
 Eindhoven University of Technology

MASTER

Combining Deep Learning and Simulated Annealing to Solve Vehicle Routing Problems with
Time Windows

van Eekelen, P.H.A.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ac3d2121-3f40-4fa7-babc-9c93b85e2f06

Combining Deep Learning and
Simulated Annealing to Solve Vehicle

Routing Problems with Time Windows
Author

Paul van Eekelen Bsc, 0776673

Supervisor Technische Universiteit Eindhoven
Prof. dr. Frits Spieksma

Second supervisor Technische Universiteit Eindhoven
Dr. Christopher Hojny

Supervisor CQM
Dr. Frans de Ruiter

Date
November 15, 2020

Abstract

Artificial Intelligence Algorithms successfully solve many problems with a high intrinsic
complexity. Routing problems are known to be notoriously hard to address by these al-
gorithms. In this thesis we investigate whether the combined use of Deep Learning, Sim-
ulated Annealing and Time Dependent Simple Temporal Networks can be satisfactorily
used to solve a class of routing problems in actual, daily practice. This case study aims to
improve the daily routing of Valys, a well-known transport planning in The Netherlands.
An improvement of two percent on the existing routing saves about 10000 kilometers a
day. Numerical results show that Deep Learning can successfully estimate the feasibility
of actions performed by the simulated annealing algorithm. The results of the developed
Python prototype constitute a good first start to addressing the practical problems while
directions are given to solve the remaining issues.

Contents

1 Introduction 1

2 Problem Description 4
2.1 Important considerations for the model 4
2.2 Integer Linear Programming . 6

3 Valys Algorithm 12
3.1 Simulated Annealing . 12
3.2 Simulated Annealing for the Valys Algorithm 14
3.3 Checking Feasibility . 16

4 Deep Learning 21
4.1 Multilayer Perceptrons . 21
4.2 Overfitting . 25
4.3 Convolutional Neural Networks . 25
4.4 Normalization layers . 26
4.5 Type I and Type II errors . 26
4.6 PyTorch . 27

5 Data Generation 29
5.1 Data Size . 29
5.2 Data Sampling . 30
5.3 Train, Validation and Test . 31
5.4 Data processing . 31

6 Models for the Valys problem 34
6.1 Inputlayer . 34
6.2 Multilayer Perceptron . 34
6.3 Convolutional models . 35

7 Results 36
7.1 Instance Normalization . 36
7.2 Batch Normalization . 39

8 Discussion and Conclusion 42

8.1 Discussion of the various models . 42
8.2 Conclusion . 43
8.3 Further research . 43

Appendices 48

A Speed test tables 48

B Threshold Graphs 59

1 Introduction

On a daily basis we encounter our own mini versions of the Traveling Salesman problem.
Is it faster to go to the grocery store first or should we visit it after going to the butcher?
What is the optimal route for a pizza courier to visit all her customers? The Traveling
Salesman problem is the problem of finding the best order in which you should visit n
places. The quality of a particular order is usually the duration of visiting those places
in that order. There are a lot of variations on the Traveling Salesman problem where ad-
ditional restrictions or possibilities are added. A possible addition is multiple available
vehicles with capacities instead of a single vehicle called the Vehicle Routing Problem,
VRP [19]. To solve this problem, Clark and Wright [13] published an algorithm called the
Savings Algorithm. Another variation that occurs often is the Vehicle Routing Problem
with Time Windows, so called VRPTW [5]. The VRPTW is a generalisation of the Trav-
eling Salesman problem, where instead of one vehicle we can have more vehicles to visit
all the places. See for example Figure 1. On the left-hand-side you see 16 blue dots and 1
black dot. Now imagine, all the blue dots are places that need to be connected to the black
dot by a vehicle that drives by. On the right-hand-side you see a solution with 4 vehicles
(in red, yellow, green and blue). The problem of finding an optimal solution adhering to
these requirements is called the Vehicle Routing Problem. This also can be made more
complicated by adding time windows, meaning that every blue dot has to be visited in
one specific time window. Then it is called the vehicle routing problem with time win-
dows and that is our problem of interest, which is described by Savelsbergh [18]. Many
solution techniques have been proposed in the literature to solve this. Some of the most
recent state-of-the-art algorithms can be found in -see papers on lee and lim benchmark
website-.

