
 Eindhoven University of Technology

MASTER

Verification of an iterative implementation of Tarjan’s algorithm for Strongly Connected
Components using Dafny

Schols, Wouter R.M.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/88106dcc-4c95-4448-94c2-7e52fe683bea

Verification of an iterative
implementation of

Tarjan’s algorithm for
Strongly Connected

Components using Dafny

Master Thesis

W.R.M. Schols

Department of Mathematics and Computer Science
Formal System Analysis Research Group

Supervisors:
dr.ir. J.W. Wesselink

dr. C. Huizing

version 1.0

Eindhoven, November 2020

Abstract

In this paper we will present a formal proof of Tarjan’s algorithm for strongly connected com-
ponents using the automated program verifier Dafny. In this paper we introduce and verify two
different implementations of Tarjan’s algorithm, a recursive implementation and an iterative im-
plementation. The recursive implementation is similar to the original algorithm introduced by
R.E. Tarjan [14]. The iterative implementation improves on the recursive version by preventing
stack overflow problems and is used in the mCRL2 toolset. In this paper we formally prove that
both version of the algorithm are correct using Dafny. We prove correctness of the algorithm
using proof annotations. These proof annotations are specified directly in terms of the program
variables. The proof of Tarjan’s algorithm for SCC is complex and hard to directly implement
in Dafny. When proofs become too complex then Dafny will become slow and Dafny can exhibit
unexpected behavior when failing to verify a proof. We introduce generic techniques which can be
used to implement a complex proofs while reducing the complexity for Dafny. We then use these
techniques to implement a stable proof of Tarjan’s algorithm for SCC.

Verification of an implementation of Tarjan’s algorithm for SCC iii

Preface

I started planning my master thesis in September of 2019 and now in November 2020 I have
finally finished my thesis. A lot of things have happened during these months. It all started in
the summer of 2019 when I had a conversation with professor J.F. Groote. I wanted to find a
graduation project abroad at a company which used high tech verification techniques. Through
different professors at universities all over the world I finally landed at the perfect internship at
Amazon’s Automated Reasoning Group in Seattle. Because of the Corona virus and various other
circumstances this became one of the most unique experiences I have ever had.

The internship was supposed to start January 2020, however my visa took a lot more time.
My internship was moved to March because it took more time then expected to obtain a visum.
In the end I received my visa on a Thursday, left on Friday and arrived in Seattle on Saturday.
The Monday after I arrived the airports and the Amazon offices closed down because the Corona
pandemic started. Because of the Corona epidemic I had to work from different hotel rooms. The
content of the internship was largely unaffected but all meetings were moved online. Unfortunately,
everything else was affected. Some of the biggest problems included the hotel I was staying shutting
down unexpectedly, which forced me to move instantly, and all government offices shutting down
preventing me from applying for vital tax information. Once my internship ended in June the
Corona virus had calmed down somewhat but the riots started. Unfortunately I needed to take
a bus from the center of Seattle in the middle of the night. Luckily there were no riots at that
time. Overall even though the internship was very stressful at times the internship was a great
experience and I learned a lot. I would have like to explore the area more and meet new people
but it was not meant to be.

Once I finally arrived home the problems where not over. My internship was supposed to be
part of a larger project at Amazon. This project should have become public in May but because of
the Corona virus this project was delayed and did not go public. Because of this I could not write
my master thesis about my internship. This is why I had to search for a new graduation subject
once I arrived back home. I found that J.W. Wesselink and C. Huizing were working on a project
which used the technologies which I also used during my internship. When I started working on
the project it was even unknown if finishing the project was feasible. Using the experience and
skills I gained during the internship I was able to quickly pick up the project and solve the open
problems. In the end I was able to tackle all problems which resulted in this paper.

I want to especially thank prof. dr. ir. J.F. Groote for all the assistance to find and guide
my internship, my internship mentor dr. K.R.M. Leino from Amazon for his guidance during the
internship and my graduation supervisors dr. ir. J.W. Wesselink and dr. C. Huizing for their
contributions to the paper.

Verification of an implementation of Tarjan’s algorithm for SCC v

Contents

Contents vii

List of Definitions ix

1 Introduction 1

2 Preliminaries 3

2.1 Basics of verification using Dafny . 3

2.2 Deterministic and nondeterministic code . 5

3 Tarjan’s algorithm for strongly connected components 6

3.1 Fundamental idea of Tarjan’s algorithm . 6

3.2 An example of Tarjan’s algorithm . 10

4 Pre-existing proof of the recursive Tarjan’s algorithm 13

4.1 Pre-existing verification of recursive implementation of Tarjan’s algorithm 13

4.1.1 Invariants of the recursive implementation of Tarjan’s 15

4.1.2 Monolithic proof of Tarjan’s algorithm . 17

4.2 Pre-existing Dafny implementation . 17

4.2.1 Refactoring the pre-existing Dafny implementation 19

5 Optimizing complex proofs in Dafny 25

5.1 The Dafny verifier . 25

5.1.1 Boogie . 25

5.1.2 Weakest precondition calculus . 26

5.1.3 Dynamic frames . 28

5.2 Adding lemmas . 30

5.2.1 Introducing lemmas to methods . 31

5.3 Opaque predicates . 34

6 Stable proof of the recursive Tarjan’s algorithm 37

6.1 Defining functions in Tarjan’s algorithm . 37

6.2 Introducing predicates groups and lemmas . 39

6.2.1 TarjanData Valid invariants group . 39

6.2.2 Loop invariants group . 41

6.2.3 Postcondition invariant group . 42

6.2.4 Precondition invariant groups . 43

6.3 Complete verification . 44

6.3.1 Proving invariant S1 . 46

Verification of an implementation of Tarjan’s algorithm for SCC vii

CONTENTS

7 Proof of the iterative Tarjan’s algorithm 49
7.1 Storing old states global variables . 50

7.1.1 Defining Work . 51
7.1.2 Adding ghostWork to StrongConnect . 53

7.2 Incorporating invariants into Work . 56
7.2.1 Exact Work Invariants . 56
7.2.2 Invariants of GhostWork . 58
7.2.3 Proof GhostWorkIsValid . 59

7.3 Proving the postcondition . 61
7.4 Termination of the iterative algorithm . 65

8 Conclusions 67
8.1 Comparison pre-existing proof to new recursive proof 69
8.2 Proof of the recursive version Tarjan’s algorithm 69
8.3 Proof of the iterative version Tarjan’s algorithm . 70

Bibliography 71

Appendix 73

A Implementation Dafny verification 73

B Deterministically selecting items from a set 75

C Lemmas recursive Tarjan’s algorithm 77
C.1 Lemmas DataValid . 77
C.2 Lemmas Loop invariant . 78
C.3 Lemmas deriving the post condition . 79
C.4 Lemma PreconditionStrongConnectHolds . 80

viii Verification of an implementation of Tarjan’s algorithm for SCC

List of Definitions

3.1 Definition (Graph) . 7
3.2 Definition (Successors) . 7
3.3 Definition (Connected) . 7
3.4 Definition (Strongly Connected Component) . 7

4.1 Definition (Nodes) . 14
4.2 Definition (Precursor operator) . 14
4.3 Definition (Lemma) . 19
4.4 Definition (DiscLow) . 22
4.5 Definition (TarjanData) . 22

6.1 Definition (TarjanDataValid) . 40
6.2 Definition (DiscLowValid) . 40
6.3 Definition (ResultValid) . 40
6.4 Definition (LoopInvariant) . 41
6.5 Definition (DataMaintained) . 42
6.6 Definition (PostconditionStrongConnect) . 43
6.7 Definition (PreconditionStrongConnect) . 43
6.8 Definition (MainLoopInvariant) . 44

7.1 Definition (Work) . 52
7.2 Definition (WorkMatchesGhostWork) . 53
7.3 Definition (WorkValid) . 56
7.4 Definition (ValidRequest) . 58
7.5 Definition (ValidStarted) . 58
7.6 Definition (ValidRecurse) . 58
7.7 Definition (Work.ValidEnded) . 58
7.8 Definition (GhostWorkIsValid) . 59
7.9 Definition (WorkIsCallFrom) . 59
7.10 Definition (GoalInvariant) . 61
7.11 Definition (InnerLoopInvariant) . 62

C.1 Definition (AddNewNodeDataValid) . 77
C.2 Definition (UpdateFromLowDataValid) . 77
C.3 Definition (UpdateFromDiscDataValid) . 78
C.4 Definition (PopFromStackDataValid) . 78
C.5 Definition (AddNewNodeLoopInvariant) . 78
C.6 Definition (RecursionLoopInvariant) . 78
C.7 Definition (UpdateFromDiscLoopInvariant) . 79
C.8 Definition (MaintainsLoopInvariant) . 79
C.9 Definition (Proof1PostConditionStrongConnect) 79
C.10 Definition (Proof2PostConditionStrongConnect) 80

Verification of an implementation of Tarjan’s algorithm for SCC ix

LIST OF DEFINITIONS

C.11 Definition (PreconditionStrongConnectHolds) . 80

x Verification of an implementation of Tarjan’s algorithm for SCC

Chapter 1

Introduction

The mCRL2 toolset depends on various algorithms including the Tarjan’s strongly connected
component algorithm. The functional correctness of these algorithms is vital for the correctness of
the mCRL2 toolset. The recursive version of Tarjan’s strongly connected components algorithm
has been verified using Dafny in an internal project at Eindhoven University of technology. [8]
Unfortunately the recursive algorithm is not suitable for mCRL2 since the stack overflows in large
graphs. This is why a more complex iterative version of Tarjan’s strongly connected component
algorithm is used [16].

We want to verify the correctness of this iterative version of the strongly connected compon-
ents algorithm. Unfortunately the existing verification of the recursive algorithm is performance
intensive and too inflexible. We could not trivially adapt the existing verification to handle the
complexity of the iterative algorithm. Verifying the iterative version of Tarjan’s algorithm for
strongly connected components will be the main goal of this master thesis. We aim to answer the
following question “Can we verify the iterative version of Tarjan’s algorithm for strongly connec-
ted components using Dafny?” In order to solve the problem we want to answer the sub question
“How can we optimize proof to verify programs in Dafny?”.

In this paper we will present a formal proof of Tarjan’s algorithm for strongly connected com-
ponents using the automated program verifier Dafny. Henceforth, we refer to Tarjan’s algorithm
for strongly connected components as Tarjan’s algorithm. In this paper we introduce and verify
the two different implementations of Tarjan’s algorithm, a recursive implementation and an iterat-
ive implementation. The recursive implementation is similar to the original algorithm introduced
by R.E. Tarjan [14]. The iterative implementation improves on the recursive version by preventing
stack overflow problems and is used in the mCRL2 toolset. In this paper we formally prove that
both version of the algorithm are correct using Dafny. We prove correctness of the algorithm
using proof annotations. These proof annotations are specified directly in terms of the program
variables.

We face two major challenges when verifying Tarjan’s algorithm. The first challenge is defining
the proof annotations and invariants. We want to define proof annotations and invariants directly
in terms of program variables. This makes it easier to understand the proof and to reuse partial
proofs between the two versions of the algorithm. Defining invariants which are strong enough
to prove that the algorithm is correct can be a challenge. The second problem is that the proof
needs to be implemented in Dafny. Dafny is an automatic program verifier which means that
Dafny uses a SAT solver to automatically prove that the algorithm meets its specification. Once
programs get more complex we need to use special techniques to simplify the verification process
to create a proof which Dafny can verify. In this paper we introduce techniques which can be used
to implement complex proofs in Dafny.

It is recommended that the reader has experience using Dafny before reading this paper.
Chapter 2 briefly introduces the Dafny language and the some underlying concepts. Both versions
of Tarjan’s algorithm are introduced in chapter 3. A Dafny proof which proves correctness of
the recursive Tarjan’s algorithm already existed internally at Eindhoven University of Technology.

Verification of an implementation of Tarjan’s algorithm for SCC 1

CHAPTER 1. INTRODUCTION

This pre-existing proof is introduced in chapter 4. This proof faced a lot of performance issues
because of structural problems in the implementation. Techniques to resolve these issues are
introduced in chapter 6. In chapter 6 a new stable proof is introduced for the recursive version of
Tarjan’s algorithm. This new proof is based on the pre-existing proof. This recursive proof and
the techniques to implement a stable proof can be reused in the proof of the iterative version of
Tarjan’s algorithm. The proof of the iterative algorithm is introduced in chapter 7.

2 Verification of an implementation of Tarjan’s algorithm for SCC

Chapter 2

Preliminaries

In this paper we discuss how the Tarjan’s algorithm for Strongly Connected Components can
be verified in Dafny. Henceforward, we refer to the Tarjan’s algorithm for Strongly Connected
Components as the Tarjan’s algorithm. It is recommended that the reader has some experience
with Dafny before reading this paper. In this section we briefly introduce the Dafny language and
the main ideas behind the language.

Dafny is an imperative language which supports formal specification. Dafny allows users to
specify the expected behaviour of a method by defining preconditions and postconditions. Dafny
will attempt to prove that the preconditions hold whenever a method is called and that the
postconditions hold once a method has terminated. The Dafny code consists of two types of code,
the true program code and the verification code. The true program code is code which can be
compiled. The verification code cannot be executed but can be verified. When Dafny code is
compiled then the Dafny verifier will use the theorem prover Z3 to prove that the verification
code is correct. When the Dafny verifier succeeds then the compiler will remove all verification
code and compiles the executable code. Dafny ensures us that the behaviour of the compiled code
complies to the specified behaviour.

2.1 Basics of verification using Dafny

In Dafny methods have a specification which consists of a precondition and a postcondition. The
user of Dafny has to manually create this specification for every method. A method contains a
program which consists of a series of operations. Dafny already has a built-in specification for every
operation. Dafny proves that the precondition of every operation holds before the operation is
executed. For example, take the operation z := x/y. This operation has the implicit precondition
that y 6= 0. As another example, the operation z := array[i] accesses an array at index i. This
operation has the precondition that the index i is smaller the length of the array. Dafny verifies
a method by proving that the postcondition holds at the end of a method and that the method
terminates given that the preconditions hold at the start of the method.

As a concrete example take the Dafny code from listing 2.1. This code introduces two method
ABSIntegers and MakePositive. The method ABSIntegers accepts an array of integers as input
and returns an array with the absolute value of the integers as output. The behaviour of the
ABSIntegers method is formally specified in lines 0 to 2 from listing 2.1. At line 0 it is specified
that the method ABSIntegers accepts an array of integers as input and returns an array of natural
numbers as output. The input array is called numbers and the output array is called res. By
definition a natural number is a non negative integer. At line 1 and 2 it is specified that numbers
and res have the same size and that for every index i in numbers it holds that numbers[i] = res[i]
or numbers[i] = −res[i]. By definition all elements in numbers are positive so we know that for
every i it holds that numbers[i] = ABS(res[i]).

The method ABSIntegers calls a helper method MakePositive. This method converts an

Verification of an implementation of Tarjan’s algorithm for SCC 3

CHAPTER 2. PRELIMINARIES

integer number into a natural number res. As defined in line 24, this method has the postcondition
that res = −number. If number is a positive integer then res is a negative natural number. Dafny
will not allow this and return an error. This is why the method MakePositive requires the
precondition that number is negative from line 23. Dafny can now prove that number is positive.

0 method ABSInteger s (numbers : ar ray<i n t >) r e t u r n s (r e s : ar ray<nat>)
1 ensu re s numbers . Length = r e s . Length
2 ensu re s ∀ i | 0 ≤ i < numbers . Length • numbers [i] = r e s [i] ∨ r e s [i] = −1 ∗ numbers [i]
3 {
4 var i n d e x := 0 ;
5 r e s := new nat [numbers . Length] ;
6 wh i l e i n d e x < numbers . Length
7 i n v a r i a n t 0 ≤ i n d e x ≤ numbers . Length
8 i n v a r i a n t numbers . Length = r e s . Length
9 i n v a r i a n t ∀ i | 0 ≤ i < i n d e x • numbers [i] = r e s [i] ∨ r e s [i] = −1 ∗ numbers [i]

10 {
11 i f numbers [i nd e x] < 0 {
12 var posNumber := MakePos i t i v e (numbers [i nd ex]) ;
13 r e s [i nd ex] := posNumber ;
14 } e l s e {
15 r e s [i nd ex] := numbers [i nd e x] ;
16 }
17 i n d e x := i n d e x + 1 ;
18 }
19 r e t u r n r e s ;
20 }
21

22 method MakePos i t i v e (number : i n t) r e t u r n s (r e s : nat)
23 r e q u i r e s number ≤ 0
24 ensu re s −1 ∗ number = r e s
25 {
26 r e t u r n −number ;
27 }

Listing 2.1: Example Dafny code

Dafny verifies a method based on Hoare triples [7]. A Hoare triple {Q}S; {P} states that
if precondition Q holds before program S then operation P holds after program S given that
program S terminates. These Hoare triples can be combined. If Hoare triples {Q}S1; {P} and
{P}S2; {R} hold then Hoare triple {Q}S1;S2; {R} holds. Dafny proves that Hoare triples hold for
different sections of code. These sections are then combined to prove that the if the precondition
holds before the method then the postcondition holds after the method. Dafny can automatically
derive the required Hoare triples for simple sections of programs. Unfortunately Dafny cannot
automatically derive the Hoare triple of loops and method calls. The user is required to specify a
loop invariant for every loop and a specification for every method. Given a loop while B do S end
the Dafny user has to define a loop invariant P . Dafny has to prove that the operations S maintains
the loop invariant, i.e. {¬B ∧P}S{P}, in a separate proof. Dafny can then derive that the Hoare
triple {P} while B do S1 . . . Sn end {P ∧ ¬B} holds. Similarly a method M with precondition
Q and postcondition P is verified in a separate proof. Dafny can then derive a Hoare triple for
the method call {Q}M(); {P}.

Continuing the example from listing 2.1, Dafny cannot verify the method ABSInteger if the
user does not define a loop invariant and a pre and postcondition of the method MakePositive.
Once the user has defined these invariants then Dafny can easily prove that the postcondition
holds. We want to define some loop invariants such that the postconditions from lines 1, 2 can be
derived from the loop invariant. Next to this the loop invariant should hold at the start of the
loop at line 5. The loop invariants from lines 8 and 9 allow us to derive the postcondition of the
method after the loop. In order to ensure that index is within the bounds of the array we also
require the loop invariant from line 7. Dafny proves that the method is correct by verifying the
Hoare triples.

{true}l4; l5; {Pred7 ∧ Pred8 ∧ Pred9}

{Pred7 ∧ Pred8 ∧ Pred9 ∧ index < numbers.length}l11; . . . ; l17; {Pred7 ∧ Pred8 ∧ Pred9}

{Pred7 ∧ Pred8 ∧ Pred9 ∧ index ≥ numbers.length}l19; {Pred1 ∧ Pred2}

Here li is line i of our example and Predj is the invariant at line j.

4 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 2. PRELIMINARIES

The first and last Hoare triples are easy to derive. The Hoare triple which proves that the loop
maintains the loop invariant is slightly harder to derive. Dafny needs to verify the method call at
line 12 with the specification of the MakePositive method. This results in the Hoare triple for
line 12:

{numbers[index] ≤ 0} MakePositive {−1 ∗ numbers[index] = posNumber}

Using this Hoare triple the proof that the loop maintains the loop invariant is trivial.
Once programs get more complex Dafny might fail to verify a method. Solving these verification

issues can be challenging. Understanding how Dafny verifies methods is an important first step
into solving the verification issues.

2.2 Deterministic and nondeterministic code

As discussed before Dafny code can be split into two different groups of code, the true program
code and the verification code. The true program code is deterministic code which determines
the run time behaviour of the program. The verification code is nondeterministic code which
specifies the desired behaviour of the program. New Dafny users might be confused by this
distinction. A new Dafny user will discover that some expressions are allowed in some locations
but return errors in other locations. A Dafny user should be aware if the code is deterministic or
nondeterministic. Deterministic code is always located inside a method. All code which calls other
methods or which modifies a variable not labeled as ghost is part of the true program code and
therefore deterministic. All other code: preconditions, postconditions, lemmas, ghost variables,
assert statements and functions are part of the verification code.

Although it is often desirable Dafny does not allow verification code to call methods. Take the
example from listing 2.1. We are not allowed to replace the postcondition from line 2 with the
postcondition:

∀i|0 ≤ numbers.Length • res[i] = numbers[i] ∨ res[i] = MakePositive(numbers[i])

However specifying a pre or postcondition by calling another method might be desirable. In
these cases one can define a function with the same behaviour as the method. In the example we
could define the function f(x : int) : nat = −x, with the precondition that 0 ≤ x. Functions
can be called from the specification code and one does not have to define a postcondition for a
function. The postcondition of line 2 could be replaced by:

∀i|0 ≤ numbers.Length • res[i] = numbers[i] ∨ res[i] = f(numbers[i])

The postcondition of line 24 should then be replaced by res = f(number). Functions are a vital
tool to specify complex behaviour, however, they can cause a lot of confusion for new Dafny users.
Since functions are part of the verification code it follows that functions can be nondeterministic.
This means that the function body can contain nondeterministic expressions. Note that functions
are still a congruence so a function will always return the same value for the same input, even if
the function body in nondeterministic. The common property that if x = y then f(x) = f(y) still
holds even if the function does not have a deterministic specification.

A second common source of confusion are the let expressions. The expression var x : X : |P
states that x is a variable of type X such that the predicate P holds. This expression is commonly
used in Dafny programs. When a let expression is used in the verification code then Dafny has to
prove that an element satisfying the predicate exists. If a let expression is used in the true program
code then one also has to prove that there is only one value of x which satisfies the predicate P .

Verification of an implementation of Tarjan’s algorithm for SCC 5

Chapter 3

Tarjan’s algorithm for strongly
connected components

In this paper we verify a recursive and an iterative implementation of Tarjan’s algorithm for
strongly connected components. The recursive implementation of Tarjan’s algorithm is very close
to the original version from the paper “Depth-first search and linear graph algorithms” by R.Tarjan
[14]. The recursive algorithm has a downside that the recursion stack can overflow in large graphs.
This is why J. Öqvist proposed an iterative implementation in “Iterative Tarjan strongly connected
components in python” [16]. The iterative implementation of Tarjan’s algorithm prevents any stack
overflow problems and is used in the mCRL2 toolset [15].

3.1 Fundamental idea of Tarjan’s algorithm

The Tarjan’s algorithm accepts a graph as input and calculates all strongly connected components
in the graph. A strongly connected component or SCC is a maximal set of nodes C such that
all nodes in C are connected. An exact definition of connected is given in definition 3.3 and a
definition of strongly connected components is given in definition 3.4. Note that by definition of
connected a node is always connected to itself.

Both implementations of Tarjan’s algorithm calculate the SCC’s by calling the StrongConnect
algorithm. The StrongConnect algorithm accepts a start node as input. The StrongConnect

algorithm iterates over all nodes which are reachable from the start node and divides them into
SCC’s. The main Tarjan’s algorithm calls the StrongConnect method until all nodes are part of
an SCC. The main method of Tarjan’s algorithm is identical in both versions of the algorithm.
However, the implementation of the StrongConnect algorithm differs. The main algorithm can
be found in algorithm 1, the recursive StrongConnect algorithm is algorithm 2 and the iterative
StrongConnect algorithm is algorithm 3. Both implementations of the StrongConnect method
use a function successors(u). This function returns a sequence containing all successors of node u
where a successor is defined in definition 3.2.

The recursive StrongConnect algorithm, algorithm 2, creates components by assigning a num-
ber to all nodes in order of discovery. At the start of the algorithm, line 1 to line 4, the input
node u is added to the variables stack, disc, low. The variable disc is a mapping from nodes to
natural numbers. This variables stores the discovery number of all discovered nodes. The variable
low is also a mapping. The entry low[u] stores the lowest disc value of a node which is reachable
from u but not already part of a component. Since all nodes are reachable from itself the value of
low[u] is initially disc[u]. The last variable stack contains all nodes with a disc value which are not
part of a component. Note that if a node is located below u in the stack then it has a lower disc
value. Once node u has been added to the global variables then the StrongConnect algorithm
iterates over all successors of node u, line 5. The algorithm tries to lower low[u] by comparing it
to a successor. If a successor of u does not have a disc value then the successor still needs to be

6 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 3. TARJAN’S ALGORITHM FOR STRONGLY CONNECTED COMPONENTS

processed. This is done using a recursive call at line 12. After this recursive call the low[u] value
can be updated. Once all successors of u have been processed then the algorithm checks if the
value of low[u] has decreased in line 11. If low[u] < disc[u] then there is a node v below u in the
stack which is in a cycle with u. Since u and v are in a cycle both nodes need to be in the same
SCC. The algorithm leaves u on the stack such that it can be removed later. If no node with a
lower disc value has been found then disc[u] = low[u]. This implies that u is not connected to any
nodes before it in the stack. All nodes after u in the stack are in a cycle with node u so u and all
nodes above u in the stack form a SCC. The loop at line 13 removes u and all nodes above u from
the stack and creates an SCC. A proof that the algorithm is correct will be given in chapter 4.

The iterative implementation of StrongConnect follows the same principles. The difference
between the two implementations is that the iterative algorithm manually pushes two local vari-
ables on a stack instead of using recursion. The order in which nodes are processed and variables
are updated is the same in both versions.

Definition 3.1 (Graph). A directed graph G(V,E) consists of a set of nodes V and a set of edges
E. Here V is of the type set〈Node〉 and an edge is a relation between nodes, E : Node×Node→ B.

Definition 3.2 (Successors). The function successors(u : Node) : set〈Node〉 returns all successor
of a node u.

successors(u) ≡ {v | E(u, v)}

Definition 3.3 (Connected). The predicate Connected(u : Node, v : Node) holds if a node u is
connected to a node v. A node u is connected to v if and only if there is a sequence of nodes
p ≡ 〈p0, . . . p|p|−1〉 starting with u and ending with v where every node pi in p is connected to its
successors pi+1 ∈ p.

connected(u, v) ≡ ∃p : seq〈Node〉 :: p0 = u ∧ p|p|−1 = v ∧ ∀i : 0 ≤ i < |p| − 1 :: E(pi, pi+1)

Definition 3.4 (Strongly Connected Component). A Strongly Connected Component or SCC is
a set of nodes C in a graph G(V,E) such that C ⊆ V and for all nodes u, v ∈ C it holds that u is
connected to v and there is no a strongly connected components C ′ such that C ⊂ C ′.

