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Abstract

The one-warehouse multi-retailer (OWMR) is a well-studied inventory management problem, due

to its wide application in the industry. In [61] and [20], machine learning methods have been

successfully applied to the OWMR system. These papers show that the reinforcement learning

agents can outperform the heuristic benchmarks by approximately 10%. However, the approach

taken in both papers is restricted to symmetric problems: each retailer has the same cost para-

meters and demand distribution. The algorithms exploit this to reduce the size of the action

space. This work attempts to overcome this limitation by proposing a new approach for learning

allocation decisions. Proximal Policy Optimization is used to train a neural network to output

exact replenishment quantities to control inventory levels of all stock-points in divergent inventory

systems. We compare our approach to similar benchmark instances as employed in [61] and [20].

We show that for symmetric instances, our approach outperforms the baseline heuristics by 8%,

and reaches similar performance on asymmetric systems.
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Chapter 1

Introduction

Supply Chain Management (SCM) is responsible for efficiently delivering goods and services from

suppliers to consumers. Production and distribution often involve multiple actors, who together

form a Supply Chain Network (SCN). A typical SCN may include multiple stages (echelons)

of locations through which the goods move from the supplier to the consumer. The supplier

might be a manufacturer of spare parts or raw materials, while the consumer can be a machine

at a production facility or a customer at a retail shop. Since SCNs involve multiple locations

spread geographically, efficient decisions about positioning goods in time and space are crucial for

competitive advantage [36].

Inventory plays a vital role in production and distribution. It is essential for handling supply

and demand uncertainties. The overall increase in the demand for goods and the highly competitive

markets forces companies to adopt innovative approaches to supply chain management strategies

and raises the need for efficient inventory management.

While inventory management is mostly concerned with the overall productivity of inventory

systems, inventory optimization focuses on decision-making in the face of uncertainty. There are

two competing objectives in inventory optimization, namely low inventory costs and high customer

service. On the one hand, inventory optimization aims to reduce inventory-related expenses such

as transportation, handling, storage costs, and associated risks of theft, spoilage, and natural

disasters. On the other hand, ensuring a sufficient amount of goods is essential for achieving high

service levels; surplus inventory helps to shield businesses from market uncertainties and satisfy

customer demand. In this regard, it is not surprising that the efficient automation of replenishment

decisions is common for many businesses.

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
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CHAPTER 1. INTRODUCTION

This study focuses on one specific stochastic multi-echelon inventory optimization problem,

widely known as the one-warehouse multi-retailer (OWMR). This problem is well studied in the

literature due to its generality and various applications in the real world. Moreover, it is challenging

to optimize due to its underlying combinatorial complexity and the dependencies between SCN

locations. As a result, exact solution methods are available only for a handful of systems under

restrictive assumptions [44]. Therefore, heuristics and numerical methods are common approaches

[15].

[44, 15] provide an overview of the solutions developed over the years. A large number of

studies assume a policy class, such as the s-type policy. S-type policies refer to reorder point

policies that follow a rule: if the inventory falls below a reorder point, an order is placed to raise

the inventory to a specified level. Therefore, in this case, the optimization objective is to find

the policy parameters - reorder point and order-up-to level. By assuming the s-type policy, the

solution space is restricted. This allows performing an analysis by considering the policy as a

part of the system dynamics. Numerous papers provide methods to discover policy parameters or

calculate the associated costs [59, 23, 18].

Recent studies (discussed in detail in Chapter 2) take a step away from the classical Operations

Research methods and make use of Machine Learning (ML) techniques. Among the success stories

of ML approaches, Deep Reinforcement Learning (DRL) stands out as a robust framework that

allows for the development of sequential decision-making policies for complex stochastic systems.

DRL combines Artificial Neural Networks and Reinforcement Learning to form general-purpose

approaches that have advanced the state-of-the-art on a multitude of challenging domains. Some

of the most notable examples include playing Atari 2600 games directly from pixels [6], solving the

Rubik’s cube without prior knowledge [1], performing continuous robotic control [50], and winning

against human champions in complex strategic games such as GO and Chess [52], and Dota2 [8].

Inspired by these successes, researchers have applied DRL in sequential decision-making for

inventory optimization. The most notable works are: 1) the application of neural-dynamic pro-

gramming [10] for OWMR [61], and 2) Asynchronous Advantage Actor-Critic (A3C) [37] on dual

sourcing, lost sales and OWMR problems [20]. Both papers claim an approximate 10% improve-

ment over s-type heuristics in the multi-echelon stochastic control. These two works [61, 20] serve

as an inspiration for our current study.

Despite the excellent results, their methods focus on symmetric OWMR inventory systems,

where all retailers share the same parameters, such as costs, demand distributions, and lead

2 Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management



CHAPTER 1. INTRODUCTION

times. Therefore, the problem can be reduced to using neural networks to dynamically specify

the heuristic policies for the warehouse and the retailers. While it is a creative way to exploit the

system’s symmetry, this modeling technique does not scale to heterogeneous retailers. Moreover,

the inventory models used in these studies include elements that put the baseline policies (s-type

heuristics) at a severe disadvantage. [61, 20] incorporate warehouse emergency shipments, capacity

limitations at the locations, and partial lost sales in their inventory models. These elements are

known to increase the complexity of the system dynamics and result in s-type policies being pushed

further from optimality [15]. Therefore, DRL methods have an unfair advantage over the baseline

policies.

In this paper, we apply Proximal Policy Optimization (PPO) [50], a policy gradient RL method,

for controlling individual replenishment decisions for all stock-points. In contrast to [61, 20], our

method allows for scaling on asymmetric systems, where retailers are allowed to have different

costs, lead times, and demand distributions. We consider this point to be the main contribution

of our study. The inventory models that we use do not allow emergency shipments from the

warehouse. Two options are considered in case of stock-out at the retailer: 1) the consumers

are waiting for the product to become available (backlog) or 2) the unsatisfied demand is lost

(lost sales). Additionally, infinite capacity at the locations enables the s-type heuristics to form

a strong baseline to showcase the competitiveness of our method. It has been established that

capacity constraints add considerable complexity to multi-echelon inventory optimization [15]. The

optimal policy is multi-dimensional and intractable for practical purposes, even for serial systems

[24]. Altogether, these elements help to provide a fair comparison of the DRL optimized policies

to the s-type heuristics.

We use a discrete-time simulation to numerically compare the performance of the appropriate

s-type heuristics and policies represented by artificial neural networks trained with a Proximal

Policy Optimization (PPO) [50] algorithm. First, we show the effectiveness of the method by

applying it to a single echelon inventory system and comparing the results with the optimal

policy obtained by a closed-form solution. Then, we review the canonical lost sales problem and

associated near-optimal heuristics. Finally, we investigate a multi-echelon SCN with a central

warehouse distributing goods among multiple symmetric and asymmetric retailers. We assume

global information, constant lead times, linear costs, and stochastic demand in all systems.

We show that Proximal Policy Optimization is a suitable candidate for finding control policies

in the field of stochastic inventory optimization. The neural networks performance as a policy is

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
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CHAPTER 1. INTRODUCTION

evaluated on many scenarios with varying degrees of complexity. The experiments show that the

chosen method reaches the performance of the optimal policies or strong heuristics on a single

echelon while outperforming the widely-used heuristics on multi-echelon inventory optimization

tasks.

The next chapters are divided in the following manner. First, we provide an overview of

the related literature (Chapter 2), including Operations Research, RL, and DRL applications in

inventory management. Chapter 3 defines the problem formulation, models and the methodology.

The numerical experiment results are presented and analyzed in Chapter 4. This paper concludes

with a discussion and recommendations for future research.

Research Questions

This study explores if and how DRL can help create a method for solving asymmetric one-

warehouse multi-retailer inventory management systems. Thus, we formulate the following main

research question of this thesis:

RQ: How can Deep Reinforcement Learning contribute to reducing system-wide opera-

tional costs in asymmetric one-warehouse multi-retailer stochastic inventory optimiz-

ation problems?

To help answering this complex question we divide it into a number of sub-questions:

RQ T.1: How can Deep Reinforcement Learning methods be applied to optimizing the

replenishment decisions for single node inventory models?

RQ T.2: How can Deep Reinforcement Learning methods be applied to simultaneous

control of replenishment decisions on multiple locations?

RQ T.3: How well can Deep Reinforcement Learning perform on asymmetric one-

warehouse multi-retailer stochastic inventory optimization problems compared to the

well-established s-type heuristic policies?

4 Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management



Chapter 2

Preliminaries

Core concepts and related literature are discussed in this chapter. First, the related literature

from an Operations Research point of view is presented, followed by a short introduction to the

Reinforcement Learning optimization framework and its corresponding inventory management

application. The chapter concludes with an introduction to artificial neural networks and their

application to the field of stochastic inventory optimization.

2.1 Related Literature

Supply Chain Management is defined as the collection of processes that control the flow of material

goods from the suppliers of the raw materials to the final consumers [3]. Oftentimes, the suppliers,

factories, warehouses, and consumers are situated in different locations. Therefore, companies hold

stock at multiple geographically dispersed locations to position the goods close to the consumers.

The need for thorough control of the number of goods at the locations creates the necessity for

inventory management and optimization, which are essential sources of competitive advantage

[53].

The locations within a company and external connections can be viewed as a Supply Chain

Network (SCN) - an extensive network of organizations that cooperate to fulfill their goals suc-

cessfully. A typical SCN consists of one or several stages (echelons) that a product needs to

pass through from the manufacturer to the end consumer. These are also referred to as single

echelon and multi-echelon models. Each echelon can have one or more nodes, where each node

represents a location that can hold inventory. In the case of a multi-echelon system, the network

structure defines the arrangement of the echelons and the inter-connectivity between the nodes

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management
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CHAPTER 2. PRELIMINARIES

[15]. Depending on how the actors in the supply chain are connected, SCN can be classified as

divergent, convergent, serial, or general. Figure 2.1 provides examples of such systems. Divergent

systems are more common in retail and distribution, while convergent systems are more prevalent

in manufacturing and assembly industries [15].

(a) Divergent (b) Convergent

(c) Serial (d) General

Figure 2.1: Example of different supply chain networks

The literature forms two streams of review policy regarding multi-echelon inventory systems:

continuous and periodic review. In continuous review, the goods are monitored in real-time,

and the decisions are made as soon as the state of the system changes (i.e., a consumer buys a

product). In the periodic review setting, on the other hand, time is divided into decision epochs.

The inventory is monitored during the decision epoch, and corresponding replenishment decisions

are taken at the end of the epoch, for example, at the end of every day.

Most of the studies in the periodic review stream are based on the seminal work of [13]. The

study discusses serial K-echelon inventory models with a single node facing customer demand

(where K is the number of locations), illustrated above in Figure 2.1c. The last stock-point

(K − 1) in the supply chain is facing stochastic demand and can replenish its inventory from its

predecessor (K−2). The stock-point (K−2) replenishes its inventory from its predecessor (K−3),

and so on. The sequence continues back to stock point (0), which has access to an unlimited supply

of goods.

The presented solution is a dynamic programming formulation that uses the decomposition

property to describe the optimal policy for an N-echelon serial system [13]. The decomposition

property is an attribute that allows analyzing the parts of the inventory system in isolation and

6 Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
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form a recursive dynamic programming problem. This method starts by isolating the customer-

facing stock-point (K-1) and optimizing its base-stock policy parameters. Next, stock points

(K-1) and (K-2) are considered in isolation. It has been shown that the additional cost incurred at

stock point (K-1) is a function of the echelon inventory of stock-point (K-2) [13]. Repeating this

procedure for all of the previous stock-points allows solving the K-dimensional dynamic program

as a single-dimensional recursive DP starting from node (K-1). The final findings indicate that

the optimal policy is the echelon-stock policy.

Unfortunately, the decomposition property cannot be applied to divergent systems due to

an allocation (rationing) problem. The allocation problem arises when the on-hand inventory

at the warehouse is insufficient to satisfy the demand of all downstream locations. The optimal

replenishment decisions depend on the warehouse’s outstanding orders and the inventory positions

of all retailers. Finding an optimal solution, in this case, would involve solving a multi-dimensional

dynamic program. This is challenging due to the curse of dimensionality: the exponential growth

of computational requirements with respect to the increase in problem size. This, in turn, renders

the DP inapplicable to these problems at a realistic scale [16].

One way to circumvent the effect of the allocation problem is to make use of the balance

assumption. Making this assumption leads to the decomposition property and the complete char-

acterization of the optimal policy. Furthermore, it relaxes the physical constraints of strictly

positive allocation quantities. The balance assumption has various interpretations, such as al-

lowing negative allocation quantities, lateral transshipment between retailers, and permitting the

inventory’s immediate return to the warehouse with no delay. These interpretations lead to the

same result: the retailers’ inventory positions become irrelevant, and the allocation decision are

based solely on the warehouse echelon stock [16].

The majority of works that consider periodic review divergent systems use the balance assump-

tion in one form or another [16]. Since the optimal policy and the respective costs are unknown,

several studies use the relative gap between the system’s cost under the balance assumption and

the cost of the heuristics (usually obtained through simulation) as a performance measure. The

balance assumption leads to the relaxation of the original problem, which produces a lower bound

for the real optimal cost. In the case of a small relative gap, the heuristics provide a good approx-

imation of the optimal policy [16].