Figure 1: A solution to a vehicle routing problem. 1

1Picture taken from [1]

1

Our variant of the VRPTW concerns the Valys taxi-contract, the biggest taxi-contract
in the Netherlands. The contract facilitates elderly and disabled carpooling transport
throughout the Netherlands. For this subsidy around 450,000 citizens are eligible and
around 200,000 use their right. Every day about 5,000 taxi rides requests for the fol-
lowing day come in. With regular taxis each ride is serviced completely before starting
with the next one. These rides however, can be combined such that people from different
requests can end up in the same taxi at the same time. So this is a variant of carpooling
with taxis. At night, an algorithm combines these rides as good as possible with respect
to costs. This is a variant of the Vehicle Routing Problem with Time Windows mentioned
above. The VRPTW is a NP-Hard problem, which means that no exact polynomial time
algorithm for the VRPTW problem exists unless P = NP. However, an often made mistake
is that all instances in practice are therefore hard to solve. In practice, very often fast algo-
rithms exist for NP-Hard problems that can find good solutions in time reasonable for the
problem at hand. The existing algorithm reduces on average the scheduled driving kilo-
meters by 100,000 kilometers, when compared to the old decentralized scheduling, which
was done by hand. If we could improve on the existing algorithm, we could potentially
save 10,000 kilometers per day by allowing speeding up the algorithm, which allows us
to do more local neighbourhood searches in the same time.. This existing algorithm uses
a Simulated Annealing part to try and find new solutions and Time Dependent Simple
Temporal Networks for checking feasibility of new solutions. Simulated Annealing is a
heuristic method to find the best possible solution in a solution field [20]. A solution is
feasible if it adheres to all the restrictions of the problem, such as respecting the time
windows, maximum passenger time, vehicle capacities and complex driver resting times.
Time Dependent Simple Temporal Networks are labelled graphs on which we try to find
a shortest path to check for feasibility of a proposed route[17]. This last check is a time
expensive check, especially since multiple possible breaks must be scheduled in between
to comply with EU regulations on drivers resting times and shift lengths. Since we only
have limited time, we would want to do this check less often to increase the number of
iterations the simulated can perform in the same time. This is where this project comes in.
Can the insertion of a deep learning model in an existing simulated annealing algorithm
improve the solution of a VRPTW by quickly guessing feasibility of a new route, making
expensive checks only for promising routes?

Deep learning is a method of artificial intelligence which uses neural networks to
mimic mappings as good as possible [7]. In our case we want to mimic the feasibility
mapping of potential solutions. This deep learning algorithm tries to classify solutions
into feasible and non-feasible solutions as good as possible in a relative short time. We
could also try to solve the VRPTW entirely with a deep learning model similarly as done
by Nazari, Takac, Oroojlooy and Snyder [15], Lin, Ghaddar and Nathwani [12], Peng,
Wang and Zhang [16] and Joe and Chuin Lau [9], but this has only proven to work in
reasonable time for medium size, around 100 places that need to be visited, problem
instances. These models take about 15 minutes for these 100 size problems. Since our

2

problem sizes can be around 10,000, two places for each of the 5,000 customers, this
would probably result in computation times of at least days. We need to calculate our
solution within a few hours, so this direct approach is out of the question.

In Chapter 2 we talk more about the problem and define it precisely. After that we
explain the existing algorithm in Chapter 3. We address the relevant theory: the Simulated
Annealing algorithm and Time Dependent Temporal Networks. Then, in Chapter 4, we
continue with the relevant theory about Deep Learning. We talk about the different kinds
of Neural Networks available to us and all the different kinds of layers in them. For these
networks we use a Python library, Pytorch and we need data to train and test them. In
Chapter 5 we explain how we extracted this data. After this step we made a few different
models for testing. Which hyperparameters we choose and why is explained in Chapter
6. The performance of these models can be found in Chapter 7. This includes threshold
tests. These results are discussed in Chapter 8 and what they mean for the future. Some
future work possibilities are outlined there.

3

2 Problem Description

In this chapter we explain in further detail what the problem entails and give a formal
definition. The problem at hand is a variation on the Vehicle Routing Problem with Time
Windows[18]. On this problem there are some noteworthy organizational considerations
and computational considerations. These can be found in the section 2.1. We transform
the problem into an Integer Linear Program in section 2.2. There we state two different
ways to state the model in a particular form suited for Integer Linear Programming.