SCC(C) ≡ ∀u, v ∈ C :: connected(u, v) ∧ ∀C ′ : SCC(C ′) :: C 6⊂ C ′

Algorithm 1 Tarjan’s Strongly Connected Component Algorithm

Input: G = (V,E): A graph with nodes V and edges E.
Output: result : A sequence containing all strongly connected components of the graph.
Tarjan(G):

1: var stack := []
2: var low := {:} . the empty mapping is denoted as {:}
3: var disc := {:} . u ∈ low means u is a key of mapping low
4: var result := []
5: for u ∈ V do
6: if u /∈ low then
7: StrongConnect(u)

8: return result

Verification of an implementation of Tarjan’s algorithm for SCC 7

CHAPTER 3. TARJAN’S ALGORITHM FOR STRONGLY CONNECTED COMPONENTS

Algorithm 2 Recursive version of the helper function StrongConnect

Input: u: An element of Node.
StrongConnect(u):

1: var k := |disc| . k is the amount of nodes discovered before u
2: var disc[u] := k
3: var low[u] := k . initially low[u] = disc[u]
4: var stack := stack ++ [u]
5: for v ∈ successors(u) do
6: if v /∈ low then
7: StrongConnect(v)
8: low[u] := min(low[u], low[v])
9: else if v ∈ stack then

10: low[u] := min(low[u], disc[v])

11: if low[u] = disc[u] then . a SCC has been found
12: comp := []
13: while true do
14: v := stack[|stack| − 1] . assign the top of the stack to v
15: stack := stack[0 : |stack| − 1] . pop an element from the stack
16: comp := comp ++ [v]
17: if v = u then break
18: result := result ++ [comp]

8 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 3. TARJAN’S ALGORITHM FOR STRONGLY CONNECTED COMPONENTS

Algorithm 3 Iterative version of helper function StrongConnect

Input: u: An element of Node.
StrongConnect(u0):

1: work := [(u0, 0)]
2: while |work| > 0 do
3: (u, j) := work[|work| − 1]
4: var work := work[0 : |work| − 1] . pop an element from the work array
5: if j = 0 then
6: var k := |disc| . k is the discovery time that is assigned to node u
7: disc[u] := k
8: low[u] := k . initially low[u] = disc[u]
9: stack := stack ++ [u]

10: recurse := false
11: for i := j to |successors(u)| − 1 do
12: v := successors(u)[i]
13: if v /∈ low then
14: work := work ++ [(u, i + 1)]
15: work := work ++ [(v, 0)]
16: recurse := true
17: break
18: else if v ∈ stack then
19: low[u] := min(low[u], disc[v])

20: if ¬recurse then
21: if low[u] = disc[u] then . an SCC has been found
22: comp := []
23: while true do
24: v := stack[|stack| − 1] . assign the top of the stack to v
25: stack := stack[0 : |stack| − 1] . pop an element from the stack
26: comp := comp ++ [v]
27: if v = u then break
28: result := result ++ [comp]

29: if |work| > 0 then
30: v := u
31: (u, j) := work[|work| − 1]
32: low[u] := min(low[u], low[v])

Verification of an implementation of Tarjan’s algorithm for SCC 9

CHAPTER 3. TARJAN’S ALGORITHM FOR STRONGLY CONNECTED COMPONENTS

3.2 An example of Tarjan’s algorithm

In section 3.1 the ideas behind Tarjan’s algorithm are introduced. These ideas can be hard to
grasp. An example iteration of the algorithm is illustrated in figure 3.1. In this example we start
at node A. Since all nodes are reachable from node A the StrongConnect algorithm is only called
once. First the node A is added to the variables stack, disc and low the value of disc[A] and low[A]
is set to 0, panel 2. After this a successor of node A should be processed. We choose to process
the successor B first. Node B is added to the stack and disc[B] and low[B] are set to 1, panel 3.
Since node B has no successors and since disc[B] = low[B] node B is removed from the stack and
a new component C1 = {B} is created, panel 4.

After this we process the remaining successor of node A. Node C is added to the stack and
disc[C] and low[C] are set to 2, panel 5. Since node C has a successor we process node D next.
Node D is added to the stack and disc[D] and low[D] are set to 3, panel 6. Node D is connected
to node E so node E is added to the stack and disc[E] and low[E] are set to 4, panel 7. Since C
is a successor of E and C is below E in the stack low[E] is compared to disc[C]. Since disc[C]
is 2 and low[E] is 4 the value of low[E] is set to 2. We have now processed all neighbours of E.
Since low[E] < disc[E] we leave E on the stack, panel 8. Next we continue processing node D.
Since low[D] < low[E] we set low[D] to low[E]. We have now processed all neighbours of node D.
Since low[D] < disc[D] we leave D on the stack, panel 9. Lastly we continue processing node C.
Since low[C] = low[D] the value of low[C] remains unchanged. Since low[C] = disc[C] node C and
all nodes above it are removed from the stack and added to a new component C2 = {C,D,E},
panel 10. This leaves us with the first node A. Since low[A] < disc[C] the value of low[A] is
not updated. Since low[A] = disc[A] we create the last component C3 = {A}. All nodes have
now been processed and divided over SCC. Note that the variable stack is empty and all nodes
connected to A have been processed. As we will prove later this is always the case after any call
of StrongConnect.

10 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 3. TARJAN’S ALGORITHM FOR STRONGLY CONNECTED COMPONENTS

Figure 3.1: Example illustration of Tarjan’s algorithm for connected components

Verification of an implementation of Tarjan’s algorithm for SCC 11

Chapter 4

Pre-existing proof of the recursive
Tarjan’s algorithm

The correctness of the recursive version of Tarjan’s algorithm for strongly connected components
has already been verified in multiple papers. The recursive version of Tarjan’s algorithm has been
verified using the tools Why3 and Coq in the paper “Formal proofs of Tarjan’s strongly connected
components algorithm in Why3, Coq and Isabelle” by R. Chen [4] and ”A semi-automatic proof
of strong connectivity” by R. Chen [5]. These articles verify a declarative version of Tarjan’s
algorithm for strongly connected components. A disadvantage of verifying a declarative version
is that the Tarjan’s algorithm is often defined and implemented as an imperative algorithm. This
means that there is an inherent mismatch between the verified algorithm and the algorithm in
practice. R. Chen states that the verification of an imperative implementation of Tarjan’s al-
gorithm is overly complex which is why the declarative version should be preferred [5]. We believe
that this does not have to be the case. Instead of using ghost variables to color the nodes like
R. Chen, we define our predicates directly in terms of the program variables. This will result in
a straightforward and humanly readable proof. This proof will form the foundation of the Dafny
verification.

The verification of Tarjan’s algorithm has been part of ongoing work at the Eindhoven Univer-
sity of Technology. An imperative implementation of the recursive version of Tarjan’s algorithm
was already verified in Dafny before the creation of this paper [8]. However there were still prob-
lems with this pre-existing verification. The verification turned out to be slow and unstable.
Efforts to scale the verification of the recursive algorithm to the iterative algorithm have not been
successful up to the creation of this paper. The existing verification of Tarjan’s algorithm for SCC
did provide a good foundation. In this chapter we first introduce the new verification followed
by the discussion of the disadvantages of this pre-existing verification. Lastly we will propose
non-disruptive improvements in the Dafny implementation to better suit our needs.

4.1 Pre-existing verification of recursive implementation of
Tarjan’s algorithm

In this section we outline the pre-existing verification of Tarjan’s algorithm. The pre-existing
proof of the recursive algorithm was initially created as a manual proof. This manual proof was
an easy humanly readable proof. Unfortunately, this proof was a monolithic proof which was hard
to implement and debug. In order to improve the verification process in Dafny the pre-existing
proof had gone trough some iterations. However, the underlying problems with the pre-existing
verification have not been resolved up until now. We will like to create a new proof which can
easily be verified using Dafny. We want to reuse the clear and humanly readable invariants from
the pre-existing proof. Unfortunately the proofs that the invariants are maintained cannot easily

Verification of an implementation of Tarjan’s algorithm for SCC 13

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

S0 ∀u ∈ low : low[u] ≤ disc[u]
S1 ∀u ∈ stack : ∃v ∈ stack : connected(u, v) ∧ low[u] = disc[v]
S2(u) ∀v ∈ stack : disc[u] < disc[v]⇒ connected(u, v)
S3 ∀u, v ∈ stack : u ≺ v ⇒ disc[u] < disc[v]
S4(u) ∀v ∈ stack : disc[u] < disc[v]⇒ low[u] ≤ low[v]
S5(u) u ∈ stack ⇐⇒ low[u] 6= disc[u]
S6 ∀u ∈ low : (u ∈ stack⊕ ∃C ∈ result : u ∈ C)
S7 ∀u ∈ nodes(result) : successors(u) ⊆ nodes(result)
S8(u) ∀v ∈ stack : disc[u] < disc[v]⇒ low[v] 6= disc[v]
S≺9 (u) ∀v ∈ stack : disc[u] < disc[v] : ∀w ∈ successors(v) : w ∈ stack⇒ low[v] ≤ disc[w]

S�9 (u) ∀v ∈ stack : disc[u] ≤ disc[v] : ∀w ∈ successors(v) : w ∈ stack⇒ low[v] ≤ disc[w]
S10 ∀C ∈ result : scc(C)
S11 stack = []
S12(u) stack = old(stack) ∨ stack[|old(stack)|] = u

Table 4.1: Old invariants recursive Tarjan’s algorithm for SSC

be reused. The invariants of the pre-existing verification are shown in table 4.1. Elaboration of
each invariant can be found in section 4.1.1. The recursive Tarjan’s algorithm annotated with
these invariants can be found in Algorithm 4 and 5. Most of these invariants can easily be derived
from the program context. The more complex derivations will be explained in 4.1.2.

Definition 4.1 (Nodes). The function nodes(result : set〈set〈Node〉〉 : set〈Node〉 combines the set
of components to a set of nodes.

nodes(result) ≡
⋃

C∈result

C

Definition 4.2 (Precursor operator). The u ≺ v : Node × Node → B operator is the precursor
operator. This operator returns true if and only if u is located below v in the stack.

u ≺ v ≡ ∃i, j : 0 ≤ i < j < |stack| ∧ stack[i] = u ∧ stack[j] = v

Algorithm 4 Tarjan’s Strongly Connected Component Algorithm

Input: G = (V,E): A graph with nodes V and edges E.
Output: result: A set containing all strongly connected components of the graph.
Tarjan(G):

1: var stack := []
2: var low := {:} . the empty mapping is denoted as {:}
3: var disc := {:} . u ∈ low means u is a key of mapping low
4: var result := []
5: for u ∈ V do

6: {S0 ∧ S1 ∧ S3 ∧ S6 ∧ S7 ∧ S10 ∧ S11}
7: if u /∈ low then
8: StrongConnect(u)

9: {S5(u) ∧ S12(u)}

10: {∀C ∈ result : SCC(C)} . soundness

11: {∀u ∈ V : ∃C ∈ result : u ∈ C} . completeness

12: return result

14 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

Algorithm 5 Recursive version of helper function StrongConnect

Input: u: An element of V .
StrongConnect(u):

1: var k := |disc| . k is the discovery time that is assigned to node u
2: disc[u] := k
3: low[u] := k . initially low[u] = disc[u]
4: stack := stack ++ [u]
5: for v ∈ successors(u) do

6: {S0 ∧ S1 ∧ S2(u) ∧ S3 ∧ S4(u) ∧ S6 ∧ S7 ∧ S8(u) ∧ S≺
9 (u) ∧ S10}

7: if v /∈ low then
8: StrongConnect(v)
9: low[u] := min(low[u], low[v])

10: else if v ∈ stack then
11: low[u] := min(low[u], disc[v])

12: if low[u] = disc[u] then . an SCC has been found

13: {S0 ∧ S1 ∧ S2(u) ∧ S3 ∧ S4(u) ∧ S6 ∧ S7 ∧ S8(u) ∧ S�
9 (u) ∧ S10}

14: comp := []
15: while true do
16: v := stack[|stack| − 1] . assign the top of the stack to v
17: stack := stack[0 : |stack| − 1] . pop an element from the stack
18: comp := comp ++ [v]
19: if v = u then break
20: result := result ++ [comp]

21: {S0 ∧ S1 ∧ S3 ∧ S5(u) ∧ S6 ∧ S7 ∧ S10 ∧ S12(u)}

22: {u ∈stack⇒ S2(u) ∧ S4(u) ∧ S8(u) ∧ S�
9 (u)}

4.1.1 Invariants of the recursive implementation of Tarjan’s

The invariants for Tarjan’s recursive algorithm can be found in table 4.1. These invariants are
the basis of the verification of Tarjan’s algorithm. We want to prove that the result of Tarjan’s
algorithm is sound and complete. A result is sound if every component in result is a strongly
connected component (invariant S10). In the original verification this invariant is proven at line
10 of Algorithm 1. The result is complete if every node is contained in some component of result.
The completeness proof is performed at line 11 of the main algorithm. In order to prove that
the result is sound and complete we require the other invariants. Every invariant follows from an
intuitive observation. The idea behind every invariant is shown below:

0. Invariant S0 states that for every node u in low it holds that low[u] ≤ disc[u]. As explained
in section 3 disc[u] contains the discovery time of node u. The variable low[u] contains the
lowest discovery time of a reachable node from u. Since every node is connected to itself
low[u] ≤ disc[u] should always hold.

1. Invariant S1 states that it holds that every node u ∈ stack, u is connected to a node v ∈ stack
such that disc[v] is low[u]. This idea reflects the basic idea of the algorithm. For every node
u we are searching for a node v with the lowest discovery value. We store the lowest value
which has been found in low[u]. Note that there are cases where low[u] is never set to the
lowest possible value. This can occur if a cycle is found. We can leave u on the stack once we
have checked all successors of u. It can be the case that we later find a new lowest candidate
when we are processing another node in the cycle. The value of low[u] is never updated since
it will not affect the algorithm.

2. Invariant S2 states that given a node u it holds that for all nodes v ∈ stack, if disc[u] < disc[v]
then u and v are connected. This invariant entails that u is connected to all nodes after u

Verification of an implementation of Tarjan’s algorithm for SCC 15

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

on the stack. While this invariant might seem trivial it is actually rather complex. If node
u is being processed and we find a new node v then trivially disc[u] < disc[v] and node u
is connected to node v. However after node u has been processed it does not have to be
removed from the stack. We also have to prove that node u is connected to all nodes which
are added to the stack after node u has been processed but before node u is removed from
the stack.

3. Invariant S3 indicates that if a node v is located after a node u in the stack then disc[u] <
disc[v] holds. Once a new node is found, we give it a discovery value and we place it on the
stack. If node v is discovered after node u then v will be placed after node u in the stack
and v will have a higher discovery value.

4. Invariant S4 states that given a node u, for any node v with disc[u] < disc[v], it holds that
low[u] ≤ low[v]. This invariant states that a node u has a lower low value then all nodes
after node u in the stack. This invariant holds when we are actively processing node u in a
call StrongConnect(u). Once we push this call onto the recursion stack, then this invariant
is not maintained until StrongConnect(u) is pulled from the recursion stack.

5. Invariant S5 states that if a node u is in the stack then low[u] 6= disc[u]. This invariant
is a postcondition of StrongConnect(u). Node u is removed from the stack once all its
successors have been checked but the value of low[u] has not decreased.

6. Invariant S6 states that if a node is in low then it is either on the stack or in a component
of result. Note that a node cannot be in a component of result and in the stack at the same
time.

7. Invariant S7 states that for nodes u ∈ Nodes(result) and all v ∈ successors(u) it holds that
v is also contained in result. This invariant holds because we remove a node from the stack
if and only if all of its successors have been processed and all reachable nodes from u are
located after u on the stack.

8. Invariant S8 states that for all nodes v after node u in the stack, it holds that low[v] is not
equal to disc[v]. Invariant S8 is a postcondition of StrongConnect. Note that this invariant
does not imply invariant S5 since S5 also implies that if disc[u] 6= low[u] then it holds that
u is located on the stack.

9. Invariant S9 consists of two invariants S�9 (u) and S≺9 (u).

The invariant S�9 (u) is another postcondition of StrongConnect. Invariant S�9 (u) states
that all processed nodes in the stack have a low value which is lower then the disc value of
all successors that are also on the stack. Note that this invariant holds for all neighbours
and not just the neighbours which are still on the stack. Unfortunately, this stronger and
cleaner invariant is harder to prove. Since we do not need the strong version of S�9 (u) in our
proof we use the current version which requires the neighbours to be on the stack.

The invariant S≺9 (u) is a loop invariant which states that the invariant S�9 holds for all nodes
after u in the stack.

10. Invariant S10 states that all components in result are strongly connected components as
defined in definition 3.4.

11. Invariant S11 states that the stack is empty. This invariant is the loop invariant of the main
loop of Tarjan’s algorithm. This is an important invariant and holds because the low value
of the first StrongConnect(u0) call can not decrease. Therefore the first call always has to
clear the stack before terminating.

12. Invariant S12 states that the stack after a StrongConnect(u) call is equal to the stack before
the call or the first new node on the stack is node u. This invariant is a postcondition of

16 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

StrongConnect(u). This invariant is used to derive two predicates. This invariant ensures
that the initial value of the stack before the recursive call is maintained. Secondly the
invariant ensures that if the stack is modified then the first node added to the stack is u.

4.1.2 Monolithic proof of Tarjan’s algorithm

In this section the main ideas behind the pre-existing proof are explained. We show how partial
correctness can be proven using the annotated algorithm 4 and 5 and the invariants from table
4.1. Partial correctness consists of two parts, soundness and completeness. Soundness guarantees
that all components in the result are SCCs. This proof can be further decomposed into a proof
for strong connectivity of components, and a proof of maximality. A proof for both of these are
given in section 4.1.2.

Strong connectivity

A component is a connected component if every node in the component is connected to every other
node. At line 20 of the algorithm StrongConnect(u), algorithm 5, a new component C has been
found. The component C contains node u and all nodes above node u in the stack. We need to
establish that this component is strongly connected. To prove that C is a connected component,
let v be an arbitrary node in C. By invariant S1 we know that v is connected to a node w such
that low[v] = disc[w]. We know that low[v] 6= disc[v], by invariant S8. Using invariants S1 and S3

we can derive that w is located strictly below v in the stack. By invariants S4 and S3 we know
that low[u] ≤ low[v] and since low[u] = disc[u] we can conclude that disc[u] ≤ disc[w]. This means
that the predicate connected(v, w) holds and we know that w = u or w is between u and v in the
stack. This means that w is in C. Since w is a node in C we know that w is connected to u or
to a node between u and w. Since C contains a finite number of nodes we will eventually find a
path connecting v to u. So we have proven that every node in C is connected to u. The other way
around, connected(u, v), can easily be derived from invariants S2 and S3. We now conclude that
every node in C is connected to u and u is connected to every node in the component. From this
we conclude that C is a valid connected component.

Maximality

The proof for maximality starts with observations from invariants S6 and S9. These invariants
state that every successor of every node in C is located in low. Therefore, every successor node is
located in the stack or in result. Let w be a successor of a node v in C. By invariants S6 and S9

we know w ∈ nodes(result) ∪ stack. We distinguish 2 cases:

• If w ∈ nodes(result) then it is already part of an SCC. By invariant S7 we know that there
is no path from w to v. So we cannot add w to the component C to create a larger connected
component.

• If w ∈ stack then by invariant S9 we know low[v] ≤ disc[w]. By invariants S4 and S3 we know
that disc[u] = low[u] and we know that low[u] ≤ low[v]. It follows that disc[u] ≤ disc[w]. By
invariant S3 we can now derive that w is already in C, therefore we cannot increase the size
of C by including w.

Because this covers all cases we can conclude that C is maximal. Since we have shown that C
is a connected component in section 4.1.2 we can conclude that C is a valid SCC

4.2 Pre-existing Dafny implementation

The pre-existing verification from section 4.1 has been implemented in Dafny. This Dafny imple-
mentation can be found in appendix A. The problem with implementing this verification is that
the verification is a monolithic proof. A Dafny proof is a monolithic proof if the majority of the

Verification of an implementation of Tarjan’s algorithm for SCC 17

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

verification occurs within the method itself. The problem with a monolithic proof is that the
majority of the invariants are in the scope of the Dafny program during the entire proof. Dafny
will always try to assert predicates by using the available invariants. Having unneeded invariants
will cause an explosion in the number of derivable facts. The explosion of facts can quickly push
Dafny to its limits. Once Dafny is pushed to its limits, the verification process will become slow
and unpredictable. Minor changes to the implementation can cause the Dafny program to behave
unexpectedly. Some seemingly unchanged intermediate facts can stop verifying and the verific-
ation time can explode. Furthermore long wait times can greatly hinder the debugging process.
In extreme cases Dafny might not even be able to locate the point of failure. Because of these
performance problems the proof of termination was omitted from the implementation of the pre-
existing verification. The pre-existing implementation consisted of a proof of correctness and a
separate proof for termination. Combining these proofs turned out to be infeasible up until now.
Scaling the verification from the recursive version Tarjan’s algorithm to the iterative version also
turned out to be infeasible. This is why we need to resolve any performance issues before we start
verifying the iterative version of Tarjan’s algorithm.

The pre-existing implementation has not dealt with the performance issues of the Dafny veri-
fier because no techniques were available at that time. The developers pressed on and tried to
implement different proofs and different invariants until they found some implementation which
verified. This approach is not sustainable and cannot deal with the complexity of the iterative
Tarjan’s algorithm. In this paper techniques will be introduced which can be used to resolve
performance issues for program proofs. If one cannot verify a proof in Dafny then one should
structure the proof into smaller proofs. These smaller proofs are called lemmas in Dafny and are
defined in definition 4.3.

Lemmas are self-contained proofs which derive a postcondition from some preconditions. Lem-
mas can be called in a Dafny program. When a lemma is called then Dafny can instantly derive
the postconditions from the preconditions without providing a proof. This is usefull when a proof
is too complex for the Dafny verifier to verify. We can simplify the complicated large proof into
several simple smaller proofs. If we keep splitting the proofs into smaller proofs then we will even-
tually be able to verify all sub-proofs. These sub-proofs can then be combined into one complete
stable proof without performance issues. One should not compromise on clarity and readability
to avoid performance issues. Using lemmas we can resolve the performance issues from the veri-
fication of the Tarjan’s algorithm. Unfortunately it is not easy to identify lemmas which allow us
to trivialize the verification of the recursive Tarjan’s algorithm. We will dive into this problem
in detail in chapter 5. In chapter 6 we will introduce lemmas and other techniques to completely
resolve any performance and stability issues. Because the performance issues will be resolved using
this technique we no longer need to compromise on the readability and maintainability. In the
remainder of this section we are going to introduce changes to improve the usability of the Dafny
implementation. Note that the importance of these changes cannot be understated.

An example of how we verify a method using a lemma lets M be a method which returns two
integer return values x, y and let x = y be the postcondition of M . Now let the derivation of this
postcondition be too complex but let us be able to derive that x ≤ y and y ≤ x hold at the end
of the method. We could verify the method using a lemma which proves that x ≤ y and y ≤ x
implies x = y. This lemma L would requires two integers x, y as input. We want to prove that if
x ≤ y and x ≥ y then y = x holds. So lemma L has precondition x ≤ y ∧ x ≥ y and postconditon
x = y. We can now call Lat the end of the method M . Since Dafny can prove that x ≤ y and
y ≤ x hold, Dafny can prove that the precondition of lemma L holds. Dafny is now able to assume
that the postcondition of lemma L holds at the end of method M . Because of this Dafny knows
that x = y which allows us to verify that the postcondition of method M holds. Note that we
also need to verify lemma L by proving that x ≤ y and y ≤ x implies x = y. This is done in a
separate smaller proof.

The Dafny code of this example is shown below. In Dafny all preconditions are annotated by
the requires keyword and all postconditions are annotated by the ensures keyword. Note that the
statement assert P tells Dafny to prove that the predicate P holds.

18 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

Method M() r e t u r n s (x : i n t , y : i n t)
ensu re s x = y

{
var x , y ;
. . .
a s s e r t x ≤ y ;
a s s e r t y ≤ x ;
L (x , y) ;
r e t u r n x , y ;

}

lemma L(x : i n t , y : i n t)
r e q u i r e s x ≤ y
r e q u i r e s x ≥ y
ensu re s x = y

{
i f x < y {

a s s e r t f a l s e ;
} e l s e i f x > y {

a s s e r t f a l s e ;
} e l s e {

a s s e r t x = y ;
}

}

Definition 4.3 (Lemma). Lemmas are separate Dafny proofs. A lemma has precondition and
a postcondition. Next to this a lemma can optionally have input arguments, the precondition
and postcondition can depend on these input arguments. A lemma can be verified by providing
a proof which derives the postcondition from the precondition. These lemmas can be called in
proofs. When a lemma is called then Dafny has to prove that the precondition holds before the
lemma call. After the lemma call Dafny can assume that the postcondition holds. By definition
lemmas are methods without program code.

4.2.1 Refactoring the pre-existing Dafny implementation

As mentioned before, the pre-existing proof will be completely reimplemented. The invariants
and ideas behind the proof are reused. Since we are no longer constrained by performance and
readability issues we can make changes to the proof to improve the readability of the proof and
the implementation process. We will introduce 6 major changes:

1. Introducing types

2. Rewriting invariants

3. Simplifying the termination proof

4. Grouping global variables

5. Introducing modules

6. Creating self-contained lemmas

These changes and their advantages are discussed below.

Introducing types

In the original implementation all variables are of the type N or seq〈N〉. Because of this the
developer needs to create many additional predicates which reduce readability. In some places
the choice of type can even significantly overcomplicate the proof. One example of a type which
greatly improves readability are nodes. A node u was implemented as an element u : N. Every
time u is used it should hold that u < NodeLimit, where NodeLimit is the maximum number of
nodes. This implementation of Node requires the developer to create a predicate for every object

Verification of an implementation of Tarjan’s algorithm for SCC 19

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

and function which states that a node is below the node limit. This greatly reduces readability
and maintainability. A node could also be implemented as:

type Node = i : N | i < NodeLimit

Note that we have defined Node as a type and not as a new type. This means that Dafny still
sees an element of type Node as a natural number. This means that a node can be incremented
without typecasting. This is useful in the main loop of Tarjan’s algorithm.

An example of a type which complicates the proof is the type Component. Originally Com-
ponent was defined as a sequence of nodes. This means that result was defined as a sequence of
sequences of nodes. result : seq〈seq〈N〉〉. A sequence enforces an ordering. Since components are
not ordered we are enforcing an unneeded constraint. Using set can greatly simplify proofs so we
will be using it where possible. A disadvantage of using a set is that deterministically selecting
items from a set is difficult. An explanation of how items can be selected deterministically from
a set is shown in appendix B.

type Component = set〈Node〉

We use the following types for the global variables:

• disc : map〈Node,N〉

• low : map〈Node,N〉

• stack : seq〈Node〉

• result : set〈set〈Node〉〉

Rewriting invariants

The invariants in the pre-existing verification have been rewritten to improve the performance of
the verification. Since we resolve the performance issues we can select invariants based on usability
and readability. We rewrite some of the invariants from table 4.1. We rewrite invariants S2, S8,
S9 and S12. All updated invariants are shown in table 4.2.