The effect of balance assumption on the optimal gap has already been extensively studied.

The studies report that the balance assumption effectiveness and heuristic quality depend on the

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management
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system parameters [16]. The coefficient of variation at the retailers, the lead time at the warehouse,

and the difference in the holding costs between the warehouse and the retailers are among the

most influential. Despite the balance assumption being widely used to derive close to optimal

policies, it is argued not to be suitable when the retailers are prone to imbalance [3]. According to

[16], such systems are characterized by different demand distributions at retailers. Precisely these

systems are the focus of this study.

Moreover, the vast majority of the studies assume that unmet demand at the last echelon is

backlogged. This assumption relates to the consumer’s willingness to wait for goods to become

available in case of a stock-out. While the backlog assumption is reasonable in some cases (e.g.,

spare parts management and expensive goods), in others (e.g., in retail with low-cost items and

high competition), the lost sales assumption is far more realistic. Nowadays, due to online sales,

it has become incredibly easy for the consumer to choose another product or retailer.

Systems under lost sales with positive lead times are challenging to solve [2]. It was established

that the optimal policy is not a function of the sum of on-hand inventory and outstanding orders,

as it is in the complete back-ordering case [28]. A powerful heuristic policy, the capped base-stock

policy, exists for the single-echelon setting with lost sales [66]. However, for multi-echelon systems

under lost sales, it is more common to assume instantaneous deliveries between locations to keep

the problem tractable [21]. Therefore, the studies for the systems with positive lead times are

rare. The capped base-stock policy and its performance in lost sales inventory optimization are

further discussed in Chapter 3.

Other approaches for solving stochastic inventory optimization include Sample Average Ap-

proximation (SAA) [33]. SAA falls under the Monte Carlo simulation-based approaches and is

often used for stochastic discrete optimization problems. The main idea of this method is to

estimate the policy cost within certain parameters by performing multiple simulation runs. The

results are plugged into deterministic optimization methods to obtain the solution. Due to the

fact that numerous sampled scenarios are needed to shape the demand distribution, SAA is also

aimed at obtaining parameters of the s-type heuristics.

Additionally, Model Predictive Control and Stochastic Optimization techniques that fall under

the umbrella of Mathematical Programming (MP) can also be suited for optimizing stochastic

inventory models. However, because of the multi-period and multiple uncertainty realization

scenarios, the full formulation of the MP problems can become computationally challenging [35].

We can derive from the literature that there is no general way to solve multi-echelon problems

8 Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management
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optimally. The divergent inventory systems are difficult to optimize due to demand uncertainty

and allocation decision. Analytical solutions depend on a number of restrictive assumptions and

break easily as soon as the assumptions change, or new model components are introduced. Solving

the multi-echelon problems sequentially with Dynamic Programming, on the other hand, is not

possible due to the curse of dimensionality. Consequently, most studies rely on heuristic policies

such as reorder point (s-type) policies, which are known to be sub-optimal in many cases [16]. This

leads to the conclusion that the state-of-the-art for intractable inventory optimization problems

might be improved by applying data-driven methods such as Approximate Dynamic Programming

(ADP).

One of the most promising sets of techniques in ADP is Reinforcement Learning [51]. RL

enables the derivation of information-based optimal decision policies, which account for stochastic

variations. Model-free RL methods can interactively evaluate sequential policies using only input

(system state), output (replenishment decisions), and reward data. The problem is modeled as

an environment, and the decision-maker is represented as an agent. Simulation can be used in

cases when the underlying statistical probabilities are too complex to capture. The RL forms are

a fully data-driven dynamic programming method. RL is better suited for dealing with the curse

of dimensionality because it does not require visiting all system states. Moreover, as RL uses

a value function to estimate the long-term consequences of actions, it can be applied to control

problems that exhibit temporally-extended behavior [57]. In the next section, we provide a quick

introduction to the RL optimization framework.

2.2 Reinforcement Learning (RL)

Machine learning can be divided into three main categories: supervised, unsupervised, and Re-

inforcement Learning. Exemplary inputs and output pairs are available in supervised learning.

The algorithm’s goal is to generalize on previously unseen examples assuming that the samples

are drawn from a stationary distribution. On the other hand, unsupervised learning seeks to find

insights into how the data is distributed given only input samples. RL differs from supervised and

unsupervised learning due to its interactive nature.

In RL, a problem of sequential decision making is addressed by an agent that learns a mapping

from states to actions. The agent accomplishes a task by repeatedly evaluating the effect of its

actions on the environment by trial and error [56] (see Figure 2.2). The environment is usually

modeled as a Markov Decision Process (MDP). The MDP provides a mathematical framework for

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management
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modeling decision-making, which is partially random and partially controlled by a decision-maker.

Figure 2.2: Agent environment interaction [56]

A typical MDP consists of a state space, action space, and a transition function. The state-

space S includes all possible configurations s ∈ S of the system that can be observed by the agent.

The action space A encompasses all possible actions a ∈ A that the agent can choose to influence

the system. The transition function T : S×A ∈ [0, 1] defines a matrix that contains the probability

T (s, a, s′) given a state s and an action a, the system will evolve to the state s′. The agent can

evaluate its actions by a scalar reward signal provided by a reward function r ∈ R(s, s′, a). Such

formulation is applied to the tasks where the performance of the agent cannot be evaluated by the

means of momentary rewards. Instead, the agent’s goal is to learn a mapping from the states to

the actions in such a way that the expected cumulative sum of reward is maximized. Therefore,

RL addresses the fundamental problem of credit assignment.

The credit assignment problem relates to the process of identifying specific actions that pro-

duced the desired outcome. To overcome this challenge, RL makes use of the Bellman optimally

equation, that allows expressing the value of the current state in terms of discounted future re-

wards:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)] (2.1)

The value of the state measures how good a certain state is if we follow the policy π(a|s) =

P (A = a | S = s) from this point onward. The discount parameter γ is used to control the

contribution of future rewards to the current value calculation. Once the optimal value function

is known V ∗(s) = maxa
∑
s′,r p(s

′, r|s, a)[r + γVπ(s′)], the optimal policy π∗ can be derived with

a transition model and Dynamic Programming [9]. However, if the state space is too large or the

transition model is unknown, the solution cannot be found in a reasonable amount of time.

The RL algorithms are approximate solutions that tackle these two problems [56]. Unlike DP,

10 Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
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RL avoids the requirements of visiting all the states as it explores only the relevant parts of the

environment. However, the exploration/exploitation trade-off is made in this case. Since the policy

evaluation is based only on the reward feedback, the agent does not know whether the chosen action

was optimal. Thus, the agent must explore alternative actions to increase the probability of finding

new, better policies. A balanced trade-off between the use of obtained knowledge (exploitation)

and obtaining new knowledge (exploration) is required to achieve maximum reward [56].

2.2.1 Reinforcement Learning in Inventory Management

In multi-period inventory problems, a replenishment decision (action) can influence the total costs

of the system for many time-steps into the future. Therefore, an agent needs to consider a sequence

of actions that leads to the desired outcome. Additionally, actions can be associated with arbitrary

delivery delays. Even if the lead times between the stock-points are constant, they can be viewed

as stochastic due to the possible stock-outs at the upstream locations. This problem further

complicates the analysis. In the case of multi-echelon divergent systems where the allocation

problem occurs, the optimal decisions depend on the full state of the system. Due to the fact

that RL is less affected by the curse of dimensionality, we consider it a suitable framework for

addressing the problem of decision-making in stochastic inventory optimization. The application

of RL in inventory management is not a novelty. This section provides a brief overview of the

previous studies performed on this subject.

The work of [19] was one of the first to apply RL to control a serial multi-echelon system. The

authors use Semi Markov Average Reward Technique (SMART) [14] to control all stages in a serial

system. The algorithm’s input is a vector of three variables that correspond to the stock-points’

inventory levels. This paper shows that RL can develop near-optimal policies for managing the

inventory of serial multi-echelon systems [19].

The SMART algorithm was also used by [45] to optimize the global coordination of distributed

supply chains. The problem was represented by multiple manufacturing facilities connected to

multi-national retailers. The countries are associated with different markets, currency, and prices.

The distance from the manufacturer or distribution centers varies significantly between the nodes.

Such a layout requires a high level of coordination to ensure that the system-wide cost is minimized

and the revenue is maximized. According to [45], Global Supply Chain Management can benefit

from exploiting its distributed structure to achieve a competitive advantage. However, this is

usually challenging to achieve with heuristic policies.
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Q-learning was applied to the famous Beer Game, developed by the Massachusetts Institute of

Technology (MIT) to illustrate the need for coordination and information sharing in the supply

chain [62]. The game is a simplified model of the serial multi-echelon inventory system used to

showcase the bullwhip effect. The bullwhip effect refers to a phenomenon that small changes

in demand at the most downstream node cause huge variability in the upstream nodes’ orders.

The classical Beer Game consists of four locations connected serially. An agent is assigned to each

location to determine how many products to order from its predecessor. Even though the bullwhip

effect was not entirely reduced, the study showcases the RL algorithm’s potential when applied to

inventory management problems [62].

A subsequent work considers the Beer Game with global information: the inventory positions

of all supply chain actors are available [12]. The Q-learning algorithm is used to choose one out

of 4 distinct order sizes to minimize the system’s total cost. The authors compare their results

to the genetic algorithm-based solution and showcase the RL approach’s superiority in finding

replenishment policies [30].

A more recent work of [27] applies SARSA and Q-learning algorithms to manage perishable

goods under random demand and deterministic lead times. The authors demonstrate that SARSA

or Q-learning applications that include age information into the state achieve superior performance

over genetic algorithm-based solutions. Notably, the RL showed better performance when demand

variance was high and the goods’ life was short.

The studies presented in this section provide evidence that RL is suitable for application in

inventory management. However, one of the main downsides of the classical RL algorithms is that

they are also obstructed by the curse of dimensionality. As the state and action spaces increase,

the computational requirements of the RL methods grow exponentially. Currently, there is no RL

solution available to handle the multi-echelon divergent systems considered in this study. The most

promising approach to broaden the RL’s application field is the use of function approximators,

such as Artificial Neural Networks, to estimate optimal value functions. We discuss the Deep

Reinforcement Learning approaches in the next section, together with a short introduction to the

inner workings of a neural network.

2.3 Deep Reinforcement Learning

The combination of the Reinforcement Learning (RL) framework and Artificial Neural Networks

(ANN) defines the field of Deep Reinforcement Learning (DRL). If either actions or states are con-
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tinuous or too large, a function approximator is used to estimate the optimal value function V ∗(s)

and policy π∗(s). Neural Networks are the most popular choice for such a function approximator

due to their scalability and automated feature extraction. This section presents an introduction

to the inner workings of an ANN, followed by an overview of the DRL algorithms.

2.3.1 Artificial Neural Networks

The background work for neural networks mostly originates from the late nineteenth and early

twentieth centuries. The neural network structure is vaguely inspired by the human brain. It

consists of a set of layers, where multiple neurons represent each layer. Each of the input signals

X = [x1, x2, . . . , xn] is processed by neurons and given a relative weight [w1, w2, . . . , wn] that

determines the impact of input for each neuron.

Figure 2.3: Multi-Layer Perceptron architecture. Feed forward neural network consist of input
layer (blue circles), a number of hidden layers (white) and an output layer (red)

One of the most common ANN architecture is the Multi-layered Perceptron (MLP), a feed-

forward network (presented in Figure 2.3). An MLP consists of a set of parameters θ and activation

functions that is used perform non-linear transformation on the input vector X to produce outputs

yi. The layers of MLP can be viewed as a matrix Wi ∈ Rli×li+1 , where li is the number of neurons

in the layer i = 1, 2, . . . , N and l0 equals the number of features in X. Each layer is associated

with a non-linear activation function fi(x), typically a hyperbolic tangent fi(x) = ex−e−x
ex+e−x or a

Rectified Linear Unit fi(x) = max(0, x). Activation functions allow the network to perform non-

linear transformations. Let oi be the output of the layer i and o0 = X be the input of the network,

then the general expression for a layer i can be written as:

oi = fi(Wi · oi−1 + bi) (2.2)

Each layer transforms the input of the previous layer by performing a matrix multiplication

and applying an activation function to the results (Equation 2.2). The task’s type influences the
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number of neurons and the activation function on the last layer. If the yi represents the output

of the last layer before the activation, softmax eyi∑K
j=1 e

yj
is applied, where K is the number of

classification classes. Since the softmax output is normalized and sums up to one, it is suitable

for representing a discrete probability distribution over K classes.

In a supervised learning setting, every data point X is associated with a corresponding la-

bel. The network weights θ are initialized at random and then adjusted by applying Gradient

Descent on a loss function between the network’s output and the ground truth. In the case of

the classification, the typical loss function is a cross-entropy. The learning rate of α controls the

size of the update step. One of the most widely adopted gradient descent algorithms, Adam [31],

uses an adaptive learning rate for individual parameters leveraging first and second-order gradient

estimates.

