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Abstract

Accurate long-term energy consumption forecasting of industrial entities is of interest

to distribution companies as it can potentially help reduce their churn and offer

support in decision making when hedging.

This thesis work presents different methods to forecast the energy consumption for

industrial entities over a long time prediction horizon of 1 year. Notably, it includes

experimentations with two variants of the Recurrent Neural Networks, namely Gated

Recurrent Unit (GRU) and Long-Short-Term-Memory (LSTM). Their performance is

compared against traditional approaches namely Multiple Linear Regression (MLR)

and Seasonal Autoregressive Integrated Moving Average (SARIMA). Further on, the

investigation focuses on tailoring the Recurrent Neural Network model to improve the

performance.

The experiments focus on the impact of different model architectures. Secondly,

it focuses on testing the effect of time-related feature selection as an additional

input to the Recurrent Neural Network (RNN) networks. Specifically, it explored

how traditional methods such as Exploratory Data Analysis, Autocorrelation, and

Partial Autocorrelation Functions Plots can contribute to the performance of RNN

model.

The current work shows through an empirical study on three industrial datasets that

GRU architecture is a powerful method for the long-term forecasting task which

outperforms LSTM on certain scenarios. In comparison to the MLR model, the RNN

achieved a reduction in the RMSE between 5% up to to 10%.

The most important findings include: (i) GRU architecture outperforms LSTM on

industrial energy consumption datasets when compared against a lower number of

hidden units. Also, GRU outperforms LSTM on certain datasets, regardless of the
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choice units number; (ii) RNN variants yield a better accuracy than statistical or

regression models; (iii) using ACF and PACF as dicovery tools in the feature selection

process is unconclusive and unefficient when aiming for a general model; (iv) using

deterministic features (such as day of the year, day of the month) has limited effects

on improving the deep learning model’s performance.

Keywords

Time Series Analysis, Recurrent Neural Networks, long-term Forecasting, Exploratory

Data Analysis, Multiple Linear Regression, ACF, PACF, Energy Sector
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Sammanfattning

Noggranna långsiktiga energiprognosprognoser för industriella enheter är av intresse 
för distributionsföretag eftersom det potentiellt kan bidra till att minska deras churn 
och erbjuda stöd i beslutsfattandet vid säkring.

Detta avhandlingsarbete presenterar olika metoder 
för att prognostisera energiförbrukningen för industriella enheter under en lång tids 
förutsägelsehorisont på 1 år. I synnerhet inkluderar det experiment med två varianter 
av de återkommande neurala nätverken, nämligen GRU och LSTM. Deras prestanda 
jämförs med traditionella metoder, nämligen MLR och SARIMA. Vidare fokuserar 
undersökningen på att skräddarsy modellen för återkommande neurala nätverk för 
att förbättra prestanda.

Experimenten fokuserar på effekterna av olika modellarkitekturer. För det andra 
fokuserar den på att testa effekten av tidsrelaterat funktionsval som en extra ingång 
till RNN -nätverk. Specifikt undersökte den hur traditionella metoder som Exploratory 
Data Analysis, Autocorrelation och Partial Autocorrelation Funtions Plots kan bidra till 
prestanda för RNN -modellen.

Det aktuella arbetet visar genom en empirisk studie av tre industriella datamängder 
att GRU -arkitektur är en kraftfull metod för den långsiktiga prognosuppgiften som 
överträffar ac LSTM på vissa scenarier. Jämfört med MLR -modellen uppnådde RNN 
en minskning av RMSE mellan 5 % upp till 10 %.

De viktigaste resultaten inkluderar: (i) GRU -arkitekturen överträffar LSTM på 
datauppsättningar för industriell energiförbrukning jämfört med ett lägre antal dolda 
enheter. GRU överträffar också LSTM på vissa datauppsättningar, oavsett antalet 
valenheter; (ii) RNN -varianter ger bättre noggrannhet än statistiska modeller eller 
regressionsmodeller; (iii) att använda ACF och PACF som verktyg för upptäckt i 
funktionsvalsprocessen är otydligt och ineffektivt när man siktar på en allmän modell;
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(iv) att använda deterministiska funktioner (t.ex. årets dag, månadsdagen) har

begränsade effekter på att förbättra djupinlärningsmodellens prestanda.

Nyckelord

Tidsserieanalys, återkommande neurala nätverk, långtidsprognoser, undersökande

dataanalys, multipel linjär regression, ACF, PACF, energisektor
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Chapter 1

Introduction

Prediction systems dedicated for short term forecasting of hours or days ahead are

popular across various energy sectors. This thesis presents methods of analysing and

forecasting time-series over a 1 year horizon using industrial datasets of five years

length. A bridge between traditional methods and learning methods is proposed and

evaluated. Experiments with various configurations of Recurrent Neural Networks

(RNNs) [16] methods is assessed against a MLR[6] benchmarking model in terms of

the application requirements. In particular, the following work compares GRU against

LSTM variants of RNNs.

In this introductory chapter, I motivate the research, introduce the area under study,

highlight the research gap, and position my research in the vast pool of approaches

proposed to tackle forecasting problems.

1.1 Motivation

Time-series analysis and forecasting are concern with exploring the characteristics of

time-related data and fitting models that can explain and predict the future behaviour

of various processes. Traditionally, forecasting problems relied on applying stochastic

models to the time-series (namely mathematical expression describing the probability

structure of a time-series). Later, Artificial Neural Network (ANN)[1] and Support

Vector Machine (SVM) methods have been introduced. With the last big wave of

computing driven by embedded systems, more data are being generated than ever

before. This causes an increased need for intelligent ways of processing it. One of

1



CHAPTER 1. INTRODUCTION

the data types that has enlarged is time-series, stemming from sensory data collected

to boost industry performance. The energy industry relies heavily on sensory data

and time-series analysis in both production and sales. Time-series analysis finds

its applications in many aspects of energy management, from forecasting load to

hedging electricity, to enhancing customer experience. While many researches and

experiments address short term forecasting using modern methods, to my knowledge,

minimal research has been done in the field of long-term forecasting. In addition, the

evaluation of proposed models on industry datasets, especially of industry datasets

of business customers (as opposed to households) is limited due to their constrained

availability for research purposes. Following the increased data expansion, one of the

new challenges imposed on time-series analysis is the model’s scalability, which has

made many of the traditional models obsolete.

Additional challenges addressed from an industry point of view include harnessing

the field-specific datasets through data exploration and time-series mining that can

lead to new discoveries and better data pre-processing prior to any model fitting. This

comes in addition to the challenge of selecting a model for an industry-specific dataset

while taking into account the field specifics and the business context. Despite their

long time since their conception, stochastic models such as Autoregressive Integrated

Moving Average (ARIMA)[8] and its variants are widely adopted methods, liked for

their simplicity in usage and generally good performance. However, although many

time-series applications can be solved using such models, it is debatable if these are

still an efficient method to deal with the new industry requirements and challenges

of continuous data acquisition. This thesis examines deep learning methods where

historical datasets and insights from traditional methods are fully exploited in order to

improve the accuracy of long-term forecasting.

There is a vast literature on ANN for time-series forecasting. Surveys [53] [2] [3]

reviewing the related works existing in the literature identified that the most widely

used ANNs in the past 30 years to solve forecasting problems have been MLR, with a

single hidden layer Feedforward Neural Network (FNN) [52], where the inputs are

unchanged. More recent studies show RNNs potential and strength in scaling to

much longer sequences than would be practical for networks without sequence-based

specialization. [14].

In this thesis, I compare deep learning methods (namely sequence to sequence models
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CHAPTER 1. INTRODUCTION

[30]) against othermethods available in the literature applied to long-term forecasting.

In addition, I compare their suitability for the energy consumption application and

draw a comparison to the traditional methods which are most of the time adopted in

the industry. Nonetheless, I ran a thorough data exploration aimed to enhance the

discovery potential of specifics of the dataset and use the newly found insights towards

improving the machine learning models.

In recent years, RNNs techniques have demonstrated outstanding performance in

modeling datasets from different domains. This thesis is motivated by evaluating the

potential of RNNs techniques on time-series data, specifically for long-term forecasting

applications, as to my knowledge, the research on these type of datasets is very

limited. Anothermotivational factor is the identification of a suitableRNNarchitecture

for the case application, as the current literature does not agree on a single best

architecture. In the same time, the thesis is motivated to draw a comparison between

the new learning methods and traditional modeling, where the manual extraction of

features is required. Nevertheless, the motivation is fueled by bridging traditional

techniques of time-series analysis to learning methods, an approach that has shown,

to my knowledge, little interest in the research. Consequently, the value and insights

gained from the traditional time-series analysis aim to enhance learning methods

techniques.

This thesis analyzes different preprocessing and modeling strategies in order to get

some insights about the impact of these strategies on the performance of RNN

algorithm. Even though many of the strategies used in the proposed methodology are

done according to a specific dataset, I believe some of the methods can be applied in

other time-series forecasting applications such as heat and water consumption. For

example, the exploratory data analysis techniques can be used on any time-series

datasets from the energy sector to visually present characteristics of the consumers.

Secondly, including deterministic features as an input to RNN models can be

generalized to any time-series dataset.

1.2 Background

Twoof the sectorswith the highest electricity consumption are the industrial sector and

households, each of them weighing as much as 30% of total electricity consumption of

Europe according to Eurostat. In an industrial setting, total electricity consumption

3



CHAPTER 1. INTRODUCTION

can be energy predominantly used for production, as well as for lighting and other

business uses in the manufacturing industries.

Forecasting problems can be subdivided into long-term forecasting, where the

prediction window varies from 1 year up and short term including hourly, daily, and

sometimes monthly predictions. Depending on the specific case scenarios, both short

and long-term forecasting problems are common in the energy sector. Long term

predictions of energy consumption of industrial entities can be used as a strategy of

improving customer experience. Nonetheless, a reliable long-term forecast can be used

as a tool for reducing the risks associated with the hedging process. Several research

studies explore the applicability of RNNs on short term time-series forecasting.

However, the number of studies evaluating the performance of RNNs on long-term

prediction is limited.

A common practice within the utility market is hedging, which refers to fixing the

prices of electricity for a specific future horizon. Hedging practices are conducted

between distributors of electricity and electricity markets, but also between business

consumers (industrial consumers) and distributors. In such settings, forecasted

electricity consumption becomes themain reference in hedging for both parties. Thus,

a poor forecasting strategy leads to higher risks and higher costs. In an industrial

context where the consumption per user is high, in the orders of thousands of

Megawatt-hour (MWh), the penalty for misprediction is also high and a small percent

increase in the forecast accuracy has a large impact. However, a common practice is to

use a persistencemodelwhen communicating their estimated forecast to the providers.

Such a forecast is a naive forecasting version when the previous year’s consumption is

projected for the next year.

The work of this thesis emerged from a real business case provided by one of the large

energy producers of Europe. The case energy provider delivers energy to hundreds of

business customers, each of themowning a various number of smart-meters that signal

back the localized consumption. Thus, the total energy consumption per business

customer takes the form of a multivariate time-series.

Given the continuous expansion of datasets both horizontally (length of time-series)

and vertically (increase in the number of time-series per business customer and an

increase in the number of total business customers), the scalability, and training times

are some of the requirements of the proposed solution.
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CHAPTER 1. INTRODUCTION

1.3 Problem

In contrary to the wide acceptance and implementation of deep learning methods

in various domain areas, there is a gap between the theory, research, and the

implementation of such methods in the industrial sector of electrical energy. Several

studies emphasize the potential of RNNs in short-term forecasting, however few, to

my knowledge, highlight the potential of these techniques in long-term forecasting

applications. It remains to be determined what optimization techniques and recurrent

architectures can be used to best realize the potential of RNNs in the later case.

Two of the most popular RNN architectures are GRUs and LSTMs (see Section 2.3.4).

When it comes to the architectural choice, the current literature does not clearly

agree on which one is the most efficient. In particular, both architectures are deep

structures with the potential to model complex nonlinear patterns and both of them

are appropriate for modeling time series data. Alike other fields, the energy sector

has not established yet an effective architecture for long term energy consumption

predictions.

The electricity consumption data of the industrial sector has been less in the attention

of researchers, possibly due to the limited access to industrial datasets. Thus there is

a lack of exploration and model experimentation of such datasets.

In practice, traditional methods such as regression models are widely spread and

utilized in the industry as compared to learning methods, mainly preferred for their

model explainability and informing feature engineering. A natural question arises:

which models can be used for long-term forecasting and whether the more complex

models are significantly better in this context. Nevertheless, it is interesting to study

how Exploratory Data Analysis (EDA) can be used in deciding the input for the

learning methods. An overview of the research problem is visually presented in Figure

1.3.1.

