EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Applications of MathWorks Tools in Model-Based Systems Engineering

Chatterjee, Joyeeta

Award date:
2020

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c3cbc3bd-6799-4317-806a-51d5c44edb79

EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Department of Mathematics & Computer Science
Model Driven Software Engineering W&I Section
Software Engineering & Technology Research Group

ICTY

Applications of MathWorks
Tools in Model-Based Systems
Engineering

Masters Thesis

Joyeeta Chatterjee
(1307398)
Masters in Embedded Systems
Cyber-Physical Systems Track

Supervisors:
Dr. ir. Ton Barosan, Assistant Professor, Mathematics & Computer
Science, TU Eindhoven
Dr. Julien Schmaltz, Principal Consultant, ICT Netherlands B.V.

Eindhoven, November 2020

Abstract

In Industry 4.0, the concept of designing Cyber-Physical Systems (CPSs) is a rapidly
emerging trend where computer-based algorithms monitor and control physical processes
of the machinery. The increasing complexity in CPS poses a challenge for engineers who
develop such systems. To solve this growing challenge, the aspects of Systems Engineering
(SE) such as the Model-Based Systems Engineering (MBSE) approach, system architecture
development and system analysis techniques can be used for technical decision-making
involved in development of CPS. MathWorks offers a wide range of tools for modelling,
analysis and simulation such as MATLAB, Simulink, Stateflow, and SimEvents. These
tools have a great potential for designing complex CPSs. In this project, a research was
conducted to employ a suitable combination of MathWorks tools in a CPS developed using
MBSE methodology.

With the help of MathWorks tools, the supervisory-control of Fischertechnik Factory Sim-
ulation 24V was modelled, simulated and analyzed. To improve the system performance,
bottlenecks in the original setup were identified and two types of modifications were intro-
duced to the model. The first modification dealt with implementing parallel execution of
independent actions in the model components. The second modification was focused on
changing the system architecture by addition of another component in the model. In the
modified model, the total execution time was reduced to half and the system throughput
was doubled as compared to the original model. Lastly, the factory model developed with
MathWorks tools was connected to the Digital Twin of Fischertechnik Factory Simulation
24V using MQTT messaging protocol. As a result, a live-link was established between the
Simulink model and the Digital Twin model.

The combination of MathWorks tools - Simulink, Stateflow, SimEvents and MATLAB,
considered in this project proved to be beneficial in improving the existing design of the
supervisory-control of the Fischertechnik Factory Simulation 24V. Moreover, the estab-
lishment of live-link between Simulink model and Digital Twin paved a new pathway for
conducting system validation of the Simulink implementations.

ii Methodologies and Applications of MathWorks Tools in MBSE

Contents

Contents iii
List of Figures vi
List of Tables xi
1 Introduction 1
1.1 Problem context. 2

1.2 Project context and research questions 3
1.3 System context 5
1.4 Thesisoutline L)

2 Background and related work 6
2.1 Overview of MBSE tools and MathWorks tools 6
2.1.1 Integration of MBSE tools with MathWorks Tools 7

2.1.2 MathWorks tools for CPS and MBSE 9

2.2 MBSE testing environment at ICT 12
2.3 Digital Twin technology, 16
2.3.1 Digital Twin application at ICT 17

Methodologies and Applications of MathWorks Tools in MBSE iii

CONTENTS

2.3.2 Communication to Digital Twin using MQTT 18

3 Methodology 20
3.1 Project requirementso 20
3.1.1 Selection of suitable MathWorks tools 20

3.1.2 Assumptions in the functioning of factory model 22

3.1.3 Factors considered for system analysis and performance optimization 25

3.2 Step 1 - Designing benchmark model in Simulink 25
3.3 Step 2 - System analysis for identification of bottlenecks 26
3.4 Step 3 - Modifications for performance optimization 27
3.4.1 Parallel execution of independent actions 27

3.4.2 Addition of extra components in factory model 27

3.5 Step 4 - Integration of Simulink model with Digital Twin 28

4 Implementation and testing 29
4.1 Benchmark model in Simulink 29
4.2 Modified model with parallel execution of independent actions 38
4.3 Modified model with two rack feeders 42
4.4 Live-link between Simulink and Digital Twin 47

5 Conclusions and future work 50
References 52
Appendix 55
A Architecture model in Systemm Composer 56
iv Methodologies and Applications of MathWorks Tools in MBSE

CONTENTS

B Benchmark model 58
B.1 Warehouse subsystem oo 58
B.2 Robot subsystem L 61
B.3 Processing Station subsystem oo 63
B.4 Color Sorter subsystem oo 65

C Modified model for parallel execution of independent actions 67
C.1 Modifications in the Supervisory Control subsystem 68
C.2 Modifications in the Robot subsystem 71

D Modified model with two rack feeders 73
D.1 Modifications in the Supervisory Control subsystem 73
D.2 Modifications in the Warehouse subsystem 76

E MQTT in Simulink using MATLAB function block 80
E.1 Provisions in Warehouse subsystem 80

Methodologies and Applications of MathWorks Tools in MBSE v

List of Figures

1.1 Technologies that are transforming the manufacturing industry in Industry
A0 [1]. o o o

1.2 General architecture of a CPS.

1.3 Transition from document-centric to model-centric approach for information
exchange in MBSE methodology.

2.1 Two ways to integrate IBM Rational Rhapsody with MathWorks Simulink.

2.2 Results from MathWorks Simulink model obtained within a SysML project
in Cameo Systems Modeler [2]. o L.

2.3 Mapping physical blocks in GENESYS (left) with Simulink elements (right)
using the GENESYS Simulink Connector [3].

2.4 A basic model in Simulink with two subsystems.
2.5 Simulink model with Stateflow chart and SimEvents blocks.

2.6 Two ways to connect system architectures in System Composer to imple-
mentations in Simulink. L0 o oL

2.7 Fischertechnik Factory Simulation 24V available at ICT Eindhoven (adapted

2.8 Vacuum gripper robot [4].
2.9 Barcodes on widget boxes corresponding to different widget colors [4]. . . .
2.10 Automated warehouse [4]. Lo

2.11 Multi processing station [4].

vi

Methodologies and Applications of MathWorks Tools in MBSE

LIST OF FIGURES

2.12 Sorting line with color detection [4].o L. 16

2.13 Interactivity between the physical and digital world in manufacturing pro-
cess shown by Deloitte [5]. 16

2.14 Digital Twin of the Fischertechnik Factory Simulation 24V developed in
Prespective software platform. o 000 17
2.15 An illustration of data flow in MQTT network protocol. 18
3.1 Phases in the working of the factory model on the basis of widget movement. 23
3.2 Steps followed in the methodology to answer the research questions. 25

4.1 Simulink subsystems representing factory model components and supervis-
ory control.o 29
4.2 Inside the Supervisory Control subsystem in Simulink. 30

4.3 Information of input and output signals used in the Supervisory Control
Stateflow chart (from Simulink Model Explorer). 31
4.4 Inside the Supervisory Control Stateflow chart. 32

4.5 Inside the Simulink function block in Warehouse subsystem which is used
to calculate the system throughput. 33

4.6 An illustration of supervisory control implemented in the benchmark model
for transfer of widgets from Warehouse to Color Sorter (Phase-1). 34

4.7 An illustration of supervisory control implemented in the benchmark model
for transfer of widgets from Color Sorter to Warehouse (Phase-2). 35

4.8 Time graph of actions involved in benchmark model with only one widget
in Phase-1 and Phase-2. o 0oL 36

4.9 Graph for visualization of nine widgets moving through factory model com-
ponents in Phase-1 and Phase-2 of the benchmark model. 36

4.10 Time Graph highlighting the waiting periods involved in benchmark model
with two widgets in Phase-1 and Phase-2. 37
Methodologies and Applications of MathWorks Tools in MBSE vii

LIST OF FIGURES

4.11 An illustration of supervisory control implemented in the modified model

with parallel actions for transfer of widgets from Warehouse to Color Sorter
(Phase-1). 38

4.12 An illustration of supervisory control implemented in the modified model

with parallel actions for transfer of widgets from Color Sorter to Warehouse
(Phase-2). 39

4.13 Time graph of actions involved in the modified model with parallel actions
for only one widget in Phase-1 and Phase-2. 40

4.14 Graph for visualization of nine widgets moving through factory model com-
ponents in Phase-1 and Phase-2 of the modified model with parallel actions. 40

4.15 Time Graph highlighting the waiting periods involved in the modified model
with parallel actions for two widgets in Phase-1 and Phase-2. 41

4.16 Flow chart showing the decision making process involved in the modified
Warehouse subsystem with two rack feeders. 43

4.17 Graph for visualization of nine widgets moving through factory model com-
ponents in Phase-1 and Phase-2 of the modified model with two rack feeders. 44

4.18 Time Graph highlighting the waiting periods involved in the modified model
with two rack feeders and two widgets moving in Phase-1 and Phase-2. 45

4.19 Graph of system throughput of the benchmark model of factory model meas-
ured in Simulink simulation run over a period of ten hours. 45

4.20 Inclusion of a MATLAB function block in the Warehouse subsystem of
benchmark model oo 48

4.21 The rack feeder in the Digital Twin (subscriber) moved by sending MQTT
messages from Simulink model (publisher). 49

A.1 Components in the architecture model of the factory model in System Com-
POSET. . . . L e e e e e e 56
A.2 Interfaces in the architecture model of the factory model in System Composer. 57
B.1 Inside the Warehouse subsystem in Simulink. 58

B.2 Information of input and output signals used in the Warehouse Stateflow
chart (from Simulink Model Explorer). 59
viii Methodologies and Applications of MathWorks Tools in MBSE

LIST OF FIGURES

B.3 Inside the Warehouse Stateflow chart. 60
B.4 Inside the Robot subsystem in Simulink. 61
B.5 Information of input and output signals used in the Robot Stateflow chart
(from Simulink Model Explorer). 61
B.6 Inside the Robot Stateflow chart. 62
B.7 Inside the Processing Station subsystem in Simulink. 63

B.8 Information of input and output signals used in the Processing Station State-

flow chart (from Simulink Model Explorer). 63
B.9 Inside the Processing Station Stateflow chart. 64
B.10 Inside the Color Sorter subsystem in Simulink. 65
B.11 Information of input and output signals used in the Color Sorter Stateflow

chart (from Simulink Model Explorer). 65
B.12 Inside the Color Sorter Stateflow chart. 66
C.1 Inside the Supervisory Control subsystem modified for parallel actions. . . 68

C.2 Information of input and output signals used in the Supervisory Control
Stateflow chart modified for parallel actions (from Simulink Model Explorer). 69

C.3 Inside the Supervisory Control Stateflow chart modified for parallel actions. 70

C.4 Inside the Robot subsystem modified for parallel actions. 71

C.5 Information of input and output signals used in the Robot Stateflow chart
modified for parallel actions (from Simulink Model Explorer). 71

C.6 Inside the Robot Stateflow chart modified for parallel actions. 72

D.1 Inside the Supervisory Control subsystem modified for two rack feeders at
Warehouse. 73

D.2 Information of input and output signals used in the Supervisory Control
Stateflow chart modified for two rack feeders at Warehouse (from Simulink
Model Explorer). 74

Methodologies and Applications of MathWorks Tools in MBSE ix

LIST OF FIGURES

D.3

D4

D.5

D.6

D.7

D.8

E.1

E.2

Inside the Supervisory Control Stateflow chart modified for two rack feeders
at Warehouse.

Inside the Warehouse subsystem (modified for two rack feeders).

Information of input and output signals used in the Rack Feeder Stateflow
charts (from Simulink Model Explorer).

Information of input and output signals used in the Warehouse Stateflow
chart modified for two rack feeders (from Simulink Model Explorer).

Inside the rack feeder Stateflow chart.
Inside the Warehouse Stateflow chart (modified for two rack feeders).
Information of input and output signals used in the Warehouse Stateflow

chart of the benchmark model with modifications for facilitating MQTT
(from Simulink Model Explorer).

Inside the Warehouse Stateflow chart of benchmark model (modified for
facilitating MQTT).

Methodologies and Applications of MathWorks Tools in MBSE

List of Tables

3.1 Criteria for selection of MathWorks tools 21
3.2 Average timing values of actions involved in the factory model 24
4.1 Comparison of total execution time and average system throughput of the
implementations of factory model in Simulink 47
Methodologies and Applications of MathWorks Tools in MBSE xi

Chapter 1

Introduction

In recent years, several companies in the manufacturing industry have realized that they
will soon reach the maximum limit of improvements possible in the physical and electronic
components of machines. Therefore, the evolving high-tech industry around the world
shifted its focus to the development of smarter software solutions in order to meet the
increasing demand for advanced production machines, measuring and control systems and
equipment. Over the past decade, a general trend towards digitalization and automation
has been observed in the manufacturing or production industries. This ongoing transition
is commonly referred to as the Fourth Industrial Revolution (Industry 4.0) [6]. It involves
the application of information and communication technologies in the industries to enable
networking between machines and processes. As shown in Figure 1.1, Industry 4.0 com-
prises of growth of technologies such as Internet of Things (IoT), automation, simulation
and Big Data in the manufacturing industry [1].

The Cloud Cyber Security

Simulation Additive Manufacturing

Figure 1.1: Technologies that are transforming the manufacturing industry in Industry
4.0 [1].

Methodologies and Applications of MathWorks Tools in MBSE 1

CHAPTER 1. INTRODUCTION

In Industry 4.0, the integration of physical processes with computation and networking has
given rise to the concept of Cyber-Physical System (CPS) [7]. The general architecture
of CPS is depicted in Figure 1.2 where physical mechanisms are monitored and controlled
by computer-based algorithms through various communication networks. In combination
with Internet of Things (IoT), CPSs have great potential for smart factories. CPSs have
laid the foundation for many applications in the automotive, healthcare and manufacturing
industries. In Europe, they play a major role in improving the economy and the quality
of citizens’ life [8]. Therefore, research and innovation in this field is highly encouraged so
that the engineering techniques applied in designing CPS can be improved.

Physical processes

Sensor
networks

Actuator

networks .
Communication

networks

[

Cyber systems

Figure 1.2: General architecture of a CPS.

The upcoming sections in this chapter include explanations of the main research problem
handled in this project and the targeted research questions. Furthermore, a brief descrip-
tion is given for the approach followed in this project to answer the formulated research
questions. In the end, a thesis outline is given for better readability purposes.

1.1 Problem context

The increasing complexity in CPS poses a challenge to the engineers who design and de-
velop such systems. It has been observed that the strategies and concepts of Systems
Engineering (SE) can be tremendously helpful in designing CPSs [9] [10]. The interdiscip-
linary approach of SE helps in management of complex systems throughout their life cycles.
It considers both the technical and business needs of the customer and helps in critical
decision-making for developing a quality product [11] (pp. 11-12). In SE, an architecture
model is used to define the structure and behavior of the system. Generally, architecture

2 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 1. INTRODUCTION

definition process is followed where several architecture alternatives are created and the
most suitable architecture option is selected [11] (p. 64). Firstly, all the alternatives are
assessed carefully. Afterwards, an architecture alternative is selected such that it meets
all the system requirements and addresses stakeholder concerns in the best way possible.
These quantitative assessments in SE are facilitated by a technique called System Ana-
lysis in which characteristics such as performance, cost, risks, feasibility and efficiency are
analyzed for technical decision-making [11] (pp. 74-77).

Over the years, document-centric approaches proved to be increasingly inconvenient way of
managing system requirements and maintaining consistency of complex systems. Thus, the
methodology of Model-Based Systems Engineering (MBSE) evolved and engineers started
using conceptual domain models as primary means of information exchange in system
development [12]. This transition from document-centric to model-centric approach for
information exchange in system development is depicted in Figure 1.3. MBSE helps in
developing complex software with fewer bugs in significantly less amount of time and money.
MBSE follows a top-down approach where the system development process starts from the
highest-level abstractions and the functional requirements of the system are determined
first. Then, the system is broken into a set of components and sub-components. The
resulting implementation addresses the requirements directly.

Document-centric Model-centric

Figure 1.3: Transition from document-centric to model-centric approach for information
exchange in MBSE methodology.

The MBSE methodology is a relatively new approach to software designing and is beneficial
for the high-tech industry for the development of CPSs. Therefore, it is necessary to explore
various tools suitable for MBSE domain in order to gain in-depth expertise and experience

of the field.

1.2 Project context and research questions

In industrial projects and products, various software tools offered by MathWorks are widely
used for model-based designing, simulation and analysis. Some of these tools have great

Methodologies and Applications of MathWorks Tools in MBSE 3

CHAPTER 1. INTRODUCTION

potential for designing complex CPSs. In this project, a research was conducted to employ
a suitable combination of MathWorks tools in a CPS developed using MBSE practices.
For this purpose, the Fischertechnik Factory Simulation 24V model was considered [4].
Moreover, a Digital Twin of the factory model available at ICT Eindhoven was used for
further testing purposes.

For a system developed using MBSE, the research questions (RQs) formulated in this
project are briefly described below.

RQ1: How can the MathWorks tools help in optimizing the overall perform-
ance of a system?

For developing efficient CPSs using MBSE methodology, it would be beneficial if the per-
formance of the physical system could be determined and improved using smart software
solutions. Hence, RQ1 aimed at exploring the possible ways in which MathWorks tools
could be used to optimize the performance characteristics of a system such as throughput,
latency and so on.

RQ2: In the system development process, how can the MathWorks tools assist
in parallel execution of actions?

In large scale industries, it is desirable to execute independent industrial processes and
machines in parallel so that the overall production rate could be increased. However,
designing such parallel actions for components of large-scale intricate CPSs is a demand-
ing process. Therefore, RQ2 aimed to investigate the role of system analysis and simulation
with MathWorks tools in facilitating the parallel execution of actions in the system devel-
opment process.

RQ3: How can the MathWorks tools help in modification of system architec-
ture required for improving the system performance?

As described in section 1.1, architecture definition process of SE is useful in obtaining
the best suitable architecture option for any given CPS. To create various architecture
alternatives, the original architecture has to be studied in detail and the bottlenecks have
to be identified. Thus, RQ3 aimed to inspect the use of MathWorks tools in recognition of
limitations of a given system architecture and finding possible ways to modify it.

RQ4: How to integrate the simulation of design models in MathWorks tools
with testing on Digital Twin?

For testing and validation purposes in CPSs, the emerging technology of Digital Twin
is preferred over the real system as it reduces developmental risks and increases cost-
effectiveness. The aspects of system design that are found to be infeasible after testing
with the Digital Twin are discarded for the physical implementation. Therefore, it would

4 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 1. INTRODUCTION

be advantageous if the real-time simulation of models designed using MathWorks tools
could be integrated with testing on Digital Twin. Hence, RQ4 aimed to investigate the
possible ways in which this crucial integration could be facilitated.

1.3 System context

After formulation of the research questions for this project, a research plan was defined to
answer them. In the broader perspective, the plan focused on the use of MathWorks tools
to improve an existing CPS developed using MBSE methodology. Therefore, the tasks
listed below were expected to be accomplished.

e Use of MathWorks tools to develop a model of a system previously developed using
MBSE methodology.

e System analysis and measurement of performance characteristics using selected para-
meters.

e Identification of bottlenecks in system functioning and architecture.

e Implementation of modifications to the original model in order to optimize the system
performance.

e Real-time communication between models designed using MathWorks tools and the
Digital Twin.

The details of the methods followed to complete the above-mentioned tasks and the related
results are discussed later in this thesis.

1.4 Thesis outline

Following the introduction to the project, Chapter 2 consists of in-depth explanation of the
background concepts and related work that are required for understanding the subsequent
chapters of this thesis. Chapter 3 includes a description of the project requirements and
assumptions as well as the steps followed to achieve the goals of this project. In Chapter
4, the resulting implementations are depicted and discussed in details. Lastly, Chapter 5
concludes the work done in this project and provides recommendations for future work.

Methodologies and Applications of MathWorks Tools in MBSE 5

Chapter 2

Background and related work

This chapter includes detailed description of the concepts and technology relevant to this
graduation project, and the related work done in the same field. Firstly, different soft-
ware tools suitable for MBSE applications are discussed, with a special focus on the tools
offered by MathWorks. Then, the Fischertechnik Factory Simulation 24V available at ICT
Eindhoven is described in great detail. Lastly, the innovative technology of Digital Twin
is explained and related work carried out in this area is discussed.

2.1 Overview of MBSE tools and MathWorks tools

As the advantages of MBSE became popular over the years, several software tools were
launched to provide solutions for modelling, designing and analyzing systems on the basis
of MBSE practices. IBM Rational Rhapsody is one such tool which is widely used by
system engineers and software developers [13]. It provides a visual system development
environment that uses modelling languages such as Systems Modeling Language (SysML)
and Unified Modeling Language (UML) to create graphical model designs. Moreover,
this software possesses the capability to generate the code from models in programming
languages such as C, C++, C# and Java.

Another popular software solution for MBSE is the Cameo Systems Modeler (formerly
known as MagicDraw with SysML plug-in) [14]. It is a visual modelling environment that
enables system engineers to create SysML models and diagrams in order to define various
aspects of a system. The software facilitates engineering analysis for system requirements
and designs that is required for the technical decision-making process.