2.3.2 Reinforcement Learning and Artificial Neural Networks

This section introduces the concepts, goals, and notation of the Deep Reinforcement Learning

framework. DRL represents a family of algorithms that have a goal of estimating the parameters

θ of the neural network. The algorithms in DRL can be divided into a number of different ways,

for example, value-function based or policy gradient. The value-based method works by directly

predicting the value of the state. The policy is derived with acting greedily with respect to the

value estimation - picking an action with the highest value. In this case, we would need exploration,

which is usually added by taking a random action with a certain probability.

The most popular methods that use Temporal Differencing are DQN [38] and its extensions

[60, 64, 47]. These methods assume that a deterministic policy can be the optimal policy. How-

ever, initial experiments on single echelon inventory models were characterized by highly unstable

training, which suggests the unsuitability of these methods for highly stochastic environments. On

the other hand, the policy gradient methods choose an action by sampling it from a probability

distribution. The network output consists of two values µ and σ to form a Gaussian distribution

for every action dimension in continuous control. Discrete action spaces are addressed by sampling

from a discrete probability distribution formed by a softmax activation function. Therefore, Policy

gradient methods have trainable parameters that directly affect the stochastic nature of the policy.

Thus, they are more suitable for stochastic inventory optimization.

The policy gradient methods are based on the policy gradient theorem. When the policy is

differentiable, we can approximate the gradient of the true reward function by taking the gradient
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of the policy instead. Let dπ(s) be a steady-state probability distribution of the Markov Chain

under policy π. The gradient of the objective can be written as J(θ) =
∑
s∈S d(s)V π(s). The

proof of the policy gradient theorem is too verbose to explore here. The readers can refer to [56].

The theorem shows that the gradient of the true reward is proportional to the gradient of the

policy function

∇θJ(θ) ∝ Eπ[Qπ(s, a)∇θ ln(πθ(s, a))] (2.3)

The most popular algorithm in the policy gradient family is REINFORCE [65], which serves

as the basis for virtually all Policy Gradient methods. The REINFORCE training procedure is

divided into two stages. First, the trajectories are sampled from the environment and the return

Gt =
∑∞
k=0 γ

kRt+k+1 is computed for each time-step t. The second part involves the policy

update:

θ ← θ + αγtGt∇θ lnπθ (a, s) (2.4)

REINFORCE experiences sample efficiency problems since the trajectories are discarded after

an update. The notion of importance weighting allows reusing previous trajectories by calculating

the probability ratio between the old and the new policy

r(θ) =
πθ(a | s)
πθold (a | s)

(2.5)

At times, the updates might push the network parameters into a part of the parameter space

that is hard to recover from. [26] proposes a conservative policy iteration, which restricts the

size of the update by providing an explicit bound as a mixture of the old and new policies. [48]

presents Trust Region Policy Optimization (TRPO) algorithm that takes the idea further and

uses second-order methods to identify the safe update step. Despite the remarkable claims of

monotonous policy improvements, TRPO is computationally burdensome. It requires a solution

to a constraint minimization problem in every iteration.

The downsides of TRPO are addressed by the work of [50], where Proximal Policy Optimiz-

ation (PPO) is proposed. The PPO method uses the benefits of TRPO by clipping the policy

gradient objective, which allows avoiding the computational burden of the second-order optim-

ization methods. In combination with a value function that provides the advantage estimates,

PPO is regarded as a straightforward and robust algorithm that is easy to implement and tune.

PPO samples the trajectories in the same way as REINFORCE. However, it is capable of reusing
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previous trajectories by means of importance sampling.

All of the previously discussed methods learn from interaction with the environment directly

without understanding the tasks’ concepts or the underlying dynamics. Such techniques are usually

referred to as Model-Free RL algorithms. These algorithms are versatile and straightforward

because they do not hold any assumptions about the environment. This, of course, comes at

the price of being highly data-intensive, especially when combined with high-capacity function

approximators such as neural networks. PPO addresses the sample complexity issue by reusing

the collected data with importance sampling. Moreover, PPO allows leveraging multiple CPU

cores for the data collection procedure by using multiple workers that interact with separate

instances of the environment. Since stochastic multi-echelon inventory optimization requires a

large number of scenarios necessary to shape the demand processes [17], it is expected that the

policy optimization will require huge quantities of data. Therefore, PPO is considered a suitable

algorithm for the task at hand.

2.3.3 Deep Learning and Deep Reinforcement Learning in Inventory

Management

The earliest work that utilizes RL with function approximation methods in inventory management

is the work of [61]. Neural Dynamic Programming was used to optimize a multi-echelon inventory

model. It was able to improve upon the base-stock heuristic by reducing the total costs by 10%.

Despite the remarkable results, the method relied on extensive manual feature engineering. For

nearly two decades, almost no new studies were published as a successor to this seminal work.

Finally, the recent success of DRL algorithms in gaming and robotics has sparked a wave of studies

that apply these algorithms in novel and challenging settings.

The work of [40] presents a Deep Q-learning algorithm playing the previously-mentioned Beer

Game. The study explores sequential decision-making in a supply chain, where other actors do

not follow rational policies. The results show that Deep Q-Networks can develop policies that

bring down the total cost of the system by controlling only one stock point. In [40], d+ x rule is

used to control the inventory levels, where d is the observed demand, and x is the action sampled

from a discrete set. The algorithm was allowed to choose out of three possible ordering values for

each of the locations.

The work on multi-echelon inventory management was continued by [29]. In their work, they

use REINFORCE and SARSA to control the inventory levels of the retailers. However, the
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dimensionality of the action space is rather small: only three possible values per actor. Moreover,

Radial Basis Function kernels [43] were manually designed for each of the locations to enhance

the state representation of the problem. Interestingly, the study uses a demand function that

has seasonal variations. However, the baseline was chosen to be a static (s, Q)-policy that is not

particularly suitable for a demand distribution with seasonal variations.

The work of [41] provides an interesting take on inventory management. Instead of controlling

the inventory levels, the authors use an ANN to predict which node is going to experience a stock-

out. Their method is the first to provide robust prediction estimates for multi-echelon inventory

models for general network topology. The supervised learning methods were also used in the

work of [42], where a single period news-vendor problem is discussed. The demand information is

augmented by the features which are used by the Multi-layered Perceptron to unify the demand

forecasting and the inventory control into the end-to-end solution. The formulation of this problem

in a supervised learning setting is possible due to the goods’ perishability: every decision period

is treated in isolation.

When the goods are not perishable, however, an action can affect the system’s state for many

steps in the future. Because of this, [5] apply reinforcement learning for a multi-period news-vendor

problem with lost sales. As discussed at the beginning of Chapter 2, the lost sales assumption

increases the problem’s computational complexity. PPO was successfully applied to derive a

replenishment policy in such a case. The authors also showcase that PPO is a suitable algorithm for

stochastic optimization by training it on Bin Packing and Vehicle Routing problems. Additionally,

the authors raise a question about the DRL experiments’ repeatability and propose a benchmark

for validating novel solutions.

In [20], the Asynchronous Advantage Actor-Critic (A3C) [37] algorithm is used as a general-

purpose technology to find policies for intractable inventory management problems, namely, dual

sourcing, lost sales, and OWMR problems. Authors report that A3C developed reasonable policies

for all problem settings. However, it struggled to outperform strong heuristics on the lost-sales and

dual sourcing problems. Their approach of solving the OWMR problem involved a hybrid between

the base-stock and DRL: the output of A3C specified the base-stock level for the warehouse and for

all of the retailers at the same time. Therefore, their approach is only suitable for the symmetric

systems (identical to the approach of [61]), where all retailers share the same parameters (costs,

demand distribution, and lead times).

One of the main problems in applying (Deep) Reinforcement Learning in multi-echelon in-
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ventory management is the dimensionality of the state and action spaces. Due to the curse of

dimensionality, the convergence speed increases exponentially with the number of variables. Large

state spaces are addressed by utilizing neural networks as function approximators [56]. According

to the literature, ANNs were proven to be applicable to a variety of domains. In inventory man-

agement, the dimensionality of the state space is less of a problem than the dimensionality of the

action space. High dimensional actions tend to explode exceptionally quickly. Therefore, most of

the works use d+x rule [40], where d is the observed demand, and x is a discrete action, or choose

among predefined heuristic policies [20]. In both cases, actions are sampled from a discrete set

formed by a Cartesian product of the possible values across each action dimension.

Branching Architecture for Deep Q-Networks was introduced by [58] to address the problem of

multi-dimensional action spaces. The Branching Architecture allowed using several action outputs.

This architecture was successfully used to address the famous joint replenishment problem [54].

The branching structure reduces the number of discrete actions introduced by several action

dimensions from exponential to linear.

However, not only the network architecture needed to be adjusted, but the training algorithm

as well. We apply a similar idea but resort to a different class of Deep Reinforcement Algorithms

known as Policy Gradient. In comparison with value methods such as DQN, the policy gradients

have (1) better convergence properties, (2) are more effective in high-dimensional action spaces,

and (3) can learn stochastic policies. In particular, PPO has proven to be a very robust algorithm

that is easy to train, tune, and implement. To the best of our knowledge, no approach can control a

multi-echelon divergent system with heterogeneous retailers. This current paper fills this research

gap. Additionally, PPO was proposed as a method that finds policies for controlling robots with

multiple joints. This fact provides the motivation that this algorithm is suitable for simultaneous

control of several decision locations.
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Chapter 3

Models and Methods

In this chapter, the problem formulation and the formal definition of the inventory models used

in this research are presented. Next, the methodology section details the PPO training procedure

and defines the heuristic policies and the evaluation method used to compare the performance of

the PPO algorithm and the heuristics.

3.1 Problem Formulation

This section describes the inventory models used in this study. We select two supply chain network

layouts, namely single-echelon and multi-echelon divergent systems. The single-echelon inventory

models with the backlog and lost sales assumptions are presented first in section 3.1.1. We then

continue with defining the multi-echelon system in section 3.1.2. Additionally, the Markov Decision

Process is formulated for each inventory model.

3.1.1 Single Echelon Inventory Model

Figure 3.1: Single node system with vendor lead time

A single-echelon system consists of one location (node) that can hold inventory. The location

is faced with stochastic demand that is satisfied with its on-hand inventory. The inventory levels

are reviewed at regular intervals (periodic review) and can be raised by placing an order at the
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manufacturer, which has an infinite supply. However, there is a delay (lead time) between the

placement of an order and its arrival at the location. We do not consider cases when the lead

time is 0 because the problem is no longer stochastic. When there is no delay, the decision-maker

first observes the demand and then places an order. The optimal replenishment size equals the

observed demand, and the optimal costs are 0. In our study, the lead time is expressed as a

multiple of discrete units of time that without loss of generality, is considered to be one day.

The transportation delay and the uncertainty of the future demands create the need for holding

inventory.

The squares in Figure 3.1 represents the transportation buffers, and the circle represents the

location. At each time-step, an order is placed in the leftmost square. When the system transitions

to the next time-step, the goods located in one of these buffers move to the buffer on the right

until they reach the final location. The goods can enter or exit the buffers only at the time-steps,

which makes the inventory model a dynamic discrete-time system. After a lead time delay l, the

goods are delivered at the store and can be used to satisfy the customer demand.

The stochastic demand is realized at every time-step and satisfied with the on-hand inventory.

Each unit of demand can be viewed as a customer request for products. In case the on-hand in-

ventory is not enough to fully satisfy the demand, a shortage occurs. Depending on the assumption

about customer behavior, one of two cases is considered:

1. The customer is willing to wait for the product to become available. In this case, the model

is under a backlog assumption. This is suitable for modeling expensive goods or spare parts

that are not easy to substitute. The penalty cost p is assigned for every item that the

customers are waiting for after the demand is realized.

2. The customer is unwilling to wait and switches to a competitor. In this case the model is

under the lost sales assumption. The unmet demand is lost, and the penalty cost is calculated

in proportion to the size of the unsatisfied order. This assumption is more suitable for retail

with low-cost products and highly competitive markets.

Considering all these parameters, the inventory model described above is a dynamic single-

echelon multi-period inventory model with vendor lead time and stochastic demand.

Markov Decision Processes Formulation for Single Echelon Inventory Systems

As explained in Chapter 2, Reinforcement Learning (RL) is a framework for finding an approxim-

ate solution for large Markov Decision Processes (MDP) for which Dynamic Programming (DP)
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methods are intractable. This section presents the definition of MDP for a single echelon inventory

optimization problem.

Mathematically, MDP is represented as a tuple (S,A, T ,R, γ), where:

• S - state space

• A - action space

• T (St+1|St, At) - transition dynamic that maps a state-action pair onto a distribution of

states at a time t+ 1

• R(St, At, St+1) - a reward function that associates a numerical reward with single actions

taken from particular states

• γ ∈ [0, 1] - discount factor that controls the influence of future the rewards

The agent observes a state St ∈ S and outputs an action At ∈ A that is being fed back into

the environment. The environment then changes its state to St+1 ∈ S and emits a learning signal

in the form of a scalar reward Rt+1 = R(St, At, St+1). This loop continues until the terminal

time-step T is reached and the episode terminates. The sequence of states, actions, and rewards

constitutes a rollout or a trajectory of the policy. Every trajectory accumulates rewards from the

environment R = ΣT−1
t=0 γ

tRt+1.