2.1 Important considerations for the model

In our problem we get requests for taxi rides from customers to get from point A to point
B within a certain time limit. After these rides the taxis have to return to their respective
depots. The aim is to find the in total shortest combination of these requests with respect
to time. In finding a solution for this problem, Valys has to take some considerations in
mind. These considerations can be divided into organizational and computational consid-
erations. We state these considerations below and after that go into further detail about
them.

Organizational Considerations

• There is a maximum for the duration that a passenger can be in a car.

• Every passenger has a pick-up or drop-off time window.

• There are 2 different types of vehicles.

• There are various laws concerning drivers that need to be adhered.

• Drivers have to end their route at their depot.

Computational Considerations

• There are around 5000 rides that need to be scheduled every day, with up to 15000
during peak days such as Christmas.

• Travel times are dynamic.

• The capacity of the taxis is limited.

• There is a maximum for the computing time.

4

There is a maximum for the duration that a passenger can be in a car: The
problem is a carpooling problem, so probably customers are not directly taken to their
destination. However nobody wants to step into a car at 09:00h in Amsterdam and then
dropped off in Haarlem at 21:00h. That is why a restriction is put in place where no ride of
a passenger should take longer than 150% of the time it would take to drive the passenger
directly from pick-up to drop-off.

Every passenger has a pick-up or drop-off deadline: Standard customers can
assign a pick-up window of 30 minutes wherein they want to be picked up. Other cus-
tomers who need to be somewhere at a specific time, for example funerals, do not assign
a pick-up window. Instead, they give a latest arrival time which in turn implies a pick-
up window. In the Integer Program formulation in section 2.2 we only use the (implied)
pick-up windows.

There are two different types of vehicles and vehicle capacities: A taxi for four
people besides the driver with no room for wheelchairs and a bus taxi for six people
besides the driver with room for two wheelchairs. These also come with a different cost
to operate.

There are various laws concerning drivers that need to be adhered: Drivers
ofcourse have to adhere to the driving laws in the Netherlands. There are also restrictions
for taxi drivers. For example, if their shift lasts longer than 5.5 hours, then they have to
get at least one break of 15 minutes. Also their shift cannot exceed 10 hours in one day.

Drivers have to end at their depot: For our calculation purposes, each route for an
individual taxi driver starts at their first customer, but does not end at the drop off location
of their last customer. Instead it ends at their depot location, which can be different for
every taxi company. Each taxi-route is assigned to the taxi-company with the same postal
code as the first customer of that route. The depot of each taxi-company is in the same
postal code as that company.

There are around 5,000 rides that need to be scheduled every day: Before every
day people can make taxi requests where to be picked up and where to be brought to and
they can include a pick-up time window. On a busy weekend day Valys gets about 5,000
requests, so the algorithm should be able to handle these numbers. On special days, such
as Christmas, the number of requests could even reach 15,000. This, in combination with
other restrictions and the type of the problem, makes it that we cannot find an optimum in
adequate time. The optimum can only be approximated.

Travel times are dynamic: Taxis cannot always drive at the maximum allowed
speed, for example during peak hours. So there is a system in place which predicts these
times and adjust distances accordingly. For example, during peak hours, the predicted
driving time will be multiplied with some factor r > 1. This predicted driving time is
supplied by Google.

There is a maximum for the computing time: Up until midnight requests for the
following day can be submitted. This leaves only the preceding night of every day as

5

the time period in which we can schedule all the rides. Since there are also other time
consuming parts in the entire procedure, this will leave about 4 hours in computation time
for our algorithm.