The leading SE company, Vitech Corporation, has also developed two MBSE tools - CORE
and GENESYS [15]. They cover all the domains of SE namely - requirements, behavior,

6 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

architecture, and verification and validation (V&V). In addition to engineering companies,
many governmental organizations also use these tools as they support modelling with
languages such as SysML, DoDAF (Department of Defense Architecture Framework) and
SO on.

2.1.1 Integration of MBSE tools with MathWorks Tools

Recently, various MBSE modelling environments have started featuring interoperability
with the products of the computer software company, MathWorks. With these new fea-
tures, integration is possible between MBSE tools and the widely known MathWorks
products - MATLAB and Simulink. The former, MATLAB, is a numerical computing
programming language as well as environment which uses matrix and array mathematics
for analysis and design processes [16]. The latter, Simulink, is a graphical programming
environment used for model-based designing, simulation and analysis of dynamical sys-
tems [17]. Simulink also features auto-generation of code from model in programming
languages such as C and C++.

IBM Rational Rhapsody features integration of MathWorks Simulink models into Rational
Rhapsody designs [18]. There are two ways to implement this integration as depicted in
Figure 2.1. In the first kind of integration, a ”black box” approach can be followed wherein
the Simulink models can be represented by ”Simulink blocks”. Only the input/output ports
of these blocks are seen in the UML or SysML model of Rational Rhapsody and are used to
send or receive data from Simulink. During code generation, the Simulink-generated code
is wrapped into the Rational Rhapsody-generated code. In the second kind of integration,
a part of the system can be modelled using SysML in Rational Rhapsody and the generated
code in C/C++ code can be used as an S-function in Simulink. S-functions are used to
extend capabilities of Simulink such that blocks executing C/C++ code can be included
in a model.

Generate C/C++ code in Wrap Simulink C/C++ code
Simulink and include : and generate final code
VENEILS S references in SysML model Rational from SysML model Finalcods
Simulink B Rhapsody B>

(C/C++)

model model

(@)

Generate C/C++ code from Include references to
SysML model and create generated S-function in
Rational S-function Simulink model P MathWorks
Rhapsody > > Simulink
model model
(b)

Figure 2.1: Two ways to integrate IBM Rational Rhapsody with MathWorks Simulink.

Methodologies and Applications of MathWorks Tools in MBSE 7

CHAPTER 2. BACKGROUND AND RELATED WORK

The integration between Rhapsody and Simulink depicted in Figure 2.1(a) was used to
design a virtual prototype of flight control system for Unmanned Aeiral Vehicle (UAV) [19].
The intended system was verified and validated early in the development cycle, and system
specification errors were removed. For complex control systems, the integration of SysML
modelling in Rational Rhapsody with simulation in Simulink is quite beneficial [20]. It
allows engineers to follow SE practices in a SysML model while using Simulink to design
control algorithms and plant behavior. Moreover, real-time simulations in Simulink also
help in validation of system behavior.

In case of Cameo Systems Modeler, an integration with MATLAB is possible [21]. Using
the Cameo Simulation Toolkit, a MATLAB/Simulink function can be directly called and
the parameters can be passed from the UML/SysML model. After the MATLAB/Simulink
model is executed, the related results can be seen back in the UML/SysML model as shown
in Figure 2.2 [2]. In this way, the performance or physical properties of systems defined by
the UML/SysML models can be evaluated by wide variety of analysis and simulations in
MATLAB/Simulink.

File Edit View Insert Tools Desktop Window Help >

File Edit View layout Diagrams Options Tools Analyze Aras Collaborate Window Help DEdS | RAOUDEL-A|0E uD
5 . p - Venick speed and wheelspeed

i
Bl Ass Siip

File Edit View Insert Tools Desktop Window Help
Ddds | kAN UBLL- S 08| a0
i

| 2
i

|

|

ment 1 - "stoppi iles per hour shall be less than 160 feet” is satisfied.
& Logged In as saulusp [12.208.99.125:3579] = 18900 | 3L4Mof 1407 (max F556M) G

Figure 2.2: Results from MathWorks Simulink model obtained within a SysML project in
Cameo Systems Modeler [2].

Vitech’s GENESYS also offers a dedicated Simulink connector which lets the user create
the physical architecture of a Simulink model in GENESYS with the help of physical
block diagram or flow Internal Block Diagram (IBD) as shown in Figure 2.3 [3]. Each
component block in GENESYS can be mapped or associated with a Simulink element.
Later, the GENESYS physical structure can be imported to Simulink for detailed design
and analysis.

8 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

. @

N

© Magpog Commpiete | nermarme: Afvrenstptis Aushestteos Msete GENE3Y

Figure 2.3: Mapping physical blocks in GENESYS (left) with Simulink elements (right)
using the GENESYS Simulink Connector [3].

2.1.2 MathWorks tools for CPS and MBSE

Although SysML is widely used for MBSE, it is not suitable for simulation and analysis
of dynamic systems. SysML is mainly useful for describing, testing and verifying of static
architectural views and functional properties of the system. In contrast to SysML, Simulink
is suitable for dynamic views of the system and also offers auto-generation of code from
model which can be executed within other applications [22]. With the help of MATLAB
algorithms and Simulink models, dynamic CPSs can be designed, simulated and analyzed.
In addition, MathWorks also offers other supporting tools within MATLAB and Simulink
for modelling complex CPS designs spanning multiple domains [23].

The MathWorks graphical control logic tool, Stateflow, enables development of state ma-
chine diagrams, flow charts, state transition tables, and truth tables in Simulink [24]. They
can be used to model the reaction of MATLAB codes and Simulink models towards various
input signals, events, and time-based conditions. Stateflow charts can communicate using
data, events and messages. Here, messages are Stateflow objects used for communication
of data locally or between Stateflow charts. The graphical animation of state transitions in
Stateflow is useful for run-time debugging and analysis. Stateflow is useful for applications
such as supervisory-control, task-scheduling and fault management.

The behavior of system performance can be modelled using another MathWorks tool called
SimEvents [25]. It helps in analyzing event-driven systems and optimizing system perform-
ance on the basis of characteristics such as latency, throughput, and packet loss. SimEvents
offers message-based communication and event-driven system modelling within the time-
based simulation environment of Simulink. In SimEvents, an entity is a discrete item of
interest which behaves the same way as a Stateflow message. In the Simulink library,

Methodologies and Applications of MathWorks Tools in MBSE 9

CHAPTER 2. BACKGROUND AND RELATED WORK

availability of SimEvents blocks such as Entity Generator, Queue, Terminator, Gate and
Server facilitates modelling of queuing systems in Simulink. Moreover, the MATLAB Dis-
crete Event System block helps in using a MATLAB algorithm in Simulink for customized
discrete-event modelling.

To explain the working of Stateflow charts and SimEvents blocks, a basic Simulink model
is shown in Figure 2.4. It has two separate subsystems for Stateflow chart (orange block)
and SimEvents blocks (green block).

B! Entity.Input Trigger.Output | B Trigger Input’ " Entity Output

State_machine_diagram

Stateflow_Subsystem SimEvents_Subsystem

Figure 2.4: A basic model in Simulink with two subsystems.

The insides of the Stateflow_Subsystem (orange block in Figure 2.4) are depicted in
Figure 2.5(a) and (b). It is a simple state machine which has two states IDLE and START.
While in IDLE state, it waits for 2 seconds and then transitions to START state. While in
START state, it sets the Trigger Output equal to 1. This trigger is used as an input to the
SimEvents_Subsystem (green block in Figure 2.4).

The insides of SimEvents_Subsystem (green block in Figure 2.4) are depicted in Figure
2.5(c). Firstly, a Message Send block is used to convert the Simulink input trigger signal
to a discrete item of interest - a message that carries the original signal value. Due to
this trigger, an entity is generated by the Entity Generator and sent to the Entity
Queue. Then, the Message Receive block extracts signal value from the received message
and writes it to the output signal port - Entity Output. This signal is an input to the
Stateflow_Subsystem.

Figure 2.5(a) shows that a Message Send block is used to convert the Simulink input
signal to message before it enters the Stateflow chart. As shown in Figure 2.5(b), the state
transition from STATE to IDLE occurs when there is a message available (i.e. Entity_Input).
In the IDLE state, Trigger Output is set to 0.

In this way, Stateflow charts and SimEvents blocks can be utilized within a Simulink model.

10 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

IDLE START
after(2,sec)
" : Trigger_Output = 0; Trigger_Output = 1;
'b Entity_Input Trigger_Output
Entity_Input Trigger_Output
Message Send
> Entity_Input
State_machine_diagram
(a) (b)
Entity FIFO
SRR [<) B Ly B 1 R BRES
Trigger Input - - Entity Output
Message Send Entity Generator Entity Queue Message Receive
(c)

Figure 2.5: Simulink model with Stateflow chart and SimEvents blocks.

In 2019, MathWorks also launched a separate tool for MBSE and software design called
System Composer. It can be used to create system architecture models in terms of compon-
ents and interfaces [26]. These models could be analyzed by performing trade-off studies.
System Composer can be linked to Simulink for modelling behavior, running simulations,
generating C/C++ code for deployment to hardware. This bridged the gap between archi-
tecture models and implementation (design) models [27]. Figure 2.6 shows that the user
can connect an architecture component in System Composer model to a Simulink model by

either creating a link to an existing Simulink model or by auto-generating a new Simulink
model.

o

SupervisoryControl

StartedWarehouse |—»@ Warehouse_1 Started
< SupervisoryControl_1 > Warehouse_2 Starl @ »Start

e Picked | »@ iWarehouse_1 Pick
b IProcessingStation TR CREATE LINK | Warehouse_2 RequestToRetrieve @——»{RequestToRetrieve = FrehousetPited
P

Placed [——»@Warehouse_1 Placed
< iProcessingStatior{ 2 iColorSorter_t 4

a v a v Warehouse_2.

WarehouseSTM

ProcessingStation_t
iProcessingStation_2
<
iRobot_1
iRobot_2

obot_1

iRobot_2

N £ g =or 1 g 3 (b) Existing Simulink model
ProcessingSystem® Robot *a Warshouse ¥ ColorSorter
e M “Warhasso 1> GENERATE

iColorSorter_2 @) D@ iColorSorter_1

(a) System Composer model

(c) Auto-generated Simulink model

Figure 2.6: Two ways to connect system architectures in System Composer to implement-
ations in Simulink.

Methodologies and Applications of MathWorks Tools in MBSE 11

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 MBSE testing environment at ICT

At ICT Eindhoven, the Fischertechnik Factory Simulation 24V model [4] is being used in
numerous research based projects. This is a training model which helps in implementing
and validating concepts on a small scale before extending to the industry level. As depicted
in Figure 2.7, it is a combination of four components - Robot, Warehouse, Processing
Station and Color Sorter. Nine small geometrically identical workpieces (three red, three
white and three blue) are moved around these components to form a machining line.
For the ease of understanding, the Fischertechnik Factory Simulation 24V will be simply
referred to as the factory model and the colored workpieces will be referred to as widgets
hereinafter.

Warehouse

Color Sorter Processing Station

Figure 2.7: Fischertechnik Factory Simulation 24V available at ICT Eindhoven (adapted
from [4]).

A widget is picked by the Robot from the Warehouse and placed at the Processing Station.
Later, the Processing Station pushes the widget to the Color Sorter. In the end, the widget
is picked up by the Robot at the Color Sorter and placed back at the Warehouse. The
same process is followed for all the nine widgets.

ICT is also exploring the software engineering toolset, Dezyne, developed by Verum [28].
Thus, the Fischertechnik Factory Simulation 24V has been modelled on Dezyne and C++
code has been auto-generated. The setup uses five BeagleBone Black [29] boards for
running the code of the factory model. Separate boards are connected to each of the four

12 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

factory model components. These boards directly communicate to the fifth board that is
responsible for implementing supervisory-control. For this purpose, state machine diagrams
are used and event-driven simulation is followed. In each of the four components, various
state actions and transitions occur when the supervisory-control generates appropriate
events for them. After a state action is completed or a state transition has occurred in a
component, it generates an event to notify the supervisory-control so that events can be
generated for the other components. In this way, the supervisory control supervises the
working of the factory model components and the movement of the widgets through them.

The details of the individual components of the factory model and their working are as
follows:

e Robot - It resembles an industrial robot and is used for picking up and placing the
widgets from one location to another. It is capable of performing horizontal, vertical
and rotational movements around a turntable. As shown in Figure 2.8, the Robot
has a suction cup at the end of the horizontal arm. To pick up a widget, an airtight
connection is made between the suction cup and the widget. The created vacuum
helps the Robot to make a firm grip on the widget. After the Robot has moved to
another location, it eliminates the vacuum and places the widget successfully. The
Robot either picks up widgets at the Warehouse to place them at the Processing
Station or picks up widgets at the Color Sorter to place them at the Warehouse.

Horizontal-axis
Suction $.
cup ‘

Figure 2.8: Vacuum gripper robot [4].

e Warehouse - It consists of a storage rack, a rack feeder and a conveyor system.
The storage rack has nine boxes with barcodes on one side for carrying the widgets.
There are three barcode patterns dedicated to the three widget colors - white, red,
blue, as shown in Figure 2.9. The rack feeder carries widget boxes from the storage
rack to the conveyor system and vice-versa. The conveyor system is responsible for
moving the widget boxes from the rack feeder side to the Robot side and vice-versa.

Methodologies and Applications of MathWorks Tools in MBSE 13

CHAPTER 2. BACKGROUND AND RELATED WORK

(a) White (b) Red (c) Blue

Figure 2.9: Barcodes on widget boxes corresponding to different widget colors [4].

The Warehouse and its important parts are depicted in Figure 2.10. There are
two kinds of widget movements possible within the Warehouse. In the first kind
of movement, the rack feeder retrieves a full widget box from the storage rack and
places it on the belt of conveyor system. As the box reaches the other end of the
conveyor belt, the Robot picks up the widget from the box. The rack feeder picks up
the empty widget box from the conveyor belt and stores it back to the rack. In the
second kind of movement, the rack feeder retrieves an empty widget box from the
storage rack and places it on the belt of conveyor system. As the empty box reaches
the other end of the conveyor belt, the Robot places the widget on the box. The rack
feeder picks up the full widget box and stores it in the rack.

Widgets stored Rack feeder

Storage boxes in boxes
with barcode

Storage rack

Conveyor system with
identification

Figure 2.10: Automated warehouse [4].

There are 2 kinds of warehousing mechanisms possible in the factory model - static
and dynamic. In static warehousing, for instance, each row or column in the storage
rack can be assigned a widget color. As the Robot brings color sorted widgets from
the Color Sorter, the rack feeder retrieves empty boxes from the Warehouse storage
rack accordingly. For example, if the first row of storage rack at Warehouse is assigned
white color and the Robot is about to place a white widget picked up from the Color
Sorter, then, the rack feeder will retrieve an empty box from the first row of the
Warehouse storage rack. On the other hand, in dynamic warehousing, there is no
fixed assignment of widget color to any rack row or column. Instead an identification

14 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

mechanism is used by the conveyor system where a trail sensor tracks the light /dark
differences in a barcode on the widget box. When the rack feeder places the widget
boxes for the first time on the conveyor belt, their assigned color is detected using
the barcode scheme shown in Figure 2.9. Later, when the Robot is about to place a
color sorted widget on the conveyor belt, the rack feeder retrieves an empty widget
box from the Warehouse storage rack corresponding to that widget color.

e Processing Station - It consists of several stations that simulate different processes
on the widget as depicted in Figure 2.11.

Oven Saw

Oven feeder

Vacuum gripper

Turntable Conveyor belt

Figure 2.11: Multi processing station [4].

The processing starts at the oven when the Robot places the widget at the oven
feeder. The oven feeder containing the widget is taken inside the oven. After the
simulated firing process in the oven is over, a small vacuum gripper brings the widget
to a turntable. At the turntable, some provisions have been made such that widget is
positioned under a saw and made to wait there for a given time duration of processing.
Lastly, the widget is pushed to the conveyor belt and sent to the Color Sorter.

e Color Sorter - It is used for automated separation of widgets on the basis of their
color. The main components of Color Sorter are a conveyor belt, an optical color
sensor inside a darkened sluice, three pneumatic cylinders and three widget storage
locations as shown in Figure 2.12.

When a widget is placed on the conveyor belt by the Processing Station, it reaches
the Color Sorter and goes through a darkened sluice which has an optical color
sensor inside. After the widget color has been detected, it passes through a light
barrier. Depending on the color value detected, the corresponding pneumatic cylinder
is triggered with a delay after the light barrier has been halted by the widget. As a
result, the widget is pushed into the one of the three chutes by a pneumatic cylinder
and reaches a particular storage location assigned for that widget color. The storage

Methodologies and Applications of MathWorks Tools in MBSE 15

CHAPTER 2. BACKGROUND AND RELATED WORK

location closest to the color detection location has been assigned the color white,
the center the color red and the furthest away the color blue. From these storage
locations at the Color Sorter, the Robot picks up the sorted widgets for storage at
the Warehouse.

Pneumatic
Optical color cylinders

sensor (inside) Conveyor
g belt

Widget storage
locations

Figure 2.12: Sorting line with color detection [4].
2.3 Digital Twin technology

In the ongoing Industry 4.0 revolution, manufacturers have realized the significance of the
virtual world in the industrial setup. The virtual prototypes of physical machines, termed
as Digital Twins, help in validating a system design before it is physically implemented
[30]. Using this cutting-edge technology, any industrial setup can be analyzed and tested
virtually with a lower budget in lesser amount of time.

PHYSICAL DIGITAL

Figure 2.13: Interactivity between the physical and digital world in manufacturing process
shown by Deloitte [5].

16 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

The physical world is integrated with the digital world as shown in Figure 2.13 [5]. The
sensing and actuating occur in the physical world and then, the relevant data is sent to the
digital world. This data is utilized to perform analysis and testing on the Digital Twin.
The insight gained from this analysis helps in modifying the real system accordingly. As
a result, system developers can detect potential risks and defects in a system at an early
stage of development, thereby, increasing efficiency, reliability and cost-effectiveness.

2.3.1 Digital Twin application at ICT

The High-Tech Unit at ICT is exploring the applications of virtual world in industrial
automation. For initial testing purposes, a Digital Twin of the Fischertechnik Factory
Simulation 24 has been developed at ICT Eindhoven in collaboration with Prespective
(formerly known as Unit040). The latter is a company that launched an interactive soft-
ware platform of the same name for Digital Twin development [31]. Similar to the real
system, the Digital Twin of the factory model is a combination of four individual compon-
ents - Robot, Warehouse, Processing Station and Color Sorter, as shown in Figure 2.14.
Currently, further improvements are underway such that continuous movement of virtual
widgets can be illustrated in the Digital Twin similar to the movement of widgets in the
real system.

Color Sorter - : & Processing Station

Figure 2.14: Digital Twin of the Fischertechnik Factory Simulation 24V developed in
Prespective software platform.

Methodologies and Applications of MathWorks Tools in MBSE 17

CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.2 Communication to Digital Twin using MQTT

Owing to its lightweight nature and high efficiency, Message Queuing Telemetry Transport
(MQTT) is widely used in IoT devices. It allows bi-directional communication between
multiple devices. As a messaging protocol, MQTT is considered to be highly scalable and
reliable.

In MQTT, multiple clients connect to a broker which is a server responsible for receiv-
ing and routing messages [32]. The routing information of a message is contained in a
topic. MQTT follows a publish-subscribe architecture style where a sender client pub-
lishes messages to a certain topic and the receiver client subscribes to the same topic to
access the message. The broker matches the topics for each publisher and subscriber cli-
ent, and delivers the messages accordingly. This process is demonstrated in Figure 2.15
where temperature sensor, laptop and smartphone are clients to the MQTT broker. The
temperature sensor publishes a message - 22°C to the topic named ”"temp”. The laptop
and the smartphone subscribe to the same topic to receive the message.

g™ N B

2 52°C o 5\3‘0?6..‘6(“9 Laptop
ﬁ ’(‘Oo\

@ Publish to

topic “temp”

Temperature sensor

Smartphone

Figure 2.15: An illustration of data flow in MQTT network protocol.

Prespective has also developed a plug-in for communication to Digital Twins using MQTT
messaging protocol. This plug-in was recently utilized in another TU /e graduation project
to establish a live-link between a SysML model in IBM Rational Rhapsody and a Digital
Twin developed in Unity3D [33]. Using an external broker and some additional C# code,
data values sent from the model in Rational Rhapsody were successfully received at the
Digital Twin in real-time. For future work, it was suggested that a research could be
conducted to establish a similar connection between models in MATLAB/Simulink and
Digital Twins using MQTT.

18 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 2. BACKGROUND AND RELATED WORK

With the knowledge of above-mentioned background concepts and related work, a set of
methods were specified to achieve the goals of this project. These methods are explained
in the next chapter.

Methodologies and Applications of MathWorks Tools in MBSE 19

Chapter 3

Methodology

This chapter includes a description of the methodology that was followed to answer the
research questions targeted in this project. Firstly, the project requirements and assump-
tions are specified. Then, the methods followed in this project are grouped into four major
steps and discussed in details.

