
 Eindhoven University of Technology

MASTER

Hardware Acceleration in the Context of Motion Control for Autonomous Vehicles

Leslin, Jelin

Award date:
2020

Awarding institution:
Royal Institute of Technology

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/29fc0146-7649-4010-b1a6-3133467f8e34

IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2020

Hardware Acceleration in the
Context of Motion Control for
Autonomous Vehicles

JELIN LESLIN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Hardware Acceleration in the
Context of Motion Control for
Autonomous Systems

JELIN LESLIN

Master’s Programme, Embedded Systems, 120 credits
Date: November 16, 2020
Supervisor: Masoumeh (Azin) Ebrahimi
Examiner: Johnny Öberg
Industry Supervisor: Markhusson Christoffer &

Harikrishnan Girishkasthuri
School of Electrical Engineering and Computer Science
Host company: Volvo Trucks
Swedish title: Hårdvaruacceleration i samband med rörelsekontroll
för autonoma system

Hardware Acceleration in the Context of Motion Control for
Autonomous Systems / Hårdvaruacceleration i samband med
rörelsekontroll för autonoma system

© 2020 Jelin Leslin

| i

Abstract
State estimation filters are computationally intensive blocks used to calculate
uncertain/unknown state values from noisy/not available sensor inputs in
any autonomous systems. The inputs to the actuators depend on these
filter’s output and thus the scheduling of filter has to be at very small time
intervals. The aim of this thesis is to investigate the possibility of using
hardware accelerators to perform this computation. To make a comparative
study, 3 filters that predicts 4, 8 and 16 state information was developed and
implemented in Arm real time and application purpose CPU, NVIDIAQuadro
and Turing GPU, and Xilinx FPGA programmable logic. The execution,
memory transfer time, and the total developement time to realise the logic
in CPU, GPU and FPGA is discussed. The CUDA developement environment
was used for the GPU implementation and Vivado HLS with SDSoc environ-
ment was used for the FPGA implementation. The thesis concludes that
a hardware accelerator is needed if the filter estimates 16 or more state
information even if the processor is entirely dedicated for the computation of
filter logic. Otherwise, for a 4 and 8 state filter the processor shows similar
performance as an accelerator. However, in a real time environment the
processor is the brain of the system, so it has to give instructions to many
other functions parallelly. In such an environment, the instruction and data
caches of the processor will be disturbed and there will be a fluctuation in the
execution time of the filter for every iteration. For this, the best and worst case
processor timings are calculated and discussed.

Keywords: Hardware acceleration, Computation offloading, State estimation
filter, Autonomous systems, FPGA, GPU.

| iii

Sammanfattning
Tillståndsberäkningsfilter är beräkningsintensiva block som används för att
beräkna osäkra / okända tillståndsvärden från bullriga / ej tillgängliga sensorin-
gångar i autonoma system. Ingångarna till manöverdonen beror på filterens
utgång och därför måste schemaläggningen av filtret ske med mycket små
tidsintervall. Syftet med denna avhandling är att undersöka möjligheten att
använda hårdvaruacceleratorer för att utföra denna beräkning. För att göra en
jämförande studie utvecklades och implementerades 3 filter som förutsäger
information om 4, 8 och 16 tillstånd i realtid med applikationsändamålen
CPU, NVIDIA Quadro och Turing GPU, och Xilinx FPGA programmerbar
logik. Exekvering, minnesöverföringstid och den totala utvecklingstiden för att
förverkliga logiken i båda hårdvarorna diskuteras. CUDAs utvecklingsmiljö
användes för GPU-implementeringen och Vivado HLS med SDSoc-miljö
använ-des för FPGA-implementering. Avhandlingen drar slutsatsen att en
hårdvaru-accelerator behövs om filtret uppskattar information om mer än 16
tillstånd även om processorn är helt dedikerad för beräkning av filterlogik. För
4 och 8 tillståndsfilter, visar processorn liknande prestanda som en accelerator.
Men i realtid är processorn hjärnan i systemet; så den måste ge instruktioner
till många andra funktioner parallellt. I en sådan miljö kommer processorns
instruktioner och datacacher att störas och det kommer att bli en fluktuation i
exekveringstiden för filtret för varje iteration. För detta beräknas och diskuteras
de bästa och värsta fallstiderna.

Nyckelord:Hårdvaruacceleration, beräkningsavlastning, tillståndsskattnings-
filter, autonoma system, FPGA, GPU.

iv | Acknowledgments

Acknowledgments
This thesis work was carried out in Volvo AB, Gothenburg. I would like
to thank my industrial supervisors Christoffer Markhusson and Harikrishnan
Girishkasthuri for the daily discussions, guidance and support throughout the
project. My supervisor Dr. Masoumeh (Azin) Ebrahimi and examiner Dr.
Johnny Öberg who helped me frame the research question and made sure it is
moving in correct direction. I am also grateful to the team at Volvo for all the
support related to data, software and hardware access.

Stockholm, November 2020
Jelin Leslin

Contents

1 Introduction 1
1.1 Motivation and Importance 1
1.2 Problem statement . 2
1.3 Goal . 3
1.4 Purpose . 3
1.5 Delimitations . 4
1.6 Thesis outline . 4

2 Background study 5
2.1 Autonomous systems . 5
2.2 Vehicle motion management 6
2.3 State estimation filter . 7
2.4 Hardware acceleration . 13
2.5 Related study . 14

3 Hardware Platforms 16
3.1 Processor and FPGA . 16

3.1.1 Quad core Arm cortex-A53 processor 19
3.1.2 Dual core Arm cortex-R5 processor 19
3.1.3 Xilinx Programmable logic 20

3.2 GPU . 22
3.2.1 NVIDIA DRIVE PX2 24
3.2.2 NVIDIA Quadro . 24

4 Implementation and Results 26
4.1 MATLAB . 26

4.1.1 Filter design and MATLAB profiling 26
4.1.2 GPU computing toolbox 27

4.2 Processor programming . 28
4.2.1 APU Profiling . 30

v

vi | Contents

4.2.2 RPU Profiling . 32
4.3 CUDA Programming . 33

4.3.1 Matrix operation parallelization 34
4.3.2 Memory copy minimization 35
4.3.3 cuBLAS and cuSOLVER investigation 36
4.3.4 Discrete and unified memory investigation 36
4.3.5 Profiling results from NVIDA nprof 38

4.4 FPGA Programming . 40
4.4.1 IP Kernel . 41
4.4.2 External interface and data transfer 46
4.4.3 Synthesis results . 47

4.5 Execution time results . 49

5 Conclusion and future work 51
5.1 Future work . 53

References 54

List of Figures

1.1 Abstract diagram for sensor control 2

2.1 Autonomous Systems . 6
2.2 Vehicle motion control . 7
2.3 Input and output interface . 9
2.4 Flow chart of State estimation filter 10
2.5 Computations in state estimation filter 12

3.1 Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit [1] 17
3.2 Simplified SOC architecture 17
3.3 Decision tree for application porting 18
3.4 Application Processing Unit 19
3.5 Real Time Processing Unit 20
3.6 GPU Architecture . 22
3.7 Pascal vs Turing memory and cache difference 25

4.1 A-53 Best and worst case execution time 32
4.2 CPU-GPU memory transfer 36
4.3 Memory transfer latency for Unified vs Discrete memory model 38
4.4 Quadro T1000 profiling results 39
4.5 Drive Px2 profiling results 40
4.6 Loop pipelining . 42
4.7 Loop unrolling . 44
4.8 Graph showing the percentage of resource utilization in the

programmable logic . 46
4.9 External interface with IP . 47
4.10 Power analysis report for designed four state filter IP from

Vivado power estimator [2] 48
4.11 Power analysis report for designed eight state filter IP from

Vivado power estimator [2] 49

vii

viii | LIST OF FIGURES

4.12 Power analysis report for designed 16 state filter IP from
Vivado power estimator [2] 49

4.13 Benchmarking . 50

List of Tables

3.1 Resources available for PL in ZCU102 21
3.2 AXI configuration provided by SDSoC to communicate APU

with PL . 22
3.3 Specifications of the Graphics Processing Unit (GPU)s used . 25

4.1 Computation time in GPU 39
4.2 Total hardware latency before kernel optimisation - after kernel

optimisation at 100 MHz . 44
4.3 Total hardware resource utilisation before kernel optimisation

- after kernel optimisation at 100 Mhz 45
4.4 Data transfer cycles to and from FPGA 47
4.5 Table showing design timing details for the three filter IPs . . . 48

ix

Listings

List of acronyms and abbreviations
ACP Accelerator Coherency Port

API Application Programming Interface

APU Application Processing Unit

AXI Advanced eXtensible Interface

CUDA Compute Unified Device Architecture

DDR Double Data Rate

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HLS High level Synthesis

IP Intellectual Property

LUT Look Up Table

MPI Message Passing Interface

MPSoC Multi-Processor System-on-Chip

OpenCL Open Computing Language

PCI Peripheral Component Interconnect

x

List of acronyms and abbreviations | xi

PL Programmable Logic

PS Processing System

RPU Real time Processing Unit

RTL Register-transfer level

SDSoC Software Defined System on Chip

SLAM Simultaneous Localisation and Mapping

SM Streaming multiprocessor

SOC System on Chip

TCM Tightly Coupled Memory

VMM Vehicle Motion Management

Chapter 1

Introduction

This chapter gives an overall view of the research domain the thesis focuses
on and an active problem within the domain that has been addressed. The
motivation to choose this topic, problem definition, the engineering approach
to solve the problem and the end goals during the initial stage of the project
along with the report outline is discussed here.

1.1 Motivation and Importance
Present-day vehicles are equipped with accurate digital sensors and camera
devices for making driving easy. Recent developments in machine learning
and its footprint in almost all industry is something no one can disagree.
Integrating these features can improve the fuel consumption, safety, and
potentially break the co2 curve of transport industry. According to [3],
an autonomous vehicle is defined as a vehicle that can interpret and adapt
to their surrounding through a combination of sensor tools and artificial
intelligence to solve certain predetermined tasks. Recent studies fromHarvard
Business School has showed that the autonomous vehicle market share is
predicted to be as high as 87.2% in 2045 [4]. Foreseeing all the advantages,
trucking companies have started investing in the research and development
of autonomous trucks. Companies are making joint ventures with chip
manufacturers and hardware suppliers, to make hardwares and application-
specific Application Programming Interfaces (APIs) that can efficiently run
their computationally intensive algorithms.

Inside an autonomous vehicle, a vehicle automation module plans the vehicle
motion and decides where the vehicle should go. A vehicle control module

1

2 | Introduction

controls the vehicle actuators like breaks, steering, and powertrain, to make
the vehicle go as requested. A key to control the vehicle is to know the
states of the vehicle like the current speed, acceleration, and position. The
automation module uses sensors like cameras, radars, and GPS to create a
model of the vehicle environment and the vehicle itself. The control module
uses wheel speed sensors and Inertial Measurement Units (IMUs) to estimate
the motion of the vehicle. To realize the estimation, a state estimation filter
is used. The filter is basically controlling the driving dynamics of the vehicle
and is computationally intensive.