Invariant S2(u) used to state that node u is connected to all nodes after u in the stack. This
invariant always holds for all nodes in the stack and not just for u. This is why we have rewritten
invariant S2 to state that every node is connected to all nodes after it in the stack. Because of this
the input parameter u is no longer required. This stronger invariant is more readable and easier
to use but it is harder to prove.

S2 ≡ ∀u, v ∈ stack : disc[u] ≤ disc[v]⇒ connected(u, v)

Invariant S8(u) is used to derive that for any node v located after u in the stack the predicate
low[v] 6= disc[v] holds. This invariant is used to state that for all nodes v in the stack if disc[u] <
disc[v] then it holds that low[v] 6= disc[v]. By invariant S3, we know that a node in the stack has
a disc value larger then u if and only if it is located after node u in the stack. Let u be the ith

element in the stack such that stack[i] = u. We know that all nodes after u in the stack have an
index j with i < j. Invariant S8 becomes more readable when we use the index of a node instead
of the disc value. Furthermore this invariant also becomes easier to prove. We use the following
definition for invariant S8:

S8(i) ≡ ∀v ∈ stack[i : |stack| − 1] : low[v] 6= disc[v]

Invariant S9 used to consist of 2 invariants. The invariant S≺9 (u) which stated: Let v be a
node in the stack where disc[u] < disc[v] and let w be a node which is in the stack and which is

a successor of v then low[v] ≤ disc[w]. The invariant S�9 (u) implies with any v in the stack where

20 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

S0 ∀u ∈ low : low[u] ≤ disc[u]
S1 ∀u ∈ stack : ∃v ∈ stack : connected(u, v) ∧ low[u] = disc[v]
S2 ∀u, v ∈ stack : disc[u] ≤ disc[v]⇒ connected(u, v)
S3 ∀u, v ∈ stack : u ≺ v ⇒ disc[u] < disc[v]
S4(u) ∀v ∈ stack : disc[u] < disc[v]⇒ low[u] ≤ low[v]
S5(u) u ∈ stack ⇐⇒ low[u] 6= disc[u]
S6 ∀u ∈ low : (u ∈ stack⊕ u ∈ nodes(result))
S7 ∀u ∈ nodes(result) : successors(u) ⊆ nodes(result)
S8(i) ∀v ∈ stack[i : |stack| − 1] : low[v] 6= disc[v]
S9(i) ∀u ∈ stack[i : |stack| − 1], v ∈ successors(u) : v ∈ low ∧ (v ∈ stack⇒ low[u] ≤ disc[v])
S10 ∀C ∈ result : scc(C)
S11 stack = []
S12(u) stack = old(stack) ∨ old(stack) ++ [u] ≤ stack

Table 4.2: Invariants recursive Tarjan’s algorithm for SSC

disc[u] ≤ disc[v]. Similar to invariant S8 we can improve the readability of invariant S�9 (u) by
giving the index of node u as input. This gives us the following invariant:

∀u ∈ stack[i : |stack| − 1], v ∈ successors(u) : v ∈ stack⇒ low[u] ≤ disc[v]

Furthermore, invariant S≺9 (u) is now equal to S9(i + 1). We can combine the two complex
invariant into one more readable invariant. Lastly we want to further strengthen this invariant by
also implying that all neighbours of node v are in low. This fact can greatly simplify some proofs.
This gives us the final invariant:

S9(i) ≡ ∀u ∈ stack[i : |stack| − 1], v ∈ successors(u) : v ∈ low ∧ (v ∈ stack⇒ low[u] ≤ disc[v])

If we would not strengthen invariant S9 by including v ∈ low then we would need to prove that
v ∈ low holds before we can apply invariant S9.

Lastly invariant S12(u) used to state that the after a call StrongConnect(u) the stack was
unchanged or the first new element on the stack was node u. The invariant is used to derive that
a call from StrongConnect(u) does not remove elements from the initial stack. Furthermore, we
derive that if elements are added to the stack then the first element which was added to the stack
was node u. We can derive this invariant using the old invariant S12. However we can also change
S12 to the desired invariant for clarity.

S12(u) ≡ stack = old(stack) ∨ old(stack) ++ [u] ≤ stack

Here the old keyword indicates the state of the stack before a call from StrongConnect.

Simplifying the termination proof

When proving correctness of Tarjan’s algorithm for strongly connected components we should also
prove termination. Because of the performance problems it was assumed that the Tarjan algorithm
terminates during the correctness proof. In a separate proof it was then proven that Tarjan’s
algorithm terminates. Because we are no longer compensating for performance issues we can
perform both proofs simultaneously. However, we can also significantly simplify the termination
proof. To prove that an algorithm terminates, we should provide some expression which value
decreases every iteration of the algorithm. Furthermore, we have to prove that the decreasing
expression has a constant lower bound and we need to prove that the decrease has a constant non
zero lower bound. In order to prove that the StrongConnect function terminates we provide the
following termination measure:

NodeLimit− |low|

Verification of an implementation of Tarjan’s algorithm for SCC 21

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

Proving that this expression decreases every recursive iteration of StrongConnect is trivial. How-
ever, we should also prove that this expression has a lower bound. We used to prove this by
adding the invariant |low| < NodeLimit. If we can prove that this invariant is maintained then
the expression is never negative. However, the variable low is a mapping from keys to value. Let
the set Keys be a set of nodes which contains all keys from low. The size of Keys is equal to the
size of low. We can prove that any set of nodes is smaller than NodeLimit. A node is defined as
natural numbers smaller than NodeLimit. From this it follows that there are only NodeLimit
unique nodes.

Convincing Dafny that any set of nodes has at most NodeLimit elements can be tricky. We
can prove this by providing Dafny with a set of nodes V which contains all nodes and has size
NodeLimit. Now let V ′ be an arbitrary set of nodes. Dafny knows that if |V | < |V ′| then
there exists a node in V ′ which is not in V . However since V contains all nodes we arrive at
a contradiction. With this we can conclude that any set of nodes contains at most NodeLimit
elements. From that we can conclude that the size of low is at most NodeLimit and hence
0 ≤ NodeLimit− |low|.

Grouping global variables together

Currently we have four global variables in the recursive algorithm: low, disc, stack, result. These
global variables together make up the state of the algorithm. We introduce a new type TarjanData
for the state of the algorithm. In the current implementation we also use a type DiscLow for the
global variables disc and low. This object helps grouping invariants, however, it is not a vital
object. The datatype DiscLow is defined in definition 4.4 and the datatype TarjanData is defined
in definition 4.5

We created this type because we often pass the state of the global variables to different functions
and predicates. In our proof we often reason about old states of global variables. Some invariants
can hold in a state but aren’t maintained when the state is edited. Once these edits are done, the
state is updated to restore the invariant. When we want to prove that an invariant is maintained,
then we need to reason about all intermediate states and intermediate invariants. Keeping track
of the global variables and invariants is a challenge for the developer and for the Dafny verifier.
By grouping invariants together we can greatly improve readability and maintainability of the
code. Next to this grouping global variables together also decreases the load on the Dafny verifier.
Lastly, we use a lot of functions and lemmas in our proof. These functions accept a state as input
and return a state as output. If we do not group invariants together then the amount of input
fields explodes. These lemmas and functions will be introduced in chapter 6

Grouping the global variables together into one type introduces a change to the algorithm. We
argue that this is a minor and acceptable change. If one does not want to make any changes to the
algorithm at all then one can also make the state a ghost variable of type TarjanData. A ghost
variable is a variable which is only used for the verification and cannot influence the behaviour of
the algorithm. We could maintain an invariant which states that the global variables are corretly
captured by the ghost variable. We have not done this since the gain is minimal and it greatly
reduces readability. We do strongly recommend using one variable in the proof to model the entire
global state.

Definition 4.4 (DiscLow). The type DiscLow is a data type which contains both the global
variables disc and low. The global state is a data type which means that the variable is an object
which can contain fields. The type DiscLow variable contains two fields disc and low which have
type map〈Node,N〉.

DiscLow ≡ DiscLow(disc : map〈Node,N〉, low : map〈Node,N〉)

Definition 4.5 (TarjanData). The type TarjanData is a data type which contains all global
variables of the Tarjan algorithm. This data type contains three fields. The field ds which has
type DiscLow, the field stack of type seq〈Node〉 and the field result of type set〈set〈Node〉. This

22 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 4. PRE-EXISTING PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

type DiscLow is defined in definition 4.4.

TarjanData ≡ TarjanData(ds : DiscLow, stack : seq〈Node〉, result : set〈set〈Node〉)

Creating self-contained lemmas

The old implementation omits explicitly passing global variables to predicates and lemmas by
directly referring to global variables. This allows the user to omit adding an input field for the
global variables. It does not allows the user to omit any preconditions. This is a very minor
advantage but it also appeared to make the pre-existing proof more stable. Unfortunately there is
a large disadvantage to letting lemmas refer to global variables. Because an input field was omitted
the lemmas are no longer self-contained. The lemmas need to be in the scope of the global variables
which can hinder reusing or structuring the Dafny code. In the pre-existing implementation the
global variables where declared in a class. This required all lemmas to be in a class which directly
declared the global variable. Using inheritance the lemmas where separated over different files.
This resulted in a large structure of classes which inherited lemmas and variables from each
other. These large classes amplified the unpredictable behaviour of the Dafny verifier. In the new
verification all lemmas will be self-contained and lemmas will not be part of a class. This prevents
unpredictable behaviour and allows us to reusing lemmas.

Introducing modules

Once Dafny proofs get larger it becomes useful to divide the code over different files. Dividing
the code over different files was a challenge in the pre-existing roof. For performance reasons the
pre-existing proof did not pass the global variables to methods but let the lemmas refer to the
global variables directly. The global variables were all contained in a class. Because of this all
lemmas were also contained in a class. The online way to divide the proof over different files was
to declare multiple classes and to use inheritance. As mentioned in the last section we will no
longer declare lemmas in classes. By removing the lemmas from classes we can easily separate
the proof into different files. We will need to use modules to organize our file system. There are
three main advantages of using modules. The first disadvantage is that we can easily find the file
which declares a lemma or predicate. The second advantage is that modules prevent name space
collisions and the last advantage is that we can easily reuse the lemmas in the iterative proof.

Verification of an implementation of Tarjan’s algorithm for SCC 23

Chapter 5

Optimizing complex proofs in
Dafny

In Dafny, one can usually verify simple programs using a straightforward approach. However,
when the complexity of the verification increases, the verification time explodes and the Dafny
verifier becomes unstable. This hinders the debugging and verification process. In order to verify
complex programs one should first understand how Dafny verifies a program and why proofs can
become unstable.

As discussed in chapter 4, the pre-existing verification of Tarjan’s algorithm is unstable and it
takes a long time to verify. This occurs because Dafny tries to prove statements using all available
invariants. Simply helping Dafny by providing intermediate predicates to guide the Dafny verifier
will not resolve these issues. In this section we will introduce techniques which can be used to
verify algorithms with unstable proofs. There are two techniques which can be used. These
techniques involve creating lemmas and creating opaque predicates. The combination of these two
techniques can be used to stabilize unstable proofs. Unfortunately applying these techniques can
be complex. In this chapter we explain the techniques and we introduce patterns to efficiently
apply these techniques.

5.1 The Dafny verifier

The Dafny verifier is the mechanism which Dafny uses to verify Dafny code. In this section we
briefly introduce the ideas behind the Dafny verifier. This will allow us to understand why certain
proofs can be hard to verify and how to solve them. The Dafny verifier uses the intermediate
verification language Boogie. Boogie is a language which can be used to verify simple unstructured
code. The Dafny verifier translates Dafny code to Boogie code. Dafny does this by introducing
something called dynamic frames. These dynamic frames make the Dafny language more expressive
and dynamic frames can be used to hide a large amount of complexity from the developer. The
exact inner workings of both Boogie and the Dafny verifier are complex and outside of the scope
of this master thesis. In this section we briefly introduce Boogie and dynamic frames.

5.1.1 Boogie

Boogie is an intermediate verification language designed to describe verification conditions for
static programs. Boogie consists of mathematical and imperative components. The imperative
components of Boogie specify sets of execution traces and the desired behaviour.These verification
of the execution traces is translated to predicates by Boogie. These predicates are then validated
by an SMT solver. More information about using Boogie can be found in the Boogie reference
manual [10].

Verification of an implementation of Tarjan’s algorithm for SCC 25

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

Code is validated by proving that if the precondition holds before the code is executed then
the postcondition holds after the code has executed. Boogie and Dafny both verify code based
on the theory of Hoare triples as defined by C.A.R.Hoare [7]. A Hoare triple {P}S; {Q} consist
of a predicate P , a program S and a predicate Q. A Hoare triple states that, given that the
predicate P holds before program S then the predicate Q holds after program S, given that S
terminates. Note that these Hoare triples can be combined. Given that Hoare triples {P}S1; {Q}
and {Q}S2; {R} hold then we can derive that the Hoare triple {P}S1;S2; {R} holds. These Hoare
triples are a fundamental building block behind both Dafny and Boogie [13]. Understanding Hoare
triples allow Dafny users to tackle complex problems. As an example of Hoare triples take the
program var x = y ∗ 3;. The following Hoare triples are all valid:

{true}var x := y ∗ 3; {x = 3 ∗ y}
{0 < y}var x := y ∗ 3; {y < x}
{z = 5}var x := y ∗ 3; {z = 5}
{true}var x := y ∗ 3; {true}
{false}var x := y ∗ 3; {false}

Note that some programs might require a precondition in order to have a valid execution trace.
Take the program var x := 3/y;. This program fails if y = 0. Because of this the Hoare triple
{true}var x := 3/y; {true} does not hold, but the Hoare triple {x 6= 0}var x := 3/y; {true} does.

A program S with precondition Q and a postcondition P is valid if the Hoare triple {Q}S; {P}
holds. Boogie proves that {Q}S; {P} holds by deriving the weakest precondition. The weakest
precondition is the weakest predicate Q′ such that the Hoare triple {Q′}S; {P} holds. It can now
be verified that S confirms to its specification by proving that Q ⇒ Q′. The proof that Q ⇒ Q′

can be automated using a SMT solver. Boogie derives the weakest precondition using weakest
precondition calculus [6, 13].

Directly implementing weakest precondition calculus will result in weakest preconditions which
are too complex for a SMT solver. Boogie uses several optimizations to ensure that the weakest
precondition can easily be simplified using an SMT solver. Boogie first transforms a program into
different blocks of so-called stateless code. Boogie then generates verification criteria for every
block of code. If all verification criteria are verified then it follows that the original code is verified.
Boogie also builds a table which maps verification criteria to sections of code. This allows Boogie
to indicate which section of the code could not be verified. The exact inner workings of Boogie
are outside of the scope of this paper. The inner structure of Boogie is explained in the paper
Boogie: A Modular Reusable Verifier for Object-Oriented Programs [1] and the exact translation
of Boogie code to the predicates for the SMT solver is given in the paper Weakest-Precondition of
Unstructured Programs [2].

5.1.2 Weakest precondition calculus

Weakest precondition calculus is a vital building block behind Boogie and therefore Dafny. In this
section we will introduce the main ideas behind weakest precondition calculus. For a complete
definition of weakest precondition calculus we refer to The weakest precondition calculus: Recursion
and duality [3] and Weakest-Precondition of Unstructured Programs [2]. Let WP[S; , P] be the
weakest precondition such that the predicate P holds after the program S assuming that program
S terminates. In other words WP[S; , P] is the weakest predicate such that {WP[S; , P]} S; {P}
holds. Note that if program S can be split into two programs S ≡ S1;S2; then the weakest
precondition WP[S1;S2; , P] is equal to WP[S1; , WP[S2; , P]]. This holds because P is the
postcondition of S2 so WP[S2; , P] is the weakest precondition of S2. In order to ensure that
this precondition of S2 holds we know that WP[S2; , P] is the weakest postcondition of S1. From
this we conclude that the weakest precondition of S and S1 is WP[S1; , WP[S2; , P]]. We can
also express this using Hoare triples. From the Hoare triples {WP[S1;S2; , P]}S1; {WP[S2; , P]}
and {WP[S2; , P]}S2; {P} we can derive {WP[S1;S2; , P]}S1;S2; {P}. As a concrete example of
weakest precondition calculus take the program S and postcondition P :

S ≡ x := 2 ∗ x; assert 2 ≤ x; y := 2/x;

26 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

P ≡ y ≤ 1

The program S contains an assert statement. This statement is an important feature of both
Dafny and Boogie. The assert statement assert P ′; states that Dafny should prove that the
predicate P ′ holds. In weakest precondition calculus this statement adds a proof obligation:

WP[assert P ′; , Q] ≡ WP[∅, P ′ ∧Q] ≡ P ′ ∧Q

Here ∅ is an empty program. The weakest precondition of an empty program is trivially equal to
the postcondition.

WP[∅, P ′] ≡ P ′

In order to prove that the postcondition P holds after the program S has executed the precon-
dition WP[S; P] has to hold. Substituting P and S with their definitions gives us the weakest
precondition:

WP[x := 2 ∗ x; assert 2 ≤ x; y := 2/x; , y ≤ 1]

Using weakest precondition calculus we can derive that if y ≤ 1 has to hold after assignment
y := 2/x then the precondition WP[y := 2/x; , y ≤ 1] holds before the assignment. A weakest
preconditionWP[y := E; , Q] can be derived by substituting y in Q with the expression E. Next to
this the weakest precondition needs to include any preconditions from the expression E. This gives
us the reduction rule, WP[y := E; , Q] ≡ WP[y := E; , true] ∧ Q[y := E]. Using this reduction
rule we can derive that WP[y := 2/x; y ≤ 1] is equal to WP[y := 2/x; true] ∧ (y ≤ 1)[y := 2/x].
This predicate can be simplified to x 6= 0 ∧ x ≤ 2.

WP[x := 2 ∗ x; assert 2 ≤ x; y := 2/x; y ≤ 1]

≡ WP[x := 2 ∗ x; assert 2 ≤ x; , WP[y := 2/x; y ≤ 1]]

≡ WP[x := 2 ∗ x; assert 2 ≤ x; , WP[y := 2/x; true] ∧ (y ≤ 1)[y := 2/x]]

≡ WP[x := 2 ∗ x; assert 2 ≤ x; , x 6= 0 ∧ 2/x ≤ 1]

≡ WP[x := 2 ∗ x; assert 2 ≤ x; , x ≤ 2 ∧ x 6= 0]

The reduction rule for the assert expression has already been introduced. Note that this assert
expression enforces a stronger precondition. While this precondition becomes stronger it also
allows us to simplify the precondition. It is important to note that weaker preconditions do not
result in easier proofs. This is why assertions can greatly speed up proofs. Next to this Dafny and
Boogie also return an error when a assert statement fails to verify. This is why assert statements
are an important tool to verify programs.

≡ WP[x := 2 ∗ x; assert 2 ≤ x; , x ≤ 2 ∧ x 6= 0]

≡ WP[x := 2 ∗ x; , WP[assert 2 ≤ x; , x ≤ 2 ∧ x 6= 0]]

≡ WP[x := 2 ∗ x; , 2 ≤ x ∧ x ≤ 2 ∧ x 6= 0]

≡ WP[x := 2 ∗ x; , x = 2]

The weakest precondition of program S can now be derived by substituting x with the last
assignment. This gives us the weakest precondition x = 1 which ensures that postcondition P
holds after program S has executed, {x = 1} x := 2 ∗ x; assert 2 ≤ x; y := 2/x; {y ≤ 1}. So
program S is verified if we can derive x = 1 from the precondition. Note that the variables x and y
are input variables of the program S and not fresh variables. Creating a new fresh variable requires
the var operator. The reduction rule over the var operator introduces existential quantifiers. In
order to simplify the example we let the variable y be an input variable of S and the program S
sets the value of y to 2/x;

≡ WP[∅,WP[x := 2 ∗ x; , x = 2]]

≡ (x = 2)[x := 2 ∗ x]

≡ 2x = 2

≡ x = 1

Verification of an implementation of Tarjan’s algorithm for SCC 27

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

5.1.3 Dynamic frames

Boogie can calculate a weakest precondition for simple programs. However, Boogie cannot calcu-
late the weakest preconditions of complex programs. Boogie cannot derive the weakest precon-
dition over method calls or over most loops. Next to this Boogie also does not support complex
types. Dafny resolves these problems by adding something called dynamic frames [9]. Dynamic
frames allow Dafny to use partial proofs. Dafny allows us to provide a specification for a type,
loop or method. When code is verified which contains a loop or a method call then Dafny assumes
that the specification of the loop or method holds. Dafny can then use the specification to derive
a weakest precondition. Unfortunately this process is quite complex and outside of the scope of
this paper. The paper Specification and Verification of Object-Oriented Software gives a good
practical introduction of dynamic frames and the translation of Dafny to Boogie [11]. The paper
Dafny: An Automatic Program Verifier for Functional Correctness introduces the theory behind
a lot of Dafny features depending on dynamic frames [12].

As an example of dynamic frames let M be a verified method with precondition Q and post-
condition P and let S be the program x := 0; M();. Now trivially the Hoare triple {Q}M ; {P}
holds. Let’s say we want to prove that x ≤ 1 holds after program S. The postcondition P of
method M will likely contain information about the effect of method M however P does not have
to contain any information about the variable x. Therefore the Hoare triple {Q}M ; {P} is too
weak to create a weakest precondition for most postconditions of the program S.

This problem can be resolved using dynamic frames. A dynamic frame contains the footprint of
a class, method or loop. The footprint contains all variables which are used by the class method or
loop. This dynamic frame can then be used to prove that all predicates which depend on variables
which are not in the footprint are maintained. Take the postcondition x ≤ 1 of method S and
let the footprint of method M be the new variable z. We can now prove that when a predicate
R which does not depend on variable z holds before a method call M then the predicate R holds
after the method call M . We can use dynamic frames and weakest precondition calculus to derive
the weakest precondition WP[x := 0; M(); , x ≤ 1].

In order to calculate the weakest precondition we need to create a reduction rule for method M .
If no reduction rule exists for method M , we replace M with an alternative expression for which
we have a reduction rule. In order to create this expression we require two new statements. The
boogie statement assume P and the new variable statement var. The assume statement states
that the predicate P holds but the statement does not add a new proof obligation. If a predicate
R should hold after this statement then the weakest precondition of assume P is P ⇒ R. This
gives us the reduction rule:

WP[assume P ; , R] ≡ WP[∅, P ⇒ R]

The second statement var z introduces a new variable z. This statement gets translated
to boogies havoc statement. The havoc statement states that z has an arbitrary value. This
statement can be combined with the assume statement to derive the weakest preconditions more
efficiently. Since this statement is rather complex we will instead use a simple theoretical definition
of var. The expression var z creates a new variable z. We know that if a predicate R holds after
an expression var z then for all values z′ of variable z the predicate R[z := z′] has to hold. This
gives us the reduction rule for creating a new variable.

WP[var z; , R] ≡ WP[∅,∀z′ : R[z := z′]]

Using the assumption expression and the new variable expression we can create a reduction
rule replacing the method call M();. We replace the method call M(); by the statement
assert Q; var z; assume P ;. This statement adds the new proof obligation the precondition Q of
method M , introduces a new variable z for the footprint of M and assumes that the postcondition
P holds.

WP[M(); , T] ≡ WP[assert Q; var z; assume P ; , T]

28 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

Using these new reduction rules we can calculate the weakest precondition of S. Note that
because x is not in the footprint of M we know that the value of x does not affect the predicates
Q and P so Q[x := 0] is simply Q and P [z := z′][x := 0] is simply P [z := z′].

WP[x := 0; M(); , x ≤ 1]

≡ WP[x := 0; assert Q; var z; assume P ; , x ≤ 1]

≡ WP[x := 0; assert Q; var z; , WP[assume P ; , x ≤ 1]]

≡ WP[x := 0; assert Q; var z; , P ⇒ x ≤ 1]

≡ WP[x := 0; assert Q; , WP[var z; P ⇒ x ≤ 1]]

≡ WP[x := 0; assert Q; , ∀z′ : (P ⇒ x ≤ 1)[z := z′]]

≡ WP[x := 0; assert Q; , ∀z′ : P [z := z′]⇒ x ≤ 1]

≡ WP[x := 0; , WP[assert Q; , ∀z′ : P [z := z′]⇒ x ≤ 1]]

≡ WP[x := 0; , Q ∧ ∀z′ : P [z := z′]⇒ x ≤ 1]

≡ WP[∅, (Q ∧ ∀z′ : P [z := z′]⇒ x ≤ 1)[x := 0]]

≡ Q ∧ ∀z′ : P [z := z′]⇒ 0 ≤ 1

≡ Q ∧ true

≡ Q

These dynamic frames can also be used to calculate the weakest precondition over a loop.
Calculating the weakest precondition over a loop is similar to calculating the weakest precondition
over a method call. Dafny requires the user to provide a specification for the loop. The loop can
then be replaced with an assert and an assume statement based on the specification. The user
needs to provide a separate proof which proves that the specification of the loop holds. The Dafny
user provided a specification of a method by defining a precondition and a postcondition. The
user does not need to define a precondition and a postcondition for the specification of a loop.
The user is only required to define a loop invariant. Using this loop invariant Dafny can derive
the precondition and the postcondition of the loop.

A loop invariant I is an invariant which is maintained by every iteration of a loop. Given
a loop while B do S1; od and a loop invariant I the loop invariant is valid if the Hoare triple
{B ∧ I} S1; {I} holds. Once we have proved that {I} S1; {I} holds then it follows that following
the Hoare triple holds:

{I} while B do S1; od {I ∧ ¬B}

Intuitively this holds because when an invariant I holds before the loop and every iteration of the
loop maintains I then invariant I holds once the loop has terminated. Note that since the while
loop executes as long as the predicate B holds it follows that ¬B holds once the loop terminates.
Remember that Hoare triples assume that the a program terminates. Dafny requires a separate
proof which proves that the loop terminates. Once we have proven that the loop invariant I holds
then we can replace the loop with an assert and an assume statement similar to a method call.
As an example take the program:

S0; while B do S1; od; S2;

When we provide a loop invariant I then we are required to provide a separate proof which
proves that {I} S1; {I} holds. It then follows that {I} while B do S1; od {I∧ 6= B} holds.
Using this Hoare triple we can simplify the program by replacing the loop by an assert statement
of the precondition I and an assume statement of the postcondition I ∧ ¬B. This gives us the
alternative form of the program without the while loop:

S0; assert I; assume I ∧ ¬B; S2;

Verification of an implementation of Tarjan’s algorithm for SCC 29

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

We have now introduced a rough overview of the Dafny verifier. Once proofs get complex
then the weakest precondition will get too large. Once the weakest precondition gets too large
then the verifier becomes slow and the verifier can fail to verify proofs. Using assert statements,
the weakest precondition can be simplified and the proof can be debugged. Dafny will always
inform us which assert statements can be verified and which statements cannot be verified. So we
can detect which predicates cannot be verified and which facts are verified. Unfortunately just
using assert statements is insufficient to verify very complex proofs. At some point the weakest
precondition can become very large. By adding assert statements to the code we can strengthen
the weakest precondition. Strengthening the weakest precondition might simplify the derivation of
the weakest precondition from the precondition. Unfortunately it is not always possible to create
a stable proof by just adding assert statements. Furthermore changes to the code might cause
statements which use to verify to stop verifying unexpectedly. Once this happens we say that the
verify has become unstable. One should not try to continue debugging unstable proofs. It is often
quicker to use techniques to stabilize the proof then to press on. In the remainder of this chapter
we will introduce techniques to stabilize proofs and we will apply them to the recursive version of
Tarjan’s algorithm.

