in such a kernel can be brute forced as a solution in FPT time.

On planar graphs, MAXIMUM INDEPENDENT SET admits a kernel with 4k vertices. A sketch of the
proof will be provided. According to the 4-color theorem [7], a planar graph can be partitioned in
exactly 4 independent sets and his partition can be found efficiently. Therefore, if the number of
vertices in the graph is larger than 4k, there is an independent set of size at least k, in which case
the problem is solved. If the number of vertices is smaller, we have a small, equivalent instance,
which is sufficient for a kernel.

Meta-kernelization is a framework that can be used as a general recipe to construct kernels for
several problems. The main motivation for this paper is an article by Bodlaender et al, published in
2016 [8]. In this article, two meta-theorems regarding kernelization are provided. These theorems
are applicable to unweighted problems. In fact many unweighted problems admit (linear) kernels,
which can be found using a technique called protrusion decompositions. This technique involves
decomposing the graph into a small separator and many independent subgraphs. However, this
is not directly applicable to kernelization for weighted problems, since weighted problems do not
have a property called finite integer index [9, Chapter 16]. This was the main inspiration for this

paper.

1.2 Problem Statement

The focus point of this paper is the maximum weighted independent set problem on planar graphs.
In this section the problem will be discussed and we will show some variants. The problem is
defined as follows:

Meta kernelization for weighted maximization problems 3



1 INTRODUCTION

MAXIMUM WEIGHTED INDEPENDENT SET ON PLANAR GRAPHS Parameter: k
Input: A planar graph G equipped with a weight function w : V(G) — N and integers k, ¢
Question: Does there exist an independent vertex set X C V(G) such that |X|= k and

w(X) =3 exw(v) > 17

The used definitions are discussed in the preliminaries in Chapter 2. The reason my work is re-
stricted to planar input graphs, is that the unweighted variant, MAXIMUM INDEPENDENT SET, is
known to be Wl]-hard on general graphs, so it is not believed to admit an FPT algorithm [10].
On planar graphs, a kernel does exist for the unweighted version, as described in the previous
subsection. The question whether a kernel exists for the weighted version will be discussed in this

paper.

Variants of MWIS

There is an important variant, in which the goal is to find the (weight of the) maximum weighted
independent set disregarding the size of the set. There is also a variant in which the goal is to
find the maximum weighted independent set of size at most k. Note that our variant of MWIS is
more general, since we can solve the ‘< k’-variant by solving the ‘exact k’-variant while adding k
isolated vertices of weight 0.

Another generalization is MAXIMUM WEIGHTED INDUCED CONNECTED SUBGRAPH (MWICS) on
planar graphs. We use k - H to denote the disjoint union of k copies of the graph H. Using this
notion, the problem is defined as follows:

MAXIMUM WEIGHTED INDUCED CONNECTED SUBGRAPH Parameter: k
Input: A planar graph G equipped with a weight function w : V(G) — N, a (finite) connected
graph H and integers k,t

Question: Does there exist an vertex set X C V(G) of size |V(H)|-k such that G[X] is
isomorphic to k- H and w(X) := 3 v w(v) > 7

Specific variants of this problem are MAXIMUM WEIGHTED INDEPENDENT SET, MAXIMUM WEIGHTED
INDUCED MATCHING and MAXIMUM WEIGHTED INDUCED TRIANGLE PACKING, where subgraph

H will be a vertex, a path on 2 vertices and a clique of size 3 respectively.

The penultimate generalization we will discuss is MAXIMUM WEIGHTED D-SCATTERED SET
(MWdSS), in which the distance of any 2 vertices in the vertex set must be at least d in the
input graph.

Finally, there is the combined generalization of MAXIMUM WEIGHTED D-SCATTERED INDUCED
SUBGRAPH, in which we are looking for the heaviest k£ subgraphs that have distance at least d
from each other.

1.3 Our contribution
The most important theorems in this paper are the following:

Theorem 1.1. MaXiMUM WEIGHTED INDEPENDENT SET on planar graphs can be solved in in
O*(233‘75\/E) time.

Theorem 1.2. MAXIMUM WEIGHTED INDEPENDENT SET on planar graphs admits a kernel with
O(k3) vertices.

Currently it is known that MWIS is W([1]-hard on general graphs and NP-hard on planar graphs.
This implies that MWIS is either W[1]-hard or FPT on planar graphs. Theorem 1.1 implies that
the problem is fixed parameter tractable. In Section 3, we will give an algorithm that solves MAX-
IMUM WEIGHTED INDEPENDENT SET on planar graphs in (9*(233'75\/E) time. The O*-notation is
used to disregard terms that depend only polynomially on all parameters.

Meta kernelization for weighted maximization problems 4
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The main result of the paper is Theorem 1.2, that guarantees the existence of a polynomial kernel,
which used to be an open problem. This result is more powerful than the result in Theorem 1.1,
since the existence of a kernel directly implies that a problem is FPT. This theorem will be proven
in Section 4.

1.4 Techniques

In this section we will describe the usage of different techniques related to kernelization. In Section
3.1 we will use a reduction rule to reduce the graph to an equivalent instance that has a distance-
2-dominating set of size at most k. That is a vertex set, such that any vertex in the graph has
distance at most 2 to that set. Then we will use the grid minor theorem for planar graphs to bound
the treewidth of that graph. That theorem states that the treewidth of a planar graph is linearly
bounded by the largest grid hidden inside it. Treewidth is a measure of the complexity of a graph,
because many NP-hard problems can be solved in polynomial time on graphs whose treewidth is
bounded by a constant. Finally we will solve the problem using a dynamic programming algorithm
for graphs with a bounded treewidth.

In the next section, we will prove that the obtained graph with a distance-2-dominating set,
has a so called protrusion decomposition. That technique involves decomposing the graph in a
small separator and many independent subgraphs that have small treewidth. We can use this by
constructing a treewidth modulator, a small vertex set, such that the remainder of the graph has
a small treewidth. Then we will use the obtained protrusion decomposition to get a kernel with
O(k?) vertices.

This approach differs from the meta-kernelization paper, because they consider problems with a
so called finite integer index and that excludes weighted problems. Finally, in Section 5, we will
discuss how further applications of the same techniques might be used to obtain similar results
for the generalizations MAXIMUM WEIGHTED D-SCATTERED SET and MAXIMUM WEIGHTED
INDUCED SUBGRAPH.

1.5 Related work

For this paper, the book KERNELIZATION, THEORY OF PARAMETERIZED PREPROCESSING by Fomin
et al. [9] is consulted. This book from 2019 contains the latest developments in the field of
kernelization.

Another related book is called PARAMETERIZED ALGORITHMS by Marek Cygan et al. [11] from
2015. It contains a lot of useful information about parameterized algorithms, such as kernelization,
as the title suggests. During my project, the article EFFICIENT WEIGHTED INDEPENDENT SET
COMPUTATION OVER LARGE GRAPHS by Zheng et al. [12] was published. This article is about
data reduction for MWIS on general graphs. To that extent, it is very similar to my paper, but it
contains less powerful theoretical results and focuses more on proving effectiveness by experimental
implementation on real graphs.

POLYNOMIAL-TIME DATA REDUCTION FOR DOMINATING SET by Jochen Alber et al. is another
related article regarding linear kernels for DOMINATING SET on planar graphs. [13] This is an
important graph theory problem that is W[2]-hard in general graphs, but also proves to be FPT
in planar graphs.

The article about polynomial kernels for weighted problems [14] is especially interesting for us,
since we are also looking for a polynomial kernel for a weighted problem. Later in Section 4.3 we
will be using a weight adjustment algorithm described in this article.

Finally the book BIDIMENSIONALITY AND KERNELS by Fedor V. Fomin at al. [15] also contains
a lot of information. It puts the focus on finding kernels for problems with finite integer index,
similar to the meta-kernelization paper.

Meta kernelization for weighted maximization problems )



1 INTRODUCTION

1.6 Organization

First of all, in Section 2, the preliminaries, we will present and explain the adopted definitions. In
the following section we will describe an FPT-algorithm for MWIS. After that, in Section 4, we
will construct a kernel with O(k?) vertices. In Section 5 we will come up with ideas that might
be used to generalize this result to other weighted maximization problems.

Meta kernelization for weighted maximization problems



2 PRELIMINARIES

2 Preliminaries

Definition 2.1 (Parameterized (decision) problem). A parameterized problem is a language
L C ¥* x N, where ¥ is a fixed, finite alphabet. For an instance (z,k) € ¥* x N, k is called the
(complexity) parameter [11, Chapter 1.1].

The instance (x, k) of a parameterized problem is called a yes-instance, if the corresponding ques-
tion can be answered with ‘yes’, and otherwise it is called a no-instance.

Definition 2.2 (Fixed-parameter tractable). A parameterized problem L C ¥* xN is called fixed-
parameter tractable (FPT) if there exists an algorithm A (called a fixed-parameter algorithm),
a computable function f : N — N, and a constant ¢ such that, given (x, k) € X* x N, the algorithm
A correctly decides whether (x,k) € L in time bounded by f(k) - [(x,k)|¢. The complexity class
containing all fixed-parameter tractable problems is called FPT [11, Chapter 1.1].

