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Abstract

Inventory control in customer service supply chain presents a number of complications for large com-

panies, such as ASML, associated with increased operational costs and volatility in service levels towards

their customers. �ese supply chains experience signi�cant complications in e�cient long-term plan-

ning. �us, an optimized policy towards managing spare parts inventory stock levels is paramount to

improving operational results of this planning. Most of the existing methodologies rely on accurate mod-

els of the real-world systems and are vulnerable to uncertainty in demand and lead times within such

models. Optimal solutions for such models o�en become intractable with growth of problem complexity

and struggle with inherent stochasticity. Consequently, more generalized and �exible, novel approaches

can be applied for the decision making within the inventory control of spare parts.

In this research we model an interconnected network of local warehouses, replenished from a single

central warehouse, for spare parts stock of ASML, a large producer of lithography machines. Local stocks

are used by the company for a�er-sales service - mitigation of random demand due to machinery failures.

We apply Deep Reinforcement Learning method of Proximal Policy Optimization to the model in order to

improve inventory control planning within the model. We optimize the allocation of periodic inventory

supply from the central warehouse to local stocks so that the total operational costs are minimized. Con-

sequently, we compare this method with existing baselines (including the currently used system within

ASML) and show, that our approach gives an average of 9% reduction in operational costs. �e paper

describes modeling of the problem and the analysis of the results under other metrics relevant in the do-

main (e.g. waiting times, stock-outs, etc.) and proposes various scenarios for the application of the DRL

methodology in the context of spare parts inventory control.
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Glossary

base stock policy inventory control policy, a special case of well-established (s, S) policy. �e la�er

operates on a simple principle of replenishing the inventory level (stock on hand minus backlogged

demand) up until the level S, whenever it drops below the level s. Base stock policy warrants for

immediate replenishment in case the stock levels falls below S and is denoted as (S − 1, S)). �is

policy is o�en advocated for in cases with slow moving demand, when the costs of ordering can be

neglected in relation to holding and stock-out costs.. vi, 4

fab in microelectronics industry, a semiconductor fabrication plant. vi

fast mover usually characterizes Stock Keeping Unit (SKU)s with high demand rates. �is inventory is

shipped more o�en in comparison to the other items, particularly slow movers . vi, vii, 53, 66

installed base technical systems (machinery), installed at the customer sites [42]. vi

slow mover usually characterizes Stock Keeping Unit (SKU)s with low demand rates. �is inventory is

not shipped as o�en in comparison to the other items, particularly fast movers. vi, vii, 53, 66
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Chapter 1

Introduction

Up until this day, there is an extensive number of practical problems in the domain of Operations Re-

search, which are directly related to diverse business cases and se�ings. However, as these problems do

present concrete challenges for the modern business, various problem- and domain-speci�c heuristics

have been developed over the years. Furthermore, inventory control for spare part supply chains cur-

rently �nds itself in a similar situation. Optimal allocation of spare parts in the service supply chain

has been considered from multiple angles in the industry and academic circles for years. Consequently,

a number of practical approaches or techniques were established for addressing various, o�en isolated

aspects of the problem. O�en, such techniques rely on restrictive assumptions and engineered solutions

with limited applicability. At the same time, some of these advanced methods produce state-of-the-art

results and create substantial value for the business. ASML, a world-leading manufacturer and supplier of

complex lithography machinery, has been one of the �agmen for such innovation. Over the past decade,

the company implemented and re�ned a complex system for managing stock planning on every level of

its service supply chain. Arguably though, the company’s current high-end solutions still struggle with

several issues, such as sub-optimal long-term planning, scalability of applied methods, curse of dimen-

sionality, etc.

�is paper considers an instance of the optimal stock allocation problem within a supply chain of spare

parts in the case of ASML. Optimized stock planning implies millions of euros in cost savings for the

company, improved customer satisfaction and reduced uncertainty in its planning. Generally, stock man-

agement across the entire service supply chain involves a high number of decisions to be made at various

levels of complexity. �is research concentrates on the optimization of spare parts stock allocation in a

local network of warehouses under service contracts with the customers of the company. Primarily, it

focuses on the decision where, when and how much to allocate inventory from a central stock point.

�e optimization methodology, applied in this paper, is Deep Reinforcement Learning (DRL). �is a

discipline, serving as an umbrella for a variety of algorithmic approaches, aimed at handling large and

Allocation decision-making service supply chain with Deep Reinforcement Learning 1



CHAPTER 1. INTRODUCTION

complex problems through approximated solutions with certain guarantees of optimality. Recent ad-

vancements in the �eld of Deep Learning was followed by applying Arti�cial Neural Network (ANN)s in

decision making problems with empirical successes within the domain of DRL. �is method, however, is

novel for the �eld of inventory control, and was not applied to the spare part allocation problem before.

Usage of ANNs within the Reinforcement Learning (RL) frameworks allows for computationally a�ord-

able approximation of optimal solutions for largely intractable problems of high complexity, which the

case of the problem formulation within this paper.

�is chapter describes the background and context of the problem in 1.1, which is followed by the

problem description 1.2, research questions 1.3 and the outline of the paper 1.4.

1.1 Problem background

�e key challenges in Inventory Control (IC) in general are:

• excessive costs, associated with overabundance of safety stocks placed at di�erent stages of supply

chain;

• ampli�cation of the bullwhip e�ect;

• stochasticity of demand and supply;

• various forced trade-o�s between product lead times, transport expenses and available capacity.

Such e�ects come from the imprecision of interactions between various parties, involved in managing

stocks across multi-level supply chain. In its own turn, �eld of IC in the domain of Operations Research

(OR) contains a number of diverse problem se�ings, which can be isolated and studied independently.

Namely, planning of stocks through decisions on stock allocation is one of such se�ings. �e focus of this

research is on the speci�c type of supply chain systems - service supply chain for spare parts. �is means

that the performance within such system is additionally governed by the contracts, that the company

has with its customers. In addition, spare parts for complex machinery relate lumpy demand generation

within the system, forming particular pa�erns and associating with extra risks for holding excessive

stocks.

1.1.1 ASML: Customer Service Supply Chain

ASML is one of the largest producers of chip-making machinery worldwide. �e company, taking its

roots from 1984 with headquarters in Veldhoven, more than 24 thousand employees across locations

in 16 countries, designs, develops, manufactures and provides service complex lithography systems for

production of semiconductors [1].

2 Allocation decision-making service supply chain with Deep Reinforcement Learning



CHAPTER 1. INTRODUCTION

ASML supplies high-end complex machines, which require constant maintenance, including service

and repairs in case of a malfunction. Its lithographic systems are an integral part of wafer production

process for the customers of the company. �erefore, any malfunction of the machinery can cause ex-

pensive downtime at the customer sites. Consequently, the company maintains a massive a�er-sales

support structure, which is responsible for guaranteeing minimal disruption for its customers. �e afore-

mentioned repairs can be performed only by knowledgeable ASML technicians at the customer sites. In

order to perform the repairs, apart from manpower and knowledge, relevant tools and spare parts are

required. In particular, the spare parts for ASML machinery may comprise of expensive units of critical

importance. Respective department in ASML of Customer Supply Chain Management (CSCM) division

is responsible for optimal planning and management spare parts �ow within Customer Service Supply

Chain (CSSC). Such planning, however, o�en is complicated by various uncertainties of the real world:

randomness of demand, unreliability of supply, force majors, etc.

As per Figure 1.1, we can observe multiple location within CSSC, related to each other through clear

hierarchy. Global warehouses (green) serve as the main hubs, from were spare parts are shipped to the

continental (orange) and local (blue) warehouses. Continental warehouses, in turn, are the hubs for local

stock points in the respective regions. �ese are the vertical connections within the CSSC. Local ware-

houses form a network for each region, within which spare parts can be shipped horizontally (e.g. from

one local warehouse to another one within the region they are located in). Most naturally, the reality

is a li�le more complex - and shipments technically can be administered across di�erent directions in

contrary to the rules of the described hierarchy. However, this structure is the base model of the supply

chain in question. Another addition to this structure is the designation of emergency hubs - either con-

tinental or global warehouses, which can directly satisfy demand in case of urgency and failure to meet

the demand in other, less costly ways. And as far as stock planning goes within the provided structure,

ASML has a distinction between global stock planning and �eld stock planning. �e former is related

to planning the stock allocation from global warehouses to the continental ones, as well as generally the

movement of spare parts on this upper tier. In its turn, the la�er refers to planning stock allocation within

any region from assigned main warehouse from the upper tier to local warehouses in the region. Here

the notion of local network is important, as it provides the model basis for this research.

�e complex structure described above is a necessity, as the company faces a number of challenges in

association with spare parts stock management:

• Increased complexity of the network due to large number of locations worldwide (more then 30

stock points in total) with thousands of di�erent items to be planned for at various stages on the

supply chain. Additional di�culties come from the geographic spread of the network and depend-

ence on supply lead times (time between the order for supply and its arrival).

• Nature of the capital goods supply chain means expensive products with low rate unpredictable

Allocation decision-making service supply chain with Deep Reinforcement Learning 3
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demand. �is signi�es higher holding costs of tied capital and increased transport costs in case of

frequent re-balancing of the network. Naturally, in order to combat the uncertainty, high stocks

are kept so any random demand can be satis�ed directly without the decrease in customer service

level. �us, the holding costs o�en tend to be higher due to complex forecasting.

• Pressure from ASML customers for increased performance in accordance with Service Level Agree-

ment (SLA)s.

Figure 1.1: ASML Customer Service Supply Chain locations around the world [41]

Another important aspect of ASML spare parts supply chain is the presence of Service Level Agreement

(SLA) contracts, which govern the service performance of ASML to its customers. ASML machinery can

cost up to €72 000 per hour of downtime [41] for its customers. Downtime generally means all the time,

during which machines at customer sites are not operating speci�cally due to the breakdown of the

machinery (as other reasons do not concern ASML under service contracts). Hence, o�en there are stern

restrictions on the total amount (as a relative share) of downtime allowed under the SLA, related to the

waiting for the spare part to be delivered to the site of repair. �is waiting time is denoted as Downtime

Waiting for Parts (DTWP) and can serve as one of the performance metrics in the �nal evaluation of

performance under the contract, as well as in the optimization models for stock planning. �ese contracts

of ASML has other metrics used for a number of cases within the system, but under the scope of this

research, the notion of DTWP is su�cient. It is further used in order to assess the performance of the

applied methodology.

At this moment, there are two automated systems, involved directly in the optimization of the spare

parts in the company. Current stock planning within ASML is based on the models, described in van

Aspert [41]. �ese models, in turn, are built on the idea of base stock policy. �e main idea of this

policy is determining an optimal safety stock (base stock) level, which is periodically or continuously

4 Allocation decision-making service supply chain with Deep Reinforcement Learning
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replenished. Maintaining this stock level at all times within the supply chain per stock point guarantees

optimal performance in terms of balanced costs, related to holding, transport and realization of inventory.

Another important part of this solution is the system called NORA, which is directly involved in the

governance of spare parts across CSSC. More speci�cally, NORA also directly governs the replenishment

decisions for local stocks, which are the primary focus of this paper. We further consider an adapted

version of NORA as the main baseline in this research, detailed in 2.4 - as this is the system directly

addressing the replenishment decision.

1.1.2 Problem context and scope

Spare parts management are directly related to machine break-downs and consequent repairs. Failures,

in fact, create demand for the local stocks of spare parts. Generally, for a repair to occur, there are three

main components, that need to be present:

• Technician, who performs the repair.

• Tools to perform the repair with.

• Spare parts, required to be replaced upon the failure of the machine.

Presence of quali�ed sta� at customer locations is beyond the scope of supply chain optimization. Flow

of service tools is also governed by the CSSC, but has a di�erent structure and nature, as most of the

articles within this �ow are non-consumables with relatively small costs and low essence for immediate

downtime prevention. �erefore, the primary source for optimization within CSSC are the spare parts.

�us, this research concentrates only on the �ow of spare parts.

ASML service supply chain is complex and involves multiple tiers, as described in the section above. �is

research does not concentrate on the global planning of stocks on multiple layers, but rather considers

�eld planning within a particular network of local warehouses. Final scope distinction shall be made

apparent with explaining exactly what type of decision making is considered. It is formulated as the

decision throughout the network on how much stock and when shall be allocated to each of the stock

points during the replenishment phase from the central warehouse. Other types of allocations are either

out of scope or governed by the dynamics of the model (more details are in Chapter 2).

1.2 Problem domain and description

A simple statement of the problem is the ine�cient governance of stock in a network of local warehouses.

�is network is presented as a collection of local warehouses, which are all replenished from a central

warehouse. �is replenishment is the allocation decision, which can be optimized, so the long-term oper-

ational costs are minimized. Namely, this minimization includes keeping non-excessive stocks (decreased

Allocation decision-making service supply chain with Deep Reinforcement Learning 5
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holding costs) while also minimizing the number of shipments and hence - transport costs. �e planning

is complicated by stochastic demand and uncertainty in supply lead times. Additional complexity comes

from meeting the down time restrictions in accordance with SLAs.

�is problem stands at the crossing of various research domains. Below the relevance of each respective

area is highlighted. �ese short summaries provide general justi�cation of each domain, while a more

complete overview is given in the next chapter, section 2.1.

1.2.1 Why do we study Inventory Control?

�ere are several reasons to study possibilities of improving inventory control in the supply chain. First

of all, inventory constitutes to large investments and capital tied up in raw materials, work-in-progress,

service and �nished products, as well as associated with acquisition, transportation, handling and storage

costs [2]. Secondly, inventory control has a direct �nancial and reputational impact on the relationship

between supply and demand. It is typical for the supply side to have pre-agreed service level agreements

with its customers, upon missing which there might be penalties incurred. Any failure of the supply

side to meet the pre-agreed performance leads to customer dissatisfaction due to the avalanche e�ect, as

the demand side cannot also meet their own commitments with their customers. �erefore, IC involves

extensive decision making, related to the allocation of stocks in the supply chain. Control over inventory

planning allows for reducing overall operational uncertainty of future, as well as increasing sustainability

of the business. At the same time, IC problem domains and models o�en present a challenge in �nding the

optimal solution. Most of them can be related to complex combinatorial or sequential decision-making

problems with large heterogeneous search space.

1.2.2 Why do we apply Reinforcement Learning?

Reinforcement Learning (RL) (introduced in more detail in Section 2.1.2) is widely viewed as a general

framework for solving various problems, if they can be formulated as sequential decision-making prob-

lems. Practically, this means that if the problem can be formulated as Markov Decision Process [39], RL.

�is particular problem is believed not only to �t the requirements for RL applications, but warrants for

one. Taking decisions at a certain time step tends to propagate the dependencies of this choice in time,

meaning that the reward in much later steps would still be related to the previous sequence of action-

s/decisions taken. Our problem has a clear delayed grati�cation mechanism, as an allocation decision

taken several steps ago can make a signi�cant impact on the operational costs at the current step due to

stochastic machine failures. Moreover, the majority of RL methods are simulation-based and work well

with generated data. In the case of allocation decision problem, there is no available dataset for applying

other learning methods. At the same time, similar models in IC o�en employ simulations for validation

or optimization [2].
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It is also important to review application of RL in terms of other available alternatives. Unlike classical

Dynamic Programming, RL methods tend to emphasize bene�cial experiences and avoid visiting all the

states of the system, but only the ”useful” ones, which largely decreases the size of the search problem.

In contrast with linear and integer programming methods, the iterative nature of RL algorithms allows to

avoid too lengthy computations if acceptable results are obtained. Most of RL approaches allows obtaining

good approximations of the optimal solutions. RL methods can handle therefore much larger problem

sizes, maintaining the quality of the solution and not a�empting to receive a closed solution. At the

same time, RL methods rely on simulation and generated data, making them more sustainable in terms

of data availability, in contrast with other (deep) machine learning methods. RL data is generated o�en

dynamically and does not require manual labeling, which is o�en a restrictive condition for the supervised

se�ing.

1.2.3 Why do we use Neural Networks?

Customarily, the ”Deep” part in DRL means the usage of Arti�cial Neural Network (ANN)s (more in-

formation in Section 2.1.2). �e la�er are well recognized as a powerful function approximators. RL

algorithms employ the power of ANNs to �nd mappings from complex inputs (state spaces) to com-

plex outputs (actions), representing the sought-for optimized policy. �e iterative nature of training of

ANNs with Stochastic Gradient Descent (SGD) (primarily) is also well aligned with the RL algorithmic ap-

proaches. In the particular problem with spare parts allocation, the curse of dimensionality may severely

cripple the performance of other approaches (e.g. Approximate Dynamic Programming, Neuro-Dynamic

programming, etc) as we have to reason about the Cartesian product between the sets of spare parts, loc-

ations, coupled perhaps with inventory in transit and possibly some other features. Allocation decisions

also warrant for a high dimensional representation as they have to be taken in large quantities simul-

taneously. For example, in a case with a network of 2 warehouses and 2 items, multiple interdependent

decisions per warehouse-item pair have to be taken.

1.3 Research questions

�e goal of the project in general is the reduction of operational costs in the allocation decisions in the

service supply chain of ASML under service contracts, namely network of local warehouses. In addition,

currently the planning and allocation of stocks faces increased nervousness. �is nervousness tends to

have a negative e�ect on the operations of the company, as it leads to the decreased ratio between stock,

consumed in the network, and applied shipments. Large stocks mean increased holding costs and more

capital tied in the inventory, while small stock means a higher risk of failing to meet downtime commit-

ments for ASML customers. Large number of shipments (both proactive and reactive) in�ict unnecessary

costs and uncertainty in local lead times. In addition, downtimes in�icted by stochastic failures pose a

Allocation decision-making service supply chain with Deep Reinforcement Learning 7



CHAPTER 1. INTRODUCTION

potential problem to be addressed. Nevertheless, it is realistic to a�ribute all of these components to the

total operational costs within the model of ASML network. �erefore, the practical formulation of the

project goal can be presented as �nding a cost-e�cient solution to the aforementioned trade-o� in terms

of the stock allocation policy in the network, applying the methodology of Deep Reinforcement Learning.

�us, the main research question can be formulated as:

How can we decrease operational costs, associated with allocation decisions in the ASML service supply

chain network, with application of Deep Reinforcement Learning?

�e following research questions (RQs) shall expand the main research question (with a more complete

list, including sub-questions, can be found in Appendix A):

1. RQ1: What is the current state-of-art for the spare parts allocation in ASML service supply chain?

2. RQ2: What is the current state-of-art for spare parts management in the �eld of OR?

3. RQ3: How can the problem be formulated and solved with DRL?

4. RQ4: How can the MDP formulation translated into a simulated environment for DRL?

5. RQ5: Which DRL technique shall be applied to the problem formulation?

6. RQ6: How can the DRL application be analyzed, improved and experimented on?

7. RQ7: How the results of DRL application can be evaluated and analyzed?

1.4 Outline

�is paper is composed in the following way. In Chapter 2 �rst part of the chapter provides a summary

of the desk research for the problem, which also provides most of the justi�cation for the chosen meth-

odology, as well as deeper context to the problem formulation. Consequently the chapter provides the

formalization of the business problem and its translation to the DRL methodology. Chapter 3 describes

experiments test bed and provides feedback on general performance results on the number of de�ned

problem instances within certain research scenarios. Chapter 4 provides more elaborate analytical in-

sights into DRL agent training, scenario and behavior analysis of the agent performance in relation to

de�ned baselines. �e paper is summarized with conclusions and further research directions in 5.
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Chapter 2

Methodology and Formulation

�is chapter provides the formalism and the backbone of the research. It addresses research sub-questions

RQ1 and RQ2 in 2.1, with RQ1 fully addressed later in section 2.4. Moreover, section 2.2 provides answers

on RQ3 and RQ4, and section 2.3 addresses RQ5.

2.1 Literature review

�is part of the paper is dedicated to providing a brief overview of the existing research on the domain

and methodology of the research. In addition, the section also provides a more in-depth justi�cation for

the choices of the main methodology and problem formalism, used throughout the research - as they

are primarily based on the notations and some design choices, encountered in the established literature

sources. It also contains general theory and notions, used explicitly in the next chapters.

2.1.1 General Inventory Control theory

�e topic of e�cient Inventory Control has been intensively studied in the domain of OR for years. In

general, inventory control largely depends on the type of inventory and the supply chain se�ing. �e

former largely relates to which role the inventory performs and which decisions are associated with it,

while the la�er is related to the topology of the chain, �eld of operation and product properties (e.g.

perishables, chemicals, etc). Axs in [2] provides a fairly simple classi�cation of inventory types:

• Cycle stock. Result of batch production.

• Safety stock. Used for mitigating demand variations.

• Anticipation inventory. Planned to be used for future peak in consumption.

• Pipeline inventory. Ordered but still not delivered.
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• Decoupling stock. Used for separation of decision making at various stock points.

Naturally, such functional classi�cation does not have strict boundaries and assumes interaction between

the listed inventory types. Nevertheless, the classi�cation helps to a�ribute the decisions, applied to

stocks at various points in the supply. Now, it is useful to mention that generally IC faces a variety of

problems, which are addressed by the inventory management system/model rules and structure. �ese

challenges simultaneously form the basic elements of IC framework (mostly composed out on the basis

of overview sources, such as [2], [10], [40]).

Demand model

Any inventory system faces an external demand of some form, which can be modeled in a number of

ways, e.g. ��ing an existing distribution or time-series forecasting modeling. It is common to establish

demand models with various complexity - from constant rate demand (a common case with batch produc-

tion) to non-stationary demand with trend and seasonality. A common direction of research within this

domain concentrates on the bullwhip e�ect (overview in Wang [44]), dealing with the stock optimization

through multiple echelons. De Kok [10] also addresses the fact that o�en demand is modeled with either

Poisson (mainly for spare parts management), Upper Bound Demand or Gaussian, as an approximation of

a general distribution. It is o�en the case that the demand modeling drives the tractability of the problem,

as it is directly responsible for the number of states the system can �nd itself in.