RADAR Camera GPSLIDAR

Decision

Vehicle automation module

Vehicle control module

Breaking chassisSteeringPowertrain

Sensor Sensor Sensor SensorActuator Actuator Actuator Actuator

Figure 1.1 – Abstract diagram for sensor control

1.2 Problem statement
The motion estimation block of the vehicle motion management system is
a computationally intensive part because of the presence of an information

Introduction | 3

update filter in its real-time environment that estimates the rear axle state of
the vehicle periodically. The base algorithm for this information update filter is
the Extended kalman filter [5]. Even though the flow of this filter is sequential,
thematrix operations can be parallelized and this raises the question of why not
offload this computationally intensive filter to an application-specific hardware
such as a FPGA/GPU.

• If the parallelization with matrix operations is not effective then what is
the threshold/maximum state estimation filter where hardware accelerat-
ion must be considered for better performance?

• The Effects of the caches in the memory system of a multi application
processormay drastically decrease its performance in a real-time environ-
ment. What is the best and worst-case processor execution time of the
filter when caches are involved ? This is very important if the control
algorithm is categorized for safety and time-critical applications.

1.3 Goal
The goal of this work is to develop a 4, 8 and 16 state estimation filter, offload
the computations from the processor to a FPGA or a GPU, then compare the
performance of three versions of the filter in these two accelerators and make
a study on when acceleration will be necessary by analysing the best and worst
case performance of the software running on the processor, with and without
accelerator, using the following engineering flow.

• Program the Processor in C.

• Program the GPU with Compute Unified Device Architecture (CUDA)
Application Programming Interface (API)s using the same C code in
processor.

• Program the FPGA using Vivado high level synthesis in Software
Defined System on Chip (SDSoC) environment using the same C code
in processor.

1.4 Purpose
State estimation filter is the computationally intensive unit inmotion estimation
algorithm that controls the vehicle motion in an autonomous truck. The filter

4 | Introduction

is a Kalman filter. Similar works on kalman filter have been implemented
before, but they deal with higher dimension matrices to predict large number
of states, where a high speedup between accelerator and processor is obvious.
This thesis will deal with small matrix filters. Automotive, robotic, and space
industries who are working with autonomous/self-driving machines will have
insights from this project if they are using a smaller dimension state estimation
filter in their model to estimate unknown values from the available sensor
inputs that give control inputs to their actuators.

1.5 Delimitations
The scope of this thesis is only to identify possible hardware acceleration
options for the state estimation filter in the motion control block by experimen-
ting different matrix sizes. It is outside the scope of this thesis to look for
any options in other blocks in the vehicle motion management model. The
hardware version of the algorithms implemented in this project could be made
more efficient by saving more resources in the programmable logic of the
System on Chip (SOC) if the logics were implemented by a hand written
Register-transfer level (RTL) code. But the scope of the thesis was to benefit
Volvo and Volvo was not concerned about the resource utilization but only
the execution time, so High level synthesis tools were used to code the Field
Programmable Gate Array (FPGA).

1.6 Thesis outline
This thesis is divided into four main parts. Chapter 2, is a description
of the background of the Kalman filter and its importance with previous
implementations. Chapter 3 explains the hardware and software programming
platforms used to implement the algorithm. Chapter 4 describes the engineering
flow of how the algorithm was implemented in the hardware and the optimi-
sation strategies employed to speed up the execution timewith results. Chapter
5 is the conclusion with a summary and discussion of which hardware should
be used under what circumstances along with available future work options
from this project.

Chapter 2

Background study

This chapter will serve as a frame of reference for the study. It reviews
primarily literature regarding vehicle motion management and its role in
autonomous trucks. The role of the state estimation filter inside the vehicle
motion management block and its mathematical derivation is also discussed
here. Finally, a note on the evolution of hardware acceleration and its need
here is presented.

2.1 Autonomous systems
An autonomous system is designed to operate without human intervention.
For autonomous trucks, the job is to go from source to destination all by itself.
This involves four abstract level algorithms that does the decision as a human
would do. The perception algorithms act as the ears and nose of a truck, this
involves working with inputs from lidar, radar, and other sensors that analyze
the surrounding environment of the truck using image and signal processing
techniques. Once the environment is known, the truck has to locate its position,
Localization algorithms perform the job of finding the ego-position relative to
a reference frame in an environment [6]. This step is needed to integrate the
truck with the navigation system. The localization algorithms are usually run
in parallel with mapping algorithms to check and update its position and are
referred to as Simultaneous Localisation and Mapping (SLAM).

5

6 | Background study

Figure 2.1 – Autonomous Systems

Once the environment and positioning are known, a path planning algorithm
is employed to navigate the truck to its desired destination without hitting any
obstacles. Robotic path planning algorithms like rapidly exploring random
trees and graph search logics are generally used for this part. The last part is
the motion control block which makes sure the truck is following the planned
path by providing inputs to the actuators. Basically, the motion control block
drives the truck by estimating/knowing its current state and gives feedback to
other algorithms about how efficient the actuators can be used in any given
instant. Even a minute error here can lead to an accident and all these four
algorithms operate together in a synchronized manner and update at regular
time intervals.

2.2 Vehicle motion management
The Vehicle Motion Management (VMM) function performs the motion
control function. It makes sure the vehicle can support the speed and direction
as demanded by the previously set values and this requires communication
with many subsystems in the vehicle on the run. In most autonomous driving
architectures the VMM function is separated from the main architecture and
is designed to compute a set of high level requests from the main architecture.
By doing this, the main function will be relieved from the responsibility of
having inherent and detailed knowledge of the actuators and vehicle dynamics
sensors. Another reason for doing this is the possibility to isolate algorithms
with different requirements on system safety levels. An abstract block diagram
of the VMM model developed for simulation and testing by Volvo is shown
in figure 2.2. The tasks in the primary control unit calculate the force and

Background study | 7

coordinate the actuators. The motion estimation estimates the motion of the
truck by estimating the different velocity and acceleration of the truck using
a state estimation filter. The capability unit estimates the vehicle capability
and aggregation level. The vehicle diagnostics unit monitors and controls the
health of the vehicle. Even though the scheduling budget for the entire VMM
function is 10 ms, a safety deadline of 7 ms is marked as a limit for this block.
The state estimation filter is full of matrix operations, which is why this filter
was chosen for hardware acceleration.

Primary control

Vehicle diagnostics

Capability

Vehicle state estimationInputs from
sensors

Inputs to
actuators

Vehicle Motion Management

Figure 2.2 – Vehicle motion control

In the Vehicle motion MATLAB model, the state estimation filter estimate
longitudinal velocity, rate of change of longitudinal velocity, yaw rate and yaw
acceleration, in a four state vector output. The system and noise matrices are
aligned in different dimensions to give a four vector output. But in future,
eight or 16 states would be considered for more precise state estimation with
more parameters.

2.3 State estimation filter
The VMM algorithm is scheduled to happen every 10 ms i.e., every 10 ms new
sets of inputs are given to actuators of the truck. Exact state information of the
truck like velocity, position, and angle at any instant is needed to compute the
control inputs to its actuators at that instant. The actuators will work based on
the control inputs and move the vehicle through its planned path safely. This
unknown/uncertain state information is calculated using the state estimation

8 | Background study

filter. For this purpose, three classes of state estimation filters are generally
used in almost all applications.

• Kalman filter [5] -Performs well in linear systems.

• Extended Kalman filter [7]-Performs good in mildly non-linear systems
but may diverge in highly nonlinear systems.

• Particle filter [8] -Performs good in highly non-linear systems but may
suffer in high-dimensional space environments.

The choice of selecting which filter to use also depends on the system model
and the application of the filter’s output vectors. For example, the filter can
be used in sensor fusion to correct the uncertain values. In a perception
environment, the Lidar may perform with very good accuracy, but it will fail
badly in bad weather. A Radar may not be as accurate as Lidar, but it performs
well in bad weather. So these two uncertain values can be fed to the filter
to predict the correctness of inputs. In this project, the Extended Kalman
filter is not used to predict the correctness of inputs but rather to predict an
unknown value from known sensor inputs. This decision was made by Volvo
and the project started with a 4 state estimation filter that is used to estimate the
longitudinal velocity of the truck using the Extended Kalman filter algorithm.

Figure 2.3 is a simplified version of the filter in VMM MATLAB model.
The vehicle parameters are vectors of different sizes. Some parameters
like wheelbase, distance from imu to rear axle are constant and parameters
like the angle of wheel to road are dynamic depending on the speed of
the vehicle. Noise covariance vectors include process and noise covariance
vectors, sensor inputs are the parameters with which state estimation has to
be done (for this project 13 sensor inputs were used), the initialization vector
has the initialization information when the filter resets itself and calculates the
information vectors on the run without depending on previous output. This
happens when the logic is true for the if-clause branching in figure 2.4. The
output of the filter is a vector predicting the unknown state values.

Background study | 9

Information
update filterPre process

block
Post process

block

L_Vehicle parameters

Noise covariance
 vectors

Sensor inputs

Initialization
 vector

Step time

State vectors

Figure 2.3 – Input and output interface

The filter equations are formed from time domain equations, based onNewton’s
second law :

xt = F.xk +G.vt
where, xt is the position and vt is the velocity at different time instant, F

is system matrix (representation of the linear system in a matrix format), Q is
the noise matrix (a matrix to represent that the system state changes over time)
and G is system state relation to the noise matrix. The relational matrix G is
derived from F and Q. Variables F, G, and Q are constant matrices so their time
indices are dropped. This equation is used to calculate the state of the vehicle.
Equations (2.1)-(2.7) are used to compute the N state prediction vector (the
predicted states of the vehicle at a given instant and N represents the number
of states being predicted), (2.8) and (2.9) gives the measurement update (N
state information vector and (N*N) information matrix to the next iteration of
filter). The variable "i" represents intermediate (N*1) information vectors at
different time intervals that are used to predict the final state vector and the
variable "I" represents intermediate (N*N) information matrices at different
time intervals that are used to predict the final co-variance matrix "P". The
subscript letter k refers to the sampling instant for each variable. For an N
state estimation filter,
The (N*1) information vector is calculated from (N*N) system matrix and
previously sampled information vector:

ih = F−1.ik|k (2.1)

10 | Background study

(N*N) informationmatrix is calculated from (N*N) systemmatrix and previously
sampled information matrix:

Ih = F−T .Ik|k.F
−1 (2.2)

Start

Reset

Prediction of 4/8/16
state information

Calculates the 4/8/16
vector information

Reads the previous
updated 4/8/16 vector

information

Updation of 4/8/16
vector information

10 ms
scheduling

				"		This	state	information	is	used	to	calculate	the	vehicle
	longitudinal	velocity	and	rate	of	change	of	longitudinal	

velocity	at	the	centre	of	real	axle	"

True False

Figure 2.4 – Flow chart of State estimation filter

(N*N) intermediate matrix X for predicting new information vector andmatrix
in current sampling interval:

X = Ih.G.(GT .Ih.G.+Q−1)−1.GT (2.3)

Predict the (N*1) information vector for current sampling interval:

i(k+1)|k = ih −X.ih (2.4)

Predict the (N*N) information matrix for current sampling interval:

Ik+1|k = (F.I−1(k|k).F
T +G.Q.GT)−1 = Ih −XIh (2.5)

Calculate the estimated (N*N) covariance matrix:

Background study | 11

Pk+1|k = I−1k+1|k (2.6)

Calculate the state output in the form of a (N*1) vector:

xk+1|k = Pk+1|k.ik+1|k (2.7)

Compute/update the actual (N*1) information vector from the measured
sensor values:

ik+1|k+1 = ik+1|k +HT
k .R(y − h.(xk+1|k) +Hk.xk+1|k) (2.8)

Compute/update the actual (N*N) information matrix from the measured
sensor values:

Ik+1|k+1 = Ik+1|k +HT
k .R.Hk (2.9)

The nine equations here are mapped to the blocks of computation in figure
2.5. For a four state estimation, the measurement and update consumes
more percentage of the total execution time, because the inverse operation
calculations are fast and the multiplications in update sections are 13 dimens-
ional (13 sensor inputs) computations. But for 8 and 16 dimensional estimation
the inverse operations in the prediction itself take more time.