Definition 2.3 (Kernel, Kernelization). A kernelization algorithm, or simply a kernel, for a
parameterized problem Q is an algorithm A that, given an instance (I, k) of Q, works in polynomial
time and returns an equivalent instance (I, k") of Q. Moreover, we require that |[I'|+k" < g(k) for
some computable function g : N — N [11, Chapter 2.1].

The function g is called the size of the kernelization, and we have a polynomial kernelization if
g(k) is polynomially bounded in k.

Definition 2.4 (Graph). A graph is a structure that has a vertex set V(G) and an edge set
E(G) C (V(2G)). Those edges are said to connect the two vertices, and the vertices are called the
endpoints of the edge.

Definition 2.5 (Simple Graph). A simple graph is a graph that does not have loops or parallel
edges, i.e. no edges with the same start and end point.

Definition 2.6 (Independent set). An independent set S C V(G) in a graph G is a subset of
the vertices such that G[S] has no edges.

Definition 2.7 (Distance). The distance between two vertices s,t € V(G), denoted as dg(s,t),
is defined as the number of edges on a shortest path between s and ¢ in G.

Definition 2.8 (Neighborhood). The open neighborhood of a vertex v € V(G) in a graph G,
denoted as Ng(v), is defined as Ng(v) := {u € V(G) | {u,v} € E(G)}. The closed neighbor-
hood of a vertex v € V(G) in a graph G, denoted as Ng[v], is defined as N[v] := N(v) U {v}.

Definition 2.9. (Planar graph) A graph is called planar if it has an embedding in the plane
without edge crossings.

Definition 2.10. (k-outerplanar graph) An embedding of a graph is 1-outerplanar, if it is planar,
and all vertices lie on the exterior face. For k > 2, an embedding of a graph G is k-outerplanar,
if it is planar, and when all vertices on the outer face are deleted, then a (k — 1)-outerplanar
embedding of the resulting graph is obtained. A graph is k-outerplanar, if it has a k-outerplanar
embedding. [16]

We will use this concept to bound the treewidth of a graph in Section 4.1. The graph in Figure 1
is 3-outerplanar, since we can remove the vertices incident to the outer face three times until the
graph is empty.

Definition 2.11 (Tree decomposition). A tree decomposition (T, x) of G consists of a con-
nected acyclic graph T and a function y. The vertices of T are called nodes. The function
X : V(T) — 2V(©) assigns to each node t of V(T) a vertex set x(t) C V(G), a so-called bag, such
that the following three properties hold.

L Uev(r) x(t) = V(G), so each vertex is represented in at least one bag;

Meta kernelization for weighted maximization problems 7



2 PRELIMINARIES

Figure 1: An example of a 3-outerplanar graph.

Figure 2: An example of a graph G and a tree decomposition of G.

2. If v € x(t) and v € x(¢') for different nodes ¢ and ¢’ then v is in the bag of every node on
the unique path in T between ¢ and t'; and

3. For each edge e € E(G), there exists a node in V(T') that contains both endpoints of e in
its bag.

An example of a graph and a possible tree decomposition can be found in Figure 2. Note that
all three properties are satisfied. The so-called width of a tree decomposition is 1 less than the
maximum number of vertices in a bag. We will use the property that the vertices in a bag x(¢) are
a separator in G for the connected components of the tree 7' — {¢t}. In Figure 2, we can conclude
from the tree decomposition that the vertex set {B,C, E} separates A,C and the other vertices
in G. We will introduce tree decompositions in Section 3.2. Tree decompositions are very useful
and we will use them to define the parameter trecwidth.

Definition 2.12 (Treewidth). The treewidth of a graph G is 1 less than the minimum over all
valid tree decompositions of G of the maximum number of vertices contained in one bag.

The treewidth of the graph in Figure 2 is 2, since there exists a valid tree decomposition with at
most 3 vertices in each bag, but not with at most 2 vertices in each bag.

Definition 2.13 (Treewidth-n-modulator). A vertex set X C V(G) is called a treewidth--
modulator of G if G — X has treewidth at most 7 [9, Chapter 15.2].

Definition 2.14 (Nice tree decomposition). A tree decomposition (7', x) of G is called nice if it
satisfies the following 5 properties:

1. T is a rooted tree with root r;
2. x(r) = 0 and for each node ¢ of T without children, we have |x(£)|= 1};

3. every node has at most 2 children;

n [9, Chapter 14.3], Fomin et al. take x(£) = 0, but for this paper, our similar definition is more useful.

Meta kernelization for weighted maximization problems 8



2 PRELIMINARIES

Figure 3: A nice tree decomposition of the graph from Figure 2.

4. if b has two children, say by and b, then x(b) = x(b1) = x(b2); and
5. if b has one child, say by, then |x(b)Ax(b1)|< 1.

We call bags of nodes with no children leaf bags. We call bags of nodes with 2 children join bags.
We call bags of nodes with one child introduce bags if they have more vertices than their child.
We call them forget bags if they have less vertices than their child. In nice tree decompositions,
we use the notation 7, to denote the subtree of T' rooted at node a, and we use x(71,) to refer to
the vertices in the bags of T,. Finally, we use x, to be the restriction of x to T,. Then for each
node a, we have that (T}, x,) is a tree decomposition of G[x(1,)] [9, Chapter 14.3].

In this paper, nice tree decompositions are used for dynamic programming algorithms for graph
with a bounded treewidth, since they have very useful properties and can be transformed from
arbitrary tree decompositions efficiently. An example of a nice tree decomposition of the graph in
Figure 2 can be found in Figure 3. The node with the empty bag can be chosen as the root of T'.
Note that all properties of a tree decomposition and a nice tree decomposition are satisfied.

Definition 2.15 (Semi-nice tree decomposition). A semi-nice tree decomposition, is a nice
tree decomposition without the requirement that the rootbag is empty.

Definition 2.16 (Protrusion decomposition). [9, Chapter 15.4] For integers «, 8 and ¢, an («, 3, t)-
protrusion decomposition is a tree-decomposition (T, x) of G, such that the following conditions
are satisfied:

e T is a rooted tree with root r and |x(r)|< o
e 7 has degree at most 8 in T; and
e For every node v € V(T') except r, we have |x(v)|< t.

Definition 2.17 (Nice Protrusion decomposition). A protrusion decomposition (T, x) of G is a
nice protrusion decomposition if for every non root node a of T, (Ty, X,) is a semi-nice tree
decomposition of G[x(Tg)] [9, Chapter 15.4].

Protrusion decompositions are very useful when the graph has a small separator. That is when
only a few vertices keep the graph together. An example of a graph and corresponding nice
protrusion decomposition can be found in Figure 4. Here, the stars represent the other semi-nice
tree decompositions. Note that this is a (5,4, 4)-protrusion decomposition.

Definition 2.18 (Graph minor). An undirected graph H is called a minor of the simple graph
G if H can be formed from G by deleting edges and vertices and by contracting edges. The
contraction operations replaces an edge and its two endpoints by a new vertex, connected to all
neighbors of the replaced vertices. Then it deletes loops and parallel edges to keep H simple.

Meta kernelization for weighted maximization problems 9
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Figure 4: A graph G with a small separator and a (5, 4,4)-protrusion decomposition of G.

Meta kernelization for weighted maximization problems 10



3 AN FPT ALGORITHM FOR MWIS

3 An FPT algorithm for MWIS

In this section, we first present a reduction rule for MWIS. This reduction rule compresses any
instance to an equivalent instance that contains a distance-2-dominating set. Then, we bound the
treewidth of the graph of this equivalent instance. Finally, we will use this to solve the problem
in O*(233'75‘/E) time, using a dynamic programming algorithm.

3.1 A reduction rule for MWIS
First, recall the definition of MWIS.

MAXIMUM WEIGHTED INDEPENDENT SET ON PLANAR GRAPHS Parameter: k
Input: A planar graph G equipped with a weight function w : V(G) — N and integers k, ¢
Question: Does there exist an independent vertex set X C V(G) such that |X|= k and

w(X) =3 exw(v) > 17

We will need the following lemma:

Lemma 3.1. Let G be a graph and let (s1,...,s) be a sequence of vertices of G such that
Nglsi]NNgls;] =0 forall1 <i< j <k. Foreach1 <i <k, define G; := G7U1<j<i{v e V(G):
dg(v,s;) < 2} and define Gy := G. If for all i € [k] we have w(s;) = max,cy(q,_,){w(v)}, then
(G, k,t) is a yes-instance if and only if (G — G, k, t) is a yes-instance. Furthermore, (G — Gy, k, t)
can be constructed in linear time.

Proof. Define G’ := G — Gy, and let vertex set S := {s;]i € [k]} be given. Clearly, (G', k,t) being
a yes-instance directly implies that (G, k,t) is a yes-instance, because the same vertex set used as
the solution in G’ can be used as the solution in G.