Structure of the modeled supply chain

Under the structural de�nitions we can put such parameters, which relate mostly to the dimensionality

of the problem and its solution space, a�ecting its tractability. It de�nes how many stages there are in

the considered supply chain and how many inventory subsystems are to be managed within the model.

�ere are several key items to mention in relation to the structure of the problem in IC:

• Number of echelons. Number of echelons de�ne how many decision points can be found within the

problem. Multi-echelon models tend to su�er from the curse of dimensionality and o�en require

engineered approaches, helping to arti�cially reduce the dimensionality of the problem by carefully

made design choices.

• Here structure relates to the connections between various entities across all the considered echel-

ons. Initially, mostly serial systems were studied, but since late 90s there has been a rise of prom-

inent ways to handle the general systems (with many-to-many type of connections) under certain

assumptions.

Cost model and other performance metrics

Inventory is associated with various costs: holding costs, ordering/setup costs, shortage costs or service
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constraints. �e speci�cs of the cost model usually is tailored to the system in question. It is common to

use simpli�ed linear cost models as objective functions in various optimization methods. Costs are the

primary source of optimization for the majority of models in the �eld [2], [10].

Ordering policy

�e heart of the IC, the policy signi�es at what time period and in which quantity a particular item shall

be ordered at which location. In its essence ordering policy can be represented as a functional mapping

from the reviewed state of the system to the inventory orders determined. Most of the model assumptions

are made within this framework element. �e key ones are listed as follows:

• Review. Inventory levels can be monitored constantly (continuous review) or at �xed periods of

time (periodic review). �e la�er is a more simple and easy to work with idea due to discrete nature

of modeling, however continuous systems are more preferable in terms of adaptability.

• Determining the time and the quantity of the order. �ese two decisions are the key elements,

which shall be handled by a ordering policy, as we want to know when to order and how much.

�ere are two mainly recognized approaches towards these parameters.

– (R,Q) policy. When the inventory position declines to or below the reorder point R, a batch

quantity of size Q is ordered [2].

– (s,S) policy. �e reorder point is denoted by s. When the inventory position declines to or

below s, we order up to the maximum level S. �e di�erence compared to an (R, Q) policy is

consequently that we no longer order multiples of a given batch quantity. Also can be referred

as the base stock policy in case of (S-1, S) - the reorder happens with any deviation . �ese

models present templates, by which the ordering can occur. One may de�ne an optimization

problem on the basis of these templates.

• Backordering and penalized unmet demand. �e choice shall be made in terms how the demand,

which cannot be met at the time, shall be handled. First option is to backorder it, that is to record

for satisfying it in the future. Another option is to apply the Lost Sales se�ing, under which the

unmet demand is somehow penalized. �is can be a �nancial penalty or loss of customer loyalty up

to actual lost sales. While the choice seems to be straightforward, it has large implications on the

formulated model, o�en serving a key structural decision. Axs [2] provides a good basic overview

of the models, employing either of the options and gives conclusions on the e�ect this structural

choice has.

�e overview is by far not extensive, but su�cient to give a general idea about the main elements of

the framework. Now, the development of reorder policies in IC dates to several decades back in time.

�e most well-versed and widely applied optimization problem formulation in the domain was (and per-
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haps still is, in certain sense) the Economic Order �antity approach [14]. Here, by the means of simple

convex optimization the reorder lot size is expressed through the �xed setup costs, holding costs and

demand rate per item. �e model however introduces a number of restricting assumptions, such as con-

stant and continuous demand, constant ordering and holding costs, �xed lead times, atomic deliveries,

etc. Naturally, since then there were a number of extensions to the approach as in [19] or [7], relaxing

some of the assumptions under speci�c conditions, but generally the formulation is restricted within the

di�erentiable function of the order quantity.

Naturally, there are more sophisticated methods of formulating and solving IC optimization problems.

However, they normally address a speci�c problem se�ing, which cannot be extended as a generalized

approach due to problem-speci�c engineering. Examples of such can be Single- or Multi-echelon invent-

ory systems with speci�c formulations as Newsvendor problem, Dual Sourcing and Lost sales model,

referred by e.g. [12]. A good classi�cation of IC problems can be found also in the review by de Kok et

al. [10].Most of the papers in the review also present various optimization techniques on the speci�ed IC

problem

Spare parts inventory

�is project, however, concentrates primarily on the domain of spare parts inventory management. Ser-

vice parts assist in keeping of the equipment, systems or products in working conditions in response to

both scheduled (planned) or unscheduled (due to failure) maintenance [3].�ere is a number of peculiar-

ities related to this speci�c inventory type and its control (as per van Houtum [42]).

• Central supply of spare parts to the local stock points is a standard organization for the spare parts

supply. �is means having one (sometimes several) central warehouses and a larger number of local

spare parts warehouses, which can be allowed to ship out stock (main local warehouses) or only

receive stock (regular local warehouses) [42].Hence, the speci�c polarized topology of the network

is emphasized. At the same time, multiple researches by van Houtum and Kranenburg, for instance,

encourage strong use of lateral transshipments (movement of inventory between local warehouses)

- e.g. in case in ASML with Kranenburg [20] and a problem instance with multiple demand classes

[43].

• Downtime/Availability constraints are driven by the capital goods production. �e occurrence of

unexpected failures forms a large part of the random spare parts demand and presents one of the

largest challenges in the sector. Downtime constraints impose additional optimization objective

and add another dimension to the complexity of the problem in terms of optimal solution search.

• Creation of strong pooling e�ect. Meeting and bundling as much demand as possible, where the

demand directly depends on the demand of capital goods is the general idea behind applying pooling
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in the system. In practice, pooling e�ect within regional and local networks of stock points can be

created with active usage of lateral transshipments, linking the nodes in the network.

• System approach and item approach. System approach means creating a multi-inventory model

with complex constraints, which allows joint optimization across multiple items. Item approach,

in turn, assumes decoupling each item and its constraints and solving the problem instances sep-

arately. Van Houtum, for instance, utilizes and recommends system approach speci�cally for the

spare parts IC. Consequent overview of spare parts management [17] and paper show that a ma-

jor part of the literature is dedicated to the system approach, and there is already a number of

well-developed approaches. Van Aspert [41] considers both approaches and �nds the increasing

complexity of optimization methods for the system approach, and suggests decoupling of the in-

tegral planning into two layers, each with own optimization methodology.

• Service measures. Optimization problem de�nition largely depends on what actually is optimized.

�e domain of spare parts management has a number of speci�c metrics apart from standard cost-

based optimization se�ing, such as (per [42] and [21]):

– Fill rate. Fraction of demand satis�ed directly from stock. Several variations were proposed

over the years, each related to the probability of satisfying the arrived demand under some

conditions, such as customer �ll rate, order �ll rate, channel �ll rate.

– Aggregate Mean Number of Backorders. �e metric helps to establish the average size of the

backlogged demand and assess the magnitude of unsatis�ed orders.

– Aggregate Mean Waiting Time until the arbitrary part demand is ful�lled. Waiting time is an-

other type of metric, which shows not the amount of unsatis�ed demand, but rather addresses

the downtime, incurred within the system.

– Average Availability - fraction of time a machine is available.

– Aggregate Mean Number of Stockouts - number of stockouts for all parts together.

– Extreme Long Down [21] - a certain guaranteed maximally allowed number of long outages.

�e choice of the metrics here generally may impact the consequent formulations of the reward

function in RL approaches.

For the rest, the inventory modeling follows the basic framework elements, mentioned for the general

inventory systems as above. As per Boone [3] at the same time, there are several key challenges associ-

ated with the spare part management, such as planning for the new product introductions, planning for

service requirements of the aging products and parts, maintaining repair cycle process discipline. �ese

challenges are indirectly related to the spare parts stock allocation, but may provide a more common

ground for establishing the relevance of the problem and its solution.
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Methodologies for solving IC problems within spare parts allocation problem setting

�ere is a vast variety of methods, which are applied for IC problems. Logically, we concentrate on

the spare parts �eld as per previous section of the literature review and review what are the current

approaches to handling the allocation problem. It is worth noting that some IC methods from other

�elds are also given here in cases, where the problem formulation is similar to the one, described in this

research.

Generally, there is a lot of diverse literature on inventory allocation in a general se�ing, while the share

pertaining spare parts domain is substantially less by comparison. However, there is a a good depiction of

various spare parts supply chain models in in the book of van Houtum and Kranenburg [42]. Moreover,

this book describes an actual case of ASML, as the base research for the book was performed in the com-

pany, and the models described in the book are the basis of the current ASML systems, designated to

the allocation decision-making. �e models from these book are diverse and in a general sense make an

explicit use of lateral and emergency transshipments to handle unmet demand. �ey also provide a repair

return �ow depiction, not considered in the current problem de�nition. �is work is heavily cited and

extended in the work of van Aspert [41], presenting the current system of ASML for designating base

stock levels within the respective policy. �is work describes the design of the complex system within

ASML, used for determining the optimal base stock levels both for global and �eld stock planning. In

the thesis, van Aspert uses an adjusted model from [42] for �eld planning, while the global planning is

performed with the application of an adjusted model from Reijnen [32]. Reijnen describes a less restric-

ted model of a general sense, suitable for the metrics applied for global planning. All the models from

aforementioned sources are in some way referenced and used further in this paper. Methodologically, the

above mentioned models mostly use a greed heuristic for optimization of the chosen metrics - �nding

the largest added value from a changed base stock levels vector in terms of the ratio of holding costs

to the transport costs upon satisfying the downtime constraints. �e evaluation of the base stock levels

performance di�ers per model, but generally makes use of the steady state of the system and queuing

theory.At the same time, one can refer to a number of other models, described in [4], [43], which deal

speci�cally with the optimization on two-echelon systems with lateral transshipments; [8] solution for

heuristical joint optimization, making use of the structure of the problem; [31], exploring optimization of

both stocks and sta�ng with a full backlog (also used in this research); [21] make use of Extreme Long

Downs optimization.

However, all these methods usually are more or loss centered around �nding an optimal base stock

policy under a set of assumptions and o�en pre-de�ned rules and using an engineered approach to solve

the problem. Multiple heuristics are explored to obtain closed form solutions, most of which are very

problem-speci�c and can hardly be considered a general approach even across similar problem instances.

Finally, nearly all considered problem formulations and models mentioned above do apply a variety of
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base stock policy, where allocation actually is based on the base stocks and First-In First-Out (FIFO)

approach towards handling the order of allocation. Essentially, the general idea in the current research is

o�en to use a base stock policy to decide on the quantity and allocation timing, while the order, in which all

the locations in the network are re-supplied, is determined based on which demand came �rst. A di�erent

approach is currently used in ASML towards the ordering, which is described in section 2.4. However,

observing the entire domain of solutions for various problem se�ings warrants a separate literature study

due to most of the approaches are being largely tuned to the described problems, we shall concentrate on

the case, which resembles our problem formulation from Section 1.2.

At the same time is also worth to brie�y mention inventory models, which exist beyond the domain

of spare parts. A Multi-Echelon inventory system with lateral transshipments was addressed by Ax-

sater in [2], where it is generally suggested to use stochastic dynamic programming (solving MDP in

a recursive manner (Bellman equations) with memoization within stochastic reward) and a list of older

papers addressing the issue in various de�nitions. Olsson [26] similarly proposes non-linear program-

ming approach for a relatively simple case with unidirectional transshipments under assumptions of non-

increasing �ll-rate and constant lead-times. As for the speci�c spare parts network case, it is addressed by

[42] and describes an approach of decoupling the system into systems with individual local warehouses.

�e la�er, in contrast with the exact evaluation of the problem, allows to solve larger problem instances,

which is comparable with our problem statement. �e proposed approach however does have incorpor-

ated rule-based decisions, de�ned in a prescriptive manner. �e policy obtained therefore is predisposed

to some behavior and is not learned from a speci�c problem instance. Hence, RL based approach can be

aimed at solving the same problem, but learning from the problem instance simulation directly. Overview

in [9] provides an extensive overview of the existing modeling approaches. It mentions evolution from

exact solutions on smaller and simple (under a lot of assumptions) problem instances to various approx-

imate methods such as Linear Programming (LP), Adaptive Dynamic Programming (ADP) or LP-ADP

combined approaches. We review papers applying reinforcement learning methods in the next section.

2.1.2 Reinforcement Learning

Generally, Reinforcement Learning is a simulation-based method, which requires an acting entity (agent)

to learn certain behavioral pa�erns from a given problem se�ing (environment) through a reward mech-

anism. �is environment �nds itself in a number of states as a consequence of decisions (actions), taken

by the agent. �erefore, agent aims to learn a policy π, allowing it to e�ectively select actions in states,

which lead to the trajectories with the highest cumulative reward. �erefore, a typical problem de�nition

in terms of RL is a Markov Decision Process (MDP) as in Su�on and Barto [39] with a �nite set of states

S, action set A, reward function R(s, s′) and transition probability function P (s, s′). �e MDP is the

base for the (o�en simulated) environment the agent learns from. Traditionally, �nding itself in a state s,

it makes an action a according to its current policy π, which leads to a new state s′ and results into an
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intermediate reward r.

One the main ideas here is the presence of the Markovian property:p(st+1, rt|st, at, st−1, at−1, rt−1, . . .) =

p(st+1, rt|st, at). �e la�er means that the next state only depends on the current state and current ac-

tion, so we do not have to consider all the previous states in the trajectory. Trajectory is simply a sequence

of states and actions of type : < s1, a1, s2, a2 . . . >, which ends with a terminal state of the system.. With

the holding of Markovian property we can then derive an iterative method of updating learned policy.

Policy π(s, a) = p(at = a|st = s) essentially maps states to actions, so when the state is a start of an

arbitrary trajectory, the action is selected that would gain the largest return G (accumulated reward over

the trajectory).

Figure 2.1: Agent-Environment interactions in an MDP [39]

Naturally, agents play out multiple sessions in the simulated environment, called episodes. Each episode

ends with a terminal state or upon reaching a time limit T . During this episodes information is collec-

ted, such as the trajectories and agent learning (which may happen during the run or at the end of the

episode, as well as a�er every �xed number of episodes). RL in some typologies is placed as a �eld of its

own or as a sub-�eld of Approximate Dynamic Programming. Nevertheless, it is an umbrella-term for

various methods, MDP framework with the idea of reducing search space across state and action spaces

by emphasizing rewarding experiences. �erefore, RL methods can (to an extent) overcome curse of di-

mensionality , which a�ecting Dynamic Programming methods, as RL agents are not required to visit all

the states of the system to achieve a solution. At the same time, inherent stochasticity of the majority of

RL methods cannot always provide optimality guarantees to the obtained solutions.

MDP variations and RL variations

Proper de�nition of the MDP is of paramount importance to the success of applying RL methodologies to

the problem. It also determines the nature of RL approaches applied for solving a particular formulation

of the Markov processes. While the above de�nition of the MDP is a traditional one, there are other
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variations of the formulation, also used in RL. One of them is Semi Markov Decision Process, introduced

speci�cally in RL se�ing for continuous tasks in [5]. In short, this se�ing relaxes the directly-follows

relation between two states and reviews the continuous time domain. �e la�er means that there might

be alternations to the state of the system between the two states, observed by the agent. Such formulation

allows to incorporate simulations with continuous time and still retain the same mathematical models,

which are used for solving the regular MDP.

Another extension to the regular de�nition of the MDP is Partially Observable Markov Decision Process

(POMDP), �rstly widely introduced for AI tasks in [18]. In this se�ing the dynamics of the system is also

de�ned by an MDP, but the underlying (”true”) state of the system is not known. �e agent within RL

has to work with the set of observations O instead of working with states directly. It also operates with

belief of what state the environment currently is in. �e la�er requires some additional mathematical

complexity to be introduced. Its solutions also are dependable on what was observed, rather on the system

states, which introduces another level of uncertainty. Nevertheless, there are proofs that eventually these

se�ing still can yield optimal solutions.

�e notion of POMDP is essential in terms of Multi Agent Reinforcement Learning. �e la�er as opposed

to the regular RL se�ing, employs several agents, each interacting with each other and optimizing a global

objective. Since there are several agents, each agent, apart from a global objective, has a local optimization

task. Naturally, MARL se�ing can be used to separate complex tasks into several smaller ones. But in this

case each agent does not observe the entire system state and works with POMDP - as it observes only a

part of the true system state, which corresponds to the local optimization that the agent is performing.

RL foundations

Optimization in RL generally is determined by the feedback from the reward function. Since most of

the problems in this se�ing have delayed grati�cation, we o�en consider a sequence of rewards, corres-

ponding to the sequence of actions taken in the environment. �at means that we are not interested in

maximizing the reward at each step, but rather the summed reward over many steps in order to avoid

greedy optimization, leading to sub-optimal results. �en the discounted return as a sum of accumulated

rewards is considered Gt = Rt+1 +γRt+2 +γ2Rt+2 + ... =
∑∞
k=0 γ

kRt+k+1, where γ is a discount rate

(determines on how much emphasis we put on the recent and past rewards). �en we optimize using the

return notion, applying functions that can provide information about how well the agent is doing either

in a particular state alone, or provided with a speci�c state-action pair. At the heart of the RL paradigm

lie two functions [39]. Value functions is de�ned as:

V π(s) = Eπ[Rt|st = s] = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s
]

(2.1)
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, and it is used to assess in general how much reward would be obtained starting from the given state

s, allowing to assess the ”usefulness” of the state. And action-value function is de�ned as:

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]

(2.2)

, and it allows to obtain the value of the action, conditioned on the state we take it in. �e functions

related through

V π(s) =
∑
a

π(s, a)Qπ(s, a) (2.3)

It is an important quality of the value functions, that they satisfy the following recursive de�nition.

V π(s) = Eπ[Rt|st = s] (2.4)

= Eπ

[
rt+1 + γ

∞∑
k=0

γkrt+k+2

∣∣∣st = s
]

(2.5)

=
∑
a

π(s, a)
∑
s′

P ass′
(
Rass′ + γEπ

[ ∞∑
k=0

γkrt+k+2

∣∣∣st+1 = s′
])

(2.6)

=
∑
a

π(s, a)
∑
s′

P ass′
(
Rass′ + γV π(s′)

)
(2.7)

It is imperative that an optimal policy can be derived from the de�nitions above - optimal policy is

π∗ such that V π∗(s) ≥ V π(s) ∀s. Consequently, the optimal value function is given as V ∗(s) =

maxπ V
π(s) ∀s and optimal state-action function is given as Q∗(s, a) = maxπ Q

π(s, a) ∀s ∈ S.

Any RL algorithm uses one or both of these functions. Initial algorithms in the �eld directly diverged

on the basis of which functions were used, forming value iteration and policy iteration.

In general, typology of RL algorithms is quite diverse. We make a number of distinctions on the basis of

meta-features of the learning process. Here, it is worth to mention an important distinction between two

types of RL algorithms : On-policy (e.g. SARSA, policy gradient methods) and O�-policy methods (e.g. Q-

learning). �e distinction is related to which policy is used to collect data for further policy optimization.

On-policy methods use the same policy for data collection - behavior policy b - as the policy for taking

actions π, so these two are the same. O�-policy methods make a distinction between these two policies.

Further di�erences are mentioned in the next section 2.1.2

�ere are many algorithm typologies within RL in the method of optimization, so we would emphasize

three most popular groups of algorithms, that stand at the roots of the most prominent methodologies

today, that showed good empirical results:
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• Monte-Carlo (MC) methods. �is family of algorithms relies on sampling. In its basic form, an

episode is played out by the agent, generating a trajectory with actions taken with accordance to

the current policy. �e update of the policy happens at the end of the episode and depends on the

collected rewards along the trajectory. MC methods are distinguished by the guarantees, imposed

on the sampled data and estimators used for reaching the optimal policy.

• Q-learning. �e objective of the method is to learn Q-values for each state-action pair in the system.

Originally, it is a tabular method, where the table is of size |S| × |A|. It is an o�-policy method,

since actions are taken in accordance with the maximum Q-value at the state s - greedy selection

of action. In the long-term however the greedy selection in accordance with Q-function tend to

demonstrate stable results. A natural problem of these algorithms is related to exploration, which

is usually addressed by random action selection with a certain probability at any step during the

learning process.

• Policy gradient method. �e method is based on the policy gradient theorem, which proves that

the update of the policy can be independent from the gradient of the state distribution. �us, we

can parametrize the policy (most popular approach, as per �rst implementation in REINFORCE

algorithm from [39] - with a neural network).

An actual algorithm overview is closely related to the DRL methodologies, presented in the next section,

while this selection is more generally applicable to all RL methodologies.

Deep Reinforcement Learning

As brie�y mentioned before, Deep Reinforcement Learning (DRL) makes use of the Arti�cial Neural Net-

works, powerful function approximators. A neural network can be used to approximate (learn) a value

function, or a policy function. �at is, neural nets can learn to map states to values, or state-action pairs

to Q values. Even simpler so, neural nets can directly represent πθ(a|s) , a mapping from S to A, paramet-

rized with θ parameters (weights) of the neural network. Rather than use a lookup table to store, index

and update all possible states and their values, which impossible with very large problems, we can train

a neural network on samples from the state or action space to learn to predict how valuable those are

relative to our target in reinforcement learning.