The objective of the MDP is to discover a policy π : S → p(A = a|S) which maximizes the

expected cumulative reward R. We can express this objective in terms of finding an optimal policy

π∗ = argmaxπ E[R|π] that involves solving the recursive Bellman Equation [7]. Let St represent

a set of all admissible states at time step t, then the Bellman Equation can be written in the

following form:

V (St) = max
At∈A

Rt + γ
∑

s′∈St+1

P(St+1 = s′, At) ∗ Vt+1(s′)

 (3.1)

In the case where a neural network represents a policy, the goal is formulated as finding

parameters θ of the policy πθ that maximizes the expected cumulative sum of rewards:

maximizeθ Eπθ

[
T−1∑
t=0

γtRt

]
(3.2)

In order to express the inventory model in the MDP terms, first, we have to summarize the

notation used to describe the inventory system:

• i - index of stock points, i = 0 is the warehouse, and i = 1, 2, . . . , N are retailers.
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• ILi(t) - inventory level of the stock (on hand inventory - backorders).

• IL+
i (t) - on hand inventory of the stock point i, where x+ = max(0, x)

• IL−i (t) - number of back orders on the stock point i, where x− = −min(x, 0)

• li - lead time for the stock point i

• Qi(t) - pipeline vector of the stock point. Items that are expected to arrive at the stock

point i. Qi(t) = (qi(t+ li), qi(t+ li − 1), . . . , qi(t)), where qi(t) indicates the size of an order

that is going to arrive at the stock at time-step t.

• IPi(t) - inventory position of the stock point i, IPi(t) = ILi(t) +
∑li
j=1 qi(t+ j). Inventory

position indicates the amount of on-hand inventory minus the back-orders plus all of the

items that will be delivered to a particular location.

• pi - penalty cost parameter for a stock point i. The penalty cost parameter regulates the

importance of a stock-out. High p usually results in more inventory being stored at the

location due to the costly stock-outs.

• hi - holding cost parameter for a stock point i. Holding costs parameter regulates the cost

incurred by the leftover goods after the demand is realized. In this study holding costs are

set to one hi = 1 for all problems, while the ratio between holding and penalty costs is

controlled by changing the penalty parameter pi.

• ai(t) - order placed by the stock point i, which is going to arrive at t+ li.

• Di(t) - the demand value at time step t incurred at the location i is sampled from a random

distribution. The distribution can be normal N (µ, σ), Poisson Poiss(µ) or uniform U(a, b).

The values are rounded off to the nearest integer and truncated to 0 to avoid negative values

when sampling from a continuous distribution.

As mentioned, the inventory models in this study follow a periodic review policy, meaning that

the state of the system is reviewed at regular time intervals. Thus, the systems can naturally be

modeled as MDP. Each state transition in MDP is associated with a time-step t and corresponds

to a decision period in inventory system. A replenishment decision At is made at every time

step t, given the current inventory level IL(t), and the vector of outstanding orders Q(t) =

(q(t− l), q(t− l+1), . . . , q(t)), where l is the lead time. Since the current inventory model has only

one location, indices are omitted, and action At is a single integer. The state St = (Q(t), IL(t)) is

a concatenation of the pipeline vector and the inventory position of the location. Thus, the size

of the state space is driven by the lead time. An action At is assigned on the first position of the

pipeline vector q(t− l)← At, where the order will be delivered at the location after the lead time
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l. The number of possible replenishment decisions forms the action space. The pipeline vector

then evolves by shifting one period forward. Afterward, the orders q(t) are received and added

to the on-hand inventory. Figure 3.2 contains an example of the state evolution with arbitrary

values.

Figure 3.2: The evolution of the state for single node system with exemplary values with lead
time l = 3 and no demand D(t+ 1) = 0

Each episode starts with a beginning inventory that equals the mean of the demand µ at the

location multiplied by the lead time l, IL(0) = µ ∗ l. Whenever the inventory system is under the

backlog assumption, the demand D(t+ 1) is realized and subtracted from the on-hand inventory

IL(t+1) = IL(t)+q(t)−D(t+1). The excess demand is backlogged, which results in the inventory

level falling below 0. In the case of lost sales, the inventory level cannot be lower than 0, thus the

state evolves according to the following equation:

IL(t+ 1) = max(0, IL(t) + q(t)−D(t+ 1)) (3.3)

The momentary reward is calculated as the negative sum of the holding costs and penalty P (t):

Rt = −

K−1∑
j=0

IL+(t+ 1) ∗ h+ P (t)

 (3.4)

For the system with the backlog, the penalty p is assigned for every backlogged item after the

demand is realized:

P (t) = IL+(t+ 1) ∗ p (3.5)

Under the lost sales assumption, the penalty cost is calculated as an opportunity cost per

unsold unit:

P (t) = max(0, D(t+ 1)− IL+(t)) ∗ p (3.6)

Even though the problem formulation (equation 3.1) is relatively simple, the Bellman equation’s

solution is rather challenging to obtain due to the triple curse of dimensionality. The triple curse
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of dimensionality is related to 1) the size of the state space, 2) the size of the action space, and

3) the transition probability matrix. Notably, the curse of dimensionality is relevant only in the

case of lost sales. The optimal replenishment decisions are dependant on the inventory level and

each element in the pipeline vector. The size of the state space grows exponentially as the lead

time becomes longer, thus making it difficult to solve with traditional methods such as Dynamic

Programming.

3.1.2 Multi Echelon Inventory Model

A two-echelon inventory model is presented in Figure 3.3. In this setting, random demand mater-

ializes at each store (retailer) on every time-step t. The retailers place an order at the upstream

location (warehouse), and the orders are filled as much as possible, according to the allocation

decision and on-hand warehouse inventory. The warehouse then places an order at the supplier

(production decision) with infinite stock. The orders are delivered to the designated locations

after a certain transportation delay (from the supplier to the warehouse or from the warehouse to

the retailers). This model is widely known as one-warehouse multi-retailer system (OWMR).

Figure 3.3: Illustration of buffers in one-warehouse multi-retailer systems with lead times

The evolution of the transportation buffers and customer behavior is analogous to the single

echelon model described in section 3.1.1. Each retailer can be viewed in isolation as a single node.

However, the retailers do not have access to infinite stock, instead, the on-hand warehouse invent-

ory is rationed among multiple locations. There are multiple benefits associated with inventory

pooling at the warehouse. One of the main advantages is risk pooling. Since trans-shipments

between the retailers are not allowed, the surplus inventory at one retailer cannot compensate

for a shortage at another. Therefore, pooling inventory at the warehouse can provide the needed

redistribution of stock. Additionally, holding inventory at the warehouse is less expensive than

holding it at the retailers; for example, the retail stores can be located in shopping centers where

storage can be costly. This creates two opposing incentives. On the one hand, the warehouse
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should allocate as much to the retailers as possible to reduce potential shortages. On the other

hand, positive on-hand inventory at the warehouse can be beneficial if the retailers go out of

balance.

The problem formulation is inspired by the works of [61, 20]. Our OWMR model is similar to

the ones presented in earlier works, however, we make three modifications, namely:

1. Our model does not consider partial lost sales: 100% of the unmet demand is either back-

logged or lost.

2. No emergency shipments from the warehouse are allowed. Emergency shipment refers to

shipping goods to the consumer from the warehouse directly bypassing the retailers. The

emergency shipment occurs whenever one of the retailers runs out of stock.

3. The locations do not have capacity constraints.

These modifications allow us to formulate a model that increases the competitiveness of the

heuristic policies when compared to our method. Additionally, the capacitated locations and

emergency shipments negatively affect the quality of the baseline heuristics. Thus, our problem

formulation presents a relatively simple inventory model where the use of s-type heuristics is

justified.

Markov Decision Processes Formulation for Multi-Echelon Inventory Systems

This part extends the definition of MDP presented for the single echelon model in section 3.1.1 to

the OWMR system. The system dynamics and notations are analogous, and any differences are

further explained below.

A unique identifier is assigned to every location. The warehouse has index 0, while the retailers

are identified with numbers from 1 to K − 1, where K ∈ N is the total number of locations. The

inventory flow in the OWMR system starts with the central warehouse raising its inventory level

IL0(t) by placing an order a0(t) at the manufacturer with an unlimited supply. There is a strictly

positive replenishment lead time at the warehouse l0 and an associated vector of outstanding

orders Q0(t) = (q0(t− l0), . . . , q0(t)). The inventory levels and the pipeline vectors of the retailers

are denoted in a similar manner ILj(t) and Qj(t) = (qj(t − lj), . . . , qj(t)), for j ∈ 1, . . . ,K − 1.

The replenishment decisions for the retailers aj(t) are subject to the following constraints:

0 ≤ a0(t),∀i ∈ 0, . . . ,K − 1 (3.7)

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management

25



CHAPTER 3. MODELS AND METHODS

K∑
j=1

aj(t) ≤ IL+
0 (t) (3.8)

The state of the MDP St = (Q0(t), IL0(t), Q1(t), IL0(t), . . . , QK−1(t), ILK−1(t)) is a concat-

enation of the pipeline vectors and the inventory levels of all the stock-points. Thus, the size of

the state vector is influenced by the lead time at all locations |St| =
∑K−1
i=0 li +K. Furthermore,

the action At = [a0(t), a1(t), . . . , aK−1(t)] is a vector that combines production and allocation

decision for the time-step t. Therefore, the size of the action vector equals the number of locations

|At| = K.

The inventory level of the warehouse is updated according to the following equation:

IL0(t+ 1) = IL0(t) + q0(t)−
K−1∑
j=1

aj(t) (3.9)

Under the backlog assumption, the inventory levels of the retailers are updated with the following

formula:

ILj(t+ 1) = ILj(t) + qj(t)−Dj(t+ 1) (3.10)

In the case of lost sales, the retailers’ inventory levels cannot be negative. Therefore a different

formula is applied:

ILj(t+ 1) = max(0, ILj(t) + qj(t)−Dj(t+ 1)) (3.11)

In order to fully characterize the system dynamics, the sequence of the events is specified

bellow:

1. Inventory levels are observed, and current production and allocation decisions are determined

2. Warehouse updates its level according to equation 3.9

3. Retailers update their levels according to equations 3.10 or 3.11

4. Reward is calculated according to equation 3.12

A momentary reward is calculated as the negative of all the costs incurred during the time-step

t at all locations

Rt = −

(
K−1∑
i=0

IL+
j (t+ 1) ∗ hj + Pj(t)

)
(3.12)

The costs are calculated similarly to the single echelon system: each retailer incurs holding

and penalty costs, while the warehouse has only holding costs (i.e. p0 = 0).
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MDP’s objective in a multi-echelon setting is analogous to the formulation presented in 3.1.1:

find an optimal policy that maximizes the expected sum of discounted rewards. The curse of

dimensionality, in this case, is even more pronounced than for the single echelon. The state-space

depends on the number of locations and their corresponding lead times. The action space is multi-

dimensional, where each dimension corresponds to a location. Finally, the transition function is

influenced by independent random demand at multiple retailers. Therefore, finding a policy for

such a large MDP with multi-dimensional actions is a challenge even for the most sophisticated

machine learning techniques. In the next section, we formulate a solution methodology to tackle

this problem.

3.2 Methodology

This section presents the methods used in training the neural network as a policy for controlling

the replenishment decisions in the OWMR systems. The Proximal Policy Optimization (PPO)

algorithm is introduced first, followed by a detailed explanation of its application to stochastic

inventory optimization. Finally, the heuristic policies which serve as the baseline for the evaluation

are discussed. The section concludes with a description of the evaluation method used to compare

the performance of the DRL-derived solutions and the heuristic baselines.

3.2.1 Application of Proximal Policy Optimization Algorithm in Invent-

ory Management

This section describes the specifics of the application of PPO in OWMR inventory optimization

problems.

PPO [50] is a policy gradient method that enhances the well-known REINFORCE algorithm

[65]. It does so by incorporating elements from the Trust Region Policy Optimization (TRPO),

importance sampling, and value methods. TRPO ensures a monotonic policy improvement by

leveraging second-order optimization methods [48]. PPO achieves similar results by clipping the

optimization objective. Unlike REINFORCE, however, the training data can be reused multiple

times by the PPO due to the importance of sampling. In combination with a value function used

to improve the training stability, PPO is characterized by stable training with good wall-time

performance.

[20] reports that an expensive hyper-parameter tuning process is required for achieving good
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performance on inventory optimization problems. PPO has empirically shown to be less sensitive

towards hyper-parameter tuning. Additionally, we chose the PPO method to perform stochastic

inventory optimization tasks due to its good convergence properties and good sample complexity.

An efficient implementation is available from Rllib [34] reinforcement learning library, which is

used in this work.

In order to provide individual control over the replenishment decision in OWMR systems, we

defined an MDP with multi-dimensional action space in Section 3.1.2. This formulation allows us to

solve asymmetric problem instances, where retailers’ parameters (lead time, demand distribution)

might differ. Moreover, the actions produced by a policy are subject to a constraint 3.8. We

elaborate on the architecture of the policy network in the next section and define its interaction

with the environment.

Actor-Network and Interaction with the Environment

As discussed in Chapter 2, the PPO algorithm is an actor-critic method that combines policy

optimization and value approximation. The actor-network (also referred to as a policy network)

π(St|θ) is responsible for outputting actions. The actor-network is a Multi-layer Perceptron with

two hidden layers. The dimension of the input layer is matched with the number of dimensions

of the state space S. The dimension of the last layer is adjusted to the maximum replenishment

quantity for each stock-point.