Matrix formation: Matrices F and Q are formed based on the sampling
time interval T, linear matrix H is formed from the measured sensor input
values. When the size of matrix F and Q are changed, G is altered accordingly.
From here on, all the matrix operation dimensions change correspondingly
and the number of predicted states increases/decreases. In the measurement
and update part, matrix H has to be changed according to the format (13*N)
where N is the number of states predicted. The matrix formats used when
programming a 4 state filter is shown below.

F =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

Q =

T/2 0

0 0

0 T/2

0 T

12 | Background study

Formation
of (N/2*N/2)

system
matrix

Formation
of (N*N)
system
matrix

Computation of
(N/2*N/2) noise

covariance matrix by a
matrix inverse

operation

Inverse if
(N*N) system

matrix

Calculation of (N*N) intermediate matrix X which is the
base for predicting new information matrix (ik) and

information vector (IK).

8 sequential matrix multiplication and 1 (N/2*N/2) matrix
inverse.

calculate information matrix
(ik)

1 matrix multiplication and 2
sequential subtractions

calculate information
vector (Ik)

3 sequential matrix
multiplications and a

subtraction

calculate covariance
matrix

1 (N*N) matrix inverse

calculate the N state
output in the form of a
(N*1) vector output.

Measurement update from sensor (no
matrix computations but one bit operations)
Extract front and rear axle track width from

vehicle parameters.

Compute the (N*13) linear matrix from
extracted values

Compute the non linear parts and update the
linear matrix

Update the new
information matrix

(ik) for next iteration.

2 sequential
multiplication and 2

additions

Update the new
information vector

(Ik) for next
iteration.

3 sequential
multiplication 1
addition and 2
subtractions

Prediction Measurement and update

1

2

3

8

4

6

7

5

9

Figure 2.5 – Computations in state estimation filter

Background study | 13

H =

0 1 0 0

0 0 0 0

0 0 1 sensorinput

1 0 0 1

0 0 0 0

0 0 0 0

1 0 sensorinput 1

1 0 sensorinput 1

1 0 sensorinput 0

1 0 sensorinput 0

0 0 1 0

1 0 0 1

1 0 0 1

2.4 Hardware acceleration
The end of Moore’s law has brought a new era in the field of computer
architectures with the evolution of application-specific hardware accelerators.
All hardware providers are focusing on developing hardwares in an integrated
development environment, with abstract level APIs to provide a balance of
energy-efficient, high performance, safety-critical, and fast time to market.
The three components that are used for computations are FPGA, GPU, and
CPU.

Offloading parts of an application to pre-programmed hardware for increasing
the efficiency of the overall application is referred to as hardware-software co-
design. In FPGAs and reconfigurable devices the logic is put in the form of
hardware structures, whereas in GPUs the logic is cross-compiled to execute in
different GPUs in a different engineering flow. The parts that are partitioned to
execute with FPGA/GPU are the hardware parts and the other computations
are the software parts. Technically, the GPU is also a software part that is
executing single instruction multiple data on the run but in this context, it
is used for accelerating the overall performance. In most cases, hardware
acceleration is used to free the CPU from computational load. A SOC will
have all the hardwares embedded in it. When the chip is powered on, all the
hardwares become active. Efficient load balancing is possible only when the
performance of all functions in the overall application is studied with their
best and worst-case execution time and this balance is very important when

14 | Background study

running an autonomous system that involves many different tasks in parallel.
The outcome of this thesis will help the task scheduler to understand when
offloading a state estimation filter will be efficient.

2.5 Related study
Many researchers have worked with hardware implementation of state esti-
mation filters. In [9], the authors have implemented a similar Extended kalman
filter for state estimation in mobile robots. The inputs to the filter directly
comes from image sensors and hence the filter has to do more preprocessing.
The preprocessing is put in a pipeline stage before the prediction step of the
filter. The engineering flow begins with implementing a C code for the overall
design and checking the quality of design in a high end intel PC processor,
then porting the algorithm to an Intel SOC with FPGA (Nios-II Fast Core
50 MHz) and finally offload only the matrix operations to the programmable
logic in the SOC. They concluded the research by saying a speedup of 4x is
achieved with FPGA acceleration for a 27 feature estimation filter. But, the
application requirements here is different from our need. They are running
the filter continuously for 5000 iterations and they deal directly with image
pixels which is not the use case for Vehicle motion control.

Reference [10] proposes a Parallel Architecture of the filter for Radar Tracking
Applications is evaluated for implementation in FPGA, GPU and multicore
CPU. A speed up of 39x is achieved with FPGA and 31x is achieved with
GPU. A similar filter for multi target tracking is used in [11] where the authors
designed a hardware architecture with just 6 multipliers, 2 dividers, 9 adders, 5
subtracters, one control unit, some registers and multiplexers for pipeline and
control but they have a precision loss of 8.9% for one iteration and the size of
matrices are not discussed in the paper, instead it focuses on the area and power
to achieve a reasonable accuracy. The whole design has a gate count of 33,424,
total LUT count of 3653 and 2210 number of occupied slices. However,
the filters designed for radars are employed in tracking systems to measure
the angular co-ordinates and most of them involve high dimensional matrix
operations. For an autonomous truck its a different level of non-linearity and
less matrix operations.

Fonseca et al. in [12] has designed a filter with similar equations like this
project and focus on estimation of velocity. The authors have implemented
the functionality in FPGA in a LABVIEW environment and they conclude by

Background study | 15

saying FPGA can give 3x speedup but they fail when the dimensions go high
because of resource scarcity.

A 7398x speedup of Kalman filter with 18 matrix operations is shown in GPU
as compared to a single thread CPU by Huang et al in [13] . But this filter has
4500 state dimensions and is used for a different application. A speedup of this
factor is possible only when matrix operations are in high dimensions because
all the operations of a 4500 state estimation will be 4500*4500 matrix/vector
operations. In this project, the matrix dimensions are small and task level
parallelism is not possible so speedup is no close to the theoretically possible
but there is going to be a GPU in the autonomous truck/system and if it is idle,
the question is how efficient it is to offload the filter to GPU so the CPU can
do any other job parallelly is the question.

In [14] Lin et al. proposes a different approach to speed up a smaller dimension
kalman filter in GPU by parallelizing different iterations of the entire filter
itself and giving a maximum likelihood output. For example, the filter should
not operate for 9 iterations but collect the sensor observations in an allocated
GPUmemory and at the 10th iteration, the filter is operated on all 10 combined
sensor observations, thereby parallelizing the entire filter itself. In Volvo’s
model, a set of sensor observations comes to the filter every 10 ms, and the
filter is expected to give output to the next stage before it receives its next
set input. If this [14] method is implemented then the entire model has to be
altered so it is not considered. However, this is an efficient proposal to speed up
smaller dimension filters and it should be considered if there is a scope to alter
the scheduling algorithms with a trade-off in the quality of state estimation.

Chapter 3

Hardware Platforms

This chapter includes a detailed account of the hardwares (previously presented
as an abstract in Section 2) that has been used for testing and running the
application explained in Section 4. The content to expect from this section
can be broadly split up into the following;

1. A brief description of the SOC with ARM embedded processors,
Programmable logic and GPU architectures.

2. A note on the APIs, software tools and board support packages used to
program these hardwares.

3.1 Processor and FPGA
The processor and FPGA used for this project are embedded in a single
board designed by Xilinx as shown in figure 3.1 specific for automotive
applications which includes image processing, motion control, advance driver
assistance system (ADAS), and edge computing. A simplified version of the
Multi-Processor System-on-Chip (MPSoC) is shown in figure 3.2 architecture.
The MPSoC has a quad-core application processor, two real-time processors,
FPGA programmable logics and an arm mali GPU. It is capable of running
multiple applications parallelly. For example, motion control could be run
in the real-time processor when an IOT edge computation could be done in
the four A 53 processors. Basically the application processor is the high-
performance processor. The real-time processor can be used for safety-critical
and timing specific applications.

16

Hardware Platforms | 17

Figure 3.1 – Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit [1]

Figure 3.2 – Simplified SOC architecture

The board comes with an integrated development environment toolbox called
SDSoC which eases the Intellectual Property (IP) integration work with the
processor in anHW/SWco-design. This is done by hardware-specific pragmas
that generate the Advanced eXtensible Interface (AXI) bus interfaces between
processors and programmable logic. The SDSoC is a natural fit for design
teams consisting of software and hardware engineers because it enables to
take advantage of programmable logic device in a software development

18 |Hardware Platforms

environment [15]. Xilinx has advised the users to port their application on
a decision tree basis as shown in figure 3.3 to the hardware on the board.

Figure 3.3 – Decision tree for application porting

For this project the HW/SW co-design of the filter itself was not investigated
because the research question was about offloading the filter computations
from the CPU. So, the full filter computation was ported to both processor
and FPGA separately without any partition and the timing performance was
analysed.

The SOC operates in 4 modes of power [16]: LPD-Low Power Domain when
Application Processing Unit (APU) and GPU is powered off and the SOC is
operated with RPU and its on chip memory; FPD-Full Power Domain when all
hardwares in the SOC are running along with external peripherals including
display port and Peripheral Component Interconnect (PCI) express; PLPD-
Programmable Logic Power Domain when only the PL with its interfaces
are operating along with on chip memory and serial interfaces; BPD-Battery
Power Domain when the SOC is powered by an external battery to keep
the real time clock with external crystal oscilloscope running with a battery
backed block RAM to maintain time. This is used when the device is off. In
this project, all the modes were tried and there is no impact/change on the
observed results because the hardwares are operating in its full potential if it
is switched on. However, there was a difference in the number of cycles for
data communication when different configurations of AXI bus communication
were used. The different configurations are shown in table 3.2 in section 3.1.3.

Hardware Platforms | 19

3.1.1 Quad core Arm cortex-A53 processor
The APU acts as the general-purpose CPU in the MPSoC architecture. It has
four ARM A-53 cores each operating at 1.5 GHz. Each core has its own 32
KB L1 instruction and data caches. A common L2 cache of 1 MB is available
for all 4 cores. Access to L2 cache is provided by a Snoop control unit inside
the APU. The cores are developed for running embedded applications with
NEON and floating-point computing units which brings acceleration benefits
for DSP and media applications.

A dedicated memory management unit is also assigned for each core to
translate virtual memory to physical memory addresses. To enable HW/SW
co-design, the APU has an Accelerator Coherency Port (ACP) that brings in
data from the programmable logic not just faster but also coherently.