For the other direction, let W be a solution in G that minimizes |W \ V(G')|. If [W\ V(G")|= 0
then W C V(G’) and W also forms a solution in G’. Therefore (G, k,t) is a yes-instance.
Suppose that |IW \ V(G’)|> 0. First we will show that that there exists a vertex s € S\ W, such
that Ng[s] N W = 0. This holds, since both W and S have size k and there is an element in
WAV(G") CW\S. Therefore, the only way there is no vertex in S for which this property holds,
is when all k vertices in S are neighbors of the at most k — 1 vertices in W'\ {v}. In that case, the
pigeon hole principle gives us that there is at least one vertex u € W that is neighboring at least
2 vertices of S in G. However, this is not possible, since Ng[s;| N Ng[s;] =0 forall 1 <i < j <k.
Now, let v be a vertex in W\ V(G’). We will show that W \ {v} U {s;} is also a valid solution in
G, where s; € S\ W such that Ng[s;] N W = . We have already shown that that W\ {v} U {s;}
is also an independent set of size k and now we will show that it has at least the weight of W. For
this, we need to show that s; has at least the weight of v. This holds, because if v has a larger
weight than s;, we do not satisfy w(s;) = max,cy (g, ,){w(v)}. This means that W\ {v} U {s;} is
also an independent set of size k of at least the same weight as W in G.

This new solution W’ uses strictly more vertices of G’. This contradicts the assumption that W
is a solution in G that minimizes |W \ V(G’)|. Therefore we can conclude that if there exists a
solution in V(@G), there also exists a solution in V(G’). This proves the statement is proven. All
steps necessary for the construction of Gy, take linear time, so the new graph (G — Gy, k,t) can be
found in linear time.

Before the reduction rule is stated, we introduce the notion of a distance-2-dominating set of a
graph. Intuitively, this is a vertex subset for which any vertex in the graph is at distance at most
2 to any vertex in the subset.

Meta kernelization for weighted maximization problems 11



3 AN FPT ALGORITHM FOR MWIS

Definition 3.2. Distance-2-dominating set.
Let G be a graph and let D C V(G). Then D is called a distance-2-dominating set if for each
v € V(G) we have d(u,v) < 2 for some v € D.

Now, we have the appropriate tools to present the reduction rule and prove it.

Reduction rule 3.3. First we define Gy := G. Then we iteratively choose s; to be a vertex of
highest weight in G;_; and define G; := G;,_1 — {v € V(G;) : dg,_, (v,8;) < 2). In other words,
we keep removing a heaviest vertex and its neighbors and their neighbors. If V(G;) = 0 for any
1 < k, we define V(Gy) := 0 instead. Then, the new instance is (G — G, k, t).

Proof. First, note that constructed sequence of vertices (s, ..., sy) satisfies N[s;] N N[s;] = 0 for
all 1 <i < j <k and w(s;) = max,cy (g, ,){w(v)}. In other words, this sequence satisfies the
precondition of Lemma 3.1. Now this lemma gives us that the instance (G — Gy, k, t) is equivalent
and can be obtained in polynomial time. This lemma guarantees the safeness of the reduction
rule. |

We will present the result of this reduction rule in the following lemma.

Lemma 3.4. Let (G, k,t) be an instance of MWIS. Then in polynomial time, we can construct
an equivalent instance (G, k,t) that has a distance-2 dominating set of size at most k.

Proof. The application of Reduction rule 3.3, yields an equivalent instance (G — Gy, k, t) in poly-
nomial time. This G — Gy, is a graph that contains a 2-dominating-set of size k, since it contains

exactly all vertices at distance at most 2 to the vertices in S = {s1,...,sr}. Note that if G; has
no vertices for some i < k, the reduction rule does not alter the graph, but it does guarantee the
existence of a 2-dominating-set of size at most k. |

3.2 A Bound on the treewidth

We will first use the notion of branch sets, as defined in [11, Chapter 6.3]. Intuitively, for any
minor H of G, a branch set V}, contains the all vertices of G that will form a vertex h € V(H).
All edges between the vertices in the same branch set are contracted or deleted in H.

Definition 3.5 (Minor model). Let H be a minor of G. Then for every h € V(H) we can assign
a nonempty so-called branch set Vi, C V(G), such that

(i) G[V4] is connected;

(ii) for different g,h € V(H), the branch sets V;; and V}, are disjoint; and
(iii) for every gh € E(H) there exists an edge vyv, € E(G) such that vy € V,; and vy, € V.
Such a family (Vi)pev(a) of branch sets is called a minor model of H in G.

Definition 3.6 (Grid minor). A minor H of a graph G is called a grid minor of size ¢ x ¢ if it has
branch sets V3, ; such that V/(H) = h; j with i, j € [(] and E(H) =: {{hij, hir j} : |i=7'|+]j —5'|=
1}. £ is also called the side length of H.

We will use these definitions in the following lemma, that we will use to bound the treewidth.

Lemma 3.7. Let G be a graph with a fixed planar embedding. Let H be a largest grid minor
of G with branch sets Vj, ;. Then for any vertex v € V(G) the collection {V3,, , | Vi, , N d&(v) #
0,i,5 € {3,...,¢—2}} has size at most 25, in which d% (v) is the set of vertices that have distance
at most 2 from v in G. ¢ denotes the side length of grid minor H.

Meta kernelization for weighted maximization problems 12
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N4 o/ N4
Figure 5: A graph that illustrates the idea of Lemma 3.7. Vertices in the same branch set have
similar colors. Edges between vertices in the same branch set are thicker. The red cycles traverse

all non-center branch sets. The dark orange colored vertex is part of the center branch set.

Proof. As a proof sketch, consider Figure 5. Its 25 branch sets form a 5 x 5 grid. The edges within
the branch sets are depicted thicker. The center branch contains dark orange colored vertex v and
the other branch sets are encountered when traversing the red cycles. They have alternate colors.
The idea behind this proof is that no neighbors of a vertex in the center branch set, are outside
the innermost red cycle, because the cycle can only be crossed through a vertex. Similarly there
cannot be any vertices at distance at most 2 from v outside the outermost red cycle. This implies
that for any grid minor H of G, there are at most 25 branch sets within distance 2 of v in G. Now,
for the formal proof, there will be a case distinction. Either 3i,j € [{] : v € V3, ; or v & V},, ; for
any 4,7 € [£].

e Case: v is in a branch set of H,ie. 3i,j € [{]:v €V}, ;.

— Case: i,j € {3,...,£—2}. Then there exists a cycle C' in G that loops through the 8
surrounding sets, from Vj, ., - to Vi, ., to Vi, o to Vi, o to Vi, o to Vi, ., to
Vi to Vi, o, ,_, and back to H;11 ;. This cycle must exist, since there are edges be-
tween the sets by property (ii7), and the sets are connected by property (7). Therefore,
by planarity of G, sets V},, ., cannot contain vertices of N[v] if |i' —i[> 2 or [j" — j|> 2.

i,j—1

to Vi, to

There will also be a cycle C’ in G that will loop from V4, ., | 24e
to VhF” to Vhi—Q,j—l to V;LFZF2

Vhi+1,j+2 to Vhi,j+2 to ‘/}Li—l,j+2 to ‘/hi—Q,j+2 to Vhi—2,j+1
to Vi, s, o to Vi, t0o Vg oy to Viyyy sy to Vi, ., and back to Vj, ., .. All the
vertices on this cycle have at least distance 2 to v, and by the same reason as before,
all vertices outside of C must have distance at least 3 to v. This means that only the
25 vertex sets Vi, , with |’ —i|< 2 and [j' — j < 2| can contain the vertices that have
distance at most 2 to v.

0 Vhiis i1

— Case: i€ {1,2,{—-1,{—2} or j €{1,2,{—1,0—2}.

Meta kernelization for weighted maximization problems 13
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We assume without loss of generality ¢ = 1,5 € {3,...,¢ — 2}. Then the surrounding
collection of sets include the at most 5 surrounding sets Vj, , with [i' —i|< 1 and
|7/ — j|< 1 and all sets that are incident to the outer face. All sets at distance at most
2 include the at most 15 surrounding sets, all sets that are incident to the outer face
and sets incident to sets incident to the outer face. However, we do not count them
in our collection, so they do not contribute and the statement still holds. A similar
argument can be used for other cases where i € {1,2,/—1,/—2} or j € {1,2,(—1,(—2}.

e Case: v is not in a branch set, i.e. v ¢V}, for any 4,5 € [{].

If this would be the case Then there exist integers 4,j € [¢], such that a cycle in G that
will loop from V, ; to Vi, ., to Vp, ., to Vi, . and back to Vp, ; has vertex v inside
this cycle. Therefore, every vertex outside of this cycle will have at least distance 2 to v.
Analogously, we can apply the same argument to conclude that there are at most 16 sets
Vh‘i’,j’ that can contain vertices at distance at most 2 from v. If v has any neighbors in
G that are part of a branch set V3, ., where ¢ € {1,£} or j € {1,¢}, we can use a similar
argument as above.

0,37

Corollary 3.8. Let G be a planar graph with distance-2-dominating set S of size k. Then a
largest grid minor of G has side length at most 5vk + 4.