2.2 Integer Linear Programming

For optimizing problems with integer variables a perfect solution can be found if the
number of variables and corresponding complexity of the problem is low enough. This
can be done through Integer Linear Programming, ILP[23]. For this to work, we need to
transfer the definition of the problem into the following form.

min cTx(1)
subject to Aix ≤ bi, ∀i ∈ I(2)

x ≥ 0,(3)
and x ∈ Zn,(4)

where x, c and bi are vectors, Ai are matrices and i ∈ I are indices. The formula 1
expresses the cost function we need to minimize. The inequalities described in line 2
describe the various limitations and considerations for our model. The inequalities 3 and
4 are there to put the variable x, and other variables if they arise, into the right domain.
In this part we will show by transforming our problem into this form, that there will be
too many variables and thus the problem cannot be solved perfectly for all instances with
standard techniques in adequate time. First we start with listing the variables used in the
formulation:

• In our problem statement we consider two different types of taxis: taxis with six
person capacity and two wheelchair capacity and taxis with four person capacity
and no wheelchair capacity. We assume that these taxis always can achieve the same
speed and thus take the same time to get from place A to place B. This means that we
only need to consider if taxis do not exceed six person capacity and two wheelchair
capacity in our ILP formulation. If in a solution only at most four persons and no
wheelchairs are assigned to a taxi we can change that taxi to a four person taxi
instead of a six person one. We define our taxis k to be in the set K.

• To get a integer program we discretize the time t ∈ T . We only consider minutes
and thus round off all seconds to the upper minute.

• Let Z be the set of requests.

• Let P be the set of all the places that the taxis visit. Then let Pd ⊂ P be the subset
of the places P in which all places belong that are depots. Let pk ∈ Pd be the depot

6

location of taxi driver k. p0 ∈ P is the auxiliary starting place of all routes, which
has distance 0 to all other places. Furthermore, we assume that all drop-off and
pick-up locations are unique. Let pz, dz ∈ P be the pick-up and drop-off locations
respectively of request z with z ∈ Z.

• For each pair (i, j) ∈ P 2, taxi k ∈ K and timeunit t ∈ T we define the binary
variable xi,j,k,t as an indicator variable whether the route from place i to place j is
started by taxi k at time t. This route is completed without interruption.

• ci,j,k,t is the cost of the route from place i to place j by taxi k on starttime t.

• wk,t is the indicator variable for whether taxi k takes a break on timestep t. Let b
be the size of these breaks in minutes. For now this is 15 minutes, but this could
change.

• The yk are auxiliary variables used to activate different equations whether a taxi k
needs breaks or not. M is another auxiliary variable. M should be a number such
that equations 13, 14 and 15 are satisfied, when the factor multiplied with M is
equal to 1. For our purposes M = |X| is sufficient.

• Let f1 and f2 be the maximum time allowed for all taxi drivers in minutes per day
with breaks or without breaks respectively. In the current model we have f1 = 600
minutes and f2 = 330 minutes, but this could change.

• gz ∈ G is the number of passengers that the request z ∈ Z entails.

• hz ∈ H is the number of wheelchair passengers that the request z ∈ Z entails.

• maxz is the maximum duration that the passengers from request z ∈ Z can be in a
taxi.

• PWz is the middle of the pick-up window for request z ∈ Z. Let a be half the size
of the time windows in minutes. In our model for now this is 15 minutes, but this
can change.

7

Now we can define the constraints of our ILP:

min
∑

i,j∈P,k∈K,t∈T

ci,j,k,t · xi,j,k,t(5) ∑
j∈P,k∈K,t∈T

xi,j,k,t = 1 ∀i ∈ P\(Pd ∪ {p0})(6) ∑
i∈P,k∈K,t∈T

xi,j,k,t = 1 ∀j ∈ P\(Pd ∪ {p0})(7) ∑
i∈P,k∈K,t∈T

xi,p0,k,t = 0(8) ∑
j∈P,t∈T

xpk,j,k,t = 0 ∀k ∈ K(9) ∑
j∈P,t∈T

xp0,j,k,t ≤ 1 ∀k ∈ K(10) ∑
i∈P,t∈T

xi,pk,k,t ≤ 1 ∀k ∈ K(11) ∑
i,j∈P,t∈T

ci,j,k,t · xi,j,k,t ≤ f1 ∀k ∈ K(12)

M(1− yk) +
∑
t∈T

wk,t ≥ 1 ∀k ∈ K(13)