In the case of a single echelon inventory model, we identify 20 integer actions in the range [0,

20). The output layer of the actor-network is being processed by a softmax activation function

since there are no constraints on the size of the replenishment orders. The corresponding action

is sampled from the final discrete probability distribution. In contrast, the actions in the OWMR

system are subject to the constraint specified in equation 3.8. In the literature, this issue is solved

by forming a Cartesian product of all possible actions across the dimensions and masking the

infeasible actions. This approach results in the exponential growth of the action space as the

number of action dimensions becomes larger. We adopt a different approach to this problem,

which is discussed next.

The warehouse can choose from 20 integer values in a [0, 20) range, while each retailer has

10 options in the [0, 10) range. The output of the actor-network equals the sum of all possible

actions for each location, namely 20 + 10 ∗ (K − 1) values. The softmax activation function is

applied with respect to the specified action ranges first 20 elements of the output vector form a
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Figure 3.4: Simplified visualization of the actor-network. Dashed arrows represent inputs and
outputs, while solid arrows symbolize weights (biases and hidden layers’ activation functions are

omitted for clarity).

probability distribution over the warehouse’s actions, while the rest are divided between the K−1

retailers. The final output of the network is a vector At = [a0(t), a1(t), . . . aK−1(t)], where K is

the total number of locations. This allows us to specify an exact ordering decision for each of the

stock-points and keep the size of the output layer grow linearly with respect to the number of

actions. See Figure 3.4 for simplified visualization of the network.

Even though this method allows us to scale the network’s output linearly with the number of

locations, it is difficult to restrict the output to the allocation constraint highlighted in Equation

3.8. It is not possible to execute these actions directly when the allocation constraint is viol-

ated. This issue raises two questions: 1) how to adjust the actions to become feasible and 2)

how to communicate to the RL agent that these actions were not feasible. One of the solutions

could be to apply an allocation rule that takes the number of available on-hand inventory at

the warehouse and suggested actions At = [a0(t), a1(t), . . . aK−1(t)] and outputs a feasible action

A′t = [a0(t), a′1(t), . . . a′K−1(t)]. The allocation rule can be proportional. Each proposed action is

scaled down according to its size ai(t), i ∈ {1, . . . ,K − 1}, the available on-hand inventory at the

warehouse IL+
0 (t) and the sum of suggested actions

∑K−1
j=1 ai(t):

a′i(t) =

⌊
ai(t) ∗

IL+
0 (t)∑K−1

j=1 ai(t)

⌋
(3.13)

This rule is favorable for the s-type heuristics as it fairly distributes the available inventory

among the retailers with respect to their inventory positions. However, as empirically validated,

this proportional allocation does not provide an incentive for the RL agent to output feasible

actions. The agent tends to suggest high order quantities at the retailers (in the top of the

available range), while limiting on-hand inventory at the warehouse. This results in undesired
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behavior: the agent does not learn to ration the resources, instead all inventory is being equally

split between the retailers. Even though this approach is not inherently wrong, this leads to poor

performance. The problem persists event when the penalty for the infeasible actions is added.

This could be related to the fact that rewards are highly stochastic, which means it is challenging

for the agent to evaluate which actions are considered infeasible. Additionally, a valid penalty is

difficult to define for each problem settings.

While training the RL agent, we rely on the sequential allocation rule. We randomize the

sequence of the retailers at every time-step, and the suggested (probably infeasible) actions

aj(t), j ∈ 1, . . . ,K − 1 provided by the actor-network are executed one by one. The on-hand

warehouse inventory is being decreased by the corresponding amount every time an action is ex-

ecuted. If there are not enough goods to execute a suggested action, the action is truncated so

that the on-hand inventory at the warehouse does not fall below 0. This means that in case of

an infeasible action (violating the constraint 3.8), the last retailer(s) in the sequence will receive a

lower quantity than suggested, which will increase the retailer’s costs. During the training, the RL

agent learns to output feasible actions since the infeasible actions lead to unfavorable costs. Not

only this allows us to remove the extraneous penalty for infeasible actions, but it also results in

better performance. The performance improvements are maintained even when switching to the

proportional allocation rule because the RL agent has learned to use the warehouse resources in

the most efficient way. It is important to note that the actions’ adjustments are only done inside

the environment and do not affect the actions collected in the training batch for the PPO training.

Critic-Network and Policy Improvement

The training process of PPO can be divided into two parts: a collection of experiences and policy

improvement. First, the trajectories are generated by the agent-environment interaction and

saved into a training batch. The experience collection process can be accelerated by increasing the

number of workers distributed among several CPU threads. We use the current policy of the actor

to generate a training batch for each training iteration. The sample points in the training batch

include observed states, actions, and corresponding rewards. Once the training batch is complete,

the value estimates V̂t, the advantages Ât, and the true value targets V target
t are calculated in the

post-processing step. A policy improvement involves adjusting the weights and biases of the neural

nets through adaptive mini-batch gradient descent, using Adam optimizer [31]. The training batch

can be reused across multiple epochs.
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Figure 3.5: Simplified visualization of the critic-network. Dashed arrows represent inputs and
outputs, while solid arrows symbolize weights (biases and hidden layers’ activation functions are

omitted for clarity).

The critic-network is represented by a separate neural network Vπ(St|θ′), which estimates the

value V̂t of the state St when following the policy π.

V̂t = Vπ(St|θ′) (3.14)

The critic-network structure is identical to the actor-network, but the last layer has only one

neuron with a linear activation. The critic-network is visualized in Figure 3.5.

The value estimates are used to calculate the advantage Ât of the action At in the state St.

The advantage indicates how much better the value of an action is with respect to the critic’s

estimate. The Generalized Advantage Estimation (GAE) is used for calculating the advantage

function:

Ât =

T∑
l=0

(γλ)lδVt+l (3.15)

where δVt = Rt + γV̂t+1 − V̂t is the temporal difference residual [49]. The hyper-parameter λ

signifies the trade-off between bias and variance of the advantage estimates. High λ values reduce

the variance but increase the bias. In a highly stochastic environment, as one presented in this

study, GAE allows providing more stable advantage estimates, thus improving training stability.

Finally, the value targets are computed with the real rewards recorded in the training batch

V target
t =

T∑
t′=t

γt
′
Rt′ (3.16)

Since the actor and the critic-networks are separate networks, we compute two loss functions

to update the network parameters. The loss of the value-network is the expected mean squared
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error between the discounted rewards V target
t and the value function approximation V̂t across a

training batch:

Value Loss = c1Êt
[
(V̂t − V target

t )2
]

(3.17)

The term c1 is a value function loss coefficient. It is used to control the strength of the final

value-network loss. The neural network is initialized with random weights, essentially forming a

random policy. The coefficient c1 is used to compensate for the large difference in value estimates

and the true value target at the beginning of the training.

The policy loss equals the clipped surrogate objective:

JCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
(3.18)

The clipped objective includes an additional hyper-parameter ε, which defines the maximum

size of the actor-network update. We use the value of ε = 0.2 as suggested in the original paper

[50].

rt(θ) =
πθ(At | St)
πθold(At | St)

(3.19)

Equation 3.19 refers to the probability ratio between the old and the new policies. It is based

on the idea of importance sampling - the general statistical technique for estimating the properties

of one distribution while only having samples generated by a different distribution. The equations

3.19 suggests that the ratio becomes smaller as the difference between the old and the new policy

increases. This method allows us to reuse the previously collected experiences multiple times

and reduce the magnitude of the policy update if the trajectories become too stale. Importance

sampling in combination with the clipped objective clip(rt(θ), 1 − ε, 1 + ε) results in stable and

sample efficient training. By performing gradient ascent on the objective (equation 3.18) the actor-

network weights are adjusted to increase the probability of good actions (advantage is positive)

and decrease the probability of bad actions (advantage is negative).

The total loss of the actor-network π(St|θ) is formed by adding together the clipped surrogate

objective and the entropy bonus:

JCLIP
′
(θ) = JCLIP (θ) + Êt [c2H(St, πθ(.)] (3.20)

The entropy bonus is related to the exploration/exploitation dilemma in RL. In order to encour-
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age exploration, the entropy H(St, πθ(.)) =
∑
a∈A π(a, St) log π(a, St)) of the policy is calculated

and added to the final objective. If the policy has high entropy, it explores more. On the other

hand, the entropy decreases when one action is more probable than the other. The coefficient c2

controls the contribution of the entropy to the total objective. Notably, a high c2 value results in

a policy that tends to explore more.

Table 3.1 presents the list of the final hyper-parameters that were used for the PPO training.

In our case, the PPO algorithm did not require extensive hyper-parameter tuning. Nevertheless,

some limited tuning has taken place to ensure that the best possible parameters were chosen. The

explanation of the hyper-parameters, as well as the most valuable findings of the tuning process,

are detailed in Appendix A.

Hyper-paramer Value

Number of Layers 2
Number of Neurons [64, 64]
Activation Function Policy Network tanh
Activation Function Value Network ReLU
Train Batch Size 327680
Mini-batch Size 32768
Number SGD Epochs 30
Number of workers 12
Learning Rate 10−4

VF Loss Coefficient (c1) 10−7

Entropy Coefficient (c2) 0
Gradient Clipping Norm 40.0
Discount factor γ 0.95
GAE λ 0.98

Table 3.1: Hyper-parameters used for PPO training

3.2.2 Baseline Policies

Single Echelon with Backlog

The base-stock policy is the optimal policy in a single-node system under the backlog assumption.

The optimal base-stock level z∗ can be determined analytically only if the demand distribution is

known. Let Fl(.) be a cumulative distribution function of the l period demand, then the optimal

base-stock level z∗ can be calculated by first identifying the critical ratio CR = p
p+h and then

finding the inverse of the cumulative distribution with respect to CR:

z∗ = F−1
l (CR) (3.21)
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The replenishment quantity at each time-step t can be consequently derived by subtracting

the inventory position from the base-stock level:

a(t) = max(0, z∗ − IP (t)) (3.22)

This equation follows from the queue theory. The base-stock levels are set in a way that the

probability of the consumer’s demand being fully satisfied equals the critical ratio.

Single Echelon with Lost Sales

Lost sales assumption in a single-node inventory system results in higher computational complexity.

The optimal policy is dependant on the inventory position and the distribution of the values in

the pipeline vector. In the case of lost sales, it is common to use the same s-type heuristic derived

from the backlog analog: the base-stock policy. However, the performance of the base-stock policy

only approaches optimal in the case of short lead times and high penalty values.

Another class of heuristics, the constant order policies, can be applied for such a system. The

constant order policies that place the same replenishment order every time step are proven to be

asymptotically optimal as the lead time increases [67]. However, with a decrease in the lead time,

the performance starts to deteriorate. [66] proposes a new type of policy that combines the best

of the two heuristics into a hybrid capped base-stock. The capped base-stock policy is associated

with two parameters: a base-stock level z and an order cap r. Better performance is related to

the order cap r that results in a smoother policy which clips the values that are larger than r.

The capped base-stock behaves as a base-stock when the lead time is small (or the penalty cost is

high) and converges to the constant order policy as the lead time increases [66]. Despite its good

performance, the cost function is not convex compared to the base-stock level policy [66].

The presence of the order cap results in order-smoothing and constrains high future holding

costs. In other words, unexpected large demand might result in an equivalently large order un-

der the base-stock policy, which, in turn, drives the future holding costs up. The effect of the

order-smoothing is demonstrated in more detail in [55]. It is expected that DRL will produce a

more sophisticated policy structure that allows for a more suitable order-smoothing in complex

environments under the lost sales assumption.

Another method for solving lost sales inventory models is tested in [20], namely Linear Pro-

gramming Approximate Dynamic Programming (LP-ADP). The capped base-stock performance

in the experiments of [20] were as good as LD-ADP, while the constant policy performed worse
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than the base-stock in all scenarios. We exclude the LD-ADP and the constant policy from our

study and only consider the capped base-stock and base-stock policies as the baselines in our

experiments.

Multi Echelon

The optimal guarantees of the s-type policy do not carry over from a single echelon to multi-echelon

divergent systems. The structure of the optimal policy is unknown and expected to be complex.

An optimal decision to transfer goods from one site to another may depend on all status of all

sites. Since Dynamic Programming is intractable due to the allocation problem, it is common to

use somewhat simpler reorder point policies [3].

There are two commonly used heuristics in this case. First is the decentralized base-stock

heuristic policy where the replenishment decisions are only based on local information. In some

papers, the base-stock policy in a multi-stage system is referred to as an installation-stock policy.

The benefit of this policy is that only local inventory positions are needed. However, the cost

effectiveness of the base-stock heuristic is also limited by the lack of information about the entire

system. A relatively simple way to incorporate this information is to base decisions on the echelon-

stock policy, the second common heuristic we consider. The echelon-stock is obtained by summing

up the inventory position at the location with the inventory positions of all downstream locations.

In other words, the echelon-stock heuristic results in a policy that orders at the warehouse as soon

as the demand is realized at the retailers. This means that this policy has an advantage by being

able to anticipate the retailers’ orders. [4] has shown that an equivalent echelon-stock policy can

replace the base-stock policy.

The formalization of the base-stock and echelon-stock heuristic policies is presented below.