5.2 Adding lemmas

When the verification of a proof is unstable and slow then we can improve the verification process
by adding lemmas. As defined in definition 4.3, lemmas are a Dafny feature which allows us to
split a proof into smaller proofs. Lemmas allow us to split a proof into smaller proofs. There are
several advantages to this. The most important advantage is that we can significantly decrease the
complexity of the weakest precondition. Next to this lemmas have several other advantages. The
main advantages are improving the readability of the proof, facilitating recursion and facilitating
code reuse. A lemma consists of a set of input variables, a sequence of preconditions, a sequence
of postconditions and a proof. The proof should derive the postconditions from the preconditions.
A lemma can then be called in other proofs. When a lemma is called then Dafny can use the fact
that the precondition implies the postcondition without deriving the postcondition. Dafny does
this by replacing the call of a lemma with precondition Q and postcondition P with the statement
assert Q; assume P ;. This is similar to a method call because a lemma is actually just a method
without program code. Therefore, a lemma has an empty footprint and a lemma does not have
any runtime behaviour.

Large proofs can be verified by adding assert statements to prove intermediate invariants.
These intermediate invariants help Dafny to derive a stronger weakest precondition. Strengthening
the weakest precondition assists the SMT solver in deriving the weakest precondition from the
precondition. Unfortunately, this derivation can still be too complex. When a large proof is
unstable then we can replace a complicated derivation of an intermediate invariant with a lemma.
This lemma should prove that the intermediate invariant holds based on a precondition. Dafny
now no longer needs to derive that the intermediate invariant holds in the program proof, Dafny
does need to prove that the precondition of the lemma holds. This lemma can greatly improve
the stability of the large proof. Next to this Dafny does need to verify the lemma in a separate
proof. Dafny needs to derive the intermediate invariant from the precondition of the lemma.
The precondition only needs to contain information which is required to derive the intermediate
invariant which limits the load on the SAT solver. Because of this deriving the intermediate
invariant in a lemma is a lot more stable then deriving it in the program proof. Overall adding
lemmas greatly improves the stability of the sub-proof and somewhat improves the stability of the
large top-level proof.

As an example of how a lemma is used let’s say that we want to prove that the complicated
predicate P holds after a program S. Let us assume that Dafny can derive P from an intermediate
predicate P ′ and let Dafny be able to derive P ′ from a simple predicate P ′′ which is simple enough
such that Dafny can prove that P ′′ holds after S. We can provide a Dafny proof which proves
that predicate P holds after S by adding the assert statemens S; assert P ′′; assert P ′; assert P ;

30 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

to S. The weakest precondition from this proof is:

WP[S; assert P ′′; assert P ′; assert P ; , P] ≡ WP[S; , P ′′ ∧ P ′ ∧ P]

The SAT solver might be able to derive that predicate P holds after S since we guide the proof
somewhat using intermediate invariants. Unfortunately, if the derivation is complex enough then
the SAT solver will still struggle with the complex weakest precondition. We can create a lemma
L to simplify the large precondition. Lemma L should have precondition P ′′ and postcondition
P . The derivation of predicate P can be replaced by lemma L. We can now verify that P holds
after S by appending a method call L() after S.

WP[S;L(); P] ≡ WP[S; assert P ′′; assume P ; P] ≡ WP[S;P ′′ ∧ (P ⇒ P)]

This new weakest precondition can easily be proved by the SAT solver since P ⇒ P is simply true.
Next to this the intermediate predicate P ′ no longer needs to be derived in the program proof.
We still need to prove that lemma L is correct by proving that P ′′ implies P . We can prove that
this lemma is correct by proving that P ′′ implies P ′ and P ′ implies P .

This general approach often works however we can encounter two problems. The first problem
is that just using lemmas might not be sufficient to create a stable top-level proof. This can occur
if the weakest precondition is still very large and requires a lot of invariants which cannot be
derived from other simpler invariants. This problem can be resolved by adding opaque predicates
which will be explained in section 5.3. The second problem is that it can be hard to identify
potential lemmas. A lemma just proves that a precondition implies a postcondition. It is often
easy to split a derivation in a lemma into several cases or smaller derivations. Unfortunately it
can be hard to identify lemmas when we are proving that a method is correct. In section 5.2.1 a
pattern is introduced which creates lemmas to stabilize the verification of a method. The lemmas
introduced in section 5.2.1 also allow us to create lemmas which stabilize the program proof even
more then normal approach from this section.

5.2.1 Introducing lemmas to methods

Lemmas are usually used in the following straightforward pattern. When we want to verify a
Hoare triple {Q}S; {P} then we can define a lemma L with precondition R and postcondition P .
Using lemma L we can verify the Hoare triple {Q}S; {P} by proving that Q ⇒ WP[S;L; , P]
holds. Using weakest precondition calculus we get

WP[S;L; , P] ≡ WP[S; assert R; assume P ; , P] ≡ WP[S; , R]

So essentially using lemma L we can prove that the Hoare triple {Q}S; {P} holds if Hoare triple
Hoare triple {Q}S; {R} holds since lemma L proves that R implies P . Unfortunately it is not
always possible to find a predicate R such that the proof of {Q}S; {R} is easy. In order to verify
Tarjan’s algorithm we will require stronger lemmas. In this section we will introduce a pattern to
define lemmas which does not require us to define an intermediate predicate R.

We want to define lemmas which immediately proves that a Hoare triple holds for a section
of code. Given a Hoare triple {Q}S; {P} we want to define a lemma which states that if Q holds
before S then P holds after S. If S contains only one operations then this is straightforward. Let
S ≡ x := x+ 1, we can now define a lemma L(x′) with precondition Q[x := x′] and postcondition
P [x := x′ + 1]. We can verify {Q}x := x + 1; {P} using weakest precondition calculus and lemma
L:

WP[L(x);x := x + 1; , P] ≡ WP[L(x); P [x := x + 1]]

≡ WP[assert Q[x := x]; assume P [x := x + 1], P [x := x + 1]]

≡ WP[assert Q; , true] ≡ Q

Essentially we have moved the proof of the program S completely into a lemma. Because of
this the proof of S has become very stable. If the program S was part of a larger program then the

Verification of an implementation of Tarjan’s algorithm for SCC 31

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

proof of the larger program has also become a lot more stable. Once the proof is contained in a
lemma then we can usually easily split the proof into smaller proofs and resolve any performance
issues. We will briefly discuss these techniques later for now it is enough to define lemmas which
move the complexity from the program proof to a lemmas.

The pattern of substituting the value of x with the effect of program S works well if S is very
small. Unfortunately, once S becomes larger it becomes unfeasible to directly substitute x with
the effect of all operations. Next to this defining one lemma for every operation is also not feasible.
We create lemmas which reason about the effect of multiple consecutive operations by introducing
functions. The function should consist of the same operations as the program S. This function can
then be used to define a lemma which reasons about the effect of the program. Let S be a program,
let V be the set of all input variables of S and let M be the set of all variables which are changed or
created by S. Now let f be a function which accepts the set of values V ′ of all variables V as input
and which returns a set of values M ′ of all variables M as output. It should hold that for every
value of variables V before S the return value of f(V ′) is equal to the values of M after S. Using
this function we can define lemmas which prove that {Q}S; {P} holds even if S is large. More
concretely let’s say we want to prove that the Hoare triple {Q(v1, . . . vi)}S; {P (m1, . . .mj)} holds
where v1, . . . vi are input variables of S and m1, . . .mj are the new and modified variables. We can
define a lemma L(v1, . . . vi) with precondition Q(v1, . . . vi) and with postcondition P (f(v1, . . . vi)).
This lemma can now be used in a method to derive {Q(v1, . . . vi)}S; {P (m1, . . .mj)}.

As an example let S be a program S ≡ x := x+1; var z := y∗x; with precondition Q(x, y) and
postcondition P (x, y, z). We want to verify that {Q(x, y)} x := x + 1; var z := y ∗ x; {P (x, y, z)}
holds using a lemma. In order to define this lemma we introduce a function:

f(x, y) ≡ var x′ := x; x′ := x′ + 1; var z := y ∗ x′; return (x′, z′);

Note that functions cannot modify input variables so we need to create fresh variables x′, z′. Using
function f we can define lemma L(x, y) with precondition Q(x, y) and postcondition
P (f(x, y).x′, y, f(x, y).z′). The program S can now be verified using lemma L. The proof that the
effect of lemma f is equal to program S is usually trivial for Dafny. Using weakest precondition
calculus the weakest precondition becomes:

WP[L(x, y); x := x + 1; var z := y ∗ x; , P (x, y, z)]

≡ WP[L(x, y); , P (x + 1, y, y ∗ (x + 1))]

≡ WP[assert Q(x, y); assume P (f(x, y).x′, y, f(x, y).z′); , P (x + 1, y, y ∗ (x + 1))]

≡ WP[assert Q(x, y); , P (f(x, y).x′, y, f(x, y).z′)⇒ P (x + 1, y, y ∗ (x + 1))]

By definition of f it follows that f(x, y).x = x + 1 and f(x, y).y = y ∗ (x + 1) so
P (f(x, y).x′, y, f(x, y).z′) = P (x + 1, y, y ∗ (x + 1)) and the SAT solver should be able to derive
that P (f(x, y).x′, y, f(x, y).z′)⇒ P (x + 1, y, y ∗ (x + 1)) is true. The proof that the effect of f is
equal to the effect of S usually easily within Dafny’s capabilities.

≡ WP[assert Q(x, y); , true]

≡ Q(x, y)

Defining functions

We have now introduced a pattern to create a lemma which proves that a Hoare triple holds. In
order to prove that a Hoare triple {Q(x, y)}S; {P (x, y, z)} holds we need to define a function f
with the same effect as program S. One might wonder how we can define such a function. Unlike
programs, functions cannot call methods, contain loops and modify input variables. Next to this
functions contain a different if statement then programs. When a program contains a loop or a
method call then we generally cannot create a function with the same effect. If a program contains
no loops, method calls or if statements then we can use a simple pattern to create a function. Let

32 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

S be a program without loops, method calls or if statements. If program S does not modify input
variables then we can directly use S to define f . We can define function f as S; return (x, y, z);.
This simple definition does not work when S modifies an input variable. We can circumvent this
problem by creating new local variable in f and using the local variable instead of the input
variables. Lets say that function S modifies variable x. We can define f by first creating a new
variable x′ with initial value x. Since x′ is not an input variable of f we can change variable x′.
We can now define a new program S′ which is identical to program S but where variable x is
replaced by variable x′. We can now define f as var x′ := x; S′; return(x′, y, z). We can always
use this approach to create functions for programs without loops, method calls or if statements.
In the example of the previous section program S was defined as x := x + 1; var z := y ∗ x;. We
can create function f by introducing the new variable x′. We can now define f as:

f(x, y) ≡ var x′ := x; x′ := x′ + 1; var z := y ∗ x′; return (x′, y, z);

Note that variable y is not modified so we could also chose to not return it. Next to this
we know that function f is deterministic since program S needs to be deterministic. Because of
this we can declare f as a function method. A function method is a Dafny feature which allows
us to declare a function as both a method and a function. Essentially a function method is an
executable function which can be called from methods and from code annotations. In practice we
can simplify the verification and debugging processes by replacing S by a call to function method
f . Calling the function is slightly less performance intensive and improves readability. Once the
code verifies we can replace the function call again with the original code S.

As mentioned before we cannot define a function if S contains a loop or a method call. We
cannot create a lemma to reason about the effect of S. The best alternative is to verify S using
multiple lemmas. We can create one lemma for every section of code without a loop or method
call. We can verify the entire program by combining these lemmas. As an example, when we
want to prove that the Hoare triple {Q} S1; while B do S2; od S3; {P} holds then we cannot
create one function for the entire program. We can create a stable proof by creating lemmas for
every section of code S1, S2, S3. In our example the Dafny user needs to create 3 lemmas and
a loop invariant I. The first lemma should prove that the Hoare triple {Q}S1; {I} holds. The
second lemma should prove that {I ∧ B}S2; {I} holds and the third lemma which should prove
that {I ∧ ¬B}S2; {P} holds. These 3 lemmas allow us to move as much complexity to lemmas as
possible. Using these 3 lemmas Dafny should be able to derive that the entire program is correct.

The last case is that S contains an if statement. In a function every branch of the if statement
needs to return a value. We can technically create a function even if S contains an if statement.
Unfortunately, a function containing if statements can be tedious to verify. In practice it is often
easier to split S into smaller programs which do not contain if statements.

Difference lemma pattern and straight forward method verification

When we want to verify a program S with precondition Q and postcondition P then the first step is
always defining a specification for all loops and method calls within S. We can then divide program
S into multiple subprograms S1, . . . , Sn without method calls and loops. For every subprogram
Si we can specify a Hoare triple {Qi}Si; {Pi}. These Hoare triples and the specifications can then
be combined to verify program S. For every program Si in S we would need to prove:

assert Qi; Si; assert Pi;

If the proof that Pi holds is complex then we need to assist Dafny. The classic approach would
be to derive intermediate invariants within Si. We can add these intermediate invariants to Si by
adding assert statements to Si. We can also assist Dafny by defining simple lemmas which prove
that a simple intermediate invariant implies a complex intermediate invariant. These lemmas can
then be used to simplify the derivation of Pi.

An alternative approach is defining a lemma using the pattern from this chapter. We can
define a function with the same effect as Si. Using this function we can now define a lemma which
proves that if Qi holds before Si then Pi holds after Si. This would give us the Dafny code:

Verification of an implementation of Tarjan’s algorithm for SCC 33

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

assert Qi; L(); Si; assert Pi;

As discussed before this second aproach using lemma L creates a more stable proof then just
adding lemmas and assert statements to Si.

Advantages and disadvantages of the lemma pattern

In the previous section we have introduced a pattern which moves the verification of a program to
a lemma. The main advantage of this approach is that that the verification of the program proof
does not depend on the definition of P and Q. Almost all complexity is moved to the lemma.
Lemmas are easier able to verify because it is usually easy to split a lemmas into different lemmas.
The easiest and most common approach is splitting the postcondition of a lemma. If we want
to verify a lemma which states that Q implies P then we can define two predicates P1 and P2

such that P1 ∧ P2 ⇒ P . We can define two smaller lemmas, one with postcondition P1 and one
with postcondition P2. These smaller lemmas might not require all information from Q so we
could also try to weaken the preconditions Q1, Q2 by removing unneeded information. Simplifying
the precondition reduces the load on the SAT solver which greatly improves performance. More
concretely when a lemma L which proves that Q ⇒ P is unstable then we can split the proof
into two smaller lemmas L1, L2. Lemma L1,2 proves that Q1,2 implies P1,2, where preconditions
Q1, Q2 are defined such that Q ⇒ Q1 ∧ Q2 holds and the postcondition are defined such that
P1 ∧ P2 ⇒ P holds. Using lemmas L1, L2 we can then create a stable proof of the larger lemma
L. There are multiple other approaches which might work depending on the exact proof however
the best approach differs on a case to case basis.

There is however one remaining problem, the pattern of defining lemmas which verify a Hoare
triples might not be sufficient to create a stable program proof. When we use a lemma which
verifies that a Hoare triple {Q}S; {P} then the program proof does not depend on the definition
of Q and P . Unfortunately, Dafny does not know this. Dafny will hand the weakest precondition to
the SMT solver. The SMT can verify that the program is correct by proving that the function and
the program have the same effect. However the SMT solver will also try to prove that the program
is correct by exploring other options. The SMT solver will substitute the pre and postcondition
with their exact definitions. If these definitions are complex then the SMT solver will still be
unable to finish the proof. Because of this the proof can still be unable. In order to ensure that
the verification of the method is stable even if the pre and postcondition are complex we need to
introduce opaque predicates. Opaque predicates will be defined in section 5.3

5.3 Opaque predicates

In section 5.2.1, a strategy was introduced to stabilize the verification of a method by introducing
lemmas. This strategy might not be sufficient to create a stable proof. We can further stabilize
the proofs by introducing opaque predicates. An opaque predicate is a predicate which exact
definition is hidden from Dafny. The meaning of an opaque predicate can be revealed using the
reveal keyword. Revealing a predicate allows us to manage where Dafny has access to definition of
the predicate. Declaring a predicate as opaque can in turn results in a huge performance increase.
Dafny proves program correct using an SMT solver. The SMT accept a predicate as input which
states that the precondition implies the weakest precondition. The solver will try to prove that
the predicate is equal to true. If the input predicate is huge then the SMT solver will not be able
to derive true. This input predicate can contain other predicates. The SMT solver can replace
these predicates by their definition. Sometimes this is not required and this increases the load
of the SMT solver unnecessarily. By hiding the definition of predicates we can prevent the SMT
solver from wasting time working with definitions which are not required. Note that Dafny can
call a lemma with an opaque predicate as precondition without revealing the predicate.

Unfortunately, declaring predicates as opaque forces the Dafny user needs to manually reveal
predicates. This requires a lot of time and effort from the developer. Furthermore, revealing a

34 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

predicate results in a small performance penalty. These problems can be mitigated by grouping
predicates together in invariant groups. An invariant group P containing predicates P1, . . . Pn is in
and of itself an opaque predicate which definition is a conjunction of all predicates in the invariant
group. So the invariant group P is an opaque predicate with definition ∧i∈[1,n]Pi. The advantage
of an invariant groups is that all predicates in the group can be revealed in one go. Selecting
invariant groups is a vital step in the verification process. A clever selection of the invariant
groups can significantly reduce the complexity of the proof and improve the readability of the
verification. Note that we can add invariant groups into other invariant groups. This becomes
useful when invariant groups become very large.

Opaque predicates are a powerful tool especially used together with lemmas. Let S be a
program which modifies some variable v. We want to prove that the Hoare triple
{Q1(v)∧ · · · ∧Qm(v)}S; {P1(v)∧ · · · ∧Pn(v)} holds. We can prove that this Hoare triple holds by
introducing a lemma using the pattern from section 5.2.1. We define a function f(v) with the same
effect as program S and a lemma L(v) with precondition Q1(v) ∧ · · · ∧Qm(v) and postcondition
P1(f(v))∧ · · · ∧Pn(f(v)). Using lemma L Dafny can prove that the Hoare triple holds by proving
that f and S have the same effect. A problem can occur when the pre and postcondition get too
complex. The SMT solver used by Dafny will get bogged down trying to work with the definition
of the pre and postcondition even though it is not required. We can try to declare every predicate
Q1, . . . Pn as opaque. This would resolve the performance issues however this would add a lot of
extra work for the Developer. The developer would need to reveal every predicate individually and
this would quickly become unfeasible in practice. To avoid this issue we define two large invariant
groups Q ≡ Q1 ∧ · · · ∧Qm and P ≡ P1 ∧ · · · ∧ Pn. This would create a stable program proof and
the developer can reveal the definition of P and Q immediately when verifying the lemma L. It is
still advisable to verify lemma L by using smaller lemmas. We could verify lemma L by creating
one lemma for every postcondition Pi.

It might not be immediately clear why the definition of the predicates are not required and why
it can bog down the SAT solver that much. It is important to remember that Dafny calculates a
weakest precondition and then uses a SAT solver to prove the weakest precondition can be derived
from the precondition. If this derivation is complex then trivially the SAT solver will take a long
time. We can create a weakest precondition which is easier to derive from the precondition by
adding lemmas. However when the precondition and weakest precondition are very large then
the SAT solver can have trouble even if the derivation might seems simple to a human. Take the
Hoare triple {Q(v)}S; {P (v)} with lemma L from the previous example and let v′ be the value of
variable v after S. Using lemma L the weakest precondition would be:

WP[L(v); S; , P (v)]

WP[assert Q(v); assume P (f(v)); , P (v)[v := v′]]

WP[assert Q(v); , P (f(v))⇒ P (v)[v := v′]]

Q(v) ∧ (P (f(v))⇒ P (v)[v := v′])

So the Hoare triple holds if the predicate Q(v) ⇒ (Q(v) ∧ (P (f(v)) ⇒ P (v)[v := v′])) is equal
to true. By hand this proof is trivial, the predicate P (v)[v := v′] is P (v′) and P (v′) is equal to
P (f(v)). From this we conclude that P (f(v)) ⇒ P (v)[v := v′]) is equal to true which allows us
to simplify the predicate to Q(v)⇒ Q(v) ∧ true which is trivially equal to true. The SAT solver
can use the same proof, so the SAT solver has to derive that the effect of S is equal to f and
then the SAT solver can simplify the entire predicate to true. If P and Q are not opaque then
the SAT solver can attempt to unfold these definitions. Unfolding P and Q would turn our initial
expression Q(v)⇒ (Q(v) ∧ (P (f(v))⇒ P (v)[v := v′])) into:

(Q1(v) ∧ · · · ∧Qm(v))⇒

(Q1(v) ∧ · · · ∧Qm(v) ∧ ((P1(f(v)) ∧ · · · ∧ Pn(f(v)))⇒ (P1(v) ∧ · · · ∧ Pn(v))[v := v′])

Verification of an implementation of Tarjan’s algorithm for SCC 35

CHAPTER 5. OPTIMIZING COMPLEX PROOFS IN DAFNY

Substituting P and Q by its exact definitions only complicates the task for the SAT solver. The
SAT solver can now also try to substitute the value of v in all sub-expressions of P and Q. We
know that all these simplifications do not bring the SAT solver closer to its goal however the
SAT solver does not know this. The SAT solver can explore a huge state space even if it is not
necessary. By declaring P and Q as opaque the SAT solver cannot unfold the predicates and the
SAT solver will quickly find the correct derivation.

The addition of the opaque predicate P and Q makes the top level verification a lot more
stable. Creating a stable proof of lemma L is easier then creating a stable program proof of S.
We create one lemma Li(v) with postcondition Pi(f(v)) and the required invariants from Q(v) as
precondition. These techniques are sufficient to verify both versions of Tarjan’s algorithm. It is
important to note that defining these lemmas and opaque predicates is time consuming. These
techniques can be used in a wide range of proofs however they should only be used when needed for
performance reasons. Adding opaque predicates is especially time consuming. I would advice only
using opaque predicates if just adding lemmas and functions is insufficient to verify a program.

36 Verification of an implementation of Tarjan’s algorithm for SCC

Chapter 6

Stable proof of the recursive
Tarjan’s algorithm

In chapter 5 techniques are introduced which allow us to create stable proofs. In this chapter we
apply these techniques to verify the recursive Tarjan’s algorithm. In order to stabilize the proof
we need to identify functions and invariant groups. These functions and invariant groups can be
used to define lemmas. We would like to reuse the lemmas from the verification of the recursive
Tarjan’s algorithm in the iterative version. The lemmas can be reused because there are a lot of
similarities between the recursive and iterative version of Tarjan’s algorithm. Because the iterative
algorithm is a lot more complex we will make sure the the top-level verification of the recursive
algorithm is as stable as possible. The more stable the recursive verification is the easier, the
verification of the iterative algorithm will be.

6.1 Defining functions in Tarjan’s algorithm

We want to define lemmas to verify the StrongConnect method of Tarjan’s algorithm. We want
these lemmas to follow the pattern introduced in chapter 5 where one lemma verifies a Hoare triple
by introducing a function with the same effect as the code of the Hoare triple. We can create
multiple of these lemmas to verify the recursive StrongConnect helper method, algorithm 2. In
order to define these lemmas we first need to define functions. These functions have the same
effect as a section of code in the StrongConnect method. There are four sections of code where
the global variables are modified. These sections also occur in the iterative version of Tarjan’s
algorithm, algorithm 3. We want to create lemmas which reason about the effect of these sections
of code. In order to create these lemmas we introduce four functions. These functions return
an element of type TarjanData as output. The data type TarjanData was defined in definition
4.5. This datatype contains four fields: stack, disc, low, result, each field corresponds to one global
variable. We introduce the following four functions:

1. AddNewNode(data : TarjanData, u : Node) : TarjanData: The AddNewNode function is
defined in algorithm 6. The effect of this function corresponds to the effect of lines 1 to 4 in
the recursive StrongConnect method. This section of code accepts the current state data
and a node u as input and returns a new state containing u as output. This output state is
the same as the input state but with a new node u added to the global variables. Note that
technically this section of code also creates the local variable k as output. However since
this variable is never used after this section we do not need to let the AddNewNode function
return it.

2. UpdateFromLow(data : TarjanData, u : Node, v : Node) : TarjanData: The UpdateFromLow
function is defined in algorithm 7 and the effect corresponds to the effect of line 8 in the

Verification of an implementation of Tarjan’s algorithm for SCC 37

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

recursive StrongConnect algorithm. This function accepts a state data and two nodes u, v
as input. This function updates the state such that the value low[u] is the minimum of its
current value and the value low[v].

3. UpdateFromDisc(data : TarjanData, u : Node, v : Node) : TarjanData: The UpdateFromDisc
function is defined in algorithm 8. The effect of this function corresponds to the effect of
line 10 in the StrongConnect helper function. This function accepts a state data and two
nodes u, v as input. This function then updates the value low[u] to the minimum of itself
and disc[v].

4. PopFromStack(data : TarjanData, i : N) : TarjanData: The function PopFromStack is
defined in algorithm 9. The function has the same effect as the second while loop in the
the StrongConnect method, lines 11 to 18. This function accepts a state data and a nat-
ural number i as input, the function then removes nodes from the stack until the ith node
has been removed from the stack. The function creates a new component with all removed
nodes. This definition of the PopFromStack function is not the same as the code from line
11 to 18. In the algorithm we remove nodes from the stack until node u is removed. We
can prove that every node on the stack is unique and we know the index of node u on the
stack. So we can prove that PopFromStack function has the same effect as the code from
line 11 to 18. We use this definition of PopFromStack since this definition is significantly less
cumbersome to work with then a recursive function or a loop invariant. Furthermore, note
that the variable stack is a sequence of nodes and a component is a set of nodes, therefore we
need to cast the new component from seq〈Node〉 to set〈Node〉. This cast function is defined
in algorithm 15 from appendix B.