This thesis addresses the problem of long-term forecasting of single entities in the

industrial sector through the means of both traditional and deep learning methods.

Considering that the scalability, faster training times, and dealingwith the nonlinearity

of datasets are known challenges of traditional models and requirements from the

industry perspective, the research question of the following research summarizes

to:
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CHAPTER 1. INTRODUCTION

Figure 1.3.1: An overview of the research problem

Howcanweperform long-termelectricity consumption forecasts usingdeep learning

techniques in a scalable and accurate way? Which RNN architectures are suitable

for the current case study? How do the results of traditional methods compare to

learning methods for electricity consumption dataset? How can EDA be used to

improve the performance of learning models?

1.4 Purpose

The purpose of the thesis is to bridge the gap between the latest developed machine

learningmodels and their application in forecasting tasks in the energy industry. While

these models showed promising results in other domains, this thesis explores their

performance directly on industry datasets from the energy sector. Moreover, the

project aspires to contribute to the development of the methods used for long-term

forecasting, that have shown less interest to researches in opposition to the methods

used in short-term realm.

1.5 Goal

This work aims to implement a forecasting procedure for industrial electricity

consumption using smart-meter load data, for a time horizon of one year and monthly

resolution. At the same time, the aim is to propose a solution that can be easily

integrated into production and have a real impact at a business level. Additionally,

the goal is to bring new insight into smart meter data of the industrial sector. Thus,

a performance model comparison between a MLR and RNN model is conducted. In

this thesis, I explore RNNs method to produce long-term forecasts as opposed to

short-term forecasts of energy consumption.

6



CHAPTER 1. INTRODUCTION

1.5.1 Benefits, Ethics and Sustainability

Solving load forecasting problems is of big interest to utility companies providing

services such as electricity, gas, water, heating to direct customers or businesses. At the

same time, everyone from the seller, the consumer, and everyone else will be directly

or indirectly affected by the forecasting capabilities of each energy company. Accurate

load forecasting models can optimize the production and the buying process of these

utilities and thus achieve leaner processes with a minimal amount of waste. There

is no information, personal or non-personal, that could in any way be used to reveal

identities of the industrial entities. Sustainability is another important criterion when

computational expensive methods are proposed. The training costs must be taken into

consideration and plan accordingly.

1.6 Contributions

This thesis project illustrates the research performed in order to tailor a forecasting

model suitable to predict electricity consumption values for a period of one year ahead

which can be further used for decision support in hedging, operations, and planning

of energy. The thesis contributions include:

• An overview of the main techniques available in the literature to generate

time-series predictions.

First, an overview of state-of-the-art forecasting approaches is provided.

Secondly, themain techniques are explained in detail, namely stochastic models,

regression models, and deep learning models.

• An EDA of electricity consumption over a period of 5 years of three industrial

entities in Sweden.

The EDA is used to summarize the main characteristics of datasets using visual

methods such as distribution plots, time-plots, Autocorrelation Function (ACF),

Partial Autocorrelation Function (PACF).

• The design and implementation of a Multiple Linear Regression model meant to

harness the insights of the EDA.

Thus, the input features are solely time-related and chosenbased onnew insights.

The MLR model was chosen as a benchmarking model and later compared to

more complex models.

7



CHAPTER 1. INTRODUCTION

• The design and implementation of a Recurrent Neural Network Model.

Different aggregations, time-related inputs, and RNN architectures were tested

to better understand potential improvement directions. Using ACF and PACF as

tools for feature selection showed error improvements only on one out of three

datasets.

• An evaluation of deep learning methods (specifically RNNs) in comparison

to statistical models alternatives, namely MLR and SARIMA for long-term

forecasting tasks.

• A interpretation of the performance of GRU and LSTM architectures in relation

with the specifics of the experimental datasets.

• A system that can scale easily and generalize to the addition of new customers.

The empirical study is, to my knowledge, the only study where the prediction models

are evaluated on industry datasets and where the electricity consumption behaviour of

industrial customers is evaluated. The current study is unique also by the fact that it

explores the suitability of two popular RNN architectures, namely GRU and LSTM in

relation with the specifics of the industrial electricity consumption datasets.

8



Chapter 2

Long-Term Forecasting of
time-series

Considering the continuously increasing amount of sensory data stored by a plethora

of businesses and the focus on data-driven decision making of the majority of

21st century industries, the call for insightful analysis and processing methods of

time-series is high. Processing large historical time-series with traditional forecasting

methods can be challenging and cumbersome especially when non-linearity variation

or non-stationary of the time series is present. For this reason, in recent years it was

common to turn to machine learning methods for forecasting time-series.

In this chapter, a detailed description about the background theory and related work

will be covered. In Section 2.2, I introduce the field of time-series analysis and

forecasting from my research perspective, then I introduce a selection of methods

used in time-series analysis. In Section 2.3, I present a collection of both traditional

and newer methods applied to tackle forecasting tasks and their individual challenges.

Section 2.3.4 includes a closer look into the fundamentals that my research builds

upon, namely MLR and RNN models for forecasting. In Section 2.4 I introduce the

state-of-the-art in what concerns applied research in the energy sector.
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CHAPTER 2. LONG-TERM FORECASTING OF TIME-SERIES

2.1 Directional Approaches in Forecasting

Time-Series

The research community proposes different focus areas for tackling forecasting

problems using modern approaches such as learning methods. Three directional

categories have been identified. Each of them is advocating for its importance in

achieving improved forecast accuracy.

• Feature based methods

Focus on finding explanatory variables that can improve the forecast. It implies

conducting procedures such as feature selection, feature engineering, clustering

of time-series and other methods aiming to maximize the input information fed

to the forecasting model. The feature based methods can be further on divided

depending on the type of explanatory features, namely structural features of

time-series (e.g. trend, seasonality etc.) or exogenous variables (e.g. weather,

economical factors etc.).

• Model based methods

Aim to find a suitable model based on the use case requirements and data

type. There are several criteria in selecting a forecasting model. If we

consider the characteristics of time-series data as the main criterion, one

can distinguish between: linear/non-linear models, stationary/non-stationary,

univariate/multi-variate models. Models can also be grouped based on the used

forecasting framework. Here, we have classical models versus modern methods.

The forecasting models could also be subdivided into pure versus hybrid models.

• Hyper-parameters tuning methods

Focus on improving the forecast in terms of accuracy or speed of a specific model

by running a hyper-parameters tuning job. Hyper-parameters values are set

before training starts, unlike model parameters, which are determined during

training. It implies running many training jobs over a range of hyper-parameter

values (e.g. optimizers, activation functions, loss functions, learning rates). The

optimum set of values depends on the algorithm, the training data, and the

specified metric objective.
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CHAPTER 2. LONG-TERM FORECASTING OF TIME-SERIES

2.2 Time-Series Analysis

According toChatfield’swork [9], there are four basic objectives of time-series analysis:

(1) description of the main properties, often with visual methods, (2) explanation of

time-series through other time-series; (3) prediction/forecasting; (4) control, as in

quality control of a manufacturing process. In this report, the time-series analysis

objectives include the description and prediction of time-series.

Time-series forecasting is concerned with predicting the future behaviour of a random

variable based on its past behaviour as well as exogenous factors where available.

Forecasting methods are further explained in Section 2.3. The procedure of fitting

a time-series to a proper model is termed as time-series analysis [1]. A prime step in

building a forecasting model is the selection of input features which can be achieved

by running a thorough EDA.

2.2.1 Exploratory Data Analysis

Exploratory Data Analysis is used for finding out what the data can tell us beyond the

formal statistical modeling or hypothesis testing task. The underlying assumption of

the exploratory approach is that themore one knows about the data, themore effective

data can be used to develop and refine the forecasting model [20].

Simple measures of the distribution of time-series values (which ignore their time

ordering) can often be informative. Moreover, scanning through examples, visual

analysis of time-series, understanding their distribution, and identifying patterns

are useful methods in gaining more insights. More than examining just individual

variables, looking at the relationship between two or more variables brings additional

value.

2.2.2 ACF and PACF

The ACF and PACF are instruments used to identify dependencies between the values

of a time-series at different times. ”Just as correlation measures the extent of a linear

relationship between two variables, autocorrelation measures the linear relationship

between lagged values of a time-series” [23]. The ACF is answering the question

of whether the successive observations are related by computing an autocorrelation

coefficient at each time-lag k. The value rk is the autocorrelation between any
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two time-series values separated by a lag of k time units. Given measurements,

Y1, Y2, . . . , YN at time X1, X2, . . . , XN , the lag k autocorrelation function is defined as

[7]:

rk =

∑N−k
i=1

(
Yi − Ȳ

) (
Yi+k − Ȳ

)∑N
i=1

(
Yi − Ȳ

)2 (2.1)

The ACF measures for the overall correlation between two values of the same variable

at the different timesXi andXi+k. Looking at ACF could be misleading in regard with

which lags are significant. For example, ifXi+k is strongly correlated withXi+k−1, this

correlation could show up in the previous lags Xi+k−2,Xi+k−3.

In contrast, PACF measures for the direct correlation between Xt and Xt−k. In other

words, PACF measures the linear relationship between Xt, and Xt−k, eliminating the

influence of the intervening variables. Each partial autocorrelation can be obtained as

a series of regressions of the form:

ỹt = ϕ21ỹt−1 + ϕ22ỹt−2 + et (2.2)

where ỹt is the original series minus the sample mean, yt− ȳ. The estimate of ϕ22 gives

the value of the partial autocorrelation of order 2. Extending the regression with k

additional lags, the estimate of the last term gives the partial autocorrelation of order

k. The mathematical details of computing the partial autocorrelation are explained in

depth in Box et al. [7]. The significant lags are considered the ones which scores are

above the confidence level.

The classical Box-Jenkins time-series model uses both ACF and PACF tools to

construct the statistical model. Specifically, PACF are useful in identifying the order of

AR(p) while ACF are used to identify the order of the moving average term MA(q). A

classical model is considered adjusted when both ACF and PACF show no significant

autocorrelation.

2.3 Forecasting Methods

Common methods used to produce forecasting models include time-series regression,

exponential smoothing, ARMA (and its variants ARIMA, SARIMA, etc), Dynamic

regression models[23]. The general setup of a forecasting problem can be expressed

12
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as below, where the aim is to predict the future behaviour of a (univariate) time-series

zi,0 for item i ∈ I given its past.

zi,0, . . . , zi,T−2, zi,T−1, zi,T =⇒ P (zi,T+1, zi,T+2, . . . zi,T+h) (2.3)

Different techniques can be approached when computing the unknown value of future

time-series. Depending on the scope of the problem, one can use point estimation

techniques or probabilistic forecasts. A point estimator is a statistic that produces a

single numerical value, while the interval estimator produces an interval within which

the parameter is expected to fall.

2.3.1 Evaluation Metrics

Common metrics to evaluate point forecasts include:

• Mean Absolute Error (MAE) over the entire forecasting horizon h : mean(et),

where et = |zt − ẑt|

• Mean Average Percentage Error (MAPE): 1
h

∑
t et/ |zt|

• Root Mean Squared Error (RMSE) :
√
mean (e2t )

• Coefficient of determination, R2. It measures the goodness of fit for regression;

it usually ranges from 0 to 1, though it can take on negative values as well.

Domain specific considerations

The direction of errors often has an economic impact in long-term forecasting

applications. In power system planning applications, positive forecasting errors

can result in planning inadequate capacity, and in turn loss of load service. In

hedging processes, the forecast provided by an industrial entity is used in defining

the hedging contract with the energy provider. Positive forecasting errors resulting

fromunderestimating the real energy consumption impose limitations to the industrial

entity. In this case, the industrial entity cannot consume more than what it initially

declared in the contract. Negative forecasting errors result in the industrial entity

overbuying electricity from the electricity provider. In addition, the industrial entities

are penalized by the energy provider for what they do not consume. The importance

and impact of negative versus positive errors should be further evaluated by a domain
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expert based on the forecasting application use case. Thus, reporting these values is

important.

2.3.2 Stochastic Time-Series Models for Univariate
Time-Series

The underlying idea of stochastic models assumes that a time-series {x(t), t =

0, 1, 2, . . .} follows a certain probability model. Thus, the sequence of observations of
the series is a sample realization of the stochastic process that produced it. Stochastic

time-seriesmodels can be categorized into linear and non-linearmodels. A time-series

model is said to be linear or non-linear depending on whether the current value of the

series is a linear or non-linear function of past observations. Models can be further

divided into univariate versus multivariate models. The linear models for univariate

time-series include:

• Autoregressive (AR)

An AR(p) assumes that the observed time-series depends on a weighted linear

sum of the p past values of X(t) and a random shock εt also known as white noise.