The replenishment decisions for the retailers are taken with respect to their base-stock levels zj

identified by an exhaustive search over the parameter space. The base-stock policy replenishment

decisions at all locations are derived according to the following equation:

aj(t) = max(0, zj − IPj(t)) (3.23)

When the system is being controlled by the echelon-stock heuristic, the warehouse sums its

inventory position with the inventory positions of the retailers:

a0(t) = max(0, z0 −
K−1∑
i=0

IPi(t)) (3.24)
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Finally, the allocation rule should be specified to ensure the feasibility of the replenishment

decisions (according to constraint 3.8). We utilize the proportional allocation rule. The actions

provided by the heuristics aj(t) for each retailer j ∈ 1, . . . ,K − 1, are truncated according to the

following formula:

a′i(t) =

⌊
ai(t) ∗

IL+
0 (t)∑K−1

j=1 ai(t)

⌋
(3.25)

We use the base-stock heuristic as a baseline in our comparison, following the example of

[61, 20]. Additionally, we add an echelon-stock heuristic, due to its strong performance and

suitability in the selected OWMR problems.

3.2.3 Evaluation

A discrete time simulation is used to calculate the total costs of different policies. We modeled the

heuristic and reinforcement learning policies as agents that interact with simulation through Open

AI Gym interface [11]. We use the proportional allocation rule for the base-stock, the echelon-stock

and the PPO agents when calculating the costs for the OWMR systems.

We adopt a cost-based approach for evaluating the heuristics and the neural network-based

policies trained by PPO. The rewards are expressed as negative costs of the inventory system.

Therefore, we compare the total savings attained by each agent using the average sum of undis-

counted rewards:

R̄ =
1

N

N∑
i=1

T−1∑
t=0

Rt (3.26)

The results presented in the next chapter are produced by running N = 1000 episodes with

T = 100 time-steps (decision periods) each. We calculate the average undiscounted rewards across

those trials together with a standard error:

σR̄ =
σ√
N

(3.27)

where σ is the standard deviation.

We proceed with normalizing the results with respect to the heuristic policies and express the

costs difference in percentages. This method allows us to compare the different problem instances.

Additionally, during the evaluation, we use the same random seed for N runs for all agents to

ensure fair comparison. The agents are evaluated on the same sequence of demand values sampled

from a random probability distribution. We identify the best parameters for all heuristics by
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performing an exhaustive search over the parameter space based on average sum of rewards R̄.
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Numerical Experiments

The main objective of this section is to present and analyze the results of the numerical experiments

we have conducted based on the methodology presented in Chapter 3. We then discuss the

suitability of our methodology for the stochastic inventory optimization tasks.

We first experiment with the smaller and simpler single-echelon systems to gain insight into the

effectiveness of our method, so we can later apply it to the more complicated multi-echelon setting.

After the single echelon, this chapter concludes with experiments on multi-echelon one-warehouse

multi-retailer (OWMR) systems. We divide the problems into symmetric and asymmetric cases

regarding the lead times and demand distributions of the retailers. We also consider the backlog

and the lost sales assumptions.

4.1 Single Echelon

As mentioned earlier in this work, the optimal policy for a single-echelon model with backlog is the

base-stock policy. The optimal parameters are calculated with a closed-form solution, as shown

in Chapter 3. Therefore, the single-echelon model (Figure 4.1) serves as a benchmark to test the

methodology against the optimal solution.

Figure 4.1: Single node system with vendor lead time

The study of simple single-echelon systems provides valuable insight into the behavior of heur-

istics and RL agents in a multi-echelon divergent SCN. It helps to evaluate how well PPO can

38 Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management



CHAPTER 4. NUMERICAL EXPERIMENTS

approximate optimal and asymptotically optimal policies. Moreover, the single-echelon models

under the lost sales assumption form classical intractable inventory optimization problems for

which the solution cannot be easily obtained.

In order to cover a number of possible scenarios within a business context, we generate several

problem settings considering two dimensions: lead time and penalty costs. The set of parameters

for the lead time l and penalty costs p are chosen from the Cartesian product of the two discrete

sets l = {1, 2, 5} and p = {1, 9, 27}. The values for the lead time were chosen to cover the short

l = 1, medium l = 2 and long l = 5 lead time values. Additionally, we set the holding costs at

h = 1. Therefore, the chosen penalty parameters cover three different cases - when the holding

costs result in 50% (p = 1), 10% (p = 9) and 3% (p = 27) of the total inventory system costs.

The demand values are sampled from the Poisson distribution D(t) ∼ Poiss(3).

The lead time and penalty parameters for the backlog problem do not affect the performance

of the optimal policy. The optimal policy parameters can be calculated for any combination of

these settings. In the RL context, however, the delay (lead time) between action and reward

and the variance of the rewards (penalty cost) influences the convergence properties of the RL al-

gorithms. More specifically, highly volatile and delayed rewards are associated with poor algorithm

performance.

On the other hand, the complexity of the problem rises with the increase in the lead time

parameter for the lost sales. The reason for this is that the optimal policy depends on the

full vector of outstanding orders. Additionally, higher penalty costs increase optimal inventory

levels and decrease the probability of a stock-out. As a consequence, the base-stock policy is

asymptotically optimal when the penalty parameter is large [22]. The combination of parameters

(l and p) specified above augments the test cases presented in the previous study on lost sales

problem and results in a wide range of scenarios [20].

Altogether, eighteen different benchmarks are formed, nine for the backlog and nine for the lost

sales problems, respectively. These settings are also suitable for evaluating the benefits of reward

variance reduction with Generalized Advantage Estimation (GAE). Thus, two PPO variations for

all scenarios are tested: first, where only an actor-network is used, and second, where GAE is

employed for calculating the advantages.
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4.1.1 Backlog

The performance comparison between optimal base-stock policy and PPO policy is shown in Figure

4.2. The cost of the base-stock policy is normalized at 0 in order to be able to compare the results

across the scenarios. The black error bars represent a 95% confidence interval, while the positive

values of both the green and the red bars indicate the relative increase in the total costs, expressed

in percentages.

Figure 4.2: Mean costs difference in percentages on a single node system with backlog
assumption, normalized with respect to the costs of the optimal base-stock policy (the lower is

better). Obtained with N = 1000 iterations of T = 100 time-steps. Black error bar indicated the
95 % confidence interval

The figure shows that when the penalty parameter is low (p = 1), PPO (both GAE and no

GAE) can find a nearly optimal policy. Furthermore, the graph shows a clear trend when the

penalty costs are set to 9 (p = 9), and the lead times gradually increase (l = [1, 2, 5]). When

p = 9, the subsequent growth in the lead time l causes PPO costs to rise and thus perform worse

than the base-stock. We can see that the PPO with GAE experiences greater costs increase.

The high reward variance can explain both cases: the stock-outs are frequent due to the average

penalty. However, as the lead time grows, the uncertainty of the system increases since agent needs

to plan many steps in advance. However, once the penalty costs are at its highest p = 27, there

is no apparent change that comes from the change in the lead times, and the PPO’s performance

does not decrease. It is more beneficial to maintain high inventory levels when the penalties are

large. Thus, the stock-outs are rare, and the PPO agent performance is not sensitive to the lead
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time. In this case, the GAE and no GAE perform similarly, which is within the standard error.

Nevertheless, the results indicate that PPO can discover optimal or close to optimal policies

(less than 2% gap) in single-echelon inventory systems under different lead time and penalty

parameters. The results are in line with the expectation that with higher penalty parameters, the

RL methods perform worse due to high reward variability directly influenced by the parameter p.

Tuning the λ parameter for GAE did not lead to better results. Overall, the performance of PPO

with GAE decreases slightly on high lead time and penalty parameters.

(a) (b)

(c) (d)

Figure 4.3: Visualization of the Base Stock and PPO policies and steady state inventory
probabilities for single echelon backlog l=1, p=9, D(t) ∼ Poiss(3). Top: replenishment policies.

Bottom: probability of state values in the steady state

Figure 4.3 provides visualizations of the base-stock and PPO replenishment policies. The

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management

41



CHAPTER 4. NUMERICAL EXPERIMENTS

inventory level IL is positioned on the x-axis, while the y-axis indicates the number of outstanding

orders |Q|. Sub-figures 4.3a and 4.3b contain the corresponding order quantities, while sub-figures

4.3c and 4.3d show the steady state probabilities. The underlying inventory model operates under

the backlog assumption with the following parameters: l = 1, p = 9, D(t) ∼ Poiss(3). The

base-stock levels are 9, and the PPO was trained without GAE.

The heat-map shows that the results of PPO are nearly identical to the base-stock policy.

This means that the PPO agent is able to discover the optimal policy from the simulation data,

which proves its potential for solving inventory optimization problems. The optimal policy and

the policy obtained by PPO disagree on two states only: first, when the number of outstanding

orders equals 0, and the inventory level equals 1; and second, when the outstanding orders equal

1 and the inventory level is 0. However, these states do not occur in the steady-state (bottom

sub-figures), because both policies do not let the inventory position decrease below 1. It should be

noted that when the PPO agent is given a state that lies outside of the steady-state distribution,

it may output sub-optimal actions. This is an inherent attribute of the policies derived by the RL

methods - not all possible states are visited or evaluated.

PPO is capable of discovering close to optimal policies on scenarios with short lead times and

penalty costs. Additionally, a high penalty and long lead times result in an approximate 2% cost

increase with respect to the optimal solution. Training PPO with GAE does not appear to be

beneficial for the single echelon models with backlog - in some cases, it results in unstable training

and higher costs.

4.1.2 Lost Sales

The results for the single-echelon model under the lost sales assumption are presented in Figure

4.4. The PPO agents can discover significantly better policies than the base-stock policy across

almost all scenarios. The only exception is when l = 1 and p = 27. In this case, the PPO matches

the base-stock policy, close to the optimal approach due to the short lead time and the high

penalty cost. A3C’s performance on the lost sales problem has been reported to be worse than

that of the capped base-stock [20]. In contrast, our results indicate that PPO is able to outperform

the capped base-stock on some settings (l = 1, p = 1 and l = 5, p = 27) and reach nearly equal

performance in the remaining settings. The cost of the system under the capped base-stock policy

is known to be close to optimal (less than 2% optimality gap) [20]. This allows us to conclude

that PPO achieves close to optimal performance on the lost sales inventory optimization problem.
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Figure 4.4: Comparison of the mean cost for different policies on single node system with lost
sales assumption (the lower is better). Obtained under with N = 1000 iterations of T = 100

time-steps. Black error bars indicate the 95 % confidence interval

Moreover, PPO is stable to changes in lead time and penalty parameters. In contrast to the

results from its backlogging counterpart, PPO with GAE was able to outperform the capped base-

stock with a small margin (around 1%), when p = 27 and the reward variance are the highest.

This result suggests that the benefits of smoothing the advantage estimates with GAE become

more pronounced as the uncertainty of the environment increases. Therefore we expect GAE to

be useful for the multi-node inventory systems.

The visualization of the capped base-stock and policy trained with PPO and corresponding

probabilities of the steady-state values are presented in Figure 4.5. From the heat-maps, we

can see that the policy trained with PPO is similar to the capped base-stock policy, with a

small variation on the states with low occurrence probability in the steady-state. The differences

between the policies (inventory level between 6 and 8, number of outstanding orders between 0

and 3) suggest that PPO tends to order a single additional item when the inventory levels are

high, and the number of outstanding orders is low. However, these states are rare, therefore the

total costs of the both policies are within the confidence interval, shown in Figure 4.4 where l = 1,

p = 9. Nevertheless, this observation suggests greater flexibility of neural network-based policy.

In the instances with the highest lead time and penalty costs, the PPO agent outputs higher

order quantities than otherwise allowed by the capped base-stock, which could be a source of

improvement.
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(a) (b)

(c) (d)

Figure 4.5: Visualization of the Capped Base Stock and PPO (with GAE) policies and steady
state inventory probabilities for single echelon lost sales l=1, p=9, D(t) ∼ Poiss(3). Top:
replenishment policies. Bottom: probability of state values occurring in the steady state

4.1.3 Computational Complexity

Figure 4.6 shows the training curve of the PPO algorithm in contrast with the heuristic policies,

which helps us evaluate the computational efficiency of the PPO method. PPO was able to

achieve a reasonable performance within 50 million steps, which corresponds to 500,000 training

episodes. The number of steps is high due to the large batch size of 32,768. Each 200 million

steps correspond to 16 hours of wall-clock time on 12 logical CPU (clock speed 3.7 GHz) threads.

Training on a smaller batch size slowed down the training without any convergence improvements.

Large training batch sizes were also used to decrease the number of training iterations and improve
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(a) Single Echelon backlog (l = 1, p = 9) (b) Single Echelon lost sales (l = 5, p = 27)

Figure 4.6: Selected training runs for Single Echelon

training stability.

We can conclude that PPO is a computationally expensive method that requires a high num-

ber of training samples. However, this conclusion refers to the initial computational costs. We

expect diminishing requirements of the number of samples as the problem becomes more difficult

(increasing number of locations).

4.2 Multi Echelon

This section covers the experiments performed on the One-Warehouse Multi-Retailer problem

(Figure 4.7) introduced in Chapter 3. Here we investigate how different demand processes and

different lead times at the retailers affect the performance of PPO in comparison to the heuristic

policies.