Proof. We will apply Lemma 3.7 to all k£ vertices in distance-2-dominating set S. We obtain the
result that |J,cg{Va., | Vh,, Ndg(v) # 0,4,5 € {3,...,£ —2}}|< 25k. Since S is a distance-2-
dominating set, this collection contains all non-empty branch sets V}, in G at distance at least 2 to
the outer face. Since branch sets are non-empty, we conclude that the largest grid minor contains
at most 25k branch sets at distance at least 2 to the outer plane. This means that the length of
the grid containing those sets is at most 5v/k. Since there can be at most 2 extra layers of sets,
the side length of the total grid is at most 5v/k + 4, . |

The largest grid minor can be used as a bound for the treewidth of a planar graph up to a constant,
as stated in the Grid Minor Theorem, for which a proof can be found in [17].

Theorem 3.9 (Grid Minor Theorem). Let G be a planar graph, whose largest grid minor has
size ¢ x £. Then the treewidth of G is at most 4.5 - ¢ [17].

Corollary 3.10. Let G be a planar graph with distance-2-dominating set S of size k. Then G
has treewidth at most 22.5v/k + 18.

Proof. The largest grid minor of G has side length at most 5v/k + 4, as stated in Corollary 3.8.
Furthermore, the Grid minor theorem, Theorem 3.9, states that the treewidth of a planar graph
G is bounded by 4.5 times the side length of the largest grid minor of G. Combining these results,
we obtain a treewidth bound of 4.5 - (5v/k + 4) = 22.5vk + 18. |

We can combine these results to obtain the following lemma.

Lemma 3.11. There is a polynomial-time algorithm that, given an instance (G, k, t) of MAXIMUM
WEIGHTED INDEPENDENT SET on planar graphs, constructs an equivalent instance (G', k,t) and
a nice tree decomposition of (T, x) of G’ of width at most 33.75v/k + 27.

Proof. First we apply Reduction rule 3.3 to the instance (G, k,t) to obtain an equivalent instance
(G', k,t) in polynomial time. In Lemma 3.4 it is shown that G’ contains a distance-2-dominating
set of size at most k. Then Corollary 3.10 gives us that the treewidth of this G’ is bounded by
22.5vk 4+ 18. Furthermore, it is known that for planar graphs, within polynomial time a tree-
decomposition with a 1.5-approximation of the treewidth can be constructed [18] and transformed
into a nice tree decomposition [9, Chapter 14.2]. This means that in polynomial time, we can obtain
a nice tree decomposition of this graph G’ of width at most (22.5vk 4 18) - 1.5 = 33.75v/k + 27.
|
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3.3 A dynamic programming algorithm for MAXiMUM WEIGHTED IN-
DEPENDENT SET on graphs with bounded treewidth

The algorithm

The algorithm has the following input and output:

MAXIMUM WEIGHTED INDEPENDENT SET Parameter: /¢
Input: A graph G equipped with a weight function w : V(G) — NT, an integer k¥ and a
(semi-)nice tree-decomposition (7', x) of G of width at most ¢.

Output: The maximum weighted independent set of G of size exactly k and its weight.

Let r € V(T') denote the root node of T. Let t € V(T') denote a node of the tree decomposition.
Let G denote the subgraph of G induced by the vertices of the bags of the nodes in the subtree
rooted at node ¢t. For anode t € V(T'), a subset Y C x(t) of its bag, and an integer m € {0,...,k},
let the table entry T'[t,Y, m| be defined as:

T[t,Y,m] := max{w(W) | W is an independent set of Gy A [W|=m AW Nx(t) =Y}

Informally, T'[t, Y, m] denotes the maximum weight of an independent set of size exactly m of the
graph G; where we include from x(t) exactly the vertices of Y.
We fill in this table for all values of Y and m from the bottom up. We now give the formula for
the recursion for all 4 types of nodes in the tree decomposition.

e Leaf bag
Let x(t) be a leaf bag, so it contains only vertex v. Then we have
T[t,0,00=0
T[t,0,m] = —o0 ifm#0
T[t, {v},1] = w(v)
T[t, {v},m] = —oc0 ifm#1

In the second and the last case, we set the value to —oo, because the problem is infeasible,
since we take the maximum over an empty set.

e Introduce bag
Let x(t) be an introduce bag that contains the vertices of the bag x(j) as well as vertex v,
where j is the child of node ¢. Then we have

T[t,Y,m] =T[j,Y,m] ifoegyY
Tt Y U{v},m]=T[},Y,m—1] +w(v) ifNw)NY =0
T[t,Y U{v},m] = —o0 ifN@w)NY #0

In the last case, we set the value to —oo, because the problem is infeasible, since we take the
maximum over an empty set.

e Forget bag
Let x(¢) be a forget bag such that node ¢ has a child j and x(j) contains the same vertices
as x(t) as well as vertex v. Then we have

Tt Y,m| = max{T'[j,Y,m], T[j,Y U{v},m|}

This holds since we can take the same independent set W for ¢ as for child j.
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e Join bag
Let x(t) be a join bag that contains the same vertices as x(j) and x(j'), the bags of the
children of node ¢t. Then we have

This recursion takes the maximum weight independent set where it chooses exactly the ver-
tices Y from both sets, so the children can share a total of m — |Y| vertices. At the end
the vertices of Y are added twice, so we subtract them to account for that. Here we use the
fact that the vertices in x(t) are a separator in G for the vertices in the trees rooted at the
children of node ¢

Output

First we calculate T'[t,Y,m] for all Y C x(¢) and all m < k for each leaf node ¢, and then we
fill the table traversing the tree from the bottom up. The output for this dynamic programming
algorithm will be

ax {T[r, Y,k
Yngleg){ [r, Y, K]}

Although the output is a number, namely the maximum total weight of an independent set of size
k, it is trivial to reconstruct a corresponding independent set traversing the table top down, track-
ing the chosen maxima. This method is explained in more detail in ‘Introduction to Algorithms’ by
Cormen et al. [19, Chapter 15]. We will add an encoding of this set to the output of the algorithm.

Running time and application

First, we will show that MAXIMUM WEIGHTED INDEPENDENT SET can be solved by this dynamic
programming algorithm in O*(2¢) time if a valid tree decomposition of width at most ¢ is provided.
Then, we will prove the first main result, Theorem 1.1 from the introduction.

Lemma 3.12. MAXIMUM WEIGHTED INDEPENDENT SET can be solved by the dynamic pro-
gramming algorithm described in this section in O*(2¢) time if a nice tree decomposition of width
at most ¢ is provided.

Proof. Tt is argued above that the value of each cell is indeed the maximum weighted independent
set of size exactly k of the graph induced by the vertices in the subtree rooted at ¢, in which exactly
Y is included from the vertices in t. We are left to show that the running time is O*(2%). Let n
denote the size of V(G). First note that the number of cells is bounded by (24 - (£+42)-n)-2t!.n,
because the number of bags is bounded by 24 - (¢ +2) - n [9, Chapter 14.3]. The calculation of the
value of a cell takes linear time in k if ¢ is a join bag and constant time otherwise. When all cells are
calculated, we can efficiently look up the maximum value v as stated above. We will then compare
this value to t and output YES if v > t and NO otherwise. This means that we can solve MAXIMUM
WEIGHTED INDEPENDENT SET in running time (24-(£+2)-n)-21.n-k = O(¢-n2-k-2%) = O*(2°)

|

Theorem 1.1 from the introduction is restated below, which we will prove using Lemma 3.12.

Theorem 1.1. MAXiMUM WEIGHTED INDEPENDENT SET on planar graphs can be solved in in
O*(23375VF) time.

Proof. We will apply the algorithm of this section to the weighted graph G and parameter k
of our instance (G,k,t) of MWIS. The input further consists of the corresponding nice tree-
decomposition of width at most 33.75v/k + 27 that we have obtained with the algorithm provided
by Lemma 3.11. Now we can apply Lemma 3.12 and conclude that MWIS is solvable in O*(2¢) =

(’)*(233'75\/E) time. |
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4 Kernelization of MWIS

In this section we will show how to reduce the instance of MWIS to an equivalent instance with
O(k3) vertices. To achieve this, we first present a bounded treewidth-5-modulator in Lemma 4.4.
That is a vertex set X C V(G), such that the treewidth of G — X is only 5. Then, a protrusion
decomposition will be obtained. Finally, we will use this decomposition to obtain a kernel with
O(k3) vertices.

4.1 Treewidth modulator

In this section we will prove that after application of Reduction rule 3.3, the graph has a treewidth-
5-modulator S of size at most 5k — 2.

Lemma 4.1. Let G be a planar graph with distance-2 dominating set S of size k. Then each
connected component C of G has a connected distance-2-dominating set of size at most 5|S¢|—4,
where S¢ := SN V(C). Furthermore, this set can be found in polynomial time.

Proof. Let C be a connected component of G. Then S¢ is a distance-2-dominating set of C. We
will construct a connected distance-2-dominating set S¢ by adding vertices to S¢. Then S¢ is
always a distance-2-dominating set, because it contains one. This means we add vertices to S¢ to
construct a connected set.