Figure 3.4 – Application Processing Unit

3.1.2 Dual core Arm cortex-R5 processor
The Real time Processing Unit (RPU) has two ARM R-5 Processors cores,
each operating at 600 MHz. This is not designed for running intensive
algorithms instead safety-critical applications are scheduled to run here because
it has a dedicated 128KB Tightly CoupledMemory (TCM) for each processor.
This TCM stores instructions and data from the Double Data Rate (DDR)
DRAM one time for any dedicated application and makes sure the processor

20 |Hardware Platforms

does not starve from cache problems. In addition to TCM, each core also has
a 32KB instruction and data cache like the processors in the APU. A dedicated
on-chip memory of size 256 KB is available in the RPU to perform memory
access without the DDR DRAM which the APU will generally be accessing.
The interrupt controllers are inside the RPU but in the APU they are placed
outside. Also, the peripheral ports interfacing each core in the RPU is designed
to give a low latency output compared to the APU. The SDSoC environment
did not provide a direct connection between the RPU and the programmable
logic block but it is possible by to write a driver in linux to interface with one
of the RPU’s connection peripherals. An abstract diagram of the RPU block
inside the SOC is shown in figure 3.5

Figure 3.5 – Real Time Processing Unit

3.1.3 Xilinx Programmable logic
The programmable logic is also called fabric accelerator which is designed
for optimal performance/watt, with faster transistor ON/OFF switching speeds
and lower power leakage when operating at lower power. In addition to the
hardware itself, the dedicated compiler Vivado has functionalities to adjust
clock skew during the hardware design. It also has extra pipeline analysis to
find the sequential loops and parallelize them automatically [17].

The Programmable Logic (PL) block in SOC has storage and signal processing
blocks as shown in table 3.1 to perform computations and mathe-matical
operations, Programmable Input-Output ports to communicate with external
interfaces ranging from simple one pin logic to high-speed ethernet serial
protocols. A communication can be established between PL and Processing
System (PS) or directly between PL and any other external interface. This
helps us to create many IPs of different functionality in the PL block if we
manage to design resource efficient IPs. Another advantage of having so much

Hardware Platforms | 21

resources is to have many IPs of same functionality but operating at different
clock frequency. This architecture can be used for energy efficient overall
application.

Resource Available
Flip Flops 548120
LUTs 274080
DSPs 2520
BRAM 912

Table 3.1 – Resources available for PL in ZCU102

Flip-flops and look up tables are basic building blocks called configurable
logic blocks (CLB) of an FPGA. Flip-flops act as memory storage elements
/registers and Look up tables (LUTs) act as truth tables to produce the correct
output for a pre defined input sets. In most Xilinx devices, block RAM is
added to the FPGA fabric as dual port RAM modules to store more data for
computations because the flip-flops can only store one bit at a time. In addition
to this, DSP blocks are integrated with the PL block because the floating point
operations are slow with flip-flops and LUTs. The use of DSP can accelerate
the signal processing applications which use floating point operations.

The PL and PS communicate with the ARM AXI bus interface [1]. The ACP
in figure 3.4 provides a connection from the L2 cache in the APU to the PL
and if there is a L2 cache miss, then the memory transfer latency will increase.
This is why it is advisable to store the memory in on chip PL memory. The
AXI busses are configured based on the power mode, data size and cache
coherency requirements and this is discussed in [1], chapter 15. Table 3.2.
shows different AXI configurations that are described in detail in the technical
reference manual [1]; all versions were used for this thesis and is important
when considering energy utilisation of the SOC. The PL cannot be connected
to the RPU in the SDSoC environment, but can be configured by writing a
seperate driver API everytime the slave initiates a read/write request in the
bus.

22 |Hardware Platforms

Bus name Description Master Slave
S_AXI_HPC0_FPD
S_AXI_HPC1_FPD High Performance cache-Coherent Ports PL PS
S_AXI_HP0_FPD
S_AXI_HP1_FPD High Performance Ports for the FPD PL PS

S_AXI_LPD LPD AXI port PL PS
M_AXI_HPM0_LPD High performance Master port for LPD PS PL
M_AXI_HPM0_FPD
M_AXI_HPM1_FPD High performance Master port for FPD PS PL

Table 3.2 – AXI configuration provided by SDSoC to communicate APU with
PL

3.2 GPU

Per	application	based	global	memory	(L2	cache)

SM SM SM SM

Memory Memory Memory

.....................

Memory
Cache

Hierarchy
Cache

Hierarchy

Core Core

Shared/Global	memory	(Last	level	cache)

GPUCPU

Streaming Multiprocessor

Core

Core

Core

Core

Core

Core

Core

Core

........

Figure 3.6 – GPU Architecture

Hardware Platforms | 23

The use of GPU for computation is a major breakthrough in research and
product development for both academia and industry. It provides a platform for
massive parallelization of a single instruction by enabling multiple processors
to run in parallel, thereby reducing the execution time of an application.
Unlike FPGA a big advantage of GPU is the reuse of hardware for different
applications. The functionality can be developed in different host environments
and the cross-compiled instructions are stored in on-chip memory and are used
only when needed. Whereas, in an FPGA the hardware resources have to be
dedicated to a particular application. A simple architecture diagram of a CPU-
GPU embedded architecture is shown in figure 3.6. A GPU generally shares
memory with the CPU and depends on the CPU for control instructions. Once
it receives the instruction from the CPU it splits the instruction and data to
streaming multiprocessor blocks. Each streaming multiprocessor block has a
number of dedicated cores and a common memory for all its cores to perform
the same instruction on different data. These streaming multiprocessors
are referred to as CUDA cores in NVIDIA’s proprietary parallel computing
program model CUDA [18].
.
A CUDA is basically an API that NVIDIA has developed to program its
GPU. This API provides software engineers with a friendly design approach
to program the GPU. A programmer does not have to worry about the internal
GPU architectures of Streaming multiprocessor (SM) and the number of cores
in each SM but can program with an understanding of blocks and threads [19].
These blocks and threads are allocated to cores by warp scheduling which is
taken care of by the CUDAAPI. The cores execute the threads in a group of 32.
This 32, is a constant number for CUDA programming and is called the warp
size. This is why the allocation of threads by a programmer should always
be in multiples of 32. This unique feature in the CUDA programming model
helps make CUDA programs portable. The same code can be ported to any
NVIDIA GPU device and the CUDA API ports the logic in the best possible
way according to the device architecture. CUDA itself is not a programming
language but is written mostly in C/C++ along with the CUDA API functions
and the file is saved with a .cu extension.

Initially, the assignment was planned to be conducted with the GPU in Drive
Px2. The Drive Px2 hardware is a SOC environment which has ARM CPUs
and pascal GPUs, everything embedded and is currently being used by the
Research and Development team at Volvo. But Nvidia recently announced
a similar machine, NVIDIA DRIVE AGX Pegasus which has a Turing

24 |Hardware Platforms

GPU architecture with faster memories and processing capabilities than the
Pascal architecture. Turing is an advanced version of the Volta architecture
- A detailed study with micro benchmarking on the performance, memory
management and latency cycles with CUDA applications is described in [20]
for all NVIDIA GPU architectures and this motivation was convincing to port
the filter in a Turing GPU and compare its performance with Pascal. For this,
a Quadro T1000 (Turing) GPU was considered in this project.

3.2.1 NVIDIA DRIVE PX2
The NVIDIADrive Px2 is an autonomous driving specific AI supercomputing
machine which has two Tegra architecture SOCs with 12 ARM-57 CPU
cores and two discrete pascal GPUs. The device comes with a driveworks
SDK which is capable of running all perception, localization, planning and
visualization algorithms that an autonomous vehicle needs to operate. It has all
the interfaces from HDMI cables to CAN bus ports that a car/truck will need
to connect. It is used to develop and train applications, validate the trained
algorithms in the car/truck in a real world environment, and prototype it in
comparison with the engine control unit. It does not have a programmable
logic but the discrete pascal GPU is used as a hardware accelerator for
computationally intensive blocks of the application. Both the GPUs have a
dedicated memory subsystem available. NVIDIA has eased the work of users
by integrating the Linux and AUTOSAR environments in this supercomputer
in addition to the CUDA libraries that other NVIDIA devices have.

For this project, the scope is to find/compare if offloading the filter to the
hardware accelerator (discrete Pascal GPU) would be beneficial if the VMM
algorithm is chosen to run inDrive PX2. So, All features of this supercomputer
were not explored. Instead the filter was made to run with CUDA in the
discrete GPU with the help of Linux in the on-chip Drive Px2.

3.2.2 NVIDIA Quadro
NVIDIA DRIVE AGX Pegasus is an advanced version of drive Px2, which
may be considered for development in Volvo soon. This supercomputer is
using the Turing architecture GPU. So, the Quadro T1000 GPU that is based
on Turing architecture is used in this project to study the performance between
Pascal and Turing architectures.

Hardware Platforms | 25

The Turning is an advanced version of Pascal with independent scheduling and
instruction cache memory. Tensor cores and Ray tracing cores are introduced
in the Turing architecture for deep learning applications but they are not used
exclusively in this project. Each core inside the SM block in figure 3.6 has its
own register and L0 instruction cache memory, whereas in Pascal, the cores
inside an SM block have to share a common instruction cache. Figure 3.7
shows the architectural difference in memory and cache system between the
Pascal and the Turing GPUs. Keeping the shared memory coupled with L1
caches allows the applications to decide if it can store the instruction in shared
memory or if it should go one level down in the cache [21] during the run-time.
Table 3.3 shows the difference in speed and memory between GPUs used.

Load and store unit

L1 cache L1 cacheShared memory

L2 cache

Pascal architecture

Load and store unit Load and store unit

L1 cache integrated
with shared memory

L1 cache integrated
with shared memory

L2 cache

Turing architecture

Figure 3.7 – Pascal vs Turing memory and cache difference

Specification Drive PX2 Quadro T 1000
Core clock rate 1290000 KHz 172500 KHz

memory clock rate 3003000 KHz 400100 KHz
Total SMs 9 14

Shared memory per SM 98304 bytes 65536 bytes

Table 3.3 – Specifications of the GPUs used

Chapter 4

Implementation and Results

This chapter contains the methods used to explore the hypothesis and address
the problems (previously presented as an abstract in section 1.2). The content
to expect from this section can be broadly split up into the following;

1. MATLAB version of filter and its performance in intel i7 processor
running at 2.8G Ghz.

2. The use of MATLAB parallel computing toolbox to access GPU with a
matlab script.

3. Implementation of the filter in two different embedded processors.

4. Implementation of the filter in two different GPUswith CUDAprogramming
model.

5. Implementation of the filter in FPGA using Vivado High level synthesis.

4.1 MATLAB

4.1.1 Filter design and MATLAB profiling
The filter was designed by Volvo Autonomous system using the Extended
Kalman filter algorithm as discussed in section 2.3 and this is a four state filter.
For performance analysis and research purpose, an eight state and 16 state filter
was developed with the same algorithm and design flow as shown in figure 2.5.
MATLAB has an interactive profiler that gives a full picture of the execution
times of each line in the script. A test script was written for all three filters
and the profiler was executed after blocking all other activities of the CPU.

26

Implementation and Results | 27

The model now has input datas coming from the test script and the lines of
code being profiled by the profiler. The Profiling report showed the inverse
function used is the bottleneck in this filter. There are four occurrences of the
inverse function and they are easy to implement in MATLAB because of the
inbuilt library functions. The MATLAB profiling of the filter however is not
taken into consideration when benchmarking the execution time because this
script is a high-level script running on an intel i7 processor which is operating
at 3GHz frequency. This frequency results in high power consumption, which
is not feasible in any embedded processor and is out of scope for this project
too. MATLAB is a scientific computing tool used to model algorithms in the
initial stages of design. So, the profiler information is used to find bottlenecks
of the algorithm and as reference timing numbers.