Figure 4.7: Illustration of buffers in one-warehouse multi-retailer systems with lead times

One Warehouse Multiple Retailers (OWMR) pose a problem where a large amount of possible

actions is available. Previous studies [61, 20] have aimed to reduce the action space by exploiting
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the system’s symmetry. Neural networks addressed the problem of large state spaces. However,

large action spaces are usually addressed by restricting the number of actions for a certain number.

In contrast, our work presents an approach that tackles large action spaces without the need for a

penalty for infeasible actions. Our method is capable of controlling all stages in the one-warehouse

multiple-retailer problem individually.

We evaluate ten scenarios, separated into two categories, namely symmetric and asymmetric,

with three main attributes:

• demand processes D1, D2, D3

• lead times l0, l1, l2, l3

• customer behavior

The summary of the scenarios is presented in Table 4.1 below.

Scenario Customer Behaviour l0 l1 l2 l3 D1 D2 D3

1 backlog 2 1 1 1 Poiss(3) Poiss(3) Poiss(3)
2 backlog 2 1 1 1 U(0, 6) N (3, 1) Poiss(3)
3 backlog 2 1 1 1 N (1, 5) N (5, 1) Poiss(0.5)
4 backlog 2 1 2 3 Poiss(3) Poiss(3) Poiss(3)
5 backlog 5 3 3 3 N (1, 5) N (5, 1) Poiss(0.5)

6 lost sales 1 1 1 1 Poiss(3) Poiss(3) Poiss(3)
7 lost sales 2 1 1 1 Poiss(3) Poiss(3) Poiss(3)
8 lost sales 5 1 1 1 Poiss(3) Poiss(3) Poiss(3)
9 lost sales 2 1 2 3 Poiss(3) Poiss(3) Poiss(3)
10 lost sales 5 3 3 3 N (1, 5) N (5, 1) Poiss(0.5)

Table 4.1: Different scenarios tested for one-warehouse multi-retailer

We differentiate between symmetric (1, 6, 7, 8 ) and asymmetric (2, 3, 4, 5, 9, 10 ) scenarios.

More specifically, scenarios 1, 6, 7, 8 represent symmetric systems, where all the retailers share

the same attributes. Scenarios 2, 3, 10, on the other hand, are asymmetric with different demand

processes at the retailers; while the asymmetry in 4 and 9 comes from the different transportation

lead times of the retailers. Finally, we distinguish between scenarios 1-5 and 6-10 based on the

backlog and lost sales attribute. Scenarios 1-5 assume full backlogging at the retailers, while for

6-10 the unmet demand is lost. Altogether, these settings allow for the performance evaluation

of the PPO algorithm under different sources of asymmetry.

The results across all scenarios are presented in Figure 4.8. The bar plot follows the same

scheme as in the previous section: the heuristics costs are set to 0, while the costs of the PPO

agents are expressed as a difference in percentages. First, we analyze the symmetric systems under
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the backlog and lost sales assumptions. Further, the selected asymmetric scenarios are evaluated

based on the source of the asymmetry.

(a) Costs of PPO normalized with respect to the
costs of base-stock heuristic policy

(b) Costs of PPO normalized with respect to the
costs of echelon-stock heuristic policy

Figure 4.8: The average costs per episode T = 100 calculated across N = 1000 iterations. The
green bars represent the decrease in total costs of the inventory system, when controlled by a
policy optimized by the PPO algorithm (the lower is better). Black error bars indicate 95%

confidence interval.

4.2.1 Symmetric Systems

Scenario 1. We begin with evaluating the PPO performance on the symmetric OWMR models

with identical retailers. This setting is characterized by short retailers l1,2,3 = 1 and warehouse

l0 = 2 lead times, and a low coefficient of variation of the demand at the retailers CV = 0.57. We

can see from Figure 4.8a that the PPO agent manages to outperform the base-stock policy by 8%

and the echelon stock policy by more than 2% (figure 4.8b). This shows that the DRL approach

can develop policies that outperform the heuristics in symmetric OWMR models with short lead

times.

The reason for these results can be seen in Figure 4.9a. While the total costs of the retailers

increase slightly in comparison with the heuristics, the warehouse holding costs are considerably

reduced. Figure 4.9b provides a detailed breakdown of all associated costs per location. The

holding costs of the retailers are higher, yet the penalty costs have decreased. This indicates that

the PPO agent tends to transfer more items to the retailers in order to reduce the holding costs at
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the warehouse. However, the costs for the retailers are raised by about 1.5% each, while the costs

of the warehouse are reduced by 11.5% in comparison with the total cost of the system controlled

by the base stock heuristics.

(a) Aggregate costs per location (b) Costs per location.

Figure 4.9: Costs for Scenario 1.

To investigate this issue further, Table 4.2 shows the comparison between the mean on-hand

inventory before and after the allocation decision has taken place.

Base Stock Echelon Stock PPO

On-hand Before Allocation 13.73 12.64 10.17
On-hand After Allocation 4.73 3.69 1.22
Shortage 0.38 0.40 0.18

Table 4.2: Mean on-hand inventory before allocation, on-hand inventory after allocation and
shortage on the warehouse under the heuristics and the PPO policies in Scenario 1. The episode

length is increased to T = 10000 to provide more accurate estimates.

The PPO agent manages to maintain a smaller on-hand inventory, while lowering the shortage

at the warehouse. The RL agent could achieve this by tracking the number of on-hand inventory

at the warehouse and then efficiently allocating those items across the retailers. The RL agent

shows that by jointly optimizing all of the locations it can achieve significant cost savings with

respect to the best reorder point policies.

Scenarios 6,7,8 present symmetric systems under the lost sales assumption with increasing

warehouse lead times (l0 = [1, 2, 5] respectively). According to Figure 4.8 presented earlier, the

performance of PPO does not differ from the echelon stock in scenarios 6, 7. The cost difference

in these cases is less than 0.5%. For this reason, we do not analyze these scenarios in detail.
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As the lead time increases to l0 = 5, we notice an improvement in Scenario 8 in comparison

to the echelon stock heuristics. Figure 4.10a presents the visualization of the aggregate costs per

each location. Unlike in the backlogging counterpart (Scenario 1 ), the cost improvements are

driven by the retailers. The warehouse cost remains at the same level as the base-stock heuristic,

meanwhile, the costs of the retailers decrease by approximately 6%. Furthermore, although the

echelon stock achieves better results in lowering the costs at the retailers with a 3% improvement,

it doubles the holding costs at the warehouse compared to the base stock. We can conclude that

PPO can maintain significantly lower costs in the OWMR system under lost sales compared to

the heuristic policies, when the production lead time is high (6% cost decrease compared to base

stock and 4% compared to echelon stock).

(a) Aggregate costs per location (b) Costs per location.

Figure 4.10: Costs for Scenario 8.

4.2.2 Asymmetric Systems

Scenarios (2, 3) present the cases where the demand distribution of the retailers changes. In

Scenario 2, the mean of the retailers’ demand is kept at approximately the same level (µj = 3,

j = 1, 2, 3) as in 1, and only the type of the distribution is modified. The costs analysis is

analogous to Scenario 1, thus, a further explanation is deemed redundant. Cost plots are provided

in Appendix B (Figures B.2 and B.3).

In Scenario 3, the parameters are adjusted as to introduce an imbalance: the mean of the

retailers demand is selected so that the corresponding coefficient of variation (CV = σ
µ ) is high on

the first and third retailers (CV1 = 1.37, CV3 = 1.41) and low on the second one (CV2 = 0.23).
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The first retailer demand is sampled from normal distribution N (1, 5), with high variance and low

mean. The second retailer demand is sampled from a more stable normal distribution with higher

mean and lower variance N (5, 1). Finally, the third retailer has the lowest demand, according to

Poiss(0.5). This setting is designed to test the resilience of our method to the varying demand of

the retailers. Despite the increase in the coefficient of variation, the PPO performance remains

the same compared to the heuristics in the previous two scenarios.

Scenarios 4, 9 represents asymmetric systems where the asymmetry is introduced by the

difference in the retailers’ lead time. Scenario 4 presents a setting under the backlog assumption

and Scenario 9 under lost sales.

The PPO agent in scenario 4 reduces costs by approximately 5% with respect to the base stock.

However, in comparison to the echelon stock, PPO produces worse results, as the echelon-stock

results in additional 2% cost improvements. The inferior performance of PPO is related to the

training process of the agent. All replenishment decisions, in this case, are produced at once with

the sequential allocation rule. Thus, if action is infeasible (i.e., the sum of the retailers’ orders

is more than the on-hand inventory at the warehouse), the last retailer in the random sequence

receives the lowest amount of items. This approach increases the costs at that retailer and lowers

the rewards for the PPO agent, which, in turn, decreases the probability of the infeasible actions.

Furthermore, the introduction of skewing the retailers’ lead times causes a part of the reward to

be delayed, which could explain the lower performance of PPO.

This issue persists in scenario 9. Despite this caveat of our method, PPO manages to discover

policies that achieve a 2% cost reduction with respect to the base stock and a 1.3% reduction with

respect to the echelon stock. The costs are illustrated in Figure B.9 in Appendix B.

Scenario 5, 10 combine long lead times at the retailers l1,2,3 = 3 and the warehouse l0 = 5,

with asymmetrical distributions of the retailers and the same coefficient of variations as in scenario

3 (CV1 = 1.37, CV2 = 0.23, CV3 = 1.41). In both scenarios 5 and 10, PPO managed to reduce

the costs of the second retailer, with the lowest demand variability and the highest demand mean.

The costs for scenarios 5 and 10 are summarized in Figure 4.11 and 4.12 respectively.

In both cases, the PPO agent has managed to improve the holding costs at the second retailer.

In scenario 10, in particular, the PPO agent has managed to decrease the penalty costs where the

lost sales assumption is employed. This could be explained by the steadier orders produced by

the PPO agent.

The histograms on Figure 4.13 show the distribution of the agents’ orders. The horizontal axis
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(a) Aggregate costs per location (b) Costs per location.

Figure 4.11: Costs for Scenario 5.

(a) Aggregate costs per location (b) Costs per location.

Figure 4.12: Costs for Scenario 10.

indicates the order size, while the vertical axis shows the probability of the agent placing the order.

The histograms of the base stock and the echelon stock are nearly identical as it can be seen in

the histogram - the green and the yellow lines are overlapping each other. It can be noticed that

the PPO agent places orders in a narrower range compared to the heuristics. The most common

actions for the backlog problem are 4 and 6 (scenario 5), and for the lost sales problem, these are

4 and 5 (scenario 10). The PPO agent is able to stabilize the orders at the biggest retailer to

ensure a total cost reduction across the system.

In the case of the first retailer with demand D1(t) ∼ N (1, 5), the PPO agent ensures higher
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(a) Scenario 5. (b) Scenario 10.

Figure 4.13: Histogram of action values for the Retailer 2

stock to reduce the potential penalty resulting in higher overall costs. Nevertheless, the costs

savings of the PPO agent are 6 % compared to echelon-stock and almost 8 % with respect to the

base-stock.

4.2.3 Summary

Overall, the policies trained with the PPO algorithm can outperform the well-established heur-

istics on a range of multi-echelon inventory optimization problems. These include systems with

symmetric retailers and systems with asymmetric retailers related to associated demand pro-

cess (distribution, mean, and variance). Additionally, the RL agent can discover well-performing

policies for the multi-echelon systems with lost sales and long retailers’ lead time. More specific-

ally, the results from scenarios 1,2,3,5,8,10 indicate that the PPO algorithm can outperform the

echelon-stock heuristic policy by a significant margin: 2% cost savings on symmetric problems

and up to 6% on asymmetric problems with long lead times.

The neural network with several action heads has proven to be suitable for large action spaces

in the context of the OWMR systems. Despite the fact that problems with asymmetric retailers’

lead times presented in scenarios 4 and 9 are a challenging task for our solution method, we have

successfully shown that PPO is able to perform better than the widely accepted heuristic on a

series of asymmetric OWMR problems.
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4.2.4 Influence of GAE on training process

During the experiments on OWMR problems, several variations of the network architecture and

hyper-parameters were tested. The best results were obtained utilizing GAE during training. The

PPO agent was trained with GAE on all of the OWMR problems presented in this section.

We evaluate the effect that GAE has on the performance. Figure 4.14 presents the PPO

algorithm trained for scenario 4 with different variance reduction techniques. Here we can see

that the performance of PPO with GAE improves in comparison to PPO with advantage critic

and PPO with no critic at all. This shows that GAE is an important component when training

PPO on complex inventory problems: single echelon lost sales with long lead times and high

penalty costs and OWMR systems.

Figure 4.14: Comparison of PPO training (OWMR Setting 4.) with different settings: 1) PPO
GAE - Generalized Advantage Estimation is used with λ = 0.98. 2) PPO no GAE - regular
advantage estimation is used for the critic. 3) PPO no Critic - only actor network is used

4.2.5 Computational Complexity

Figure 4.15 presents the training curve for the PPO. It can be noticed that the RL agent starts

to outperform the base stock heuristic at around 50 million and the echelon stock at around

180 million training steps. As in the case of a single echelon, the training was performed on 12

CPU cores, where 200 million steps correspond to 16 hours of wall clock time. Compared to the

single echelon systems, the number of state and action dimensions has increased 3-fold. The total
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number of steps required to reach the performance of the base-stock heuristic did not change. The

echelon stock heuristic was proven to be a more challenging baseline that required PPO 4 times

more training time. Nevertheless, the flexibility of DRL methods allows tackling the more complex

problem: capacity constraints, emergency shipments, non-linear costs, additional transportation

routes can be easily integrated into the simulation environment.