Assume G[S¢| contains ¢ connected components. Then, if £ = 1, S¢ is connected. If £ # 1, we
can take 2 vertices u and v in different connected components of G[Sc]| with dg(u,v) < 5. These
vertices always exist, since otherwise there must be a vertex at distance at least 3 to all vertices
of S¢, while S¢ C S¢ is a distance 2 dominating set of C and G[C] is a connected graph. These
vertices can be found in polynomial time using for example breadth-first search on vertices in Sc.
Then we can add the 4 vertices on the shortest path between u and v to S¢ to obtain a distance-
2-dominating set that consists of £ — 1 connected components.

We begin with Sc consisting of |S¢| vertices and at most Sc connected components. Then we
reduce the number of connected components to 1, by adding at most 4 - (|Sc|—1) vertices to Sc.
We end up with a connected distance-2-dominating set of size |Sc|+4 - (|Sc|—1) =5S¢c —4. N

Corollary 4.2. Let G be a planar graph with distance-2 dominating set .S of size k. Then each
connected component C of G has a connected distance-2-dominating set of size at most 5|S¢|—2
that is incident to the outer face of G[C], where S¢ := S NV(C). Furthermore, this set can be
found in polynomial time.

Proof. Lemma 4.1, provides us with a connected distance-2-dominating set of size at most 5|.S¢|—4.
we can easily transform this into a connected distance-2-dominating set that is incident to the
outer face of the connected component. We add an arbitrary vertex v incident to the outer face,
to the set. If necessary, we also add a vertex w that is on a path of length at most 2 from v
to a vertex in the connected distance-2-dominating set. Now we have constructed a connected
distance-2-dominating set that it is incident to the outer face. This set contains at most 5|S¢|—2
vertices. |

In order to bound the treewidth of the graph, we first need the following well known theorem. A
proof can be found in [16].

Theorem 4.3. The treewidth of a k-outerplanar graph is at most 3k — 1 [16].

Lemma 4.4. Let G be a planar graph with a distance 2-dominating set .S of size k. Then G has
treewidth-5-modulator of size at most 5k — 2. Furthermore, it can be found in polynomial time.

Proof. We will bound the treewidth of an arbitrary connected component C' of G \ S, which is a
bound to the treewidth of the graph G \ S, where S is a connected distance-2-dominating set of
size at most 5|S¢|—2 in C, incident to the outer face. We can find such a set in polynomial time
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Figure 6: An example of a 2-outerplanar graph with treewidth exactly 5. This is discussed after
Lemma 4.4.

by Corollary 4.2. We will now show that S is a treewidth-5-modulator of G.

Note that all vertices at distance 1 from S are incident to the outer face of C' in V(C) \ S, since
S is a connected set incident to the outer face. Furthermore, note that all vertices at distance 2
from S are neighbors of at least one vertex at distance 1 from S. Combining these notions, we
can conclude that G\ S is 2-outerplanar.

Now we can apply Theorem 4.3 and conclude that the treewidth of C' is at most 3-2 — 1 = 5.
Therefore S is a treewidth-5-modulator of G of size at most 5k —2 that can be found in polynomial
time. |

The treewidth bound of 5 is tight since we can be left with a graph consisting of a 4 x 4-grid
connected to a 2 x 12-grid, as shown in Figure 6. This graph can be a connected component of
G\ S, because it is 2-outerplanar. This graph has treewidth exactly 5 as argued by Kammer and
Tholey in [20].

We apply Lemma 4.4 to to obtain the main result of this subsection.

Lemma 4.5. There is a polynomial time algorithm that, given an instance (G, k, t) of MAXIMUM
WEIGHTED INDEPENDENT SET on planar graphs, constructs an equivalent instance (G, k, t), such
that G’ has a treewidth-5-modulator S of size at most 5k —2. Furthermore, the algorithm provides
a tree decomposition of G — S of width at most 5.

Proof. First, in polynomial time, we can transform the instance (G, k, t) of MWIS into an equiv-
alent instance (G',k,t), in which G’ has a distance-2-dominating set of size at most k, using the
result of Lemma 3.4. Then we can apply Lemma 4.4 to G’, to construct a treewidth-5-modulator
S of size at most 5k — 2 in polynomial time. Finally, we can use Bodlaenders Theorem, which
states that for a graph with a constant treewidth, we can construct a tree decomposition with
that width in linear time [21]. Therefore, a tree decomposition of G — S of width at most 5 can
be obtained in polynomial time. |

4.2 Protrusion Decomposition

In this subsection, we will construct a protrusion decomposition of the graph G obtained after the
application of Lemma 4.5. This graph has a treewidth-5-modulator S of size 5k — 2. With the help
of Lemma 4.6, we will construct a superset Z of S that contains at most 25 times as many vertices
as S. The number of vertices in this set is still linear in k, but it contains the vertices that are
the most important for the structure of G. The remaining vertices form a collection of connected
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components whose treewidth is bounded by a constant. This protrusion decomposition will later
be used to obtain a kernel for MAXIMUM WEIGHTED INDEPENDENT SET on planar graphs.

Now, we will state and prove Lemma 15.14 from ‘Kernelization: theory of parameterized prepro-
cessing’, by Fedor V Fomin et al. [9, Chapter 15.3].

Lemma 4.6. If a planar graph G has a treewidth-n-modulator S, then G has a ((4(n + 1) +
1)|S], (24(n + 1) + 6)|S|, 3n + 2)-protrusion decomposition, such that S is contained in the bag of
the root node of the protrusion decomposition. Furthermore, there is a polynomial time algorithm
that, given G, S, and a tree decomposition (7', x) of G — S of width at most 7, computes such a
protrusion decomposition of G.

Proof. We will repeat the proof of Lemma 15.14 from [9, Chapter 15.3], but since there is a small
error in the estimation of the degree of the root node, we will present a correct proof.

First, by applying Lemma 15.13 from [9, Chapter 15.3], we construct a set Z with S C Z, such
that |Z|< 4(n+1)|S|+|S], and each connected component of G — Z has at most 2 neighbors in .S,
and at most 27 neighbors in Z\ S. Group the components into groups with the same neighborhood
in S. More precisely, let C1, ..., C; be the connected components of G — Z. Define sets X7, ..., X}
with the following properties. For each i < ¢, there is exactly one j < ¢ such that C; C X, and
for all j* # j we have C; N X;» = (. Furthermore, for all ¢,4" and j, it holds that C; C X; and
Cy C X; if and only if N(C;) = N(C}). The definition of the sets X, ..., X, immediately gives
a way to compute them from Cq, ..., C;.

For each ¢ < ¢ we make a tree-decomposition (T3, x;) of G[X; U N(X;)] by starting with the tree-
decomposition (T, x) of G — S, removing all vertices not in X; from all bags of the decomposition,
turning this into a nice tree decomposition of G[X;] using Lemma 14.23 |9, Chapter 14.3] and,
finally, inserting N(X;) into all bags of the decomposition. The width of (T}, x;) is at most
1+ |N(X3)|< 30+ 2.

We now make a tree-decomposition (T, X) that is to be our protrusion decomposition. The tree T
is constructed from 77, ...,Ty by adding a new root node r and connecting r to an arbitrary node
in each tree T;. We set (r) = Z and, for each node a € V(T') that is in the copy of T} in T', we set
x(a) = xi(a). It is easy to verify that (T, X) is indeed a tree-decomposition of G and that every
node a € V(T)) except for r satisfies |x(a)|< 3n+ 2. Thus, (T, %) is a ((4(n+ 1) +1)|S|, ¢, 39 + 2)-
protrusion decomposition of G. To prove the statement of the lemma it is sufficient to show
that £ < (24(n + 1) + 6)|S]. Because the neighborhoods of the sets Xi,..., X, are distinct,
there are at most |Z|< (4(n + 1) + 1)|S] sets X; such that |[N(X;)|= 1. We can interpret the
number of sets X; such that |N(X;)|= 2 as the number of edges in the planar graph G[Z]. Using
Eulers formula [9, Chapter 13.1], we conclude that there are at most 3|Z|—6 < (12(n+ 1) + 3)|5]
sets X; such that |[N(Xi)|= 2. Finally, by Lemma 13.3 of [9, Chapter 13.1], there are at most
2|1Z|—4 < (8(n+1)+2)|S| sets X; such that | N(X;)|> 3. It follows that ¢ < 6|Z|< (24(n+1)+6)|S5],
as claimed. |

Now we will combine the results of Lemma 4.5 and Lemma 4.6 to summarize the results of this
subsection.

Lemma 4.7. There is a polynomial time algorithm that, given an instance (G, k,t) of MAXIMUM
WEIGHTED INDEPENDENT SET on planar graphs, constructs an equivalent instance (G', k, t) and
gives a nice (O(k), O(k), O(1))-protrusion decomposition of G’ in polynomial time.