Since the domain of RL algorithms is quite diverse and contains di�erent approaches, it might be chal-

lenging to describe them all, but night be bene�cial to perform a super�cial assessment which of them

can be potentially used for the IC problem at hand. �e introduction of DRL methods roughly from 2013

- value based learning with Deep Q-Network (DQN) [25] and policy based learning TRPO [33] or Asyn-

chronous Actor-Critic Agents (A3C) [24] (Actor-Critic framework on the border between the various

types of approaches) - allowed for handling the high dimensional data, and the consequent works on the

methods stabilized the learning process su�ciently. Since then Q learning approaches were intensively
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Figure 2.2: Overview of DRL algorithms

developed and studied, resulting in the emergence of a number of well-de�ned frameworks, such as for

instance Rainbow [16] combining all the recent advancements in value based methods. �ese methods

usually were bench-marked in the domain of Atari games or board games (e.g. chess, Go, etc.) with

well-de�ned MDP de�nitions and usually limited action spaces. Policy based methods have just recently

received a wide acclaim, as algorithms such as DDPG [22], managed to show good results on tasks with

continuous spaces. �e la�er traditionally are considered di�cult for the value methods due to the need

to make a greedy selection from traversal of the entire action space.

Structure of DRL algorithms and approaches can be found in Figure 2.21. First, the distinction is made

between the model free and model based methods. �e �rst category does not required any notion of the

underlying model of the environment (e.g. no knowledge of transitional probabilities, clearly de�ning

the dynamics of the system). �ese methods originally were considered to be the main advantage of RL

methods in contrast to classical Dynamic Programming, which requires the exact model of the environ-

ment. It is o�en the case that the model of the system is not given or available - it is where the model-free

methods prevail. However, the second category can fully utilize the knowledge of the model and result

in a more stable and sample e�cient learning once the model is available/learned. Moreover, the long-

term planning tasks o�en are only properly learnable with a model, that can be queried dynamically and

adaptively during agent training. Further division of model-free methods was addressed and explained

in the previous section. Division in model-based methods is rather self-explanatory: either the dynamics

model is known in advance or we have to �rst learn it (o�en approximated also with the use of neural

network by learning a S→ S mapping).

DRL algorithms also can be distinguished as online and o�ine. Online approaches have agent constantly

1h�ps://spinningup.openai.com/en/latest/spinningup/rl intro2.html
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interact with the environment and sample data as training progresses. O�ine methods �rst are aimed

at collecting a su�cient sampled training dataset (with some policy b) and then inferring an optimized

policy π. At the same time, while o�ine methods are by de�nition also o�-policy, online methods can be

both on-policy (e.g. PPO) or o�-policy (e.g. DDQN).

RL for IC

�e general idea of applying (D)RL methods in IC and OR is building a form of a simulation environment

for the agent to interact with. Naturally, simulation is only one way to generate required training data,

but is the most popular one. At the same time, some academic research, especially related to classical RL

and dating back to 2000s, make use of �xed data sets for learning.

DRL allows to avoid most of the assumptions, made by existing heuristics methods. For instance, we

can incorporate stochasticity of various types in the simulated environment and let the agent adapt to it.

However, the major assumptions in the se�ing of RL are to be made in terms de�ning the MDP for the

problem, namely the understanding of the state space S and action space A, as well tuning the reward

mechanism. Most of the methods below optimize the reward function in terms of costs, which incorporate

most of the optimization metrics, used in the domain of IC.

Despite a peaked interest towards the applied DRL, the current research on the topic is quite limited.

�ere are are two distinct peaks in published papers on the topic. First relevant literature related to the

combination of reinforcement learning and OR problem statements dates back to 2000s up to 2010. At

that point it was already recognized that RL can be used in the domain, but the techniques still struggled

with the curse of dimensionality, large state and action spaces and stable learning, as well as simply

correctly de�ning the problems in MDP se�ing. A good example of such approach is [11], where the

problem is formulated as an SMDP and a custom SMART algorithm is applied to a relatively simple

problem instance: a serial supply chain of three stages, a state space as a vector with 3 inventory positions

per stage. Consequent works of the same team developed extended the problem formulations, but still

retained a relatively small state space, which limits practical applications of this algorithmic approach.

�e dimensionality issues prevented researchers from extensively exploiting large search spaces of a

single agent approaches in the domain. �us, next researches generally tried to address the problem of

collapsing the state and action spaces through a set of heuristics or transformed representations.

�ere were several a�empts to formulate classical supply chain problems in a multi-agent se�ing such

as [38], [46]. �e two papers chronologically extend each other and form �rst a�empts to formulate the

MDP in terms of several agents with global cost optimization. While no speci�c results are o�ered in the

papers, the de�nition of individual reward function per agent and the overall objective function, based

on the holding and backordering with costs increasing over time, can be of interest as an example of

cost function formulation, speci�c to the domain. However, the authors propose a poorly scalable vanilla

Q-value based algorithm. Another, even earlier a�empt with multi-agent se�ing was tried by Stockheim
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et al in [37], but applied in a se�ing of decentralized optimization of job scheduling and acceptance in a

sequential supply chain se�ing. In the paper each agent (representing a party at any tier of the supply

chain, multiple parties are available at each of the tiers) deals with a compressed state space with four

relevant domain-speci�c features, required for the acceptance and scheduling decisions. An interesting

detail from the proposed approach is the usage of a deterministic controller, which performs the role of an

orchestrator for the agents, structuring agent interactions with the environment and shared knowledge.

Gijsbrechts [12] propose the application of mentioned A3C algorithm for solving the presented problem

se�ings of dual sourcing, lost sales and multi-echelon models for stock control in supply chain of generic

nature. �e paper used a more extensive state de�nition than before and applied minimal adaptations

towards the problem formulations, emphasizing DRL as a general problem solving approach. It is inter-

esting in our case as it uses a type of decision close to the allocation decision in our problem se�ing. �e

dynamics of the used model, however, di�ers substantially in terms of time domain, capacity e�ect on

demand generation and transport options. Still, the reward design and methodology applications are of

interest from the perspective of practical application. Another take on DRL in terms of a supply chain

problem is the governance of inventories in terms of classical se�ing of Beer game, presented in [28].

�is a se�ing with a sequential supply chain, where the �ow of inventory goes downstream from a man-

ufacturer to a retailer with some possible intermediaries. �e idea of the authors relies on formulating

a POMDP problem for a single agent, responsible for a particular stage in the supply chain (e.g. manu-

facturer) and training it with a DQN algorithm. �e trick is that the agents ideally while acting in own

interests shall try and reduce the overall costs in the supply chain. Since the agents are purposefully not

given the entire state information (due to the basic beer game se�ing), a general feedback framework is

introduced which constantly supplies each agent the information about the overall cost function. Such

de�nition produces a multi-agent se�ing for learning.�e ideas are expanded in a more recent of the same

authors in [27].

2.1.3 Summary and Contributions

Existing literature seems to have a gap when it comes to applying a (deep) reinforcement learning meth-

odology within a spare parts inventory control. IC on its own is a subject to optimization in the paper

[12] with a well-tested, pure DRL method, but even this problem se�ing has (1) a di�erent type of supply

chain, (2) a di�erent structure of the network and (3) a di�erent (although similar) type of decision. �e

current work aims at bridging the gap between the latest a�empts to address the allocation decisions,

handled jointly in [42], and modern capabilities proved by [12] and [28]. More speci�cally, we formulate

the unique de�nition of the allocation problem and apply the selected DRL method in order to generate

process insights of technical nature, evaluation of DRL method performance and analyze the behavior of

DRL agent in relation to the research baselines.
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2.2 Problem formalization and de�nition

Here the problem shall be represented as a model, governed by speci�c rules. In order to apply DRL

methodology, it has to be implemented as a simulated environment. �en we provide a translation of

this model into an MDP formulation, as the RL methods work with the MDP framework. Simulation

implementation details alongside with the validation model for the simulation are described in Appendix

B.1. �is section of the report is aimed at answering research questions RQ3 and RQ4.

2.2.1 Model description and key de�nitions

�is section a business problem into a formal se�ing with relevant notation introduced. Consequently,

this research concentrates on several instances of the problem, which can be more restrictive then the

generalized representation , which is addressed in 3.3. �e model below is to a large extent based on the

model of van Houtum and Kranenburg, Chapter 5 [42].

Here we expand on the brief description from section 1.2 A local network of warehouses is considered,

being a part of global spare part supply chain. One can observe a schematic representation of the model

in Figure 2.3, which we refer further in this section. First we present a brief overview of the model from

this Figure.

We have several local warehouses (WH1 and WH2 in Figure 2.3), each associated with a group of ma-

chines at customer sites. Random demand comes to these local warehouses for certain SKUs. It is satid�ed

directly from the local stock, but in case it cannot be satis�ed directly, we have to use a lateral transship-

ment from another local warehouse in the network. In case the whole network does not contain the re-

quired SKU, we use a costly emergency shipment. In the ”happy” �ow of this model, all local warehouses

are periodically replenished from the central warehouse for all the SKU positions. Central warehouse

receives a centralized supply and then we have to allocate this supply across local warehouses, so in the

long-term we experience minimized costs in the system. Rest of the notation in the �gure is explained

below.

Let us de�ne a set of locations L, which are connected with a set of edgesE. In the broad de�nition it is

a complete graph. However, a speci�cally one would de�ne three types of locations, which determine the

topology of the network. ∀e ∈ E we can de�ne a function e(start, end) function de�nes one connection

in the network. �e following rules govern the relations between various parts of the network.

• �ere are no self loops in the network. ∀ l ∈ L : e(l, l) = ∅

• Central warehouse CW : ∃ CW ∈ L∀ l ∈ L : CW 6= l ∧ e(CW, l) ∈ E ∧ e(l, CW ) = ∅, thus

there are no connections from any other location to the central warehouse.

• Set of Main Local Warehouses LMW : ∀ l1 ∈ LMW ∀ l2 ∈ L \ CW : e(l1, l2) ∈ E, thus there

are connections to all other nodes on the network.
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Figure 2.3: General model of a local network

• Set of Local Regular Warehouses: LRW : ∀ l1 ∈ LRW ∀ l2 ∈ L \LRW : e(l2, l1) ∈ E, thus there

are connections from all the other sets to the regular warehouses.

• �e sets do not intersect and form the set L: CW ∩ LMW ∩ LRW = ∅, while CW ∪ LMW ∪

LRW = L. Also, for simplicity we de�ne J = LMW ∪ LRW set of all local warehouses in the

network.

Naturally, there is a set of machine plan groupsN , distributed over the locations J . Each machine group

n belongs to a particular customer cu from customer set C and requires one or more SKUs i from the

item set I .

Relations between sets and network parameters

�ese sets form the state and structure of the system, as well as in�uence its dynamics in accordance with

the rule, upon which they interact. Locations serve as the nodes on the graph, connected by the edges.

As per Figure 2.4, we can observe the relations between the sets. A local warehouse can have multiple

machine groups, serviced by the local stock in case of a failure. Machine group can be primarily assigned

only to one local warehouse, as well as one machine can be assigned to only one machine. At the same

time, customers may have several machine groups, sca�ered across various locations in the network.

Locations are related to each other only by the means of existing edges. �e structure of the network

and relations between the sets are parametrized upon the de�nition of the model instance and remain

stationary throughout the operations simulation.

Key elements of the model are de�ned as:
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Figure 2.4: Relationships between the sets

• SKU i ∈ I . Each SKU has designated costs associated with it:

– cemi are costs per 1 emergency shipment - transporting 1 SKU i from outside the network

directly to a local warehouse. �ese are uni�ed ∀j ∈ J , and are the highest costs associated

with transport.

– clati are costs per 1 lateral transshipment - transporting 1 SKU i from one local warehouse to

another. �ese costs are �xed in order to preserve �xed relation to emergency costs.

– chi are costs per 1 item of SKU i in stock. �ese are relatively small in comparison to transport

costs, as they are estimated per potentially high stock levels.

�ere are no costs associated with supply transport or allocation decision.

�e system has a vector of pipe-line stock PLi :< PL1, PL2, ... , PLi > ∀i ∈ I - all SKUs in

transit, which are en route towards the central warehouse from external suppliers.

• Local warehouses j ∈ J and central warehouse CW , each as l ∈ L. Each of them has a vector

of inventory levels ILl :< IL1,l, IL2,l, ... , ILi,l > ∀i ∈ I . We also de�ne separately vector of

back-logged demand in backorders for local warehouses BOj :< BO1,j , BO2,j , ... , BOi,j >. At

any time t the relationship between the two is that min(ILti,j , BO
t
i,j) = 0.

Moreover, each local warehouse is assigned a base stock level within vector bj :< b1,j , b2,j , ... , bi,j >
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∀i ∈ I , which is stationary for a problem instance.

• Machine plan group n ∈ N . Each plan group is assigned to exactly one warehouse, which we

further denote as jn. Each group generates demand per SKU, thus we have a vector of demand

rates λn :< λ1,n, λ2,n, ... , λi,n > ∀i ∈ I . Additionally, each machine group has base capacity |n|

of how many machines are there in the group. Upon any stochastic failure, it is decreased, and it

is increased upon each successful repair. �erefore, current capacity |n|t at time t follows the rule:

0 ≤ |n|t ≤ |n|.

Finally, each plan group has a lateral order list denoted vn. It is an ordered list of local warehouses,

from which the plan group can be re-supplied with item i in case ILi,Jn = 0, as jn is the default

option for satisfying demand locally. In our network all local warehouses are main and can parti-

cipate in lateral transshipments. �is lateral order list contains vn :< 1, 2, . . . , j > ∀j ∈ J \ jn

and is compiled upon problem instance de�nition (more details in B.1).

• Customer cu ∈ C . Each customer is assigned a number of machine groups. �e each customer

has a target down time DTWP objcu , de�ned as sum for all SKUs, associated with machine groups

of this customer. Naturally, in accordance with SLAs with customers, there is a constraint on the

down time in the system:

DTWP objcu ≤
∑

n∈Ncu

∑
i∈I

DTWP i,ncu (2.8)

, where N cu are all machine groups of customer cu ∈ C and DTWP i,ncu is the accumulated down

time per machine group per SKU of customer cu ∈ C .

Each customer has penalty costs, associated with not being able to satisfy the constraint above,

which we de�ne as cdtcu. Such costs are applied per 1% of missing DTWP objcu .

Flow of spare parts and supply

�e main dynamic driving force in this model is the demand for SKUs, which is stochastic. Consequently

as demand depletes local stocks, they need to be replenished. �is replenishment is performed from

the central warehouse, and with each replenishment we perform an allocation decision per SKU of (1)

how much to allocate and (2) where to allocate. �is allocation decision therefore is on quantity and

destination of the replenishment. �is is our main decision coming from the employed policy on alloc-

ation, addressed by the methodologies, described further in sections 2.3 with DRL method and 2.4 with

algorithmic baselines.

�e central warehouse, upon replenishment ,in turn, has to be replenished. It receives supply of SKUs

extraneously. In order to perform supply, we need to know (1) how much to order to the central warehouse

and (2) when to order. �e model makes this decision internally through a base stock policy. �is policy

is derived from an existing heuristic for �eld (local) stock planning from van Aspert [41], and is explained
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in more detail in section B.1.4 as it is also used for the validation of the simulation. �is heuristic uses

steady state system evaluation and applies a greedy selection in line with the method used in Chapter 5 of

van Houtum and Kranenburg [42]. Optimized base stock levels bi,j∀i ∈ I, j ∈ J are obtained eventually

from the heuristic and are used as an input in the current model. Using these levels per local warehouse,

supply order quantities can be determined as:

∀i ∈ I ∀n ∈ N : supply =
∑
j∈J

(bi,jn − ILi,jn +BOi,jn)− ILi,CW − PLi (2.9)

Such formula allows to form a summed up order for the total supply for each SKU, incoming into the

central warehouse a�er a speci�ed lead time, de�ned for this SKU. From the time perspective, periodic

review is applied with a relatively short review period τsup. Further on, within the research only models

with a period τsup = 1 are considered, which is close to continuous review se�ing given the relatively

slow moving nature of the demand in the spare parts for complex machinery.

Demand generation

Stochasticity of the demand for spare parts is the key dynamic element in the model. Random failures,

constituting the demand per machine and/or machine groups, de�ne the dynamics of the system. Each

failure means an event of SKU i ∈ I being requested by either a speci�c machine ml ∈ M |j ∈ J or a

machine plan group nl ∈ N |j ∈ J at a speci�c location. As one may see, the demand generation can be

realized in two ways, keeping the choice unrelated to the structure of the network, as the location would

remain an unchanged part of the demand - in the end, it will still be a demand event for a particular local

stock. Practical implementation allows for both methods to be used.

�e modeling of the machine demand either explicitly or implicitly is a design decision. In a general

scope of the problem it can be realized in either way, but in the model de�nition within this paper we

use a demand, generated per machine plan group. �e main di�erence is the demand distribution for the

items. In case of a single machine, it has been showed that the spare parts follow the Weibull distribution:

fX(x;λ, k) =


k

λ

(x
k

)k−1
exp
(
−(x/λ)k

)
x ≥ 0

0 x < 0

(2.10)

At the same time, a group of machines , following Weibull, was proven to generate Poisson process

with a constant rate λi,n, where i ∈ I, n ∈ N . At the same time it shall be noted, the simulation

tool accommodates groups of machines and allow for se�ing individual demands per machine-item pair

as Weibull in case each group would have a size of 1. If it is larger, it is easier to apply average item

failure rates per item and follow Poisson process, which is modeled on the basis of Poisson distribution

in accordance with formula:
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P (k events in interval) = e−λ
λk

k!
(2.11)

, where λ is the arrival rate of events in the de�ned period. �us, demand is modeled as an independ-

ent Poisson process per SKU-machine group pair Poisson(λi,n). One may �nd that such notation was

mentioned previously per demand rate vector λ and is used in Figure 2.3.

�e model operates under the assumption of the full backlog, as the spare parts failures signify break-

downs of the machinery. �ese normally have to be repaired in the end in any case, therefore the lost

sales model is not applicable in the considered case (or at least, is not considered under this problem

formulation).

Handling demand and transport

Whenever demand occurs per a machine group, it can be handled in accordance with the following pro-

cedure:

• Local stock. As each demand of SKU i ∈ I is bound to a particular machine group n ∈ N , and

therefore a particular local warehouse jn, �rst the local stock at this location ILi,jn is checked. If

it is su�cient to satisfy the demand, the local stock level is reduced accordingly and the demand is

considered to be met.

• Lateral transshipment. If at the previous stock the local stock was not su�cient to satisfy the de-

mand, it is possible to supply the demand from a di�erent warehouse in the network. Here, another

design decision is encountered, as the order in which the other locations in the network shall be

traversed has to be de�ned. It is a static order, which is �xed upon the de�nition of the problem,

but the metric used for the ordering can be di�erent [42] - it can be manually preset or a distance

measure can be used. In the la�er case we take the next closest local warehouse in the network,

and continue in the fashion until we either encountered a su�cient stock level or have traversed

the whole list of local warehouses. Speci�cally our model de�nition is to use Euclidean distance to

de�ne the ordering of the warehouses 2. Once there is a su�cient stock level to satisfy the local de-

mand, the lateral transshipment is performed from the other local warehouse to the machine group.

For simplicity, the distance between the two warehouses is taken into account, while the distance

and time for resupply at the customer site are neglected. �us, the lateral transshipment helps to

still satisfy the local demand within the network at the cost of moving the spare parts from another

local storage and incurring waiting time, related to the distance between the two local warehouses

as well. For the time before the lateral transshipment arrives, the demand is backlogged.

• Emergency shipment. In case the entire network does not have su�cient stock to satisfy the local

demand, it has to be satis�ed externally. Due to comparatively long supply lead times, an emergency
2�e simulation tool also allows for se�ing the ordering of warehouses for lateral transshipments manually
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shipment procedure is initiated, as it would still allow for reduced and predictable downtime for

the customer, associated with the failure. �e shipment takes time (typically longer then any lateral

shipment) and costs money (typically, much higher then any lateral transshipment).An emergency

shipment is the last retreat for the model to meet the local demand, which is backlogged until

satis�ed.

�ese steps help to handle any occurrence of random demand in the system. �ese steps noticeably

directly de�ne costs of the model in time and money, and have the following relations:

• Costs: cdtcu > cemi ≥ clati ≥ c
sup
i ∀i ∈ I, cu ∈ C with csupi = 0

• Lead times for local stock re-supply: lsupi ≥ lemi ≥ llati ∀i ∈ I

Key assumptions and summary

�ere are several assumptions to be mentioned in relation to network parameters, also summarizing the

points mentioned above:

1. Demand is modeled as independent Poisson processes per SKU-plan group pair with constant de-

mand rates.

2. All demand is backlogged to be handled eventually - as any repair must eventually be addressed in

the customer service supply chain.

3. Replenishment from central warehouse bears no cost in money or time. Such choice is logical since

these costs are constant and shall not to be optimized for.

4. All newly supplied SKUs are new-buys and there is no return �ow for the repair of spare parts.

5. Emergency lead time is constant and uni�ed across all the SKUs and locations.

6. Lateral transshipment lead times are constant across all the SKUs and locations. �ey depend only

on the distances between the local warehouses.

7. Network structure and cost model are �xed and are not changed in simulation.

8. We concentrate on networks with only main local warehouses, hence the assumption of full pooling

is applied. As networks mostly of relatively small sizes are considered, such assumption is realistic

and shall level the playing �eld across all the methods, applied to solving the model.