Figure 4.15: Training/evaluation of PPO versus the evaluation of base-stock and echelon-stock
heuristics, scenario 1.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

We have presented an application of a novel method for stochastic control in inventory manage-

ment in this work. Proximal Policy Optimization (PPO), a popular Deep Reinforcement Learning

(DRL) algorithm, was used to derive replenishment policies for single echelon and multi-echelon

inventory systems. We have evaluated the effects of different problem parameters on the perform-

ance of neural network-based policies compared to the widely accepted base-stock and echelon-

stock heuristics. The PPO method has proven to be a suitable candidate for stochastic inventory

optimization. Further, we address the research questions presented in chapter 1.

RQ T.1: How can Deep Reinforcement Learning methods be applied to optimizing the

replenishment decisions for single node inventory models?

We have applied a Multi-layer Perceptron trained with PPO and achieved close to optimal

costs in a single-node inventory system under the backlog assumption. For the lost sales problem,

our method has proven to be competitive with the strong heuristic policies and outperformed

previous DRL benchmarks [20]. Additionally, in our study, we have identified that Generalized

Advantage Estimation (GAE) affects training positively in the lost sales problems with long lead

times and high penalty values.

RQ T.2: How can Deep Reinforcement Learning methods be applied to simultaneous

control of replenishment decisions on multiple locations?
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Our main contribution lies within the more complex inventory optimization problem, one-

warehouse multi-retailer (OWMR). In this case, we have shown that PPO is a suitable candidate

for training a neural network to control inventory levels of multiple locations simultaneously.

We used a single Multi-layer Perceptron and processed its output by several softmax activation

functions for specifying the exact replenishment decisions for all locations in OWMR. A specific

training procedure was designed to improve the policy search without manually adjusting the

penalties for infeasible actions. Moreover, the inventory models used in this study do not include

capacity constraints, emergency shipments, or partial lost sales to increase the competitiveness

of the baseline heuristic policies. Therefore, the s-type heuristics are widely accepted as a strong

baseline in the problems we consider.

RQ T.3: How well can Deep Reinforcement Learning perform on asymmetric one-

warehouse multi-retailer stochastic inventory optimization problems compared to the

well-established s-type heuristic policies?

We evaluated the proposed method across ten different scenarios. The PPO agent outper-

formed the base-stock heuristic policy in every scenario. For the symmetric systems, the cost

improvements were up to 8%. The cost savings with respect to the echelon-stock heuristic were up

to 6% for the most complex system with long lead times and lost sales. The echelon stock heuristic

outperformed our approach only in one case, scenario four, where the retailer’s lead times differ.

Nevertheless, the method employed in this study showed consistent improvements over the widely

accepted heuristic policies.

RQ: How can Deep Reinforcement Learning contribute to reducing system-wide opera-

tional costs in asymmetric one-warehouse multi-retailer stochastic inventory optimiz-

ation problems?

This study evaluated the suitability of PPO for training neural networks to control stochastic

inventory optimization problems. The problems’ complexity was gradually increased from single-

node systems under backlog/lost sales assumptions to the multi-echelon divergent systems. We

have tested multiple problem instances under which the DRL agent could outperform the heuristics

on most of the problem settings. The heuristic policies formed a solid baseline since we have

adjusted the problem formulation to ensure a fair comparison. The echelon stock heuristic has

proven to be a better choice for only one OWMR problem setting system with a backlog and

asymmetric lead times.
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We have addressed the limitations of previous works [61, 20] in controlling the asymmetric

OWMR models, where retailers have different demand distribution. Our method was able to scale

on the problem instances with long lead times of the warehouse and the retailers. We achieved

these results by employing a Deep Reinforcement Learning method for simultaneous control of the

replenishment decisions of all the locations. The general nature of the approach has allowed us

to use our method for all of the scenarios without hyper-parameter fine-tuning, reward scaling or

state prepossessing. All of the above allows us to conclude that PPO is a suitable algorithm for

stochastic inventory optimization.

5.2 Limitations and Future Research

The most notable limitation of our method is its inability to scale on asymmetric OWMR models

with different retailers’ lead times (shown in scenario four in Chapter 4). Future research should

consider addressing this issue by using a different approach to handling infeasible actions. For

example, the allocation decision can be formed by identifying replenishment orders one by one

for each retailer. This will increase the computational requirements since we need to query the

policy network several times at every time-step. At the same time, action masking can be used to

disallow the choice of infeasible actions.

Another possible direction for future research is to convey information about the system state in

a graph form. Graph Convolution Networks [32], in general, and Graph Convolution Reinforcement

Learning [25], in particular, are suitable approaches to include the problem structure into the

system state. The work of [25] considers multi-agent environments that are represented as a

graph, where nodes are agents cooperating/competing with each other. This might improve the

agents’ awareness about other actors in the system, improve cooperation, and scale the method

on larger problem instances. Moreover, Graph Convolutions would allow for processing any type

of Supply Chain Network: general, divergent, serial, or convergent.

Another approach is to form a hybrid method between RL and the heuristic policies. Rein-

forcement Learning agent dynamically specifies well-performing s-type heuristics at every decision

period. This could be done in two different ways. First, the output of the RL agent can be the

parameters of the heuristic policy. Similar to the approach presented in [61, 20], but the heuristics

can be specified individually for each location. Second, a set of well-performing heuristics can be

formed (i.e., multiple constant or base-stock heuristics), and the task of the RL agent is to choose

the most suitable heuristic based on the state information. [46] presents an example of such an
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approach, which could be adapted to the current problem.

Another direction is to explore paired optimization. In this example, the Reinforcement Learn-

ing algorithm and the appropriate baseline are considered. If the action of the RL agent deviates

greatly from the baseline an additional term is added to the loss similar to [39].
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[4] Sven Axsäter and Kaj Rosling. Installation vs. echelon stock policies for multilevel inventory

control. Management Science, 39(10):1274–1280, 1993. 35

[5] Bharathan Balaji, Jordan Bell-Masterson, Enes Bilgin, Andreas Damianou, Pablo Moreno

Garcia, Arpit Jain, Runfei Luo, Alvaro Maggiar, Balakrishnan Narayanaswamy, and Chun

Ye. Orl: Reinforcement learning benchmarks for online stochastic optimization problems.

arXiv preprint arXiv:1911.10641, 2019. 17

[6] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013. 2

[7] Richard Bellman. An introduction to the theory of dynamic programming. Technical report,

RAND CORP SANTA MONICA CA, 1953. 21

[8] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law Debiak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota

2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019. 2

[9] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas.

Dynamic programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

10

Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory
Management

59



BIBLIOGRAPHY

[10] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,

1996. 2

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 36

[12] S Kamal Chaharsooghi, Jafar Heydari, and S Hessameddin Zegordi. A reinforcement learning

model for supply chain ordering management: An application to the beer game. Decision

Support Systems, 45(4):949–959, 2008. 12

[13] Andrew J Clark and Herbert Scarf. Optimal policies for a multi-echelon inventory problem.

Management science, 6(4):475–490, 1960. 6, 7

[14] Tapas K Das, Abhijit Gosavi, Sridhar Mahadevan, and Nicholas Marchalleck. Solving semi-

markov decision problems using average reward reinforcement learning. Management Science,

45(4):560–574, 1999. 11

[15] Ton de Kok, Christopher Grob, Marco Laumanns, Stefan Minner, Jörg Rambau, and Kon-

rad Schade. A typology and literature review on stochastic multi-echelon inventory models.

European Journal of Operational Research, 269(3):955–983, 2018. 2, 3, 6
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forget your teacher: A corrective reinforcement learning framework. arXiv preprint

arXiv:1905.13562, 2019. 58

[40] Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence Snyder, and Martin Takáč. A deep
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Appendix A

Hyper-parameters

Hyper-parameter Value

Number of Layers 2
Number of Neurons [64, 64]
Activation Function Policy Network tanh
Activation Function Value Network ReLU
Train Batch Size 327680
Mini-batch Size 32768
Number SGD Epochs 30
Number of workers 12
Learning Rate 10−4

VF Loss Coefficient (c1) 10−7

Entropy Coefficient (c2) 0
Gradient Clipping Norm 40.0
Discount factor γ 0.95
GAE λ 0.98

Table A.1: Hyper-parameters used for PPO training

• Neural Network Architecture: The neural network architecture did not affect the per-

formance of the algorithm positively. Deeper (2, 3 or 4 layers) or wider (64, 128 or 256

units in a layer) network resulted in little to no performance gain. It seems like such a small

network size is enough to form a very good policy.

• Activation Functions: The ReLU activation function for the value network has resulted

in better value estimations compared to the tanh. This could be connected to the fact that

the reward variations are rather high, and ReLU is more suitable for the task due to the

wider activation range. Other activation functions such as ELU, SELU, or SWISH did not

result in better estimates. The efficiency of activation functions were evaluated based on the

explained variance metric, which equals 1 − Var(V̂t − V targett )/Var(V targett ). Surprisingly,
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setting the hyperbolic tangent activation function on the policy network resulted in better

convergence and more stable training compared with ReLU. It might be the case that the

tanh works better in conjunction with the last softmax activation layer.

• Training Batch Size and Mini-batch size: Large training batch size increases sample

complexity, however, results in more stable updates and faster wall-clock time training. A

similar effect was noticed for the mini-batch size.

• Number of SGD epochs: Contrary to the results of [63], reducing the number of training

epochs ([1, 2, 5, 15]) did not result in better convergence. In all of the experiments high

number of epochs resulted in faster training and overall better performing policy.

• Number of workers: The number of workers only affects the speed of training since the

network update is performed once the training batch is collected. More workers resulted

in a faster collection of the batch size. The wall-clock training time improved dramatically

with the number of workers: doubling the number of used logical cores resulted in half of

the training time.

• Learning rate: Different learning rates, as well as learning rate schedules, did not lead to

better performance.

• Value function (VF) loss coefficient (c1): The VF loss coefficient was chosen in a way

that offsets huge negative rewards at the beginning of the training. In the case of a high VF

loss coefficient, the value function was unable to converge.

• Entropy coefficient (c2): An increase in the entropy coefficient also did not result in

better performance. We have tested different entropy coefficients [10−3, 10−5, 10−7, 10−9].

Any value apart from 0 resulted in slower convergence and worse cumulative rewards.

• GAE λ: The λ parameter for GAE was tuned on a number of settings starting from λ = 0.9

to λ = 1.0 with a step of 0.1. In most cases, values that were closer to one resulted in a good

performance.
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Appendix B

OWMR Scenario Costs

Table B.1 presents the average costs of the system under different policies across the ten scenarios

for the one-warehouse multi-retailer problem. Next, the figures B.1, B.2, B.3, B.4, B.5, B.6, B.7,

B.8, B.9, B.10 visualize the cost per category and the cost location for all scenarios presented in

the main body.

Base Stock Echelon Stock PPO
Scenario

Mean Costs Std. Error Mean Costs Std. Error Mean Costs Std. Error
1 -1741.79 4.96 -1647.98 5.34 -1601.89 4.49
2 -1535.31 5.19 -1457.61 4.33 -1411.57 3.85
3 -1811.24 6.79 -1709.56 5.34 -1666.95 6.87
4 -1998.88 8.69 -1867.31 5.12 -1905.06 6.02
5 -2783.77 15.15 -2728.15 13.57 -2644.43 13.24
6 -1404.66 3.16 -1367.47 3.16 -1361.43 2.91
7 -1450.95 3.28 -1402.47 2.97 -1397.04 3.25
8 -1724.34 4.07 -1696.58 3.76 -1617.01 3.95
9 -1587.94 3.74 -1576.57 3.65 -1553.97 3.88
10 -2036.132 6.05 -2010.617 5.47 -1883.49 5.34

Table B.1: Average costs with corresponding standard error on OWMR scenarios
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(a) Aggregate costs per location (b) Costs per location.

Figure B.1: Costs for Scenario 1.

(a) Aggregate costs per location (b) Costs per location.

Figure B.2: Costs for Scenario 2.
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(a) Aggregate costs per location (b) Costs per location.

Figure B.3: Costs for Scenario 3.

(a) Aggregate costs per location (b) Costs per location.

Figure B.4: Costs for Scenario 4.
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(a) Aggregate costs per location (b) Costs per location.

Figure B.5: Costs for Scenario 5.

(a) Aggregate costs per location (b) Costs per location.

Figure B.6: Costs for Scenario 6.
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(a) Aggregate costs per location (b) Costs per location.

Figure B.7: Costs for Scenario 7.

(a) Aggregate costs per location (b) Costs per location.

Figure B.8: Costs for Scenario 8.
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(a) Aggregate costs per location (b) Costs per location.

Figure B.9: Costs for Scenario 9.

(a) Aggregate costs per location (b) Costs per location.

Figure B.10: Costs for Scenario 10.
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