Proof. Let (G, k,t) be an instance of MWIS. First we can apply Lemma 4.5 to that instance to
obtain an equivalent instance (G’,k,t), a treewidth-5-modulator S of size at most 5k — 2 and a
tree decomposition of G — S of width at most 5. Then we can apply Lemma 4.6 that computes
an («, 8, t)-protrusion decomposition of G in polynomial time, in which o = 25|S|= 125k — 50,
B = 150]S|= 750k — 300 and ¢ = 17. Finally we can transform this protrusion decomposition
into a nice protrusion decomposition with the same parameters in polynomial time [9, Chapter
15.4]. |
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4.3 A kernel with O(k?) vertices

In this section, we use the obtained protrusion decomposition to find a kernel of MWIS with
O(k3) vertices. First, we describe how we can construct an equivalent instance of MWIS with
O(k3) vertices. Then, we will transform this into a kernel. Recall from Definition 2.3 that for
a polynomial kernel not only the graph, but the complete new input has to be bounded by a
polynomial function of the complexity parameter. Later, we will ensure that all parameters are
bounded by a polynomial function of k.

A bound on the number of vertices

Lemma 4.8. Given an instance (G, k,t) of MAXIMUM WEIGHTED INDEPENDENT SET and a nice
protrusion decomposition (7', x) of G with parameters («, 3,t), where « = O(k), 8 = O(k) and
t = O(1), we can transform this instance into an equivalent instance (G', k, t) in polynomial time
with |[V(G")|= O(k3).

Proof. First, we will describe the reduction rule. Then, we will present the results. We end this
proof by proving the safeness of the reduction rule.

For each of the 8 children i of the root node r of protrusion decomposition (T, ), consider the
subgraph G[x(T;)] formed by the vertices in the subtree of T rooted at node i. By definition,
(T3, x:i) is a semi nice tree decomposition of G(x(T;). For each subset Y of x(i), for each size
m € [k — [Y[], compute a maximum weighted independent set Wiy, of G[x(Ti) \ U,ey N[yl]-
This can be done in polynomial time by applying the dynamic programming algorithm of Section
3.3 to the graph G[x(T;) \ U,ey N[y]l. The necessary corresponding tree decomposition can
be obtained in polynomial time by deleting all neighbors of a vertices in Y from the nice tree
decomposition (T3, x;). This way we have computed a maximum weighted independent set W y .,
for all B children of the root i and all at most 2! possible Y C x(i) in polynomial time.

Next, we construct G’. Let G’ be the subgraph of G induced by the root bag x(r) together with
the union over all children ¢ of the root node and all possible subsets ¥ C x (i) of the set W; y .
Then [V(G")| is at most a+ -20- 3% m=a+ 82071 k(k—1) = O(k®). It remains to prove
the rule is safe.

Let W be a vertex set corresponding to a solution of MWIS that minimizes the number of vertices
in WnN(G\ G). If this quantity is empty, the reduction rule is safe. Now assume W contains a
vertex v; in subtree T; that is in G\ G'. Let Y = W N x(¢) and let m = |W N x(T;)|—|Y|. Then
we can construct an alternative solution set W' := W \ x(T;) U W,y UY, where W,y is the
independent vertex set of x(7;) \ U,cy N[y]] of size m of maximal weight that was not removed
by the reduction rule. This implies that W;y,,, UY is a maximum weighted independent set of
G[x(T3)] of size m + |Y| that is a subset of G'.

We will now argue why W’ forms an independent set in G. Firstly, we know that W\ x(T;) UW; y,m
forms an independent set in G, because x(i) is a separator in G. Secondly, W; y,,, UY forms an
independent set in G because W;y , has no vertices from the neighborhood of vertices in Y.
Lastly, W \ x(T;) UY forms an independent set in G, because it is a subset of W which is an
independent set in G. Combining these, we get that W/ = (W \ x(T;) U W, ym) UY forms a
maximum weighted independent set in G. Furthermore we can check that it has size exactly k
and that it is at least as heavy as W, while having fewer vertices in G \ G’. This implies that the
reduction rule is safe. [ ]

Combining Lemma 4.7 and Lemma 4.8 gives the following result:

Lemma 4.9. There is a polynomial time algorithm that, given an instance (G, k, t) of MAXIMUM
WEIGHTED INDEPENDENT SET on planar graphs, constructs an equivalent instance (G, k, t), such
that |V(G’)|= O(k3) vertices.

Proof. First we apply Lemma 4.7 to obtain an equivalent instance (G*, k,t) of MWIS and a
nice (O(k), O(k), O(1))-protrusion decomposition of G* in polynomial time. Then we can apply
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Lemma 4.8 to the instance (G*, k, t) with that corresponding protrusion decomposition to obtain
a new instance (G’, k,t) of MWIS with |V(G’)|= O(k?). [ ]

A bound on the other parameters of the input

We will now consider the graph obtained after application of the reduction rule described in Lemma
4.8, that has at most O(k?) vertices. We will bound the total length of the input by a polynomial
function of the parameter k, which makes the new instance a valid kernel for the original problem.
We will use this to prove the second main result of this paper, Theorem 1.2.

We will use Corollary 2 in [14] to obtain new weights to bound the total encoding size of the
input. We can use this algorithm to transform an instance (G,k,t) of MAXIMUM WEIGHTED
INDEPENDENT SET where |V (G’)|= O(k?) to an equivalent instance (G’, k, ') whose total encoding
size is bounded by polynomial function of k.

Theorem 4.10 ([14, Corollary 2]). There is an algorithm that, given a vector w € Q" and a
rational W € Q, in polynomial time finds a vector w € Z" with ||W||cc= 200°) and an integer
W € Z with total encoding length O(r%), such that w -z < W if and only if w -z < W for every
vector = € {0,1}".

Now we will slightly adjust this theorem in the next corollary, which we will then use to obtain a
polynomial size kernel.

Corollary 4.11. There is an algorithm that, given a vect(;r w € Q" and a rational W € Q, in
polynomial time finds a vector W € Z" with [|T||e= 290" and _an integer W € Z with total
encoding length O(r?), such that w -z > W if and only if w - x > W for every vector z € {0,1}".

Proof. We have to show that the statement of Theorem 4.10 also holds if we use ‘>’-signs in the
last line, so we will show that the expression ‘w -z < W if and only if w -2 < W for every
vector z € {0,1}" is equivalent to the expression ‘w -z > W if and only if w - x > W for every
vector € {0,1}". This follows from multiplying both sides of the inequalities by —1. This
gives —w-x > W <= w-z <W < w-x <W «— —w-z > —-W for every vector
x € {0,1}". This implies that for each pair (w, W), we can compute a pair (w, W) that meets the
requirements by first multiplying w and W by —1. Then we can compute a pair (—w, —W) using
Theorem 4.10 and finally we multiply them by —1 again to obtain the pair (—(—w), —(=W)) and
define (w',W') = (—(=w), —(=W)), a pair with total encoding length O(r%). This yields that
there exists an algorithm that, given a vector given w € Q" and a rational W € Q, in polynomial
time finds a vector w’ € Z" with ||w’'|sc= 200*) and an integer W’ € Z with total encoding length
O(r%), such that w - x > W if and only if w -z > W for every vector x € {0,1}".

We will now use this corollary to obtain this powerful lemma that describes a reduction rule
that transforms an instance of MWIS on a small graph to an instance whose encoding length is
bounded by a polynomial function of k.

Lemma 4.12. There is a polynomial time algorithm that transform an instance (G, k, t) of MAX-
IMUM WEIGHTED INDEPENDENT SET on planar graphs with |[V(G)|= O(k®) to an equivalent
instance (G’,k,t') whose encoding length is bounded by a polynomial function of k. This new
weighted graph G’ also has O(k3) vertices.

Proof. We will use Theorem 4.11 to obtain a new weighted graph G’ and a new target t'. To
achieve this, we first arbitrarily number the vertices v; in G and then set w to be a vector in
ZIV(@l in which the i’th entry corresponds to the weight of vertex v;. Furthermore, we take W to
be the target value t. Then the algorithm yields vectors w and W. We define G’ to be the same
graph as G, but we set the weight of each vertex v; to equal the i’th component of w. Furthermore,
we set the new target t' to equal W.
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Now, we will first show that this reduction is safe and then show that the encoding length is
bounded by a polynomial function of k.

Now we will proof the safeness by first assuming that (G, k, t) is a yes-instance. In that case there
exists an independent set X of size exactly k& and total weight at least ¢t. This means that we
can construct a vector z € {0, 1}‘V(G)| whose entry x; equals 1 if and only if v; € X. This vector
satisfies the inequality w - 2 > W. Now Corollary 4.11 guarantees that w -z > W. This is a
witness for the yes-instance of (G’ k,t'). The other direction where we assume that (G, k,t) is a
no-instance can be proven analogously.

Now we show that the encoding length of the new instance (G’,k,t) is indeed bounded by a
polynomial function of k. From Corollary 4.11, it follows directly that the new weights are bounded
by a cubic function of the number of weights. The number of weights equals the number of vertices,
which is O(k?). This means that we can bound the encoding length of the new weight of the vertices
by O(k°) and the encoding length of the new target ¢’ by O(k!2).

This implies that the new weighted graph G’, the complexity parameter k and the target ¢’ have
an encoding length bounded by a polynomial function of k. |

We will now restate Theorem 1.2 from the introduction, which we will prove using Theorem
combining Lemma 4.12 and Lemma 4.9. This is the second main result of this paper.

Theorem 1.2. MAXIMUM WEIGHTED INDEPENDENT SET on planar graphs admits a kernel with
O(k?) vertices.