3.1 Project requirements

Before deciding the steps to be taken to answer the research questions, it was necessary to
lay down the set of requirements for this project. These are listed as follows:

e Select a suitable combination of MathWorks tools.
e State the assumptions considered in the functioning of the factory model.

e Specify the factors to be considered for system analysis and performance optimiza-
tion.

The above-mentioned requirements are thoroughly explained in the subsections below.

3.1.1 Selection of suitable MathWorks tools

From the wide range of available MathWorks tools, a few were selected and their com-
bination was used for the design, simulation and analysis of the factory model. Table

20 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 3. METHODOLOGY

3.1 specifies the criteria that was used to select the appropriate MathWorks tools for this
project.

Table 3.1: Criteria for selection of MathWorks tools

S.No. Criteria
1 Capability to perform model-based designing
2 Potential to model behavior using state machine diagrams
3 Ability to perform system analysis and performance optimization
4 Support for MQTT messaging protocol

Since System Composer is an MBSE tool recently launched by MathWorks, it was the first
tool that was considered in the tools selection procedure. An architecture model of the
factory model was created with five components named as SupervisoryControl, Warehouse,
Robot, ProcessingStation and ColorSorter. The interfaces were named as iWarehouse, iRo-
bot, iProcessingStation and iColorSorter, and appropriate interface elements were defined
for each one of them. The model is shown in Appendix A. Owing to its graphical envir-
onment for model-based designing, Simulink was considered for modelling the behavior of
each component. This satisfied the first criteria mentioned in Table 3.1. Since the existing
model of the factory model in Dezyne uses state machines for behavior modelling, it was
decided that Stateflow charts would be used to implement the same in Simulink. This
satisfied the second criteria mentioned in Table 3.1.

During the initial modelling process, it was realized that System Composer would not be
useful for this project. System Composer is used for performing static analysis and trade-off
studies using system parameters such as size, weight, power, cost and so on [34]. In case of
the factory model, the electronic and mechanical properties of each individual component
is fixed by the manufacturer. Thus, to improve the existing design of the factory model,
the only parameter that could be analyzed and optimized was the time taken for each task.
This would require timing values to be measured during run-time and analysis of a dynamic
system. This could not be supported by System Composer. Moreover, it would not be
possible to modify the lower-level system architecture of the factory model components as
they are defined by the manufacturer. Hence, System Composer was deemed useless for
this project.

After discarding the use of System Composer for this project, the modelling process was
restarted with a Simulink model where each component of the factory model was represen-
ted by a subsystem. Inside each subsystem, state machines were included using Stateflow
charts. The input and output ports of the Stateflow charts were connected to Simulink
signals of the respective subsystems.

The third criteria mentioned in the Table 3.1 could be partially satisfied by logging Simulink
signals and plotting their graphs against simulation time for system analysis. To study

Methodologies and Applications of MathWorks Tools in MBSE 21

CHAPTER 3. METHODOLOGY

and optimize the system performance in a better way, it was needed to introduce widgets
in the simulation process. For visualization of widget movement in the factory model, it
was decided that SimEvents blocks would be used in the Simulink models. As a result,
the widgets were represented by SimEvents entities which are discrete items of interest.
Since SimEvents entities essentially behave the same way as Stateflow messages, it was
easy to model the widget behavior inside the state machines. In this way, a message-based
communication could be modelled in Simulink and appropriate signals could be logged for
timing measurements later.

Lastly, it was required to discover a method to implement MQTT messaging protocol
in Simulink as mentioned by the fourth criteria in Table 3.1. The available Simulink
blocks - MQTT Publish and MQTT Subscribe are only compatible with Raspberry Pi
hardware [35]. Hence, these blocks could not be employed in this project. Since a toolbox
for MQTT is available in MATLAB [36], it was decided that a suitable MATLAB code
would be written to implement MQTT and the same would be included in the Simulink
model using a MATLAB function block [37].

The final combination of MathWorks tools considered in this project is listed below:

Simulink
Stateflow
SimEvents

MATLAB

3.1.2 Assumptions in the functioning of factory model

Due to time constraints, it was not possible to fit all the functionalities of the factory model
within the scope of this project. Therefore, the mechanism involved in the working of the
factory model was simplified for implementation in this project. The assumptions defined
for this purpose are stated as follows:

e Happy path modelling: All the Simulink models in this project were designed
only for the happy flow of actions. Therefore, no exceptions or error conditions of
the original factory model were considered.

e Supervisory-control: The Simulink models were designed only for the supervisory-
control of the factory model. Hence, only the communication between the supervisory-
control unit and the four factory model components was considered. The lower-level
functionalities of the factory model components were not considered in this project.

22 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 3. METHODOLOGY

e Color of Widgets: There was no distinction of the widgets on the basis of their
color. It was be assumed that all widgets were treated alike in the factory model and
hence, the time taken for completing any action was the same for all widgets.

e Default position of mobile components in the factory model: There are three
main mobile components in the factory model namely - rack feeder at the Warehouse,
Robot, vacuum gripper at the Processing Station. In this project, it was assumed
that the rack feeder was initially near the conveyor belt at Warehouse. Later, every
time it stored a full or empty box, it rested near the storage rack and waited for
the next command from Supervisory Control. The default position of the Robot was
assumed to be located at the center of the factory model. Therefore, after placing a
widget either at the Processing Station or the Warehouse, the Robot was assumed to
have returned to the default position until the next pickup request arrived. Lastly,
the default position of the vacuum gripper at the Processing station was assumed to
be near the saw (hence, away from the oven feeder). This provided a clear pathway
for the Robot to place a widget at the oven without colliding with the vacuum gripper
at the Processing station.

e Phases in factory model: The working of factory model was divided into two
phases which consisted of movement of the widgets through all the four components.
Phase-1 consisted of the widget movement from the storage rack at Warehouse to the
Processing Station and then, to the storage locations at the Color Sorter . Phase-
2 consisted of widget movement from the storage locations at Color Sorter back
to the storage rack at Warehouse. This is illustrated in Figure 3.1. In Phase-1,
the widget movement from conveyor belt of Warehouse to the oven at Processing
Station is assisted by the Robot whereas the widget movement from under the saw
at Processing Station to the Color Sorter occurs with the help of a conveyor belt.
In Phase-2, the widget movement from the storage locations at Color Sorter to the
conveyor belt at Warehouse is also assisted by the Robot.

Processing Station

Phase-2

Robot

Warehouse
A
J9140S J0j0D

Figure 3.1: Phases in the working of the factory model on the basis of widget movement.

e Timing values: For simulating all actions of the factory model in Simulink, absolute-
time temporal logic was used in Stateflow charts [38]. The timing values were meas-

Methodologies and Applications of MathWorks Tools in MBSE 23

CHAPTER 3. METHODOLOGY

ured in the physical model and an average value was used in the Stateflow temporal
logic operator - after. Suppose an action took n seconds on an average to complete
in the real factory model. In the corresponding state in the Stateflow chart, it was
modelled as after(n,sec) such that the next action could only occur after n seconds
have elapsed since the associated state became active. In the simulation process, this
would mean that the particular factory model component was busy in completing
the action for n seconds and could perform the next action only after n seconds have
elapsed.

Table 3.2 shows the average time taken to perform all different kinds of actions in
the physical model of the factory model.

Sequential and parallel execution of actions: In sequential execution, it was
assumed that the actions mentioned in Table 3.2 occur one after the other. On the
other hand, in the parallel execution, it was assumed that the actions could occur at
the same time in parallel with each other.

Table 3.2: Average timing values of actions involved in the factory model

Average time

S.No. Type of action taken to complete
action (s)

1 Initial startup of all components in factory model 1

5 Retrieval of first widget box by rack feeder resting near 13
the conveyor belt at Warehouse

3 Retrieval of subsequent widget boxes by rack feeder rest- 3
ing near the storage rack at Warehouse

4 Storage of widget box by rack feeder at Warehouse 8

5 Pickup or placement of widget box on the conveyor belt 9
by rack feeder at Warehouse

6 Movement of widget box to either sides of conveyor belt 1
at Warehouse

A Movement of Robot from default position to pickup loc- .
ation at Warehouse or Color Sorter

5 Pickup or placement of widget by Robot 3
Movement of Robot from pickup location at Warehouse

6 or Color Sorter to placement location at Processing Sta- 7
tion or Warehouse

7 Movement of Robot from placement location at Pro- 5
cessing Station or Warehouse back to default position

8 Processing a widget in the oven at Processing Station 13

9 Processing a widget under the saw at Processing Station 7

10 Color detection and sorting of a widget 7

24

Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 3. METHODOLOGY

3.1.3 Factors considered for system analysis and performance
optimization

For carrying out system analysis and measuring the performance of the factory model in
Simulink, two factors were considered. They are defined as follows:

e Total execution time: The total execution time of any Simulink model was given
by the total time taken to complete both Phase-1 and Phase-2 for all the widgets
present in the system i.e. the movement of widgets through all the four components
of the factory model.

e System throughput: The Simulink models were designed in such a way that the
movement of nine widgets through the factory model could be repeated. Therefore,
the system throughput was given by the number of widgets moved through all the
components of the factory model per unit time.

While analyzing an implementation of the factory model in Simulink, the total execution
time and system throughput were calculated to determine the system performance. For
optimizing the system performance, it was required that the total execution time was
decreased and the system throughput was increased.

After the project requirements were set, a set of methods were followed to answer the
targeted research questions. As shown in Figure 3.2, these methods are grouped into four
major steps and explained in the subsequent sections of this chapter.

STEP 1: STEP 2: STEP 3: STEP 4:
Designing System analysis Modifications for Integration of

benchmark model for identification performance Simulink model
in Simulink of bottlenecks optimization with Digital Twin

Figure 3.2: Steps followed in the methodology to answer the research questions.

3.2 Step 1 - Designing benchmark model in Simulink

Firstly, the behaviour of the supervisory-control of the original factory model setup was
modelled in Simulink. Hereinafter, this model is referred to as the benchmark model of this
project. It was expected that the total execution time would be maximum and the system
throughput would be minimum in the benchmark model. Thus, the improved performance

Methodologies and Applications of MathWorks Tools in MBSE 25

CHAPTER 3. METHODOLOGY

of other modified implementations were supposed to be compared with the performance of
this model.

To resemble the original factory model setup, a combination of sequential execution and
parallel execution of actions was considered in the benchmark model. Except a few parallel
actions, all other actions involved in Phase-1 and Phase-2 of the factory model occurred
one after the other in a sequential manner. It was considered that the nine widgets were
picked up by the Robot from the Warehouse and placed at the Processing Station one-by-
one. Then, the widgets were moved from the Processing Station to the Color Sorter one
after the other via the conveyor belt. After all the nine widgets were sorted at the Color
Sorter, it was considered that they were picked up by the Robot and placed back at the
Warehouse one-by-one.

In the Simulink model, five subsystems were created and named as Warehouse, Robot, Pro-
cessing System, Color Sorter and Supervisory Control. For communication between these
subsystems, Simulink buses and signals were used which contained set of signals of different
data types. Inside each subsystem, Stateflow charts were used to model the behavior of
factory model components and the supervisory-control using state machine diagrams. Ad-
ditionally, the movement of widgets between the four components of the factory model was
simulated using message-based communication in Stateflow and SimEvents blocks. This
model and its working is explained in Chapter 4.

3.3 Step 2 - System analysis for identification of bot-
tlenecks

For analyzing the benchmark model, the Simulink bus signals were logged for visualization
in the Simulation Data Inspector [39]. During simulation, the signal values were changed by
state actions and transitions in the Stateflow charts. Therefore, graphs were plotted with
signal values in y-axis versus simulation time in x-axis. These graphs helped in measuring
the total execution time of the benchmark model.

For calculation of system throughput, it was important to determine the total number of
widgets which completed the movement through all the factory model components divided
by the current simulation time. This could be measured in the Warehouse subsystem where
widgets were finally stored in the storage rack at the end of Phase-2. For this purpose, a
Simulink function block was added in the Warehouse subsystem [40]. It was configured for
graphically defining a function - CalculateThroughput () whose output was the system
throughput. The working of this Simulink function block is discussed in Chapter 4.

Using the graphs of signal values versus simulation time, the bottlenecks of the benchmark

26 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 3. METHODOLOGY

model were identified. There were certain time periods where the factory model compon-
ents stayed idle as they were waiting for commands from the supervisory control for a
long time. Hence, the benchmark model was needed to be modified such that the wait
periods in the factory model components could be either removed or utilized judiciously.
As a result, the total execution time could be reduced and the system throughput could
be increased, thereby, improving the system performance.

3.4 Step 3 - Modifications for performance optimiza-
tion

To improve the system performance of the factory model, the benchmark model was mod-
ified in two ways. These are explained in the following subsections.

3.4.1 Parallel execution of independent actions

In the benchmark model, a combination of sequential and parallel execution of actions was
considered. While carrying out the system analysis, it was observed that some actions in
the original factory model setup were independent of each other and could occur at the
same time. By executing independent actions in parallel with each other, the factory model
components could be kept busy and the unnecessarily long wait periods could be utilized.
To implement this, the Stateflow charts of the subsystems were modified accordingly. The
modifications to the benchmark model and related graphs are thoroughly discussed in the
next chapter.

3.4.2 Addition of extra components in factory model

In the graphs obtained from the modified model with parallel independent actions, it was
observed that there were still some bottlenecks remaining in the system. There were certain
time periods where a factory model component had completed it previous action but could
not perform the next action because of its dependency on another factory model component
which was busy completing its previous action.

It was realized that if there were multiple components or subcomponents of the same type
working in parallel with each other, then, at least one of them will always be ready to
perform the next action. Moreover, they can work with different widgets and accelerate
the total execution process. For implementing this, the signal value versus simulation time
graphs were carefully examined and the factory model component directly involved in the

Methodologies and Applications of MathWorks Tools in MBSE 27

CHAPTER 3. METHODOLOGY

bottleneck was identified. The Simulink subsystem of this factory model component was
modified and extra subcomponents were added. This modification and the resulting graphs
are explained in the next chapter.

3.5 Step 4 - Integration of Simulink model with Di-
gital Twin

In this step, an aim was set to move the rack feeder in the Digital Twin by sending a value
from the benchmark model during simulation in Simulink.

Using the MQTT in MATLAB toolbox, a MATLAB code was written for an MQTT
publisher. To include this code in the Simulink model, a MATLAB function block was
added in the Warehouse subsystem and a signal from the Stateflow chart was used as
input to the block. FEvery time the value of the input signal changed, a new MQTT
message containing the input signal value was published to a certain topic.

To facilitate the MQTT messaging protocol, the open source Eclipse Mosquitto broker was
used [41]. With the help of engineers from Prespective, the Digital Twin was configured
to act as an MQTT subscriber and was subscribed to same topic as the Simulink model.
The value received in the MQTT message was used to rotate the DC motor of the rack
feeder in the Digital Twin.

In this way, a live-link was established between the benchmark model in Simulink and the
Digital Twin in Prespective. This working of this live link is explained in details in the
next chapter.

28 Methodologies and Applications of MathWorks Tools in MBSE

Chapter 4

Implementation and testing

In this chapter, all the implementations of the factory model in Simulink are discussed.
Their working mechanisms and signal value versus simulation time graphs are discussed in
details. A comparison of all the models is drawn on the basis of the system performance
i.e. total execution time and system throughput. Lastly, the working of the MQTT based
live-link between the benchmark model in Simulink and the Digital Twin in Prespective is
explained and related results are demonstrated.

4.1 Benchmark model in Simulink

W_in W_out
R_in R_out
PS_in PS_out
CS_in CS_out,
SupervisoryControl
[— | | — I
=) = = 0 5 ['4
3 o 5= 5 & Q 5 2
| k= | Lo = OI n L2 (_)I =
o o o E 3 o &= g
1%} =} » ° 5 o 2 7 1%} g
g 8 2 Sz E
g = g s
Warehouse Robot » ProcessingStation = ColorSorter ®
o = EO x % o
£ E E £ 3 €
o g = o c 9
i T = =
=) (= [} 5] (= (5] c O Q
o 2 o g2 i o238
n = n = =2 %) = n = =
— | T '
[}
H ‘

Figure 4.1: Simulink subsystems representing factory model components and supervisory
control.

Methodologies and Applications of MathWorks Tools in MBSE 29

CHAPTER 4. IMPLEMENTATION AND TESTING

To resemble the working of the original factory model setup, five subsystems were con-
sidered in the benchmark model and were named as Supervisory Control (SC), Warehouse
(W), Robot (R), ProcessingStation (PS) and ColorSorter (CS). As shown in Figure 4.1,
the subsystems and their elements inside were color coded such that red represented Super-
visory Control, blue represented Warehouse, yellow represented Robot, green represented
Processing Station and purple represented Color Sorter. These color codes will be followed
throughout this chapter hereinafter. Figure 4.1 also depicts connection of the Simulink
bus signals between subsystems. These were used to communicate from the Supervisory
Control to the four factory model components and vice-versa. Moreover, the four fact-
ory model components were also connected to each other using other Simulink buses for
simulating the movement of widgets through them.

Inside these subsystems, Stateflow charts and SimEvents blocks were used to model the
behavior. One such example in shown in Figure 4.2 where a Stateflow chart was used
inside the Simulink subsystem of Supervisory Control. The input signals to this chart were
the output of the four factory model components. Then, the output signals of the chart
acted as input to the four factory model components. Figure 4.3 gives a detailed list of
the input and output signals used for this Stateflow chart along with their data types and
initial values.

W_in.WStarted-—fi}-—~StartedWarehouse StartWarehouse—W_out.WStart
R_in.RStarted-—{i}—StartedRobot
= arted-=4}StartedRobo StartRobot—~R_out.RStart
PS_in.PSStarted-—fil—StartedPS
StartPS|—~PS_out.PSStart
CS_in.CSStarted-—fi}—StartedCS

W_in.WReadyToRetrieve-—}—

WReadyToRetrieve

StartCS|

~CS_out.CSStart

PS_in.PSReadyToReceive- PSReadyToReceive WRequestToRetrieve—\W_out.WRequestToRetrieve
R_in.RPickedAtW-={- RRickedtAt RStartTransferWToPS[—~R_out.RStartTransferWToPS
R_in.RPlacedAtPS-—{i}-RPlacedAtPS

WPicked—W _out.WPicked
W_in.WReadyForNexte—f}—-WReadyForNext
R_in.RMoveCompleted-—i}-RMoveCompleted BN ~FS_outPSPlaced

PS_in.PSProcessCompletes—fil—
CS_in.CSSortingComplete i}

PSProcessComplete

CSSortingComplete

WRequestToStore

—~W_out.WRequestToStore

CSRequestToRetrieve~CS_out.CSRequestToRetrieve
W_in.WReadyToStore-—fil--WReadyToStore
RStartTransferCSToW,—~R_out.RStartTransferCSToW
CS_in.CSReadyToRetrieve-—fi}—CSReadyToRetreive
R_in.RPickedAtCS- 1] -RPickedACS ESFigked —-CS_out. WPicked
R_in.RPlacedAtW-—{i}-RPlacedAtW WPlaced~W_out.WPlaced
SupervisoryControlSTM

Figure 4.2: Inside the Supervisory Control subsystem in Simulink.

30

Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

Name Scape Port DataType Initialvalue

(i) StartedWarehouse Input 1 double

(@ StartedRobot Input 2 double

(#4) StartedPS Input 3 double

(%) StartedCS Input 4 double

() WReadyToRetrieve Input 5 double

(i) PSReadyToReceive Input 6 double

(+) RPickedtAtW Input 7 double

() RPlacedAtPS Input 8 double

() WReadyForNext Input 9 double

(i) RMoveCompleted Input 10 double

(&) PSProcessComplete Input 11 double

(5 CSWidgetAtLocation Input 12 double

(i) CSSortingComplete Input 13 double

(@ WReadyToStore Input 14 double

(i) CSReadyToRetreive Input 15 double

(%) RPickedAtCS Input 16 double

() RPlacedAtw Input 17 double

() NextState Local boolean false
[Count1 Local double 0

[Count2 Local double 0

(% TransferWToPS Local boolean false
(% TransferCSToW Local boolean false
() x Local double 0

() StartWarehouse Output 1 double 0

(i) StartRobot Output 2 double 0

(%) startPs Output 3 double 0

(54 StartCs Output 4 double 0

() WRequestToRetrieve Output 5 double 0

(i) RStartTransferWToPS Output 6 double 0

(4 WPicked Output 7 double 0

(%) PSPlaced Output 8 double 0

(%) WRequestToStore Output 9 double 0

() CSRequestToRetrieve Output 10 double 0

(i) RStartTransferCSToW Output 11 double 0

(%) CSPicked Output 12 double 0

() WPlaced Output 13 double 0

Figure 4.3: Information of input and output signals used in the Supervisory Control State-
flow chart (from Simulink Model Explorer).

The signals depicted in Figure 4.3 are used in the state actions and transitions shown in
Figure 4.4. In this way, a state machine diagram of the Supervisory Control was modelled
using Stateflow chart.