A local network of warehouses serves a number of customer locations. Each location has an assigned

local warehouse. When demand for a spare part occurs randomly at the customer location, it can be

satis�ed from this assigned local warehouse at no costs. Otherwise, in case this warehouse has no stock

for the demanded item, it can be sought for in the network and shipped from a di�erent warehouse via
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a lateral transshipment. And in case the la�er is also not possible, we use an emergency shipment at

highest costs. Ideally though, we shall always allocate the periodic supply to the central warehouse in

such a way, that the total operational costs over the duration of the contract are minimized. Hence, we

need to apply a smart policy for such decisions.

�e model, described above, is translated into a simulated environment, so it can be used in the DRL

methodology. �e implementation details and speci�c design choices are, therefore, listed Appendix B.1.

2.2.2 De�ning Markov Decision Process

Now, when the model is described, it needs to be adequately translated into a Markov Decision Process

(MDP) formulation, so it can be used for an RL technique. �e notion and key points are listed in section

2.1.2. MDP is a well-suited framework for the de�nition of the problem at hand, as it is aimed at structural

decision making within a stochastic environment. More importantly, the model described in the previous

section can potentially include multiple decision points. MDP formulation allows to clearly specify which

decisions are to be taken into account and optimized for. In this sense, the general model for CSSC �eld

stock planning from the previous section can be translated into multiple MDP se�ings, each dealing with

a particular decision typology.

Markov Decision Process shall be de�ned with the following terms:

• State space S , which shall contain all the information required for performing a decision within

the process.

• Action space A, which shall cover all possible decisions available within the process.

• Transition probability function P(s, s′), which is a mapping between two consecutive states, de-

�ning the dynamics of the system with the action a ∈ A leading from one state s to another state

s′.

• Reward function Ra(s, s′), returning the feedback on how good was the taken action a ∈ A in

state s ∈ S leading to the new state s′ ∈ S .

Further on we provide de�nition for all of these points except for Pa(s, s′), as the transitions are not a

part to be addressed explicitly in this research. �ey are handled by the dynamics of the model, de�ned

in the section above.

State space S

State space S in the given model shall be composed of two dimensions, where the �rst one is the size of

I , as we can de�ne a number of parameters per SKU independently. �e other dimension has all relevant

information pertaining the considered SKU, either explicit or implicit. Simply put, it should contain all
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the information, related to the main mechanisms of simulation mechanics: demand, stocks, supply and

shipments. Elements to take into account are:

1. Stock levels ILi,j all SKUs i ∈ I and local warehouses j ∈ J of size J . �e most basic and important

information about the state of the network are the current stock levels per local warehouse. We

need this information to count the holding costs of the inventory at given moment in time. Further

on, stock levels change is the indication of how the performance of the agent propagates in time

and address all the four main elements of the simulation.

2. Stock in central warehouse ILi,CW and pipe-lined stock PLi for all SKUs i ∈ I of sizes |CW | +

|PL| for this SKU, amounting to 2. �is information is also crucial as these two levels directly

participate in the allocation decision and supply ordering together with the stock levels across the

locations in the network.

3. Current time period t of size 1. Since one of the ideas behind the current MDP de�nition is to obtain

reward over a period of time within the simulated environment, it has to include the notion of time.

�e current time period is included in the state de�nition up until the �nal horizon T .

4. BackordersBO of size |J |. Current backorders for each location can be included into the de�nition

of state space as they correlate with the demand and may allow the network to adjust to the existing

demand pa�erns with enough training.

5. Cumulative backorders BOcum of size |J |. Accumulating the backorders through the episode al-

lows to give the notion of the accumulated downtime together with mapping the demand pa�erns.

�at might be bene�cial for delayed grati�cation handling and constitutes to the learning of the

terminal reward.

6. Cumulative downtimes DTWPi,n,cu ∀i ∈ I, j ∈ J, cu ∈ C of size |M |. A more straightforward

and specialized approach is to directly include downtime per machine group as the episode pro-

gresses through the state space. Such number would directly correlate with the terminal reward.

We include speci�cally DTWPi,n =
∑
cu∈C DTWPi,n,cu

7. Cumulative number of shipments mlat and mem of size 2. �ese are two numbers, corresponding

to the running amount of lateral and emergency shipments respectively. Such information can be

added explicitly to give the agent the feedback on the transport aspect of the simulation

8. Structural elements of the simulation, such as costs clati , cemi , chi and base stock levels b. �ese are

static elements, which are important for making the decision on allocation, as they participate in

reward and supply calculations.

All of these elements contribute in various ways to the calculation of rewards in reward functionR and

de�ne transitions P. While all these elements are relevant for the description of the system state, we have
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to de�ne a state space S , usable by the DRL agent. �at means that a valid input information for an ANN

has to be conjured.

Various combinations may be tested and used within the research. Primary concern with the state

de�nition is to include the exact amount of information required to make the allocation decision. Nat-

urally, we want to include all the information, which is required for transitions and reward calculations

within the model. �ere is, however, a very practical side to it as well. If the DRL agent has a lack of

information in the state space de�nition, it would not be able to learn optimal policy and may converge

to simple sub-optimal solutions. And in case the state space de�nition, supplied to the DRL agent has

information overabundance, the ANN can have problems in training, caused by inconsistent gradient

updates. In this regard, the most stable and reliable de�nition of the state space was found to be the com-

bination of elements 1,2,3,6 from the list above per SKU. �is de�nition is used throughout the rest of the

research universally for all problem instances, as it strikes a good balance between information richness

and necessity. Consequently, such results in the size of the state ∀s ∈ S - |I| × (|J |+ |N |+ 3) :

s =


< IL1,1 . . . IL1,|J| > < DTWP1,1 . . . DTWP1,|N | > IL1,CW PL1 t

< IL2,1 . . . IL2,|J| > < DTWP2,1 . . . DTWP2,|N | > IL2,CW PL2 t
...

. . .
...

...
. . .

...
...

...
...

< IL|I|,1 . . . IL|I|,|J| > < DTWP|I|,1 . . . DTWP
|I|,|N |
cu > IL|I|,CW PL|I| t


�e last element t is constant per row, and such design is maintained for simplicity of implementation.

Action space A

Action space A of the problem shall cover all possible decisions available within the process. Action in

this problem is de�ned as a matrix of size |I| × |J |, as we have to allocate certain quantity of each SKU

i ∈ I to each location j ∈ J .

∀a ∈ A, a =


a1,1 a1,2 . . . a1,|J|

a2,1 a2,2 . . . a2,|J|
...

...
. . .

...

a|I|,1 a|I|,2 . . . a|I|,|J|


Further we also use notation at ∈ A to signify an action at time step t, and ati,j in order to isolate a

concrete allocation of SKU i to local warehouse j. �ere are several issues to be addressed in the action

de�nition in terms of the MDP formulation.

First, it shall be decided when the actions take place in the process. Our de�nition of the model in the

previous section allows for some �exibility on the spectrum, however it is logical to assign action period

as a discrete, constant rate - e.g. each day within the simulation or each full time period τa = 1. Another
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consideration for such design decision is that such allocation decision period is currently applied within

ASML system.

Second, the lower and upper bounds are to be designated. �e lower bound of the action space for

each SKU-location pair is 0, as at each action step it shall be possible not to allocate anything from the

central warehouse. �e upper bound de�nition is a bit more tricky. It is important to take into account

how much freedom shall be given to the solution methodology (e.g. DRL agent in our case) in terms of

the size of the search space. High upper bound on one hand means more �exible search of the optimal

policy. On the other hand it might create a lot of unnecessary states, complicating search space without

any additional value. One of the restrictions here is whether an action at any moment of time is available.

Notion of action availability in terms of the de�ned problem means that there is enough stock in the

central stock to be allocated in accordance with the proposed action. In other words available actions

satisfy the condition:

∃a ∈ A ∀i ∈ I :
∑
j∈J

ai,j ≤ ILi,CW (2.12)

Such action shall be in the set of available actions a ∈ Aav ⊂ A. �is means that it is plausible to

assume a maximum available quantity in the central warehouse. Such estimations can be achieved in

various ways: we can evaluate average stock in CW in the steady state, determine a base stock level

for the CW or simply determine the maximum supply order, which might come into the warehouse. In

the la�er case, in accordance with the supply formula and under assumption of empty backorders, it is

possible to simply sum up the base stock levels of the local warehouses. Such solution also gives a good

estimate of the steady state inventory levels in CW, as these base stock levels are determined in a similar

fashion. �us, the upper bound on the action per SKU-location pair is the sum of the base stock levels

across all the locations for these SKU. We present action space to be constrained as:

∀a ∈ A : 0 ≤ ai,j ≤
∑
j∈J

bi,j ∀i ∈ I, j ∈ J (2.13)

�ird, the nature of the action space have to be addressed. Naturally, within the MDP the action space

can be only discrete, however, in terms of actual implementation there might be variants on how to realize

in practice - refer Appendix B.1.

Reward function Ra(s, s′)

Reward function returns the feedback on how good was action a ∈ A taken in state s ∈ S leading to

the new state s′ ∈ S . Reward function is directly related to the optimization objective of the problem.

In case of our model, we formulate the optimization problem as minimization of total operational costs,

incurred by the system C (as per 1.3).

Total operational costs can be formed out of several cost factors. However, these cost factors do express

various objectives, related to performance within the mode, which is showcased below. As far as the

Allocation decision-making service supply chain with Deep Reinforcement Learning 33



CHAPTER 2. METHODOLOGY AND FORMULATION

design of the reward function goes, the key design decisions are (1) how much reward to give from the

observed state and (2) whether special (non-state related) additions and/or alternations to the reward

shall be given. �e �rst decision mainly deals with the structure of the reward, while the second decision

is addressed later in the section. Reward within this problem consists of three principal cost factors:

• Holding costs chi per each SKU i ∈ I . �ese costs correspond to the costs of the capital, tied in

stocked inventory. �ey drive the stock levels down, as higher levels would correspond to higher

costs.

• Transport costs clati and cemi per each SKU i ∈ I . �is factor corresponds to the costs of shipping

spare parts across the network. �ese costs drive the stock levels up, as high stock does not cause

additional re-shipments on account of more demand being satis�ed through local stock.

• Downtime costs cdtcu per customer cu ∈ C . �ese cost factor correspond to the penalties or bonuses,

obtained from maintaining a target contract downtime. Simply, there is a target downtime share

in the contract between ASML and its customer, e.g. 98% of time all the machines of the customer

shall be up. In case the uptime of machines is below this target downtime at the end of the contract

(or a designated reporting period), downtime penalties are applied. �is is the only type of cost

factor which can be negative, signifying a bonus for meeting and possibly exceeding the downtime

restriction. Downtime costs are important for the generalized optimization, as they allow for the

agent to also optimize for the downtimes, being an important quality metric for ASML customers.

Combining the cost factors above, we can obtain di�erent reward function designs. We de�ne three

reward function designs, applied to the model se�ing.

First, we consider operational costs purely as a combination of holding costs HC and transport costs

TC . Such choice is partially inspired by the existing spare part domain research [42], [41],[43] and (D)RL

formulations [13], [29]. �ese two factors form the interim reward Rint, which can be calculated each

(action) step throughout the episode in a traditional fashion for a DRL se�ing - or, rather, at any time t.

max R

with R = Rint = −(khcHCt + ktcTCt) ∀t ≤ T,

HCt =
∑
i∈I

∑
j∈L

ILti,jc
h
i , ∀i ∈ I, j ∈ J,

TCt =
∑
i∈I

((mlat
t −mlat

t−1)clati + (mem
t −mem

t−1)cemi ), ∀i ∈ I, j ∈ J.

(2.14)

, where khc and ktc are respectively coe�cients for holding and transport costs, which can in�uence on

how much weight each of the elements would have; mlat
t andmem

t are the cumulative numbers of lateral

and emergency shipments respectively. �ese are 0 in the beginning of each episode, and consequently we

take the di�erence between the previous record and the current number to account to all the shipments,
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occurred between the two moments t and t − 1. �is design is aimed at controlling the allocation of

stock in the network by preserving the balance between quantities of safety stock and number of extra

shipments. Holding costs are to drive the stocks down, while transport costs (directly related to stock-

out situations) would drive the stock levels up. As far as the downtime of customer machines goes, it is

indirectly optimized through the application of optimal base stock levels, obtained from the validation

model (described in B.1.4). In accordance with that model, based on van Aspert work [41], base stock

levels for local warehouses are optimized with respect to constraints on DTWP (downtime) and make

sure we have enough SKUs supplied into the network. Further e�ciency of operations depend on the

reward de�nition above.

At the same time, we can directly optimize for downtime in our model with a di�erent reward design.

�e downtime costs generally correspond to the observations, collected during the entire episode, and tell

whether we were able to meet the target within the duration of the contract T . �ese reward is referred

as terminal reward Rter and naturally is calculated at the end of the episode, since then we can judge

about the total downtime accumulated. �en the reward design is hybrid, denoted as Rhyb, as we use

Rint for all the timesteps but the terminal, where is supplemented by the downtime costs with Rter :

max R

with R = Rhyb

Rthyb = Rtint ∀t < T

Rthyb = Rtter = −(kdtDTt + khcHCt + ktcTCt) ∀t = T

DTT =
∑
cu∈C

(
DTWP objcu −

∑
n∈Ncu

∑
i∈I DTWP toti,n,cu

T
)cdtcu) ∀i ∈ I, n ∈ N, cu ∈ C

(2.15)

, whereDT is downtime costs; DTWP toti,n,cu denotes total downtime accumulated during the episode for

SKU i ∈ I per machine group n ∈ N of customer cu ∈ C ; kdt is weight coe�cient of downtime costs

DT . Such reward design allows to optimize for the downtime within the system directly. As one may

notice per formula above, we can receive positive downtime costs in case the target downtimes were not

reached. �is is intentional, as in this case the agent shall be rewarded for being able to over-perform

under the SLA.

However, such hybrid reward function design creates an unbalanced in reward signals the agent re-

ceives. On one hand, there needs to be a sizeable di�erence in the magnitudes between Rint and Rter
for the terminal reward to contribute to the learning. On the other hand, large reward in the end of

the episode may prevent agent from proper learning, undoing the learning received during the episode.

Moreover, such hybrid reward leads to high variance in rewards and complicates learning in general and

value function V π (refer 2.1.2) prediction speci�cally. In order to avoid such pitfalls, the reward signal

shall be stabilized, which can be achieved by mixingRint andRter together to form a new interim reward,
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denoted as Rmix :

max R

with R = Rmix = −(khcHCt + ktcTCt + kdtDTt) ∀t ≤ T,

HCt =
∑
i∈I

∑
j∈L

ILti,jc
h
i , ∀i ∈ I, j ∈ J,

DTT =
∑
cu∈C

(
DTWP objcu −

∑
n∈Ncu

∑
i∈I DTWP ti,n,cu

T
)cdtcu) ∀i ∈ I, n ∈ N, cu ∈ C

(2.16)

, where DTWP ti,n,cu is the cumulative downtime for SKU i per group n per customer cu. As this

de�nition is close to the original interim reward, we have to rede�ne only the downtime costs DTt per

time t. We also use the correction t/T on how far we are in the episode, so that the later downtime rewards

are more important and shall more clearly contribute to the interim reward calculation. Mixed reward

design preserves the idea of optimizing the downtimes directly in addition to holding and transport costs,

while reduces the variance in rewards and brings down the gap between reward signals.

�us, designs are used in the research, leading to di�erent results, described in Chapter 3.

• Only interim reward Rint

• Both interim and terminal reward with hybrid reward Rhyb

• Mixed (interim) reward Rmix

�ese form a set of reward functions R : {Rint, Rhyb, Rmix}. Now, all of them deal with the actual

costs, incurred by the system. �e �nal reward design, however, should deal with one more with on more

restriction - action availability from 2.2.2, expressed as ∀a ∈ A : 0 ≤ ai,j ≤
∑
j∈J bi,j ∀i ∈ I, j ∈ J . In

order to handle availability, it is possible to apply two methods:

• Masking unavailable actions. In such a way, a mask is created, which at each timestep t only allows

the policy to choose from available actionsAav . Such operation is associated with high computation

intensity and quickly may become unviable or even intractable with the growth of action space.

• Penalization of unavailable actions. Such method only computes if at ∈ A belongs to Aav . If it

does, no penalty shall be applied or even a bonus can be provided to the agent, while if the action

is unavailable, the agent shall receive respective feedback.

Due to increased computational complexity, the option with penalization is realized. �e amount of

penalty has to be de�ned then. Instead of using a �xed high penalty, we apply a �exible coe�cient, called

miss factor and denoted as mf . Say, the agent supplies action at. Miss factor then corresponds to how

much a closest available action (or rather set of actions) was ”missed” - �oored average across all SKUs.
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�en the miss factor is introduced to the reward by multiplying it with the holding costs at this timestep,

as this costs are related to the availability of actions through inventory levels vector IL. And if the action

was available, miss factor would become ≤ 1 and shall no be applied. Instead we apply a �xed bonus

of reducing the holding costs by the factor of 2 (arbitrary empirical choice, which can be adjusted with

di�erent problem instances). �us, we have �nal reward design as :

max R

with R = R ∀R ∈ R : {Rint, Rhyb, Rmix},

mft =

⌊
ILti,CW −

∑
j∈J a

t
i,j

|I|

⌋
∀i ∈ I,

HCt = mft ·HCt HCt ∈ R,mft > 1,

HCt = HCt/2 HCt ∈ R,mft ≤ 1

(2.17)

�erefore, penalization is applied within each of the reward design functions and is related to how much

wrong the agent was. Consequently, miss factor is also used to observe the progress of training as low

miss factor means that the agent is able to at least perform valid actions.

MDP summary and complexity

A short summary on the MDP de�nition is given here, as per the list de�ned in the beginning of this

section.

• State space S . We de�ne main state space elements and formulate the input state dimensions, used

by the consequent DRL methodology. Growth in our state space de�nition comes from the sets

|I|, |J |, |N | primarily (and other factors mentioned above), as well as maximum quantity of stock,

that can be accumulated in the network during an episode. To give an example, a network with 4

local warehouses, 4 machine groups and 2 SKUs generates |S| = 2× (4 + 4 + 3)× ILmax(S, λ) =

22 × ILmax(S, λ), where ILmax(S, λ) is maximum a�ainable stock level, depending on the vec-

tors of base stock levels and demand rates across SKUs and plan groups. Naturally, this can be

a very high number, as theoretically thousands of SKUs can be stored in the network in worst

case scenario. In practice however, such bound be set safely at ILmax(S, λ) = T ×
∑
j∈L bi,j ×∑

i∈I
∑
n∈N λi,nT with τsup = 1 as it should not be reached by the agent - or can be le� unboun-

ded. In case every element of b is 2 and T = 360, and summed yearly demand rate of 700, we

receive |S| = 22× 360× 8× 700 = 44352000, growing very fast.

• Action space A. As shown before, its growth primarily depends on sets |I|, |J | and base stock

levels for the upper bound. As per example above, a network with 4 local warehouses, 4 machine

groups and 2 SKUs generates |A| = 2× 4×
∑
j∈L bi,j . In case every element of b is 2, we receive
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|A| = 64, growing fast. �e upper bound posed here is also a ma�er of design choice and is subject

to deliberation.

• Transition probability function P(s, s′) is not de�ned explicitly, but is underlying the simulation

model for the model de�ned in the previous section.

• Reward function Ra(s, s′). We apply three possible designs to the problem at hand, however,

consequently we show results only per Rint and Rmix. Reason is that during empirical trials Rter
showed inferior performance and was enhanced into Rmix. We still mention it as a development

step toward Rmix as an a�empt to include direct downtime optimization.

With such large action and spate spaces and relatively complex reward design, application of DRL may

help to approximate a nearly optimal policy. Such approach is considered in the next section.

2.3 Deep Reinforcement Learning methodology

�is section give a brief overview of the DRL methodology applied within this research. �e main justi�c-

ation was given in previous section 2.1.2 Literature review, and here the actual details of implementation

and application are given.

2.3.1 Choice of DRL methodology

Amongst the diverse family of DRL algorithms, it might be uneasy to specify the one approach that would

be ��ing to the problem at hand. However, it is possible to narrow down the search. As per section 2.1.2,

we know the typology of RL algorithms from 2.2, where the �rst choice is to be made between a model-

free and a model-based method. In the considered case, there is a model of the system in a form the

simulation, however, the stochastic nature of the simulation prevents using this model directly for the

transition probabilities model, traditionally used by the model-based methods. Moreover, learning such

a model as a neural network is a separate extensive task within a supervised se�ing, coupled with the

potentially large state space. Finally, a tree-based search across action sequences , applied by the current

most prominent model-based methods (e.g AlphaZero [36]), is again unviable in the se�ing with the

highly dimensional action space. �us the consideration is made in the favor of a model-free method.

Consequently, now the choice is between a policy gradient and a Q-value based method. �e la�er has

problems with large action spaces due to argmax operation, employed by these methods for the greedy

action selection during training. Such makes these methods very computationally intensive, which is not

suitable within this project. Policy-gradient methods however directly optimize the policy with Stochastic

Gradient Descent (SGD), mainly via the gradient updates of the weights and biases in the neural network.

�us, the choice is made in the favor of a policy-based method. Within this family of algorithms Proximal

Policy Optimization (PPO) [35] has had some supported success with the stochastic environments [15]
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and is generally recommended for complex domains with large action spaces (e.g. continuous actions in

robotics and physics [6], [23]). �ere are several advantages of PPO methodology in comparison with

other model-free methods:

• Relatively high sample e�ciency and speed. PPO allows for collection of training data and then

re-using the samples in the training process. In comparison with ACER [45], which requires large

replay bu�er and reduced speed due to computation, PPO manages to get acceptable results at

higher speed of training.