4.1.2 GPU computing toolbox
To port the filter functionality to a GPU, MATLAB has a parallel computing
toolbox that enables multi-core processing without Message Passing Interface
(MPI) programming and has dedicated libraries with which the GPU in
the computer can be accessed without CUDA/C. This enables high-level
programmers to perform computationally intensive parts of their Matlab script
in a GPUmaking use of massive parallelization threads without spending time
in writing in a low-level language like C/C++, with only slight modifications
in their code. However, this is not very accurate in terms of timing as
implementing functionality to the GPU with CUDA because the CUDA
supported library APIs have much faster data transfers. But, as a hardware
engineer working with hardware accelerators there are a lot of options to
explore. This toolbox helps in better understanding and validating the hypothesis
about the range of parallelization a logic can explore before jumping into
implementing application-specific hardwares. The toolbox also helps engineers
to explore parallelism not only inside an algorithm/block but also possible
task-level parallelism in their Simulink models. The toolbox is supported by
an interactive parallel code profiler to profile individual operations.

Complex MATLAB functions like inverse and pseudoinverse are widely
used in big data processing, batch processing cloud computing, and robotics
algorithms. These functions are implemented in MATLAB using inbuilt
library codes. They are very important and challenging for any engineer who is
aiming to speed up the execution time of his/her algorithm in hardware. In this
thesis, the toolbox was used for initial profiling of the information filter update

28 | Implementation and Results

algorithm as the first step of GPU profiling. Similar to malloc in a processor
or a Cuda malloc in a GPU the Matlab parallel computing toolbox has a
function gpuArray() which creates memory space in the GPU and transfers
data from the processor to the GPU. Once the data is passed, the computations
happen in the GPU. The bottleneck in any GPU application is the efficient
use of data transfer bandwidth and it is the same here. Transferring one data
using the gpuArray function for a filter like application is not as efficient
as transferring 1000 data in a single gpuArray call for a convolution neural
network application. This will make the communication time larger than the
computation time. But, the computation time can be analyzed separately with
an inbuilt interactive profiler and compared with the processor computation.

There is not much task-level parallelism in the filter because it is very
sequential and so parallelization can be achieved in operations only. For-loops
are the area where parallelism can be explored and this is evident from the
profiling results. As mentioned earlier, the communication time is large than
the computation time and the performance with MATLAB script itself is not
very efficient as implemented in CUDA because the CUDA libraries make
faster data transfers and the .m script is a high-level programming script that
has many layers before it communicates with the hardware and they are only
iterpreted, not compiled.

4.2 Processor programming
The filter functionality is tested in the MATLAB toolboxes for 100 different
input sets from the CAN bus where the outputs for the corresponding input
sets were recorded. The next step is to program the processors, i.e., the APU
and RPU as discussed in section 3.1.1. For this, three C codes were written
in MATLAB for the three filters and was debugged using the Visual studio
compiler on a host PC. This C code is used as base for porting the program
to APU, RPU, FPGA and GPU. When many software teams are involved in
developing a product, it is better to benchmark the results separately in all
possible hardwares. So, in the final stage of the project it will be easy to
schedule the functions in the best possible way by giving priority to safety
critical functions. Otherwise, the processing units may potentially interfere
[22] with each other and not perform as expected. For this reason, the
functionality of the filter functionality was implemented in both the APU and
RPU and both timings were considered.

Implementation and Results | 29

As shown in figure 2.5, the filter is filled with matrix arithmetic operations
which can be implemented by simple for loops, but the inverse operation
becomes tricky. There are two N*N and two (N/2,N/2) inverse matrix
operations for one iteration of an N state filter. In MATLAB, the inverse
matrix operations are performed by an inbuilt library function. To solve the
matrix inverse operation four methods were used: 1. Inversion by analytic
formula; 2. Inversion by Cholesky decomposition matrix; 3. Inversion by
bubble sorting; and 4. Inversion by the Gauss-Jordan method. However, only
two were considered for profiling because those had the best case execution
times, and were suitable for implementation on the selected hardware. The
bubble sort algorithm was not easy to port in FPGA, because the High
level Synthesis (HLS) tool did not support recursive functions so this was
eliminated from the implementation. Comparing Gauss-Jordan and Cholesky
decomposition, the former was better in terms of fewer number of cycles for
computation in all the 100 test inputs. The implementations in a related study
[13] used Cholesky decomposition because it uses LU decomposition, which
is parallelizable, but the results proved different for this project, because of
the small matrix sizes. The Cholesky method might perform better for higher
dimensional matrix inverse operations. On an average, the A-53 took 10
microseconds to execute an eight matrix inverse operation in Gauss-Jordan
method, but 17 microseconds for the Cholesky decomposition. Algorithm
wise, Cholesky is more parallelizable than Gauss-Jordan but the best case
functional code in CPU is the base for programming the accelerators so Gauss-
Jordan implementation was chosen.

MATLAB uses a persistent variable to store the previous information of the
filter and this is very important because if the filter reset is not enabled
then the previous information vectors will be used for the prediction block
operations. In C, this was implemented by using declaring a global variable
for the information vectors which gets updated in every iteration of the filter.

• By formula:
This analytic method presented in [23] was used to calculate the matrix
inversion of the small matrix. A 2*2 matrix can be solved using
this formula but as the size increases, the number of elements for
computation increases and it becomes difficult to solve the inverse
operation by just swapping the matrix position. There are two 2*2
matrix inverse operations in a four state filter and they are solved by

30 | Implementation and Results

using the formula.

M−1 =

[
a b

b z

]−1
=

1

az − b2

[
z −b

−b a

]
.

Even to solve a 4*4 matrix inverse, the above formula was used but
by calculating the determinant and adjoint of the M matrix instead
of swapping the numbers. So, for the four state filter, the inverse
was implemented without much complexity and with less number of
instruction cycles.

• By Gauss-Jordan method:

Data: N*N square matrix
initialization;
read the N*N matrix;
Initialize an N*N unit matrix;
Form the augmented matrix from two N*N matrices ;
Apply Gauss elimination on the augmented matrix ;
while Gauss elimination do

Switch any 2 rows;
Multiply each element of row by a integer;
Add 2 rows together;

end
Result: Inverse of N*N square matrix

Algorithm 1: Gaus -Jordan matrix inverse using Gauss elimination

TheGauss elimination [24] is performed by doing the three points in the while-
loop till the other half of the augmented matrix becomes a unit matrix. For
a larger dimensional state estimation, 80% of the total latency is with the
prediction task. This is because of four inverse matrix computations that occur
in the prediction task, and they cannot be paralallized at task level because they
are sequential but the inverse operation itself can be parallelized.

4.2.1 APU Profiling
The processor can be profiled in both Linux and a standalone environment, a
detailed description of the core itself is in the technical manual of the cortex-
a53 mpcore processor [25]. As shown in figure 3.4, the APU has four uniform
A-53 cores with separate level 1 cache and shared level 2 cache system. The

Implementation and Results | 31

application was profiled in standalone environment. The level 1 cache has
separate instruction and data memory space with a cache line length of 64
bytes each. The level 1 instruction cache is 2 way set associative, the (level
1) data cache is four way set associative. This is because it is an application
specific processor where data will be in more demand than instructions. The
best case execution time would be when the filter has a dedicated core with the
cache subsystem all for itself, which is practically not possible when running
the entire autonomous system software model.

These four cores are the brain of the entire system. It has to give instructions,
manage data and take decisions for the overall system. For analysing a worst
case scenario, ARM allows the programmer to disable the cache memory
and run the application in a bare-metal environment. The cache pipeline
architecture is different for different ARM processors. For A-53, disabling
the instruction/data cache will disable its access to both the levels of cache i.e,
the processor has to go all the way down to the RAM memory for fetching
instructions every time if instruction cache is disabled, likewise for data with
data cache disabled. The C code is compiled for a standalone bare metal
platform with a clock counter header file to profile the execution time of the
filter. The executable binary file is copied in an SD card, then the application
is executed through a terminal window of SDSoC. The caches were disabled
by using a Xilinx defined header file "xil_cache.h" that has built in codes to
eliminate the cache use when the following functions are called:

• Xil_ICacheDisable()- Disables the entire Instruction cache ;

• Xil_DCacheDisable()- Disables the entire Data cache ;

• Xil_L1CacheDisable()- Disables the entire Level 1 cache ;

• Xil_L2CacheDisable()- Disables the entire Level 2 cache ;

All the mentioned functions were used inside the C code and the execution
time was profiled for the three filters based on the number of CPU cycles the
core runs for producing the result of one iteration. The execution time was
also profiled in a PetaLinux environment by using the "unistd.h" header file to

32 | Implementation and Results

measure the number of clock periods the core operates for one iteration. The
obtained results are shown in figure 4.1. Detailed analysis of the functionality
can be visualized in real time by connecting a UART and JTAG from the
ultrascale board to the host computer with SDSoC software kit by using printf
statements wherever a visualisation is needed.

Figure 4.1 – A-53 Best and worst case execution time

The numbers in figure 4.1 give another interesting insight saying that data
caches are more important for this project than instruction cache because
the data dependencies during the run time of the filter is higher than the
instruction dependency. A difference of 20 times is seen between the best and
worst case scenarios. The numbers in real time depends on other applications
running parallelly on the same core. For example, if a deep learning neural
network algorithm is running in parallel with this filter then it will cause many
data cache misses, because both involve operating huge amount of datas for
the same instructions, thereby rewriting the intermediate datas that the filter
would need and the core has to go down to the memory for that data, thereby
conceding more latency cycles.

4.2.2 RPU Profiling
The RPU is operating at a lower frequency than the APU but is designed to
meet real time deadlines. It has faster pipeline stages and memory transfer
cycles to external interfaces. As shown in figure 3.5, it has two cores with

Implementation and Results | 33

separate instruction and data caches. In addition to this, both cores have a
dedicated TCM memory to store data and instructions near to the processor
itself. Even-though they are influenced by other applications, the data and
instructions are readily available in the TCM. There is no best or worst case
execution times here. When compared to the APU profiling in figure 4.1, the
execution time is 68 microseconds for the four state filter, 296 for the eight
state and 1885 for the 16 state filter. This is six times worse than the best
case of the APU but it is six times better than the worst case of the APU. The
timings of the RPU is constant. So, the integration engineer can confidently
schedule the filter application by knowing its predictable execution time in a
time critical embedded system environment.

4.3 CUDA Programming
Initially GPUs were used to increase the graphical output of a system by
providing assistance to the CPU. Their integrated circuits provided a fixed
rendering pipeline giving access to do step by step tasks [26]. As they
became more competent, programmable stages were added allowing them
to execute programs in itself. The programs are executed in the form of
kernels. CUDA and Open Computing Language (OpenCL) are the two main
toolkits used to program a GPU. OpenCL is a wider and more general purpose
platform whereas CUDA is NVIDIA specific and more efficient in terms of
developement, performance and execution. A short note on the terms used for
CUDA programming from the book [27] is discussed below.

• Kernel: It is similar to a function in C/C++. The kernel function call
invokes the GPU to perform the computation. The CUDA program will
run in the CPU if the function is defined without the kernel keyword. In
this project 37 kernels are used for the four state filter. For the other two
filters, 39 kernels were launched.

• Grid: A grid refers to a collection of blocks, it is purely for a programmers
understanding. It can be in 1, 2 or 3D. For this project, all the kernel
launches were of 2D grid size.