Methodologies and Applications of MathWorks Tools in MBSE 31

IMPLEMENTATION AND TESTING

CHAPTER 4.

{0=paoeldM
‘as|e) = ajeISIXaN

2 H434SNVHLHSINIS,

{0 = PooeldSd
‘asje) = SyRISIXON

1 HIISNVAL HSINIY,
T

\

[ere1siXeN]

“JIRTD MOJoYRIS [013U0)) ATostaradng oy} apIsu] §'§ oInsIg

[Pa1eidwoDeAoNY B8 N0 peatM]

pus

‘anu=eleISIXeN

{|=paoeldM

{0 = POYIdSD
(1 == MivpaoeIdY)
‘asje) = aleISIXeN

M1V 30V1d,

pus

‘en=ajRISIXON
11=peoeldSd

0 = POYOIIM
(

\
puo pua| [moLsOalsuel]]
anm o ‘anJ) = SjRISIXAN —
we__ = w.mwwmmu 1| = MOLSDIBJSUBIHEISH /N
et e
%_wﬁuw_ﬁwmwh (amenayol Apeaysd B3 2101SOLAPEIUM)
‘ase} = BlRISIXAN
SO ¥ X0 YIISNVHL MOLSO LHVIS,

pus
10 =ZuNn00%

‘0 = IUN0DY,
(x =< ZIUN0D BB X =< HUN0D) Jios[0
seoUaNbes Loq 1eado%

{| + ZIUN0Y = ZJUNoy _ . _
‘N4 = MOLSDIBISURIL (1 == sOPeLelS 8% | == SPaLEIS BB | ==
= anaupayoLisenbayso | [erEISeN]
| = 210)501153NbaYM
(X > ZIUN0D B X =< |JUN0D) Jiesie

pus
‘enj=ojeISXeN

88| ==

‘as[e) = SJRISIXON

ONILYVLS,

5SNOYBIEM O} SO <- ZbOS%

!L + LUN0D = LNy

‘an} = SO MISJSURIL

| = enaiayoLsaNbOXM
== ZUN0D B3 X > |UN0D) Ji
S 0} 8snoyaIeM <- 1baSY,
‘os[ey = MOLSDIBISUBIL
‘osje} = SdOLMIBjSUBLL
‘asfe} = O}RISXON

pue pus

‘ann=aleISIXaN

£ =payoIdM

10 = SAOLMJBJSUBILUEISY
{,

{1 =SdOLMIBJSURILLEISY
0 = araujayoLIsenbaYM
] |(on A ki) A)4

)|

‘asie} = SJRISION

Sd”1v 30V

" [e101dwo0buRI0SSD 93 S19IdWODSSE00IdSd B3 Peleld

Idy) J
‘0s[ej=0leISIXON

“as[e) = Q1BISIXON

MLV YOI, YIISNVHL SOOLM LAVLS,

IWODBAONY B8 IXONI0JApeayM]

‘any) = 9jeISIXeN
1| = souelS

‘L = sdyeis

{1 = 10qoyuelS

1| = esnoyeleMUEIS
B=x

310y

Methodologies and Applications of MathWorks Tools in MBSE

32

CHAPTER 4. IMPLEMENTATION AND TESTING

The state machines diagrams of Warehouse, Robot, Processing Station and Color Sorter
were modelled in a similar manner. Moreover, these four subsystems also contained
SimEvents blocks for facilitating the simulation of widgets movement through them. These
Simulink models are shown in Appendix B.

With the help of the SimEvents blocks, widgets were represented by discrete items of
interest called entities. The entities were configured as Simulink bus object with a signal
called WidgetNumber that was used to differentiate between the nine widgets in the system.
Every time an entity (widget) was generated in the Entity Generator SimEvents block, its
attribute, WidgetNumber, was changed using the MATLAB code shown below. A pattern
of repeating sequence was formed such that consecutively generated entities would have
WidgetNumber value ranging from 1 to 9 which could be visualized later in time graphs.

% Pattern: Repeating Sequence
persistent SEQ;
persistent idx;
if isempty (SEQ)
SEQ = [1 2 3456 78 9];
1;

idx
end
if idx > numel (SEQ)
idx = 1;

© W N O s W N

end
entity.WidgetNumber = SEQ (idx) ;
idx = idx + 1;

= e e
N = O

In addition, the Warehouse subsystem consisted of a Simulink function block for calculation
of system throughput at the location where the widgets were stored back in the rack at
the end of Phase-2. As depicted in Figure 4.5, the total number of widgets entering the
block as input were divided by the current simulation time to give the system throughput
(in widgets/s) as output.

CalculateThroughput

)
NumWidgets
e
. 1
Throughput
12:34
Digital Clock

Figure 4.5: Inside the Simulink function block in Warehouse subsystem which is used to
calculate the system throughput.

Methodologies and Applications of MathWorks Tools in MBSE 33

CHAPTER 4. IMPLEMENTATION AND TESTING

Figure 4.6 illustrates the working of the benchmark model in Phase-1 i.e., the movement
of a widget from Warehouse to Color Sorter. Here, SC refers to the Supervisory Control,
W refers to the Warehouse, R refers to the Robot, PS refers to the Processing Station
and CS refers to the Color Sorter. In this diagram, the communication flow is shown
such that the arrows going outward from SC blocks to other components blocks represent
the commands sent from Supervisory control to the factory model components. Similarly,
the arrows coming inward to the SC blocks represent the information sent by the factory
model components to the Supervisory Control. The text inside the blocks represent the
actions performed by the Supervisory Control and four factory model components in the
benchmark model.

4 9 p B g g
f R w R PS cs w R
w PS Process in
A Move Store Move Detect Stored Move to
Retrieve Empty oven & under
toW & empty toPS & color empty default

UL SEEl icku box | sy Conward & sort box | position
: 4 y ¢ A toCsS N A
L 1]

Request Ready Ready Start Picked Picked Placed Placed Process Sorting Ready Move

to for to transfer atW by R at PS by R complete complete for complete

retrieve retrieval receive | l next

g !

SC
Sc SC
sC Wait : : ‘ ; . sC
Ready until W & Wl for ta piciip PR AEIEIEE E | Wait for all components to complete
at W place at PS
PS ready

1

Figure 4.6: An illustration of supervisory control implemented in the benchmark model
for transfer of widgets from Warehouse to Color Sorter (Phase-1).

Firstly, SC sends a request to W to retrieve a full box of widget. W retrieves the box and
notifies SC that it is ready. Since there is no widget being processed at the PS oven, it is
automatically ready to receive a widget. Hence, it notifies SC about the same. As both
W and PS are ready, SC directs R to start the transfer of widget from W to PS. R moves
to W, picks up the widget and informs SC. Then, SC informs W about the pickup done
by robot so that W can store the empty box back in the rack. R moves with the widget
to PS and places it at the oven. As SC is notified by R about the widget placement, it
informs PS so that the processing can begin in the oven and be continued under the saw.
Lastly, SC waits for all the factory model components to complete their ongoing processes.
As the process is complete in PS; it forwards the widget to CS and informs SC about the
same. CS detects the widget color, sorts it accordingly and informs SC. By this time, W
has stored the empty box back in the rack and R has moved to its default position. When
all the components have completed their actions, SC goes back to its ready state.

Figure 4.7 illustrates the working of the benchmark model in Phase-2 i.e., the movement
of a sorted widget from Color Sorter back to the Warehouse. At the end of Phase-1 SC

34 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

comes back to its ready state and requests W to retrieve an empty box. At the same time,
it also requests CS if it is ready for retrieval of widget by Robot. When W is ready with an
empty box and CS is ready with a sorted widget, SC directs R to start the transfer of sorted
widget from CS back to W. R moves to CS and picks up the sorted widget, then moves to
W and places the widget in the empty box. As SC is informed about this placement, it
informs W about the same so that it can store the full box in the rack. Lastly, SC waits
for W to complete the storage process and R to move to its default position. When W is
ready for next process to begin and R has completed its move, SC goes back to its ready
state.

W cs w ‘ R I h R
Retrieve Check if Retrieved . W Move to
empty widget empty Moveto £ @pican. ‘ Store full box default
box sorted || box) Move to W E plaee ‘ /| position
4 A _4 S
Tt 1 T
Request heduest Ready peady start Picked Placed Placed R‘:g(riy Move
to store to f?r tostore transfer atCS at W by R complete
retrieve retrieval next
v !
- sC sC sC
= Wait until | Wait for R to »| WaitforR to Wait for W &
Ready W & CS pickup at CS place at W R to complete
ready

Figure 4.7: An illustration of supervisory control implemented in the benchmark model
for transfer of widgets from Color Sorter to Warehouse (Phase-2).

The process explained in Figure 4.6 and 4.7 is for a single widget present in the system.
During simulation of such a process in the benchmark model, graphs were obtained for
Simulink signal values versus simulation time. This is shown in Figure 4.8. The dotted
lines with a circle at the top represent the widget at various factory model components
and continuous lines represent input/output signals in the subsystems of the benchmark
model. The whole simulation process has been broken down into Phase-1 and Phase-2
wherein the individual actions of Warehouse (W), Robot (R), Processing Station (PS) and
Color Sorter (CS) and their communication to the Supervisory Control (SC) are depicted
in the graph.

In the benchmark model simulation, the same process was repeated for all nine widgets
such that Phase-1 of all the nine widgets was completed consecutively first. When all the
widgets were sorted by the Color Sorter, Phase-2 began and all the widgets were transferred
back to the Warehouse. This movement of widgets is visualized with the help of the graph
shown in Figure 4.9.

Methodologies and Applications of MathWorks Tools in MBSE 35

CHAPTER 4. IMPLEMENTATION AND TESTING

Timing measurements of actions involved in benchmark model with single widget
| | | \ L \

\ Phase 1 |
\ Phase 2 |
1 . L]) ° ® ° =
W waits | W stores, W
W retrieves | for Rto | empty | W waits for next | retrieves W waits for Rto | W stores
08 full hox pickup box L command from 5C :empty box place widget full box L
© - > t .} - =
T:u R waits for R | R | R moves R R
> 06 command | Rmoves moves moves I to CS & | moves | moves
—_ — | | - =
2 fromSCto |tow& foPS& to | picksup tow & to ~—
%" start picks up | places default R waits for next sorted | places | default
transfer widget ' at oven position command from SC widget | widget position
0.4 -« - ‘ T u -~ = r
| QOven Saw |
i pracesses processes i [— | Processing Station
| idget widget |
0.2 + ;._g—"_g. | - =
[} |
; cs detect_s Ico\or L [Color Sorter
I sorts widget
| > -
0 T \ T \ T \ T
0 20 40 60 80 100 120 140
Simulation time (s)
CSSortingComplete RPickedAtW * WidgetRToPS.WidgetNumber WBeltBusy
* WidgetCSStorage.WidgetNumber RPickedAtCS * WidgetFromRToW.WidgetNumber WReadyForNext
OvenProcessing RMoveCompleted WRequesiToRetrieve * WidgetAtWForR.WidgetNumber
PSProcessComplete RStartTransferWToPS WRequestToStore * WidgetAtWStorage.WidgetNumber
* WidgetPSToCS.WidgetNumber RsStartTransferCSToW WRackFeederBusy

Figure 4.8: Time graph of actions involved in benchmark model with only one widget in
Phase-1 and Phase-2.

Visualization of movement of nine widgets in the benchmark model

| | | | 1 I 1 L
‘ Phase 1 of 9 widgets
10 Phase 2 of 9 widgets ‘ I
0
Q0 -
s oo 1ot
© TR EERT
= QO 1o -
S TP
5 Vo o
@ LW
go iboii i -
(oo I
AR 1
700 800 900 1000 1100
Simulation time (s)
--© WidgetCSStorage.WidgetNumber ——RMoveCompleted - - WidgetRToPS WidgetNumber --0 WidgetAlWStoragé.WidgetNumber
OvenProcessing ——RStartTransferWToPS --< WidgetFromRToW.WidgetNumber --© WidgetAtWForR.WidgetNumber
--© WidgetPSToCS.WidgetNumber ——RStartTransferCSToW ——WRackFeederBusy

Figure 4.9: Graph for visualization of nine widgets moving through factory model com-
ponents in Phase-1 and Phase-2 of the benchmark model.

36 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

In Figure 4.9, the nine widgets can be distinctively recognized by the signal values ranging
from 1 to 9. The four dotted lines with circle top represent each widget in Phase-1 to be
located at Warehouse conveyor belt (blue), oven at Processing Station (green), conveyor
belt between Processing Station and Color Sorter (violet) and storage location at Color
Sorter (maroon). In Phase-2, widgets are represented to be located at Warehouse conveyor
belt (red) and Warehouse storage rack (pink).

To look closely into the working of the benchmark model for multiple widgets, the graph
of signal value versus simulation time was plotted for two widgets moving in Phase-1
and Phase-2. It was realized there were certain time periods where the factory model
components - Warehouse and Robot wait for the commands from Supervisory-Control for
a long time. Instead of performing the next action, they stay idle. These waiting periods
have been highlighted in Figure 4.10.

Waiting periods involved in the benchmark model with two widgets
| | I | I 1 1 1 | I I |

| Phase 1 of 15" widget ‘ Phase 1 of 2" widget |
‘ Phase 2 of 1°" widget | Phase 2 of 2" widget
2 9 9 9 o 0 L
1.5 - L
]
=
©
=
&1 W 77 7 7] T A B
N || Wowaits for W waitsfor | ' ;.
cgmmand from SCito command fromSCjto ' o — | Warehouse
! retrieve full box retrieve empty bdx
0.5 —| Rwaits fo b M7 27 ! | = |
: command]] R waits for : R waits for | R waits far . i
from 5C ta ! command from SC !l | command from SC ! command from SC ' L | Robot
tarttransfer || tostarttransfer of | | tostarttransfer of | to|start transfer of ' '
of 15 widgat] 27 widget ! 1**sorted widget 11219 sorted widget ' '
0% | T [T f T : T T — N T
0 20 40 60 80 100 120 140 160 180 200 220 240
Simulationtime (s)
--© WidgetCSStorage.WidgetNumber ——RMoveCompleted ~ -- © WidgetRToPS.WidgetNumber - WidgstAtWStorage. WidgetNumber
OvenProcessing ——RStartTransferWToPS --+< WidgetFromRToW.WidgetNumber --< WidgetAtWForR.WidgetNumber
--© WidgetPSToCS .WidgetNumber ——RStartTransferCSToW WRackFeederBusy

Figure 4.10: Time Graph highlighting the waiting periods involved in benchmark model
with two widgets in Phase-1 and Phase-2.

These waiting periods and the actions succeeding them were studied closely. It was ob-
served that there are certain actions that could be performed within these waiting periods.
These independent actions could be performed in parallel with each other and the pro-
cesses involved in factory model components Warehouse and Robot could be completed
faster. Hence, the Stateflow charts were modified for enabling the parallel execution of
these independent actions and are discussed in the next section.

Methodologies and Applications of MathWorks Tools in MBSE 37

CHAPTER 4. IMPLEMENTATION AND TESTING

4.2 Modified model with parallel execution of inde-
pendent actions

The modified Simulink subsystems and Stateflow charts of Supervisory Control and Robot
are depicted in Appendix C. The Warehouse subsystem itself was not modified but the
actions related to it were modified in the Supervisory Control subsystem.

Figure 4.11 explains the working of this modified model in Phase-1. Firstly, SC sends
a request to W retrieve a full box. Unlike the benchmark model, SC also directs R to
start transfer of widgets from W to PS. Therefore, R moves to W and waits there until W
retrieves a full box. As W is ready with a full box, it informs SC which, in turn, directs
R to pickup the widget from the box at W. After R picks up the widget and informs SC,
SC notifies W about the same so that it can store the empty box. In the meantime, R
moves to PS. Since there is no widget being processed at the PS oven, it is automatically
ready to receive a widget. Hence, it notifies SC about the same. SC directs R to place the
widget as soon as it reaches PS. When R successfully places the widget, it informs SC. SC
informs PS about the widget placement so that processing in the oven can be started and
be continued under the saw. Without waiting for the components to finish their actions,
SC returns to ready state. The independent actions of W storing the empty box, R moving
to its default position, PS processing the widget and CS sorting the widget are completed
in parallel without SC waiting for them.

y Y R F X ‘ R . 4 T‘\ { - PS
W Move W Pickup at PS R Process in
. . Store
Retrieve toW Retrieved W. Move Empty Place at oven & under
empty
full box & full box | to PS & box oven PS | saw. Forward
L J_wait N\ | P wait T to CS
Read
Request Start Riady Pickup Picked Picked ¥ Place Placed Placed
© transfer or at W at W by R at PS atPS by R

retrieval receive

! |

retrieve

e W sC w sC sC SC ’
Roet P Waituntil W [WaitforRto [Waituntii [WaitforRto |——
7 J ready ‘ pickup at W PS ready place at PS (‘

A
|

Figure 4.11: An illustration of supervisory control implemented in the modified model with
parallel actions for transfer of widgets from Warehouse to Color Sorter (Phase-1).

Figure 4.12 explains the working of the modified model in Phase-2. As SC is back to its
ready state at the end of Phase-1, it starts Phase-2 and sends a request to W to store a
sorted widget. At the same time, it directs R to move to CS and wait until a sorted widget

38 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

is ready for pickup. SC then requests CS for retrieval of a sorted widget. When CS informs
SC that a sorted widget is ready, SC directs R to pickup up the widget at CS. R informs
SC about the pickup at CS. Meanwhile, W completes its action of retrieving an empty box
and informs SC. SC directs R to place the widget at W after it reaches W. R places the
widget at the empty box at W and informs SC. SC passes this information to W so that
it can start storing the full box back to the rack. Without waiting for the components to
finish their actions, SC returns to ready state. The independent actions of W storing the
full box and R moving to its default position are completed in parallel without SC waiting
for them.

y Y \ (@ V- ™ y Y
gy Move S R M R w
Retrieve Check if Pickup at Retrieved
to CS . Place at Store full
empty widget CS. Move to empty
& - W box
\ box)| . sorted W & wait \ box |
h /_wait L _ b 4
N . | 1
Request Start Reduest Ready pickup picked Ready Place Placed Placed
tostore transfer © for arcs arcs tostore atW atW byR

retrieve retrieval

| ¢

SC SC sC SC
SC %ﬂ& Wait Wait for R —» Wait }—@(Wait for R %
Ready until CS to pickup until W | toplace at ;

ready at CS W

ready
Figure 4.12: An illustration of supervisory control implemented in the modified model with
parallel actions for transfer of widgets from Color Sorter to Warehouse (Phase-2).

Figure 4.13 depicts the graph obtained for the modified model with parallel execution of
independent actions containing only one widget in the system. It shows the movement of
widget in Phase-1 and Phase-2 wherein the individual actions of Warehouse (W), Robot
(R), Processing Station (PS) and Color Sorter (CS) and their communication to the Su-
pervisory Control (SC) are depicted. The dotted lines with a circle at the top represent the
widget at various factory model components and continuous lines represent input/output
signals in the subsystems of the modified model. It is important to notice that Phase-1
and Phase-2 overlap in this modified model as opposed to them occurring one after the
other in the benchmark model.

The simulation process was repeated for all nine widgets in the modified model such that
Phase-1 of all the nine widgets was completed consecutively followed by Phase-2 of all the
widgets. This movement of widgets is visualized with the help of the graph shown in Figure
4.14. Tt is important to notice that the end of Phase-1 of ninth widget and beginning of
Phase-2 of first sorted widget overlapped in the modified model. Moreover, the dotted
lines for widgets at different locations in the factory model in Phase-1 overlap each other
and are not plotted in a sequential manner as they were in the benchmark model. This
showed that the independent actions in the individual factory model components were
indeed performed in parallel.

Methodologies and Applications of MathWorks Tools in MBSE 39

CHAPTER 4. IMPLEMENTATION AND TESTING

Timing measurements of actions involved in modified model with parallel actions for single widget

| ! | | 1
12 Phase 1 |
| Phase 2 \
1 . 1 >—o . -
W rdtrieves | (W[| w sto}[es W retrieves ! W wiits for W stores full |
full box | Waills| empty box empty box | cominand from BC box .
0.8 b ! 0 : = =
o ' R | ' R j
= 'R | moves : 'R | moves :
© ' W] "
> - u .] -
= 06| R picks | to PS & R R wails for picks| to V] : L
=1 moves R up at| places maves sorfed up at & \
b toW | waits EW at oven to CS wTd.get E(;s placgs E
0.4 - <] T A r
s qen | sl |
' progesses processes ' :
0.2 :) : D B
: b & st :
E color & su:rts E \’> Color Sorter
i i —] "
0 I T \ T T T
0 20 40 60 80 100 120
Simulation time (s)
--® WidgetCSStorage.WidgetNumber ——RMovedToPS ® WidgetRToPS.WidgetNumber
OvenProcessing ~——RMovedToCS --® WidgetRToW.WidgetNumber
--® WidgetPSToCS.WidgetNumber ——RPickedAtCS ~— WRackFeeder1Busy
——RMovedToW ~——RStartTransferWToPS --® WidgetWToR.WidgetNumber
RPicked AtW ——RStartTransferCSToW - ® WidgetWStorage. WidgetNumber

Figure 4.13: Time graph of actions involved in the modified model with parallel actions
for only one widget in Phase-1 and Phase-2.