• Parameter tuning. With DRL practicalities of training o�en come down to the search in the space

of model hyper-parameters, which can generate good results. By comparison with its predecessor

TRPO [33], PPO has a simpli�ed loss calculation and has fewer parameters that require tuning.

• Expected training stability. In its essence PPO has an idea of taking gradual update steps towards

an optimal policy, preventing gradient over�ow in the network. Our problem has several factors,

contributing to its reward and is stochastic in nature, which is anticipated to produce rewards of

high variance - leading to unstable updates in training. While there are various methods to address

high reward variance, PPO naturally is designed to handle its repercussions.

2.3.2 Proximal Policy Optimization

Within this research a standard implementation of PPO is applied from the paper of Shulman [35] with the

Actor-Critic framework and clipped objective function. An illustrative �gure from the paper is provided

here as well in Figure 2.5

Figure 2.5: PPO architecture with Actor-Critic framework

As mentioned above, PPO is a policy gradient method, which means that it uses a neural network to
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parametrize the policy πθ and optimize it through gradient descent/ascent. Such optimization is allowed

by the Policy Gradient �eorem (in Su�on and Barto [39]). Most of the policy gradient algorithms employ

various methods to improve learning stability and convergence and address numerous challenges in the

domain, e.g. high variance of rewards, high-dimensional actions, convergence to local optima, exploration

vs. exploitation [39], etc.

PPO originates from the ideas, explored by TRPO - Trust Region Policy Optimization, its logical prede-

cessor. �is algorithm, introduced by Shulman in 2015 is based on the idea of taking small updates so the

new policy does not change too much, thus preventing huge updates and gradient explosions within the

neural network. It enforced a KL divergence constraint on the size of policy update at each iteration. We

control the di�erence between the behavior policy β and new policy π by controlling the KL value, sig-

nifying the di�erence between the two action distributions, while maximize the parametrized objective

maxθ J(θ) subject to:

Est∼dθ(st)[KL(πθold(·|st)|πθ(·|st))] ≤ δKL (2.18)

, where δKL de�nes the size of the trust region [30] and is set manually.

TRPO guarantees monotonic improvement over policy iteration, but is di�cult to tune and train as it

requires calculation of the Hessian matrix. Instead, in 2017 PPO was introduced , which makes use of

a clipped surrogate objective loss while retaining similar performance. PPO still makes use of the ratio

between old and new policies r(θ) = πθ(a|s)
πθold (a|s)

. We need to put a constraint on the distance between the

two policies, but without usage of KL divergence constraint. Instead we use a clipped objective function

to limit r.�is is a likelihood ratio, interpreted as the measure of similarity between the two policies,

restricting which with clipping replaces a more computationally complex KL-divergence constraint.

JCLIP (θ) = E[min(r(θ)Âθold(s, a), clip(r(θ), 1− ε, 1 + ε)Âθold(s, a))] (2.19)

�e clip function puts the value of the ratio between 1 − ε and 1 + ε. upon using the minimum, we

discourage the optimization from increasing policy update to extremes. In addition to the clipped loss,

which is responsible for actual policy optimization, there are two more elements to the total loss function

- loss of the value function and entropy factor.

J total(θ) = E[JCLIP (θ)− c1(Vθ(s)− Vtarget)2 + c2H(s, πθ(.))] (2.20)

In the formulas above one may notice that PPO makes use of the Actor-Critic framework (as per the

original paper [35]). �e framework is applied via a multi-head neural network architecture with two

models at then end - Actor and Critic, each retaining a number of neurons to produce relevant results.

Actor model is responsible for learning the action distribution - our sought-for policy π(s, a). Critic

model, at the same time, is designated to learning/approximating the value function V π(s). �e Critic

gives a feedback on how well the model can estimate future reward from current state s - hence the value

function loss (Vθ(s)− Vtarget)2 is aimed at minimizing the distance between the current prediction and
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the target. Entropy factor is added in order to provide the feedback on the shape of the current action

distribution. High entropy loss would signify that actions can be drawn almost uniformly, which would

require stronger updates.

Âθ parameter in the formula is associated with the estimated advantage, employed generally by most

of the DRL algorithms in one form or another. As per the original implementation, within this research

we also make use Generalized Advantage Estimation (GAE), conceptually introduced in [34]. �at allows

for more stable and guided training. ε factor is included as one the parameters of the model.

Without reiterating the original paper, there are several notes that shall be mentioned in relation to the

composition of the used neural network architecture.

First of all, it is a feed-forward network with multiple heads, diverging into an Actor and Critic models.

�e input of the network has the dimensionality of the used state space de�nition from MDP S (see

2.2.2), which is then �a�ened into a 1-dimensional array. �is then is plugged into the dense 2-layered

network of 256 neurons each with ReLu activation functions. A�er the second dense layer, there is a

split into multiple heads, each of which represents an action ai,j ∈ A - in the case of our model it is

an SKU-plan group pair. Each action then has either a Gaussian distribution trained (mean and standard

deviation parameters) or a discrete so�max layer for the probability of choosing a particular value per the

SKU-plan group pair. �is distinction depends on either continuous actions (real numbers) are used or

discrete, respectively. Such are the representations of the policy π. �is part of the network is related to

the Actor model. To no surprise, the Critic model shares the dense layers with Actor, but has a di�erent

head with regression prediction of the value for each observed state. �e dense layers within the network

are shared between Actor and Critic, as such allows for the reduction in computational power required

for training and increases the speed of training with. �us, the Actor model outputs a distribution over

actions for the current state s, while Critic provides the value function prediction V π(s). Naturally, the

size of the Actor so�max layer depends on the restriction condition in equation 2.6 and depends on the

set sizes for local warehouses and SKUs: |J | × |I| ×
∑
j∈J bi,j , ∀i ∈ I, j ∈ J . Moreover, part of the

actions within this restricted space are still unavailable as per availability condition in equation 2.5. �e

la�er is addressed further in section 2.3.2.

Choice of the amount and size of dense layers, as well as activation functions comes from a linear hyper-

parameter search, initially based on applied PPO and other DRL architectures from e.g. OpenAI and RLib

implementations. 3

Training methodology

�e construction of the training procedure for PPO is comprised of several elements. In Figure 2.6 one can

observe the schematic depiction of the training process. It is an iterative process as per PPO algorithm

procedure. A �xed number of episodes is run every training iteration in order to gather data for training
3h�ps://openai.com/blog/openai-baselines-ppo/; h�ps://docs.ray.io/en/latest/rllib-algorithms.htmlppo
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D - until the dataset is full. In our case the episode length is �xed at T , thus b|D|/T c steps are required

to �ll the dataset exactly. �en adaptive gradient descent training on for K epochs on mini-batches of

size M ≤ |D| from D of the neural net is applied in accordance with the PPO objective optimization -

loss function J total from equation 2.13. One can �nd the pseudo-code procedure on the training process

in Algorithm 2. �e procedure at iteration k is stopped whenever it is considered that the algorithm has

converged to a particular policy πk (speci�c conditions were inferred empirically and are addressed in

section 3.4) - but basically the main condition is the minimized �uctuation of the average total reward

per episode.

In terms of meta-elements, the procedure is presented as follows:

1. De�nition of the model and MDP:

(a) De�ne parameters of the problem instance (e.g. sizes of main sets, cost model, lead times, etc.)

for the simulated environment

(b) Use the validation model and obtain optimized base stock levels vector b to complete the

de�nition of the problem instance

(c) De�ne the MDP (state and action space sizes and nature, reward function design)

2. Perform PPO algorithm steps (as per Algorithm 2)

3. Once training is considered �nished, trained policy π is obtained. Now, it can be used for the

inference. �e la�er de�nes any runs of the simulated environment with the �xed PPO policy (or

any �xed method, including the baselines of the research, see 2.4).

From the technical standpoint, the procedure described above is implemented in Python, where RLib

framework with Gym wrapper with custom simulated environment are applied for training and con-

sequent inference.

Training a PPO agent in practice does not produce a �xed result on its own. It requires extensive tuning

- a search in a hyper-parameter space once the key elements of the framework are established. �e la�er

includes the de�nition of the reward function, state and action spaces - these are related to the MDP

de�nition and are part of problem instance de�nition for the experiment. �ese de�nitions are in turn

used for the de�nition of the architectural choices within the ANN - size of the input and output layers,

as well as the structure of the Actor output (either continuous or discrete). Consequently it is possible to

determine a set of PPO parameters, which are expected to guide the training appropriately. Most relevant

are listed here:

• Value function coe�cient c1. �is coe�cient allows to control the e�ect of the value function loss

at the full loss function as per
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Algorithm 1: PPO training procedure
Result: Optimized πθ(a|s)

initial policy parameters θ0 ← random weights;

initial value function parameters µ← random weights;

clipping parameter ε;

training iteration m← 0;

while not done do

s0 ← sample initial state from simulated environment;

s← s0 set current state to the initial one;

while training dataset Dm is not full do

initialize new episode;

for each episode step till T do

a ∼ πθ(a|s);

Apply a to the environment and receive new state s′;

s← s′;

r ← R(a, s);

record (s, a, r, s′) into memory Dm;

end

end

θold ← θ;

for each update step do

Sample minibatch of n samples (si, ai, ri, s
′
i) of i index from D;

Update value function:

for each (si, ai, ri, s
′
i) do

Vpred ← compute target value using temporal di�erence TD(λ) with 0 ≤ λ ≤ 1;

end

µ← µ+ αv( 1
n

∑
i∇µVµ(si)(Vpred − V (si)));

Update policy:

for each (si, ai, ri, s
′
i) do

Âi ← compute advantage with Vµ and GAE;

ri(θ)← πθ(ai|si)
πθold(ai|si) ;

end

θ ← θ + απ
1
n

∑
i∇θmin(ri(θ)Âi, clip(ri(θ), 1− ε, 1 + ε)Âi);

end

end
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Figure 2.6: Training architecture

• Value function clip parameter and gradient clip parameter. �ese parameters respectively clip the

values for critic model and the gradient update, preventing the model from large updates and keep-

ing the output normalized around smaller values.

• Number of SGD iterations K , train batch size D and SGD minibatch size M . �ese parameters are

interrelated. With train batch size it is decided how many samples are drawn from the environ-

ment interactions, while minibatch size determines smaller batches on which an SGD iteration is

performed. �e number of such iterations is also determined. High train batch size would lead to a

more diverse dataset of higher variance for training, while the size of the minibatch and the num-

ber of iterations would determine how much over��ed on the drawn minibatch the neural network

will become.One iteration for instance, would signify no over��ing and data re-usage, while high

number of iterations may lead to heavy over�t on each data sample causing the agent to constantly

re-learn.

• Clip parameter and learning rate. PPO clipping parameter is related to smaller updates as the total

loss is controlled. At the same time, the learning rate allows us to regulate the magnitude of the

update steps - both parameters solve the speed vs. quality balance.

• Action space nature. It can be either continuous or discrete. �e actual action space A of the

problem is discrete inherently, but this de�nition does not hold in the training process. In training

we can use discrete actions, which corresponds to using a so�max layer for action selection at the

end of the Actor model. An alternative is the application of the continuous action space. Such means
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the training of the parameters for a Gaussian distribution, from which real-numbered actions can

be sampled. In order to later applied within the model, this actions are to be rounded.

In its essence the training process for the considered methodology can be de�ned in two major ways

with respect to choosing the hyper-parameters for the model.

• End-to-end training. �is approach assumes the hyper-parameters listed above to be �xed and

unchanged until training is stopped. �erefore the initial set of hyper-parameters remains �xed

through all the training episodes.

• Re�ning/checkpointing training. �is is an iterative approach, where an agent is trained up until it

is observed to hit a local minimum. A�er that, the training is stopped, hyper-parameters are altered

in order to get the agent out of the local minimum, and the training is resumed. Such approach re-

quires manual interference with the training. At the same time, it may allow for improved results

since the training is guided adaptively. Normally, it can be applied as a linear search across para-

meter combinations: as the agent becomes more knowledgeable, the learning rate can be reduced,

while the value coe�cient is increased: then we take smaller updates with a larger feedback from

an already well-trained critic model.

Validation of actions

PPO acts upon the de�ned action space. It draws actions from the de�ned space, which may results into

invalid, unavailable actions - discussed in action space de�nition 2.2.2. While training, unavailable actions

are penalized, as described before in reward design 2.2.2. At the same time, valid variants, based on the

actions of the agent, are to be applied to the model. �e procedure of doing so is iterative and allocates

each SKU in the sequence of locations until the central stock is out. In order to preserve proportions,

dictated by the agent, we make a greedy selection here with max(ai,j) for current i ∈ I at each step.

�us we traverse the entire a and make allocations until ILi,CW = 0 ∀i ∈ I .

In such manner, we ensure that actually applied actions are always valid, even if the original action

was penalized for being unavailable. Similarly, if continuous action space is used, all the real values for

actions are rounded to the nearest integer to prevent the supply of incorrect actions.

Other options were also considered, such as using a �xed priority list of warehouses, based on there

network position, and random order - instead of the max selection. Neither of these options however

sustained empirical tests. Moreover, a �xed list creates biased actions, and random prioritization creates

additional, unaddressed stochasticity, preventing the agent from stable learning.
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Algorithm 2: Application of valid actions
Result: a ∈ A

Input:

aπ ∈ A;

ai,j ← bai,jc ∀i ∈ I, j ∈ J ;

for i ∈ I do

while ILi,CW > 0 do

allocate max(ai,j)∀j ∈ J ;

decrease ILi,CW and ai,jmax ;

end

end

2.4 Research baselines

Allocation decision making is performed in accordance with a particular policy, which can be represented

in various ways. While with application of DRL it is represented with an ANN, it is also common to

apply various algorithmic approaches to perform the replenishment actions. �ese methods therefore

can be used as baselines for measuring the performance of the DRL agent. �ere are two main baselines,

used within this research: First-In First-Out (FIFO) and NORA. �is section gives a brief overlook of the

mechanics of the both methods (policies).

FIFO

�is is an industry applied approach, which is also widely used in many theoretical models. �e models

from van Houtum, van Aspert and Reijnen, used as reference models for the model in the paper, is not

an exception. �e operational basis of this approach is rather simple, as its main principle is to make

allocation on the basis of the which demand has come �rst. In order for the method to work, we have to

retain a list with all the incoming demand for the system, as well as keeping the information on the SKU

and origin of the demand. And its principle of performance otherwise is tightly coupled with the classical

base stock policy.

Algorithmically, it can be described as following:

• Check the ordered list of the demand. If there is no item there yet, choose a random warehouse for

assignment. �is option is necessary for the starting process.

• Pop the �rst item and perform allocation from the central warehouse if possible. If it is not possible,

then this entry is skipped to the next SKU.

• We proceed until all the stock at the central warehouse is distributed.
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FIFO generally tends to push as much stock to the local warehouses as possible, basing its ordering on

the previous demand. However, its method is a greedy selection, which is rather unstable in cases, like (1)

hectic demand with high variance; (2) several high throughput SKUs in the system; (3) situation with joint

optimization when machine groups have capacities - as there we have several SKUs in�uencing the same

machine group, making greedy selection suboptimal. Nevertheless, FIFO can be considered as a relevant

baseline within this research, as this method is o�en assumed for the models in the domain. Assuming

FIFO allows for analytical solutions to take place and perform steady state analysis on the system.

NORA

Figure 2.7: NORA algorithmic procedure

As mentioned before, NORA is the current system within ASML that governs the replenishment of

spare parts in the entire supply chain and speci�cally within local networks. In its general form, NORA
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essentially operates on the basis of a decision tree. While the system itself is complex and handles multiple

�ows and operations within stock planning, we consider primarily the part of NORA corresponding to the

replenishment decisions. Within this part, NORA algorithm is based on a decision tree, which considers

several key decision points with binary choices. �ese choices are based on the structural decisions

(where we are making the replenishment) and state of the network actual ordering metric. �is research

used an adapted version of NORA algorithm, scoped to handling only the lower tiers of the CSSC - local

networks. Within this scope, most of the arbitrary logic of decision trees for NORA was removed as there

are no special cases within the local network. At the same time, the concept of at heart of NORA - Non-

Availability (NAV) risk - remained in tact, as well as the general iterative procedure, which is presented

in Figure 2.7

It is primarily base around the concept of NAV risk - probability of being out of stock during the lead

time for replenishment. �is risk is quanti�ed for each location and SKU in an iterative manner until the

allocation is ful�lled - and serves as ordering metric for locations in the network. �e higher the risk is of

a stock-out for the location when allocating a particular SKU - the more chances are it ends up to be the

�rst in the order of replenishment. �is metric is continuously re-calculated and applied in the procedure.

In order to perform this calculations, NORA has to have a good estimate of the optimal base stock level for

all the locations in the network, as well as have a good forecast of the demand rates. If either is missing,

NORA’s performance, especially within the adapted version, degrades quickly. At the same time, good

estimates of these parameters allow NORA to make reasonable choices in the anticipation of future due

to full information on the demand in the system, making it a strong baseline policy.
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Numerical Experiments and

Evaluation

�is chapter presents the design and key considerations for the numeric experiments. It aims primarily to

address research question RQ6. Consequently, we assess the performance results of these experiments. In

order to interpret any results, we have �rst to describe the performance metrics in 3.1, used for evaluation

and analysis as per RQ7 (including the discussion in Chapter 4). A�erwards, we are able to establish the

experimental setup in 3.3, while the results of the experimentation are concisely presented in 3.4.

�e main research goal of this paper is to explore application of DRL and whether it can be successfully

used for addressing the allocation problem within ASML network (and similar spare parts supply chain

models). �erefore a single experiment in this context is comprised of:

• Clearly de�ned problem instance: se�ing various parameters in order to model a realistic se�ing

for a network, including its structure, size, cost model, lead times, demand rates, etc.

• MDP se�ing: de�ne the framework structure, in which the agent is to be trained.

• Training se�ing: hyper-parameters for the DRL agent algorithm.

Experiments include two stages: training and inference. Research baselines, FIFO and NORA, are not

trained, as this methods rely on algorithmic decision making in accordance with �xed rules. PPO agent,

in contrary, requires extensive training, during which the ANN learns unique rules for allocation decision

making. Inference, however, already assumes a presence of a trained/de�ned policy on PPO. �erefore,

a number of simulated runs is performed for FIFO, NORA and PPO under same conditions and model

parametrization. �en these are considered to be the results of an experiment on particular problem

instance.

Problem instances are to be determined before the experimentation phase can take place, as they de-
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termine the structure of the �nal analysis and comparability of performance between various policies. At

the same time, MDP and training se�ings are subject to adjustments in the course of experimentation.

Final results are reported for the se�ings, which generate most optimal performance results for PPO.

However, �rst we de�ne the evaluation metrics to be used for the performance assessment and analysis.

3.1 Performance evaluation metrics

In most of related literature, the optimization metric is the absolute, against which the success of the

DRL agent performance is measured. We can address is as the primary metric. Such position is well-

justi�ed, as reward (in our case) directly corresponds to the objective of the optimization problem. While

that might be true for an isolated instance of a problem, in a more general sense there are other metrics,

which highlight various aspects of agent performance. Moreover, these secondary metrics can be primary

optimization objectives in a se�ing with a di�erent reward design. Here, various additional metrics are

explored and assessed for the policies within this research.

Costs

Costs metric was rather extensively covered in 2.2.2, as this is the main metric used in the reward design.

Coincidentally, this is the main metric mentioned in the main research question in 1.3. In terms of eval-

uating the performance, cost model can be used �exibly, as performance of the obtained policy can be

studied under di�erent cost models. �e la�er is possible as the cost metric simultaneously addresses

various aspects of policy performance: distribution of stock levels, stock-outs, shipments and service

levels for ASML customers.

Here it is important to emphasize how the total operational costs are to be used in the evaluation of

the performance. Costs reduction is the objective of the minimization problem, formulated in 2.2.1. It is

addressed by maximizing negative reward as per section 2.2.2. Costs are decoupled into holding, transport

and downtime factors. While holding and transport costs were utilized previously for evaluation of model

in the domain of spare parts IC, downtime costs per SLA are not covered explicitly in the form they are

optimized for within this research. Normally, downtime is controlled via hard constraints within the

optimization method (r.g. as per validation model from B.1.4). DRL, however, due to the iterative nature of

its learning process, may be impacted by hard constraints on experienced downtime and prevent the agent

from learning an optimal policy. �erefore, an adaptive factor, directly dependent on the accumulated

downtime, is introduced within the cost model.

Nervousness and NAV

As de�ned in 1.3, nervousness in spare parts planning can be interpreted as the ratio between the con-

sumed spare parts and number of applied shipments. In reality such factor implies the fact that o�en a
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spare part can be re-shipped several times across di�erent locations in the network, and only then con-

sumed. Consequent experimentation showed that such metric is not representative for the performance

of the policies, applied in this research, due to the absence of the global tier within the model. Such makes

the re-shipments implausible, as we rather use emergency shipments for the supply new spare parts, and

lateral shipments occur only once per a spare part. Moreover, there are also no pro-active lateral trans-

shipments, as they require another decision to be made, which is out of scope in this project. �us, this

metric is not eventually used in the evaluation of the agent performance.

A similar logic applies for using the NAV risk (more detail in 2.4) as a benchmark performance metric.

We do not use NAV to compare the performance of the di�erent methods due to the the absence of the

full picture and one-tier model de�nition. NAV, moreover, the assessment of NAV risk is used to directly

optimize for the stock-outs in the system. PPO optimization in this research is performed for the total

operational costs. Instead of NAV risk, we directly quantify the amounts of occurred stock-outs in the

model for the analysis of PPO behavior, presented further in Chapter 4.