This model formulates the predicted value X(t) as: Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . .+

ϕpXt−p + εt

• Moving Average (MA)

The intuition behind a MA(q) is that the observed time-series Xt depends on a

weighted linear sum of past, q , random shocks εt. Technically, the model can be

formulated as follows: Xt = εt + θ1εt−1 + . . .+ θqεt−q

• Autoregressive moving average (ARMA)

An ARMA(p,q) model consists of both an AR(p) term and aMA(q) term. In other

words, the model consists of the weighted sum of past values (autoregressive

component) and the weighted sum of past errors (moving average component).

Mathematically, it can be formulated as: Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . .+ ϕpXt−p +

εt + θ1εt−1 + . . .+ θqεt−q

• Autoregressive integrated moving average (ARIMA)

While ARMA(p,q)models stationary time-series, ARIMA(p,d,q)model allows for

modeling non-stationary time-series. The model assumes a series can become

stationary by differentiating it d times.
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• Seasonal Autoregressive Integrated Moving Average (SARIMA)

SARIMA(p,d,q)(P,D,Q)s is used to model time-series that possess a seasonal

component that repeats every s observations. The uppercase notation is used

for the seasonal parts of the model, and lowercase notation for the non-seasonal

parts of the model. The SARIMA model is composed of three trend elements

that require configuration, which are the same as ARIMA. The parameter (p, d, q)

stand (Trend autoregression order, Trend difference order, Trend moving

average order). The next four seasonal elements (P,D,Q)s stand for (Seasonal

autoregressive order, Seasonal difference order, Seasonal moving average

order), whilem stands for the number of time steps for a single seasonal period.

The estimation of the model parameters is mostly done by maximum likelihood

estimation.

2.3.3 Regression Models for Time-Series

Regression analysis is a set of statistical processes for estimating the relationship

between the outcome variable andone ormore predictors variables. One of the features

of a regression model is that most of the predictors variables are continuous and

generally use dummy coding.

From the pool of various regression models, linear regression is one of the common

models used in prediction tasks. Linear regression models can be approached from a

traditional perspective or by solving the system of equations using an artificial neural

network, which automatizes the process. One of the advantages of solving regression

models with neural networks is that they have more prediction power and they can

learn a non-linear function approximator. The traditional regressionmodel advantage

is that they are supported by a proven theoretical background, and less complex thus

easier to understand.

Regressionmodels are used to forecast the value of interest by assuming that there is a

linear relationship with another time-series x. One can include multiple time-series as

predictors or explanatory randomvariables (see Figure 2.3.1 for visual representation).

Such models are named multiple linear regression. Assuming our prediction ẑt is a

15



CHAPTER 2. LONG-TERM FORECASTING OF TIME-SERIES

weighted combination of features xt,1, . . . , xt,D, we have:

ẑt =
D∑

d=1

wdxt,d

Figure 2.3.1:
Multiple linear regression model
representation with
three time-series as as predictors
(xT,1, xT,2, xT,3) [11]

where ẑ is also called the fit for the x [13].

In linear regression models, the predicted output

is continuous and has a constant slope. The

goal is, given the data x (the predictors) and

z (the forecast value) to find the weights (w)

so that determine the hyperplane with the best

fits for the training set. Common performance

measures are RMSE, Least Squares (LSS) (also

known as Mean Squared Error (MSE)). These

are used to quantify how well the model fits

the data. In traditional methods, the Normal

Equation is implemented giving themathematical

results directly. Normal Equation is an analytical

approach to Linear Regression with a Least

Square Cost Function. The value for the model

parameters can be computed without using

Gradient Descent. Another way to train linear

regression is to use gradient descent, which is

an optimization algorithm. In opposition, in a

linear regression model using neural networks,

the weights are approximated. The best fit can be defined using the principle of

least square regression which provides a way of choosing the feature’s weights by

minimizing the sum of the squared errors. First, weights are found by solving the

following equation:

w⋆ = argmin
w

T∑
t=1

(zt − ẑt)
2 =

T∑
t=1

(
zt −

D∑
d=1

wdxt,d

)2

And later w⋆ can then be used to make forecasts (where h is the chosen forecasting
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horizon):

zt =
D∑

d=1

w⋆
dxt,d t = T + 1, . . . , T + h

Features for Linear Regression A disadvantage of linear regression is that

the features need to be given, thus hand designed. Features used in linear models

are themselves time-series, x1,d, x2,d, . . . , xT+H,d. Features of time-series data can be

summarised as follows:

• Trend features

• Seasonal features: dummies (one-hot indicators), periodic features (e.g. Fourier)

• Lagged target values (e.g. use zt−1 and zt−2 as features to predict zt)

• Seasonal lagged target values (e.g. use zt−S to predict zt, with S = 12 for monthly

data)

• (Weighted) average features (e.g. meanzt−7:t−1 )

2.3.4 Learning Methods

Figure 2.3.2: MLPs arhitecture [11]

Under the umbrella of ANN, one can differentiate between two model architectures.

Feed forward neural networks

Feed forward neural networks, known in

literature also as deep feedforward

networks orMultilayer Perceptrons (MLPs)

[43], are a type of neural network where

the connections between the nodes do not

form a cycle[14]. The information moves in

only one direction, from the input nodes,

through the hidden nodes, and to the

output nodes (as shown in Figure 2.3.2).

Each neuron in a hidden layer computes a
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function of the previous layer, followed by a non-linear activation function.

hl,j = σ
(
w⊤

l,jhl−1 + bl,j
)

(2.5)

MLPs are robust baseline methods that can model non-linear patterns in the data,

as opposed to linear models. Such features are enabled by the non-linear activation

function σ of each neuron. Common activation functions include sigmoid, tanh,ReLU ,

etc. Each hidden layer outputs a new representation of its input vector which aims

to synthesize the characteristics of the time-series. Thus, MLPs are able to learn

complex input-output relationships. In this way, we can say that the feature extraction

is automated. In comparison to linear models, MLPs require less manual feature

engineering. However, the accuracy of the output depends on the choice of input data.

In addition, adopting MLPs as a forecasting method implies hyperparameter tuning

(e.g. of regularization, learning rate, activation function, etc.).

Recurrent Neural Networks

While previous models assume that all inputs (and outputs) are independent of each

other, the concept of recurrent neural networks (RNN) lies in the fact that for certain

tasks it is necessary to include information from the previous values and thus the

design of the neuron has focused on leveraging the sequential information in a dataset.

In other words, RNNs are meant to analyze sequences of data and model temporal

patterns. This is achieved by augmenting the neuron with a memory, which captures

information about what has been calculated so far in its hidden layer. Each recurrent

neuron has three sets of weights: the weight u for the input x(t), the weight w for the

hidden state at the previous time step h(t−1) which is the output vector of the previous

time step, and the weight v for the hidden state at the current time step h(t) (see Figure

2.3.3 ). The output vector y(t) is computed with the following equations:

h(t) = tanh
(
uTx(t) + wTh(t−1)

)
y(t) = sigmoid

(
vTh(t)

) (2.6)

Stacking multiple neurons forms a layer. Stacking layers of cells give a deep RNN.

Depending on the forecasting task, one can choose between different RNN design

patterns:
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Figure 2.3.3: Repeating module in a standard RNN [38]

• Vector-to-Sequence: a network that takes a single input at the first time step, and

it outputs a sequence: x[1] 7→ {ŷ[t]}

• Sequence-to-Vector: a network that takes as input a sequence and ignores all the

outputs except for the last one: {x[t]} 7→ ŷ[T ]

• Sequence-to-Sequence: takes a sequence of inputs and produce a sequence of

outputs: {x[t]} 7→ {ŷ[t]}

• Encoder-Decoder: it is a sequence-to-vector network (encoder), followed by a

vector-to-sequence network (decoder): {x[t]} 7→ h 7→ {ŷ[t]}

The vanilla RNN explained above encountered the big problem of vanishing or

exploding gradients, which in practice made learning possible only from a short past

sequence. There have been severalmodifications to theRNNproposed to remedy these

problem of which themost popular are Gated Recurrent Unit networks and Long Short

Term Memory.

LSTM

LSTM [21] is a type of arhitecture explicitly designed to avoid the long-term

dependency problem. While the basic RNN contains a single hidden layer in each cell

(see Figure 2.3.3), an LSTM contains four interacting layers in each cell (see Figure

2.3.4). By using LSTMs, the network can learn what to store and what to throw

away. The operational principle behind stand in splitting the memory it two states:

the short-term state, which is represented by the vector h(t) and the long-term state,

represented byC(t) vector. Then, LSTMcan remove or add information to the cell state,

regulated by three gates:

• Forget gate: decides what information will be deleted from the cell state by
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applying a sigmoid over the previous hidden state h(t−1) and the input x(t).

f (t) = σ
(
Wf ·

[
h(t−1), x(t)

]
+ bf

)
• Input gate: decides what new information will be stored in the cell state. First,

the sigmoid input layer i(t) decides which values will be updated. Secondly, a

tanh layer decides potential candidate values. Thirdly, the old cell state C(t−1)

gets updated.

i(t) = σ
(
Wi ·

[
h(t−1), x(t)

]
+ bi

)
C̃(t) = tanh

(
Wc ·

[
h(t−1), x(t)

]
+ bc

)
C(t) = f (t) ∗ C(t−1) + i(t) ∗ C̃(t)

• Output gate: decides the final output by running a sigmoid on the hidden state

and the input. Then, the output is multiplied with the long term state C(t).

o(t) = σ
(
Wo

[
h(t−1), x(t)

]
+ bo

)
h(t) = o(t) ∗ tanh

(
C(t)

)

Figure 2.3.4: LSTM neuron arhitecture, last update step [38].

GRU

GRU [10] is newer and simplified version of the LSTM cell which has only two gates:

reset gate and update gate. GRU removed the cell state C(t) present in LSTM cell and

used only the hidden state h(t) to transfer information to the recurrent unit or to the

next layer [41]. Compared to LSTM, the hidden state of the GRU can be interpreted as

a merging between the cell state and hidden state.
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• Update gate: it acts similar to the forget and input gate of LSTM. It decides what

information to remove and what new information to add.

zt = σ (Wz · [ht−1, xt])

• Reset gate: decides how much past information to forget.

zt = σ (Wz · [ht−1, xt])

rt = σ (Wr · [ht−1, xt])

h̃t = tanh (W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Figure 2.3.5: GRU architecture [38].

GRU uses less training parameters and therefore less memory, executes and trains

faster than LSTM’s [10]. However, LSTM is known to perform better on datasets using

longer sequences.

Features for Recurrent Neural Networks GRU and LSTM can extract and

memorize characteristics of time-series automatically during training. However,

one can help the model by adding extra features that highlight certain known

characteristics. Features that can be encoded into input variables include:

• Lags

• Trend

• Seasonality
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• Dummy variables

Since the range of values of the features can vary widely, it is a common practice to use

normalization. Another motivation is that neural networks tend to converge faster.

Two popular choices of rescaling features are MinMaxScaler (2.7) and StandardScaler

(2.8).

x̃ =
x−min(x)

max(x)−min(x)
(2.7)

x̃ =
x−mean(x)

sd(x)
(2.8)

Optimizers

A machine learning algorithm is built by specifying an optimization procedure, a cost

function, and a model family. The optimization algorithm is used to change the

attribute of the neural network such as weights and learning rate to reduce losses.

Some of the common optimizers and their specifics are listed below:

• Gradient Descent (GD)

GD is the regular gradient descent optimization, which works to find the minima

of a cost function and where the weights are updated as follows:

w
(next )
i = wi − η ∂J(w)

∂w1

• Stochastic Gradient Descent (SGD)

SGD is one of the most used optimization algorithms for machine learning. The

advantage of using SGD as opposed to GD is that the weights updates are done

as each sample is processed. Thus, the subsequent calculations already use

improved weights.

• Momentum

Momentum optimizer increases the training speed by giving to the update

process a tendency to keep moving in the same direction. At each iteration, it

adds the local gradient to the momentumm, where β is the momentum and it

takes values between o and 1.
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m1 = βm1 + η ∂J(w)
∂w1

w
(next)
1 = w1 −m1

• Nesterov momentum

Nesterov Momentum is a faster variant of the Momentum optimization.