Visualization of movement of nine widgets in the modified model with parallel actions
1 | | | | |

Phase 1 of 9 widgets |
10 ‘ Phase 2 of 9 widgets ‘
9 ° o
8
E 7
4]
Z s > 9
© . H
c :
%ﬂ 5 @ @ ;
3 g9 i
2 ? 9
il IR
0 : 1 T \
0 400 500 600 700
Simulation time (s)
--© WidgetCSStorage.WidgetNumber ——RMoveCompleted - - WidgetRToPS WidgetNumber --0 WidgetAlWStoragé.WidgetNumber
OvenProcessing ——RStartTransferWToPS --< WidgetFromRToW.WidgetNumber --© WidgetAtWForR.WidgetNumber
--© WidgetPSToCS.WidgetNumber ——RStartTransferCSToW ——WRackFeederBusy

Figure 4.14: Graph for visualization of nine widgets moving through factory model com-
ponents in Phase-1 and Phase-2 of the modified model with parallel actions.

40 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

To examine the improvements in the performance of the modified model as compared to
the benchmark model, a graph of signal value versus simulation time was plotted for two
widgets moving in Phase-1 and Phase-2 as shown in Figure 4.15. It was noticed that
both Phase-1 and Phase-2 of the two widgets overlapped with each other. Moreover, the
graph showed that the most of the waiting periods of benchmark model were utilized to
perform independent actions in a parallel manner in the modified model. Hence, Math-
works tools assisted in performing parallel execution of actions in the factory model. This
implementation and its results answered the second research question formulated in this
project (RQ2).

Waiting periods involved in the modified model with parallel actions for two widgets

PAESE 1 of 15" wid e‘t |
Phase 1 of 2" widget |
| Phase 2 of 15 widget |
Phase 2 of 2" widget
2 - Q@ @ @ @ @ B
15
[}
S
© H
> g |
© i . I
§ 1 79 — -
0.5 B
R waits fori2m : 'R whits for| 27 :
widget at\w/| | empty box at i
0 — A A A
T T T T T T T T
0 40 60 80 100 120 140 160 180
Simulationtime (s)
--® WidgetCSStorage.WidgetNumber ~——RMovedToPS ® WidgetRToPS.WidgetNumber
OvenProcessing ~——RMovedToCS --® WidgetRToW.WidgetNumber
--® WidgetPSToCS.WidgetNumber ——RPickedAtCS ~— WRackFeeder1Busy
——RMovedToW RStartTransferWToPS --® WidgetWToR.WidgetNumber
RPickedAtW ——RStartTransferCSToW - ® WidgetWStorage. WidgetNumber

Figure 4.15: Time Graph highlighting the waiting periods involved in the modified model
with parallel actions for two widgets in Phase-1 and Phase-2.

A few waiting periods could still be spotted in the working of Warehouse and Robot, and
are highlighted in the graph shown in Figure 4.15. They were of two types:

e Warehouse waits to receive the sorted widget while the Robot is busy in getting the
widget from Color Sorter.

e Robot waits at the Warehouse to pickup or place while Warehouse is busy in retrieving
a full or empty box from the storage rack.

Through careful examination, it was realized that it was not possible to remove the remain-
ing waiting periods with the default configuration of the factory model setup. There was a

Methodologies and Applications of MathWorks Tools in MBSE 41

CHAPTER 4. IMPLEMENTATION AND TESTING

need to introduce multiple components or subcomponents of the Warehouse and Robot in
the factory model. These extra components would work in parallel to the existing compon-
ents, thereby, ensuring that at least one of them is always available for performing the next
action while the other one completes the previous action. In this project, the Warehouse
component was modified in Simulink such that it consisted of two rack feeders working in
parallel with each other. In this way, they could retrieve and store boxes consecutively to
and fro the storage rack and conveyor belt at the Warehouse. This model is explained in
the next section.

4.3 Modified model with two rack feeders

The modified Simulink subsystems and Stateflow charts of Supervisory Control and Ware-
house are depicted in Appendix D. In the Warehouse subsystem, two Stateflow charts were
added for each rack feeder and were connected to the main Stateflow chart of Warehouse.
All the other subsystems were the same as in the previous model for parallel execution of
independent actions.

Since the working of the Supervisory Control in this model was same as the previous
model, it is not explained again in this section. The decision making process involved in
the Warehouse subsystem with two rack feeders is demonstrated by the flow chart depicted
in Figure 4.16. Here, W refers to the Warehouse, SC refers to the Supervisory Control and
RF refers to rack feeder.

In Phase-1, W checks if there is a request from SC to retrieve a widget. If yes, then, W
checks if RF'1 is available. If yes, then RF1 is sent to retrieve a full box from the storage
rack. Then, W checks if RF2 is free. If yes, then RF2 is sent to retrieve another full
box from the rack. Even if RF1 is not available in the first place, it is checked if RF2 is
free and the same steps are followed. W checks if RF1 and RF2 have retrieved full boxes
successfully. If neither of them retrieves, then the W goes back to the step where it checks
for the SC request and repeats the procedure. If RF1 or RF2 retrieve full boxes, W checks
if the conveyor belt is free. If it is free, then priority is given to RF1 to place the full
box. If RF1 has not retrieved a full box, then RF2 is allowed to place the full box on the
belt. W informs SC that it is ready with a full box on the conveyor belt so that Robot
can pickup the widget. W then keeps checking if the Robot has picked up the widget. If
yes, then it will check if RF1 is free to store the empty box back to the storage rack. If
RF1 is busy, it will check if RF2 is free to store the box. Either RF1 or RF2 stores the
empty box at the storage rack. When one RF is busy in storing the empty box, W checks
if the other RF has retrieved another full box to place at the conveyor belt. If yes, then
it follows the same process as explained above. If not retrieved, then W goes back to the
initial step and checks if there is a new request from SC to retrieve a widget. If yes, then,
W directs the free RF to retrieve another full box from rack to the conveyor belt.

42 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

In Phase-2, a similar decision making process is followed for the storing of sorted widgets.
RF1 and RF2 retrieve empty boxes from the storage rack to the conveyor belt. W waits
for Robot to place widget into the empty box. RF1 and RF2 then store the full boxes back
to the storage rack.

SC request to
retrieve from W?

Send RF1 to
retrieve box

Send RF2 to
retrieve box

»~

Robot picked
widget? No

retrieved?

Conveyor
belt free?

Place retrieved box
on conveyor belt

Inform SC that W is ready

Figure 4.16: Flow chart showing the decision making process involved in the modified
Warehouse subsystem with two rack feeders.

Send RF1 to
store box

Send RF2 to
store box

The overall working of the supervisory control in this model was similar to the previously
modified model with parallel execution of independent actions. Hence, the signal value
versus simulation time graph for single widget is not depicted for this model. The sim-
ulation process was carried out for all nine widgets in the modified model with two rack
feeders at the Warehouse. This movement of widgets is visualized with the help of the
graph shown in Figure 4.17. It can be observed that the second widget in Phase-1 (repres-
ented by second blue dotted line with circle top) is retrieved by the Warehouse very quickly
after the first widget was retrieved (represented by first blue dotted line with circle top).
This indicates that RF2 was ready with the second widget and placed it on the conveyor
belt as soon as RF1 picked up the empty box of first widget. This process is followed

Methodologies and Applications of MathWorks Tools in MBSE 43

CHAPTER 4. IMPLEMENTATION AND TESTING

throughout the Phase-1 and Phase-2 where RF1 and RF2 work in parallel for retrieving
and storing full or empty boxes.

Visualization of movement of nine widgets in the modified model with two rack feeders

Phase 1 of 9 widgets |
10 | Phase 2 of 9 widgets ‘

Signal value

TR

o] 50 100 150 200 250 300 350 400 450 500 550 600 650
Simulation time (s)
CSSortingComplete RMovedToPS WidgelRToPS.WidgetNumber RF1Busy
-~ © WidgetCSStorage.WidgetNumber RMovedToCS © WidgetRToW.WidgetNumber RF2Busy
OvenProcessing RPickedAtCS WReguestToRetrieve])
--© WidgetPSToCS.WidgetNumber RStartTransferWToPS WRequestToStore *~© WidgetWToR.WidgetNumber

——RMovedToW RStartTransferCSToW © WidgetWStorage.WidgetNumber

Figure 4.17: Graph for visualization of nine widgets moving through factory model com-
ponents in Phase-1 and Phase-2 of the modified model with two rack feeders.

To closely examine this behavior, a simulation of this model was carried out with only
two widgets present in the system. The important actions in Warehouse (W) and Robot
(R) involved in this procedure are depicted in 4.18. The actions of RF1 and RF2 are also
marked for the reader to understand. In addition, the remaining waiting periods in the
working of the Warehouse are also highlighted. These waiting periods exist as the Robot
is busy completing its previous action and hence, cannot reach the Warehouse to complete
the next action. Therefore, an extra Robot component would be needed to remove these
waiting periods from the working of the factory model.

In this implementation, MathWorks tools helped in modifying the system architecture of
the factory model by adding another rack feeder in the Warehouse. Moreover, system
analysis using MathWorks tools suggested that a Robot should also be added in order
to optimize the system performance further. Hence, this implementation and its results
answered the third research question of this project (RQ3).

44 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

Waiting periods involved in the modified model with two rack feeders and two widgets

[Phase 1 of 15" widget

Phase 1 of 2™ widget

i~

|
Phase 2 of 15 widget
Phase 2 of 2" widget
. 9 ? [~}

1.8
16
[}
ERE
©
2 12
@
) 1 I E oo e 93 Bt i
i RF1&RF2| ! 1R | W waits | 7
08 retrieve. | i (RF2| W watts for AL {| RF2 || forand | RF1
RF1 places| | Places: 2™ widget 11 W waits for 1% | [stores | sorted | | stores ‘—
06 full box | full bax — pickup .11 sorted widget ||full box|/ widget | full box
- S e . R - =
04| R | i |Rmoves| Rmoves |Rmoves | R moves Rmoves | Rmoves || |
0 Moves { toPS& | toW& |toPS& toCS& |[toW&|| toCS& toW &! —
T tow ¢ |places | picks u places: | picks up | places || picks up laces |
o e Y M R e i . i
20 40 60 80 100 120 140 160
Simulation time (s)
CSSortingComplete RMovedToPS WidgetRToPS WidgetNumber —— RF1Busy
-~ © WidgetCSStorage.WidgetNumber RMovedToCS © WidgetRToW.WidgetNumber RF2Busy
OvenProcessing RPickedAtCS WReguestToRetrieve])
--© WidgetPSToCS.WidgetNumber RStartTransferWToPS WRequestToStore *~© WidgetWToR.Widgethumber
—RMovedToW RStartTransferCSToW © WidgetWStorage.WidgetNumber

Figure 4.18: Time Graph highlighting the waiting periods involved in the modified model
with two rack feeders and two widgets moving in Phase-1 and Phase-2.

Throughout the simulation processes of all the factory model implementations in Simulink,
the Simulink function block calculated the system throughput and logged the values. One
such example is shown in Figure 4.19. Using the throughput values logged in case of the
benchmark model, a graph was plotted for the system throughput versus simulation time
of ten hours. The simulation process included multiple iterations of movement of nine
widgets in the factory model.

o
o
s
N

0.01
0.008
0.006

0.004

Throughput (widgets/s)

0.002

System throughput of the benchmark model of factory
model in Simulink

e

9000 18000 27000 36000
Simulation Time (s)

Figure 4.19: Graph of system throughput of the benchmark model of factory model meas-
ured in Simulink simulation run over a period of ten hours.

Methodologies and Applications of MathWorks Tools in MBSE 45

CHAPTER 4. IMPLEMENTATION AND TESTING

In the first iteration, the throughput was zero during Phase-1 as no widgets were stored
in the Warehouse rack. As Phase-2 started, widgets were brought back to the storage rack
one by one. Hence, the throughput increased and reached a maximum value when the
ninth widget was stored. In Phase-1 of the second iteration, the Simulink function block
did not calculate throughput as there were no new widgets being stored in the rack. Thus,
the throughput value remained constant in the graph. As Phase-2 of the second iteration
started, the Simulink function block also started calculating throughput again. By this
point, the simulation time had increased significantly but the number of stored widgets
had been the same as they were in last iteration. Hence, the throughput dropped low to a
certain value. As more widgets were stored in the rack in Phase-2 of the second iteration,
throughput again increased to the maximum value reached in the first iteration.

In the beginning of each subsequent iteration, the throughput was constant during Phase-
1 and equal to the maximum value reached in the last iteration. Then, it dropped to a
lower value as Phase-2 started and then, increased to the maximum possible value as more
widgets were again stored in the Warehouse rack. This behavior can be clearly seen in
Figure 4.19. As the number of stored widgets increased over a period of ten hours, the
drops observed in throughput in the beginning of Phase-2 of each iteration became less
significant.

The total execution time for one widget as well as nine widgets were measured for every
implementation of the factory model in Simulink. Similarly, the system throughput was
measured for all the implementations in Simulink and average throughput was calculated
for each implementation. These values are shown in Table 4.1.

It was observed that the system performance of the factory model was improved with the
modifications introduced to the benchmark model. The total execution time for moving
one widget through the factory model was slightly decreased in the second implementa-
tion as compared to the first implementation. The total execution time for moving nine
widgets was drastically reduced in the second implementation because of parallel execu-
tion of independent actions. As a result, the system throughput improved in the second
implementation as compared to the first implementation.

As expected, the total execution time for one widget was nearly the same in the third
implementation as that in the second implementation. Owing to similarity in the overall
working of supervisory control in the two implementations, there could be very little change
in the total execution time for one widget. Moreover, the computation and instructions
were increased in case of the third implementation because of the complex decision-making
involved in the working of the two rack feeders. However, there was a significant reduction
in total execution time for nine widgets in the third implementation. Hence, an improve-
ment could also be seen in the system throughput.

46 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

Table 4.1: Comparison of total execution time and average system throughput of the

implementations of factory model in Simulink

Total Total
execution | execution Average system
S.No. imE;ZtEZ}r/ltrzioigslin time for time for | throughput over a
Simulink one nine period of ten hours
widget widgets (widgets/s)
(s) (s)
Benchmark model
(combination of
1 sequential and 112 960 0.0083
parallel execution of
actions)
Modified model with
2 parallel execution of 92 649 0.0127
independent actions
Modified model with
parallel execution of
3 independent actions 94 485 0.0164
and two Warehouse
rack feeders

As compared to the first implementation, the total execution time for nine widgets in
the third implementation was reduced approximately by 49% (halved) and the system
throughput was improved by 98% (doubled). Therefore, it was concluded that the third
implementation was the best model of factory model in Simulink with optimized system
performance. In this way, MathWorks tools helped in optimizing the overall performance of
a system developed using MBSE. This answered the first research question of this project

(RQ1).

4.4 Live-link between Simulink and Digital Twin

For publishing MQTT messages from Simulink to the Digital Twin in Prespective, the
Warehouse subsystem in the benchmark model was modified as shown in the Figure 4.20.
The highlighted red box shows that a MATLAB function block named as MQTT_Wrapper
was added and the input to the block was a signal called StartDigitalTwinRF from the
Warehouse Stateflow chart. The modified Stateflow chart of the Warehouse subsystem in
benchmark model is included in Appendix E.

Methodologies and Applications of MathWorks Tools in MBSE 47

CHAPTER 4. IMPLEMENTATION AND TESTING

iWarehouse_2.WStart @&——»(Start Started (55— >®iWarehouse_1.WStarted
. . StartDigital TwinRF input 4
iWarehouse_2.WRequestToRetrieve @#——»RequestToRetrieve e
1 MQTT_Wrapper
J | L [Widget | . [FIFO T T
—'@ | & | ‘ I ‘ \WidgetNew
- {3
Transport b -
De|apy Message Send 1 Entity Generalor 1 Entity Queue 1 ReadyToRetrieve f=——=®iWarehouse_1.WReadyToRetrieve

iWarehouse_2.WPicked @—— > Picked

WidgetToR e - ~8 WidgetToR

iWarehouse_2.WRequestToStore &———— > RequestToStore Message Receive 1

ReadyToStore - +@iWarehouse_1.\WWReadyToStore
1 t

{-}[FIFO
WidgetsFromR @—— — ‘WidgetFromR ! CalculateThroughput()
WidgetStorage s NumWidgets ~Throughput—
Message Send 2 Entity Queue 2
Storage Rack
) 9 Simulink Function 1 roughput
iWarehouse_2.WPlaced @ *|Placed ReadyForNextt——-»®iWarehouse_1.WReadyForNext
J
WarehouseSTM

Figure 4.20: Inclusion of a MATLAB function block in the Warehouse subsystem of bench-
mark model

Using the MQTT toolbox in MATLAB, a MATLAB code was written and added in Sim-
ulink as a function named MQTT _Wrapper. The code is given as follows:

© 0w N O U kW N

o
(=]

11
12
13
14
15
16
17
18

function MQTT Wrapper (input)

$%$Retain values in memory between function calls
persistent myMQTT;
persistent old_input;

%% Connect to MQTT broker only once
if isempty (myMQTT)

myMQTT = mgtt ('tcp://localhost','ClientID', 'myClient', "Port',1883)
end

%% Publish message to topic at broker if input value changes
new_input = input;
if (new_input # old_input)
input_json = jsonencode (input) ;
publish (myMQTT, 'Warehouse Simulink', input_json);
end
old_input = input;

Whenever the value of StartDigitalTwinRF signal was changed by the state actions in
Warehouse Stateflow chart, a new message was published by the MQTT_Wrapper MATLAB
function to the topic Warehouse_Simulink at the Eclipse Mosquitto broker. The broker
address was specified by line 9 in the code. Using the Prespective plugin for MQTT, the

48

Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 4. IMPLEMENTATION AND TESTING

Digital Twin model was configured by the engineers from Prespective such that it also
subscribed to the topic Warehouse_Simulink at the broker. Hence, the value received in
the MQTT message was used to rotate the DC motor of the rack feeder in the Warehouse
of Digital Twin. A negative integer value moved the rack feeder from the conveyor belt to
the storage rack at the Warehouse whereas a positive integer value moved the rack feeder
vice-versa. Figure 4.21 shows the simulation of benchmark model running in Simulink
along with the Digital Twin running in Prespective.

—— e —

@Oy d0|E® |6« i

EOH®SE

®

[}

Figure 4.21: The rack feeder in the Digital Twin (subscriber) moved by sending MQTT
messages from Simulink model (publisher).

In this way, a live-link between a Simulink model and a Digital Twin was successfully
created using MQTT messaging protocol. Therefore, this implementation answered the
fourth research question targeted in this project (RQ4).

Methodologies and Applications of MathWorks Tools in MBSE 49

Chapter 5

Conclusions and future work

The combination of MathWorks tools - Simulink, Stateflow, SimEvents and MATLAB,
considered in this project proved to be beneficial in improving the existing design of a
CPS developed using MBSE methodology. The supervisory-control of the Fischertech-
nik Factory Simulation 24V was successfully modelled, analyzed and modified using the
MathWorks tools.

With the help of the modifications introduced to the factory model in Simulink, the total
execution time for nine widgets was reduced to half of its value as in the original model.
Moreover, the system throughput in the fully modified implementation was doubled as
compared to the original model. Since the system performance of the factory model was
optimized by using the chosen MathWork tools, the first research question (RQ1) of this
project was successfully answered. The MathWork tools facilitated system analysis of the
factory model in such a way that long waiting time periods were discovered. To utilize these
waiting periods, the factory model was modified in Simulink such that independent actions
involved in the system development process were executed in parallel at the same time. In
this way, the second research question (RQ2) was answered in this project. Furthermore,
MathWorks tools helped in simulating the addition of an extra rack feeder at the Warehouse
of factory model. The system analysis of the modified model also suggested that an extra
Robot component would be needed to further improve the system performance. Therefore,
the role of MathWorks tools in the modification of factory model with an extra rack
feeder and the suggestion to add another Robot represented a fitting answer to the third
research question (RQ3) of this project. Lastly, MQTT networking protocol was used for
communication between the Warehouse subsystem of benchmark model in Simulink and
Digital Twin of factory model in Prespective. The establishment of this live-link answered
the fourth research question (RQ4) of this project.

For future work, it is recommended that another Robot component be added to the factory
model in Simulink. The first Robot could be used to execute Phase-1 of all widgets while

50 Methodologies and Applications of MathWorks Tools in MBSE

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the second Robot could be used to execute Phase-2 of the widgets as soon as the first
sorted widget is available at the Color Sorter. If the system analysis of this modified
model reveals a new bottleneck at the Warehouse, then, it is recommended to add another
conveyor belt at the Warehouse of the factory model in Simulink. The factory model could
be configured such that the first set of Warehouse rack feeder, conveyor belt and Robot
are responsible for carrying out Phase-1 of all the widgets while the second set of these
components are responsible for carrying out Phase-2 of the sorted widgets. The Digital
Twin of the factory model could be further improved to enable the movement of virtual
widgets. Then, the modifications to the factory model suggested by the Simulink models
in this project could be validated by implementing the same in Digital Twin. Moreover,
the Simulink model of the factory model could be configured to facilitate MQTT subscribe
such that messages from the Digital Twin could be received in Simulink via the broker.
After testing and validation with the Digital Twin is complete, the aspects of the modified
system design that are found to be feasible could be applied on the physical implementation
of the Fischertechnik Factory Simulation 24V.