Downtime (Waiting for Parts)

Downtime within the system is one of the key metrics, distinguishing the spare parts supply chain model

from the other inventory models in OR. Downtime of the machines at customer sites is directly related to

the level of customer satisfaction and SLA performance. As mentioned before, we use the notion of Down-

time Waiting for Parts (DTWP) ,incurred in the system. As for the DRL method, DTWP participates in the

optimization within the problem both directly and indirectly. �e indirect e�ect is applied across all the

policies and experiments, as each model and simulation run employ base stock levels, obtained from the

validation model. �ese levels, in turn, were optimized with the DTWP constraint (more details in B.1.4).

Direct optimization for the caused downtime comes from the reward designs Rhyb and Rmix. �ere-

fore, downtime, together with being the primary SLA performance metric, shall be considered within the

analysis of the results.

Namely, we are interested in the average total downtime per episode, as well as downtimes per a

single machine group. It corresponds to the e�ciency of the allocation policy in terms of the contracts.

Moreover, the average downtime duration is of interest for analysis as such measurement relates to the

average duration of a stock-out.

Demand satisfaction

�ere are various ways to account for the demand statistics. It is possible to account for stock-outs (as per

section above), which occur in the case, when demand is not satis�ed from the local warehouse. �ese

can be counted along the progression of the simulation episode, and naturally are calculated as the sum

of lateral and emergency shipments over the episode. As per [32] and [41], we segment total satis�ed

demand ∀i ∈ I ∀j ∈ J into:
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• αi,j is the fraction of demand satis�ed from the local stock in j for all n ∈ Nj ⊂ N

• βi,j is the fraction of demand, satis�ed from lateral transshipments from the other warehouses in

the network.

• θi,j is the fraction demand, satis�ed from emergency shipments.

Logically, α + β + θ = 1 shall always hold for all i ∈ I . �ese metrics are directly used for the

validation of the simulation model (more detail in B.1.4). Such separation allows comparing performance

of the allocation decision policy with respect to di�erent local warehouses. Moreover, it highlights the

general e�ectiveness of the system in handling stochastic demand. By observing how the demand was

satis�ed in an episode (on average), it is possible to establish general behavioral trends for the DRL agent

and compared methodologies.

3.2 Analysis scenarios

Having considered several evaluation metrics, it is important to clearly establish the main directions for

the analysis of the allocation decision problem. �ese directions are the basis for formulating problem

instances, used in the numerical experiments. Moreover, these scenarios de�ne, in which context we

compare the performance of the policies, namely - DRL agent and baselines’ results.

3.2.1 Scenario 1: Problem complexity

Within this scenario, we consider a number of instances with a linear increase in complexity. Namely,

the dimensionalities of state S and action A spaces are increased. Moreover, additional stochasticity can

be introduced to the problem in order to make the search space of the problem less sparse. �e la�er

means introducing more states with information, useful for the learning of the agent. In such a case, it is

possible to expect that the baseline methods would not have any computational complications, but can

experience decreased performance due to more complex optimization, especially with the of increase in

the number of stochasticity sources. Such expectation is also based on the fact, that neither of the baseline

methods applies a joint optimization procedure for all the SKUs in the model. PPO policy is expected to

have problems with training and may experience premature convergence to local optima as the problem

becomes more complex. At the same time, the choice of PPO (as the applied DRL methodology) was

partially motivated by the expected ability of the method to cope with the rapid growth of the state and

action spaces.

�is scenario mostly contributes to the exploration of the PPO applicability in a real-life business se�ing

and potential scalability of the problem de�nition, required for the real world application.
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3.2.2 Scenario 2: Optimization objective focus

Within the de�nition of the MDP, provided in section 2.2.2, there are multiple reward function designs,

which correspond to di�erent (augmented) optimization objectives. �erefore, it is relevant to observe

which formulation can lead to di�erent policies and impact the success of the DRL application. While

baseline methods are not expected to experience a change in the optimization objective, such a change

shall impact the performance of our PPO agent. Primarily, it is expected that when PPO optimizes directly

for the downtime in the system, its operational costs can have even larger improvements in relation to

the performance of the baselines. Such expectation is motivated by the fact that neither FIFO, nor NORA

optimize directly for the DTWP. As per the validation model for the simulation, these methods rather

rely on optimal base stock policy, obtained with the consideration of DTWP constraints.

3.2.3 Scenario 3: Diverse demand patterns

In relation to the test beds, presented in [42] and [41], we formulate several instances, where SKU with

a low aggregate demand rate is compared to the SKU with a high throughput. Expensive spare parts

for complex machinery are o�en treated as slow movers, while there is also a case for more common,

replaceable parts - fast movers. Also, we de�ne a ”normal” demand pa�ern, where the demand rate is

referred to as even. Such qualitative distinctions are created for the comparability and contrasting of the

situations under diverse steady states of the system. Additionally, the idea here is to study the case, when

the system has both types of demand pa�erns and observe what are the di�erences in handling these two

groups of SKUs policy-wise.

Studying various demand se�ings does not simply mean increased stochasticity, but allows studying

the impacts of stochasticity on the process of PPO learning. �ere are several directions, in which com-

parisons can be made between various demand rates, since these are de�ned per an SKU-plan group

pair:

• First and most straightforward way is to determine a single demand rate for an SKU. In that sense,

a slow moving SKU would have the same low demand rate across all plan groups within the model.

�e same would apply for high and even demand rates per SKU.

• We can designate varying pa�erns of demand within one SKU for di�erent plan groups. �en, some

local warehouses in the network would have low consumption for this particular SKU, while the

others would have a heightened demand. �us, we would compare slow vs. fast mover demands

within one item.

• Consequently, we can also compare the slow vs. fast pa�erns between two di�erent SKUs.

Such cases are to be analyzed in relation to the implications for demand satisfaction in the model.
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3.3 Experimental design and setup

A�er de�ning main directions of analysis and evaluation in the scenarios above, we shall restrain the set

of parameters within the problem instances. Since the allocation problem at hand has a large number of

hyper-parameters, which can be tuned across multiple options, it was decided to clearly outline a subset

of those to be explored, with other parameters are to be �xed across all the problem instances. Such

design secures comparability of the results across the de�ned instances. �ese parameters were decided

to be the most impactful and relevant for the problem exploration.

• Number of local warehouses |J |. In accordance with the model, there is only one central warehouse

in any instance of the problem. However, it is possible to expand the size of the network and simply

increase the number of local warehouses. �is number directly in�uences the dimensionality of the

problem, as the parameters related to locations (stock levels, cumulative backorders and, indirectly,

number of machine groups) are included in the analyzed state space. It also increases the search

across the action space. Basically, the growth of the locals heightens the complexity of the problem,

but at the same time allows for increased �exibility for the DRL agent.

• Number of SKUs |I|. �is parameter also directly in�uences the dimensionality of the state and

action spaces, and it the same time it is directly related to the complexity of the problem. However,

unlike the size of the network, the amount of SKUs is not imperative to the solvability of an in-

stance. Potentially, we can consider each SKU within the model separately, although this research

concentrates on the joint optimization across the SKU set I .

• Demand rate pa�erns λi,n∀i ∈ I, n ∈ N . �is is a complex parameter, as there is a certain room

for maneuver in de�ning the demand rates per problem instance. In accordance with extensive

experimentation and academic literature (e.g. [10]), demand rate o�en directly contribute to the

tractability of the problem. Here, demand rates are based on the test beds from [42] and [41].

�e main purpose of changing this parameter (as per Scenario 3) is to study qualitatively a set of

situations to be handled by PPO. �erefore, we study slow (low λ) and fast (high λ) demand rates

in relation to SKUs and plan groups, as well as consider even (normal) λ for the instances of higher

complexity.

• Supply lead times distribution. Additional source of stochasticity can come from the random supply

lead times. �is uncertainty can additionally complicate the training process, as it would tend to

a�ect the learning of the true value function in the Critic model.

First two parameters relate to the analysis within Scenario 1, as well as the variability in supply lead

times. Demand rate pa�erns corresponds to study within Scenario 3, while Scenario 2 is addressed by the

changes in the MDP se�ing.
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Instances # locals # SKUs Demand rate patterns Variable lead times

1 2 1 SKU1: low no

2 2 2 SKU1: low; SKU2: high no

3 4 1 SKU1: low no

4 4 2 SKU1: low vs. high; SKU2: even no

5 4 2 SKU1: low vs. high; SKU2: even yes

6 4 4 SKU1: low ; SKU2: low vs. high; yes

SKU3: even; SKU4: high

Table 3.1: Problem instances for experiments

As far as the MDP de�nition goes, the state space is constrained as per 2.2.2. Same section contains the

following options considered in the MDP se�ing;

• Action spaces nature: can be either discrete or continuous. Such distinction brings not conceptual,

but technical changes as per section 2.

• Reward function design: {Rint, Rmix}. As mentioned in 2.2.2, Rhyb is not used in the �nal exper-

iments, as Rmix supplements its ideas.

3.3.1 Experiment parameters

Finally, on the basis of the adjustable parameter subset and analytical scenarios, 6 instances of the spare

parts allocation problem are formulated.

Permutations of the parameters from the previous section are presented in the table below. �e rest of

the model parameters are �xed and provided further in the text.

Some of the parameter permutations require additional explanation. It is important to highlight the

demand pa�erns relations. �ese instances are based on the test instances from Chapters 5 and 6 from

van Houtum and Kranenburg [42], as well as van Aspert [41]. In accordance with their de�nitions for

demand rates, the ratio between ”low” and ”high” demand rates is 1:7, where low is taken as λlow = 50

parts a year; λhigh = 350 and λeven = 150 parts a year. All the instances are to be trained with T as

360 days. Longer terms were also used for explorative reasons (such as T = 400 or T = 720), but �nal

results are not presented in the report.

In general, realistic de�nition of the cost model is established as an approximated ratio: 1 : 8 : 24 for

clat : cem : cdt for all SKUs and customers. Such rule maintains a realistic depiction of prioritization
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Name Type x coordinate y coordinate Lateral order

CW central warehouse 0.0 0.0 -

WH01 local warehouse 3.0 2.0 WH02,WH03,WH04

WH02 local warehouse 2.0 2.0 WH03,WH04,WH01

WH03 local warehouse 2.0 1.0 WH04,WH01,WH02

WH04 local warehouse 1.0 4.0 WH02,WH01,WH03

Table 3.2: Network structure and lateral order

between various cost parameters. ch are as a rule 1/100 of clat per unit, as these are estimated in large

quantities at each time step t.

Lead times are distributed as follows. For the lateral lead times we use the structure of the network.

Within the network we de�ned a grid, on which warehouses are placed as per Table 3.2. One can also �nd

the respective lateral order between the warehouses. �e only change is that for instances with 2 locals,

logically each of them would be in the list for laterals, without WH3 and WH4. �en each lead time is

based on the Euclidean distance between the two locations and is measured in hours by multiplying the

distance by 2.

Longest lateral lead time llat relates to lem roughly as 1 to 4. lem is �xed at 2 days for each SKU, while

supply lead times are 7 times longer, depending on the SKU in question. Variability of the lead times

was modeled simplistically with uniform(5 · lem, 7 · lem). �ese parameters can be a subject for future

research.

Having de�ned the changed and �xed parameters for the model, it is also important to clearly establish

MDP se�ings for the experiments. Each de�ned problem instance is an experiment. �erefore, the �nal

set of experiments is of size 6× 2× 2 = 24 in the form of instance× reward× action. Each instance

had a separate agent trained for it with respective search across various hyper-parameters. When it

was considered that the training has converged and the result is accepted, we perform the inference on

the problem instance with the usage of FIFO, NORA and PPO agent across a selected sample size. It is

determined through the minimized standard error SEM = s√
n

, where s is the standard deviation of

the sample and n is the sample size. It was de�ned that a sample size of 10000 is su�cient to obtain

acceptable non-intersecting con�dence intervals of 95% on NORA and PPO for the considered instances,

so this sample size was used for the benchmarking of the policies. Results of these experiments are

provided in the next sections with some information on the parametrization of the experiments in terms

of PPO hyper-parameters.
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Policy Instances 1 2 3 4 5 6

FIFO Mean 59.07 237.21 275.01 875.73 1188.04 1578.34

St. dev. 10.91 23.83 140.17 131.01 193.25 276.82

95% c.i. 0.21 0.46 2.75 2.57 3.78 5.42

NORA Mean 23.48 125.89 222.38 231.44 266.29 368.81

St. dev. 2.62 17.56 28.27 28.06 31.07 45.21

95% c.i. 0.05 0.34 0.55 0.54 0.60 0.69

PPO Mean 16.78 114.68 158.17 233.85 271.04 389.01

St. dev. 1.12 33.46 38.91 47.84 46.16 59.13

95% c.i. 0.02 0.65 0.76 0.93 0.90 1.15

Action space discrete discrete discrete continuous continuous continuous

Table 3.3: Average total reward with Rint per episode per experiment

3.4 Performance results

�is section addresses the main performance results of the research, against which we measure the success

of the DRL application in addressing the cost-e�cient allocation decisions. �erefore, here we concentrate

on the reward function results, which is based on the primary metric in this research - total operational

costs (as per section 3.1).

Table 3.3 presents results across multiple instances of the problem for Rint reward function design. As

reward is represented as costs, the reward shall be minimal - and this is how the table shall be read.

First evident result is that FIFO shows inferior performance across all the experiments. �e comparison

between NORA and PPO then is more interesting. Simple instances of the problem (1-3) show PPO to

outperform NORA by 9% on average (and 22% average performance on Instance 1) in terms of costs

reduction. More complex instances with more stochasticity (4-6) demonstrate the performance of PPO to

be on par with performance of NORA, being slightly below the baseline. �e results for more complex

instances are based on a se�ing with continuous action space - as the results with discrete space (in

training) for these instances were inferior. In addition, one can refer to the comparative results in Figure

3.1, where results for PPO and NORA are presented in relation to FIFO, as the la�er always performs

worse for each instance.

Table 3.4 shows similar se�ing of results, but for theRmix reward design, which also directly optimized

for the downtimes through contract penalties. Unfortunately, we were not able to obtain any PPO agent

(except instance 1, which the simplest se�ing in problem size) being able to outperform the main baseline

- NORA. �e di�erence between rewards (also in terms of magnitude) for FIFO and NORA is related to

Allocation decision-making service supply chain with Deep Reinforcement Learning 57



CHAPTER 3. NUMERICAL EXPERIMENTS AND EVALUATION

Policy Instances 1 2 3 4 5 6

FIFO Mean 432.67 482.40 673.87 1354.44 1519.92 2348.33

St. dev. 24.50 46.63 120.04 169.69 272.88 384.93

95% c.i. 0.48 0.91 2.35 3.32 5.34 7.54

NORA Mean 176.12 210.41 302.68 572.65 589.83 939.51

St. dev. 4.72 29.21 44.20 71.31 102.79 113.18

95% c.i. 0.09 0.57 0.86 1.39 2.01 2.21

PPO Mean 164.99 258.38 405.21 631.90 639.62 1334.78

St. dev. 5.07 49.24 66.18 85.57 120.06 228.52

95% c.i. 0.09 0.96 1.29 1.67 2.35 4.47

Action space discrete discrete discrete continuous continuous continuous

Table 3.4: Average total reward with Rmix per episode per experiment

the fact, that the inference in Table 3.4 was also performed with downtime penalties.

�e results presented are the results for converged PPO agents. �e convergence is however a relative

term, therefore, the following criteria were used to assess whether the agent has converged to a particular

policy or not.

• Convergence on miss factor: shows that the agent learned valid actions. Median miss factor over

all the episodes in the training iteration is assessed here and values below 3 for several iterations

in a row show that the agent has managed to learn available actions.

• Acceptable level of the explained variance of the value function: depending on the instance, a value

over 0.4 can be considered acceptable. It means that the model can relatively well predict the value

of the state in terms of future rewards, if the sample size is acceptable. �e value was inferred

empirically upon

• Unchanged or degrading behavior over last 10-30 steps, depending on the instance complexity.

Speci�cally, this can be reliant if at the later stages of training there can be higher values for SGD

iterations K used.

One of the main results here was the inability of PPO to learn properly when optimizing for the terminal

reward se�ing with Rhyb. In order to combat that, the mixed reward function Rmix was introduced.

However, while these results presented an improvement, as per Table 3.4, one can see that PPO did not

manage to outperform NORA in that se�ing. �e la�er is partially explained by the heightened variance

of rewards and larger magnitudes of rewards with the down time optimization. Also, in accordance with
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Figure 3.1: Comparing by how much NORA and PPO outperform FIFO per instance with Rint

Scenario 1, we assess how PPO agents handle the growth of the problem complexity. �e general trend is

conclusive: PPO scales with the degradation of performance. Even more complex instances show decrease

in PPO average total reward per episode. A less conclusive, but interesting point for further research is the

increased performance degradation with the expansion in the number of SKUs |I|. �is is explainable as it

not only grows the state and action space sizes, but also rise stochasticity in the model, while the growth

in the number of local warehouses seems to be more manageable. More SKUs automatically means more

randomness per each local warehouse in the model and an impact on the exogenous supply calculations.

Increase in |J | potentially can be mitigated partially by lateral transshipment mechanics, allowing to cope

with the additional demand in the system.

Baseline performance

Two algorithmic approaches are used within this research. Both make the allocation decisions structurally

with respect to a particular metric, used for prioritizing the replenishment per each local warehouse in

the network. �erefore, these methods have interpretable structure, which can explain their performance,

to be further compared with the performance of the PPO method. PPO learns such structure and it is not

directly interpretable upon the application of learned policies.

FIFO method simplistically prioritizes replenishment of the immediate most frequent demand. Such

strategy assumes no planning for the future and is highly susceptible to potential stock-outs, requiring

lateral or emergency shipments. As the result, FIFO tends to perform approximately twice as bad as
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NORA on average. NORA uses demand information to make predictions on the risks of potential stock-

outs and tends to minimize them by respective prioritization. Unlike FIFO, NORA tends to have less

overall variance in the total incurred operational costs. �e la�er can be explained by the fact that FIFO

changes its choices with each new occurring event, while NORA tends to maintain most of its decision

sequences stable, due to NAV risks experiencing less �uctuations in the overall amount of demand events

per each supply lead time. Also, if we compare instances 2 and 3, it is noticeable that FIFO struggles

with both increase in the number of SKUs (instance 2) and increase in the number of local warehouses

(instance 3). NORA at the same time manages rather well the growth of the SKU set size |I|, while the

growth in |J | leads to a substantial growth in the cost variance and average total costs per episode. Such

comes directly from the ability of NORA to mitigate additional demand rates, as it has the access to this

information. Increasing the amount of warehouses at the same time makes the prioritization list of local

warehouses longer and increases a risk of potential assessment error in case NAV risks for all warehouses

are very close to each other.

Consequent baseline comparisons are mostly performed between NORA and PPO due to clear disad-

vantage of the FIFO method.

Variance in total costs

While the magnitude of the rewards changes, most of the instance PPO policies exhibit similar behavior,

in terms of relative performance between the baselines. From the performance point of view, NORA

retains stable numbers and decreased variability. PPO agents per instance do have quite diverse train-

ing processes and higher variance of average total reward per episode in general: some can be trained

successfully in an end-to-end fashion, while the others have to be gained with the re�ning approach 2.3.

With interim reward design Rint the standard deviations ratio between NORA and PPO di�er for in-

stances 1-3 and 4-6. First group of instances have an average of 23% higher standard deviation for PPO

over NORA, while for the second group this gap is at 62%. Such di�erence is a clear e�ect from the growth

in complexity per instance. Moreover, this can be the result from applying continuous actions, while train-

ing the PPO agent for instances 4-6 due to the absence of acceptable results with discrete actions. At the

same time, reward design Rmix with the additional downtime constraint showed an increased standard

deviation for PPO in relation to NORA at 41% and 46% for instances 1-3 and 4-6 respectively. Taking into

consideration, that this design did not allows PPO to outperform NORA in general, such stability is not

a valuable result and can be explained by a general growth of reward variance for all the methods. �is

variance grew due to a more diverse reward distribution with additional cost factor introduced.

Operational cost factors distribution

As per Figure 3.2, one can observe the overall relationships between the cost factors per reward function.

Both reward functions show a very clear trend across the applied policies. FIFO a�empts to always push
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the stock to the most frequented demand locations. Such behavior drastically decreases holding costs,

but results in high numbers of additional shipments, leading to the increase in transport costs share in

the total costs. NORA is able to plan ahead, but still tends to use more shipments then PPO (more detail

in consequent chapter, section 4.2). Rint and Rmix reward designs do not have signi�cant di�erences

in the distribution of holding and transport cost, and the introduction of downtime associated penalties

in Rmix still maintains this ratio in tact across methods. �e only additional insight is the fact that PPO

manages with decreased downtime penalties in relation to the other costs types.

Now, an important note to the interpretation of the aforementioned results and Figure 3.2. We show

here relative shares between the cost factors per method. �erefore, while, for instance, PPO does have

decreased downtime and transport shares in comparison with NORA in sub-�gure 3.2b, in absolute num-

bers PPO still produces inferior results to NORA with this particular reward se�ing. With the same logic,

while PPO transport costs share is lower than the respective share for NORA in sub-�gure 3.2a, absolute

values show even a larger di�erence. Such can be cross-referenced from the overall results tables in the

previous tables 3.3 and 3.4.

(a)Rint reward function (b)Rmix reward function

Figure 3.2: Distribution of costs factors per agent (average over instances 1-3)

Summary of performance results

It can be safely concluded that using interim reward design and instance-dependent training approach

(in state and action de�nition, training paradigm, hyper-parameters choice) PPO manages to acceptably

outperform NORA method by 9% on average and largely outperform FIFO in terms of the operational

costs for simpler instances (1-3) of the problem. �is result is considered to be an acceptably converged.