Algorithm 6 The AddNewNode function

Input: data: The global state of type TarjanData.
Input: u: An element of Node.
AddNodeStart(data, u):

1: var k := |data.disc|
2: data.disc[u] := k
3: data.low[u] := k
4: data.stack := stack ++ [u]
5: return data

Algorithm 7 The UpdateFromLow function

Input: u, v: Elements of Node.
Input: data: The global state of type TarjanData.
UpdateFromLow(data, u, v):

1: data.low[u] := min(data.low[u], data.low[v])
2: return data

Algorithm 8 The UpdateFromDisc function

Input: u, v: Elements of Node.
Input: data: The global state of type TarjanData.
UpdateFromDisc(data, u, v):

1: data.low[u] := min(data.low[u], data.disc[v])
2: return data

38 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

Algorithm 9 The PopFromStack function

Input: i: Amount of nodes to be removed from the stack 0 < i < |data.stack|.
Input: data: The global state of type TarjanData.
PopFromStack(data, i):

1: C := SeqToSet(data.stack[i : |data.stack|])
2: data.result := data.result ∪ C
3: data.stack := data.stack[0 : i]
4: return data

6.2 Introducing predicates groups and lemmas

In the previous section several functions were introduced. These function allow us to create
lemmas which reason about the effects of sections of Tarjan’s algorithm. We can now create
lemmas which reason about the effect of the update sections. Unfortunately these functions are
not sufficient to create a stable proof. As discussed in chapter 5 we can optimize proofs further
by introducing invariant groups. We distinguish four invariant groups in the recursive version of
Tarjan’s algorithm. These groups are:

1. TarjanData.Valid: This group contains all invariants which should hold for any state of the
global variables.

2. LoopInvariant: This group of invariants contains the loop invariants from the first loop of
the recursive StrongConnect helper function, line 5 to 10 in algorithm 2. Once this loop
has completed we should be able to derive the postcondition of StrongConnect using this
invariant group.

3. PostconditionStrongConnect: This group of invariants contains all invariants which should
hold at the end of a call of StrongConnect. These invariants are also used to prove that
a recursive call maintains the loop invariants from the first loop in the StrongConnect

function.

4. PreconditionStrongConnect: This group of invariants contains all invariants which should
hold before a call StrongConnect.

The invariant groups contain predicates from table 4.2 and some additional context inform-
ation. The context information consists of small invariants which are required to prove that an
invariant from table 4.2 is maintained. In this section we will also briefly introduce the lemmas
which are required to prove that the invariant groups are maintained. The exact definitions of
these lemmas are given in appendix C.

6.2.1 TarjanData Valid invariants group

This TarjanData.Valid invariant group contains invariants which hold in every global state. All
invariants in this group should be maintained when the global variables are edited. The
TarjanData.Valid invariant group is defined in definition 6.1. Because the size of this invariant
group is rather large, we have created two sub invariant groups DiscLow.Valid and Result.Valid.
These invariant groups are part of the invariant group TarjanData.Valid and they have only been
added to improve the readability within lemmas. The invariant group DiscLow.Valid contains all
invariants which only reason about the global variables disc and low. Similarly the invariant group
Result.Valid contains invariants which only reason about the global variable result.

In every global state the invariant TarjanData.Valid should hold. The global variables are up-
dated in the StrongConnect method. These updates occur in the four sections of the StrongConnect
method. We need to prove that every section maintains the invariant TarjanData.Valid. We create
one lemma for each section. This gives us the following 4 different lemmas:

Verification of an implementation of Tarjan’s algorithm for SCC 39

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

1. AddNewNodeDataValid(data : TarjanData, u : Node) with postcondition
AddNewNode(data, u).Valid

2. UpdateFromLowDataValid(data : TarjanData, u : Node, v : Node) with postcondition
UpdateFromLow(data, u, v).Valid

3. UpdateFromDiscDataValid(data : TarjanData, u : Node, v : Node) with postcondition
UpdateFromDisc(data, u).Valid

4. PopFromStackDataValid(data : TarjanData, i : N) with postcondition
PopFromStackDataValid(data, i).Valid

These lemmas require the same input variables as their respective functions. Every lemma
proves that its respective function maintains all invariants in data.Valid

Definition 6.1 (TarjanDataValid). The TarjanDataValid invariant group contains invariants from
table 4.2. The invariant group TarjanData.Valid contains invariants which should hold in any state.
TarjanData.Valid contains the following invariants:

• DiscLow.Valid(): This invariant is an invariant group which states that the global variables
disc and low are in a valid state. This invariant group is defined in definition 6.2.

• Result.Valid: This invariant is an invariant group which states that the variable result is in
a valid state. This invariant group is defined in definition 6.3.

• S1: This invariant states that, for every node u ∈ stack there exists a connected node
v ∈ stack such that low[u] = disc[v] holds.

• S3: This invariant states that for every pair of nodes u, v ∈ stack if v is located after node
u in the stack then disc[u] < disc[v] holds.

• S6: This invariant states that every node u ∈ low it holds that u is either contained in result
or in stack

Definition 6.2 (DiscLowValid). The invariant group DiscLow.Valid contains invariants which
always hold for the DiscLow variable. This group contains the following invariants:

• S0: This invariant states that for every node u ∈ low it holds that low[u] is smaller or equal
to disc[u].

• disc.Keys = low.Keys: This invariant states that the same nodes are contained in both disc
and low. This predicate provides some additional required context information which is not
part of any invariant.

• ∀u ∈ disc : disc[u] < |disc|: This predicate provides some additional context information
which is needed to prove that the invariants S3 is maintained.

Definition 6.3 (ResultValid). The invariant group Result.Valid contains invariants which always
hold for the result variable. This group contains the following invariants:

• S7: This invariant states that all successors of every node in result are contained in a com-
ponent of result.

• S10: This predicate states that all components of result are strongly connected components
as defined in definition 3.4.

40 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

6.2.2 Loop invariants group

This invariant group LoopInvariant(oldData : TarjanData, u : Node, data : TarjanData, i : N)
contains all loop invariants from the first loop in the StrongConnect helper function, line 5 to 10
of algorithm 2. The invariants in LoopInvariant depend on 5 input variables. The input variable
oldData which is the state at the start of a call StrongConnect(u), u is the node which is being
processed, data is the current state and i is the number of nodes which have been processed. This
loop invariant is used to derive the postcondition of StrongConnect

The proof that the LoopInvariant is maintained is very complex. One lemma is required to
prove that the lemma holds at the start of a recursive call. Beside this we require three lemmas
to prove that the invariant is maintained in every iteration of the loop. There are three paths
which can be taken in every loop iteration. One lemma is required for each path. This gives us
the following four lemmas:

1. AddNewNodeLoopInvariant(data : TarjanData, u : Node). This lemma ensures that the
loop invariant holds at the start of the loop. The section before the loop invariant is the
AddNewNode section. This lemma uses the definition of AddNewNode and the precondition
of StrongConnect to ensure that the loop invariant holds.

2. RecursionLoopInvariant(oldData : TarjanData, recStartData : TarjanData,
data : TarjanData, u : Node, v : Node, i : N): This lemma ensures that the loop invariant is
maintained in the case that node v is not contained in low. Here node v is the i+1th successor
of node u. When node v is not in low then node v needs to be processed before we continue
processing node u. A recursive call StrongConnect(v) is performed to process node v. A
lot of invariants are not maintained by the recursive call. These invariants are restored by a
UpdateFromLow section. This creates a large complex proof. This proof depends on 3 states.
The state oldData which is the state at the start of the StrongConnect call, recStartData
which is the state at the start of the recursive call and the state data which is the data after
the recursive call.

3. UpdateFromDiscLoopInvariant(oldData : TarjanData, data : TarjanData, u : Node, v : Node,
i : N): This lemma ensure that the loop invariant is maintained if node v, the i + 1th

successor of u, is not contained in data.low but node v is contained in data.stack. In this case
the UpdateFromDisc section is executed to update the global variables. This lemma proves
that the update UpdateFromDisc(data, u, v) maintains the loop invariant.

4. MaintainsLoopInvariant(oldDatadata : TarjanData, data : TarjanData, u : Node, v : Node,
i : N): This lemma ensures that the loop invariant is maintained in the remaining case where
v is not contained in the stack and v is not contained in low. In this case the global state
is not updated. This lemma proves that the loop invariant is maintained without updating
the global variables.

Definition 6.4 (LoopInvariant). The invariant group LoopInvariant(oldData : TarjanData, u :
Node, data : TarjanData, i : N) contains the loop invariants from the first loop in the recursive
StrongConnect method, line 5 to 10 in algorithm 2. This invariant group contains the following
invariants:

• oldData.Valid: This invariant states that the initial state of the algorithm is in a valid state.

• data.Valid: This invariant states that the algorithm is in a valid state. This invariant is an
invariant group which is defined in definition 6.1.

• DataMaintained(oldData, data): This invariant states that the values in global variables disc
and low are maintained by the loop. The predicate DataMaintained is defined in definition
6.5.

• S2(data): This invariant states that every node on the stack is connected to all nodes after
it on the stack.

Verification of an implementation of Tarjan’s algorithm for SCC 41

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

• S4(data, u): This invariant states that all nodes in the stack after u have a low value which
is smaller or equal to low[u].

• S8(data, |oldData.stack|+ 1): This invariant states that all processed nodes in the stack have
a low value which is not equal to the disc value.

• S9(data, |oldData.stack|+1): This invariant states that all processed nodes in the stack have
a low value which is lower then the disc value of all its successors.

• i ≤ |successors(u)|: This invariant states that i value is not too large.

• oldData.stack + [u] ≤ data.stack: This invariant provides some context information which
states that u is the first node added to the stack at the start of the recursive call.

• |oldData.stack| + 1 < |data.stack| ⇒ data.stack[|oldData.stack| + 1] ∈ successors(u): This
invariant states if there is a node directly after u in the stack then the node is a successor
of node u. From other lemmas we can derive that data.stack[|oldData.stack|] is u.

• ∀v : v /∈ oldData.stack ∧ v ∈ oldData.low ⇒ v /∈ data.stack: This invariant contains some
context information. This invariant states that no nodes are added back to the stack once
they have once been removed.

Definition 6.5 (DataMaintained). If the predicate DataMaintained(oldData : TarjanData,
newData : TarjanData) holds then the values of oldData.disc and oldData.low are also contained
in newData.disc and newData.low.

• ∀u ∈ oldData.low : u ∈ newData.low ∧ oldData.low[u] = newData.low[u]

• ∀u ∈ oldData.disc : u ∈ newData.disc ∧ oldData.disc[u] = newData.disc[u]

6.2.3 Postcondition invariant group

The invariant group PostconditionStrongConnect(oldData : TarjanData,newData : TarjanData, u :
Node) contains the invariants which should hold after a call of the StrongConnect method. These
invariants depend on the node u which is the node that is being processed and the global states
oldData and newData which are the states at the start and at the end of the call. The invariant
group PostconditionStrongConnect is defined in definition 6.6.

The invariant group PostconditionStrongConnect needs to be derived from the invariant group
LoopInvariant. The LoopInvariant has been designed to make this derivation as easy as possible.
We require two lemmas to derive PostconditionStrongConnect from LoopInvariant. At the end
of the StrongConnect method all nodes can be left on the stack or the top of the stack can be
removed and added as a new component. A call StrongConnect(u) creates a new component if
disc[u] = low[u] and the algorithm leaves all nodes on the stack if disc[u] 6= low[u]. We require one
lemma for each of the two cases. These lemmas are:

• Proof1PostconditionStrongConnect(oldData : TarjanData, data : TarjanData, u : Node): This
lemma handles the case where data.disc[u] = data.low[u] and a new component is made. Here
oldData should be the state before the recursive call, data should be state after the first loop
and u should be the node which is being processed. This lemma then proves that the
postcondition holds once we remove node u from the stack and add it to a new component.

• Proof2PostconditionStrongConnect(oldData : TarjanData, data : TarjanData, u : Node): This
lemma handles the case where data.disc[u] 6= data.low[u]. Here oldData should be the start
state, data the current state and u the node which is being processed. Since the state will
no longer be updated we prove that the postcondition already holds for the current state

42 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

Definition 6.6 (PostconditionStrongConnect). The invariant group PostconditionStrongConnect(
oldData : TarjanData,newData : TarjanData, u : Node) contains all invariants which hold at
the end of a recursive call StrongConnect(u). The invariants in this invariant group depend
on the node u and the initial and final state of the call StrongConnect(u). The invariant
PostconditionStrongConnect contains the following invariants:

• DataMaintained(oldData,newData): This invariant states that the values in oldData.disc
and oldData.low are maintained by the call of StrongConnect(u). This predicate is defined
in definition 6.5

• S2(newData): This invariant states that every node on the stack is connected to all nodes
after it on the stack.

• u ∈ newData.stack⇒ S4(newData, u): This invariant states that if u is on the stack then all
nodes in the stack after u have a low value which is smaller or equal to low[u]. Note that if
u is not in the stack then the stack is unchanged from the initial stack.

• S5(newData, u): This invariant states that if and only if node u is still in the stack after the
call then low[u] is not equal to disc[u].

• S8(newData, |oldData.stack|): This invariant states that for all new nodes in the stack it
holds that the low value is not equal to the disc value.

• S9(newData, |oldData.stack|): This invariant states that all new nodes in the stack have a
low value which is lower then the disc value of all their successors.

• S12(oldData, u,newData): This invariant states that the stack of oldData is also fully con-
tained in the stack of newData. Furthermore, this invariant states that if newData.stack is
not equal to oldData.stack then u is the first new node on the stack.

• u ∈ newData.low: This invariant provides some missing context information. This invariant
simply states that node u is added to low.

• ∀v : v ∈ oldData.stack ∧ v ∈ oldData.low ⇒ v /∈ newData.stack: This invariant states that
no nodes which have been processed are added back to the stack.

6.2.4 Precondition invariant groups

The invariant group PreconditionStrongConnect contains all invariants which should hold before
a call of StrongConnect. This invariant is defined in definition 6.7. This invariant group is small
and does not have to be implemented as an opaque predicate. We have chosen to define this
invariant group to improve the readability of the proof. We require only one lemma to prove
that PreconditionStrongConnect holds before a recursive call. This lemma is PreconditionStrong
-ConnectHolds(data : TarjanData, u : Node, v : Node). Here data is the current state, node u is the
node which is being processed and node v is the successor of u. Node v is also the input node of
the recursive call. This covers all invariant groups and lemmas which are required to verify the
recursive StrongConnect method

Definition 6.7 (PreconditionStrongConnect). The invariant group PreconditionStrongConnect(
data : TarjanData, u : Node) contains the preconditions for a call of StrongConnected(u).

1. data.Valid: This is the predicate states that the start state is valid. This predicate is defined
in definition 6.1

2. u /∈ data.low: Trivially StrongConnected(u) should not be called if node u is already being
processed or has already been processed.

3. S2(AddNewNode(data, u)): This predicate looks complex but states that u is connected to all
nodes in the stack. Proving that this predicate holds for every recursive call can be complex.

Verification of an implementation of Tarjan’s algorithm for SCC 43

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

6.3 Complete verification

In section 6.2 lemmas and invariant groups were introduced, these lemmas and invariant groups can
be used to implement a stable verification of the recursive version of the StrongConnect method.
This allows us to verify the recursive version of Tarjan’s algorithm in Dafny. Tarjan’s algorithm is
valid if the end state is valid and all nodes are contained in the end state. We prove this using the
loop invariant MainLoopInvariant from definition 6.8. This invariant is the loop invariant of the
main method of Tarjan’s algorithm and it states that the state is valid and all processed nodes
are contained in the state. We have now defined all lemmas and invariants which are required
to verify the recursive version of Tarjan’s algorithm. The recursive Tarjan’s algorithm annotated
with invariant groups and lemmas is shown in algorithm 10 and 11. In the annotated algorithm
of StrongConnect the state old(data) is the state at the start of the method and recStart(data)
is the state at the start of a recursive call.

The new proof of the recursive Tarjan’s algorithm does not look similar to the pre-existing
monolithic proof. A side effect of using lemmas is that the new proof is a lot more abstract.
This is very useful in the verification of the iterative algorithm. As we will discuss in chapter 7,
the entire verification of the recursive algorithm can be reused in the verification of the iterative
algorithm. One might wonder how the pre-exisitng proof relates to the new proof and how the
lemmas in the new proof are verified. All lemmas which are used in the StrongConnect method
prove that an invariant group is maintained. These lemmas use one sub-lemma for each non trivial
invariant in the invariant group. Every sub-lemma contains a stable proof for an invariant in table
4.2. These proofs are usually straightforward and will not be discussed in detail. In section 6.3.1
the proof of one invariant from table 4.2 is described in great detail. All other invariants follow
the same pattern.

Definition 6.8 (MainLoopInvariant). The group of invariants MainLoopInvariant(data :
TarjanData, u : Node) contains the loop invariants from Tarjan’s algorithm for Strongly Connected
Components, algorithm 1.

1. data.V alid(): This is the invariant group that holds in a valid state of Tarjan’s algorithm
for SCC. The invariant group is defined in definition 6.1

2. S11(data) This predicate states that the stack is empty.

3. ∀v ∈ [0..u) : v ∈ data.ds.low: This predicate states that all processed nodes from the main
loop are contained in low.

Algorithm 10 Tarjan’s Strongly Connected Component Algorithm with proof constructs

Input: G = (V,E): A graph with nodes V and edges E.
Output: result: A set containing all strongly connected components of the graph.

postcondition result.Valid()

Tarjan(G):

1: var data := TarjanData(DiscLow(map[],map[],Result({ }), stack([]))
2: for u ∈ V do

3: invariant MainLoopInvariant(data, u)

4: if u /∈ low then
5: StrongConnect(u)

6: return data.result

44 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

Algorithm 11 Recursive version of helper function StrongConnect with proof constructs

Input: u: An element of Node.

precondition PreconditionStrongConnect(data, u)

postcondition PostconditionStrongConnect(old(data), data, u)

StrongConnect(u):

1: lemma AddNewNodeDataValid(data, u) . old(data)

2: lemma AddNewNodeLoopInvariant(data, u)

3: var k := |data.disc| . Section AddNewNode(data, u)
4: data.disc[u] := k
5: data.low[u] := k
6: data.stack := data.stack ++ [u]
7: for v index ∈ [0..|successors(u)|) do

8: invariant LoopInvariant(old(data), data, u, v index)

9: v := successors(u)[v index]
10: if v /∈ data.low then

11: lemma PreconditionStrongConnectHolds(data, u, v) . recStart(data)

12: StrongConnect(v)

13: lemma UpdateFromLowDataValid(data, u, v)

14: lemma RecursionLoopInvariant(old(data), recStart(data), data, u, v, v index)

15: data.low[u] := min(data.low[u], data.low[v]) . Section UpdateFromLow(data, u, v)
16: else if v ∈ data.stack then

17: lemma UpdateFromDiscDataValid(data, u, v)

18: lemma UpdateFromDiscLoopInvariant(old(data), data, u, v, v index)

19: data.low[u] := min(data.low[u], data.disc[v]) . Section UpdateFromDisc(data, u, v)
20: else
21: lemma MaintainsLoopInvariant(old(data), data, u, v, v index)

22: if data.low[u] = data.disc[u] then

23: lemma PopFromStackDataValid(data, |old(data).stack|)

24: lemma Proof1PostconditionStrongConnect(old(data), data, u)

25: comp := [] . Section PopFromStack(data, |old(data).stack|)
26: while true do
27: v := data.stack[|data.stack| − 1]
28: data.stack := data.stack[0 : |data.stack| − 1]
29: comp := comp ++ [v]
30: if v = u then break
31: data.result := data.result ++ {comp}
32: else
33: lemma Proof2PostconditionStrongConnect(old(data), data, u)

Verification of an implementation of Tarjan’s algorithm for SCC 45

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

6.3.1 Proving invariant S1

In this chapter invariant groups and lemmas are defined which can be used to create a stable
verification of the recursive Tarjan’s algorithm. Each lemma contains a proof that all invariants in
an invariant group are maintained. In turn the lemmas use one sub-lemma per invariant to create
a stable proof. In this section the verification of one invariant from an invariant group is shown
as an example. The verification of all other invariants follow the same pattern. In this section we
show how invariant S1, from invariant group data.Valid, is verified in Tarjan’s algorithm, algorithm
10 and 11 Invariant S1(data : TarjanData) is defined as :

S1(data) ≡ ∀u ∈ data.stack : ∃v ∈ data.stack : connected(u, v) ∧ data.low[u] = data.disc[v]

This invariant S1 states that for every node u in the stack, there exists a node v in the stack
such that u is connected to v and low[u] = disc[v] holds. Invariant S1 is part of the invariant group
data.Valid. At the start of the main algorithm, algorithm 10, the stack is initialized to the empty
stack. Invariant S1 trivially holds if the stack is empty. After the stack is initialized invariant
S1 is maintained in the loop. The loop invariant MainLoopInvariant implies that data.Valid and
therefore S1 holds. From the postcondition of StrongConnect we learn data.Valid is maintained.
When we prove that StrongConnect maintains invariant S1 we conclude that invariant S1 holds.

We need to prove that invariant S1 is maintained by a call of method StrongConnect(u).
By PreconditionStrongConnect we conclude that invariant S1(data) holds at the start of the
StrongConnect method. There are four update sections, we need to prove that these sections
maintain invariant S1.

The first update to the global state data is the AddNewNode section, line 3 to 6. This section
adds a node u to data.stack, data.disc and data.low. The lemma AddNewNodeDataValid contains a
proof which states that the invariant group data.Valid is maintained by the AddNewNode section.
The invariant group data.Valid contains the invariant S1. The lemma AddNewNodeDataValid uses
sub-lemmas to create a stable proof. A sub-lemma contains a proof that one invariant is main-
tained. We create a lemma which proves that invariant S1 is maintained by the AddNewNode
section. This lemma proves that the invariant S1(data) holds, given that invariant
S1(AddNewNode(data, u)) holds. Let v be a node in the AddNewNode(data, u).stack. We distin-
guish two cases.

• Case 1 v = u: By definition u is connected to itself. Furthermore, the section AddNewNode
sets low[u] and disc[u] to the same value. From this we can conclude that invariant S1 holds
for node v if v is equalt to u.

• Case 2 v 6= u: When v 6= u then v is in the old data.stack. From invariant S1(data) it
follows that there exists a node w ∈ data.stack which is connected to v and data.low[v] =
data.disc[w]. The section AddNewNode does not remove any nodes from the stack and the
section AddNewNode maintains all values from data.disc and data.low. From this we can
conclude that w ∈ AddNewNode(data, u).stack and AddNewNode(data, u).low[v] =
AddNewNode(data, u).disc[w]. Again, we conclude that invariant S1 holds for v.

After this we prove that invariant S1 is maintained in the first loop. There are three paths
through the loop. We need to prove that invariant S1 is maintained in all three cases. Let v
be the successor of node u which is being processed and let data be the state at the start of an
iteration. The first case is that v is not in data.low. When v /∈ data.low then we first start with a
recursive call StrongConnect(v). From the postcondition of StrongConnect(v) we conclude that
postData.Valid and thus invariant S1(postData) holds where postData is the state after the call
StrongConnect(v) has completed.

After this the recursive call section UpdateFromLow, line 7, updates the state. This section sets
the value of low[u] to the minimum of itself and low[v]. The lemma UpdateFromLowDataValid, line
13, proves that UpdateFromLow(postData, u, v).Valid holds. This lemma uses a separate lemma
to prove that invariant S1 is maintained. When postData.low[u] ≤ postData.low[v] then postData
remains unchanged so invariant S1 trivially holds. In the other case when

46 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 6. STABLE PROOF OF THE RECURSIVE TARJAN’S ALGORITHM

postData.low[u] > postData.low[v] then low[u] is set to low[v]. Let w be a node in the stack. We
distinguish two cases:

• Case 1 w 6= u: If w 6= u then w is connected to a node x and preData.low[w] = preData.disc[x].
Since preData.disc, preData.stack and preData.low[w] are not updated invariant S1 is main-
tained.

• Case 2 w = u: If w = u then u is connected to v and UpdateFromLow(data, u, v).low[u] =
UpdateFromLow(data, u, v).low[v]. Since v 6= u we know that v is connected to a node x such
that x is in the stack and low[v] = disc[x]. We know that low[u] = low[v] = low[x] and u is
connected to x so invariant S1 is maintained.

The second path through the loop is the case that the new neighbour v is in low and v is in
stack. In this branch data is updated by the UpdateFromDisc function at line 19. The lemma
UpdateFromDiscDataValid ensures that UpdateFromDisc maintains data.Valid. This lemma uses
a lemma which proves that UpdateFromDisc maintains invariant S1. This proof is rather trivial.
If data.low[u] ≤ data.disc[v] then data is unchanged and otherwise u is connected to v and low[u] =
disc[v].

The last path through the loop is the case that v is not in stack and in low. In this case data
is unchanged and invariant S1 is trivially maintained. This concludes the proof that the S1 is
maintained in the loop.

After the loop the state data is only updated if disc[u] = low[u]. If data remains unchanged
then invariant S1 is maintained. When disc[u] = low[u] then the PopFromStack section, from line
25 to line 31, updates the state. The invariant PopFromStackDataValid, from line 23, proves that
the section PopFromStack maintains invariant data.Valid. This lemma proves that invariant S1 is
maintained in a separate lemma. Let v be a node in PopFromStack(data, |old(data).stack|).stack.
Here old(data) is the state at the art of Strongconnect(u). We know that v is also contained in
data.stack. By invariant S1(data) we know that there exists a node w in data.stack such that w is
connected to v and data.low[v] = disc[w]. By invariant S0 and S3 we conclude that w is located
below v in the stack. So w is contained in PopFromStackDataValid(data, |old(data).stack|) and
invariant S1 is maintained. This concludes the proof that invariant S1 is maintained.

Verification of an implementation of Tarjan’s algorithm for SCC 47

Chapter 7

Proof of the iterative Tarjan’s
algorithm

In chapter 6 lemmas and invariant groups where introduced. These lemmas and invariants are
used to verify the recursive version of Tarjan’s algorithm. We want to reuse these lemmas and
invariant groups to verify the iterative algorithm. This is possible because the recursive and
iterative algorithm share a lot of similarities. The only one difference between the iterative and
the recursive version is that the recursive algorithm automatically keeps track of the progress of
every node by using recursion whereas the iterative algorithm manually stores the progress of all
nodes in a new stack work.