• Block: A block is a group of threads of uniform size, this is also for a
programmer’s point of view. The group is a multiple of the warp size as
mentioned in section 3.2. Each block will be executed in a single SM
during CUDA runtime, and each thread in a block can be accessed.

34 | Implementation and Results

• Thread: It is the smallest operation that can happen in a GPU. For
example, in this project, a kernel launched for 16*16 addition will have
16 threads operating parallely inside 16 cores in one cycle, inside a SM.
Sequential/parallel execution of threads happen in a block.

The details of the kernels in each filter is given in section 4.3.5.

4.3.1 Matrix operation parallelization
The filter is a sequential execution of functions but the functions are full of
matrix operations. Parallelizing the addition, multiplication, and subtraction
matrix operation is the first strategy to reduce the computation time. This is
an efficient way of programming the GPU, because when a GPU is switched
on, all the cores become active and consume power even if it does not
get any instruction to execute. This is why core utilization is important in
GPU programming and maximum core utilization can be achieved by doing
maximum number of floating point computations in one cycle. For a CPU to
compute the Z in (1), it will require 16 floating-point addition operation cycles,
but a GPU will perform the 16 operations in one cycle if the programmer
launches 32 threads in one block (threads in the block are multiples of 32-
warp size). For larger matrix dimensions the speedup will be even more.

Z =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

+

B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

Z =

A11 +B11 A12 +B12 A13 +B13 A14 +B14

A21 +B21 A22 +B22 A23 +B23 A24 +B24

A31 +B31 A32 +B32 A33 +B33 A34 +B34

A41 +B41 A42 +B42 A43 +B43 A44 +B44

 ..(1)

From the device query, the maximum amount of threads that can be
allocated to one SM is 2048 for both GPUs. This means, only 2048 threads

Implementation and Results | 35

will be executed at a given time no matter how many threads we allocate.
A parallelisation to explore here is to overlap the kernel execution and data
transfer. This is possible by assigning more threads to the SM and make it
wait. At a given moment only 2048 threads can execute in one SM, so we
can use this time to transfer data from the CPU for other computations in
parallel. The thread-block balancing should also be noted when performing
this parallelisation. Launching more threads in one block will make the SM
wait and is a bad idea so the strategy is to launch small kernels in many blocks
so many SMs will be running parallely.

But, in this project the maximum threads that can be made to run in parallel
would be 16 in a 16*16multiplication. The dimensions are simply too small to
fill the GPU threads so the full potential of the GPU is not used in this project.
Parallelisation strategies for very largematrices and the idea of launchingmore
threads to keep the cores busy is explained by Y.Sun and Y.Tong in [28].

4.3.2 Memory copy minimization
The overall performance of the GPU not only depends on the computation
but also on efficient memory transfers. Especially in these type of projects
where the GPU is considered. Not because it will be faster than the CPU but
because by offloading the work, the CPU can take another load. Inefficient
memory transfers can cause a disturbance in the CPU’s cache and might result
in additional problems.

For this, the data dependency between CPU and GPU should be analyzed. In
this project, the best possible execution is to get all instructions and data from
the CPU in bulk for one iteration and perform the computation giving back
only the final state output to the CPU. But this is not the case in all applications
where data is huge, and instructions depends on the output of intermediate
results. Figure 4.2 shows the execution timeline of the filter where memory
is collected only once from the host. During the execution in GPU the CPU
memory is left undisturbed. After the execution of all kernels the output data
is given back to the CPU.

36 | Implementation and Results

Figure 4.2 – CPU-GPU memory transfer

4.3.3 cuBLAS and cuSOLVER investigation
All hardware vendors have high-level APIs to speed up the basic linear
arithmetic and matrix operations. cuBLAS [29] is one such feature from
CUDA to run dense linear algebra computations. cuSOLVER is a similar
library file used to speed up factorization operations. NVIDIA advises the
programmers to use these APIs not only for speed up but also to identify
and solve the bugs in later stages of design because it gives a higher layer
abstraction for code readability and re-usability.

The cuBLAS library is called during a kernel launch, but before that some
memory is allocated for it. Thismemory allocated in the host should be aligned
and non-pageable for maximum performance [30]. The functions (kernels) are
performed after the memory allocation and the cuBLAS handle is destroyed
after its execution. The inverse and 16 matrix multiplication kernels were
launchedwith cuBLAS. However, the results were very poor (5 timesworse) as
compared to normal CUDA implementation. When analyzed, it was noted that
the cuBLAS and cuSOLVER APIs were performing good but the time taken
to initiate this routine is huge. This is not a one time sacrifice in performance
like the device setup time which happens only once when a device is initiated
but the routine is destroyed after each execution so the initiation has to happen
during the next execution of the filter operation. Also, all the scientific works
on these libraries only talk about matrix sizes of 1000 and above. So, it was
concluded that the use of high-level acceleration APIs will not really help in
this kind of project dealing with small matrices.

4.3.4 Discrete and unified memory investigation
There are two types of memory allocation in the CUDA programming model.
One where the CPU and GPU share the same memory space, the other where

Implementation and Results | 37

the GPU has its own discrete RAM memory.

• In a discrete GPU, the GPU accesses RAM using via the PCIe bus. The
processor here is just another device that is connected to the memory
controller. The PCIe device acts as a bus master, taking over that bus
and talking to the memory controller directly like the processor does.
The discrete GPU also has its own RAM and this RAM is accessible by
the processor by acting as a PCIe bus master.

• In an integratedGPU, theGPU can accessmemory just like the processor.
The GPU and processor share a common bus that connects them with
the memory controller.

CudaMalloc is theAPI that assignsmemory in theGPU’s discretememory and
Cuda-MallocManaged is the API which assigns memory to a memory shared
with the CPU. This shared memory version of the memory management was
introduced in the CUDA 6 and is called the unified memory architecture. To
avoid confusion, the CPU and GPU communicate by synchronization calls
when accessing memories in the shared region. In this project, one of the
main reasons to use two GPUs is to talk about this parameter. The discrete
GPU in NVIDIA DRIVE Px2 cannot access the shared memory because it is
located far away from the processor and is communicated via the PCIe bus,
but in Quadro T1000 the program runs in a laptop which can utilize the unified
memory architecture. From an application perspective, the Tegra SOCs, where
the GPU is close to the CPU, will be benefited from this unified memory
architecture. Drive Px2 itself has a Tegra SOC, but the integrated GPU in
Tegra has only two SMs which is used for multimedia applications. Figure 4.3
shows the timing in Quadro T1000 for memory transfers when the filter was
implemented using both memory models where a timing difference by a factor
three is obtained.

38 | Implementation and Results

Figure 4.3 – Memory transfer latency for Unified vs Discrete memory model

4.3.5 Profiling results from NVIDA nprof
The results of both GPUs were obtained by nvprof profiling, where memory
transfer and computation time in the GPU is separated from CPU API calls.
For GPU profiling the CPU API calls were eliminated and only the GPU
activitywas profiled. The profiler also gives indepth analysis of kernels, blocks
and threads that happens during the computing stage. It shows minute timing
intervals of each kernel execution and the number of times a kernel is called.
For analysis, the kernel concurrency, i.e., the percentage of time when two or
more kernels are being executed, andmemory copy throughput, i.e., to check if
the memory copies are fully utilising the bandwidth of the GPU, was examined
and it was noticed that both were very small and limited by the functionality
of the filter because of its sequential operations and lesser data requirement.

Task wise split up of computation time : Totally, 37 kernels were launched
for the four state filter and 39 kernels for the eight and 16 state filters, where 1
kernel that was used to calculate the variable-Ih was called 4 times at different
instances but others only once. Inverse functions were also involved in the
computation. Table 4.1 shows the split up of computation time in the two
GPUs in microseconds. The computation time in the discrete and unified
memory access mode is the same in Quadro T1000, and this is because the
computation time of each kernel is independent of the memory access pattern.
It only depends on the clock speed of the operating core.

Implementation and Results | 39

Tasks 4 state filter 8 state filter 16 state filter
Quadro-PX2 Quadro-PX2 Quadro-PX2

Prediction 47-74 56-83 65-90
Measurement and update 15-17 17-25 21-30

Total 62-91 73-109 86-120

Table 4.1 – Computation time in GPU

Figures 4.4 and 4.5 show the overall activity time of the two GPUs profiled.
The numbers inside the colored box indicate the time in microseconds. The
timing numbers are low in Quadro T1000 compared to the Drive Px2 because
of the cache architecture and faster operating CUDA cores as discussed above.
The speedup in the GPU is less than the best-case processor execution time
for four and eight state filter but is only 1.9x for best case 16 state filter even
though the matrix operations are executed in fewer cycles than the CPU. This
is because of smaller kernel launches that are not able to overlap memory
transfer and kernel execution. The inability to launch the kernels parallelly
is a limitation of the filter, because the operations are sequential, and, each
kernel launch will have an overhead if the GPU instruction queue has nothing
left to do, this adds more execution time.

Figure 4.4 – Quadro T1000 profiling results

40 | Implementation and Results

Figure 4.5 – Drive Px2 profiling results

An interesting insight to note from figures 4.4 and 4.5 is the percentage of
GPU activity. In Drive Px2 almost 50% of the total GPU activity is spent
on memory transfers whereas in Quadro, it is 20% for the same case. The
percentage difference is not because of clock cycles but because of the discrete
memory architecture in Drive Px2 and it will be the same in Drive AGX even
if it uses a Turing GPU because the discrete GPU will be separated from CPU
inside the SOC unlike a GPU in a Laptop.

4.4 FPGA Programming
The FPGA was programmed using the same C code used to program the
CPU and the GPU, but in a SDSoC environment that give access to the
programmable logic. The SDSoC uses the Vivado HLS library APIs to
generate RTL code thereby realising the hardware block for the C function.
Another way to easily program the FPGA is by using the MATLAB HDL
coder toolbox following the steps in [31]. The Simulink model written with
a high-level MATLAB script can be directly converted to a hardware using
this toolbox. The toolbox also has a code generation workflow to change and
validate the design so it becomes easy for the user to build the functionality in
hardware.

A drawback with this toolbox is that it does not support some important
filter functionalities like inverse, while-loops and diagonal-matrix operations.
Writing a different inverse function is a possible option but it will not be the

Implementation and Results | 41

same scale benchmarking of execution time. The optimisations in FPGA and
GPU are considered from the functionality that has best case execution time
in processors. Moreover, a fixed point converter is employed by the HDL tool
to convert the double-precision numbers to single precision before it starts
to write the RTL script, this will cause precision difference in the output.
However, to explore the toolbox, the prediction block of the four state filter
was programmed in FPGA using the MATLAB HDL coder toolbox and it
was noticed that the resource utilization of the hardware written by the HDL
coder directly from the MATLAB script was more efficient than the C-RTL.

But, for the reasons mentioned above, FPGA programming was done with the
base C code using SDSoC. Two types of hardware optimizations are done.
One is within the design of the filter IP and the other is to interface the IP with
the processor/external device.

4.4.1 IP Kernel
Optimizing the logic of the filter was easywith Pipelining and unrolling library
functions provided by the vivado HLS design suite. The real challenge was
to optimize the matrix inverse operations which actually took more time to
execute than the other filter operations combined.