• AdaGrad

AdaGrad is an optimizer that keeps track of a learning rate for each parameter

and it adapts the learning rate over time. It decays the learning rate faster for

steep dimensions than for dimensions with gentler slopes. Each feature wi is

updated using the following formula:

s1 = s1 +
(

∂J(w)
∂w1

)2
w

(next)
1 = w1 − η√

s1+ϵ

∂J(w)
∂w1

• RMSProp

RMSProp is solving AdaGrad problem of stopping before the global minimum is

reached. The main difference consists of accumulating only the gradients from

the most recent iterations (not from the beginning of training).

s1 = βs1 + (1− β)
(

∂J(w)
∂w1

)2
w

(next)
1 = w1 − η√

s1+ϵ

∂J(w)
∂w1

• Adam optimization

Adam optimizer combines the ideas of Momentum optimization and RMSProp.

2.4 Related Work

The common schools of thought on studying energy consumption prediction involves

stochastic models, regression models and modern machine learning methods such

as neural networks. One of the limitation of stochastic models is the increase of

complexity when modelling multi-variate time-series. Commonly, their usability is

explored on short-term predictions use cases. Their performance on long-term tasks

is not well highlighted in the literature. The following category, namely regression

models greatly reduced the complexity in modelling multivariate inputs. MLR is an
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important method in multivariate statistical analysis which makes possible to predict

the outcome of a response variable using several explanatory variables. MLR is widely

used in the industry and in many research fields. In , the author uses MLR and ANN

to predict the electricity consumption of Thailand. In Tuaimah’s research [47], the

MLR method is used to present a short-term load forecast for Iraq’s power system

requirements. However, one limitation of these models is that the correlation between

the variables changes with time and space [4]. A second limitation lays in the fact

that the predictors need to be manually selected by a domain expert or a thorough

exploratory analysis.

Neural networks tackled the tedious feature selectionprocess by automatically learning

features of time series from historical data using recurrent units and thus increasing

model’s accuracy.

Common machine learning methods explored in the literature for long-term

forecasting include Multilayer Perceptron (MLP), K-Nearest Neighbors Algorithm

(KNN) and other FNN variations. An overview of several ANN techniques used in

forecasting long and medium-term have been summarized in [27]. In the same paper

[27], the author proposes aMultiplicative ErrorModel aimed for a forecasting window

of 48 months, showing good results for periods of recession and high volatility. In a

study from 2019 [39], the author is comparing a simple MLP model architecture with

a KNN model to predict electricity load for 1 year ahead horizon using temperature as

an additional explanatory variable. However, the training of MLP was a FNN without

backpropagation. In a study from 2008 [24], the authors use a backpropagationmodel

to forecast daily maximum electricity load and reach comparable percentage errors in

a 2months test. A limitation of FNN is that they cannot capture sequential information

in the input data which is required for dealing with sequence data.

Recently, RNN [22] proved to be a popular choice of model class for time-series

forecasting ([54], [42]). These networks tackle the limitations of FNN by taking

advantage of the sequential information. Several success stories from recent

forecasting competitions placed sequence models amongst the winning solutions

[50].

RNNs are employed for modeling various types of time related data. Especially

LSTM-RNNs have received notable performance in several tasks such as music

generation, natural language translation [46], speech recognition [15] and traffic
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prediction. In [51], the authors evaluate a LSTM architecture versus a hybrid LSTM

on short-term traffic flow prediction concluding that the hybrid LSTMmodel is closer

to the accuracy and real-time requirements of the task.

LSTM-RNNs have shown interest in the energy sector research field. In [29],

the authors propose a LSTM recurrent neural network-based framework to predict

short-term residential load forecasting. The results proved that LSTM has a strong

ability for time series data prediction, outperforming state-of-the-art in the field of load

forecasting. The authors emphasize the capability of LSTM to deal with the volatility

of predicting individual smart-meters. The work of Song Xuany et al. [45] proposes a

LSTM based model for time-series oil rate prediction and an optimization method for

themodel. The LSTMmodel outperformed ARIMA andRNN vanillamodels providing

a promising method for predicting the time-series oil rate.

However, the application of LSTM architecture on long-term applications is limited.

One mention includes the work of Hartwig [19] who shows good accuracy of LSTMs

on large time scale of mid-to-long term prediction (with 12 steps ahead, monthly

resolution) for photovoltaic power generation.

GRU-RNNs have also received attention in the realm of sequence learning. Effective

applications of GRU based models include text recommendations [5] and short-term

photovoltaic forecasting [49]. Moreover, in [32], GRU has shown superiority over

MLR and SVM for the processing of time series data and forecasting of primary

Chinese energy consumption. In a study on 27 state-of-the-art methods for predicting

electricity prices [31], deep neural networks, LSTM and the GRU models are shown

to obtain a predictive accuracy that is statistically significantly better than all other

models. In his work, Jozefowicz [26] compared the GRU and LSTM models and

found that the GRUmodel was able to achieve comparable results to the LSTMmodel

on multiple issues. However, applications on industrial electricity consumption for

long-term forecasting of these architectures are not existent to my knowledge.

In addition to architectural choices, research work has been done in the direction of

improving neural network models performance by enhancing the process of selecting

input features for the model. In their research, Flores et al. show good results for the

usage of the autocorrelation function and partial autocorrelation function as tools to

help and improve the construction of the input layer for univariate time-series artificial

neural network (ANN) models as already used in classical time-series analysis [12].

25



CHAPTER 2. LONG-TERM FORECASTING OF TIME-SERIES

When forecasting time-series with machine learning, even though the methods allow

for learning and automatic extraction of data characteristics, the selection of features

is important as it enhances the learning. The current research experiments with the

tools such as PACF and ACF which could be used for feature selection.

Considering these deep learning approaches, my work relates to [45], [31], [29],

[32] which use GRU and LSTM architectures. Inspired by good results of LSTM on

forecasting tasks, my work relates to [29] in the sense I am applying a similar LSTM

architecture and an exploratory analysis as tools to conduct my research. However,

the model’s configuration and tools in the exploratory analysis differ. Nevertheless, I

have been inspired by [32] who highlights the potential of GRU simpler architecture

and competitive performance to LSTMs. The two RNNs are compared against a MLR

benchmark. In addition, my work has been influenced by [12] to use PACF and ACF

tools as a method to enhance the feature selection process of MLR and improve the

input features selection for the RNN.

To my knowledge, the energy sector has not established yet an effective approach

for long term energy consumption predictions. My work is unique as I evaluate the

effect of the two architectures with a different configuration on the industrial energy

consumption datasets from various industrial players in Sweden. In addition, the

application requirements are different where the forecasting has a long-term horizon

(1 year) and the used dataset spans over a period of 5 years, larger than in any of the

research papers mentioned above. The dataset is unique as each industrial entity is

characterised by a multi-variate time series thus the LSTM and GRU based model

parameters can increase significantly. The performance of RNN forecasting models

was assessed against a MLR via RMSE.

26



Chapter 3

Use case

From a high-level perspective, this thesis work aims to design a long-term forecasting

model for electricity consumption able to generate low accuracy errors that can easily

scale up and fit a large corpus of 230 industrial entities. The forecasting time window

is long-term as industries hedge for the next one, two, or three years window. In this

research, the forecasting model is meant to project electricity consumption values for

a yearly horizon.

This section describes the entire collection of the electricity consumption time-series,

for which the results and findings of the experiments are targeted. The section

also describes the sampled dataset from the entire corpus used for experimentation

purposes.

3.1 Electricity Consumption Corpus

The electricity consumption corpus refers to the collection of electricity consumption

datasets of 230 industry entities. The proposed solution in this report was designed to

be applied to the entire corpus.

Given its characteristics, the dataset can be included in the spatio-temporal data type

category. A subcategory of spatio-temporal data type that represents well the current

data-set is the point reference data. According to [48], point reference data consist

of measurements of a continuous spatio-temporal field such as temperature or energy

consumption over a set of moving reference points in space and time. The data can be

represented as a set of tuples {(r1, l1, t1) , (r2, l2, t2) . . . (rn, ln, tn)} . Each tuple (ri, li, ti)
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denotes the measurement of a sensor ri at the location li of the spatio temporal filed at

time ti.

The dataset includes the following attributes: meters id, customer id, location of

meters. Each of the industrial customers has a various number of smart meters

spanning from few to tens of smart-meters, installed at different locations, thus

the dataset of each industrial customer comprises multiple time-series. Each smart

meter logs energy consumption readings every hour and the recordings are measured

in MWh. Individual time-series may differ in terms of the available time window,

depending on the contract.

3.2 Sampled Dataset

As the dataset is rather large with over 230 companies reporting energy consumption,

a selection of a couple of companies was used for the analysis, experimentation, and

evaluation phase. A random selection was used, as opposed to conditional sampling

(based on the location of the business customers).

Descriptor Count/Values
Industrial entities: 6
Resolution: hourly data-points
Number of entries: 1 289 861
Mean hourly energy consumption: 1.8 Mwh
Standard deviation: 4.2
Min-max: 0- 4.3 Mwh
Time window: 2015-01-01 to 2020-03-12

Table 3.2.1: Statistics overview on the sampled dataset

The sample dataset has been randomly selected from the database, comprising the

energy consumption data from the period January 2015 to March 2020. Missing data

and data comprehensiveness challenges motivated the choice of selecting the datasets

where at least 60% of the values of each time-series are available. For the missing

values up to 40%, I used interpolation as a data augmentation method.

As a result, the experimental data was comprised of datasets from three different

industrial entities. Each of the three datasets consists of a different number of aligned

time-series of 1892 time steps each, representing daily energy consumption for an

industrial player in Sweden. An overview of the dataset can be seen in Table 3.2.1

.
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Methods

This chapter covers the strategy for this research and it describes the reasoning behind

various research choices. First, the chapter introduces the direction undertaken

in approaching the forecasting task. Secondly, it presents the data cleaning and

preparation choices of the experimental datasets. Thirdly, the chapter covers an

exploratory data analysis to visualize characteristics of the corpora and gain insights

that motivate further choices (Section 4.3), a review on pre-processing methods

(Section 4.2), an assessment of time-series forecasting using traditional methods

(Section 4.4.2) versus learning methods (Section 4.4.3).

4.1 Directional Approach in Forecasting

time-series

From the methodologies used to approach load forecasting mentioned in Section 2.3,

my research is mainly focusing on model selection by developing and comparing

two models and evaluating their applicability in the given case scenario. Model

selection was chosen to highlight the applicability of modern approaches as opposed

to traditional ones.

In the same time, the work considers the feature selection approach and it includes

experiments with various structural and time-related features; however it disregards

other features such as the exogenous ones. The choice of focusing on time-related

features is based on the exploratory data analysis insights, which indicate structure

in the series where structural features could lead to good performance of the model.
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A second consideration was the complexity of the model. The motivation of the

work was to experiment with a simple model that can later be compared with more

complex versions. As no prior research on RNNs performance trained exclusively

with time-related features were found on a industrial energy dataset, it was natural to

first explore this area, before increasing models complexity with exogenous features.

Moreover, the following work also considers the hyper-parameter tuning by including

experiments with various values for the batch size and sequence size.

Using time and structural features as a central component, two systems for

forecasting industrial energy consumption were developed and compared. The first

implementation uses basic time related features for training aMLRmodel. The second

implementation compare 3 variants of the RNNs. The first variant uses RNN for

feature learning from the individual smart meter data. This setup is compared against

RNNs where the same features as the ones provided by the Linear Regression are

provided. The third variant adds additional features discovered in EDA.

4.2 Data Cleaning and Preparation

To make a fair comparison of the forecasting methods, the same data cleaning process

has been applied to the raw dataset before all the experiments. The data cleaning and

preparation operations applied to the input dataset are listed:

• Remove time-series that havemore than 60%missing values (missing values are:

0, NaN or empty spaces)

• Apply interpolation for the missing values in the time-series which have at least

40% values recorded

As any other step, the cleaning step was no error-free process and relies on several

choices that can impact the training set quality. One of the assumptions made

was that the energy consumption per hour can never drop to 0 MWh. Some other

observations worth mentioning is that, in the worse case scenario 400 datapoints may

be interpolated. A backwards interpolation can lead to a section in the time-series

where all the values are equal. As a result, this method disregards the underlying

time-series patterns (e.g. seasonal pattern). Table 4.2.1 shows the number of

remaining time-series for each of the three experimental datasets, after cleaning was

performed.
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Table 4.2.1: Remaining number of time-series after cleaning

Dataset # Remaining time-series
Industrial Entity A 17 out of 31
Industrial Entity B 4 out of 4
Industrial Entity C 6 out of 10

Another pre-processing choice was the aggregation resolution. The raw dataset

contained hourly energy consumption. However, the experimental dataset was

aggregated to a daily granularity because an hourly input was not serving the goal

of 1 year forecast. A monthly granularity was also neglected because it would have

had reduced the training dataset to only 60 datapoints (12 months x 5 years). The

advantage of using daily aggregation was that it maintained a large dataset for fitting

the model and preserves the weekly patterns.