The difference between the two versions of the algorithm is outlined in the following example.
Let u be a node which is being processed by the Tarjan’s algorithm and let v be the jth successors
of u. Let the successor node v be a node which has not yet been processed so v /∈ low. Node u
cannot be completely processed until node v has been processed. This is why the algorithm needs
to postpone processing node u until node v has been processed. Both algorithms use a different
approach to switch from processing node u to node v. The recursive algorithm simply performs
a recursive call StrongConnect(v) to switch from node u to node v. Once the recursive call has
completed the algorithm continues processing node u. Once the algorithm has completed then
the algorithm automatically knows that j neighbours of u have been checked and that node v has
been processed. The iterative algorithm switches from node u to node v manually. The iterative
algorithm pushes an entry with the process of node u on the stack work and the algorithm then
adds a new entry for node v on top. These entries only contain the node which is being processed
u and the amount of processed neighbours j. The iterative algorithm retrieves one entries from
the top of the stack work and the algorithm continues processing the entry. Once the node has
completely been processed the algorithm retrieves the next node from the stack work. This means
that the entry with node u will be retrieved from the stack once node v has completely been
processed. This results in the same behaviour as the iterative algorithm.

Beside this difference the algorithms are the same. Both algorithms process nodes in the
exact same order and the algorithms use the same main algorithm which calls StrongConnect.
Because the main algorithm remains unchanged we can directly reuse the proof from the recursive
algorithm as long as we don’t change the post condition from the StrongConnect helper function.
This is why we can reuse the lemmas from the recursive algorithm. However there is one problem,
the proof of the recursive algorithm StrongConnect(u) only reasons about the node u. In the
iterative version of StrongConnect(u) we need to reason about node u and all unprocessed nodes
which are reachable from u. There are three concrete problems:

1. The first problem is that the proof of the recursive algorithm uses old states of global
variables. In a call StrongConnect(u) the recursive proof refers to the old states old(data)
and recStart(data). The state old(data) is the state at the start of the call and the state
recStart(data) is the state before a recursive call. These old states are easy to reference in

Verification of an implementation of Tarjan’s algorithm for SCC 49

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

the recursive proof since the recursive call is replaced by an assumption which states that
the postcondition of the recursive call holds. These old states are not easy to reference in a
proof of the iterative algorithm. In the iterative algorithm we require a different approach
to maintain the old state and recStart state for any node in the work stack.

2. The second problem is that in order to prove a node u is processed correctly we need to
maintain an invariant LoopInvariant. This invariant states that j successors of u have been
checked. Once all neighbours have been checked then we can create a new component
and prove that the node has successfully been processed. In the recursive algorithm the
invariant LoopInvariant is maintained for only one node. This invariant LoopInvariant is
maintained in the successor loop, line 5 to 10 from algorithm 2. A recursive call can be
performed in this loop, line 7. The recursive proof replaces this recursive call by a proof
obligation that the precondition of StrongConnect holds and an assumption that the post-
condition of StrongConnect holds. We cannot make this assumption in the iterative version
of StrongConnect. In the iterative version of StrongConnect we need to prove that the
invariant LoopInvariant is maintained for every node in the work stack. We can then prove
that when a new successor is added to the work stack then the precondition holds and once
the successor is processed then the postcondition holds. This allows us to prove that the
assumption of the recursive algorithm holds and we can reuse the recursive proof.

3. The last problem is that the post conditions of StrongConnect needs to be verified. It is
hard to define a loop invariant which is strong enough to derive the postcondition of the
iterative StrongConnect method for the original input node.

The first and second problem can be solved by maintaining a second stack ghostWork. This stack
will only be used for verification and will not influence the behaviour of the algorithm. The stack
ghostWork will contain more information then work. An entry in work only contains a node and
the amount of processed neighbours. An entry in ghostWork will also contain extra information
like the relevant old states. Once problems one and two have been solved then we can write
an invariant for the outer loop of the iterative algorithm which solves the third problem. These
ideas will be outlined in detail in this chapter. The iterative algorithm outlined with lemmas and
invariants can be found in algorithm 13 and 14

7.1 Storing old states global variables

We want to verify that the iterative version of Tarjan’s algorithm is valid. If we reuse the
specification of the recursive algorithm then we can reuse parts of the recursive proof. Let
the precondition of StrongConnect be PreconditionStrongConnect and let the postcondition be
PostconditionStrongConnect. The precondition PreconditionStrongConnect is defined in definition
6.7 and the postcondition PostconditionStrongConnect is defined in definition 6.6.

The main challenge with reusing the recursive proof is that the recursive call is replaced by an
assert statement and an assumption. The recursive call StrongConnect(v) is replace by an assert
statement assert PreconditionStrongConnect(data, v) and an assumption
assume PreconditionStrongConnect(old(data), v, data). The assert statement adds the proof ob-
ligation that the precondition of the recursive call holds and the assume statement introduces
the assumption that the postcondition of the recursive call holds. Because the recursive call is
replaced the recursive proof only reasons about one node and avoids proving that all successors
nodes are processed correctly. The recursive proof only needs to keep track of two old states
old(data),preData(data) and one invariant LoopInvariant. Once all j successors of a node u
have been processed then we can use the invariant LoopInvariant(old(data), data, u, j) to prove
that the postcondition holds. The iterative version does not use recursion but mimics a recursive
call by pushing two variables (u, j) on the stack work. Here u is the node which is being processed
and j is the amount of successors of u which have been processed. Because we don’t use recursion
we cannot assume that all successor nodes are processed correctly. Next to this the old states are
required for the proof are not stored.

50 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

In order to reuse the recursive proof we create a second second stack ghostWork as a ghost
variable. A ghost variable is a variable which can only be used in the verification and which cannot
influence the behaviour of the algorithm. The stack ghostWork stores all information which would
be lost compared to the recursive algorithm. Using this stack ghostWork we can reuse the recursive
proof in the iterative proof. We want to add one entry for every node which is being processed
in this stack. One entry on the stack ghostWork will contain one node and all information which
is required to prove that the node is being processed correctly. A new entry for a node u being
placed on the stack work that is similar to a recursive call. To reuse the recursive proof we have
to prove that the predicate PreconditionStrongConnect holds. We will also add one entry with
node u on the stack ghostWork. After node u is placed on the stack work then node u is added
to the global variables. We then want to use the entry of u on the stack ghostWork to prove that
the invariant LoopInvariant holds. Whenever a successor of u is processed we want to prove that
the LoopInvariant is maintained. This can be tricky if a successor has not been processed. Once
all successors of u have been processed we prove that PostconditionStrongConnect holds for node
u. This postcondition can then be used in the proof of the node below u in the work stack. Note
that the node below u in the stack is a predecessor of node u which is waiting for node u to be
processed.

7.1.1 Defining Work

In this section we will define a new type Work. Every entry in the stack ghostWork will be of type
Work. The type Work stores all information which is required to prove that one node is processed
correctly. This proof uses the same lemmas and invariants from the recursive proof. The type
Work has fields which stores all variables and old states which are required in the recursive proof.
Next to this the type Work stores a phase. A phase is related to the invariants from the recursive
algorithm. The recursive algorithm uses 3 invariants, we create one invariant related to every
phase. Next to this we require one last phase to handle the recursion. In section 7.2 we will
introduce a loop invariant which allows us to derive invariants from the recursive algorithm from
the phase of a node. We distinguish the following 4 phases:

1. WorkRequested : This phase occurs when a node should be processed but no progress has been
made. This phase is similar to the initial state in the recursive StrongConnect algorithm.
In this phase the invariant PreconditionStrongConnect , from definition 6.7, holds and the
node has not been added to the state data.

2. WorkEnded : This phase occurs when a node has fully been processed. If a node is fully
processed then all neighbours of the node have been checked. This phase is similar to the
final state of the recursive StrongConnect algorithm. In this state the invariant
PostconditionStrongConnect from definition 6.6 holds.

3. WorkStarted : This phase indicates that we are currently actively processing a node. In this
state the invariant LoopInvariant from definition 6.4 holds.

4. WorkRecurse: This phase indicates that we can currently not continue processing a node
until a successor of the node has been processed. In this phase we store that the invariant
LoopInvariant held before we started to process a successor. In the recursive proof Dafny
simplifies the algorithm to avoid this phase. The recursive call is replaced with the assump-
tion that the postcondition of the recursive call holds. We cannot use this assumption in
the iterative algorithm. Because of this nodes can be in a new phase which is not con-
sidered in the recursive proof. If a node u is in this phase then the node u is waiting for a
successor node v to be processed. Once this successor v has fully been processed then the
successor v is in the WorkEnded phase and node u is on top of the stack ghostWork. If
node v is in the WorkEnded phase then we are going to be able to derive that the invariant
PostconditionStrongConnect holds for node v. This invariant PostconditionStrongConnect
was obtained by an assumption in the recursive proof. The recursive proof then used a

Verification of an implementation of Tarjan’s algorithm for SCC 51

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

lemma after the recursive call to prove that if LoopInvariant held before the recursive call
then we can update low[u] after which the invariant LoopInvariant holds for node u. We
require this the phase WorkRecurse in the iterative algorithm to prove that the invariant
LoopInvariant held before the ”recursive call”. After node v has been processed then low[u]
is updated and node u moves back to the WorkStarted phase.

We have now introduced the four phases. Nodes changes phases while being processed. A
state diagram of the phases is shown in figure 7.1 Every node initially starts in the WorkRe-
quest phase where the invariant PreconditionStrongConnect holds. Once the node is added to
the global variables data then node moves to the WorkStarted phase. In this phase the invariant
LoopInvariant holds. In the WorkStarted phase all successor nodes are checked. If a successor
has already been processed then we can easily prove that the LoopInvariant is maintained and we
stay in the WorkStarted phase. If the neighbour has not been processed then the node moves to
the WorkRecurse phase. In this phase the node waits until it is removed from the work stack.
Once the node is removed from the work stack then we know that the successor node is in the
WorkEnded phase. Because of this we can prove that the LoopInvariant holds again and we move
back to the WorkStarted phase. Once all neighbours are processed then we finish processing the
node by creating a new component or by leaving the node on the stack. After this the node has
finished processing and we can prove that the invariant PreconditionStrongConnect holds and the
node moves to the WorkEnded phase.

Figure 7.1: Phases when processing a Node

The exact definition of Work can be found in definition 7.1. The stack ghostWork should
contain the same entries as the stack work but with more information. We enforce this using a
loop invariant WorkMatchesGhostWork. This is an invariant of the outer loop from the iterative
StrongConnect method. This invariant is defined in definition 7.2.

Definition 7.1 (Work). The type Work stores the progress of one node. This datatype stores
information which is required to reuse the recursive proof. In the proof of the iterative version of
Tarjan’s algorithm we need to reason about multiple nodes. All nodes which are being processed
are stored in a stack ghostWork. Every entry in this stack is of type Work and stores the progress
of one node. This includes all values which are required to prove that all required invariants
are maintained. A element of type Work can have 4 member types where each member type
reflects a different phase. These member types are WorkRequested, WorkStarted, WorkRecurse
and WorkEnded.

Every member type contains the fields u, j, oldData. Here u is the node which is being tracked,
j is the amount of processed successors and oldData is the last state before we started processing
node u. In the recursive proof the state oldData is called old(data). The member WorkRecurse
also contains twp extra fields v and preData. This member indicates that the node u cannot be

52 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

processed until node v has been processed. The field preData is the last state where u was last
processed. In the recursive proof this state was called recStart(data). The exact definition of
work is shown below.
work ≡

• WorkRequest(u : Node, j : N, oldData : TarjanData)

• WorkStarted(u : Node, j : N, oldData : TarjanData)

• WorkRecurse(u : Node, j : N, oldData : TarjanData, v : Node, preData : TarjanData)

• WorkEnded(u : Node, j : N, oldData : TarjanData)

Definition 7.2 (WorkMatchesGhostWork). The invariant WorkMatchesGhostWork(work :
seq〈Node,N〉, ghostWork : seq〈Work〉) states that the ghostWork stack contains the same inform-
ation as the Work stack. In other words both stacks have the same size and for every index i it
holds that work[i].u = ghostWork[i].u and work[i].j = ghostWork[i].j. This gives us the following
invariant:

WorkMatchesGhostWork(work, ghostWork) ≡ |work| = |ghostWork|∧
∀i ∈ [0 . . . |work|) : work[i].u = ghostWork[i].u ∧ work[i].j = ghostWork[i].j

7.1.2 Adding ghostWork to StrongConnect

In the previous section we have introduced the stack ghostWork. The stack ghostWork needs to
be added to the StrongConnect method such that the loop invariant WorkMatchesGhostWork is
maintained. An iteration of the outer loop only modifies the top element of the work stack. The
top element is written to the variables (u,w). Similarly we write the top element of the ghostWork
stack to a new variable ghostW of type Work. Like ghostWork is a more inclusive version of
work, ghostW is a more inclusive version of the pair of variables (u, j). The variable ghostW is
updated to match (u, j). Next to this we update the member type of ghostW based on the phase.
In this section we describe how ghostWork and ghostW are updated. The iterative version of
StrongConnect annotated with the ghost variables is shown in algorithm 12. The ghost variables
are insufficient to finish the proof. We will introduce invariants and lemmas to finish the proof
after this section.

The stack work is updated three times in the iterative StrongConnect algorithm. The stack
ghostWork also needs to be updated in the same locations:

1. Initially, at line 1 the stack work is set to [(u0, 0)]. The ghost variable ghostWork is initially
set to [WorkRequest(u0, 0, data)].

2. The second update occurs at the start of the the outer loop, line 6. Here the top of the stack
work is popped from work and written to (u, j). Similarly the top of ghostWork is popped
from the stack and written to the variable ghostW.

3. The last update of work occurs from line 20 to 21. Here the progress from node u is pushed
on the stack and a new tuple (v, 0) is added. The update from ghostWork is slightly more
complex. The node u cannot be processed until node v has completely been processed. So
node u should be in phase WorkRecurse. This is why the variable ghostW needs to change
from member type WorkStarted to WorkRecurse. After this ghostW is added to the stack
ghostWork and a new entry WorkRequest is added on top of it.

The ghostWork stack is updated one more time at the end of the algorithm, line 39. At this
point the variable u has completely been processed. The top node on the work stack does was
waiting on node u. The low value of the top node is updated and the node can be processed in the
next iteration. Since the top node is no longer blocked the type of the top entry on the ghostWork
stack is changed from WorkRecurse to WorkStarted.

The second variable ghostW also needs to be updated. We update ghostW in three different
locations:

Verification of an implementation of Tarjan’s algorithm for SCC 53

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

1. At line 11 it holds that ghostW is of type WorkRequest. Once node u is added to stack then
u is no longer in the WorkRequest phase but u is in the WorkStarted phase. Because of this
we update ghostW to type WorkStarted at line 15.

2. The next update of ghostW occurs in the inner loop of the StrongConnect method. The
variable j is incremented in every iteration of the inner loop. The field ghostW.j is therefore
also incremented at line 28.

3. The last update of ghostW occurs at line 38. Here the node u has completely been processed.
Therefore we change the state of ghostW to type WorkEnded.

54 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

Algorithm 12 Partially annotated version of helper function StrongConnect

Input: u: An element of Nodes.

precondition PreconditionStrongConnect(data, u0)

postcondition PostconditionStrongConnect(old(data), data, u0)

StrongConnect(u0):

1: var work := [(u0, 0)]

2: ghost var ghostWork := [WorkRequest(u0, 0, data)]

3: ghost var ghostW := WorkRequest(u0, 0, data)

4: while |work| > 0 do

5: invariant WorkMatchesGhostWork(work, ghostWork)

6: (u, j) := work[|work| − 1]
7: work := work[0 : |work| − 1]

8: ghostW := ghostWork[|ghostWork| − 1]

9: ghostWork := ghostWork[0 : |ghostWork| − 1]

10: if j = 0 then
11: var k := |data.disc| . Section AddNewNode(data, w.u)
12: data.disc[u] := k
13: data.low[u] := k
14: data.stack := data.stack ++ [u]

15: ghostW := WorkStarted(ghostW.u, ghostW.j, ghostW.oldData)

16: recurse := false
17: for i := j to |successors(u)| − 1 do
18: v := successors(u)[i]
19: if v /∈ data.low then
20: work := work ++ [(u, i + 1)]
21: work := work ++ [(v, 0)]

22: ghostWork := ghostWork ++ [WorkRecurse(ghostW.u, ghostW.j + 1, ghostW.oldData, v, data)]

23: ghostWork := ghostWork ++ [WorkRequest(v, 0, data)]

24: recurse := true
25: break
26: else if v ∈ data.stack then
27: data.low[u] := min(data.low[u], data.disc[v]) . Section UpdateFromDisc(data, u, v)

28: ghostW.j := ghostW.j + 1

29: if ¬recurse then
30: if data.low[u] = data.disc[u] then
31: comp := [] . Section PopFromStack(data, |w.oldData.stack|)
32: while true do
33: v := data.stack[|data.stack| − 1]
34: data.stack := data.stack[0 : |data.stack| − 1]
35: comp := comp ++ [v]
36: if v = u then break
37: data.result := data.result ++ {comp}
38: ghostW := WorkEnded(ghostW.u, ghostW.v, ghostW.data)

39: if |work| > 0 then
40: v := u
41: (u, j) := work[|work| − 1]
42: data.low[u] := min(data.low[u], data.low[v]) . Section UpdateFromLow(data, u, v)

43: ghostW := ghostWork[0 : |ghostWork| − 1] . Change top of stack to WorkStarted

44: ghostW := WorkStarted(ghostW.u, ghostW.j, ghostW.data)

45: ghostWork := ghostWork[0 : |ghostWork| − 1] ++ [ghostW]

Verification of an implementation of Tarjan’s algorithm for SCC 55

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

7.2 Incorporating invariants into Work

In section 7.1 a new data type Work and a new variable ghostWork was introduced. The variable
ghostWork contains information on which nodes is being processed. The type Work contains
information to prove that a node is processed correctly. An entry of type Work keeps track of the
progress of one node. We distinguish 4 phases when we process a node, each phase is captured
by a different member type of Work. These phases are WorkRequest, WorkStarted, WorkRecurse
and WorkEnded. In this section we will first concretely define which invariants from the recursive
algorithm should hold in every phase.

In order to relate the invariants from the recursive proof to the Work datatype we create an
invariant WorkValid which accepts a Work entry as input. If this invariant holds then we can derive
the invariants from the recursive algorithm based on the phase. The invariant WorkValid uses
4 smaller invariants: ValidRequest, ValidStarted, ValidRecurse and ValidEnded. These invariants
define which invariant should hold in their respecitive phase. The invariant WorkValid simply
matches the phases to the correct invariant. The invariant WorkValid is defined in definition 7.3.
This invariant is an opaque predicate for performance reasons. Opaque predicates were explained
in section 5.3.

Definition 7.3 (WorkValid). The invariant WorkValid(w : Workdata : TarjanData) states that an
element w of type Work is valid for the given state data. A member of type Work tracks the progress
of one node. We process a node in different phases. Depending on the phase different invariants
should hold. We will define one unique invariant for every phase. The invariant WorkValid states
an element w of type Work is valid if the invariant corresponding to the member type of w holds.
This gives us the following invariant:
WorkValid(w:Work, data: TarjanData) ≡

• w.WorkRequest?⇒ ValidRequest(w, data))

• w.WorkStarted?⇒ ValidStarted(w, data))

• w.WorkRecurse?⇒ ValidRecurse(w, data))

• w.WorkEnded?⇒ ValidEnded(w, data))

7.2.1 Exact Work Invariants

We want to relate the phases from Work to invariants from the recursive algorithm. Figure 7.2
shows the state diagram from section 7.1.1 annotated with the invariants and the lemmas from
the recursive proof. The iterative StrongConnect algorithm annotated with lemmas is shown in
algorithm 14.

The initial state WorkRequest indicates that a new node should be processed but no pro-
gress has been made. Let w be of type WorkRequest, adding w to the stack ghostWork indicates
that node w.u should be processed next. Adding w to the top of the stack is similar to a call
StrongConnect(u) in the recursive algorithm. At the start of the recursive algorithm the invariant
PreconditionStrongConnect holds. We want WorkValid(w, data) to imply PreconditionStrongCon-
nect. Furthermore no progress should be made so w.j should be 0 and w.oldData should be data.
This exact definition of ValidRequest(w, data) is shown in definition 7.4.

From the WorkRequest phase a node can move to the WorkStarted phase. The WorkStarted
phase indicates that a node is currently being processed. In this case the node has been added
to the global state data and we are not waiting for a neighbour to finish processing. Let w be of
type WorkStarted. The entry w states that node w.u is currently being processed and w.j of its
successors have been processed. In the recursive algorithm this phase is similar to the successor
loop, line 5 to 10 from algorithm 2. In this loop the invariant LoopInvariant should hold. We want
ValidStarted to imply LoopInvariant. The invariant ValidStarted(w, data) is defined in definition
7.5. In order to ensure that the invariant ValidStarted holds when we move from the WorkRequest

56 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

Figure 7.2: Annotated phases when processing a Node

phase to the WorkStarted phase we reuse the lemma AddNewNodeLoopInvariant from the recursive
proof, definition C.5.

In state WorkRequest we can process a new neighbour and increment w.j. If the next neighbour
is already part of a component then we can use the lemma MaintainsLoopInvariant, definition C.8,
to prove that the invariant ValidStarted is maintained. If we encounter a node which is still in
the stack stack then we can use the lemma UpdateFromDiscLoopInvariant, definition C.7, to prove
that the invariant ValidStarted is maintained. Lastly we can process a neighbour which has not
yet been processed. In this case we move to phase WorkRecurse and we create a new entry on
the ghostWork stack of type WorkRequest. We can ensure that WorkValid holds using the lemma
PreconditionStrongConnect holds.

The phase WorkRecurse can only be reached from state WorkStarted. The phase WorkRecurse
indicates that a node cannot continue being processing until a successor node has been processed.
Let w be of type WorkRecurse. Here w states that node w.u is waiting for node w.v to finish being
processed. Node w.v should be the w.j− 1th successor of w.u. After node w.v has been processed
then low[w.u] is updated and w moves back to phase WorkStarted. We want to prove that the
invariant ValidStarted holds once node w.u continues being processed. The invariant ValidStarted
holds when we are able to prove that the invariant LoopInvariant holds. As discussed before,
node w.u waiting for node w.v to be processed in the iterative algorithm is similar to a recursive
call StrongConnect(u) in the recursive algorithm. In the recursive algorithm the recursive call
occurs at line 12 of the annotated recursive algorithm, algorithm 11. After the recursive call the
lemma RecursionLoopInvariant is used to prove that the invariant LoopInvariant is maintained.
We want to reuse this lemma in the iterative proof. The lemma RecursionLoopInvariant has the
preconditions:

1. LoopInvariant(w.oldData, w.recStart, w.v, w.j − 1)

2. PostconditionStrongConnect(w.recStart, data, w.v)

In the iterative algorithm the update from low section occurs at line 42. In the iterative al-
gorithm we know that node w.v has an entry w′ which is in the phase WorkEnded. We are
able to derive PostconditionStrongConnect from ValidEnded(w′, data). We want to derive the
LoopInvariant(w.oldData, w.recStart, w.v, w.j − 1) from ValidRecurse(w, data). This gives us the
definition of ValidRecurse(w, data) as shown in definition 7.6.

The last phase WorkEnded can only be reached from WorkStarted once all successors have been
processed. Let w be in phase WorkEnded. As discussed before the invariant ValidEnded(w, data)
needs to imply that the invariant PostconditionStrongConnect(w.oldData, w.u, data) holds. The

Verification of an implementation of Tarjan’s algorithm for SCC 57

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

invariant ValidEnded has a straightforward definition and is defined in definition 7.7. We can
directly reuse the proof of the recursive algorithm to prove that this invariant holds. If low[w.u] =
disc[w.u] then we can use lemma Proof1PostconditionStrongConnect, definition C.9, and otherwise
we can use lemma Proof2PostconditionStrongConnect, definition C.10.

Definition 7.4 (ValidRequest). The invariant ValidRequest(w : Work, data : TarjanData) con-
tains invariants which hold when a new node should be processed. Let w be a work entry such
that ValidRequest(w, data) holds. This implies that w.j = 0 and w.oldData = data. Furthermore
the invariant PreconditionStrongConnect should hold similar to the recursive algorithm, definition
6.7. This gives us the following invariant:
Work.ValidRequest(w : Work, data : TarjanData) ≡

• w.j = 0

• w.oldData = data

• PreconditionStrongConnect(data, w.u)

Definition 7.5 (ValidStarted). The invariant ValidStarted(w,Work, data : TarjanData) contains
all invariants which should hold when we are process a node. Let w be a work entry such that
ValidRequest(w, data) holds. This means that we are currently processing node w.u and the
invariant LoopInvariant from definition 6.4 holds. This gives us the following invariant:

ValidStarted(w : Work, data : TarjanData) ≡ LoopInvariant(w.oldData, w.u, data, w.j)

Definition 7.6 (ValidRecurse). The invariant ValidRecurse(w : Work, data) contains all invariants
which should hold when a node is waiting for another node to finish processing. This invariant
maintains all invariants which used to hold when the node started waiting. Note that the iterative
algorithm updates the value of j when the process is postponed. The recursive algorithm only
updates j after the call continues. Because of this j cannot be 0 and we need to process the j − 1
successor. Furthermore the current state data should be the state when w.u was postponed. This
gives us the following invariant:
ValidRecurse(w : Work, data : TarjanData) ≡

• data = w.recData

• 0 < w.j ≤ |successors(w.u)|

• successors(w.u)[w.j − 1] = w.v

• LoopInvariant(w.oldData, w.u, w.preData, w.j − 1)

Definition 7.7 (Work.ValidEnded). The invariant ValidEnded(w : Work, data : TarjanData)
contains all invariants which should hold when a node is fully processed. This is the same as a
postcondition of StrongConnect. This gives us the following invariant:

ValidEnded(w : Work, data : TarjanData) ≡ PostconditionStrongConnect(this.oldData, this.u, data)

7.2.2 Invariants of GhostWork

In section 7.1 the data type Work was introduced and a stack ghostWork. A variable w of type
Work tracks the progress of a node w.u. Next to this the invariant invariant ValidWork(w, data)
was introduced in section 7.2. This invariant implies that the state data contains the progress of
a node w.u. Using the invariant WorkValid we can define a loop invariant which proves that all
Work entries are waiting for the node above it in the ghostWork stack.