Methodologies and Applications of MathWorks Tools in MBSE 51

References

1]

2]

[10]

M. Chen, “Industry 4.0: A deep drive into the future of factory,” 2020. [Online].
Available: https://oosga.com/en/industry4-0/

N. Jankevicius, “SysML model integration with MATLAB/Simulink,”
2015. [Online]. Available: https://www.nomagic.com/events/webinars/item/
webinar-6-2015-sysml-model-integration-with-matlab-simulink % C2% AE

VitechCorporation, “Simulink Connector Guide,” 2018. [Online].
Available: http://www.vitechcorp.com /support/documentation/genesys/600/
SimulinkConnectorGuide.pdf

Fischertechnik, “Factory Simulation 24V.” [Online]. Available: https://www.
fischertechnik.de/en/service/elearning /simulating/fabrik-simulation-24v

Deloitte, “Industry 4.0 and the Digital Twin,” 2020. [Online].
Available: https://www2.deloitte.com/cn/en/pages/consumer-industrial-products/
articles/industry-4-0-and-the-digital-twin.html

i SCOOP, “Industry 4.0: the fourth industrial revolution — guide to Industrie 4.0,”
2020. [Online]. Available: https://www.i-scoop.eu/industry-4-0/

Y. Lu, “Cyber Physical System (CPS)-based Industry 4.0: A survey,” Journal of
Industrial Integration and Management, vol. 02, p. 1750014, 11 2017.

EuropeanCommission, “Cyber - Physical Systems,” 2019. [Online]. Available:
https://ec.europa.eu/digital-single-market /en/cyber-physical-systems

M. Torngren and U. Sellgren, “Complexity challenges in development of cyber-physical
systems,” in Lecture Notes in Computer Science. Springer International Publishing,
2018, pp. 478-503. [Online]. Available: https://doi.org/10.1007/978-3-319-95246-8 27

J. P. Wade, R. S. Cohen, N. S. Bowen, and E. Hole, “Systems Engineering of Cyber-
Physical Systems: An Integrated Education Program,” in ASEE’s 123rd Annual Con-
ference & Exposition, New Orleans, LA, USA, June 26-29, 2016. Washington D.C.,
USA: ASEE, 2016.

52

Methodologies and Applications of MathWorks Tools in MBSE

https://oosga.com/en/industry4-0/
https://www.nomagic.com/events/webinars/item/webinar-6-2015-sysml-model-integration-with-matlab-simulink%C2%AE
https://www.nomagic.com/events/webinars/item/webinar-6-2015-sysml-model-integration-with-matlab-simulink%C2%AE
http://www.vitechcorp.com/support/documentation/genesys/600/SimulinkConnectorGuide.pdf
http://www.vitechcorp.com/support/documentation/genesys/600/SimulinkConnectorGuide.pdf
https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v
https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-24v
https://www2.deloitte.com/cn/en/pages/consumer-industrial-products/articles/industry-4-0-and-the-digital-twin.html
https://www2.deloitte.com/cn/en/pages/consumer-industrial-products/articles/industry-4-0-and-the-digital-twin.html
https://www.i-scoop.eu/industry-4-0/
https://ec.europa.eu/digital-single-market/en/cyber-physical-systems
https://doi.org/10.1007/978-3-319-95246-8_27

REFERENCES

[11] INCOSE, Systems Engineering Handbook, 4th ed. New Jersey, USA: John Wiley &
Sons, 2015.

[12] A. M. Madni and M. Sievers, “Model-based systems engineering: Motivation, current
status, and research opportunities,” Systems Engineering, vol. 21, no. 3, pp. 172-190,
2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sys.21438

[13] IBM, “Overview of Rational = Rhapsody,” 2020. [Online]. Avail-
able: https://www.ibm.com/support/knowledgecenter/SSB2MU 8.3.0/com.ibm.rhp.
overview.doc/topics/rhp_c_po_rr_product_overview.html

[14] NoMagic, “Cameo Systems Modeler ,” 2020. [Online]. Available: https:
//www.nomagic.com/products/cameo-systems-modeler#intro

[15] VitechCorporation, “Integrated software tools,” 2020. [Online|. Available: https:
www.vitechcorp.com/?page_id=311¢
itecl ? id=31160

[16] MathWorks, “Math. Graphics. Programming.” 2020. [Online]. Available: https:
//www.mathworks.com /products/matlab.html

[17] ——, “Simulation and Model-Based Design,” 2020. [Online]. Available: https:
//www.mathworks.com/products/simulink.html

[18] IBM, “Integrating Rational Rhapsody and the MathWorks Simulink,” 2020.
[Online]. Available: https://www.ibm.com/support/knowledgecenter/SSB2MU _8.3.
0/com.ibm.rhp.integ.designtools.doc/topics/rhp_c_int_rhp_and_simulink.html

[19] L. Xing-hua and C. Yun-feng, “Design of UAV flight control system virtual proto-
type using Rhapsody and Simulink,” in 2010 International Conference On Computer
Design and Applications, 2010, pp. 34-38.

[20] T. Sakairi, E. Palachi, C. Cohen, Y. Hatsutori, J. Shimizu, and H. Miyashita, “Model
based control system design using SysML, Simulink, and Computer Algebra System,”
Journal of Control Science and Engineering, vol. 2013.

[21] S. Dasgupta, “Integration with MATLAB,” 2019. [Online]. Available: https:
//docs.nomagic.com/display/CST185/Integration+with+MATLAB

[22] A. Nitsch, B. Beichler, F. Golatowski, and C. Haubelt, “Model-based systems en-
gineering with MATLAB/Simulink in the railway sector,” in Methoden und Bes-
chreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen

(MBMYV), 2015.

(23] MathWorks, “Model-based design of cyber-physical systems in MATLAB and
Simulink,” 2020. [Online]. Available: https://www.mathworks.com/discovery/
cyber-physical-systems.html

Methodologies and Applications of MathWorks Tools in MBSE 53

https://onlinelibrary.wiley.com/doi/abs/10.1002/sys.21438
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.ibm.rhp.overview.doc/topics/rhp_c_po_rr_product_overview.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.ibm.rhp.overview.doc/topics/rhp_c_po_rr_product_overview.html
https://www.nomagic.com/products/cameo-systems-modeler#intro
https://www.nomagic.com/products/cameo-systems-modeler#intro
https://www.vitechcorp.com/?page_id=31160
https://www.vitechcorp.com/?page_id=31160
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.ibm.rhp.integ.designtools.doc/topics/rhp_c_int_rhp_and_simulink.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.ibm.rhp.integ.designtools.doc/topics/rhp_c_int_rhp_and_simulink.html
https://docs.nomagic.com/display/CST185/Integration+with+MATLAB
https://docs.nomagic.com/display/CST185/Integration+with+MATLAB
https://www.mathworks.com/discovery/cyber-physical-systems.html
https://www.mathworks.com/discovery/cyber-physical-systems.html

REFERENCES

[24]

[25]

[34]

[35]

[37]

——, “Model and simulate decision logic using state machines and flow charts,”
2020. [Online]. Available: https://www.mathworks.com/products/stateflow.html

——, “Model and simulate message communication and discrete-event systems,”
2020. [Online]. Available: https://www.mathworks.com/products/simevents.html

——, “Design and analyze system and software architectures,” 2020. [Online].
Available: https://nl.mathworks.com/products/system-composer.html

, “MATLAB and Simulink for Model-Based Systems Engineer-
ing,” 2020. [Online]. Available: https://www.mathworks.com/solutions/
model-based-systems-engineering.html

Verum, “Discover Dezyne - Formal verification & model driven development,” 2019.
[Online]. Available: https://www.verum.com/dezyne/

BeagleBoard.org, “BeagleBone Black.” [Online]. Available: https://beagleboard.org/
black

Maplesoft, “Industry 4.0 and the power of the Digital Twin,”
2020. [Online]. Available: https://www.maplesoft.com/ns/manufacturing/
industry-4-0-power-of-the-digital-twin.aspx

Prespective, “Merging virtual and physical worlds,” 2020. [Online|. Available:
https://prespective-software.com/prespective/

OASIS, “MQTT: The standard for IoT messaging,” 2020. [Online]. Available:
https://mqtt.org/

R. Sanvordenker, “Visualization and testing of an autonomously driving truck’s
SysML models in a virtual 3D simulation environment,” Master’s thesis, Eindhoven
University of Technology, 2020.

MathWorks, “Compose and analyze a system,” 2020. [Online]. Available: https://
www.mathworks.com /help/systemcomposer/gs/compose-and-analyze-a-system.html

——, “Publish MQTT Messages and Subscribe to Message Topics,” 2020.
[Online]. Available: https://www.mathworks.com/help/supportpkg/raspberrypi/ref/
publish-and-subscribe-to-mqtt-messages.html

—, “MQTT in MATLAB,” 2020. [Online]. Available: https://www.mathworks.
com/matlabcentral/fileexchange/64303-mqtt-in-matlab

——, “Create custom functionality using MATLAB function block,”
2020. [Online]. Available: https://www.mathworks.com/help /simulink /ug/
creating-an-example-model-that-uses-a-matlab-function-block.html

54

Methodologies and Applications of MathWorks Tools in MBSE

https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/simevents.html
https://nl.mathworks.com/products/system-composer.html
https://www.mathworks.com/solutions/model-based-systems-engineering.html
https://www.mathworks.com/solutions/model-based-systems-engineering.html
https://www.verum.com/dezyne/
https://beagleboard.org/black
https://beagleboard.org/black
https://www.maplesoft.com/ns/manufacturing/industry-4-0-power-of-the-digital-twin.aspx
https://www.maplesoft.com/ns/manufacturing/industry-4-0-power-of-the-digital-twin.aspx
https://prespective-software.com/prespective/
https://mqtt.org/
https://www.mathworks.com/help/systemcomposer/gs/compose-and-analyze-a-system.html
https://www.mathworks.com/help/systemcomposer/gs/compose-and-analyze-a-system.html
https://www.mathworks.com/help/supportpkg/raspberrypi/ref/publish-and-subscribe-to-mqtt-messages.html
https://www.mathworks.com/help/supportpkg/raspberrypi/ref/publish-and-subscribe-to-mqtt-messages.html
https://www.mathworks.com/matlabcentral/fileexchange/64303-mqtt-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/64303-mqtt-in-matlab
https://www.mathworks.com/help/simulink/ug/creating-an-example-model-that-uses-a-matlab-function-block.html
https://www.mathworks.com/help/simulink/ug/creating-an-example-model-that-uses-a-matlab-function-block.html

REFERENCES

[38] —, “Control ~ Chart Execution by Using Temporal Logic,”
2020. [Online]. Available: https://www.mathworks.com/help /stateflow /ug/
using-temporal-logic-in-state-actions-and-transitions.html

[39] ——, “View Data in the Simulation Data Inspector,” 2020. [Online]. Available:
https://www.mathworks.com /help /simulink /ug/populate-sdi-with-your-data.html

[40] ——, “Function defined with Simulink blocks,” 2020. [Online]. Available:
https://www.mathworks.com /help/simulink /slref/simulinkfunction.html

[41] Eclipse, “Eclipse Mosquitto - An open source MQTT broker,” 2020. [Online].
Available: https://mosquitto.org/

Methodologies and Applications of MathWorks Tools in MBSE 55

https://www.mathworks.com/help/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/simulink/ug/populate-sdi-with-your-data.html
https://www.mathworks.com/help/simulink/slref/simulinkfunction.html
https://mosquitto.org/

Appendix A

Architecture model in System
Composer

The system architecture of the factory model as modelled in System Composer is depicted
in Figures A.1 and Figures A.2. It consisted of five components named as SupervisoryCon-
trol, Warehouse, Robot, ProcessingStation and ColorSorter. The interfaces were named as
iWarehouse, iRobot, iProcessingStation and iColorSorter.

>
SupervisoryControl u
< SupervisoryControl_2 >
P> iWarehouse_1 : iColorSorter 2 >
< iWarehouse_2 iColorSorter_1 <
A v A v
7 B 7 N
T © |
-2 e 5 o § 5
)] [+)} = =
T N E % pi < = o~
o v 2 2 n 2] o =
@ 7]) @ = b= o a
3 3 — o~ 5} o £ £ = b=
3 3 - & S e 2 2 @ 3
g 2 I L
= = 4 z [a Q Q
A v = A v > A V A v >
Warehouse Robot ProcessingStation “ | ColorSorter
< Warehouse_2 > < Robot_2 > | < ProcessingStation_2 > < ColorSorter_2 >

Figure A.1: Components in the architecture model of the factory model in System Com-
poser.

56 Methodologies and Applications of MathWorks Tools in MBSE

APPENDIX A. ARCHITECTURE MODEL IN SYSTEM COMPOSER

Interfaces P X

FEE &
Source: Factory_model_2.sldd

[»iColorSorter

B » iProcessingSystem

[» iRobot

] » iWarehouse

Figure A.2: Interfaces in the architecture model of the factory model in System Composer.

Methodologies and Applications of MathWorks Tools in MBSE 57

Appendix B

Benchmark model

B.1 Warehouse subsystem

SC_in.WStart @ ————»Start Started|———»® SC_out.WStarted

WStarted
. . TriggerRetrieveWidget "
SC_in.WRequestToRetrieve @ » RequestToRetrieve WTrigger
‘ o o ReadyToRetrieve e — e - >@ yToRetiove SC_out.WReadyToRetrieve
J\/ ‘ ‘Z’ —> WidgetNew o @
) WidgetToR — - >.— WidgetToR
Transport \essage Send Entity Generator Entity Queue WidgetAtWForR)
Delay Message Receive
SC_in.WPicked @————>{Picked ReadyToStore WReadyToStore S(_'J_out.WReadyToStore'r
CalculateThroughput()
WidgetStorage H —>1NumWidgets Throughput
. WidgetAtWStorage
SC_in.WRequestToStore ® > RequestToStore Storage Rack S Fam Throughput
- RackFeederBusy RackFeederBusy SC_out.WRackFeederBusy
WidgetFromR |Z WidgetFromR
BeltMoving——————»@® SC_out.WBeltBusy
WBeltBusy -

Message Send 2 Entity Queue 2

ReadyForNext: SC_out.WReadyForNext

SC_in.WPlaced @———»{Placed WReadyForNext

WarehouseSTM

Figure B.1: Inside the Warehouse subsystem in Simulink.

58 Methodologies and Applications of MathWorks Tools in MBSE

APPENDIX B. BENCHMARK MODEL

Name Scape Port DataType InitialValue
(%) Start Input 1 double
[RequestToRetrieve Input 2 double
=/ WidgetNew Input 3 Bus: Widget
() Picked Input 4 double
() RequestToStore Input 5 double
=l WidgetFromR Input 6 Bus: Widget
(%) Placed Input 7 double
(i) NextState Local boolean false
(5 AtRack Local boolean false
(i) Started Output 1 double 0
(%) TriggerRetrieveWidget Output 2 double 0
(i ReadyToRetrieve Output 3 double 0
=/ WidgetToR Output 4 Bus: Widget
(i ReadyToStore Output 5 double 0
=/ WidgetStorage Output 6 Bus: Widget
(i) RackFeederBusy Output 7 double 0
(%) BeltMoving Output 8 double 0
(i) ReadyForNext Output 9 double 0

Figure B.2: Information of input and output signals used in the Warehouse Stateflow chart
(from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE 59

BENCHMARK MODEL

APPENDIX B.

"JIRYD MOTJOYRIS OSTIOTDIBAN O} OPISU] :¢"¢] 9INSJI]

[xenu0hpeay]

‘ann=ajeISIXaN
‘es[e) = oRuY
1 = Bumopneg
10 = Asnguepaagyoey
{(08s'01) Joye U0 | [yoexiy 93 Si0iS0LISENbAY]

= ASngopas poey [+
0 = oo Apesy
‘asie) =alRISHON

= XaNI0JApeay

fany) = Yoeyly
‘(a6e10)518BPIM Y WoIH18BPIA)pIEMIO)
ywoi1ebpiw uo
‘es[e) = 9RISIXeN

[oreisien] |
3131dWOO_39VHOLS 1390l | 2 X08 ALINI IATNMLIY LIv)
(R BI=oEISHel
u ‘asjey = YoeulY
‘an)) = BlEISIXON A ESISHON] P ‘ony = lRISIKeN {| =Bunoiieg | 8518} == YoexIY 93 2101501 159nbaY]
‘0=Asnguepsepoey ‘1=Asnguepse-poey 1| = BunoNeg Same i) 10 = Buiopeg 10 = Asnguepaappoey fo—

85'G 1) Joye U0 /

| = Asngepaayory
0 = XeNuoApeay
‘osie) =ojeISION

10 = Bunoeg o = (035'|) Joye Uo
iy [oveisixeN] ‘0 = aJ0)s0LApESy .
:(08s']) Jaye uo (paderd) yi | [e1@381XeN] ‘asje} = apeigixeN | [21EISXEN] ‘3518 = SIBISION [oye15yxeN]
‘as[e) = SRISIXON ‘osie = BIRISIXON

(08501)10)e UO
‘asje} = SleISIeN

[asixen]
X08 ALdW3AQv3Y, £71138 HOAZANOD IAOW_LIV/

08 TINd 3¥OLS, 1138 MOAIANOD IAOW_LIVA,

NIW3OV1d LIDAIM ™ LIV/

L XO8 ALINI FAIINLIY LI/
= papgyg | [MeIs](0as' 1)iaye

‘en=oieISIeN

‘osie) = YorulY 3

| = Buinoiieg

= 196pIMaASLIONIBBUL.
0 = Asnguepsayoey
{(085°0}) Jolye Uo

| = Asngsapsa poey I

Q3.1VLS,

ton)) = SJRISION
pus {| = anaueyoL Apeay

‘ony) = SleISIXeN nj = BJEISIXON

- ERISVE] . T
| =hsngiepse ey on = SpEISHON (MOLIOBPIAMONIOBPIMPIEMI0} Pl (R 0 = PONI0IAPERY 7 [yoeagy ' aroutexoLisaNbo:
My MONIBPIV Lo 0 = 196PIMENOMIORBBUL o = omspen
{0 = onsuiarjoL Apeay ‘asie = 9eISHeN [~ [armigixan] ‘asfe) = SlEISIXAN S _
‘osie) = aigpon | [21eISHeN] (pooid) | [ere1sixen] osie) = X0 TIN4"ININLIY LV

‘as|e} = SjeISIXaN X08 1IN4-AQV3Y

1139 ¥OAIANOO IAOW LIV/

21138 HOAIANOD IAOW LIV/

dNY0Id139AIM™LIV/ ‘onij=0jeISIXON

[everspeen] =

[05[6) == YORNIV $'3 SNOUISHOLIS

= snguapas ppey
0 = XoNJo3Apeay
‘as|e} = SIRISIXON

(00s'0| Jieye uo
‘os[e} = SleISIXeN

X08 ALdW3 3HOLS 17X08 TIN4 3AIIYLIY LIV

[xeNJoApeay]

Methodologies and Applications of MathWorks Tools in MBSE

60

APPENDIX B. BENCHMARK MODEL

B.2 Robot subsystem

Started | —..——»® SC_out.RStarted

RsStarted

SC_in.RStart @—»Start

PickedAtW —————»>@® SC_out.RPickedAtW

RPickedAtW

SC_in.RStartTransferWToPS @ —» StartTransferWToPS \yiggetToPS = @ L >@ WidgetToPS

WidgetRToP

Message Receive 1
PlacedAtPS [— -—>® SC_out.RPlacedAtPS

RPlacedAtPS

- FIFQ
WidgetFromw @ [><] = =95 WidgetFromw

PickedAtCS MReickeancs @ SC_out.RPickedAtCS

Message Send 1 Entity Queue 1

T

SC_in.RStartTransferCSToW @—»{StartTransfercSTow WidgetToW e cers @ @ WidgetToW
Message Receive 2
PlacedAtW | ——>@®SC_out.RPlacedAtW

RPlacedAtW

. FIFO
WidgetFromCS @—» g = WidgetFromCS

MoveCompleted .- »@ SC_out.RMoveCompleted
Message Send 2 Entity Queue 2)

RobotSTM

Figure B.4: Inside the Robot subsystem in Simulink.

Name Scape Port DataType InitialValue
(50 Start Input 1 double
(%) StartTransferWToPS Input 2 double
= WidgetFromW Input 3 Bus: Widget
(5 StartTransferCSTow Input 4 double
= WidgetFromCS Input 5 Bus: Widget
() NextState Local boolean false
(=) Started Output 1 double 0
(5 PickedAtW Output 2 double 0
= WidgetToPS Output 3 Bus: Widget
(%) PlacedAtPS Output 4 double 0
(=) PickedAtCS Output 5 double 0
=l WidgetToW Output 6 Bus: Widget
(&) PlacedAtw Output 7 double 0
() MoveCompleted Output 8 double 0

Figure B.5: Information of input and output signals used in the Robot Stateflow chart
(from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE 61

BENCHMARK MODEL

APPENDIX B.