As the total energy consumption differs greatly between industrial entities, scaling the

input data before applying any of the models has been adopted. Specifically, min-max

scaler was used. This way, the RMSE values between industrial entities could be fairy

compared.

4.3 Exploratory Data Analysis

Of special interest was to identify dataset similarities between the industrial

consumers, as it affects the model training choices. To explore the dataset, couple

of descriptive techniques have been applied such as: distributions, time-plots and

autocorrelations. EDA aims to highlight the main properties, sudden changes, outliers

and missing values of time-series.

4.3.1 Distributions

A profile for each industrial entity was created by analysing their distribution shape,

variance and operational range. The analysis was performed both at an industrial

entity level but also at a smart-meter level.

Distributions of unique industrial entities

Distributions (histograms) are constructed using the daily aggregation of consumption

per industrial entity (yn,m =
∑

n,m(xn,m), where yie,date is the total daily consumption for
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Figure 4.3.1: Distribution of daily total consumption per industrial entity on the
experimental dataset; x axis: Daily Consumption (MWh), y axis: Density Probability;
Different operation regimes for each industrial entity

industrial entity n for daym and (xn,m) is the hourly consumption). The visualizations

motivated the following choices:

(a) Individual model training for each industrial entity: As shown in Figure

4.3.1, the distribution shape, variance and operational range differ between industrial

entities. The histogram shows that the daily consumption of Entity A has a compact

shape, with a clear operational profile. Entities B and C display a bimodal distribution

indicated by the 2 distinct peaks. Entity D presents a right skewned distribution, where

the large amount of 0 values hint towards data quality issues. While Company A has a

small variance, Company B and C have a large variance, spanning from 0 to 56 MWh,

130 MWh respectively. Entities D and E have aggregated consumption under 1 MWh

thus operating on a lower consumption regime. All of the above reinforce the choice

of training a model for each industrial entity as opposed to a general model since there

can not be no model fit for all. Also, the distributions guarantee that the validation set

(last year in the time-sequence) was sampled from the same distribution as the training

set.

(b) Data pre-processing: The variance of daily consumption spans over a

large range (i.e. Entity B), which may indicate missing entries or issues with the

smart-meters. Another signal of a bad quality was the large amount of values

indicating 0 or close to 0 consumption (i.e. Entities D and E in Figure 4.3.1). Thus,

interpolation and identification of smart-meters with a majority of missing values for

future elimination was required.

(c) Implementation considerations: In learning, the purpose is to find a

hypothesis (function)which approximates a unique target function. This task is carried
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(a) Industrial Entity A

(b) Industrial Entity B

(c) Industrial Entity C

Figure 4.3.2: Density probability of daily consumption time-series (in MWh) for
Industrial Entity A, B and C for period 2015-2019.
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out based on a set of realizations of the target functions. It is assumed that the

realizations of the function are from the same distributions (training dataset, predicted

dataset). While in image classification problems, the visual characteristics of an object

has the same feature distribution, with time-series it is not the case, as the distribution

of inputs might change.

However, with time-series data, the output distribution is not guaranteed as the

processes can easily change over time, transforming the distribution. When the

development dataset and the production dataset are not from the same distribution,

data is not stationary, and the statistical properties will keep shifting as new values

come in. In real applications, the addition and removal of smart-meters is dynamic.

Whether a model should be retrained depends on the operational range of the newly

introduced smart-meters and their impact on the overall distribution. However, Figure

4.3.2 shows that the probability density for five consecutive years is overlapping. The

distribution of yearly lagged values is similar (Figure 4.3.2b and Figure 4.3.2c). Thus,

as no major distribution shift is observed, one can infer that it is not mandatory to

retrain the model yearly.

Distributions of unique smart-meters

The histograms in this section are plotted after data-cleaning and removal of empty

time-series. As shown in Figure 4.3.3, the smart-meters of every industry entity display

various distributions, different variance, and operational range. However, there are

groups of similar distributions. For example, the smart meters of Industry Entity A

operating under 1MWh display small variance and pointy heads. The same applies to

Smart meters 5 and 6 of Industrial Entity C. Smart meters with similar distribution

characteristics can be considered as smart meters that operate under similar regimes.

This indicates potential in forming clusters of categories with specific operational

range. Additionally, we can see that one single smart meter can also operate under

two different working regimes reflected by the bimodal distribution(i.e. Industry

Entity C: Smart meter 1, Industry Entity C: Smart meters 1, 2 ). Bimodal distribution

applies to smart meters that operate in the higher end of energy consumption and it

can be explained by maintenance consumption times versus production times. Much

information is contained at a smart meter level, information that can be exploited by

including individual smart meter time-series as input to the forecasting model.
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(a) Industrial Entity A

(b) Industrial Entity B

(c) Industrial Entity C

Figure 4.3.3: Distribution of daily consumption of unique smart-meters for Industrial
Entity A, B, C; each color represents the frequency of daily consumption data-points
of a smart-meter; smart-meters show different working regimes as multiple peaks and
lows are present; Few smart-meters operate with high energy consumption while the
rest operate under 1 MWh on a daily base.
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4.3.2 Time Sequence Plots of Energy Consumption

From the time sequence diagram (Figure 4.3.4 and Figure 4.3.5), we can identify

at least two categories of time-series data. The first category includes stationary

time-series with irregular variation (i.e. Entity A: Smart meters 3, 4, 5, 9; Entity B:

Smart meter 3; Entity C: 3) or cyclic variation (i.e. Entity A: smart meters 3, 10; Entity

B: smart meters 3, 4). These time-series are recorded by smart meters operating at

lower ranges (i.e. below 0.5MWh for Industrial Entity A and C and below 5MWh for

Entity B). In a second category, we can see the non-stationary time-series which are

characterized by pronounced seasonality and slight trend for some (i.e. Entity A: smart

meters 9, 12, 14). These time-series display higher operational ranges. The seasonal

pattern can be observed at a yearly level with regular troughs for August and January

months (i.e. Entity B: smart meters 1, 2), but also at a weekly level (i.e. Entity C:

smart meter 4). Weekly seasonality is signaling the difference between working week

versus weekend consumption. However, weekly seasonality is not present for all smart

meters. Slight downward trends can be observed for smart meters 1 and 2 of Industrial

Entity B. Another information that can be inferred from both the distributions and the

time plots is the repeating patterns over the years 2017, 2018, 2019.

4.3.3 Autocorrelation and Partial Autocorrelation Plots

How has the tool been applied and why using it: Autocorrelation and partial

autocorrelation plots are used to confirm time-series features such as seasonality and

trend which have been visually identified in the smart-meters time-plots. However,

the ACF and PACF were applied to the univariate time-series which record the total

daily amount of energy consumption per company. This comes in opposition to

constructing the plots for each smart-meter time-series individually. Also, ACF and

PACFplots are used at the beginning of themodeling, to obtain the input representative

lag window, or the representative time-delays needed, to improve neural network

models on univariate time-series forecasting. To compute the confidence intervals

for the autocorrelation scores, the defaults of python’s library statsmodels have been

used. The difference between other implementation methods is the way the variance

is calculated. In python, the variance is calculated using Bartlett’s formula, where

V ar(rk) = 1/N(1 + 2(r21 + r22 + ... + r2k−1)), which results in the first increasing, then

flattening confidence level.
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(a) Industrial Entity A; Time-horizon: 3 years.

(b) Industrial Entity A; Time-horizon: 8 months.

(c) Industrial Entity A; Time-horizon: 4 weeks.

Figure 4.3.4: Time-series plots of daily consumption (MWh) recorded by each smart
meter of Industrial Entity A. Time-horizon: 3 years, 8 months, 4 weeks. Description:
mostly cyclic time-series, with few time-series with weekly seasonality.
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Figure 4.3.5: Time-series sequence of daily consumption (MWh) recorded by each
smartmeter of Industrial Entity B (left column) and Industrial Entity C (right column).
Rows 1-3: 3 years, 8 months, 4 weeks sequence. Description: weekly seasonality with
regular peaks and troughs and yearly seasonality with regular troughs in August and
January month.
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Interpretation of ACF and PACF plots Figure 4.3.8 displays the results of the

autocorrelation and partial autocorrelation plot for each of the three industrial entities:

A, B and C, on the cleaned dataset, before any differencing. The ACF and PACF are

calculated for the entire time-series data, as opposed to only one section. Both plots

show whether there are significant correlations between the same variable at different

times, where the difference in time is determined by k - the lag. The ACF is a powerful

tool in time-series analysis for identifying important features in the data.

Figure 4.3.6: Time plot of total energy consumption per day for Industrial Entity A
shows yearly seasonality; ACF shows weekly seasonality, but no trend; PACF plot
shows significant correlations for the first 8 lags, except the 4th lag. The furthest
significant correlation can be seen at 29th lag.

The ACF plot of Industrial Entity A shows a large spike at lag 1 that decreases after a

few lags, displaying a mixture of exponential decay and damped sinusoid expressions.

The sine waves are symmetrical, whose amplitude decreases linearly over time. The

center of the sine stays constant indicating no trend. Also, the fact that there is no

clear ”cut-off” after lag k indicates there is no moving average of the time-series.

The sinusoidal peaks appear at 0 and every multiple of 7, which indicates weekly

seasonality. The autocorrelations are significant for a large number of lags, but it could

be that the autocorrelations at lags 7, 14, 21 are merely due to the propagation of the

autocorrelation at lag 7. Thus, by consulting PACF,we can confirm that the significance
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Figure 4.3.7: Time plot of total energy consumption per day for Industrial Entity B
shows yearly seasonality; ACF plot shows weekly seasonality, but no trend; PACF plot
shows significant correlations with lags from 1 to 8, but also 14th and 15th lag

persists at values with a shift of 7 units in time. It can be also observed that the furthest

significant correlation is at the 29th lag. However, significant correlations are present

in the first 8 lags, where the highest correlation can be observed at lag 2, 6, 8.

The ACF plot of Industrial Entity B shows a large spike at lag 1 followed by a

decreasingwave that alternates betweenpositive andnegative correlations. Theweekly

seasonality is confirmed by the sinusoidal function with peaks at 7 units in time. The

ACF shows that all first 15 lags are significant. The PACF confirms the significance of

lags 1 to 8 and 14 to 15. However, lag 1, 3, 4, 5, 6 are positively correlated while lag 2,

7, 8 are negatively correlated.

The weekly seasonality is also present in the time-series from Industrial Entity C. As

the sinusoidal patterns are centered and there is no clear ”cut-off” in the ACF, we can

confirm there is nomoving average term. The PACF shows a significant lag for the first

10 lags, with a higher correlation for 1st, 6th and 8th lag. The correlation score stays

above the significance level for the next multiple of 7/8.
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Figure 4.3.8: Time plot of total energy consumption per day for Industrial Entity C
shows yearly seasonality; ACF plot shows weekly seasonality, but no trend; PACF plot
shows significant correlations for the first 10 lags, but also at 22 and 28th lag.

Summary: Overall, all the three studied cases show significant correlations for the

fist 8 lags, and thus have explanatory power over the time-series. However, some

lags have more explanatory value than others and differ from one industrial entity to

another. Thus, it worth paying attention which lags to select per industrial entity. A

customized selection for each entity will ensure a better selection of features. However,

this method will trade of themodel generalization power. Since scalability is one of the

requirements, the yearly seasonality (the lag of 1 year, 2 years, 3 years) was used as a

predictor for each one of the industrial entities.

4.4 Forecasting Methods on the Industrial Dataset

4.4.1 ARIMA Variants

Prior to assessing modern forecasting techniques, some of the classical methods have

been evaluated. Due to their low error performance and week power in persisting the

characteristics of the time-series for the out of sample predictions, these models have

not been further explored nor included in the results section.
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However, for future reference, it worth mentioning their forecasting errors and the

limitations of these methods. Due to low performance of the ARIMA models, only the

results for one industrial entity are reported. The models mentioned below have been

fitted to the univariate time-series representing the total daily electricity consumption

of Industrial Entity A. To configure the parameters of a SARIMA(p, d, q)(P,D,Q)s

model auto.sarima command was applied initially, followed by empirical testings.