The invariant GhostWorkIsValid(ghostWork : seq < Work >, data : TarjanData) states that
the variable ghostWork properly stores the progress of all nodes. This invariant always holds if the
stack ghostWork is empty. When the stack ghostWork is not empty then the top element w of the

58 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

ghostWork stack should be valid for the current state data, ie the invariant WorkValid(w, data)
holds. Furthermore, since w is on top of the stack node w.u is either a new node which has not
been processed or w.u is a node which is no longer waiting for another node to be processed. We
know that if w.j = 0 then w is of type WorkRequest and if w.j 6= 0 then w is of type WorkStarted.
All elements which are not on top of the work stack are waiting for the node on top of the stack
to be processed. So all entries in the tail of ghostWork have the member type WorkRecurse
and all entries in the tail of the stack are waiting for the entry above it to complete processing.
The invariant GhostWorkIsValid is defined in definition 7.8. This invariant uses the invariant
WorkIsCallFrom which is defined in definition 7.9.

Definition 7.8 (GhostWorkIsValid). The invariant GhostWorkIsValid(ghostWork : seq〈Work〉,
data : TarjanData) is a loop invariant of the main loop in StrongConnect. The variable ghostWork
is valid if and only if the top of the stack is valid for the current state data. Furthermore the
top of the stack has to be of type WorkRequest or WorkRecurse. The top of the stack is of
type WorkRequest if and only if ghostWork[0].j = 0 and otherwise the top of the stack is of
type WorkStarted. Any member below the first element on the stack ghostWork has to be of
type WorkRecurse. Furthermore the invariant WorkIsCallFrom has to hold between any two
consecutive entries in the stack. The invariant WorkIsCallFrom is defined in definition 7.9. This
gives us the following definition:
GhostWorkIsValid(ghostWork, data) ≡ ghostWork 6= []⇒ var w = ghostWork[0]

• WorkValid(w, data)

• w.j = 0⇒ w.WorkRequest?

• w.j 6= 0⇒ w.WorkStarted?

• ∀w ∈ ghostWork[. . . |work| − 1] : w.WorkRecurse?

• ∀i ∈ [0, |ghostWork| − 2] : WorkIsCallFrom(ghostWork[i], ghostWork[i + 1])

Definition 7.9 (WorkIsCallFrom). The invariant WorkIsCallFrom(wOld : Work,wNew : Work)
requires wNew and wOld to be of type WorkRecurse. This invariant implies that wOld is waiting
for the entry wNew to complete. This simply means that wOld.v = wNew.u, that the intial state
of wNew is wOld.preData and that wOld was valid in the state wOld.preData. This gives us the
definition:
WorkIsCallFrom(wOld,wNew) ≡

wOld.u = wNew.v ∧ wOld.preData = wNew.oldData ∧ValidWork(wOld,wOld.preData)

7.2.3 Proof GhostWorkIsValid

The invariant GhostWorkIsValid allows us to prove that once a node has been processed then
the invariant PostconditionStrongConnect holds. In order to prove that the loop invariant Ghost-
WorkIsValid is maintained we reuse the recursive proof. It can be hard to see how the invariant
GhostWorkIsValid can be verified and how it relates to the recursive proof. In this section we
will outline the proof of GhostWorkIsValid and we will show where the lemmas from the recurs-
ive proof are used. We will omit the input arguments of the invariants and lemmas to improve
readability. All lemmas and invariants including the input arguments are shown in the fully annot-
ated algorithm 14. Verifying that the invariant GhostWorkIsValid is maintained requires proving
that the invariant WorkValid is maintained for variable ghostW. Proving the variable ghostW is
maintained depends on the phases. Remember that the relation between phases and the recursive
lemmas and invariants is visualised in figure 7.2.

At the start of the partially annotated iterative algorithm, algorithm 12, the ghostWork stack is
initially set to WorkRequest(u0, 0, data) at line 2. The invariant PreconditionStrongConnect holds
for the initial node u0 by the specification of StrongConnect. Using this we can easily prove that
GhostWorkIsValid holds before the main loop.

Verification of an implementation of Tarjan’s algorithm for SCC 59

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

Next we prove that the main loop maintains the loop invariant GhostWorkIsValid. At the
start of the loop the top element is popped from the stack ghostWork and written to ghostW,
line 8 to 9. From the invariant GhostWorkIsValid we learn that this top element is of member
type WorkRequest if j = 0. If j 6= 0 then the element is of type WorkStarted. Furthermore,
GhostWorkIsValid states that the invariant WorkValid holds for the top element. We want to
prove that WorkValid is maintained for variable ghostW during the entire iteration.

If j = 0 then the iterative algorithm adds a node to the global state data in the section of code
from line 11 to 14. This section is equal to the section of code AddNewNode from the recursive
algorithm. After this ghostW is changed to the state WorkStarted at line 15. The invariant
WorkValid is maintained if we can prove that the invariant LoopInvariant holds. The lemma
AddNewNodeLoopInvariant from the recursive algorithm proves that the following Hoare triple
holds:

{PreconditionStrongConnect}AddNewNode{LoopInvariant}

Using this lemma we can prove that the invariant WorkValid is maintained. After this it follows
that ghostW is in phase WorkStarted for any value of j.

After this the iterative algorithm enters the successor loop from line 17 to 28. This loop is
similar to the successor loop of the recursive algorithm. There are three possible paths trough the
loop. If the next successor v is in data.stack then the loop updates low[u] based on disc[v], line
27. This update is the same as the UpdateFromDisc from the recursive algorithm. The lemma
UpdateFromDiscLoopInvariant from the recursive algorithm proves that the following Hoare triple
holds:

{LoopInvariant}UpdateFromDisc{LoopInvariant}

Using this lemma we can prove that the invariant WorkValid is maintained for ghostW.

The second case is that u is in low but not in disc. In this case j is incremented but data is
not changed. The recursive lemma MaintainsLoopInvariant proves that the invariant WorkValid
is maintained in this case.

The third and last case is the most challenging case. In this case v is not in data.low. In this
case a recursive call is mimicked by placing (u, i + 1) and (v, 0) on the work stack after which the
algorithm breaks out of the inner loop and ends the iteration of the main loop, line 20 to 25. Since
this ends the iteration of the main loop we need to prove that the invariant GhostWorkIsValid
holds. We know that the invariant WorkValid holds for ghostW and since ghostW is in the phase
WorkStarted we can conclude that LoopInvariant holds at line 20. Since LoopInvariant holds
we can prove that the invariant WorkValid holds for the new entry WorkRecurse on the stack
ghostWork. The second entry on the stack ghostWork is the new entry WorkRequest(v, 0, data).
The invariant WorkValid holds for this entry if the invariant PreconditionStrongConnect holds. The
lemma PreconditionStrongConnectHolds from the recursive algorithm proves that this invariant
can be derived from LoopInvariant. Since the invariant WorkValid holds for both new entries on
the ghostWork stack we can easily prove that the invariant GhostWorkIsValid is maintained.

Unfortunately we are not done yet. The successor loop can also terminate naturally once all
successors have been checked. In this case the variable recursing is false and the iterative al-
gorithm enters the last section starting on line 30. Here we know that the invariant LoopInvariant
holds and all neighbours of u have been checked. The iterative algorithm now finishes processing
node u, line 30 to 38. This code is identical to the end of the recursive algorithm. Using lemmas
Proof1PostconditionStrongConnect and Proof2PostconditionStrongConnect from the recursive al-
gorithm we can prove that the invariant PostconditionStrongConnect holds for u at line 38. Because
of this we can change ghostW to the final phase WorkEnded such that the invariant WorkValid is
maintained.

When work is empty then the iteration of the main loop is finished and the loop terminates.
Since ghostWork has the same size as work it follows that ghostWork is also empty so the invariant
GhostWorkIsValid trivially holds. In the other case that work is not empty then we need to peek
at the top element from the work stack and update data.low, line 39 to 42. This section is equal the
UpdateFromLow section from the recursive algorithm. The lemma UpdateFromLowLoopInvariant

60 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

is a complicated lemma from the recursive algorithm which proves that the following Hoare triple
holds:

{LoopInvariant(oldData, preData, u) ∧ PostconditionStrongConnect(preData, v, data)}

UpdateFromDisc(data, u, v){LoopInvariant(oldData, data, u)}

We want to change the top element of the stack ghostWork to phase WorkStarted. In order to prove
that the invariant GhostWorkIsValid holds we need to prove that WorkValid holds after we change
the top element to phase WorkStarted. This invariant holds if and only if LoopInvariant holds for
the current state data. In order to prove this we need use the lemma UpdateFromLowLoopInvariant
at line 39. We know that the invariant GhostWorkIsValid held at the start of the main loop.
Using this invariant we can derive that the top element is in the phase WorkRecurse, the invariant
WorkValid holds and the top element is waiting for the element ghostW to be processed. From this
we can derive that the predicate LoopInvariant(oldData, preData, u) holds. Next we have proven
that ghostW is in phase WorkEnded and the invariant WorkValid holds. From this we can derive
that the invariant PostconditionStrongConnect(preData, v, data) holds. Using these two invariants
we can then call UpdateFromLowLoopInvariant and prove that GhostWorkIsValid is maintained.
This covers the all paths trough the loop and proves that the loop invariant GhostWorkIsValid is
maintained in every iteration of the main loop.

7.3 Proving the postcondition

In the previous sections we have defined ghost variables and invariants which allow us to incorpor-
ate the recursive proof in the proof of the iterative algorithm. Unfortunately, we still need to prove
that the postcondition PostconditionStrongConnect(old(data), u0, data) from the StrongConnect

method holds. We need to define a loop invariant for the outer loop such that we can derive the
postcondition once the outer loop terminates.

Let a work entry w be WorkEnded(u0, |successors(u0)|,old(data)) where old(data) is the state
at the start of the iterative StrongConnect call. The invariant WorkValid(w, data) implies that
the postcondition of StrongConnect holds. We want to prove that WorkValid(w, data) holds when
the outer loop terminates, ie. work = []. Note that when work = [] holds then by loop invariant
GhostWorkMatchesValid , definition 7.2, ghostWork = [] holds.

We use two observations to define a suitable loop invariant to prove the postcondition. The
first observation is that the initial node u0 is always at the bottom of the work stack. Using
invariant WorkMatchesGhostWork we conclude that the bottom element in the ghostWork stack
contains a Work entry w such that w.u = u0.

The second observation is that the variable ghostW always contains an entry WorkEnded with
the last processed node if the size of work decreases. The proof of the invariant GhostWorkValid
already proves that the invariant WorkValid(ghostW, data) is maintained. So if the work stack
decreases in an iteration then ghostW is of type WorkEnded and using invariant WorkValid we
can derive PostconditionStrongConnect for the node ghostW.u.

Using these two observations we know that if work is empty then ghostW.u = u0 and ghostW is
of type WorkEnded from which we can conclude that the postcondition of StrongConnect holds.
This intuitive proof is captured in the loop invariant GoalInvariant from definition 7.10. The proof
that this loop invariant is maintained takes some effort but is not difficult. The entire iterative
version of the Tarjan’s algorithm annotated with lemmas, variables and invariants is shown in
algorithm 13 and 14. The iterative algorithm also contains a small inner loop. The loop invariant
for this inner loop is defined in definition 7.11. This invariant looks complex but simply specifies
the behaviour of the inner loop.

Definition 7.10 (GoalInvariant). The invariant GoalInvariant(ghostWork : seq〈Work〉, ghostW :
Work, oldData : TarjanData, data : TarjanData) is a loop invariant of the outer loop of the iterative
StrongConnect algorithm. The post condition of StrongConnect can be derived from this invari-
ant once the outer loop terminates. The invariant GoalInvariant ensures that the bottom of the

Verification of an implementation of Tarjan’s algorithm for SCC 61

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

stack ghostWork stores information about the original node u0, that invariant WorkValid holds for
ghostW and that when ghostWork is empty then ghostW is WorkEnded(u0, |successors(u0)|, oldData).
This gives us the invariant:
GoalInvariant(ghostWork, ghostW, oldData, data) ≡

• data.Valid()

• ValidWork(ghostW, data)

• [] = ghostWork⇒ ghostW = WorkEnded(u0, |successors(u0)|, oldData)

• [] < ghostWork⇒ ghostWork[0].u = u0 ∧ ghostWork[0].oldData = oldData

Definition 7.11 (InnerLoopInvariant). The invariant InnerLoopInvariant(work : seq〈(Node,N)〉,
oldGhostWork : seq〈Work〉, ghostWork : seq〈Work〉, oldW : Work, ghostW : Work, data : TarjanData,
recurse : B) is a loop invariant for the inner loop of the iterative StrongConnect function. This
invariant is simply the specification of the effect of the inner loop. This specification allows us
to prove that the invariants of the outer loop are maintained. The input variables oldGhostWork
and oldGhostW are the values ghostWork and ghostW at the start of the loop.
InnerLoopInvariant(work, oldGhostWork, ghostWork, oldW, w, data, recurse) ≡

• data.Valid()

• ghostW.WorkStarted?

• ValidWork(data, ghostW)

• 0 ≤ j ≤ |successors(ghostW.u)|

• oldGhostW.u = oldGhostW.u ∧ oldGhostW.oldData = ghostW.oldData

• ¬recurse⇒ oldGhostWork = ghostWork[. . . |ghostWork| − 1]

• recurse⇒ var v = successors(ghostW.u)[ghostW.j];
oldGhostWork = ghostWork[. . . |ghostWork| − 1]+

[StartToRec(ghostW.u, ghostW.j+1, ghostW.oldData, v, data)]+[WorkStarted(v, 0, data)]

• recurse⇒WorkIsValid(ghostWork, data)

Algorithm 13 Tarjan’s Strongly Connected Component Algorithm with proof constructs

Input: G = (V,E): A graph with nodes V and edges E.
Output: result: A set containing all strongly connected components of the graph.

postcondition data.result.Valid()

Tarjan(G):

1: var data := TarjanData(DiscLow(map[],map[],Result({ }), stack([]))
2: for u ∈ V do

3: invariant MainLoopInvariant(data, u)

4: if u /∈ low then
5: StrongConnect(u)

6: return data.result

62 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

Algorithm 14 Fully annotated version of helper function StrongConnect

Input: u: An element of Nodes.

precondition PreconditionStrongConnect(data, u0)

postcondition PostconditionStrongConnect(old(data), data, u0)

StrongConnect(u0):

1: work := [(u0, 0)]

2: ghostWork := [WorkRequest(u0, 0, data)]

3: ghostW := WorkRequest(u0, 0, data)

4: while |work| > 0 do

5: invariant GoalInvariant(ghostWork, ghostW, data)

6: invariant GhostWorkIsValid(ghostWork, data)

7: invariant WorkMatchesGhostWork(work, ghostWork)

8: (u, j) := work[|work| − 1]
9: var work := work[0 : |work| − 1]

10: ghost var ghostW := ghostWork[|ghostWork| − 1]

11: ghost var ghostWork := ghostWork[0 : |ghostWork| − 1]

12: if j = 0 then

13: lemma AddNewNodeDataValid(data, u)

14: lemma AddNewNodeLoopInvariant(data, u)

15: var k := |data.disc|
16: data.disc[u] := k
17: data.low[u] := k
18: data.stack := data.stack ++ [u]

19: ghostW := WorkStarted(ghostW.u, ghostW.j, ghostW.oldData)

20: recurse := false
21: for i := j to |successors(u)| − 1 do . init(ghostWork), init(w)

22: invariant InnerLoopInvariant(work, init(ghostWork), ghostWork, init(w), data, recurse)

23: v := successors(u)[i]
24: if v /∈ data.low then
25: work := work ++ [(u, i + 1)]
26: work := work ++ [(v, 0)]

27: ghostWork := ghostWork ++ [WorkRecurse(ghostW.u, ghostW.j + 1, ghostW.oldData, v, data)]

28: lemma PreconditionStrongConnectHolds(data, u, v)

29: ghostWork := ghostWork ++ [WorkRequest(v, 0, data)]

30: recurse := true
31: break
32: else if v ∈ data.stack then

33: lemma UpdateFromDiscDataValid(data, u, v)

34: lemma UpdateFromDiscLoopInvariant(ghostW.oldData, data, u, v, v index)

35: data.low[u] := min(data.low[u], data.disc[v])
36: else
37: lemma MaintainsLoopInvariant(ghostW.oldData, data, u, v, v index)

38: ghostW.j := ghostW.j + 1

Verification of an implementation of Tarjan’s algorithm for SCC 63

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

39: if ¬recurse then
40: if data.low[u] = data.disc[u] then

41: lemma PopFromStackDataValid(data, |ghostW.oldData.stack|)

42: lemma Proof1RecursionInvariant(ghostW.oldData, data, u)

43: comp := []
44: while true do
45: v := data.stack[|data.stack| − 1]
46: data.stack := data.stack[0 : |data.stack| − 1]
47: comp := comp ++ [v]
48: if v = u then break
49: data.result := data.result ++ {comp}
50: else
51: lemma Proof2RecursionInvariant(ghostW.oldData, data, u)

52: ghostW := WorkEnded(ghostW.u, ghostW.v, ghostW.data)

53: if |work| > 0 then
54: v := u
55: (u, j) := work[|work| − 1]

56: lemma UpdateFromLowDataValid(data, u, v)

57: lemma RecursionLoopInvariant(ghostW.oldData, ghostW.preData, data, u, v)

58: data.low[u] := min(data.low[u], data.low[v])

59: ghostW := ghostWork[0 : |ghostWork| − 1] . Change top of stack to WorkStarted

60: ghostW := WorkStarted(ghostW.u, ghostW.j, ghostW.data)

61: ghostWork := ghostWork[0 : |ghostWork| − 1] ++ [ghostW]

64 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

7.4 Termination of the iterative algorithm

We have introduced a proof of correctness for the recursive and iterative version of Tarjan’s
algorithm. These proofs prove that the Tarjan’s algorithm confirms with its specification given
that the algorithm terminates. We have briefly introduced the proof that the recursive algorithm
terminates in section 4.2.1. The recursive termination proof is rather trivial but unfortunately
we cannot directly reuse the recursive termination proof. The iterative termination proof is a lot
more involved.

We need to prove that the iterative algorithm terminates. The iterative algorithm does not
use recursion so the iterative algorithm terminates if both loops terminate. The inner loop of
the iterative algorithm iterates over all neighbours of a node. This loop trivially terminates and
Dafny can prove this without any assistance. The outer loop terminates once the work stack is
empty. Proving that the work stack will eventually be empty is not trivial. In order to prove
that the outer loop terminates we define a termination measure. A termination measure consists
of one or more expressions which all have a lower bound. In the recursive proof the termination
measure only consists of one expression. If a termination measure consists of one expression then
this expression needs to decrease in every loop iteration. There should also be a constant non zero
lower bound on the decrease of the expression. From the facts that the expression has a minimum
and the expression decrease it follows that the algorithm has to terminate.

When a termination measure consist of multiple expressions then the proof is more complex.
The expressions of a termination measure are ordered. If a termination measure consists of e1 . . . ej
expressions then in every iteration there has to exist an expression ei with i ∈ [1, j] where the
value of expression ei decreases, with a non zero minimum bound and the value of all expressions
before ei don’t increase. Note that the value of expressions after ei can increase. This termination
measure is strong enough to ensure that the loop will eventually terminate. Lets say that in an
iteration only the last expression ej decreases. Then the value of all other expressions has to
remain the same. Since the expression ej has a lower bound eventually the value of expression
ej−1 or another expression before ej has to decrease. The value of expression ej can now increase.
Eventually the expression j cannot decrease again and the process repeats. This process cannot
continue infinitely since eventually all expressions have to reach their minimum value. From this
we can conclude that the termination measure ensures that an algorithm terminates.

We prove that the outer loop of the iterative algorithm terminates using the following termin-
ation measure:

NodeLimit− |low ∪Nodes(work)|, |work|

Here NodeLimit is the amount of nodes and the function Nodes returns all nodes which have an
entry in work. The first expression of the termination measure is equal to the amount of nodes
which are neither in low nor work. The second expression is simply the size of work. Since there
exist a finite amount of nodes both expressions trivially have a lower bound. We still need to
prove that this termination measure correctly decreases. In every iteration of the outer loop there
are two cases. The first case is that a node finishes processing and the second case is that a new
node is added to the work stack.

In the first case let u be the node which has been processed. At the start of the iterative
algorithm the node u is removed from the stack work at line 8. The algorithm does not add any
nodes to the work stack in this case. From this we can conclude that the size of work decreases.
The algorithm does not remove any other nodes from work and no nodes are removed from low.
Furthermore the algorithm guarantees the node u is in low at the end of the iteration. Since no
nodes are removed from the set low ∪Nodes(work) it follows that the value of the first expression
does not increase. From this we conclude that the termination measure correctly decreases in this
scenario.

The second case is that a new node v is added to the work stack. The size of |work| increases
so we need to prove that the expression NodeLimit − |low ∪ Nodes(work)| decreases. From line
24 we learn that the new node v is not in low. If we prove that v was not in Nodes(work) then
the termination measure decreases. We can actually prove this without using new invariants just

Verification of an implementation of Tarjan’s algorithm for SCC 65

CHAPTER 7. PROOF OF THE ITERATIVE TARJAN’S ALGORITHM

using GhostWorkIsValid. The idea behind this proof is that it follows from ValidRecurse that all
nodes in work are in low and since v /∈ low it follows that v /∈ Nodes(work). This concludes the
termination proof of the iterative algorithm.

66 Verification of an implementation of Tarjan’s algorithm for SCC

Chapter 8

Conclusions

In this paper we have presented a formal proof for two versions of Tarjan’s algorithm. These
algorithms are verified using proof annotations which are specified directly in terms of the program
variables. The proof annotations of the recursive algorithm are based on a pre-existing proof. The
end goal of this paper is to verify that the iterative version of Tarjan’s algorithm is correct. In order
to verify this algorithm we first verify the recursive algorithm and we then extend the proof to the
iterative algorithm. Unfortunately, it is not possible to reuse the pre-existing proof of the recursive
algorithm. The pre-existing proof requires a lot of effort from the Dafny verifier. The verification
of the pre-existing proof can behave unexpectedly and fail to verify after minor changes to the
proof. When this occurs we say that a proof is unstable. It is not feasible to scale the unstable
pre-existing recursive proof to the iterative algorithm. This is why we have introduced techniques
to ease the verification process for Dafny. These techniques allow us to stabilize proofs. A link to
the Dafny proof of both versions of Tarjan’s algorithm can be found in appendix A. Next to this
appendix A also contains the Dafny code of the pre-existing proof and statistics obtained from
running the Dafny verification.

The recursive and iterative proof are both verified using the pre-release of Dafny version 3.0.0.
The pre-existing proof cannot be verified in Dafny version 3.0.0, this proof can be verified in
Dafny version 2.3.0. The statistics of the new proofs are shown in table 8.1. The statistics of the
pre-existing verification are shown in table 8.2. These tables show the amount of proof obligations
and the verification time in seconds per file. Next to this Dafny verifies a proof in two steps. In
the first step, the well formed step, Dafny verifies that the proof is well formed. In this step Dafny
checks if all definitions are valid and if all variables have the correct type. Dafny tends to generate
a lot of proof obligations in this steps but Dafny is almost always able to verify these obligations
without assistance from the developer. The next step is the implementation step. Dafny verifies
that all proofs and specifications are correct in this step. Dafny usually requires assistance from
the developer in this step. The tables 8.1 and 8.2 also show the amount of proof obligations and
the total verification time for each step.

Verification of an implementation of Tarjan’s algorithm for SCC 67

CHAPTER 8. CONCLUSIONS

File name Total o Total t Form o Form t Impl o Impl t
graph defs 222 5.2 62 3.1 160 2.1
iterative defs 136 7.4 136 7.4 0 0.0
iterative lemmas 172 5.6 39 2.4 133 3.1
IL successorLoop 257 16.1 34 2.6 223 13.6
IL termination 55 2.8 13 1.6 42 1.2
iterative main abstract 260 17.1 5 1.4 255 15.7
iterative main exact 323 71.4 5 1.7 318 69.8
recursive defs 303 14.6 242 12.6 61 2.0
recursive lemmas 275 5.5 73 1.8 202 3.7
RLDV AddNewNode 128 11.6 11 0.9 117 10.7
RLDV PopFromStack 312 13.1 61 2.3 251 10.8
RLDV UpdateFromDisc 448 117.3 117 20.6 331 96.7
RLDV UpdateFromLow 329 68.2 99 8.0 230 60.2
RLLV UpdateFromLow 527 27.5 92 2.3 435 25.1
RL successorLoop 455 12.3 83 2.7 372 9.5
recursive main abstract 215 2.6 6 1.0 209 1.6
recursive main exact 215 2.7 6 1.0 209 1.7

Total recursive 3207 275.4 790 53.4 2417 222.0
Total iterative 4632 401.2 1084 73.7 3548 327.5
o Amount of proof obligations.
t Verification time in seconds
Form The well formed step in the verification process
Impl The implementation step in the verification

Table 8.1: Proof obligations and verification time Dafny implementation

File name Total o Total t Form o Form t Impl o Impl t
soundness-completeness 1178 59.1 370 3.4 808 55.7
termination 161 1.1 26 0.5 135 0.5
graph algorithm 669 4.0 238 2.5 431 1.4

Total 2008 64.1 634 6.4 1374 57.7
o Amount of proof obligations.
t Verification time in seconds
Form The well formed step in the verification process
Impl The implementation step in the verification process

Table 8.2: Pre-existing proof obligations and verification time

68 Verification of an implementation of Tarjan’s algorithm for SCC

CHAPTER 8. CONCLUSIONS

8.1 Comparison pre-existing proof to new recursive proof

When we compare the statistics from the pre-existing proof with the new recursive proof then we
first note that the total amount of proof obligations have increased from 2000 to 3000. Furthermore,
the pre-existing proof took a total of 1 minute to verify whereas the new proof takes 5 minutes.
This increase in proof obligations and verification time was expected. From table 8.1 and 8.2
we learn that the amount of proof obligations have increased significantly in the implementation
step. The proof obligations have not significantly increased in the well formed step however the
verification time has increased drastically.

The increase in total verification time of the implementation step was expected. The new
proof creates a stable proof by separating the proof into different lemmas. Splitting a monolithic
proof into multiple lemmas introduces overhead. Every lemma will have a smaller execution time
and less proof obligations then the monolithic proof. However, the sum of all proof obligations
and the total verification time will be larger. Because every lemma has less proof obligations the
proof using smaller lemmas will be more stable then the large proof. Next to this the increase
in total verification time is not a problem since we can verify and debug every lemma separately.
To compare the new recursive proof with the pre-existing proof, the new proof uses a total of 87
lemmas whereas the pre-existing proof only uses 19 lemmas. This explains why the implementation
step takes a lot longer to verify. Next to this the new proof also experiences overhead from revealing
opaque predicates.