¢l = pajojdwoDanop

:(09s‘G)Jaye uo [*
‘0 = MIVpa2e|d

‘as|ey = S)eISIXaN

Z23.173dW0D 0L LIVM,

{| = pajojdwoDanop

"JIRTD MOJoYRIS 10Oy 91} 9PISU] :9°¢] INSJIy]

‘anu) = Sje)SIXeN
‘L = Mivpade|d
-0 = SOPadld

(MoL38BPIM ‘SOW0IABBPIAN) premioy |-

:SOWol43ebpIAL Uo
‘as|e} = S)eISIXaN

[eyersixen]

M1V 30V1d

‘anl) = 9)eISIXaN
‘L = Sdivpadeld
‘0 = MIVPaxoild

:(09s‘G)1aye uo |-

‘0 = SdIvpeoeld | [e1EISIXeN]

‘as|e} = S)eISIXoN

13173dNOD 0L LIVM,

(SdOL18BPIM ‘MWOI4}eBPI) piemio)
:Mwol4326pipp uo
‘os|e} = 9)eISIXoN

Sd 1V 30vid

[pajejdwonano]

‘anl) = 9je)SIXaN
‘1 = SOIvpaxdIld
:(08s(|)Joye uo

‘any} = 9)e)SIXaN
(098])Jaye uo |

[e1B1SIXON] -ose} = a)eISIXeN [e1ISIXeN] {0 = paje|dwodanopy
o ‘os|e} = 9)eISIXaN
M OL IAOW o

SO 1V XOId

fonu) = 9)ejSIXeN

‘anJ) = 9JeISIXaN ‘L = MIvPeNald
:(09s‘QL)1oye uo [~ {(088°0 |)Jeye o
[ereisixeN] | ogpey = sjeigixeN | [G1EISIXEN]) = TGy

‘as|e} = S)eISIXoN

Sd 01 3A0W

M1V MOId

[par

jo|dwoDanop]

AN

S—

[sdormiasuelers]

[MoLSOsjsuBIEIS] \

31al

Methodologies and Applications of MathWorks Tools in MBSE

62

APPENDIX B. BENCHMARK MODEL

B.3 Processing Station subsystem

Started| 5oc.——>@ SC_out.PSStarted

PSStarted
SC_in.PSStart @ —»{Start
ReadyToReceive | 5o - »@SC_out.PSReadyToReceive

PSReadyToReceive

WidgetToCS Frsmmsmses——31 [—>@ WidgetToCS
WidgetFromR%@ ‘JF”:H =8 WidgetFromR-~ Message Receive
Message Send Entity Queue - OvenProcessing|5,———————»®SC_out.OvenProcessing

PSProcessComplete | s————»@ SC_out.PSProcessComplete

PSProcessComplete

W[dgeton Belt PSWidgetOnCSBelt

- J WidgetOnCSBelt
ProcessingStationSTM

SC_in.PSPlaced @ —»|Placed

Figure B.7: Inside the Processing Station subsystem in Simulink.

Name Scape Port DataType InitialValue
(&) Start Input 1 double
= WidgetFromR Input 2 Bus: Widget
(=) Placed Input 3 double
(5 NextState Local boolean false
(&) Started Output 1 double 0
(%) ReadyToReceive Output 2 double 0
= WidgetToCS Output 3 Bus: Widget
() OvenProcessing Output e double 0
(5 PSProcessComplete Output 5 double 0
(5 WidgetOnBelt Output 6 double 0

Figure B.8: Information of input and output signals used in the Processing Station State-
flow chart (from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE 63

APPENDIX B. BENCHMARK MODEL

{| = 9)9|dwoDSS90014Sd
fL = 12guOIebpIM

{(sD0L19BpIN “Hwoi41eBpIA)piemIo) |,

“HwoI1eBPIM UO [[B1E151XEN]

3131dWOD SS300¥d

"JIRTD MOJoIR}S UOIYe}S SUISSAI0IJ oY) opIsU] ¢ ¢ oInSI

{0 = BuISS82014UBAQ pus

‘onu) =9Je)SIXaN
:(0es‘g |)laye uo
{| = Buisse@201quanQ |-
‘as|e} = dJeISIXaN [[e1e)1SIXeN]

‘any) = S)e)SIXaN
‘0 = 9)9|dwoYss9a201dSd
{0 = @AoeyoL Apeay |,
(1 == paoeId! |[51e151%eN]
‘os|e} = 9jeISIXaN

‘any) = 9)eISIXaN
(o@s ‘) Jepye uo |
‘os|e} = SJRISIXeN [o1e1gyxan]

ONISSIO0Hd MVS

ONISS300¥d NIAQ _ _
N3IW3OV1d 139dIM LIVM

[e10]dwoyssa001dSd]

‘any} = SjejSIXaN
{| = 9A1909Y0] Apeay
‘0 = 19guUOIeBPIM |

{| = paues | . ‘
osiE) = rEiaeN [Meig](oss’))1oye

AQv3y

Methodologies and Applications of MathWorks Tools in MBSE

64

APPENDIX B. BENCHMARK MODEL

B.4 Color Sorter subsystem

SC_in.CSStart®—————————»|

WidgetOnCSBelt

WidgetFromPS.=>{ =Y }%HFH‘ }%

Message Send Entity Queue

SC_in.CSRequestToRetrieve @,

Start

Started —-.————»@® SC_out.CSStarted

CSsStarted

WidgetSorted WidgetCSStora_ge @

WidgetOnBelt

WidgetFromPS

WidgetAtLocation

RequestToRetrieve CSSortingComplete

Readl}%&ﬁé’ﬁieve

—>@ WidgetToR

SReadyToRetrieve

CSWidgetAtLocation

CSSortingComplete

/

ColorSorterSTM

Message Receive
»® SC_out.CSReadyToRetrieve

F oo »®SC_out. CSWidgetAtLocation

F————»@SC_out.CSSortingComplete

Figure B.10: Inside the Color Sorter subsystem in Simulink.

Name Scape Port DataType InitialValue
(=) Start Input 1 double
(5 WidgetOnBelt Input 2 double
= WidgetFromPS Input 3 Bus: Widget
() RequestToRetrieve Input 4 double
() NextState Local boolean false
(&) Started Output 1 double 0
= WidgetSorted Output 2 Bus: Widget
(%) ReadyToRetrieve Output 3 double 0
(=) WidgetAtLocation Output 4 double 0
(5] CSSortingComplete Qutput 5 double 0

Figure B.11: Information of input and output signals used in the Color Sorter Stateflow
chart (from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE

65

APPENDIX B. BENCHMARK MODEL

‘anJ} =ajeISIXaN

‘| = 9y9|dwonbuiossH

‘] + UONEOOYISBPIA = UOIEOT}YISBPIA

{(PoHOSIOBPIM ‘SdWOI1eBPIM) premioy
:Sdwoi438bpIpp uo [

‘as|e} = 9)e}SIXON

139aIM 103r3

"JIRYD MOJJRYRIS I91I0G I0[0)) 91} 9PISU] g1 ¢ 2In3I,]

pus
‘anu} = 9)eISIXeN
| - UOIE2OTHIBBPIM = UOIEI0TIVISBPIM
== 9A8LI}9Y0] }sanba
© = o &mﬁ%wwm__ B [orsLIaY01ISaNbaY B 0<UONEOOTIVISBPIM]

‘as|e} = 8JeISIXeN ~

IVAIIYNLIY HO4 AQYIY 139AIM .

\

N\
[ereisIxeN] N\ .
/,/

‘any} = 9)eISIXeN e

aul| abelo)s 1sayue}y, (99s /) Jaye uo
‘0 = ay1dwoobuoSSD

‘as|e} =9)e)SIXaN

1| ‘0 =enemenolhpesy
‘| = payelg

[reguoebpinn] -8s|ej = 9JBISIXON |

[e1E3SIXON]
1390IM 1H0S

QILUVLS [Heis](0ss’|)1oye Eple]

Methodologies and Applications of MathWorks Tools in MBSE

66

Methodologies and Applications of MathWorks Tools in MBSE

67

APPENDIX C. MODIFIED MODEL FOR PARALLEL EXECUTION OF

INDEPENDENT ACTIONS

Appendix C

Modified model for parallel execution
of independent actions

C.1 Modifications in the Supervisory Control subsys-

tem

W_in.WStarted—fit—+
R_in.RStarted>—{i}
PS_in.PSStarted>—fi}
CS_in.CSStarted—}—+
W_in.WReadyToRetrieve-—{i}
PS_in.PSReadyToReceive—fit—
R_in.RMoved ToWo—i}—+
R_in.RPickedAtWe—fi}—
R_in.RMovedToPS+—i}
R_in.RPlacedAtPS—fi}+
W_in.WReadyForNext—i—
R_in.RMoveCompleted-—i}
PS_in.OvenProcessing-—fi—
PS_in.PSProcessCompleteo—}—
CS_in.CSSortingComplete-—l—
W_in.WReadyToStore—i}
CS_in.CSReadyToRetrieveo—fil
R_in.RMovedToCSe—fi}
R_in.RPickedAtCSe—i}—

R_in.RPlacedAtWo—fi}

StartedWarehouse
StartedRobot
StartedPS
StartedCS
\WReadyToRetrieve
PSReadyToReceive
RMovedToW
RPickedAtW
RMovedToPS
RPlacedAtPS
\WReadyForNext
RMoveCompleted
OvenProcessing
PSProcessComplete
CSSortingComplete
\WReadyToStore
CSReadyToRetreive
RMovedToCS
RPickedAtCS

RPlacedAtW

StartWarehouse|
StartRobot

StartPS

StartCS
WRequestToRetrieve
RStartTransferWToPS
RPickupAtWi|

WPicked

RPlaceAtPS
PSPlaced
WRequestToStore|
CSRequestToRetrieve|
RStartTransferCSToW
RPickupAtCS
CSPicked

RPlaceAtW

WPlaced

SupervisoryControlSTM

—W_out.WStart
—R_out.RStart
—PS_out.PSStart
—CS_out.CSStart
—W_out.WRequestToRetrieve
—R_out.RStartTransferWToPS
R_out.RPickupAtW
—W_out.WPicked
—R_out.RPlaceAtPS
—PS_out.PSPlaced
—W_out.WRequestToStore
—CS_out.CSRequestToRetrieve
—R_out.RStartTransferCSToW
R_out.RPickupAtCS
—CS_out.WPicked
—-R_out.RPlaceAtW

—W_out.WPlaced

APPENDIX C. MODIFIED MODEL FOR PARALLEL EXECUTION OF

INDEPENDENT ACTIONS
Name Scape Port DataType InitialValue

StartedWarehouse Input 1 double

StartedRobot Input 2 double

StartedPS Input 3 double

StartedCs Input 4 double
WReadyToRetrieve Input 5 double

PSReadyToReceive Input 6 double

RMovedToW Input 7 double

RPickedAtwW Input 8 double

RMovedToPS Input 9 double

RPlacedAtPS Input 10 double

WReadyForNext Input 11 double

RMoveCompleted Input 12 double

OvenProcessing Input 13 double
PSProcessComplete Input 14 double
CSSortingComplete Input 15 double

WReadyToStore Input 16 double
CSReadyToRetreive Input 17 double

RMovedToCS Input 18 double

RPickedAtCS Input 19 double

RPlacedAtwW Input 20 double

NextState Local boolean false
Count1 Local double 0
Count2 Local double 0
TransferWToPS Local boolean false
TransferCSToW Local boolean false
X Local double 0
StartWarehouse Output 1 double 0
StartRobot Output 2 double 0
StartPs Output 3 double 0
Startcs Output 4 double 0
WRequestToRetrieve Output 5 double 0
RStartTransferWToPS Output 6 double 0
RPickupAtW Output 7 double 0
WPicked Output 8 double 0
RPlaceAtPS Output 9 double 0
PSPlaced Output 10 double 0
WRequestToStore Output 11 double 0
CSRequestToRetrieve Output 12 double 0
RStartTransferCSToW Output 13 double 0
RPickupAtCs Output 14 double 0
CSPicked Output 15 double 0
RPlaceAtwW Output 16 double 0
WPlaced Output 17 double 0

Figure C.2: Information of input and output signals used in the Supervisory Control
Stateflow chart modified for parallel actions (from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE 69

MODIFIED MODEL FOR PARALLEL EXECUTION OF

APPENDIX C.

INDEPENDENT ACTIONS

pus
fonn = GlRISIXON
$1=POOEIGM
0 = MIVeOeIdY
(Mvpadeidy) i
pus
| = l0iSonsenbom
(x> Zun0D 9 x=<}junoD 33 XONI0IApEBM) JiosIe
| = oroujoNoLISENbONM
(0 == ZIUN0D B8 X>LUN0D T8 HONIO-IAPEINM) J
‘a5fe) = GIEISIXON

2 H34SNVHLHSINIG,

‘suorjoe [o[rered I10J PoyIpoul }IeTD MOPoJe)S [013U0)) ATosiaTodng oy} opisu] :¢ 1) oInSiy

— [oeision]

pua

0 = axoiSoLIsenboyM tona = orergMON

101501 Apea 1, =50vdmpIGY
(oSl zﬁ: ‘0=80IvdnyoIdy 10 = eABLIEHOLISNDOYSD
0= 0= ML P (enenex0LApEOYSD) i \
0 = POXIIdSO
(MOLPOAOW) (sowpexoigy) 4 | TEISON] pus \

‘asje} = GIeISIXeN 10 = MOLSOIBjSURI LUEISY

05iE) = GIISHON |
o 00LPRAONY) J
N ER) SO LV MOld, ‘9s|e) = SIRISKON.
YIISNWHL MOLSO LMVLS,
pua
{0 = Zunog%,

0= HUnooY,
(x =< Z1un0D ¥3 X =< |1UNOD) Jies|e
se0uanbes yjoq 1eadey %

|+ Zunoy = Zuno
‘onn = MOLSORJSURIL
neUBOLISNDEYSD
= MOLSIRJSUBILLEISY

!} = aJ01g0LIseNboYM

puo

‘onn=eleISION

T (1 == SOPOVEIS 9% | == SdPoUEIS B3 | == 731 ==

esnoyele 01 SO <- Zbes%

[ereisixon]

| +1un0g = Junog

¥

‘05[e} = GIRISIXON

ONILUVLS,

= onouENOLISaNbOUM
== ZIUN0D 8 X > L1UN0D) J1
S0 0l esnoyesem < LbaS%
{0=PeoeldM

0 = PaoeldSd

1as[e) = MOLSOJRJsUEIL

pue
puo ‘o0 = SlEISHEN
P = Sdveoeiay
o ”M.Mnmu (9n20040LAPRaYSd 78 0 == BUISSAN0IUBNO) J1
0 = Sdiveoeldy BT zu,:w puo o AQvay,
(Scivpaoeiad) i o ‘onn=eleISHON . — 7 T
pus (sdoLparopn) Jt £} =POYIIM {oni=elEISHON |
1| =eioigopisenbeym | [e1eISieN] L pus “0=mvdnpIgy -MIYAmpIGY \
(> ZIUN0D §8 X=<|1UN0D BB XANIOIAPERA) JI95I0 05 9 Xee H1UNO: Lo 0= sdoL = croparolisonbe
P (x>0 e xcinneg 1 v e 160 o o " Rt

(0 ==2n0 98 Xx>11UN0D P XONIOIAPEUM) i
‘0s/ey = OISO

| ¥3ISNVHL HSINL

(0= Z1UN0D B3 X>11UN0D B3 IXONIOIAPESUM) I sEanSHeN [sdoLmsejsuesy]

‘osjey = lEISIXeN

0 = SdoLMeIsURIIRISY
(MOLPaAOW) 3
‘osie) = IRISHON

MLV

Sd_ 1V 30v1g

YIISNVYL SAOLMLYVLS,

[ersixon]

11 = esnoyaIEMMEIS

H=x

ELe)

Methodologies and Applications of MathWorks Tools in MBSE

70

APPENDIX C. MODIFIED MODEL FOR PARALLEL EXECUTION OF
INDEPENDENT ACTIONS

C.2 DModifications in the Robot subsystem

SC_in.RStart @ —»(Start Started |~ ———»@SC_out.RStarted
- RStarted -

i Ty ea—] .
SC_in.RStartTransferWToPS @ —»| StartTransferWToPS MovedToW o cveatow SC_out.RMovedToW

PickedAtW oo SC_out.RPickedAtW

WidgetToPS WidgetToPS

SC_in.RPlaceAtPS @ | PlaceAtPS Message Receive 1

>0 .
MovedToPS [r———oc SC_out.RMovedToPS

SC_in.RPickupAtW @ PickupAtwW

WidgetFromW

i BrTTweyw=——] .
WidgetFromW PlacedAtPS - oc SC_out.RPlacedAtPS

Message Send 1 Entity Queue 1
SC_in.RStartTransferCSToW @ »|StartTransferCSToW RMovedToCS

MovedToCS

SC_out.RMovedToCS

PickedAtCS

crreiacs >® SC_oUt RPickedAtCS

WidgetToW WidgetToW

Message Receive 2

SC_in.RPickupAtCS @——>{PickupAtCS

WidgetFromCS

WidgetFromCS
PlacedAtW| —-————»@ SC_out.RPlacedAtW
Message Send 2 Entity Queue 2 ace RPlacedAtW —
SC_in.RPlaceAtWW @——>»{PlaceAtW MoveCompIet%m* SC_out.RMoveCompleted

RobotSTM

Figure C.4: Inside the Robot subsystem modified for parallel actions.

Name chpe Port DataType InitialValue
(4% start Input 1 double
D StartTransferWToPS Input 2 double
() PickupAtw Input 3 double
52) PlaceAtPs Input 4 double
= WidgetFromwW Input 5 Bus: Widget
D StartTransferCSToW Input 6 double
(&) PickupAtCs Input 7 double
= WidgetFromCS Input 8 Bus: Widget
D PlaceAtwW Input 9 double
l:) NextState Local boolean false
5 started Output 1 double 0
l:) MovedToW Output 2 double 0
(5 PickedAtw Output 3 double 0
= WidgetToPS Qutput 4 Bus: Widget
l:) MovedToPS Output 5 double 0
[s4) PlacedAtPS Output 6 double 0
l:) MovedToCS Output 7 double 0
(4 PickedAtcs Output 8 double 0
= WidgetToW Output 9 Bus: Widget
[4) Placedatw Output 10 double
() MoveCompleted Output 11 double 0

Figure C.5: Information of input and output signals used in the Robot Stateflow chart
modified for parallel actions (from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE 71

MODIFIED MODEL FOR PARALLEL EXECUTION OF

APPENDIX C.

INDEPENDENT ACTIONS

‘onu} = 9jEISIXaN
{} = paje|dWOOeNONY,
:(0ss‘g)1a)e uo

‘suorjoe [o[rered I0J POYIpOU JIRYD MO[Je)S 10qOY) 9PISU] Q') oInSI

pus
‘any) = 9)eISIXaN

(Mivaoeld) 4t

1L =MOLPaAON |

‘ony) = 9jEISIXON
{1 = MivPaoeld
{0 = SOIVPOXD!