Proof. We need to show that there exists a polynomial time algorithm that transforms an instance
(G, k,t) of MWIS into an equivalent instance (G', k', t') that has total encoding size polynomial
in k. Furthermore we require |V (G’)|= O(k3).

First we will use Lemma 4.9 to obtain an equivalent instance (G*,k,t) in which G* has O(k?)
vertices. Now we can apply the reduction rule described in Lemma 4.12 to transform this instance
to an instance (G, k’,t') that has total encoding size polynomial in k. Here |V (G’)|= O(k?). This
implies that we have obtained a polynomial size kernel with O(k?) vertices for MWIS. |

Reflection on kernel size

It is tempting to conjecture that for the graph induced by the vertices of a main subtree, the
maximum weighted independent sets W; of all sizes i € {1,. .., k} have sufficient overlap such that
|U¥_, Wj|= O(k). This would imply that the obtained kernel has only O(k?) vertices. However,
this is in general not the case. In the following lemma, we will prove that for all k£ we can construct a
forest in which the total number of vertices left by the kernelization step of the previous subsection,
has Q(k?) vertices.

Lemma 4.13. For each k > 1 there exists a weighted forest F' such that |U?=1 W= Q(k?) in
which W; is a maximum weighted independent set of size ¢ in F for 1 <i < k.

Proof. We will prove this lemma for even integers k. The generalization to all integer k can be
proven by adding a heavy isolated vertex that would be in all independent sets.

Let k be any given integer and assume k to be even. Let G be a forest of k/2 connected components,
Cy,..., C’g. Let component C; be the complete bipartite graph K o;. Let this be a tree, rooted at
the vertex with the highest degree. For each connected component C; with ¢ > 1 we assign weights
(2i — 1) - k*~! to the root of C; and k*~! to the other vertices of C;. In connected component C1,
the root vertex gets assigned weight 3 and the other 2 vertices weight 2. The example for k = 10
is illustrated in Figure 7. The main idea is that the only way to improve the selected weight in
a connected component, is to take all vertices at the bottom, but that is only possible if the size
constraint of the independent set allows it.

First we will show that for ¢ < %k, Wi, the maximum weighted independent set of size ¢ in G
is a subset of the root vertices of all trees. Suppose towards a contradiction that W; contains
a non-root vertex in Cj;. Then either W; contains all non-root vertices of C}, just one non-root
vertices or more than one but not all. We will derive a contradiction using case distinction.
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Figure 7: The graph G for k = 10 in Lemma 4.13.

e If W, contains one non-root vertex of C;, the weight of W; can be improved by replacing
that vertex by the root of C;, which leads to a contradiction.

o If W; contains ¢ non-root vertices of C; with 2 < ¢ < i, the the weight of W; can
be improved by replacing these vertices by the root vertex of C; and root vertices of con-
nected components that have no vertices in W;. Note this is possible since the number of
connected components is at least ¢, the size of W;. This new set is heavier, so that leads to
a contradiction.

o If IW; contains all non-root vertices of (), then there is a connected component C
with j” > j, such that W; N Cj, = (). However, then we can improve the weight by replacing
a vertex in C; by any vertex in C) that is at least k times as heavy. This also leads to a
contradiction.

Therefore for i < %k, W;, the maximum weighted independent set of size ¢ in G is a subset of the
root vertices of all trees. Now we will show that for %k < 1 < k, W; consists exactly of all the

children of C;_1; and the roots of C; for j > i — %kz Suppose towards a contradiction that W;

1
contains another vertex of F. Then it either contains a non-root vertex of C;, the root of C’i_% &

or a vertex in Cj/ for j' < i — %k We will derive a contradiction using a case distinction.

e If W; contains a non-root vertex of C;, we can improve the solution by replacing the
vertices in W; N C; by the root vertex of C; and maybe some vertices of other connected
components. This might involve replacing a root vertex in a lighter connected component
by its children to make room for the independent set. This alternative solution is definitely
heavier, since for any j and ¢, the maximum weighted independent set of size ¢ in F'\ C;
is always heavier than the maximum weighted independent set of size £ — 1 in F'\ C;. The
weight of W; N C; has not decreased in the mean time, since ¢ is not big enough to have all
non-root vertices of ¢; in W;. Therefore we could improve upon the weight of a maximum
weighted independent set and this leads to a contradiction.

o If W, contains the root of C,_1,, we can improve the solution by replacing all remaining
vertices by the non root vertices of C. L By the previous case, we know that in C}, the root

vertex is picked for W; if j > i— %k This replacement increases the weight of W; NC,_ 1k by

ki—2*=1_ This increase of weight is higher than the decrease in weight in the other connected
components by the exponential behavior of the weights. This means that the total weight
can be improved, which leads to a contradiction.
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e If W; contains a vertex in Cj for j/ <i— ik, it does not contain all children of Ci_1
or not all roots of C; with j > i — fk The solution can be improved by replacing the vertex
in W; N Cjr by such a missing Vertex This improves the weight as argued above and leads
to a contradiction.

This means that W,; does not contain any other vertices than described above, so for %k: <i <k,
W; consists exactly of all the children of C; 1k and the roots of C; for j > i — fk

Combining these statements, we conclude that every vertex of the graph will be in one of the
maximum weighted independent sets, while the number of root vertices equals %k and the number

of non-root vertices equals 2 + 4+, ..., +k = fjl@j) = QZ;Ejlj =2-(3- LK) (k) +1)) >
1k? = Q(k?). For this last derivation, we use the formula >;" ;i = in(n + 1). This means that
the for the weighted forest F, we indeed have |Uf=1 W= Q(k?) |

This lemma shows that using the reduction rules in this paper, we cannot provide an upperbound
of O(k?) for the number of vertices in the kernel.
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5 Further applications of the techniques

In this section we will investigate how we can apply the techniques from the previous sections to
the problems MAXIMUM WEIGHTED D-SCATTERED SET (MWDSS) and MAXIMUM WEIGHTED
INDUCED CONNECTED SUBGRAPH (MWICS). First, we use reduction rules to obtain equivalent
instances in which the graph has a bounded treewidth. In this section, we leave out the dynamic
programs, because they do not contribute the explanation of the concepts. An example of a
dynamic programming algorithm for MAXIMUM INDUCED MATCHING is presented in [22]. We
expect that this algorithm can be generalized to work for MWDSS with a few adjustments.
Finally we expect that we can use this dynamic programming algorithm on graphs with a bounded
treewidth to obtain a kernel with O(k3). We assume parameter d of MWDSS and the number of
vertices |H| in the subgraph of MWICS to be of constant size.

5.1 Maximum weighted d-scattered Set
Recall the definition of MWDSS:

MAXIMUM WEIGHTED D-SCATTERED SET ON PLANAR GRAPHS Parameter: k
Input: A planar graph G equipped with a weight function w : V(G) — N, integers k, ¢ and a
constant d

Question: Does there exist a vertex vertex set X C V(G) of size exactly k such that each
pair of vertices in X has distance at least d in G and w(X) := 3" _y w(v) > t?

Similar to the previous sections, we will present a reduction rule. Then we will bound the treewidth
of the graph of the equivalent instance by a function of k. Finally, we will describe how we expect
to obtain a kernel with O(k?) vertices. Reduction rule

We first state the lemma that describes the result of the reduction rule and then we will provide
a proof sketch.

Lemma 5.1. There is a polynomial time algorithm that reduces an instance (G, k, t) of MWDSS
to an equivalent instance (G’, k’,t’) in which G’ contains a distance-(2d — 2)-dominating set of size
at most k.

Similar to the procedure in Section 3.1, for 0 < i < k we will select a heaviest vertex v; in GG; and
then construct G;41 by deleting all vertices within a distance 2d — 2 from v; in G. This ensures
that any pair of chosen vertices (v;,v;7) have distance at least 2d — 1 to each other. This way,
selecting any vertex that will be in the solution set X, can only have a distance less than d to
at most one chosen vertex v;. This ensures safeness of the reduction rule, which can be proven
similarly to Reduction rule 3.3.

A bounded on the Treewidth
Similar to the procedure in Section 3.2, we use the grid minor theorem to bound the treewidth of
the graph obtained after the application of the reduction rule described in Lemma 5.1.

Lemma 5.2. Let G be a planar graph with distance-(2d—2)-dominating set S of size at most k. Let
H be a largest grid minor of G with branch sets Vj,, .. Then for any vertex v € V/(G), the collection
{Vhi, | Vi, NdE(v) #0,4,5 € {2d—1,...,0—2d+1}} has size at most (2-(2d—2)+1)% = (4d—3)2.

The proof is analogous of that of Lemma 3.7.

A direct result is that the largest grid minor has at most k - (4d — 3)? inner branch sets. This
implies that the side length of the inner part is bounded by (4d — 3)v/k. This means the total
side length is bounded by (4d — 3)v/k 4 4(d — 1). We will combine this result with the Grid Minor
Theorem 3.9 to obtain the following result:
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Corollary 5.3. Let G be a planar graph with distance-(2d — 2)-dominating set S of size k. Then
G has treewidth at most (184 — 13.5)VE 4 18(d — 1)).