Loop Pipelining: When a C/C++ loop is read by a processor instruction set
it reads and executes it sequentially. The next iteration of the loop will start
only after complete execution of the current loop. But when programming an
FPGA the next iteration can be started immediately when the data needed for
it is ready from the current loop. This way, the number of cycles to Complete
a loop can be reduced. This optimization trick is called loop level pipelining.
A simple diagram for a three iterative for-loop that does read, compute, and
write cycles at 1 cycle latency each is shown in figure 4.6. Vivado HLS also
allows the user to manually set the initiation interval. In the given example
the initiation interval is 1, i.e., after the first cycle in the current iteration of
the loop, the next iteration will begin. However, the pipelining technique is a
bottleneck where data dependency (if the data for the next iteration of the loop
is not ready) is a factor.

A false data dependency can sometimes delay the execution of pipelining.
To solve this, the Read after Write, Write after Read and Write after Write
dependency analysis in the loop can be made manually and this is explicitly

42 | Implementation and Results

mentioned to the Vivado compiler by using the dependence pragma library
function for any variable inside the loop. Loop pipelining was used in this
project wherever unrolling is not possible, i.e., wherever data dependency is an
issue. For example, update of the information vector needs 13 loop iterations
and each iteration has a loop latency of 12, so no loop can be unrolled because
the output of each loop increments the next loop. Pipelining helps to solve the
problem in 12*13=156 cycles instead of 12*13*13=2028 cycles. A problem
with using pipelining is that it might show problems during the routing stage
of the design. This is because the registers and computational unit has to be
connected within the mentioned design clock frequency. In this project, the 16
state filter showed negative slack (timing error) in many places where pipelinig
was heavily relied on when operating at 200MHz. So, the 16 state filter design
was limited to 100 MHz clock speed.

Similar to loop level pipelining, task-level pipelining can also be performed
in vivado HLS. In this project, this was not efficient because in the first
task, the prediction is very sequential, and only from its final output the next
task measurement could be started. The measurement task’s final output was
needed for the update task to execute. So, task level pipelining did not help
with this filter. Function dataflow is an option to explore task level parallelism
by bringing in all functions together. However, it did not show any positive
results because theoretically, without the input data a task could not begin.
The vivado compiler showed error when using this option.

For (int i=0;i<3:i++){
Read;

Compute;
Write; }

Read WriteComp-
uteReadComp-

ute Write Read Comp-
ute Write

9 cycles

without pipelining with pipelining

Read

Read

Read

Comp-
ute

Comp-
ute

Comp-
ute

Write

Write

Write

5 cycles

Figure 4.6 – Loop pipelining

Implementation and Results | 43

Loop unrolling: Similar to loop pipelining, loop unrolling reduces the latency
of a loop. This library function creates multiple copies of the loop body and
executes them parallelly in one iteration instead of doing multiple iterations.
Figure 4.7 shows how a for-loop that goes for three iterations of three cycles
each can be made to run in three cycles in one iteration itself. However, the
bottleneck here is usage of resources. In an unrolled loop only one multiplier
is required but in the rolled version of the loop, three multipliers are required.
It is the same with flip flops, and look up tables.

Data dependency is also a factor to be considered when using the loop
unrolling technique. Vivado HLS provides the user to define a factor when
doing loop unrolling. For a 100 iteration loop, instead of unrolling the full
loop the user can choose to unroll it by a factor of two thereby saving 50%
more resources than it would be for full unrolling but at the cost of extra
latency cycles. Also, it should be noted that sequential loop will consume
more power when performing the extra cycles and unrolling the loops may
increase glitch power. The trade off is between power, area and time when
doing this optimisation. For this project, power and area were not a concern
but the priority was execution time, so unrolling was performed for all possible
loops. Loop unrolling alone gave 24 times speed up for matrix multiplication
operations in the eight state filer design. Because, a matrix multiplication
has three loops each loop operates for eight cycles but when unrolling these
three loops the multiplication happens in one cycle. Matrix operations were
parallelized with this operation but the Gauss-Jordan inverse operation could
not be solved by this trick because it had a data dependency issue from previous
for loop.

Resource utilization : For this project, Volvo was not particular about the
usage of resources in the PL but the focus was only on decreasing the execution
time. However, using a high end SOC device with only an information update
filter in the PL is not a good choice if the IP for the filter alone occupies more
than 60% of the available resources in the PL. To solve this bottleneck Vivado
HLS allows the user to reuse the same hardware core when executing the same
function again instead of creating another instance of the same core by the
usage of allocation pragma.

44 | Implementation and Results

For (int i=0;i<3:i++){
mult[i]=a[i]*b[i]; }

9 cycles

without unrolling with unrolling

3 cycles

mult[o]=a[0]*b[0] mult[2]=a[2]*b[2]mult[1]=a[1]*b[1] mult[o]=a[0]*b[0]

mult[1]=a[1]*b[1]

mult[2]=a[2]*b[2]

Figure 4.7 – Loop unrolling

It also allows the programmer to specify which resource a particular function/
task should utilise by using the HLS resource pragma. For example, the
programmer may choose to store data in block RAM instead of Look Up
Table (LUT)s because he/she feels the LUTs are already being used by many
functions but the block RAM is not utilised. In addition to this, array
optimisation libraries were used to split an array of data to small blocks, so
they can be accessed directly based on their need for computations. Another
technique used is to merge small arrays and put it in a block RAM which has
high memory capacity. Resource reuse is also employed in this project. The
inverse matrix operation hardwares were reused because they were executed
sequentially. One problem when reusing hardwares would be timing violation
if the design has to go a long path backward to reuse the resource, but this was
not an issue for this project as the design did not show timing error for 100 and
200 MHz for four and eight state filters.

Tasks 4 state filter 8 state filter 16 state filter
Before-After Before-After Before-After

Prediction 7740-1039 53735-3350 392061-7333
Measurement and update 10911-321 21071-476 41391-681

Total 18651-1360 74752-3826 433452-8014

Table 4.2 – Total hardware latency before kernel optimisation - after kernel
optimisation at 100 MHz

Implementation and Results | 45

The total time taken for the execution of the logic in the IP is calculated by
multiplying the latency observed in table 4.2 and the estimated clock frequency
obtained from the Vivado design report. The latency cycle for the four state
filter is fixed, but the latency cyles for eight and 16 state filters might be little
less than the numbers shown here and it depends on the input. This is because,
for the inverse functions the number of iterations in each for loop will be based
on the input matrix and the maximum limit the for-loop is counted when the
latency is calculated.

• Four state filter : 1360 * 7.885 nanoseconds = 10.7 microseconds.

• Eight state filter : 3826 * 7.919 nanoseconds = 30.2 microseconds.

• 16 state filter : 8014 * 8.014 nanoseconds = 64.2 microseconds.

Resources 4 state filter 8 state filter 16 state filter
Before-After Before-After Before-After

DSP 333-603 336-628 336-1113
BRAM 44-140 58-378 62-786
LUT 41881-69526 45736-91463 48136-167455
FF 27381-98146 28682-111509 29031-218238

Table 4.3 – Total hardware resource utilisation before kernel optimisation -
after kernel optimisation at 100 Mhz

46 | Implementation and Results

Figure 4.8 – Graph showing the percentage of resource utilization in the
programmable logic

4.4.2 External interface and data transfer
On top of Vivado HLS, the SDSoC API provides library functions to integrate
the designed IP in the PL with external interfaces. Generally, in MPSoC the
data for computation comes from the processor and after computation in PL
the output goes back to the processor. This process burdens the CPU with
data mover cycles, this affects CPU scheduling. To solve this bottleneck, a
zero copy library function in the SDSoC copies the data directly from the on-
chip shared memory to the PL using AXI bus. After the computations in the
PL, the output can be sent to the processor if it needs the output every interval
or back to the shared memory so the processor can access it whenever it needs
the log data with a single read and write.

The data access pattern library function lets the programmer decide how data
should be accessed and this is based on the application. Some data are better
when accessed in block/random, some are better when accessed in a first in
first out basis like the FIR filter. In this project, data was accessed as a block
of arrays because the filter computation can start only when all data is available
at the input ports.

Implementation and Results | 47

On chip DDR
memory

IP for the filter

Processor
Read/Write

Very less
 data transfer

 time and
 no CPU

set up cycles

Figure 4.9 – External interface with IP

Data transfer to/from IP 4 state filter 8 state filter 16 state filter
Through processor 2952 4452 5489

Directly from DDR DRAM 854 1292 1800

Table 4.4 – Data transfer cycles to and from FPGA

4.4.3 Synthesis results
The IP design for three filters were verified using the Vivado IP design toolbox,
where timing and power analysis were performed.

Timing: The timing analysis tool checks all the timing paths from input to
output to detect any worst path that can cause setup and hold time violations.
Slack is the difference between the restricted and the analysed value. The total
negative slack [32] for set up time (maximum delay analysis for set up recovery
and data check), hold time (for checks related to minimum delay analysis
which includes hold, delay and data check) and pulse width pin switching
checks (minimum width of high and low pulses of a clock) is 0 for all IPs
thus the design has passed user specific timing constraints, i.e., all the signals
reach the computational units in correct time without any delay. Table 4.5
shows the positive slack for the design. This positive slack is an indication
that the design is working but can be improved, and it is better to have some
small margin positive slack instead of 0.

48 | Implementation and Results

Slack Four state filter Eight state filter 16 state filter
worst setup slack 0.477 ns 1.6 ns 0.118 ns
worst hold slack 0.010 ns 0.009 ns 0.010 ns

worst pulse width slack 1.0 ns 2.0 ns 2.0 ns

Table 4.5 – Table showing design timing details for the three filter IPs

Power: Power is a concern not only for the energy efficiency but also for
identifying thermal bottlenecks. For an IP, power analysis helps to estimate
the life of the hardware before being put to the system. A GPU and Processor
will execute different set of instructions during its lifetime but the FPGA
unit solves the same problem as the hardware is embedded in it. So, power
analysis is more important for FPGA than for the other two hardwares. The
Power analysis is performed by the Vivado power estimator through all stages
of the flow. Screen shots of the power analysis generated by Vivado post-
routing (after all logic implementation and routing has been performed) for
the three IPs is shown in figures 4.10, 4.11 and 4.12. It helps in identifying
the high power consuming resources in the hardware module. It also gives
the total power consumption, estimated power consumption on each supply
rail, estimated power breakdown between static and dynamic power, and the
device junction temperature at which the generated IP can operate [2]. For
this analysis, the airflow, room temperature were all set at the default Vivado
suggested parameter values.

Figure 4.10 – Power analysis report for designed four state filter IP fromVivado
power estimator [2]

Implementation and Results | 49

Figure 4.11 – Power analysis report for designed eight state filter IP from
Vivado power estimator [2]

Figure 4.12 – Power analysis report for designed 16 state filter IP from Vivado
power estimator [2]

4.5 Execution time results
A summary of all execution times is presented in the graph 4.13. It shows
the overall hardware activity which includes the computation and memory
transfer time. Best and worst case is presented for the application processing
unit, a real time processing unit will not have any deviation in execution time
because it operates from the tightly coupled on chip cachememory. The FPGA
IP block will also not show any deviation because it is a prebuilt hardware

50 | Implementation and Results

running on its own clock. The GPU timings here are best case timings because
only the CUDA kernel core activities are profiled, deviation might happen
based on the non-blocking runtime API calls and this is dependent on the
CPU. Even though a unified CPU-GPU memory architecture was profiled and
discussed with Quadro T1000 laptop GPU in the previous chapter, for final
benchmarking only the discrete GPU profiling is considered because the GPUs
used in automotive application does not have that support.