Also, prior to model fitting, the univariate series was tested and its stationarity

confirmed using Dickey–Fuller test. As mentioned in Section 2.3.2, The general

SARIMA model is noted as SARIMA(p, d, q)(P,D,Q)s, where P is the number of

seasonal autoregressive (SAR) terms, D is the order of seasonal differencing and Q is

the number of seasonalmoving average (SMA) terms, respectively. In the seasonal part

of themodel, these three parameters operate acrossmultiples of lag s. Importantly, the

s parameter influences the P, D, and Q parameters. The trend elements (p, d, q) are the

same as in ARIMA models.

Three model configurations which achieved the lowest errors during the empirical

study are mentioned below, together with the forecasting error for out of sample

prediction.

• SARIMA(1, 0, 2)x(0, 1, 1)7: the number of periods in each season has been set to

7, as daily seasonal patterns have been observed earlier in the EDA; the model

daily average RMSE for the out of sample test (365 days ahead) recorded a value

of 0.1977

• SARIMA(2, 0, 3)x(1, 1, 0)12: a secondarymodelwith 12 steps for a single seasonal

period has been fitted; daily average RMSE for the out of sample test displayed

an error of 1.0968

• ARIMA(8, 0, 3): the order of AR was set to 8, and a MA to 3; the results showed

a RMSE value of 0.2165

The input data has been previously tested for stationary using the Dickey-Fuller test.

The statistic of the test (-2.59) was lower than the critical value (at 10%, 2.56) which

indicates stationary. One of the limitations of themodel is the inability to follow double

seasonality and maintaining the time-series characteristics for a large out-of-sample

forecast. Another drawback is the fact that the forecast is greatly affected by the starting

time of the out of sample dataset. To achieve better results, one needs to align the out of

sample dataset with the start of a season. Another limitation imposing computational
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difficulties was to set a yearly seasonality of 365 data points. The linearity of the

experimental dataset was tested by fitting a linear line and computing the resulted

r-value. The r-value was very close to 0 (-0.25) which indicates almost no linearity.

This characteristic can be also noticed visually in the time-series plots. The design of

ARIMAmodels and its variations is intended for linear data which can explain the low

performance given the non-linearity of our dataset. While the long-term forecasting

application is not excluded in the literature from the possible utilizations of ARIMA

models, the most important application is the short-term forecast.

4.4.2 Multiple Regression Experiment

There are two main types of multiple regression analyses which are the standard

multiple regression (also known as the entry method) and the selectionmethod. There

are four selection procedures used to yield the most appropriate regression equation:

forward selection, backward elimination, stepwise selection, and block-wise selection.

The selection methods aim to reduce the set of predictor variables to those that are the

most significant in an automatic or manual way. The most commonly used multiple

regression analysis is the standardmultiple regressionwhere all independent variables

are entered into the equation at the same time. This research uses the entry standard

method as a baseline model for forecasting. The predictors are selected following an

exploratory data analysis.

The chosen implementation of linear regression makes it a deterministic model. The

linear regression analysis is not performed using the artificial neural networksmethod,

thus the fitted linear regression model has no hidden layers.

MLR model was applied to forecast consumption for 1 year ahead, with a monthly

resolution. Thus the regression model must capture yearly and monthly seasonality.

The experimental dataset followed the data cleaning process (4.2). Once the daily

forecasts have been computed, the forecasts were aggregated at a monthly level.

Feature extraction: The features have been selected following the EDA. Despite

the correlations found at various lags (see Figures 4.3.6, 4.3.7, 4.3.8), the choice of

model’s predictors was motivated by a general approach rather than customization of

themodel per entity, due to the large corpus of industrial entities in the real-life dataset.
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Three explanatory variables were identified in the exploratory data analysis: lag of

1, 2 and 3 years and the average of the lags (Figure 4.3.2). The time plots displayed

in Figure 4.3.6, Figure 4.3.6 and Figure 4.3.6 show that the seasonality persists over

the there years with no major change in mean. As a result, the three lags have been

considered to represent the yearly seasonality. The lags were produced by shifting

the dataset by 365 time points in the future. To repopulate the missing values due

to shifting, linear interpolation was applied.

Model Formulation: The multiple regression model used can be formally written

as:

yi = β0 + β1xi1 + β2xi2 + βi3xi3 + βi4xi4 + e (4.1)

where, yi = daily energy consumption at time i, where i=1, …, N

β0 = the intercept

βi = the slope of the regression surface (The βi

represents the regression coefficient associated with each xi )

xi1 = energy consumption with 1 year lag

xi2 = energy consumption with 2 years lag

xi3 = energy consumption with 3 years lag

xi4 =mean of the energy consumption in the past 3 year

ei = an error term, normally distributed about a mean of 0

Assumption for the errors are that they are independently identical distributed (i.i.d.)

with distribution ε ∼ N (0, σ2).

Model coefficients: To find the values for the coefficients that minimize the cost

function, a closed-form solution has been used. Normal Equation with a least square

cost function has been used for computing coefficients for the MLR model.

Experimental Setup: The dataset was apportioned into training and test sets,

with an approximated 80-20 split. The linear regression model was fitted on 4 years

of electricity consumption daily data-points, while the testing was done in the last

year of the time sequence. The model has been constructed using 4 features: 1,

2, 3 year lags and the average of the lags. Features have been transformed using

MinMaxScaler(). To evaluate the model, the daily average RMSE was computed.
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Even though the forecast aims to produce monthly predictions, using monthly error

as an evaluation metric would reduce the number of errors to 12 data-points, reducing

the error accuracy. If the model is unbiased, the mean of the residuals will be zero or

close to zero, and therefore the sum of the residuals will be close to zero. Thus, adding

the daily forecasts into monthly forecasts will not propagate the error to the monthly

total. Also, the model fit is evaluated using R2.

Time complexity: To fit the linear regression model, sci-learn uses the least

squares solution which is computed using the singular value decomposition ofX input

matrix. This method has a cost of O
(
nsamples n

2
features

)
. If we double the number of

features, we multiply the computation time by 4.

Experimental Pipeline: The MLR has been implemented according to the

following pipeline.

Algorithm 1: Linear regression model pipeline with 1 year prediction
Input: Time-series {xc1 [t]xc2 [t] ...xci [t]} where c ∈ {Industrial Entity A,

Industrial Entity B, Industrial Entity C}, number of smart meters N, i

∈ {1, …, N} and t ∈ [2015-01-01, 2020-03-08]
Output: Predictions for 1 year ahead {xc[t− pi : t]}, for pi = 365

Data: Raw dataset {xci [t]}
1 input← {xci [t]}
2 Preprocess, clean and aggregate all time-series in the input

3 Create two dataframes: trainSet, testSet = SPLIT (xc[t])

4 Generate and populate with features both dataframes: trainSet and testSet

5 Interpolate empty spaces due to shifting on trinSet

6 Transform trainSet usingMinMaxScaler()

7 Fit LinearRegression()model on trainSet

8 Transform testSet usingMinMaxScaler()

9 Run prediction on testSet

10 Return predictions to original values

11 Compute RMSE between predictions and target
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4.4.3 Recurrent Neural Networks Experiment

In regression models, feature engineering is one of the pre-processing steps required

prior to fitting the model. In opposition, neural networks automate this process.

Neural networks learn an internal representation of the data. This representation

contains latent features which can not be observed directly. However, it is interesting

to study the impact of feature engineering and selection used as an additional enhancer

to the model. Once the model configuration is selected, the proposed RNN model is

tested with three different input vector sets. The same model configuration is used on

datasets from three different companies.

Choice of layer architecture GRU/LSTM: There are two different cell types to

improve RNN regarding long-term dependencies in sequential input data: LSTM and

GRU.

One similarity consists of including the concept of gates in cell architecture. The

gates decide which information is removed or added to the network. The gates learn

what information is relevant to keep or forget during training. This is achieved through

a sigmoid function. The sigmoid squeezes the passing values between 0 and 1. This is

helpful to forget or update the values. Because any number multiplied by 0 will make

it forgotten [41].

One of theirdifferences consists in the number of gates. Every gate looks at the input

xt and ht−1 and outputs a number between 0 and 1. GRU has 2 gates, while LSTM has

an additional one called the output gate. As a result, they differ in the information

each of them passes over to the network. LSTM outputs the new cell state C(t) and the

hidden state of the cell h(t) (see Figure 2.3.4). In oposition, GRU passes information

further using only one parameter, the so called hidden state ht. The hidden state of

GRU is a merged version of the cell state and hidden state found in LSTM. Given they

have 2 gates instead of three, one can infer that less information is passed over by the

GRU than LSTM cells.

Both GRU and LSTM saw good performance in long-term dependencies task. In 2015,

a study by Greff, et al.[17] over a set of popular variants concludes that they are all

similar. Some studies show that GRU outperform LSTMs [18] in certain scenarios.

The choice of using GRU for the initial phase of the experiment was motivated

by its simpler architecture, thus less parameters to learn and higher potential of
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lower training times. Also, it came natural to compare the newer GRU architecture

(2014) with its predecessor LSTMs (1997), which have been well recognized in the

literature.

Choice of number of units in a LSTM/GRU layer: The number of hidden units

is a direct representation of the learning capacity of a neural network. It reflects the

number of learned parameters. Using more units could lead to perfectly memorize the

complete training set and increase the risk of over-fitting.

The number of units selected in a LSTM/GRU layer is not equal to the vector, nor

the timesteps. The num_units (parameter in Keras) in an LSTM cell refers to the

dimension of the cell-state vector Ct which is the same as the cell output vector ht

(Figure 2.3.4). To my understanding, this means that the num_units decides how

much of the past information should be carried over the network. For example, by

setting num_units = 20, it means that only the previous 20 timesteps have an influence

over the output. The number of LSTM recurrent cells is automatically selected and

should not be cofused with the number of units. The number of cells is equal to

the number of fixed time steps. For example, if we take a sequence with a total of

1168 timesteps, we can divide them in batches of size 3 and have a sequence of an

approximate length of 389 timesteps per batch. The 389 is the number of LSTM cells

in the layer because each cell ingests a new timestep.

The number of 512 units was chosen arbitrary. The large number of units was

motivated by providing themodel with a considerable learning capacity.The number of

20 units showed good results in a short-term prediction task [29] and was considered

as a candidate for a long-term task. Also, the aim was to evaluate the effect of a

reduction in parameters in model’s performance.

Experimental Setup: A sequence-to-sequence design pattern has been adopted

(see Section 2.3.4). This particular architecture fits the use case allowing for a sequence

of inputs and a sequence of outputs. The dataset was split into a training set (4 years

of daily energy consumption) and a testing set (1 year), with an approximated split

of 80-20. The first set of experiments compares the RNN model to the standard

Multiple Regression. To make a fair comparison between the RNN proposed model

with the baseline model, the first experiment is designed to train a RNN model

with the same input vectors as the Multiple Regression Model. The next step is
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to compare the manual selection of features with RNNs capability to automatically

extract feature representations from the original time-series. The third experiment

comprises introducing engineered featured to the training set, in addition to the

original time-series, and test whether the performance is improved. The experiments

and their different inputs have been summarised in Table 4.4.1.

Experiment Input vector
RNN-v1 lag 1 year, lag 2 years, lag 3 years, mean of energy consumption
RNN-v2 all time-series of a Industrial Entity, total sum of electricity

consumption per day
RNN-v3 all time-series of a Industrial Entity, total sum of electricity

consumption per day, day of the week, day of the year
RNN-v4 total electricity consumption per day

Table 4.4.1: Description of the RNN experiments based on their input vector

Implementation details: The experiments have been conducted using the

following RNNmodel configuration:

Parameter Value
Optimizer RMSprop
Learning rate 1e-3
Loss function MSE
Layers GRU, dense
Activation function Dense Layer sigmoid
Output units GRU E1=20, E2=512
Output units Dense layer 1
Callbacks variables (EarlyStopping, ReduceLROnPlateau) (patience = 5, patience = 0)

Table 4.4.2: Default parameters used for training RNNs

For implementation, Keras with Tensorflow as backend were used. The model was

built using the Sequential API, which allows creating models layer by layer in a step by

step fashion.

The first layer of the model is a Gated Recurrent Unit, while the second layer is a

fully-connected layer. The number of GRU units have been chosen empirically. Two

experiments followed. First, a GRUwith 512 outputs for each time-step in the sequence

and secondly a GRU containing 20 output units. The weights of the GRU have been

initialized with the glorot_uniform kernel initializer.