Then, in polynomial time a tree decomposition can be obtained with treewidth at most % -(18d —
13.5)vVk + 18(d — 1)) = (27d — 20.25)v'k + 27(d — 1) [18]. Using this tree decomposition of width
O(d+/k), we present the following conjecture:

Conjecture 5.4. There exists a constant ¢, depending on d, such that MAXIMUM WEIGHTED
D-SCATTERED SET can be solved in O*(2¢V%) time.

As stated at the start of this section, we can use a dynamic programming algorithm on graphs with
bounded treewidth, to solve MWDSS. This algorithm would have a running time of O*(QC\/E).
This conjecture is supported by Courcelle’s Theorem that states that any ‘Extended Monadic
Second Order Optimization problem’; problems in which the goal is to find a smallest vertex
subset that satisfies an ‘Monadic second order’-formula, can be decided in linear time on graphs
of bounded treewidth [23]. That implies that this conjecture can be proven if MWDSS is indeed
an extended monadic second-order optimization problem.

Kernelization of MAXIMUM WEIGHTED D-SCATTERED SET

Similarly to the procedure in Section 4, we obtain a connected distance-(2d — 2)-dominating set
of size at most 4dk. If we would delete this set S, the remainder of the graph would be 2d — 2-
outerplanar. This implies, using Theorem 4.3, that G — S has treewidth at most 3(2d —2) — 1 =
6d— 7. Therefore S is a treewidth-6d — 7-modulator S. Now we can construct a tree decomposition
for each connected component of G — S with the same treewidth in polynomial time, since we
assume d to be a constant.

Now Lemma 4.6 can be applied. This will construct a protrusion decomposition with parameters
(O(d%k), O(d*k), O(d)). We will use this in the following conjecture.

Conjecture 5.5. MAXIMUM WEIGHTED D-SCATTERED SET admits a kernel with O(k3) vertices.

We expect that a kernel with O(k?) vertices can be constructed using the same principles as in
Section 4.3. This holds under the assumption that a more generalized problem can be solved
efficiently on graphs with bounded treewidth. We would still need to find a maximum weighted
d-scattered set of size m for each subtree rooted at a neighbor of the root node for all m € [k].
But this time we do not keep the union of all W;y ,,, the maximum weighted independent set
of size exactly m in G[x(T;) \ N[Y], in which N[Y] = U,y N[yl, but we keep the union of

Wiyi,...vym, the maximum weighted d-scattered set of size exactly m in G[x(T;) \ (U;-l:1 N;[Y;],
in which N;[Vj] = U,ey {v € G| d(v,y) < j} for all Y1,...,Yy € V(G) such that ¥; NY; = () if
i # 7. Intuitively, for each main subtree T; we keep the vertices that are in any maximum weighted
d-scattered set of G where we delete for all j € [d] the vertices within a distance j for any vertex
in Y; for all possibilities to partition the vertices in the root bag x() in the sets Y1,..., Yy, Yp.
We have to delete those vertices, because the result of the sub-problems is not only influenced by
the inclusion of vertices of the root bag of the subtree, but also by vertices in the root bag of the
protrusion decomposition or vertices in other sub-problems. By keeping all vertices that form a
solution in the graph after any of these deletions, we account for all possible inclusions for the
solution outside of the subtree.

We expect that the union of x(r) and all Wiy, .y, will result in O(k3) vertices in total. If this
is the case, we can transform this instance into a kernel using a similar technique as discussed in
Lemma 4.12.

5.2 MAXIMUM WEIGHTED INDUCED CONNECTED SUBGRAPH

Recall the definition of MWICS on planar graphs, where we use k- H to denote the disjoint union
of k copies of the graph H. Using this notion, the problem is defined as follows:
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MAXIMUM WEIGHTED INDUCED CONNECTED SUBGRAPH Parameter: k
Input: A planar graph G equipped with a weight function w : V(G) — N, a (finite) connected
graph H and integers k,t

Question: Does there exist an vertex set X C V(G) of size |V(H)|-k such that G[X] is
isomorphic to k- H and w(X) := 3 v w(v) > 7

We denote the diameter of the subgraph by the fixed constant sd, that is naturally bounded by the
constant |H|. We will first describe a reduction rule that can be used to obtain a similar instance
on a graph with a distance-(sd+1)-dominating set. Then we know the treewidth is bounded, since
we have proven that in the previous section. We expect that this problem can then be solved in
O*(2VF) time.

Finally, we will argue that we cannot directly apply the same techniques for kernelization as we
have used for other problems in this paper. Reduction rule

Lemma 5.6. There is a reduction rule that transforms an instance (G, k,t) of MWDSS to an
equivalent instance (G',k’,t') in which G’ contains a distance-(sd + 1)-dominating set of size at
most k- |H|.

Similarly to the procedure described in earlier sections, we first consider the maximum weighted
induced subgraph H in Gy = G. We would then construct GG; by removing the vertices in that
subgraph and every vertex within a distance of sd + 1. This way, there cannot be a subgraph in
the solution set, that prevents at least 2 subgraphs selected by the reduction rule to be chosen
and therefore, the described reduction tule is safe.

This reduction leaves us with a graph that contains a distance-(sd + 1)-dominating set of size
|[V(H)|-k. A bound on the Treewidth

Using a similar argumentation as in previous sections, we obtain an equivalent instance that has
treewidth bounded by (2sd + 3)\/k - |[H| 4+ 2sd + 2, which we assume to be O(v/k). This result
leads to the following conjecture.

Conjecture 5.7. There exists a constant ¢ such that MAXIMUM WEIGHTED INDUCED CON-
NECTED SUBGRAPH can be solved in O*(2°VF) time.

As stated at the start of this section, we can use a dynamic programming algorithm on graphs
with bounded treewidth, to solve MWICS with an algorithm that has a running time of O*(QC\/E).
This is supported by Courcelle’s Theorem that states that any ‘Extended Monadic Second Order
Optimization problem’; problems in which the goal is to find a smallest vertex subset that satisfies
an ‘Monadic second order’-formula, can be decided in linear time on graphs of bounded treewidth
[23]. That implies that this conjecture can be proven if MWICS is definable in the monadic second-
order logic. Kernelization of MAXIMUM WEIGHTED INDUCED CONNECTED SUBGRAPH
Obtaining a kernel for this problem is not as straightforward as for the other discussed problems.
The subgraph might be part of multiple connected components of G—5, in which S is the treewidth
modulator of linear size. An example is provided in Figure 8. In this graph, the treewidth
modulator is the 20-vertex grid in the center. The red vertices denote a solution to MAXIMUM
WEIGHTED INDUCED P3. However, there is a P3-subgraph that uses vertices of multiple connected
components of G —S. This implies that the problem cannot be solved by solving all smaller sub-
problems, because they can now depend on each other.
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Figure 8: This graph G has 5 orange colored P; induced subgraphs. It contains one induced
subgraph that stretches out over two different components of G — .S, where S is the 20-vertex grid
in the center.
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6 Conclusions and further research

We have found that the problem MAXIMUM WEIGHTED INDEPENDENT SET for planar graphs is in
the complexity class of fixed parameter tractable problems, since in this paper we have developed
an algorithm that has a running time of O*(233‘75‘/E). Furthermore we have found a kernel for
this problem with O(k3) vertices.

The obtained kernel in this paper contains O(k?) vertices and it is explained at the end of Section
4.3 that it is not easy to improve upon that bound. However, it is still unclear if this bound can
be sharpened using other reduction rules or transformations to other problems.

Also, it might be possible to improve upon the running time of the described FPT-algorithm of
20(Vk) . pe for a fixed constant c.

Another possibility to improve upon the kernel size is to reformulate the problem as a more gen-
eral problem that has a polynomially bounded input size. We can for example reduce MAXIMUM
WEIGHTED INDEPENDENT SET to another variant, where each vertex has both a weight and a size.
Then we are interested if there exist a subset of vertices of total size at most k and total weight
at least t. In this so-called compression, the kernel of size 2(k?) that is described in Lemma 4.13,
can be formulated with a linear number of vertices. Further research has to find out if the num-
ber of vertices can be further compressed if we reformulate the problem to a more general problem.

We know that the problem is solvable in polynomial time if the input graph has a constant
treewidth. The running time might also be improved when we restrict the research to other, more
specific graph types. It can also be interesting to consider more general graphs than planar graphs,
for example graphs that only don’t contain K5 minors or don’t contain K3 3 minors.

Finally, this thesis might give an insight for problems of a similar nature. The problem MAXI-
MUM WEIGHTED D-SCATTERED INDUCED SUBGRAPH was briefly mentioned in the introduction.
Further research is needed to find out if this generalization admits a polynomial kernel. Of course
this is only possible if MWICS also admits a polynomial kernel.

Furthermore, one might wonder if there exists a polynomial kernel for MWICS if we relax the
constraint that the subgraph needs to be connected. Also, one might wonder what happens when
we do allow the distance d or size of subgraph H to depend on a function of the parameter k
for MWDSS respectively MWICS. I don’t expect the latter problem to admit a polynomial sized
kernel.
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