Figure 4.13 – Benchmarking

Chapter 5

Conclusion and future work

This thesis investigated whether it was better to offload a Kalman filter
functionality from a processor. The answer to this question depends on the
entire application and its safety criticality. This chapter discusses the scenarios
when it is better to offload, when it is not so important and when it is a must
to offload the filter based on the results obtained from this project.

When APU?
One among the four A-53 cores in the APU should be the considered to run
the filter if it executes the task in best case timings (which is better than GPU
and almost equal to FPGA for four and eight state filters) in a test environment
with all other applications running parallelly and interrupts enabled. From
this project, the conclusion is that if data caches are not disturbed then best
case execution time or near best case execution time is possible. The Smaller
the size of the filter, the less data cache is needed, the more reason to have
the filter in the APU itself. Instruction cache disturbance does not affect the
performance as bad as data cache disturbance.

When RPU?
The real-time R-5 processor inside the RPU should be considered for running
the filter, regardless of its slower performance as compared to other hardwares
if the real time safety deadline is an important aspect when scheduling the
filter. The overall deadline to run the application is 10 ms, the safety deadline
is 7 ms. If the output states predicted by the filter is important for other
proceeding blocks to operate, then a delay cannot be tolerated. If the FPGA is
running out of resources and the GPU cores are still fully occupied with the
algorithms it was designed for (computer vision/deep learning), in this case,

51

52 |Conclusion and future work

the real-time processor should be a better choice than A-53 whose worst case
execution time can cause a scheduling miss. The R-5 is made uninterrupted
during its period of execution by placing the instruction set and data to the
tightly coupled processor memory instead of using the external memory.

When FPGA?
For a four or eight state filter offloading the filter from processor to FPGA will
only relieve the processor of some work because the speedup when comparing
best case APU and FPGA is not more than 1.5 times. But for a 16 state filter the
FPGA is four times better in computation than the best case execution time of
the processor and this best case is definitely not achievable in real time. With
so many intermediate data cache access to compute the 16 states, cache misses
will increase the latency. So, a 16 state filter will be difficult to schedule in the
processor and for this, using the FPGA as accelerator is a better choice than
a GPU because it is independent of the processor whereas the GPU has to
depend on the processor for its data and instruction set every iteration which
will need some memory space in the processor that will cause a delay in the
overall performance.

When GPU?
The GPU could be considered as an accelerator even if it is slower than an
FPGA if resource utilization in the PL-region of the SOC used is a bottleneck.
For example, when implementing the 16 state filter in the FPGA the best case
computation time was achieved by utilizing 61% of the lookup tables in the
programmable logic. Then the programmable logic cannot be used for any
other acceleration. Whereas, a GPU implementation is based on instruction
set i.e. the GPU resources can be used by any other application for the times
when the filter is not being scheduled, which is not possible in an FPGAwhose
resources are designed specifically for the filter alone. Another argument
to use the GPU would be the development time of the filter. Porting the
application to the GPU is easy and fast for a software programmer who coded
the application in C/C++. But for porting the logic to an FPGA it requires low
level hardware understanding for a efficient/optimised implementation even
with high level synthesis tools. It is a necessity if the design faces timing
violations.

Conclusion and future work | 53

5.1 Future work
• Finding the performance bottleneck by porting the entire vehicle motion
algorithm.

• Use Multithreading to utilize all four A-53 cores in the MPSoc. The L2
cache is a sharedmemory in theAPU and is designed for faster inter-core
communication in the SOC with a snoop controller. The performance
of the processor should increase, if data is available in the cache. This
experiment should be performed after porting the entire algorithm to the
SOC.

• To Write a resource efficient RTL script in VHDL/Verilog for the filter
design and check how the resource utilisation in the programmable logic
could be improved.

• In a rare case, if a singular matrix is operated for inverse function,
that iteration of filter would produce uncertain output. To solve this,
the MATLAB pseudoinverse function could be implemented instead of
the inverse function. This pseudoinverse function is a sparse matrix
computation and can be implemented with Xilinx Vitis environment
that has a library inbuilt called SVD (Singular Vector Decomposition)
computation. The implementation of the pseudoinversematrix operation
itself is a boiling research topic in the FPGA world, even the MATLAB
HDL coder toolbox does not have an option for porting the function to
FPGA.

References

[1] “Technical reference manual,” Xilinx Inc., url:https://www.xilinx.com/
support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf.

[2] “Xilinx power estimator user guide,” Xilinx Inc., url:https://www.xilinx.
com/support/documentation/sw_manuals/xilinx11/ug440.pdf.

[3] A. Taeihagh and H. S. M. Lim, “Governing autonomous vehicles:
emerging responses for safety, liability, privacy, cybersecurity, and
industry risks,” Transport Reviews, vol. 39, no. 1, pp. 103–128, 2019.

[4] O. B. O. B. Mehdi Nourinejad, “The economics of autonomous
vehicles,” Rotman Management Magazine.

[5] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[6] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Internet
of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[7] M. Hoshiya and E. Saito, “Structural identification by extended kalman
filter,” Journal of engineering mechanics, vol. 110, no. 12, pp. 1757–
1770, 1984.

[8] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. A. Wan, “The
unscented particle filter,” in Advances in neural information processing
systems, 2001, pp. 584–590.

[9] V. Bonato, R. Peron, D. F. Wolf, J. A. M. de Holanda, E. Marques,
and J. M. P. Cardoso, “An fpga implementation for a kalman filter with

54

url:https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
url:https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
url:https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug440.pdf
url:https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/ug440.pdf

REFERENCES | 55

application to mobile robotics,” in 2007 International Symposium on
Industrial Embedded Systems, 2007, pp. 148–155.

[10] A. Jarrah, A.-K. Al-Tamimi, and T. Albashir, “Optimized parallel
implementation of extended kalman filter using fpga,” Journal
of Circuits, Systems and Computers, p. 1850009, 06 2017. doi:
10.1142/S0218126618500093

[11] Z. Merhi, M. Ghantous, M. Elgamel, M. Bayoumi, and A. El-Desouki,
“A fully-pipelined parallel architecture for kalman tracking filter,” in
2006 International Workshop on Computer Architecture for Machine
Perception and Sensing, 2006. doi: 10.1109/CAMP.2007.4350359 pp.
81–86.

[12] J. Fonseca, R. Oliveira, J. Abreu, E. Ferreira, and M. Machado, “Kalman
filter embedded in fpga to improve tracking performance in ballistic
rockets,” 04 2013. doi: 10.1109/UKSim.2013.149. ISBN 978-1-4673-
6421-8 pp. 606–610.

[13] M. Huang, S. Wei, B. Huang, and Y. Chang, “Accelerating the kalman
filter on a gpu,” in 2011 IEEE 17th International Conference on Parallel
and Distributed Systems, 2011, pp. 1016–1020.

[14] Z. Lin, D. Moore, and S. Russell, “Gpu-based parallel kalman filter.”

[15] C. Sekar and Hemasunder, “Tutorial t7: Designing with xilinx sdsoc,”
in 2017 30th International Conference on VLSI Design and 2017 16th
International Conference on Embedded Systems (VLSID), 2017, pp. xl–
xli.

[16] “Managing power and performance with the zynq ultrascale+ mpsoc,”
Xilinx Inc., url:https://www.xilinx.com/support/documentation/white_
papers/wp482-zu-pwr-perf.pdf,.

[17] V. Boppana, S. Ahmad, I. Ganusov, V. Kathail, V. Rajagopalan, and
R. Wittig, “Ultrascale+ mpsoc and fpga families,” in 2015 IEEE Hot
Chips 27 Symposium (HCS), 2015, pp. 1–37.

[18] N. Corporation, “Nvidia cuda compute unified device architecture
programming guide,” 2007.

[19] J. Nickolls, “Gpu parallel computing architecture and cuda programming
model,” in 2007 IEEE Hot Chips 19 Symposium (HCS). IEEE, 2007,
pp. 1–12.

url:https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf
url:https://www.xilinx.com/support/documentation/white_papers/wp482-zu-pwr-perf.pdf

56 |REFERENCES

[20] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza, “Dissecting
the nvidia turing t4 gpu via microbenchmarking,” arXiv preprint
arXiv:1903.07486, 2019.

[21] Y. Arafa, A.-H. A. Badawy, G. Chennupati, N. Santhi, and S. Eidenbenz,
“Low overhead instruction latency characterization for nvidia gpgpus,” in
2019 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2019, pp. 1–8.

[22] “Isolation methods in zynq ultrascale+ mpsocs,” Xilinx Inc.,
url:https://www.xilinx.com/support/documentation/application_notes/
xapp1320-isolation-methods.pdf.

[23] C. Ingemarsson and O. Gustafsson, “On fixed-point implementation of
symmetric matrix inversion,” in 2015 European Conference on Circuit
Theory and Design (ECCTD). IEEE, 2015, pp. 1–4.

[24] G. Shapiro, “Gauss elimination for singular matrices,” Mathematics of
Computation, vol. 17, no. 84, pp. 441–445, 1963.

[25] A. Holdings, “Arm cortex-a53 mpcore processor, technical reference
manual, 2014.”

[26] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, “Ptask:
operating system abstractions to manage gpus as compute devices,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, 2011, pp. 233–248.

[27] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[28] Y. Sun and Y. Tong, “Cuda based fast implementation of very large
matrix computation,” in 2010 International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2010, pp. 487–
491.

[29] C. Nvidia, “Cublas library programming guide,” NVIDIA Corporation.
edit, vol. 1, 2007.

[30] P. Estival and L. Giraud, “Performance and accuracy of the matrix
multiplication routines : Cublas on nvidia tesla versus mkl and atlas on
intel nehalem,” 03 2010.

url: https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
url: https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf

REFERENCES | 57

[31] H. Pant, H. Bourai, G. S. Rana, and S. Yadav, “Conversion ofmatlab code
in vhdl using hdl coder & implementation of code on fpga,” HCTL Open
International Journal of Technology Innovations and Research (IJTIR),
vol. 14, pp. 1–9, 2015.

[32] “Design analysis and closure techniques,” Xilinx Inc., url:https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/
ug906-vivado-design-analysis.pdf.

url:https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug906-vivado-design-analysis.pdf
url:https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug906-vivado-design-analysis.pdf
url:https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug906-vivado-design-analysis.pdf

	Introduction
	Motivation and Importance
	Problem statement
	Goal
	Purpose
	Delimitations
	Thesis outline

	Background study
	Autonomous systems
	Vehicle motion management
	State estimation filter
	Hardware acceleration
	Related study

	Hardware Platforms
	Processor and FPGA
	Quad core Arm cortex-A53 processor
	Dual core Arm cortex-R5 processor
	Xilinx Programmable logic

	GPU
	NVIDIA DRIVE PX2
	NVIDIA Quadro

	Implementation and Results
	MATLAB
	Filter design and MATLAB profiling
	GPU computing toolbox

	Processor programming
	APU Profiling
	RPU Profiling

	CUDA Programming
	Matrix operation parallelization
	Memory copy minimization
	cuBLAS and cuSOLVER investigation
	Discrete and unified memory investigation
	Profiling results from NVIDA nprof

	FPGA Programming
	IP Kernel
	External interface and data transfer
	Synthesis results

	Execution time results

	Conclusion and future work
	Future work

	References