The increase in verification time from the well formed step was initially unexpected. Without
aggregating all statistics this increase is not noticeable since the increase is spread over all lemmas.
The implementation step takes 54 seconds in the new proof while the pre-existing proof only took
6 seconds. Next to this the new proof has 790 proof obligations while the pre-existing proof has
634 proof obligations. The small increase in proof obligations was expected however the large
increase in verification time was not. This increase in verification time turns out to be a side-effect
of opaque predicates. We will often need to reveal a small fact from an opaque predicate to prove
that a specification is will formed. Manually revealing an opaque predicate creates an overhead
of about one second per reveal. This increase is not really noticeable however it adds up over
time. As concrete example of why we need to reveal predicates in the well formed step let P
be an opaque predicate with definition u ∈ low ∧ P ′ and let L(x) be a lemma with precondition
P ∧ low[u] = x. The precondition is only well formed if u is in low. We do not want to reveal
P every time we call lemma L so we do not want to add u ∈ low to the precondition. We can
circumvent this problem by revealing P when we verify that the precondition is well formed. This
allows us to call L without revealing P but it does introduce some small overhead in the well
formed step.

8.2 Proof of the recursive version Tarjan’s algorithm

We created the proof of the recursive algorithm to make the proof as stable as possible. The
critical step in the recursive proof is the verification of the StrongConnect method. We wanted
to stabilize this step as much as possible. The pre-existing proof is unable to create a stable
verification of this method. This is why the pre-existing proof needs to prove partial correctness
by proving termination in a separate proof. The pre-existing proof is optimized to verify partial
correctness of the StrongConnect method in 14.7 seconds with a total of 483 proof obligations on
Dafny version 2.3.0. In comparison to this the new proof of the StrongConnect method can prove
both correctness and termination in one stable proof. This new proof takes 1.3 seconds and has
175 proof obligations.

These numbers show a huge decrease in verification time and proof obligations. The new proof
requires less than 1

3 of the proof obligations then the pre-existing proof. Because of this the time
required to verify the top level method decreased over 90%. The new proof of the StrongConnect

method is extremely stable while the pre-existing proof is not. The impact of this change might not
be clear when we just compare the verification time. When both proofs verify then the verification

Verification of an implementation of Tarjan’s algorithm for SCC 69

CHAPTER 8. CONCLUSIONS

time only differs a few seconds however the impact is far larger when the proof does not verify.
If Dafny fails to verify some predicate in the new proof then Dafny will be able to identify the
problem within a few seconds. If the pre-existing proof fails to verify a predicate then Dafny might
take multiple minutes to find the problem or Dafny might just run out of resources. Next to this
unlike the new proof the pre-existing proof will behave unexpectedly after minor changes. This is
why we can scale the new recursive proof to verify the iterative algorithm. The statistics clearly
show the impact of our techniques. The top level verification of the StrongConnect method has
gone from a proof at the limits of Dafny’s capabilities to a trivial proof. We expect that similar
results can be obtained in other proofs.

Unfortunately, there is also one large disadvantage to our techniques. The new proof requires a
lot more definitions and lemmas. The pre-existing proof only requires 19 lemmas whereas the new
recursive proof requires 87 lemmas. Creating all these lemmas and definitions obviously requires
a lot of extra effort from the developer. It was worth completely optimizing the recursive proof
since we could reuse the lemmas and the gain from every lemma was large. It is quicker to verify a
stable proof which consists of a lot of lemmas then an unstable proof with a few lemmas. However
when a proof with few lemmas is stable then we do not recommend completely optimizing the
proof unless you can reuse the lemmas in a different proof. We have incrementally applied these
techniques to stabilize the iterative proof. We incrementally created a straightforward iterative
proof and we only applied the techniques from chapter 5 when the iterative proof became unstable.
As long as the proof was stable then there is no need to apply any techniques to further stabilize
the proof. This saves a lot of extra effort from the developers. We generally recommend building
a proof incrementally and only using the techniques when they are necessary.

8.3 Proof of the iterative version Tarjan’s algorithm

The iterative version of Tarjan’s algorithm can be verified in about 7 minutes and the proof has
4632 proof obligations. The iterative proof reuses all lemmas and predicates from the recursive
algorithm which greatly simplifies the verification process of the iterative algorithm. However even
with all the efficient lemmas from the recursive proof we still needed to use our techniques to create
a stable iterative proof. We have once again used the techniques from chapter 5 to stabilize the
recursive proof. However, unlike the recursive proof we have not used these techniques to decrease
the verification time as much as possible. We have only applied these techniques to create a stable
proof. The remaining verification of the proof still occurs in the StrongConnect method. The
current verification has been stabilized enough to successfully verify the iterative algorithm and
the verification stays stable even after minor changes. However, the iterative algorithm is nearing
the limits of Dafny’s capabilities. A minor change can have a large impact on the verification time.

A good example of the stability of the stability of the iterative proof is seen in the two files
iterative main abstract and iterative main exact. These files both contain the same proof of the
iterative version of Tarjan’s algorithm. The difference is that in the abstract version all sections
of code with lemmas have been replaced by functions whereas the exact file contains the complete
algorithm. This abstract file is mainly useful for debugging purposes. Replacing sections of code
by functions is more readable and slightly more efficient. Beside this the algorithms contain the
same proof. Even though the difference is that small the abstract proof takes 17 seconds while
the exact proof takes 71 seconds. This indicates that the proof is nearing Dafny’s capabilities.
In comparison we have also created the recursive proof in two different files. These files are
recursive main abstract and recursive main exact. Since the recursive proof has been stabilized as
much as possible the difference in verification time is minimal. The recursive abstract proof takes
2.6 while the recursive exact proof takes 2.7. Note that the proofs of the recursive files have the
exact same amount of proof obligations while the proofs of the iterative files do not. These extra
proof obligations in the exact iterative algorithm are a result of some additional assert statements
to assist the Dafny verifier. These assert statements are not required in the abstract proof.

70 Verification of an implementation of Tarjan’s algorithm for SCC

Bibliography

[1] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino.
Boogie: A modular reusable verifier for object-oriented programs. In International Symposium
on Formal Methods for Components and Objects, pages 364–387. Springer, 2005. 26

[2] Mike Barnett and K Rustan M Leino. Weakest-precondition of unstructured programs. In
Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 82–87, 2005. 26

[3] Marcello M Bonsangue and Joost N Kok. The weakest precondition calculus: Recursion and
duality. Formal Aspects of Computing, 6(1):788–800, 1994. 26

[4] Ran Chen, Cyril Cohen, Jean-Jacques Levy, Stephan Merz, and Laurent Théry. Formal
Proofs of Tarjan’s Strongly Connected Components Algorithm in Why3, Coq and Isabelle. In
John Harrison, John O’Leary, and Andrew Tolmach, editors, ITP 2019 - 10th International
Conference on Interactive Theorem Proving, volume 141, pages 13:1 – 13:19, Portland, United
States, September 2019. Schloss Dagstuhl–Leibniz-Zentrum fur Informatik. 13

[5] Ran Chen and Jean-Jacques Lévy. A semi-automatic proof of strong connectivity. In Working
Conference on Verified Software: Theories, Tools, and Experiments, pages 49–65. Springer,
2017. 13

[6] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, USA, 1st edition,
1997. 26

[7] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communic-
ations of the ACM, 12(10):576–580, 1969. 4, 26

[8] Wesselink Huizing. Verifying tarjan’s strongly connected components algorithm using dafny.
Unpublished, June 2020. 1, 13

[9] Ioannis T Kassios. Dynamic frames and automated verification. In 2nd COST Action ICO701
Training School. Citeseer, 2011. 28

[10] K Rustan M Leino. This is boogie 2. KRML, 178(131):9, 2008. 25

[11] K Rustan M Leino. Specification and verification of object-oriented software. Engineering
Methods and Tools for Software Safety and Security, 22:231–266, 2009. 28

[12] K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In
International Conference on Logic for Programming Artificial Intelligence and Reasoning,
pages 348–370. Springer, 2010. 28

[13] Rustan Leino. Program Proofs. unpublished, May 2020. Draft version. 26

[14] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972. iii, 1, 6

[15] Wieger Wesselink. State space exploration. Found on mcrl2.org, 2020. 6

Verification of an implementation of Tarjan’s algorithm for SCC 71

BIBLIOGRAPHY

[16] J. Öqvist. Iterative tarjan strongly connected components in python. https://llbit.se/

?p=3379. Accessed: 2010-3-26. 1, 6

72 Verification of an implementation of Tarjan’s algorithm for SCC

https://llbit.se/?p=3379
https://llbit.se/?p=3379

Appendix A

Implementation Dafny verification

All Dafny code verifying Tarjan’s algorithm for SCC can be found in the GitHub directory:

https://github.com/WouterSchols/tarjanDafnyVerification

The main algorithms annotated with lemmas are contained in the files “recursive main exact.dfy”
and “iterative main exact.dfy”. The annotated proof of the recursive algorithm, algorithm 14, is
contained in file “recursive main exact.dfy” and the annotated proof of the iterative algorithm,
algorithm 14, is contained in file “iterative main exact.dfy”. These proofs use lemmas which are
based on the functions introduced in chapter 6. These functions describe the effect of sections
of code in the Tarjan’s algorithm. The algorithms were initially verified by substituting the sec-
tions of code by their respective functions. Using the functions directly improves readability
and reduces load on the SMT solver which simplifies the implementation and debugging process.
The annotated proofs where the code sections are substituted by functions are found in the files
“recursive main abstract.dfy” and “iterative main abstract.dfy”. We recommend looking at these
files before looking at the exact files. The definitions of all functions, data types and invariants
can be found in the files ”graph defs.dfy”, ”recursive defs.dfy” and ”iterative defs.dfy”. All other
files contain the required lemmas.

The code is verified using pre-release 1 of Dafny version 3.0.0.20820 from 21-8-2020. The
directory “Dafny binaries” contains the binaries of this Dafny version. The directory Results
contains the Dafny output with is obtained by verifying all files with the trace, next to this this
directory also contains some aggregated data from these runs. The last directory “Dafny pre-
existing” contains the pre-existing Dafny verification introduced in chapter 4. This verification
does not verify in Dafny version 3.0.0.20820.

Verification of an implementation of Tarjan’s algorithm for SCC 73

https://github.com/WouterSchols/tarjanDafnyVerification

Appendix B

Deterministically selecting items
from a set

Sets and sequences are both collections commonly used in Dafny. A set is an unordered collection
of elements where every element is unique. Sequences are stricter than sets in that they are an
ordered collection of elements which can contains multiples. Since sets enforce less restrictions
than sequences we prefer to use sets in proofs if possible. Because sets have less restrictions sets
often enforce less proof obligations which can greatly simplify a proof. Sets do have one large
disadvantage which makes them cumbersome in program code. This occurs because selecting an
element from a set is usually not deterministic while program code has to be deterministic.

Consider the non empty set xs and the Dafny code:

var x : | x in xs

This code says let x be a variables in set xs. This is not a deterministic operation which means
that we can use this operation in proofs but we cannot use it in methods. This is why sequences
are preferred in program code. Consider the set selection to the non empty sequence ys and the
Dafny code:

var y := ys[0]

Sequences allow us to easily deterministically select elements from a collection. This is why sets
are preferred in proofs and sequences are preferred in methods. It can be convenient to convert
a set to a sequence or a sequence to a set. This is why we define the function SequenceToSet

and the method SetToSequence. We can easily write a function SequenceToSet which converts a
sequence to a set, algorithm 15. This algorithm simply iterates over all elements in the sequence
and adds them to a set recursively.

Algorithm 15 SequenceToSet

Input: ys: A sequence.
SequenceToSet(ys):

1: if ys = [] then
2: return { }
3: else
4: return {ys[0]} ∪ SequenceToSet(ys[1..])

Creating a set to a sequence is more difficult. Note that if we can deterministically select an item
x from any non empty set xs then we can use the same recursive pattern as the SequenceToSet

function. Items can only be selected from a set using the let expression. A let expression x : | P (x)
adds the proof obligation that there exists at least one value of x such that the predicate P holds.
A let expression is deterministic if we can prove that the value which satisfies P is unique.

Verification of an implementation of Tarjan’s algorithm for SCC 75

APPENDIX B. DETERMINISTICALLY SELECTING ITEMS FROM A SET

We want to select items from a set so let P be x ∈ xs ∧ Q(x). Now we need to pick Q such
that at least one element in xs satisfies Q given that xs is not empty, xs 6= {} ⇒ ∃x ∈ xs : Q(x).
Next to this we need to prove that the element which satisfies Q is unique, ie:

∀x, x′ ∈ xs : (Q(x) ∧Q(x′)⇒ x = x′)

A good candidate predicate for Q is the predicate MAX(x, xs) which states that x is the larger
or equal than all elements in the set xs.

MAX(x, xs) ≡ ∀x′ ∈ xs : x′ ≤ x

The predicate x′ ≤ x is usually predefined or easy to define. A proof which states that there
exists a maximum and that the maximum is unique is trivial. This predicate has the convenient
side effect that the resulting sequence is sorted. Using the Max preducate we can define method
SetToSequence(xs), algorithm 16.

Algorithm 16 SetToSequence

Input: xs: A set.
SetToSequence(xs):

1: if xs = { } then
2: return []
3: else
4: var x : | x ∈ xs ∧ Max(x, xs)
5: return [x] + SetToSequence(xs \ x)

76 Verification of an implementation of Tarjan’s algorithm for SCC

Appendix C

Lemmas recursive Tarjan’s
algorithm

In chapter 6 and chapter 7 lemmas are introduced to implement the verification of the recursive
and iterative version of Tarjan’s algorithm. In these chapters the lemmas are informally introduced
but the exact definitions are not given. The lemmas have large and complex preconditions. The
preconditions are required to verify the lemmas however the exact definitions do not add much to
the overall proof. There are 11 different lemmas in the verification of StrongConnect.

C.1 Lemmas DataValid

We want to ensure that the invariants in data.Valid are maintained. There are four locations in
the Tarjan’s algorithm where the global state is edited. A function was introduced in each of these
sections. We want to prove that these functions maintain the data.Valid predicate. These four
lemmas are AddNewNodeDataValid, UpdateFromLowDataValid, UpdateFromDiscDataValid and
PopFromStackDataValid. These lemmas are defined in definitions C.1, C.3, C.3 and C.4. Each
lemma ensures that the update section maintains the invariants. Furthermore, every lemma has
some preconditions which can trivially be derived from the context information.

Definition C.1 (AddNewNodeDataValid). The lemma AddNewNodeDataValid(data :
TarjanData, u : Node) ensures that the function AddNewNode maintains data.Valid. We require
PreconditionStrongConnect to ensure that u is not yet in stack and the start state is valid.
AddNewNodeDataValid(data, u) ≡

precondition PreconditionStrongConnect(data, u)
postcondition AddNewNode(data, u).Valid()

Definition C.2 (UpdateFromLowDataValid). The lemma UpdateFromLowDataValid(data :
TarjanData, u : Node, v : Node) ensures that the function UpdateFromLow(data, u, v) maintains
data.Valid. This lemma requires a lot of context information. All this context information can
trivially be derived from the postcondition of StrongConnect(v) since the postcondition ensures
that u is not removed or edited in the global state.
UpdateFromLowDataValid(data : TarjanData, u : Node, v : Node) ≡

precondition data.Valid()
precondition u ∈ data.stack
precondition u ∈ data.low
precondition v ∈ data.stack⇔ data.disc[v] 6= data.low[v]
precondition v ∈ successors(u)
precondition data.disc[u] < data.disc[v]
postcondition UpdateFromLow(data, u, v).Valid()

Verification of an implementation of Tarjan’s algorithm for SCC 77

APPENDIX C. LEMMAS RECURSIVE TARJAN’S ALGORITHM

Definition C.3 (UpdateFromDiscDataValid). The lemma UpdateFromDiscDataValid(data :
TarjanData, u : Node, v : Node) ensures that the function UpdateFromDisc(data, u, v) maintains
data.Valid. This invariant requires that u and v are both in the stack.
UpdateFromDiscDataValid(data, u, v) ≡

precondition data.Valid()
precondition u ∈ data.stack
precondition v ∈ data.stack
precondition v ∈ successors(u)
postcondition UpdateFromDisc(data, u, v).Valid()

Definition C.4 (PopFromStackDataValid). The lemma PopFromStackDataValid(data :
TarjanData, i : N) ensures that the function PopFromStack(data, i) maintains data.Valid. This
lemma requires the invariant S9(data, i). This invariant can be derived from the invariant group
LoopInvariant.
PopFromStackDataValid(data, u, v) ≡

precondition data.stack[i] = u
precondition LoopInvariant(oldData, data, u, |successors(u)|)
postcondition PopFromStack(data, u, v).Valid()

C.2 Lemmas Loop invariant

The loop from line 5 to 10 in recursive StrongConnect algorithm, algorithm 2, maintains the
invariant LoopInvariant. We require four lemmas to verify that the invariant LoopInvariant. One
lemma is required to prove that the loop invariant holds at the start if the loop and one lemma
is required for each path trough the loop. Note that the fact that the invariant group data.Valid
holds in every state is used in every state of Tarjan’s algorithm.

The first lemmas AddNewNodeLoopInvariant proves that the loop invariant holds at the start
of the loop. This lemma is defined in definition C.5. The lemmas RecursionLoopInvariant, Up-
dateFromDiscLoopInvariant and MaintainsLoopInvariant are defined in definition C.6, C.7 and
6.8.

Definition C.5 (AddNewNodeLoopInvariant). The lemma AddNewNodeDataValid(data :
TarjanData, u : Node) ensures that the invariant group LoopInvariant after the AddNewNode sec-
tion. This lemma requires the invariants AddNewNode(data, u).Valid and PreconditionStrongConnect
as precondition. The invariant PreconditionStrongConnect is required to ensure invariant S2 is
maintained after node u is added to the stack.
AddNewNodeDataValid(data, u) ≡

precondition AddNewNode(data, u).Valid()
precondition PreconditionStrongConnect(data, u)
postcondition AddNewNodeLoopInvariant(data, u)

Definition C.6 (RecursionLoopInvariant). The lemma RecursionLoopInvariant(oldData :
TarjanData, preData : TarjanData, data : TarjanData, u : Node, v : Node, i : N) ensures that the
loop invariant holds after a recursive call. This is the most complex lemma and requires a lot of
effort. This lemma requires two nodes and three states as input. The first state oldData should
be the state at the start of a call. The second state preData should be the state at the start of the
iteration. The third state data should be the state after the recursive call. The node u should be
the node which is being processed and v should be the ith successor of u. All these states should
be in a valid state and the invariant PostconditionStrongConnect(recStart, v, data) should hold.
This lemma proves that the invariant LoopInvariant is maintained after the recursive call and the
function UpdateFromLow.
RecursionLoopInvariant(oldData, preData, data, u, v, i) ≡

precondition v /∈ data.low

78 Verification of an implementation of Tarjan’s algorithm for SCC

APPENDIX C. LEMMAS RECURSIVE TARJAN’S ALGORITHM

precondition oldData.Valid()
precondition preData.Valid()
precondition data.Valid()
precondition UpdateFromLow(data, u, v).Valid()
precondition PostconditionStrongConnect(preData, v, data)
precondition successor(u)[i] = v
precondition LoopInvariant(oldData, preData, u, i)
postcondition LoopInvariant(oldData,UpdateFromLow(data, u, v), u, i + 1)

Definition C.7 (UpdateFromDiscLoopInvariant). The lemma UpdateFromDiscLoopInvariant(
oldData : TarjanData, data : TarjanData, u : Node, v : Node, i : N) ensures that the loop invariant
is maintained in the branch v /∈ data.low ∧ v ∈ data.stack. This lemma requires that the states
data, oldData and UpdateFromDisc(data, u, v) are in a valid state.
UpdateFromDiscLoopInvariant(oldData, data, u, v, i) ≡

precondition v /∈ data.low ∧ v ∈ data.stack
precondition oldData.Valid()
precondition data.Valid()
precondition UpdateFromDisc(data, u, v).Valid()
precondition successor(u)[i] = v
precondition LoopInvariant(oldData, data, u, i)
postcondition LoopInvariant(oldData,UpdateFromLow(data, u, v), u, i + 1)

Definition C.8 (MaintainsLoopInvariant). The lemma MaintainsLoopInvariant(oldData :
TarjanData, data : TarjanData, u : Node, v : Node, i : N) ensures that the loop invariant is main-
tained in the branch v /∈ data.low ∧ v /∈ data.stack. In this branch the state data is not updated.
This lemma requires that the states data and oldData are in a valid state.
MaintainsLoopInvariant(oldData, data, u, v, i) ≡

precondition v /∈ data.low ∧ v /∈ data.stack
precondition oldData.Valid()
precondition data.Valid()
precondition successor(u)[i] = v
precondition LoopInvariant(oldData, data, u, i)
postcondition LoopInvariant(oldData,UpdateFromLow(data, u, v), u, i + 1)

C.3 Lemmas deriving the post condition

We require two lemmas to verify the postcondition of StrongConnect. After the successor loop
there are two cases if disc[u] = low[u] and disc[u] 6= low[u]. In the first case disc[u] = low[u]
then we prove that the postcondition holds after the PopFromStack section. In the second case
disc[u] 6= low[u] then we can create one lemma which derives the postcondition holds using the
loop invariant LoopInvariant.

The first lemma is Proof1PostConditionStrongConnect and this lemma is defined in definition
C.9. This lemma states that the postcondition holds after PopFromStack(data, |oldData, stack|).
The second lemma is Proof2PostConditionStrongConnect which is defined in definition C.10. This
lemma directly derives the postcondition from the loop invariant.

Definition C.9 (Proof1PostConditionStrongConnect). The lemma
Proof1PostconditionStrongConnect(oldData : TarjanData, data : TarjanData, u : Node) ensures
that PostconditionStrongConnect(oldData,PopFromStack(data, |oldData.stack|, u) holds. This
lemma requires the LoopInvariant as precondition. The design of the LoopInvariant is designed
to make the derivation of the postcondition trivial.
Proof1PostconditionStrongConnect(oldData, data, u) ≡

precondition oldData.Valid()
precondition data.Valid()

Verification of an implementation of Tarjan’s algorithm for SCC 79

APPENDIX C. LEMMAS RECURSIVE TARJAN’S ALGORITHM

precondition PopFromStack(data, |oldData.stack|).Valid()
precondition data.low[u] = data.disc[u]
precondition LoopInvariant(oldData, data, u, v, |successors(u)|)
postcondition PostconditionStrongConnect(oldData,PopFromStack(data, |oldData.stack|), u)

Definition C.10 (Proof2PostConditionStrongConnect). The lemma
Proof2PostconditionStrongConnect(oldData : TarjanData, data : TarjanData, u : Node) ensures
that PostconditionStrongConnect(oldData, data, u) holds. This lemma requires the LoopInvariant
as precondition. The design of the LoopInvariant is designed to make the derivation of the post-
condition trivial.
Proof2PostconditionStrongConnect(oldData, data, u) ≡

precondition oldData.Valid()
precondition data.Valid()
precondition data.low[u] 6= data.disc[u]
precondition LoopInvariant(oldData, data, u, v, |successors(u)|)
postcondition PostconditionStrongConnect(oldData, data, u)

C.4 Lemma PreconditionStrongConnectHolds

The lemma PreconditionStrongConnectHolds(data, u, v) ensure that the precondition of
StrongConnect holds before a recursive call. This lemma ensures that if data.Valid holds and u is
connected to v then PreconditionStrongConnect(data, v) holds. This lemma is defined in definition
C.11. The precondition S2(data) is part of the loop invariant.

Definition C.11 (PreconditionStrongConnectHolds). The lemma
PreconditionStrongConnectHolds(data : TarjanData, u : Node, v : Node) ensures that if data.Valid
holds and u is connected to v then PreconditionStrongConnect(data, v) holds.
PreconditionStrongConnectHolds(data, u, v) ≡

precondition data.Valid()
precondition Connected(u, v)
precondition S2(data)
postcondition PreconditionStrongConnect(data, v)

This lemma PreconditionStrongConnectHolds can be difficult to prove. The problem is that
we have to prove that the invariant S2(AddNewNode(data, v)) holds. Since invariant S2(data)
holds we can prove that S2(AddNewNode(data, v)) holds by proving that all nodes in the stack are
connected to v. Since v is connected to u we can prove that every node in the stack is connected
to u. Let w be a node in the stack. We want to prove Connected(w, v). To do this we distinguish
2 cases.

1. Case w ≺ u ∨ w = u: By lemma S3 we know that disc[w] ≤ disc[u] so by lemma S2(data)
we can conclude Connected(w, v).

2. Case u ≺ w: By S1 we know that w is connected to a node x such that low[w] = disc[x].
By S8 we know that low[w] 6= disc[w] so x ≺ w. If x ≺ u ∨ x = u then by case 1 we know
Connected(x, v) so we can conclude Connected(w, v). Otherwise u ≺ x now once again x is
connected to some node below x. Eventually a node has to be reached which is in case 1.
From case 1 we can conclude Connected(w, v) so we conclude Connected(w, v).

This concludes all cases and proves that invariant S2 holds after the AddNewNode section.

80 Verification of an implementation of Tarjan’s algorithm for SCC

	Contents
	Introduction
	Preliminaries
	Basics of verification using Dafny
	Deterministic and nondeterministic code

	Tarjan's algorithm for strongly connected components
	Fundamental idea of Tarjan's algorithm
	An example of Tarjan's algorithm

	Pre-existing proof of the recursive Tarjan's algorithm
	Pre-existing verification of recursive implementation of Tarjan's algorithm
	Invariants of the recursive implementation of Tarjan's
	Monolithic proof of Tarjan's algorithm

	Pre-existing Dafny implementation
	Refactoring the pre-existing Dafny implementation

	Optimizing complex proofs in Dafny
	The Dafny verifier
	Boogie
	Weakest precondition calculus
	Dynamic frames

	Adding lemmas
	Introducing lemmas to methods

	Opaque predicates

	Stable proof of the recursive Tarjan's algorithm
	Defining functions in Tarjan's algorithm
	Introducing predicates groups and lemmas
	TarjanData Valid invariants group
	Loop invariants group
	Postcondition invariant group
	Precondition invariant groups

	Complete verification
	Proving invariant S1

	Proof of the iterative Tarjan's algorithm
	Storing old states global variables
	Defining Work
	Adding ghostWork to StrongConnect

	Incorporating invariants into Work
	Exact Work Invariants
	Invariants of GhostWork
	Proof GhostWorkIsValid

	Proving the postcondition
	Termination of the iterative algorithm

	Conclusions
	Comparison pre-existing proof to new recursive proof
	Proof of the recursive version Tarjan's algorithm
	Proof of the iterative version Tarjan's algorithm

	Bibliography
	Appendix
	Implementation Dafny verification
	Deterministically selecting items from a set
	Lemmas recursive Tarjan's algorithm
	Lemmas DataValid
	Lemmas Loop invariant
	Lemmas deriving the post condition
	Lemma PreconditionStrongConnectHolds