‘any) = a)eISIXaN
:(08s'g) Jaye uo

= MOLPaAOW
= Mivpaoeld | [B1BISIXeN]
‘as[e} = SJRISIXON

23173dWOO 0L LIV,

“(MOL1BBPIM ‘SOWOIIEBPIAN) piemio)

1|:os)e) =

:(09s*2)10)8 UO

‘eny) = sjeISIXeN

‘0=800LParON

‘| = SOIVPONI
:(oas‘g)seye uo

pue

‘any) = 9jeISIXeN
(swvdnyoid)yt
‘1=800LparoN
(08@s‘/)1oe UD

:SOwWoIAeBPIM Uo
‘as|e} = ojeISIXoN

‘as|e) = 9)eISIXaN

_>>|.2|02_o<#_

M1V a30vid 30V1d OL M OL ONIAOW

‘any) = 9jEISIXN
{| = paya|dwoDanoN Y,
:(08s‘G)iae uo
{0 = SAOLPaAOW [+
‘0 = Sdivpade|d | [eieisixeN
‘9s|ej = 9jeISIXeN

13173dWOD OL LIV/

pue
‘any) = al_ISIXaN
(Sdveoeld))t
{| = SOLPanOW |
:(0es‘))1oe UO 1

‘oni) = B)EISIXON
‘L = Sdivpadeld
‘0 = MIVPX0ld |~
{(SdoL1ebpIM ‘MwoIAebpip) premioy [[81e1SIxeN]

‘anJ) = aJe)SIXaN
09s'c) Ja)e uo
‘es[e} = ABISIXeN | [ajeisixan]

‘0 DOAON

‘os[e} = SJEISIXON

SOV dnXOld,

‘0 = paje|dwoDan0NY,
‘as|e) = SjeISIXoN

SO_OL ONIAOW

\

pue

‘any) = 8jeISIXeN ‘any) = sjeiSIXeN
“0=MOLPINON (MawdnyoIci)it
'} = MVPOId {1 =MOLPaNOI
:(08s'g) Jaye uo :(oes')18)e uo
‘os|ey = = D9NON% [+

:Mwo.g3abpipy uo ‘asje} = 9jeISIXaN

‘as|e) = SJeISIXON

Sd 1V ONIOV1d

Sd_OL ONIAOW,

Sd_1v_a30Vv1d,

[ere3s1X0N]

MLV dNXOId,

‘ase} = 9JeISIXaN

Old_OL M OL ONIAOW

il = paye] — 3
| = P3UEIS | [} ==pie1g](00s' |)Joye Ta1

Methodologies and Applications of MathWorks Tools in MBSE

72

Appendix D

Modified model with two rack feeders

D.1 Modifications in the Supervisory Control subsys-

tem

W_in.WStartede—{}—
R_in.RStarted>—}—
PS_in.PSStarted—}—
CS_in.CSStarted-—fi}—
W_in.WReadyToRetrieve-—{i}-
PS_in.PSReadyToReceives—fi}
R_in.RMovedToWe—i}-
R_in.RPickedAtW-—fi}
R_in.RMovedToP S}
R_in.RPlacedAtPS-
W_in.WReadyForNexte—{i}—
R_in.RMoveCompleted>—{i}
PS_in.OvenProcessinge—{il—
PS_in.PSWidgetse—{i}—
PS_in.PSProcessCompletes—fi}—
CS_in.CSSortingComplete i}
W_in.WReadyToStore-
CS_in.CSReadyToRetrieve—{i}—
R_in.RMovedToCS—fi}—
R_in.RPickedAtCS<—i}

StartedWarehouse
StartedRobot
StartedPS
StartedCS
\WReadyToRetrieve
PSReadyToReceive
RMovedToW
RPickedAtW
RMovedToPS
RPlacedAtPS
WReadyForNext
RMoveCompleted
OvenProcessing
PSWidgets
PSProcessComplete
CSSortingComplete
WReadyToStore
CSReadyToRetreive
RMovedToCS
RPickedAtCS

R_in.RPlacedAtW e}

RPlacedAtW

StartWarehouse
StartRobot

StartPS

StartCS
WRequestToRetrieve
PSRequestToReceive
RStartTransferWToPS
RPickupAtW;

WPicked

RPlaceAtPS
PSPlaced
WRequestToStore
CSRequestToRetrieve
RStartTransferCSToW|
RPickupAtCS!
RPlaceAtW

WPlaced
LastWidgetOnRack
LastSortedWidget,
PSRestart

F-W_out.WStart
—R_out.RStart
—PS_out.PSStart
—-CS_out.CSStart
—-W_out.WRequestToRetrieve
—-PS_out.PSRequestToReceive
—-R_out.RStartTransferWToPS
—-R_out.RPickupAtW
—W_out.WPicked
~R_out.RPlaceAtPS
—PS_out.PSPlaced
—W_out.WRequestToStore
+—-CS_out.CSRequestToRetrieve
R _out.RStartTransferCSToW
—R_out.RPickupAtCS
—R_out.RPlaceAtW
~W_out.WPlaced
—W_out.WLastWidgetOnRack
—W_out.WLastSortedWidget
—PS_out.PSRestart

X

SupervisoryControlSTM

—PS_out.TotalWidgets

Figure D.1: Inside the Supervisory Control subsystem modified for two rack feeders at

Warehouse.

Methodologies and Applications of MathWorks Tools in MBSE

73

APPENDIX D. MODIFIED MODEL WITH TWO RACK FEEDERS

Name SccAJpe Port DataType Initialvalue

4it) StartedWarehouse Input 1 double

%) StartedRobot Input 2 double

4il) startedPs Input 3 double

il startedcs Input 4 double

4] WReadyToRetrieve Input 5 double

1) PSReadyToReceive Input 6 double

'I] RMovedToW Input 7 double

) RPickedAtW Input 8 double

i) RMovedToPs Input 9 double

44 RPlacedAtPS Input 10 double

) WReadyForNext Input 11 double

i) RMoveCompleted Input 12 double

i) ovenProcessing Input 13 double

&) PSWidgets Input 14 double

3] PSProcessComplete Input 15 double

1) cssortingComplete Input 16 double

44) WReadyToStore Input 17 double

i) cSReadyToRetreive Input 18 double

'I] RMovedToCS Input 19 double

) RPickedALCS Input 20 double

i) RPlacedAtW Input 21 double

4] Nextstate Local boolean false
) count1 Local double 0
i) count2 Local double 0
2] TransferwToPs Local boolean false
:] TransferCSTowW Local boolean false
() Done Local double 0
(i) startwarehouse Output 1 double 0
(4 startRobot Output 2 double 0
(i) startps Output 3 double 0
i) startcs Output 4 double 0
@] WRequestToRetrieve Output 5 double 0
(il) PSRequestToReceive Output 6 double 0
(i) RStartTransferWToPS Output 7 double 0
(i) RPickupAtw Output 8 double 0
() wricked Output 9 double 0
iit) RPlaceAtPs Output 10 double 0
(&) PSPlaced Output 11 double 0
:] WRequestToStore Output 12 double 0
(i) CSRequestToRetrieve Output 13 double 0
(i) RStartTransferCSTow Output 14 double 0
:] RPickupAtCS Output 15 double 0
iit) RPlaceAtw Output 16 double 0
(&) wPlaced Output 17 double 0
() LastwidgetonRack Output 18 double 0
(i) LastSortedwidget Output 19 double 0
(54) PSRestart Output 20 double 0
i) x Output 21 double 0

Figure D.2: Information of input and output signals used in the Supervisory Control State-
flow chart modified for two rack feeders at Warehouse (from Simulink Model Explorer).

74 Methodologies and Applications of MathWorks Tools in MBSE

MODIFIED MODEL WITH TWO RACK FEEDERS

APPENDIX D.

"9SNOTPIRA\ 1B SIOPIS] ORI OM) I0] POUIPOU }IRTD MOPoJe)S [013uo)) A1osiazedng oy} opisu] :¢ (] 2InsI

puo
‘ony) = ajEISIXN
| = PeeldM
10 = MIVeoeIdY
(MVPaoeIdY) i
osje} = SjeISIXON

2 ¥IASNVHL HSINI

pue
‘eni=ajeISIXaN
POEIdSd
0 = SdiveoRIdy
{0 = POYIAM

[e1egixen]

pue
‘n=eleISIXON
1L = MIVeORIdY

[aersxen] (aio1501ApEayM) 31

‘as[e) = RISIEN

MLV 30V,

(Sdvpadeidy) 4

EISXON]

pue
‘any) = SjRISIXEN
L = Selivedeldy
1809401 ApEBYS 38 0 == BUISS20IdUBAD)

pue
‘8N = SleISIXEN.
{0=S0WdNYIGY
0= MOLSOIRjSUBILLeISY

xen] (SOIPYIY) i

o1 §
‘ose} = SjeISIXON

SOV Y0Id,

pus
‘eni=eleISHeN

pus
= POYIIM

MIVPOIGY)
‘as[e} = BjRISIXAN

Sd_1v"30V1d,

pua
anu) = SjeISIXEN
SOWAMHIY
10 = eneu@xoL1SaNbENSO
(anenay01 APeaySD) i

puo

10 = MOLSDIRJSURILLEISY
(sooLparony) i
‘as[e) = ORISIXAN

YUIISNVHL MOLSD LYVLS

puo
‘an=aiRISIXON
SL=MivdnyIdy
0 = @AWjaYOISANbOUM
(eneumaxoLApeayii) i

[ewersixen] |0 = sdorm

m
(MIVPaYOIY) 4t
‘as[ej=ajeISIXaN

MLV 30Id

[arersxen]

10 = SdOLMIBISURILIRISY
(MoLPaAOWY) 31
as[e) = SleISIXN

HIISNVHL SHOLM LVLS,

[morsszsuesr] \

pue
10 = 2WN09%
10 = Punogy,

(X =< ZIUN0D §3 X =< L1UN0D) Jiss|o
seouanbas ujoq jeadediy,

1|+ ZN0Q = ZUNog
‘eny) = MOLSDIeJSURLL
| = enouEYOLISENDEYSD
MOLSOIRJSURIL VEISY
i1 = 01S0L1seNboyM
pue

0 = 19BpimpenosISE]
(1 < (2wnod:

(X >ZIUN0D B X =< |IUNOD) Jiosie
8snoyeseM o} SO <- Zbas%

) + 11UnoD = 1unog
‘o) = SdoL MBjSuBIL.
SOLMISISUBILUEISY
| = eneueyoLISeNbEUM

pue
10 = YoeyuOIeBpIMISE]

(0 == ZunoD g3 X > L3un0Y) 4t
S0 0} asnoyaseM <- 1beSY
{0=pa%eidM

105/} = SOLAMBJSUEIL
‘as[e = BjeISIXON

[sdotmiajsuei]

SOPOUEIS % | == SAPOLEIS ¥% | == 10GONPOUEIS % | == OsnoyaeMpaLEIS))i [[ereisixeN]

pus

5

‘an=aieISIXoN
‘9s[e = BjeISIXON

ONILYVLS,

Methodologies and Applications of MathWorks Tools in MBSE

APPENDIX D. MODIFIED MODEL WITH TWO RACK FEEDERS

D.2 Modifications in the Warehouse subsystem

=Y
Message Send 1

WidgetsFromR &

SC_in.WStart@——»

SC_in.WRequestToRetrieve @——»

[l }—fFo] [[|-
Entity Generator 1 Entity Queue 1
SC_in.WPicked @——

SC_in.WRequestToStore @#——

=1 FIE
=
Message Send 2 Entity Queue 2
SC_in.WPlaced @——

@@%@@@%@

SC_in.WLastWidgetOnRack @—»

SC_in.WLastSortedWidget @—»|

Start

RequestToRetrieve

Started

WStarted

———————@SC_out.WStarted

TriggerRetrieveWidget =
WidgetNew
ReadyToRetrieve s SC_out.WReadyToRetrieve
RPicked
-
WidgetToR e ‘— WidgetToR
RequestToStore .
Message Receive 1
ReadyToStore SC_out.WReadyToStore
WidgetFromR ly WreadyToStore ! ' y
CalculateThroughput()
RPlaced WidgetStorage rsomse .\ NumWidgets Throughput
Storage Rack
9 Simulink Function Throughput
RF1_Retrieved ReadyForNext - SC_out.WReadyForNext
RF1_Placed RF1_Retrieve = rerene | Retrieve Retrieved =+
RF1 p k d RF1_Place PIEC’E pIaCEd RF1_Placed
A RF1_Place | !
- RF1_Pick Pick Picked RF1_Picked
RF1_Stored RF1_Pick e TStore Stored/ o
Rack_Feeder_1_STM
RF2_Retrieved
RF1_Store
RF2_Placed
RF2_Retrieve 2 ramavs ¥ Retrieve Retrieved om0
RF2_Picked Fro PR | lace Placed ey
RF2_Place =2 7a | Pick Picked s
RF2_Stored s~ Store Stored
X X
RF2_Pick Rack_Feeder 2 STM
LastWidgetOnRack
RF2_Store
LastSortedWidget
A

WarehouseSTM

Figure D.4: Inside the Warehouse subsystem (modified for two rack feeders).

Name

L2z Retrieve
i Place

lss) Pick

|#14) Store

loiz) NextState
ls12) AtRack
lsi2) Retrieved
l¢i2| Placed
ls2) Picked
|i4) Stored

SccA:pe
Input
Input
Input
Input
Local
Local
Output
Output
Output
Output

Port DataType Initialvalue

1 double

2 double

3 double

4 double
boolean false
boolean false

1 double 0

2 double 0

3 double 0

4 double 0

Figure D.5: Information of input and output signals used in the Rack Feeder Stateflow
charts (from Simulink Model Explorer).

76

Methodologies and Applications of MathWorks Tools in MBSE

APPENDIX D. MODIFIED MODEL WITH TWO RACK FEEDERS

Name chpe Port DataType Initialvalue
Start Input 1 double
RequestToRetrieve Input 2 double
=l WidgetNew Input 3 Bus: Widget
RPicked Input 4 double
RequestToStore Input 5 double
=l WidgetFromR Input 6 Bus: Widget
RPlaced Input 7 double
RF1_Retrieved Input 8 double
RF1 Placed Input 9 double
=] RF1_Picked Input 10 double
RF1_Stored Input 11 double
RF2_ Retrieved Input 12 double
RF2_Placed Input 13 double
RF2_Picked Input 14 double
RF2_ Stored Input 15 double
(3] LastwidgetOnRack Input 16 double
LastSortedWidget Input 17 double
NextState Local boolean false
RF2_Phasel Local double 0
RF2_Phase2 Local double 0
Message Local double 0
RF1_Phasel Local double 0
RF1_Phase2 Local double 0
PhaseTransition Local double 0
RF1_Busy Local double 0
BeltBusy Local double 0
RF2_Busy Local double 0
BeltMoving Local double 0
Started Output 1 double 0
TriggerRetrieveWidget Output 2 double 0
ReadyToRetrieve Output 3 double 0
= widgetToR Output 4 Bus: Widget
ReadyToStore Output 5 double 0
=l WidgetStorage Output 6 Bus: Widget
ReadyForNext Output 7 double 0
RF1_Retrieve Output 8 double 0
RF1 Place Output 9 double 0
RF1_Pick Output 10 double 0
RF1_Store Output 11 double 0
RF2 Retrieve Output 12 double 0
RF2_Place Output 13 double 0
RF2_Pick Output 14 double 0
RF2 Store Output 15 double 0

Figure D.6: Information of input and output signals used in the Warehouse Stateflow chart
modified for two rack feeders (from Simulink Model Explorer).

Methodologies and Applications of MathWorks Tools in MBSE 7

APPENDIX D. MODIFIED MODEL WITH TWO RACK FEEDERS

‘] = palo}s
fanJ) = Yoeyly
‘0 = paYold [
:(oas*g) Jaye uo | [s1015]

MOV NI XOd FHO0LS

"JIRYD MOJoYR}S IOPad] MorlI o) opISu] :) (] 9INSJI]

e N

!l = panaLey
‘os|e) = yoeyly
Allenui soel Jeau 449, (99s ‘g) Jaye uo

{0 = paIo)s
‘1 = paxold ARG IETEINTEN)
{0 = paoeld
:(09s'7) J9yE UO
_ o)
g0 WOY4 dNn MOId ‘| = panauey

‘as|e} = Yoeyly
Alleniur jjoq Jeau 449, (09s'c|) Joye uo
!0 = paIo)s

_ RCEENETTEY)

[paicis]

[ons} == YorYIY 93 SASLISY]

pus

m -0 = palols
(0 == 21018) §

31dl

~ JAY iy

[osie) == Yoexiy 99 onomey] | ®

Methodologies and Applications of MathWorks Tools in MBSE

78

APPENDIX D. MODIFIED MODEL WITH TWO RACK FEEDERS

"(SI9pe9) Yol 0M) 10 POYIPOW) JIRYD MOPOIR)S OSTIOYDIRAN ST} OPISU] Q' (] oINSI]

(pooe za | poori s)

(0== poowig 24 9% 0 ==

(0= A0 9 0 == pooeid 24 ¥

(0= onoraon 24 ¥3 0 == peceid 24 7%

!

\

\

79

Methodologies and Applications of MathWorks Tools in MBSE

Appendix E

MQTT in Simulink using MATLAB
function block

E.1 Provisions in Warehouse subsystem

Name Scape Port DataType InitialValue
(%) start Input 1 double
(%) RequestToRetrieve Input 2 double
= WidgetNew Input 3 Bus: Widget
(5 Picked Input 4 double
(%) RequestTosStore Input 5 double
= WidgetFromR Input 6 Bus: Widget
(5 Placed Input 7 double
5] Nextstate Local boolean false
5] RackFeederBusy Local double 0
(%) AtRack Local boolean false
(5 BeltMoving Local double 0
s started Output 1 double 0
(5] startDigital TwinRF Output 2 double 0
(%) TriggerRetrieveWidget Output 3 double 0
(%) ReadyToRetrieve Output 4 double 0
= WidgetToR Output 5 Bus: Widget
(%) ReadyTosStore Output 6 double 0
= WidgetStorage Output 7 Bus: Widget
(%) ReadyForNext Output 8 double 0

Figure E.1: Information of input and output signals used in the Warehouse Stateflow chart
of the benchmark model with modifications for facilitating MQTT (from Simulink Model
Explorer).

80 Methodologies and Applications of MathWorks Tools in MBSE

APPENDIX E. MQTT IN SIMULINK USING MATLAB FUNCTION BLOCK

(LLOIN Suryej[oey 10§ PaYIPOUI) [9POUL JILUIYDU(JO 1IeTD

Ixonopean]

1| = eNuoJApeay
‘onn) = Yoey

pu
[N = ASKON ‘o = epEISPON
| =ASngiopopioey | = Buinopiieg
10 = BUINOWIIoS 0=
) e s [CEEFCN
‘as[e) = AISHON

ton = GEISION

+(085'0) 1Y€ UO
‘osje} = oleigIXeN | [A1EISIXON]

HWoIHBBPIM U0 [Torrsixan]
o51e) = TSN

08 1IN4 3MOLS

3131dWOD”IOWHOLS™ 1394l

NIWIOV1d LIOAIM LIV

#1138 OAIANOD 3AOW_LIV/

MOTJOYRIG OSTIOTDIBAN O} OPISU] g F] 9INSI

‘ony=jeISHeN
osie} = yoey
1| = Bunopieg
10 = AsngJapas ey
i(08s'01) Jeye uo | Doe¥Iv 93 Si0is0LSENnbaY]
1} = Asnguapas ppey fo—
= oo Apeay
‘0s[e =oleISIKON

ISIXON]

2 X08 ALINI IAIIELIY LIV

‘on1 = EISHON

XO8_ALIWI“AQV3Y,

Sie} = SIBISIXGN ([aieisicen]

puo
1| = xeNi0hpeay ‘o = iSOl ‘ona = orEISIXON oy = ojeISpel
e o= amsron T
{0=ASngIopeapORY p o 0 = orowaNoL ApEaY {(4oLIOBPIMONISBPIV)PIEIO)
(00s’ [ere1sIXeN] (pooia) | [oreisixon] b N1SBPIV U0

[oersixen] ‘esje} = sleISON ‘as(e) = SRISXON

XO8 ALJW3 3¥OLS,

dNX0Id”L3OAIM_LIV/

X0g TIN4"AQVIY

[EEEN]

[aersixeN]

+(o0s’
10 = 19BpImeABUIONIBB0UL
‘as[ey = BRISIXBN

171738 HOAIANOD IAOW LIV/

[xenuopeay]

£71738 HOAIANOD IAOW LI/

onii=olEIS ol
osie) = ey
<L = Bunowiieg

10 = Asnguepaeoey
(095G1) Jo1je O

., [osie} == yoexIv 9 ai01S0LIsaNbaY]
10 = MeNUoApeRy [S /)
‘as[e} =0lEISIXON

L XOH”ALIWI IATIHLIYLIVMY,

‘onn=oleISIXeN

! = 19BpimereUIeNIBBIL
0 = Asnguape_poey

001- = JumLBIAUES . o

R boexy % roueoLisanbey]
— 0 = WONIOIAPEOY
‘osie) = oEISION

ZX08 TIN4"IAIINLIY LIV

i

[0516} == oRaly §% AaUaNOLISaNbaY]

Toveision] :
| = Asngiepaayoey
0 = WoNIOIApEOY
‘os[e) = eISKON

L X08 1IN 3A3INLIY LIV

81

Methodologies and Applications of MathWorks Tools in MBSE

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem context
	Project context and research questions
	System context
	Thesis outline

	Background and related work
	Overview of MBSE tools and MathWorks tools
	Integration of MBSE tools with MathWorks Tools
	MathWorks tools for CPS and MBSE

	MBSE testing environment at ICT
	Digital Twin technology
	Digital Twin application at ICT
	Communication to Digital Twin using MQTT

	Methodology
	Project requirements
	Selection of suitable MathWorks tools
	Assumptions in the functioning of factory model
	Factors considered for system analysis and performance optimization

	Step 1 - Designing benchmark model in Simulink
	Step 2 - System analysis for identification of bottlenecks
	Step 3 - Modifications for performance optimization
	Parallel execution of independent actions
	Addition of extra components in factory model

	Step 4 - Integration of Simulink model with Digital Twin

	Implementation and testing
	Benchmark model in Simulink
	Modified model with parallel execution of independent actions
	Modified model with two rack feeders
	Live-link between Simulink and Digital Twin

	Conclusions and future work
	References
	Appendix
	Architecture model in System Composer
	Benchmark model
	Warehouse subsystem
	Robot subsystem
	Processing Station subsystem
	Color Sorter subsystem

	Modified model for parallel execution of independent actions
	Modifications in the Supervisory Control subsystem
	Modifications in the Robot subsystem

	Modified model with two rack feeders
	Modifications in the Supervisory Control subsystem
	Modifications in the Warehouse subsystem

	MQTT in Simulink using MATLAB function block
	Provisions in Warehouse subsystem