The goal is to predict 1 output signal (daily energy consumption), thus a fully-connected

layer was used to map the 512/20 values down to 1 value. As the output-signals in the
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dataset have been previously limited to be between 0 and 1 using a scaler-object, the

activation function for the dense layer could be set to sigmoid. Thus, the output of the

neural network has been limited to be between 0 and 1. A possible limitationwith using

the sigmoid activation function is that the output values can not be outside of the range

established by the training set.

TheRMSprop optimizer is used to improve the training speed by updating the weights

and learning rate in order to reduce the losses. RMSprop was selected instead of

AdaGrad as the later often stops too early when training neural networks. But also

because using AdaGrad, the learning rate gets scaled-down that the algorithm ends up

stopping entirely before reaching the global optimum. The initial learning rate for the

RMSprop has been empirically set to 1e-3.

The MSE is one of the common loss functions used in regression predictive modeling

type of problems which involve predicting a real-valued quantity.

The choice of parameters such as batch size and training sequence size has been

motivated empirically based on the results in Table 4.4.3. It was decided to use one

time training instead of cross-validation and division by sequences as it resulted in the

lowest error.

Training sequence size Batch size RMSE on test set
42 32 0.7864
365 4 0.7350
365 3 0.6806
1167 1 0.6597

Table 4.4.3: Evaluation of batch and training sequence parameters; for Medium
Company A.

Evaluation metric: There are various ways to measure the error of a point

forecasting method (see Section 2.3.1). RMSE has been chosen as the main evaluation

criteria as it gives a relatively high weight to large errors as compared with MAE.

Given the currently studied use case, the large errors are particularly undesirable.

However, the RMSE is a good measure of accuracy, but only to compare prediction

errors of different models or model configurations for a particular dataset, as it is

scale-dependent. To allow comparison between the prediction models across datasets

(eg Industrial entity A, B and C), a normalized version of the RMSEwas applied. While

the RMSE values have been computed on the original dataset, the normalized version
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of RMSEhas been computed on a transformed dataset using themin-max scaler. Thus,

the NRMSE (Normalized RMSE) takes values between 0 to 1, while the RMSE values

are inMWh and are dependent on the scale of each dataset. To report the overall 1 year

ahead prediction of amodel, the daily average RMSEwas preferred instead of monthly

average RMSE.

Experimental Pipeline

Algorithm 2: RNN pipeline for 1 year prediction
Input: time-series {xc1 [t]xc2 [t] ...xci [t]} where c ∈ {Industrial Entity A,

Industrial Entity B, Industrial Entity C}, number of smart meters N, i

∈ {1, …, N} and t ∈ [2015-01-01, 2020-03-08], f activation function

Output: Predictions for 1 year ahead {xc[t− pi : t]}, for pi = 365

Data: Raw dataset {xci [t]}
1 input← {xci [t]}
2 Preprocess and clean input

3 Depending on the experiment, generate lagged and/or deterministic features

4 Split dataset into trainSet, testSet

5 Transform trainSet, testSet withMinMaxScaler()

6 model← sequencial()

7 Add layers: GRU, Dense

8 Declare loss MSE worm-up and optimizer

9 Declare callbacks: EarlyStopping, ReduceLROnPlateau

10 for epoch = 1..E do

11 for batch = 1..B do

12 model.fit()

13 Evaluate model on testSet

14 Return predictions to original values

15 Compute RMSE, average of daily error

50



Chapter 5

Results

This chapter describes collected results from analyzing an industrial electricity

consumption dataset and experimenting with traditional and machine learning

methods for forecasting. Finally, the chapter describes a solution for long-term

forecasting using Recurrent Neural Networks (Section 4.4.3).

5.1 The Forecasting Task

The forecasting task of interest in this research has been the long-term prediction of

point estimates, in this case, 1 year ahead. A daily forecast resolution was selected for

research purposes. However, the real case application required a monthly prediction.

The forecasting task has been formulated as a regression problem where the output

variable of interest is a real and continuous value, namely the electricity consumption

of industrial entities. Thus, themodels chosen had to allow for a sequence-to-sequence

architecture design.

5.2 Results of Long-Term Forecasting on Industrial

Datasets

This section presents the results obtained by using variations of RNN specifically

designed to handle time-series data implemented in TensorFlow. The experiments

have been applied to thee different industrial datasets. The RNN experiments vary in

the model configurations and the input selection of features. The RNNmodel’s results
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are compared to a Multiple Regression model. One of the drivers of this research

was to propose a solution to a real industry scenario. The research was initiated by a

pre-study. The purpose of the pre-study was to better understand industrial electricity

consumption datasets. The new insights motivated the choice of training individual

models per company. The pre-study was followed by an exploratory data analysis

which led to feature selection for the models’ customization.

5.2.1 Long-term Forecasting with Multiple Regression

The performance of the MLR model is recorded in Table 5.2.2. The prediction RMSE

metric is accompanied by time prediction plots for visual inspection presented in

the figure below. The RNN model improved the prediction accuracy by 5% to 10%

depending on the dataset, when compared to the MLR model.

(a) Industrial Entity A, MLR model (b) Industrial Entity A, RNN-v1 model

(c) Industrial Entity B, MLR model (d) Industrial Entity B, RNN-v1 model

(e) Industrial Entity C, MLR model (f) Industrial Entity C, RNN-v1 model

Figure 5.2.1: One year ahead prediction time plots. Left column: MLR. Right column:
RNN-v1.

When we analyze the predictions for Entity A, both models are missing the picks

in September and December months. We can also notice that between May and

September, the MLR model overestimates the maximum energy consumption, while

the RNN model anticipated the picks right. However, none of them can predict the
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troughs for dataset A or B.

On the other hand, the RNN model captures well the troughs and peaks of Entity C,

while the MLR does not. The RNN’s good model fit is reflected in the RMSE value of

0.10 compared to 0.20 for MLR.

5.2.2 Long-term Forecasting with RNN

The RNN experiments vary in terms of (1) input features and (2) model configuration.

First, the importance of different features selection methods have been tested by

feeding the model with three different input vectors. The specific parameters used

for the RNN model are listed in the following Table 5.2.1.

Industrial Entity A Industrial Entity B Industrial Entity C
Number of time-series 17 4 6
Input signal shape (1533, 18) (1533, 5) (1533, 7)
Time granularity daily daily daily
Batch size 1 1 1
Learning rate 1e-3 1e-3 1e-3
Number of layers 2 2 2
Memory unit type GRU/LSTM GRU/LSTM GRU/LSTM
Number of units 20/512 20/512 20/512
Epochs 20 20 20
Train-Test split 80-20% 80-20% 80-20%

Table 5.2.1: Model configuration for RNN-v2 with for all three datasets.

The proposed RNN model performance has been compared against a baseline model.

A non-learning model, namely a Multiple Regression has been chosen and designed

as a baseline model for this research. To make a fair comparison, the inputs of the

MultipleRegressionmodel andRNN-v1 are kept the same. The later versions (RNN-v1,

RNN-v2) aim to improve the model performance by including additional structural

features (see Section 4.4.3 for details).

The results presented in Table 5.2.2 show that RNN outperforms the baseline model

MLRon all 3 datasets, regardless of the input vector. The results of the proposedmodel

configuration show less error than other models used for similar forecasting tasks in

the available literature as shown in Table 5.2.3).

Results of RNN experiments with different inputs: Adding deterministic

effects to the input vector (namely the day of the week and the day of the year) for the
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Description Method RMSE

Medium Industrial Entity A
Energy consumption (MWh)

1 year forecast,
daily resolution

MLR 0.1592
RNN-v1 0.1077
RNN-v2 0.1119
RNN-v3 0.0965
RNN-v4 0.1178

Large Industrial Entity B
Energy consumption (MWh)

1 year forecast,
daily resolution

MLR 0.1937
RNN-v1 0.1499
RNN-v2 0.1351
RNN-v3 0.1318
RNN-v4 0.1199

Large Industrial Entity C
Energy consumption (MWh)

1 year forecast,
daily resolution

MLR 0.2039
RNN-v1 0.1003
RNN-v2 0.1337
RNN-v3 0.1167
RNN-v4 0.0991

Table 5.2.2: Prediction performance of various models proposed in the current
research. The RMSE values are normalised and the error unit is MWh. Models
performance is compared across three different datasets reported based on the scaled
RMSE score.

Description Method RMSE

Aggregated active power (kW)
1 year forecast,
1 week resolution

ANN 0.246
SVM 0.188
SVN 0.457
CRBN 0.182
FCRBM 0.170
RF + LR 0.145

Table 5.2.3: Performance of different forecasting procedures available in the literature.
Artificial neural network (ANN), support vector machine (SVM), recurrent neural
network (RNN), conditional restricted Boltzmann machine (CRBM) and factored
conditional restricted Boltzmann machine (FCRBM) results are from [37]; Random
forest (RF) and linear regression (LR) results are from [34].

Industrial Entity A dataset had effects in reducing the RMSE. However, for the other

two datasets, Entity B and C, the smallest daily prediction error was achieved with

the RNN-v4, where only the total energy consumption per day was used as an input.

This indicates that RNN performs well when the input is represented by a univariate

time-series to be forecasted. Feeding the RNN network with multivariate time-series

coming from individual smart meters did not increase the model’s accuracy for the

Industrial Entity B and Entity C.

For the Industrial Entity C, the model with the best fit was RNN-v4, closely followed
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by RNN-v1 (where the input vector included the lag of 1, 2 and 3 years and the mean of

the lags), which shows that the manual feature selection had a comparable effect with

the capability of RNN-v4 to automatically extract time-series characteristics from the

original time-series.

For all three datasets, the RNN-v3 showed less error than RNN-v2 and RNN-v1. This

shows that augmenting the input with deterministic effects leads to a reduction in the

prediction error. However, the amplitude of the error improvement varies depending

on the size and the characteristic of the dataset.

The time prediction plots of the model version that achieved the least RMSE for each

of the datasets are presented in Figure 5.2.2.

Results of RNN with GRU vs LSTM layer: Two hidden layer architectures,

namely GRU and LSTMhave been tested for identifying their effects on the forecasting

task. Models performance has been quantified based on the three available datasets,

where the input is represented by the individual time-series and the total electricity

consumption per day (see Section 4.4.3 for details).

Dataset
GRU
units

RMSE
RNN-v2

LSTM
units

RMSE
RNN-v2

20 0.1242 20 0.1505
Industrial Entity A

512 0.1119 512 0.0882
20 0.1377 20 0.1728

Industrial Entity B
512 0.1351 512 0.1467
20 0.1763 20 0.1859

Industrial Entity C
512 0.1337 512 0.1239

Table 5.2.4: Prediction performance of RNN with GRU layers compared to RNN with
LSTM layers on three different datasets. The RMSE values are normalised and the
error unit is MWh.

We can see in the Table 6.1 that the GRU-RNNs model acquired a lower prediction

error than LSTM-RNNs model on 4 out of the 6 scenarios. In particular, GRU-RNN

outperformed LSTM-RNN when the number of units was set to 20, for all of the 3

industrial datasets.

Increasing the number of GRU units by approximately 25 times did not improve

significantly the prediction error for Entities A and B. The error improvement for the

mentioned datasets is between 0.02-1% which does not justify the resulted increase in

training time and the number of parameters. However, one can see an improvement
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(a) Industrial Entity A, model: RNN-v3 (RMSE = 0.0965)

(b) Industrial Entity B, model: RNN-v4 (RMSE = 0.1199)

(c) Industrial Entity C, model: RNN-v4 (RMSE = 0.0991)

Figure 5.2.2: Time plots predictions one year ahead of model versions that achieve the
least RMSE.

for Entity C of approximately 4% (from RMSE = 0.1763 to RMSE = 0.1337). The

experiments also showed that for LSTMarchitecture, the reduction in forecasting error

decreased in a larger amount with the increase in the number of LSTM units.

There is a decrease in error prediction associated with the increase in the number of

units of GRU or LSTM which differs from dataset to dataset. The maximum RMSE

reduction by increasing the number of GRU units by 25 fold for was 4% (Entity C),

while LSTM saw a maximum error reduction of 6.2% (Entity A).
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The following paragraph explores the experimental results by looking into the specifics

of LSTM versus GRU and by looking at the characteristics of the datasets. Research

studies found GRU to be comparable to LSTM. In theory, LSTMs remember longer

sequences than GRUs and outperform them in tasks requiring modeling long-distance

relations. As mentioned in Section 2.3.4, LSTMs have a long term memory kept

along the network using the cell state and a short-term view of the situation kept by

the hidden layer. In opposition, GRU has no output gate and the full state vector is

outputed at every time step. Given all of these mentions and the insights from the

exploratory data analysis, the following hypothesis have been formulated:

• Very long-distance dependencies are not required for datasets with a certain

profile. For datasets with pronounced yearly pattern which maintain a similar

amplitude over the years, GRU’s simpler architecture can contain and transfer

the important information through its single output, the hidden state.