Complex instances of the problem (4-6) result in a slight edge for NORA in terms of the operational costs

(nearly 1.5%), while PPO is able to perform at nearly the same level as the NORA benchmark. Possible

explanations and interpretations of such can be found in the next chapter of the report.
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Analysis and Discussion

�is chapter directly follows from the previous chapter and is aimed at analyzing the obtained experiment

results in order to gain useful insights, unrelated to the primary performance metric. Most of the ana-

lysis and discussion here concentrates on the interpretability of the experiment results. �ese insights, in

general, can be grouped into two categories. First category relates to potentially interesting observations,

collected during the training process of the DRL agent. �ese observations can be used for further research

ion the direction of the thesis and contain practical interpretations of the aspects of successful training.

Second category includes all the insights regarding the behavior of the DRL agent and comparative per-

formance for secondary metric from 3.1 in relation to the baselines. �is chapter extends and the answers

on research sub-questions RQ6 and RQ7.

4.1 Training process analysis

Insights into the training process of a DRL agent on an inherently stochastic problem with su�ciently

complex action space is one of the contributions of this paper. Alongside with the de�ned MDP, there are

several factors, contributing signi�cantly to the obtainment of the benchmark performance.

First, we managed to use the miss factor mf , introduced in 2.2.2, for tracking the progress of the agent

training. Applying a �exible factor with changing penalty on invalid actions allowed for a guided learning

of action availability for the agent. It is important for the agent to properly learn valid action performance

before it actually can optimize for proper allocation policy with respect to the long-term planning. Miss

factor, employed for that eventually served as one of the metrics, signifying success of the training: if we

observe a convergence of the miss factor to small values, it is possible to say that the agent has learned

valid actions, which is demonstrated in Figure 4.1.

Another important values to observe during the training process are the ratio between policy and value

function loss and the explained variance of the value function. �e la�er gives the feedback on how
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Figure 4.1: Progression of median miss factor in training through episodes

well the value function can make predictions on the basis of data it observes. Now, this factor does not

necessarily converge appropriately due to diverse state space caused by the inherent stochasticity of the

problem. but it can serve as a �ag point: empirically, we can observe that training can be considered

successful if the explained variance reaches values of 0.4 and higher. As PPO procedure forbids/pre-

vents extreme updates, we can expect the explained variance to indicate an acceptable performance level,

reached by the Critic model. Further reductions of this factor are normal, as �uctuations in the sample

data may cause principally di�erent training data supplied to the model. It is also shall be noted that this

factor is only usable with a su�cient training data size. Otherwise, a large gradient update may occur

at any moment of the training, causing the value function to heavily over�t on a small part of the state

space (current training dataset Dk) and then being unable to explain the other training samples well.

It is also quite evident, that the reward designR has a decisive e�ect on the success of DRL optimization

and performance results. It also a�ects the e�ciency of training and addresses various challenges to the

stability and convergence of the learning. One of such challenges was the regulation of the convergence

to local optima. �e la�er is a persistent problem, and is widely recognized as one of the main downsides

of PPO algorithm alongside with poorly controlled exploration. In order to combat the convergence to

the local optima, there are several tools available. With the end-to-end training paradigm a good balance

between learning rate α, batch sizes and number of SGD iterations have to be reached. It is also advised

to designated an average value function loss coe�cient with relatively low clipping parameter on the

value function. �e la�er prevents a more quick convergence of the critic model, but results in the higher

stability at the mid and end stages of training.
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4.2 Behavior analysis

In this section we address the secondary metrics from section 3.1 apart from operational costs, as these

are considered in the review of performance results in section 3.4. Here, a number of interesting insights,

gained from analysis of scenarios from 3.2 and experiments 3.3, are presented for demand satisfaction,

stock-outs and downtime metrics. We mainly use reference experiments to showcase pa�erns in PPO

behavior. �ese, with some relaxation, can be generalized for most of the trained policies within this

research. All of the data considered here relates average and/or cumulative values per episode of a sim-

ulation run. We also use single representative episodes to show general behavior pa�ers. Representative

episode is chosen as the one with average costs performance for PPO with corresponding performance

of NORA and FIFO exactly the same demand events.

4.2.1 Analysis of stock-out situations

First, it is important to address the stock-out situations and shipments statistics. As per Scenario 1 in

3.2.1, the increased complexity of the problem causes di�erent amount of lateral mlat and emergency

mem shipments to occur, where the total number of stockouts is the sum of cumulative numbers of

shipments at the end of the episode mlat
T + mem

T . Consequently, we still distinguish between the stock-

outs, replenished via a lateral transshipments, and the ones, satis�ed with an emergency shipment. �ese

two types of stock-outs contribute di�erently to the cost metric, in�uencing the optimization process.

Here we �nd a conceptual contrast between NORA and PPO methodologies. NORA directly optimizes

for the minimization of stock-outs, but does not receive a direct feedback on the costs, associate with each

individual (potential) stock-out. At the same time, PPO is able to make such distinction with the reward

function design and its transport costs factor (detailed in 2.2.2).

One would observe that instances of higher complexity have a growing number of emergency shipments

mem across all the applied policies - PPO, NORA and FIFO. While the growth of absolute values is logical,

we cannot detect a conclusive change in the ratio mlat
T : mem

T m as mlat grows respectively. Increased

state space complexity in 3.2.1 for Scenario 1 does not lead to principal changes in the progression of

cumulative shipments for both laterals and emergencies from instances 1 to 6. At the same time, when

we introduce di�erent demand pa�erns (compare slow vs. fast movers Scenario 3) in 3.2.3, we observe an

increased relative share of emergency shipments in the range from 5 to 15 % across observed policies on

average. Such result, however, does not contribute to the distinguishable features of PPO policy, but rather

states the fact that all methods struggle with the growth of problem complexity and stochasticity. �ese

can additionally be explained by the higher throughput demand arrivals. Consequent analysis showed

that the plan group with highest aggregate demand rate tends to be the cause of the majority of emergency

shipments, e.g. ∼ 60% on Instance 2 for PPO policy. Comparable results are obtained for NORA as well,

while FIFO tends to have increased emergency shipments for the groups with low aggregate demand. Such
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behavior is expected for both of the algorithmic methods. NORA a�empts to adapt towards anticipated

risks and is able to manage low demand rates well with occasional, but impactful non-availabilities. FIFO

concentrates on satisfying the high demand rates, causing excessive amounts of emergencies there.

Figure 4.2: Cumulative lateral shipments across episode on Instance 2

Figure 4.3: Cumulative emergency shipments across episode on Instance 2

In terms of Scenario 2 and alternating reward designs, the model showed no interpretable di�erences,

except for di�erent values. Figures 4.2 and 4.3 showcase comparison between the methods in the dy-

namics of a representative episode. In the �gures, one can �nd PPO to manage with fewer emergency

shipments across the episode without any strong spike, which it compensates with higher number of

lateral shipments. NORA has one de�nitive spike in emergency shipments number on this graph. �e

spike constitutes to the near-simultaneous concentrated demand arrival, which NORA was not prepared

to handle. Roughly at the same time during the episode there is a spike of lateral transshipments for PPO,

meaning that the agent already had enough stock allocated in the network, which just had to be allocated

correctly.
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Another consideration within the problem is the distribution of stock-out situations in the system across

a large sample of episodes. While the stock-outs distribution change is not interpretable directly by the

state complexity and joint optimization (Scenarios 1 and 2), we can interpret them from comparing SKUs

with di�erent demand pa�erns in Scenario 3. For simplicity of representation, we use the instance 2 to

illustrate the di�erence between a slow and a fast mover, both optimized within one system. In Figure

4.4 one can observe the performance of the three policies for both SKU1 - a slow mover - and SKU2

- a fast mover. Expectedly, FIFO manages the fast mover SKU1 more e�ciently than the slow mover,

due to the greedy selection of a more frequent demand source. NORA controls the stockouts for both

SKUs even more e�ciently, as it has a direct access to the information about the demand rate and can

optimize with the stockouts with this information. PPO, however, while outperforming FIFO, seems to

have higher variance and decreased performance in relation to NORA - especially with the fast mover. It

can be explained by the fact that fast mover demand more o�en leads to the states, rarely visited by the

agent in training. So, unlike FIFO, PPO is more comfortable with operating in a sparse state space during

search, and speci�cally optimize for slower demand rates.

Nevertheless, in order to make a simple conclusion here, PPO allows for more stock-outs than NORA,

on average. However, as reviewed, in the beginning of this section, the quality of this stock-outs tends to

di�er. Overall number of stock-outs mlat +mem for PPO tends be higher than for NORA due to a faster

growth of mlat, while for NORA the ratio mem : mlat growth due to increased emergency shipments.

Figure 4.4: Distribution of stockouts in Instance 2

4.2.2 Analysis of the downtime

Logically, a�er the analysis of stock-outs in the model, it is interesting to observe the behavior of the

applied policies. As mentioned in section 3.1, downtime metric is an important characteristic in this

research, although not the primary one. An addition reason for that is the extraction of inconsistent

results for the downtime measurements in the experiments.
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Figure 4.5: Average downtimes per day on Instance 2

Figure 4.6: Total downtime per machine group on Instance 2

In general, as per section 3.4 we observed that the experiments with Rint reward design managed to

show superior performance of PPO in terms of costs, while the mixed reward se�ing Rmix did not allow

PPO policies to generally outperform NORA baseline. However, there was an expectation that since

withinRmix we optimize for the downtime costs directly, the overall DTWP would be reduced. However,

the downtime results with Rint were also more consistent and generally showed on the instances 1-3

PPO managed to decrease the overall downtime in relation to the other baselines. As an example we use

a sample of experiments on instance 2 further on, which was chosen as it shows a very clear distinction

in performance in DTWP between the considered policies and considers di�erent demand pa�erns for

two separate SKUs. Similar results can achieved for PPO on instances 1-3 with Rint reward design and

discrete action space.

Figures 4.6 and 4.5 show the distributions of average stock-out duration (in other words, average DTWP
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duration) and total downtime distribution per a plan group (and consequently, local warehouse) per

policy. Total downtime per machine group on average is 190% higher for NORA in comparison to PPO,

with only group 3 in this case being managed be�er by NORA. Standard deviation for these experiments

are also at 48% higher for NORA. �e results here are can be called statistically signi�cant, as the con-

�dence intervals of these measurements do not cross. As for the average downtime duration, NORA and

PPO manage to achieve very close results. While the mean value of PPO is lower by 37%, the con�dence

intervals of these measurements do intersect, thus we can deduce, that both policies have approximately

same performance in terms of the stock-outs, coupled with high variance for both methods. Neverthe-

less, together with the total downtime measurements, it can be said that PPO tends to have decreased

downtime (i.e. stock-out duration) then NORA and FIFO.

�us, despite having higher number of stock-out situations, PPO still manages to obtain increased per-

formance over NORA in the considered instance. Consequently, one of the reasons for such situation is

that PPO manages to maintain the average waiting times for spare parts lower then NORA’s. �us, des-

pite the fact that PPO generates more stockouts then NORA, it has shorter stockouts, demonstrated by

Figure 4.5. Furthermore, Figure 4.6 shows the distribution of downtime per machine group (|N | = 4) for

the same distributions as demonstrated in Figure 4.4. One can observe that FIFO manages poorly in the

groups 1 and 3 with lower aggregate rates, which correlates on the handling of stockouts as well. NORA

generally performs be�er then FIFO, but has more uncertainty on the same ”slow moving” groups, while

on average total downtime on groups 2 and 4 with higher aggregate demand have higher total downtime.

Such result logically comes from higher throughput in these groups. PPO, however, manages downtimes

in groups 1,2 and 4 more optimally on average, then NORA.

4.2.3 Analysis of demand satisfaction

Having more stock-outs for PPO results in reduced costs, as these stock-outs are shorter. However, tech-

nically the cost performance depend on the DTWP indirectly. �e other reason for that lies in how these

stockouts are handled. We already discussed, that these stock-outs are di�erent in nature, which is taken

into account by PPO. Here, the topic of PPO behaves in relation to satisfying demand through secondary

metric, de�ned in section 3.1. Here, in contrast to the previous section we still explore Scenario 3 in terms

of various demand pa�erns, but we use instance 3 as an example as it showcases high performance of

PPO and has increased number of local warehouses |J |.

Across multiple experiments we observed various behavior from the trained PPO policies. Most of these

behaviors could not be a�ributed to a particular pa�ern. However, one noticeable pa�ern, a di�erence

between the baselines and PPO was discovered for the simple instances 1-3. It can be presented as follows:

PPO tends to concentrate most of its allocation actions (up to 50%) on one warehouse in the network,

across multiple instances. �en this warehouse serves as a ”hub” for lateral transshipments to the other

warehouses. FIFO tends to allocate greedily and is directly guided by the demands, leading to more
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stockouts on locations with lower overall demand rates, while NORA is more structured, but follows a

similar approach. �e di�erence from FIFO is that NORA is able to account for the future demand density,

but still has a share of emergencies associated with ”slow” warehouses/plan groups.

Figure 4.7: Relative allocation share of SKU1 from CW per local warehouse on instance 3

Figure 4.7 therefore shows the allocation shares per local warehouse for a representative episode within

Instance 3. As mentioned above, PPO here concentrated most of the allocation in warehouse WH02. In

this instance, WH02 and WH04 have highest aggregate demand, associated with fast moving items, while

WH01 and WH03 are associated with low aggregate demand and slow movers. With such premise, FIFO

concentrates in optimizing these ”fast” locations. As a result, it tends to have a lot of emergency shipments

for the ”slow” locations, as the method is skewed towards high demand rates satisfaction. NORA behaves

in a much more reserved manner. It also is demand rate oriented, but allocates more equally, which results

in more stable performance. Finally, PPO tends to exploit WH02 for the most of its allocation decisions.

It can be explained and hypothesized that PPO tends to perform such allocation due to the position of

WH02. Inherently, within the formulation of experiments, we used a single de�nition of the grid (refer

to section 3.3.1) for warehousing positioning. Technically, it was not expected that the positioning of

the warehouses would have a direct e�ect on the optimization within the problem. However, it can

partially explain the behavior of the method. We can hypothesize, that PPO mainly could consider both

WH02 and WH04 for prioritized allocation, and the selection of WH02 is based on the fact that the lateral

transshipments from it on average take less time than from WH04 to the other locations. While PPO was

Allocation decision-making service supply chain with Deep Reinforcement Learning 69



CHAPTER 4. ANALYSIS AND DISCUSSION

not optimizing directly for the decrease of the lead times, it can be considered a peculiar result of the

method using the existing underlying logic of the model to its advantage.

Consequently, we want to consider how demand is satis�ed within the system in accordance with the

metric for demand satisfaction from section 3.1. Here, WH04 is considered from the data described above.

Figure 4.8 shows how the demand was satis�ed for this warehouse. As a rule, two main di�erences were

noticed for the baselines of the research. FIFO method tends to use comparatively a lot of emergency

shipments, θ demand share takes from 40% to 50%, depending on the complexity of the instance. At the

same time, it does not require as much of laterals. NORA is able to satisfy most of it demand locally, as

well as PPO. �e di�erence between the two is that PPO can use a very small amount of emergencies

(5%), compensating with lateral shipments. NORA uses less lateral, but has to resort to more expensive

emergency shipments. �e la�er might explain the edge, gained by PPO - one one hand it is not large, as

PPO still has to balance the network out through internal routings, but on the other hand it manages to

avoid large costs, associated with emergency shipments.

Figure 4.8: Demand satisfaction from local, emergency and lateral methods for US03 in instance 3 for SKU

1
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4.3 Summary of the discussion

�is chapter a�empts to make a number of generalized conclusions about the results of PPO training and

behavior. �ese statements are based on the numerical experiments and allow for an extent of interpret-

ation, but are still applicable to the speci�c instances of the problem, as well as show possible analysis in

how the optimization procedures can be improved.

Training of PPO, apart from extensive search in the hyper-parameter space, requires at times inter-

ference and manual adjustments. �ese are caused by the trends of PPO for convergence towards local

optima. We can analyze the convergence and progress in training with various parameters, e.g. reward

function miss factor.

PPO generally tends to concentrate stocks in a particular node in the network and use lateral transship-

ments in order to distribute stock over the network. In such way, the DRL policy manages to maintain

enough stock in the network at all times and avoid expensive emergency shipments. Such picture is

supported by the amounts of demand satis�ed via the 3 available methods. In addition to that, PPO con-

sequently allows for more stockouts in absolute numbers, but these stockouts are both on average and in

total DTWP lower than with NORA - as less emergencies are use.

In general, PPO behavior is not directly driven by the demand pa�erns, as the agent does not inherently

have the information on the demand (as NORA) or reacts on it greedily (as FIFO). Instead, PPO optimizes

for the total system costs with the inferred information on the network structure and comes to a state,

when it manages to use lateral transshipments to cope with the uncertainty in the network, leading to

higher gross costs and longer downtimes.
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Conclusions

5.1 Results summary

In this paper, we considered a business problem within ASML service supply chain, corresponding to the

ine�ciency of allocation decisions in terms of total operational costs. Such problem presents a challenge

to the existing traditional methodologies, applied in the �eld. Hence, we presented an application of a

novel methodology of Deep Reinforcement Learning for spare parts inventory control. Namely, the goal

here was to address the main research question (refer to section 1.3):

How can we decrease operational costs, associated with allocation decisions in the ASML service supply

chain network, with application of Deep Reinforcement Learning?

�e end result of this application is a policy for making allocation decisions, optimized for the total

incurred costs for holding and transporting spare parts, as well the downtime of customer machines, as-

sociated with waiting for the part to be delivered. �e main question on ”how” therefore is addressed

in several steps. Initially, considered business problem was formalized and translated into a model and,

further on, a simulated environment in accordance with RQ3 and RQ4 from 1.3 (here and further). �is

model is evaluated with the existing baseline method, applied in the company - NORA system, as well

as a basic FIFO heuristic (answering on RQ1 and RQ2). Consequently, Deep Reinforcement Learning

agents were trained to represent an optimized policy for the allocation decisions within the network.

�is training included an iterative process of Proximal Policy Optimization (PPO) algorithm, making use

of an arti�cial neural network as a powerful function approximator for the policy (RQ5 and RQ6). We

describe various factors, contributing to the success of the training, such as application of Actor-Critic

approach, dynamic management of hyper-parameters (especially related to the de�nition of training data

and value function) and the training paradigm. Consequently, we show that on several base instances

of the problem, our PPO agents are able to gain an edge over the baselines with average of 9% and max

of 22% decreased costs in relation to NORA ( and address RQ7). On more complex instances it is able to
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perform almost as good as the baseline - within 3% of cost increase. Further investigation showed that

under given design choices on action validation and de�nition of Markov Decision Process, PPO exhibits

a particular type of behaviors, associated with exploiting the mechanics of the model and environment,

not directly presented to the agent. Namely, some PPO policies managed to indirectly use cost and pos-

itioning information from the experiences in the simulated environment, leading to unique strategies in

optimizing the total operational costs under the customer Service Level Agreements.

�is research cannot be reviewed as an exhaustive analysis neither of the problem se�ing, nor the

method applied. Rather, it is an a�empt to prove the viability of applying DRL approach for the problem

of spare parts allocation and showcase how it can be the optimal methodology to handle this type of

problems. Consequently, applications of these methodology bear extensive possibilities for optimization

due to its �exibility and generalized, problem-agnostic approach. Moreover, these research shows various

ways of interpreting the behavior of the agent, represented with a neural network. �ese interpretations

are important for further understanding on how the overall performance of the agent can be improved

and evaluated.

5.2 Recommendations

Average advantage PPO manages to provide (in comparison with the version of the current system within

the company, NORA) in terms of holding and transport costs is 9%. �ese results primarily relate to

the instances with 1 or 2 SKUs. While current approach struggles with scalability for the amount of

SKUs used, it is still possible to make small-scale optimization for a number of most important SKUs

in the system in the as-is state of the method. However, the main recommendation is to continue the

exploration of DRL applications in the planning. With su�cient training and tuning, we managed to

derive policies, beating the state-of-the-art heuristic. �erefore, potentially similar results can achieved

for a larger scale instances of the problem, however further research is required to either support or

dismiss such hypothesis.

One of the main strengths of the DRL approach (PPO in particular) are its adaptability and �exibility.

One can encode di�erent types of information in the state space for the method to make the decisions,

and use various design rewards to optimize for the chosen purpose. �erefore, DRL approach has a

good perspective for the integration with existing systems within the company. For instance, the method

works successfully with the provided base stock levels, computed by the system within ASML (an adapted

version was used in this research). Potentially, PPO can be trained �exibly for various time periods and

demand forecasts. Unlike NORA, PPO is more adaptive towards unfavorable situations and still is able to

generate relatively acceptable results with sub-optimal base stock levels, as well as less accurate forecast

predictions. DRL is a generalized learning framework, and this research shows that it can be adaptively

applied within the close-to-real-life scenarios at smaller scale.
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As an end product, a system, based on a DRL agent would be close to the current algorithmic method

operationally. �ere are various ways to deploy the policies, obtained with the DRL methods. It can be

used as a decision-making system on its own or can help to derive generalized business rules to be then

used for the decision making. Conversely, periodic re-training of the agent under new input data (new

base stock levels, demand forecasts, changed targets and cost model, etc.) can have a computational toll

on the resources of the company and potentially require prolonged time before it can be applied. At the

same time, obtained policies can provide long term cost-e�cient decision sequences.