• We can infer that the existence of the output gate (and the transfer of long term

memory through the cell state) limits the learning capability of LSTMs, when

not enough units are selected. The hypothesis was formulated as LSTM with 512

units achieved lower prediction error for Industrial Entities A and C.

• GRUs seem to acquired a lower prediction error for datasets with lower prevalent

content, regardless of choice of hidden units. The cyclic patterns of Industrial

entity B span over a shorter time period than for Industrial Entity A and C (refer

to Figure 4.3.6, 4.3.7, 4.3.8). Also, Industrial Entity B is not characterised by

double seasonality as for the other 2 datasets. Another parameter that could have

influence the model’s results (of Entity B) is the number of inputs of RNN-v2.

Industrial Entity B has fewer smart-meters and thus less predictors influencing

the response variable (see Table 5.2.1).

It is important to mention that these are just hypothesis. Further research is

necessary to properly explain the impact of specific dataset characteristics on GRU

performance.

Comparison: Multiple Linear Regression versus Recurrent Neural

Networks The recurrent neural network methods proved to be superior to the

statistical methods alternative, regardless of the selection of training input. Their

strength lays in the automatic feature extraction from complex datawith a combination
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of linear and non-linear transformation in the neural nets. Statistical models do

not have memory so these can not project past patterns into the future. Also, the

linear models perform best on purely linear data. Between the two implemented

classical statistical models, the Multiple Linear Regression showed a better fit and

lower forecasting error than SARIMA. The application of statistical methods required

cumbersome pre-processing and inefficient feature engineering. Of course, one can

argue that the forecasting results using Multiple Linear Regression have been limited

by the user knowledge or domain expertise and that the results could have been

improved if better explanatory features were discovered and implemented.

However, the experimental results on three different datasets showed a RMSE

reduction of a minimum of 0.05 and a maximum of 0.1 when RNN model was used

as opposed to Multiple Linear Regression, for the same set of inputs (Table 5.2.2).

Changing the inputs to RNNmodels resulted in even lower RMSE values. Additionally,

looking from a time and system perspective, the RNNsmethods reduce the complexity

of the forecasting pipeline and time required to find a reasonable model.

5.2.3 Hardware and Tools

Azure Machine Learning (Azure ML) [36] is the computational platform used to

run the experiments. It provides a pre-configured Python virtual environment and

computational resources. The experiments have been implemented using Python 3.

The main software used for Data Analysis is pandas [35]. The main software libraries

used to implement the models are TensorFlow [33] for the RNNs, scikit-learn [40]

library for MRL models, while for ARIMA variants statsmodels [44] library was used.

As well, the well-known numpy, math and matplotlib Python libraries have been

used.
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Development Environment

Platform: Azure ML

Name Virtual Machine: Standard D12

vCores: 4

Memory: 28 GB

Local SSD: 200 GB

Main software libraries

Tensor Flow: version 2.1.0

Pandas: version 0.23.4

Sklearn: version 0.20.3

59



Chapter 6

Conclusions

6.1 Discussion

This section outlines the conclusions drawn from the current research It aims to answer

the research question presented in Section 1.3.

The main research question has been divided into sub-questions as follows:

Amongst the existing approaches to forecasting tasks available in the literature,

which methods are best suited for predicting long-term electricity consumption of

industrial entities? Which RNN architectures are suitable for the current case study?

And how do the results of traditional methods compare to learning methods for

electricity consumption datasets?

A review and comparison of strategies for multi-step ahead time-series forecasting

indicate that RNNs are the most suitable prediction method for long-term forecasting

for this particular application domain. The methods overcome the challenges of

nonlinear variation of energy consumption. As known from previous research, the

RNN models lack interpretability. In this research, the first task was to design an

interpretable baseline model (MRL) by running a thorough exploratory analysis and

later to design a learning model (RNN) and to compare them given the same inputs.

Themodel performance of RNNwhen compare toMLR showed a RMSE improvement

between 5% and 10%.

Further on, different approaches to improve RNNs performance and their effects

have been compared. RNNs showed improved prediction performance in long-term
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forecasting tasks over the classical statistical methods such as SARIMA and Multiple

LinearRegression tested in the current research but also compared to other approaches

available in the literature. This was true for all of the training inputs (RNN-v1,

RNN-2, RNN-v3, RNN-v4) it was tested with. The strength of RNNs lays in the

automatic feature extraction from complex data with a combination of linear and

non-linear transformation in the neural nets. The reduction in the forecasting error

between statistical and learning methods varies between datasets. The maximum

forecasting error (RMSE) reduction was approximately 10% for the Industrial Entity C

datasets.

One of the MLR disadvantages is that in order to increase the model’s performance,

one needs to customize individual features for each entity, thus compromising the

scalability feature.

In addition to providing better forecast accuracy than previous methods, the proposed

RNN approach has a number of key advantages compared to classical approaches

and other global methods: (1) the model learns seasonal behavior and other time

characteristics automatically (2) reduction in complexity of the forecasting pipeline

reduce and therefore increasemaintainability (3) no need to specify a particular model

form or to make any a priori assumption about the statistical distribution of the data

(4) the desired model is adaptively formed based on the features presented from the

data.

How can EDA be used in the feature selection step to improve the performance of

learning models?

It was not the goal of this thesis to find the best feature selection for modeling the

time chosen time-series, but to show that following a thorough Exploratory Data

Analysis, and using ACF and PACF function could be used to improve the model’s

performance.

For the large industrial datasets (B and C), the best prediction performance was

achieved by the RNN models trained with the univariate time-series (namely

RNN-v4), representing the aggregated energy consumption per day. This excludes

the application of the EDA, ACF and PACF findings. Feeding the network with all

the time-series available per Industrial Entity resulted in a decrease in the model

performance. This effect highlights the importance of aggregation choice in forecasting
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tasks.

However, for the medium Industrial Entity A dataset, the best RNN performance was

achieved by including deterministic features, namely the day of the week and day of

the year (RNN-v3).

It is also worth mentioning that, for all three datasets the RNN-v3 trained

with deterministic features showed less error than RNN-v2 and RNN-v1, but not

RNN-v4.

To conclude, EDA, ACF and PACF tools proved to be plagued by subjective choices and

even though for one of the datasets the experiments showed better model performance

by including findings acquired through these methods, we cannot conclude that these

can always improve the model prediction.

How does the selection of GRU or LSTM units influence the prediction performance

in the long-term forecasting task?

The experiments show that the GRU architecture outperforms LSTM architecture in

long-term forecasting tasks in certain scenarios: (1) when the two architectures are

compared against a lower number of units, such as 20 units per layer; (2) for certain

datasets, regardless of the choice of number of units. As GRU units include fewer

training parameters in their structure, this architecture has a secondary advantage of

achieving faster training times, besides the decrease in model’s error. The effect of

increasing the number of GRU units by 25 fold was minimal with an error reduction

varying from 0.02% to 4% depending on the dataset. The RNN built with LSTM

architecture showed a higher improvement rate with an increase in the number of

units. The effects of increasing the LSTM by 25 fold led to a maximum error reduction

of 7% for the long-term forecasting task.

Why LSTM cells fail to outperform GRU?

One known limitation of deep learning models is the lack of interpretability, failing to

provide explanations on their predictions. As one of the effects, there is no agreement

in the literature on which of the LSTMs or GRUs are better. In an attempt to explain

the experimental results of Table , the architectural differences and the specifics of the

datasets have been addressed. It is hard to tell, at a glance, which part of the GRU is

essential for its functioning.
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However, one of the main difference in comparison to LSTM is the absence of the

output gate (see 4.4.3 for a detailed comparison). In LSTM, output gate decides what

the next hidden state should be. In addition, LSTM transfers information not only

through the hidden state but also through the cell state, which is attributed to the long

term memory. A hypothesis is that very long-term dependencies are not required for

industrial electricity consumption datasets. These datasets are characterised by strong

yearly and weekly patterns with a similar amplitude over the years.

It is interesting worthy to discuss the characteristics of Industrial Entity B dataset

on which GRU outperformed LSTM, regardless of the choice of recurrent units. Two

differences of the Industrial Entity B dataset have been identified: (1) shorter seasonal

pattern of 6 months instead of a year (2) dataset is not characterised by double

seasonality as the other two.

The following hypothesis have been formulated:

• The output gate and the long-term memory of LSTMs contained by the cell

state are limiting the learning for electricity consumption datasets with enhanced

seasonality.

• GRUs are able to abstract the patterns of industrial electricity consumption

datasets better than LSTMs. A lower number of hidden units in the GRU layer

leads to better abstraction of time series characteristics of industrial datasets.

Preserving a longer sequence of information is not necessary in a dataset with

high yearly seasonality.

Previous literature suggests that LSTMs should in theory remember longer sequences

than GRUs and outperform them in tasks requiring modeling long-distance relations,

while GRU architecture is suitable for short datasets. Thus, it reinforces the idea that

GRU makes a suitable architecture for forecasting tasks of energy consumption as

time-series datasets with a daily ormonthly resolution are limited to thousands of time

data points. This comes in opposition to natural language processing tasks, where the

input is not directly limited by time.
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6.2 Future Work

The proposed long-term forecasting method consists of a deep learning model with

GRU units. The most promising input to the model was the single time-series

representing the daily aggregated energy consumption. Using all individual

smart-meter time-series as network inputs did not enhance the learning of the model.

In opposition to the initial hypothesis, including individual time-series as input vectors

increased the overall forecasting error for two of the three Industrial Entities. The

experiments showed that the increase in the number of units did not impact the GRU

model performance significantly. As future work, it will be interesting to continue

experiments with GRU and LSTM for various numbers of hidden units (when the

network input is represented by a single time-series: the total daily aggregated

consumption from all the smart-meters). Thus, a far more conclusive result can be

achieved regarding the impact of hidden units on the model’s performance.

When it comes to the network input, this thesis has focused on the time-related

features. Currently, for two of the industrial datasets, the best performing model

was achieved by learning the time patters and features just from the univariate total

electricity consumption series, without additional features. For the last datasets, the

bestmodel performancewas achieved by trainingwith deterministic features as well as

the individual time-series originated from smart-meter at different locations. It comes

naturally to proceed with experiments with exogenous features such as the location of

smart-meters and outside temperature. The activation function used in the dense layer

was sigmoid, which limits the output of the neural network to be between 0 and 1. This

bounds the predicted electricity consumption values to the maximum and minimum

values of the training dataset. Thus it will be interesting to study whether different

activation functions in the dense layer such as ReLU , which allows for the output to

take on arbitrary values, could improve the prediction performance.

The time prediction plots showed that the RNNs prediction of picks and troughs

has limitations and thus further work and research could be done in this direction.

Moreover, the accuracy of the models used in this thesis can potentially be improved

by doing large-scale hyperparameter tuning of the models’ hyperparameters such as

learning rates and different strategies for weight initialization.

In addition to input selection and hyperparameter tuning strategies of improving

the forecasting performance, it will be interesting to experiment with other models
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architecture such as CNN. For example one study [25] proposes a CNN network for

long-term forecasting of events. Furthermore, hybridization is reported to be effective

in the advancement of prediction models. For example, the CNN-LSTM neural

network, which combines convolutional neural network (CNN) and long short-term

memory (LSTM) showed good performance for residential energy consumption and

it records the smallest value of root mean square error compared to the conventional

forecasting [28]. In the current work, the time-series were represented as sequential

data. As future work, it will be interesting to represent time-series as graph data

structures, where the location of smart meters can be encoded in the graph structure

and the edges can encode the temperature difference between locations or physical

distance.

Another relevant problem in the industry alongside forecasting for existing industrial

entities/customers is themonthly prediction of energy consumption for new industrial

customers. As opposed to existing ones, when historical time-series are available for

analysis, for the new customers the amount of data is limited if not non-existent. Thus,

a natural question unfolds: How can available time-series from existing industrial

entities be used to extrapolate predictions for new customers with a limited amount

of data?

As mentioned before, an industrial entity usually has tens of time-series originating

from different smart-meters. One suggestion for solving this problem is to cluster

different time-series into similar groups based on the available training data. As

indicated by EDA, the time-series from all the three industrial entities could form 3 to 5

clusters. The next stepwould be to collect a short amount of data (one/twoweeks) from

the new customer and assign it to a cluster, extrapolating from the cluster’s information

to the specific time-series.
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