5.3 Further research

Extensive follow-up research is required for the given problem se�ing in combination with the DRL

methodology. �is paper can be reviewed as an entrance point into the topic, while a variety of issues

can be considered in more detail in the future.

Main issues, that are to be addressed by the research are:

• Scalability. �e complexity of the problem increases exponentially with the number of locations

and SKUs in the network, as it results into the growth of state and action spaces we have to perform

search through. Larger instances of the problem were experimented on without PPO agents being

able to get close to convergence and level with the performance of NORA baseline due to problems

in training. PPO experienced particular problems with the convergence to local optima, over�ow

of explored data and convergence of the Critic model. Primarily (and instinctively) these problems

can be addressed by an extended training procedure with more extensive computational resources,

which would also support more complex neural network structures. However, such solution is a

shallow a�empt to oversee the primary issues and rely on the machinery rather than the method

design. Further research shall be performed in order to �nd how each of the scalability issues can

be handled at realistic costs in computing power and time, as well as with a boost to performance.

A separate issues with scalability for the problem at hand can be the exploration how SKUs can be

optimized jointly. Current research on the problem ([42], [41]) apply a system approach towards

inventory control optimization, but they still consider SKUs individually. DRL method allows for

tractable solutions to be obtained, however the quality of these solutions can and shall be improved.

In its core, the problem se�ing requires extensive number of experiments to be carried out with

di�erent sets of model, MDP and PPO parameters to �nd the general pathways towards optimal

large-scale solutions.

• Extensive search through the parameters of the model. In order to draw more substantiated con-

clusions, a larger number of experiments across more problem instances shall be performed. Such

search should also include di�erent cost models, new sources of stochaticity and changes in the
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network structure, making it an incomplete graph.

One of the results of this research is the idea of studying how the actual physical positions of local

warehouses in the network can be accounted for while taking the allocation decisions. Another

perspective direction of parameter search is the study in how the capacity of the machine groups

can in�uence the �nal results and be related to the changes in the performance of PPO. Additionally,

further research in the stochasticity of lead times can be performed, as such se�ing comes very close

to the real world randomness from a multitude of factors.

• Complex decisions. �is problem se�ings includes a number of decisions, which were out of scope

for this research, but are directly involved with the allocation decision - such as supply order, timing

of allocation, pro-active lateral transshipments, etc. �ese decisions were modeled in accordance

with well de�ned rules and presented the dynamics of the model, but in other cases they can be

also modeled to be a part of the decision making by the agent.

�e current system of NORA is able to advise on pro-active lateral transshipments within local

networks in order to minimize the potential stock-outs. Within this research such feature was

disabled to avoid added complexity and study the basics of the model, but it can be included in

the follow-up research. Deciding on the quantities to be supplied to the network is another major

decision, which can be managed via a DRL approach. Current research considered a base stock

policy approach to perform this decision, but it can be optimized jointly with the allocation. Such

decision making is complex and is expected to be more di�cult to train a DRL agent for, but can

potentially deliver synergetical performance results.

• Reward design. A separate investigation should be performed in how the design of the reward

function can be improved in order to receive a boos in the performance of the agent. Various

components and factors can be tested in order to �nd the optimal combination of cost factors or

other types of optimization objectives.

Consequent research can concentrate on speci�c problems, highlighted in this paper and basically

provide a deeper exploration at the application of DRL methods in complex stochastic environments.
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Appendix A

Research questions

�e following research questions (RQs) shall expand the main research question:

• RQ1: What is the current state-of-art for the spare parts allocation in ASML service supply chain?

– What is the structure and dynamics of ASML service supply chain?

– What is the current allocation strategy/rules applied for spare parts replenishment and alloc-

ation?

– How can we model the current allocation rules in ASML?

• RQ2: What is the current state-of-art for spare parts management in the �eld of OR?

– What are the current order policies and how are they obtained in inventory control?

– What are the current policies and allocation strategies for spare parts supply chains?

– What are the current applications of stochastic optimization to the allocation decision mak-

ing?

– Are there use cases of DRL applications spare parts management?

• RQ3: How can the problem be formulated and solved with DRL?

– What are the current applications of RL and DRL in OR?

– Why do we need RL and speci�cally DRL for the problem at hand?

– Which RL se�ing shall be applied (e.g. single agent vs. multi-agent, continuous vs. discrete

Markov chain)?

– How can we formulate the problem as an MDP, including de�nitions of state and action space?

– What are the possible extensions/changes to the state and action space of the MDP?

– What is the optimal reward design for the MDP?
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– What techniques can be applied for the reduction of traversed state and action spaces of the

problem?

• RQ4: How can the MDP formulation translated into a simulated environment for DRL?

– What type of simulation shall be used?

– What technical environment shall be used?

– What are the main assumptions/limitations/design decisions for the MDP based simulation?

– How do we deal with stock-out (apply lost sales or backordering)

– How do we model spare parts demand and supply?

– How do we model the key sources of stochasticity in supply lead times and parts failure ar-

rivals?

– Which statistical metrics shall be collected during the simulation run?

• RQ5: Which DRL technique shall be applied to the problem formulation?

– What is the current state-of-art in DRL for allocation decision making?

– Which DRL technique(s) yield the (near) optimal result in the frameworks, similar to the con-

sidered formulation?

– Which architecture shall be used?

– What are the hyper-parameters of the applied approach?

• RQ6: How can the DRL application be analyzed, improved and experimented on?

– How can the applied DRL approach be �ne-tuned in terms of hyper-parameters?

– How can we parametrize the reward function?

– How can the algorithm adjust to various problem instances?

– How can we adapt the architecture to the possible changes to the state/action space of the

problem?

• RQ7: How the results of DRL application can be evaluated and analyzed?

– How can we compare the current ASML allocation strategy with the policy, devised by a DRL

agent?

– What is the baseline performance of current ASML allocation strategy?

– How can this baseline be incorporated into the MDP simulation?
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Implementation of simulation

environment

B.1 Implementation of a simulation environment

In 2.2.1 we de�ned the general dynamics of the model and provided the relevant notation. �is appendix

contains some speci�c information on the practical side of the implementation process.

�e implementation of the simulation model was performed in a form of a discrete event simulation.

It was implemented in Python with the help of a publicly available dedicated library SimPy. �ere is

a number of key design ideas, underlying the current implementation of the simulation model. Here,

speci�c �gures for some parameters are provided, as consequently these parameters were not subject to

analysis. Choice for this parameters is based on the test-beds of van Aspert [41] and van Houtum [42].

�e main idea of the implementation was to model several main aspects of the model from 2.2.1. Natur-

ally, the modeling of stochastic demand processes can be realized through generating certain sequences

of events, a�ributed to the key objects in the simulation. �ese objects naturally are derived from the

model description. We model such entities as SKU, Local Warehouse, Central Warehouse, Customer and

Machine Group explicitly. As per Figure 2.4, each of these entities contains a number of parameters, used

within the simulation and de�ning the relationships between the entities. �erefore, we model series of

generated demand events sequences, accompanied with �xed scheduled events on the processes of supply

and allocation.

B.1.1 Time domain and events

Before, addressing the simulation events in more detail, �rst we address the notion of time. We apply

a continuous time domain, which is motivated by several major details. First, continuous time domain
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allows for precise measuring of the downtime, incurred by the machines - as well as the collection of other

statistics. Second, it allows for �exible and natural de�nition of Poisson processes for the parts failure.

Another issue related to the practical side of the MDP implementation, is the notion of horizon T . �is

�gure signi�es the number of discrete steps, taken within the simulation. As per the problem de�nition,

the time domain itself is continuous in the technical implementation and de�nition of the simulation logic

- thus, all the events in the simulation are scheduled precisely on the time spectrum as real numbers. At

the same time, in order to keep the problem under the de�nition of MDP and not semi MDP, we still keep

the action steps discrete. �at means that actions are taken through constant intervals in time. We also

distinguish supply steps, where supply orders are performed, while actual steps of the simulation model

always correspond to discrete events.

�e events within the simulation can be divided into scheduled and logical. Scheduled events corres-

pond to the events, which directly have a unique timestamp of occurrence and drive the progression of

the simulation.

• Demand events. �ese are scheduled in accordance with Poisson processes per each SKU-plan

group pair.

• Supply order. Previously referred as supply step, this event is associated to ordering of the supply

to the central warehouse.

• Supply receipt. �is event is scheduled by the previous event, and occurs a�er designated lead time

per SKU.

• Action. �is event (action step) is also scheduled in a constant rate, and is handled by the current

allocation policy.

• Lateral transshipment initiation and receipt. �is event is scheduled by the out-of-stock situation

for local stock point. Lateral shipments are scheduled in accordance with the distance metric within

the instance de�nition.

• Emergency shipment initiation and receipt. �is event is scheduled by the out-of-stock situation

for local stock point. Emergency shipments have a �xed lead time, and are scheduled accordingly.

Logical events are not essential for the simulation logic, but are important for keeping track of the

simulation progression. �ese are for instance, occurred repairs, recording of certain statistics, shipment

initiations, etc.

Upon summarizing, each simulation run corresponds to an episode in RL training procedures (further

we refer to runs as episodes). Each episode runs until the designated time T , on course of which we have

periodic �xed action τa = 1 and supply τsup = 1 steps and random events with demand occurrences.

�e rest of the events are scheduled by the internal model dynamics.
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B.1.2 Stochasticity sources

�e main stochasticity source within the simulation are independent Poisson processes per SKU per ma-

chine group for the spare part failures. �ese have constant arrival rates λi,n. �ere is an implementation

challenge associated with the constant demand rate, as the machine groups within the problem de�nition

are capacitated. �erefore, when the group runs out of capacity (all machines are broken), the demand

can still be generated at a constant rate. In order to handle this challenge, two consequent measures are

taken. First, the demand rates per plan group are kept constant, as per the current procedure of demand

planning in ASML - where the demand rates are predicted for a �xed period of time (usually a month,

but we assume constant rates during longer periods of time). Second, once a plan group has capacity of

0, the events for Poisson process are still scheduled, but are ignored until the capacity becomes strictly

positive.

B.1.3 Summary of simulation mechanics

Simulation is based on scheduled events. Poisson processes per SKU per machine group schedule failure

events. Once there is a failure, we have three options, applied sequentially if the option above is not

available.

1. Resupply from assigned local warehouse jn. Each machine group has a default (assigned) local

warehouse, which stock is �rst checked for spare parts availability. In case of a success, the failure

is repaired with no downtime. �us, we have decrease ILti,jn−1 andBOti,jn remaining unchanged.

2. In case there is no stock in the assigned warehouse, all the other warehouses in the network are

checked one by one in lateral order list vn, and if we strike a warehouse jk with su�cient stock,

we launch a lateral shipment from that warehouse to the assigned one. �e de�nition of this list

can be either �xed manually or based on a distance measure. We sort this list for each location on

the premise of Euclidean distance (jn, jk) for m ∈ |J | − jn. �is shipment costs a �xed amount in

costs clati and takes lead time kdist(j0, jend), where kdist is an adjustable coe�cient on time. We

�x kdist at 2 for all considered network. We apply changes BOti,jn + 1 and ILti,jk − 1.

3. Finally, if there is no stock for this SKU anywhere in the network, we have to use an emergency

shipment with costs cem and �xed lead time lem = 2 [42]. We apply changes BOti,jn + 1.

In its essence, lateral and emergency shipments are used whenever we have the stock-out situation.

Shipment costs are applied upon the dispatch of the event and not the receipt of the product - so we incur

costs directly when the stock-out is recorded.

Spare parts within the simulation relate to the base stock levels at each of the locations. �ese base stock

levels correspond to optimal levels, which provide certain service level to the customers. Base stock levels

are directly related to the supply ordering, which incomes endogenously to the network within supply
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lead time. As the simulation progresses through the episode, there are �xed points at which state of the

system is evaluated and supply order is formed. By default, that happens each day as in reality in ASML.

Supply is formed per SKU i as suppi =
∑
j∈J (bi,j − ILi,j +BOi,j) − ILi,CW − PLi. Once order is

made, it is added to the pipeline stock PLi + suppi and event of its arrival is scheduled.

B.1.4 Simulation validation

In order to ensure that the simulation model we apply is valid, a validation procedure is used. In order to

validate our discrete-event simulation, we apply a model from van Aspert [41], which in turn is based on

the model of Reijnen [32]. �is model in the paper of van Aspert is used for �eld stock planning of ASML

and forms a good �t with the model de�ned in this research, as it also takes the model from van Houtum

[42] as its base. More than that, we also use this model in order to produce the optimized base stock levels

for the local warehouses in our model. �ese base stock levels are consequently used by the model to

generate supply orders to the central warehouse (refer to 2.2.1) and operations of NORA baseline (refer

to 2.4). Here a brief description of the model and its algorithm are provided, while the full and extensive

coverage can be found in the work of van Aspert [41].

�e main idea of the validation model is to look at the system in the steady state. In contrast to the

model employed in [41], we do not consider any contract service metric other then DTWP - which is also

used in this research. We only require base stock levels for the local warehouses in the network, therefore

the base stock level in the central warehouse is also out of scope here.

Same notation as in Section 2.2.1 is employed for the model entities and sets. In addition we de�ne

for each plan group n an array vn with all warehouses to satisfy the demand here in lateral order (refer

section 2.2.1) with pn de�ning the length of this array. Let mi,n to be the total demand for SKU i from

plan group n (summed demand). We designate vector Si = (Si,1, ..., Si,|J|) as the vector with basestock

levels for SKU i in warehouse j ∈ J . �ese are our decision variables, on which the rest of the problem

calculations rely. S then is the vector of this vectors for all SKUs. Furthermore, de�ne :

• αi,n,j to be a fraction of demand of SKU i for plan group n from warehouse j.

• θi,n(Si) = 1 −
∑pn
q=1 αi,n,vn(q)(Si) as a fraction of demand for SKU i by plan group n that is not

satis�ed by any of the warehouses or emergency hubs (in array vn).

�e following assumptions are applied, partly based on [32]:

• �e demand streams for all SKUs are independent Poisson processes.

• For each SKU, the demand rate is constant.

• �e replenishment lead times for SKUs are independent and identically distributed.

• A one-for-one replenishment strategy is applied for all SKUs.
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• A First-In First-Out (FIFO) method is assumed as the allocation method in the dynamics of the

model.

Cost model employed in validation model is similar to what we formulate in our model, it corresponds

to holding costs, as well as costs for transport - sum of costs for emergency and lateral transshipments.

Ci(Si) =
∑
j∈J

chi Si,j +
∑
n∈N

mi,n(cemi θi,n(Si) +
∑
j∈Jn

clati αi,n,j(Si) (B.1)

, where in comparison to original we use lateral costs clat �xed for all shipments and keep replenishment

from original warehouse of n - jn - to 0.

We pose down time constraint on the waiting times for parts, and it is possible to calculate waiting

times for SKU i for customer n:

Wi,n(Si) = lemθi,n(S − i) +
∑
j∈Jn

tn,jαi,n,j(Si) (B.2)

�en we can obtain total DTWP per group with :

DTWPi,n(Si) =
Wi,n(Si)×mi,n

|n|
(B.3)

Total DTWP is calculated as:

DTWPn(S) =
∑
i∈I

DTWPi,n(Si) (B.4)

In order to determine optimal base stock levels, we �rst formulate an optimization problem. We want

to minimize total costs in the system subject to down time constraints.

min
Si

C(S) =
∑
i∈I

Ci(Si)

subject to DTWPn(S) ≤ DTWP objn , ∀n ∈ N,

Si,j ≥ Sstarti,j , ∀i ∈ I, j ∈ J,

Si,j ∈ S, ∀i ∈ I, j ∈ J.

(B.5)

Here S = {S = (Si,j |Si,j ∈ N0,∀i ∈ J & j ∈ J}) denotes the set of all solutions, and Sstarti,j ∈ S

denotes minimum base stock level for SKU i at location j. And since the problem is formed, we shall cover

two procedures. �e main optimization procedure is based on the greedy heuristic, used throughout the

book of van Houtum and Kranenburg [42]. It is an iterative procedure of search of optimal S can be

summarized in pseudocode in Algorithm 4. In order to apply it however, at any step we need to evaluate

the costs and other metrics , originating from an input vector S. Such is realized with the approximate

evaluation procedure, stated below in Algorithm 3.

Before the algorithm is discussed, there are two points for the approximate procedure.
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• Over�ow demand occurring due to stock-outs at local warehouses are assumed to be Poisson dis-

tributed.

• Stock levels at the warehouses are assumed to be independent of each other such that warehouse

can be analyzed as separate stock points.

Algorithm 3: Approximate evaluation procedure for each SKU i ∈ I
Result: Obtained αi,n,j(Si), θi,n(Si)

Input: S vector;

Initialization:

In validation procedure we make distinction of se�ing demand rates per each warehouse and

updating them further iteratively. We start with just the original local warehouse to be

assigned the overall demand rate and the other ones in the lateral order list are initialized with

0. ∀j ∈ J, βi,j ← 1− L(Si,j , l
sup
i

∑
n∈N |vn(1)=jmi,n);

∀n ∈ N, mi,n,vn(1) ← mi,n;

∀n ∈ N, j 6= vn(1), mi,n,j ← 0

;

whileMi,j change ≤ ε for all j ∈ J do
Calculate new demand rates for the lateral order

mi,n,vn(q) ← (1− βi,vn(q−1)(Si,vn(q−1))mi,n,vn(q−1));

For all the local warehouses j ∈ J :

Mi,j ←
∑
n∈N mi,n,j ;

βi,j ← 1− L(Si,j , l
sup
i Mi,j)

end

Now �nalized with calculating the demand shares for all n ∈ N, j ∈ J :

αi,n,j(Si)← βi,j(Si)mi,n,j
mi,n

;

θi,n(Si) = 1−
∑pn
q=1 αi,n,vn(q)(Si)

We also need to make several more de�nitions. βi,j(Si) denotes �ll rate of SKU i at warehouse j. Let

mi,n,j denote the demand rate for SKU i from plan group n that is faced be the warehouse j and let

Mi,j =
∑
n∈N mi,n,j denote the total demand for all plan groups. Furthermore, we use Erlang Loss

probability , denoted as:

L(c, ρ) =
ρc/c!∑c
x=0 ρ

x/x!
(B.6)

, which is the result from a M/G/c/c system in queuing theory and denotes the probability that all servers

are occupied. In the validation model ρ is the demand during the replenishment lead time and c is the

number of servers - base stock levels in the local warehouse. It is used as a function in approximate
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evaluation.

A�er obtaining the distribution for how demand is satis�ed with the given S, we can calculate C(S)

and DTWP (S) in order to optimize for them further in the greedy optimization heuristic. We employ

the idea of �rst satisfying the downtime constraints primarily and similarly adjusting the costs. �is

heuristic is a simpli�ed version of the one from [41], as we have fewer metrics to optimize for. We de�ne

distances d to the sets of feasible solutions (as di�erence between the values obtained in evaluation and

target values). We use objectives pre-de�ned for down time and within change target for the costs to

describe the decrease in distance ∆d and ∆C respectively for down times and costs.

∆i,jd(S) =
∑
n∈N

(∑
i∈I

DTWPi,n(S′i)−DTWP objn

)+

−

(∑
i∈I

DTWPi,n(S′i) +DTWPi,n(Si + ej)−DTWP objn

)+

(B.7)

, where ej , j ∈ J is a row vector with jth element is 1 and others are 0.

∆i,jC(S) = Ci(Si − ej)− Ci(Si), i ∈ I, j ∈ J

�e we de�ne the relation between the two decreases with Γi,j = ∆i,jd(S)/∆i,jC(S), and use it to

perform the greedy selection on the best decrease towards the optimal solution with each step.

Algorithm 4: Optimization procedure
Result: Optimized S base stock levels

Si,j ← Sstarti,j ,∀i ∈ I, j ∈ J ;

for For each j ∈ J, i ∈ I do

Perform evaluation on current S;

Calculate ∆i,jC(S),∆i,jd(S),Γi,j ;

while dDTWP>0 do

Determine î and ĵ such that Γî,ĵ ≥ Γi,j ;

Set Sî,ĵ ← Si,j + 1;

Calculate ∆i,jC(S),∆i,jd(S),Γi,j ;

end

Finalize with overall evaluation and calculate all relevant metrics on obtained S.
end

As a result of such validation procedure, we obtain optimal base stock levels and performance metrics on

how demand is satis�ed in the system. Consequently, we can validate the performance of our simulation.

For that we use simple instances of the problem from the test bed of van Aspert [41] and de�ne our
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# locals mi,n Si αi,n,v(1)(Si) αi,n,v(2)(Si) αi,n,v(3)(Si) αi,n,v(4)(Si) θi, n(Si)

A O A O A O A O A O

2 0.001 1 0.980 0.980 0.020 0.020 0 0

2 0.040 2 0.219 0.220 171 0.177 0.610 0.603

4 0.040 2 0.133 0.130 0.115 0.111 0.100 0.107 0.087 0.089 0.566 0.567

4 0.040 2 0.335 0.329 0.223 0.219 0.148 0.147 0.099 0.105 0.195 0.194

Table B.1: Validation results

simulation along this instances. �e comparison is made with the paper of van Aspert .We apply FIFO

method (2.4) for the allocation decisions and observe the results in Table B.1. We run simulation for 500

times and use averaged results here. In table A denotes result from van Aspert, and O denotes obtained

results from our simulation. Demands are showcased as per day rate.

One can see, that the results do correspond to each other with a small error of (≤ 0.007) which can be

a�ributed to rounding of results and stochasticity, yet deemed acceptable. Hence the modeled is validated

across simple instances in terms of demand, which are still comparable to the instances, used in this

research.
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