−M(1− yk) +
∑
t∈T

wk,t ≤ 1 ∀k ∈ K(14) ∑
i,j∈P,t∈T

ci,j,k,t · xi,j,k,t −M · yk ≤ f2 ∀k ∈ K(15) ∑
j∈P,t∈T

(xpz ,j,k,t − xdz ,j,k,t) = 0 ∀k ∈ K, z ∈ Z(16) ∑
j∈P,0≤t≤s

(xpz ,j,k,t − xdz ,j,k,t) ≥ 0 ∀k ∈ K, z ∈ Z, s ∈ T(17) ∑
j∈P,PWz−a≤t≤PWz+a,k∈K

xpz ,j,k,t = 1 ∀z ∈ Z(18)

8

∑
j∈P,z∈Z,0≤t≤s

(gz · xpz ,j,k,t − gz · xdz ,j,k,t) ≤ 6 ∀k ∈ K, s ∈ T(19) ∑
j∈P,z∈Z,0≤t≤s

(hz · xpz ,j,k,t − hz · xdz ,j,k,t) ≤ 2 ∀k ∈ K, s ∈ T(20) ∑
j∈P,z∈Z,0≤t≤s

(gz · xpz ,j,k,t − gz · xdz ,j,k,t)+(21) ∑
j∈P,z∈Z,0≤t≤s

(hz · xpz ,j,k,t − hz · xdz ,j,k,t)−

M · (1− wk,s) ≤ 0 ∀k ∈ K, s ∈ T∑
j∈P,t∈T,k∈K

(t · xdz ,j,k,t − t · xpz ,j,k,t) ≤ maxz ∀z ∈ Z(22) ∑
j∈P

t · xi,j,k,t−(23) ∑
l∈P,s≤t

(xl,i,k,s · (cl,i,k,s + s) +
∑
s≤r≤t

wk,r · b) ≥ 0 ∀i ∈ P, k ∈ K, t ∈ T∑
i∈P,t≤s

(xi,j,k,t − xj,i,k,t) ≥ 0 ∀j ∈ P, k ∈ K, s ∈ T(24)

wk,t ∈ {0, 1} ∀k ∈ K, t ∈ T(25)
xi,j,k,t ∈ {0, 1} ∀i ∈ P, j ∈ P, k ∈ K, t ∈ T(26)

yk ∈ {0, 1} ∀k ∈ K(27)

• In formula 5 the optimization goal is stated which resembles the amount of time
that is needed to service all customers.

• Equations 6 and 7 ensure that each destination and pick-up location is visited ex-
actly once.

• Equations 8 and 9 and inequalities 10 and 11 ensure that the depots are incorporated
correctly into the model. So each taxis ends their tour at their respective depot, each
taxi starts from the auxiliary depot, no taxi returns to the auxiliary depot and no taxi
leaves from a depot.

• Inequalities 12, 13, 14 and 15 are there for the maximum driving time and breaks
restrictions for the taxi drivers. In equation 15 we have f2 representing the max-
imum allowed time a taxi driver can drive without breaks. In equation 12 we see
f1 which represents the maximum allowed time a drive can drive with breaks. We
subtracted the breaks durance, which is 2 · 15 = 30 minutes, since these breaks are
already ensured to take place by equations 13 and 14.

9

• Equations 16 and inequalities 17 ensure that the taxi who picks up a passenger also
drops off that passenger and in that order. Equation 16 checks whether a taxi k only
picks up customers that it drops off. Equation 17 ensures that at each timestep s the
taxi k has not visited the drop-off location of each customer z before their pick-up
location.

• Equation 18 corresponds to the restriction that all passengers must be picked up in
their pickup window.

• Inequalities 19 and 20 ensure that the capacity of the taxis is not exceeded.

• By adding inequalities 21 we ensure that breaks are only taken by taxi drivers when
no passengers are in the taxi.

• Inequalities 22 is there to ensure that no passenger is longer in a taxi than their
allotted time.

• Inequalities 23 is there to ensure that the pickup time assignments are reachable
with respect to time from the previous location.

• Inequalities 24 is there to ensure that no place is left before it is reached.

• Expressions 25, 26 and 27 are there to confine the variables to their respective
domains.

So we have variables in the order of |P |2·|K|·|T | ≈ 5000·5000·K ·24·60 ≈ 3.6·1010
variables. We also have the same order of magnitude in equations. Solving all these
constraints with this order of variables is infeasible within our time constraints. Since
solving these equations is equal to finding an optimal solution to our problem, we can not
find an optimal solution to our problem with this model using the standard techniques for
this.

2.2.1 A different formulation

The formulation in equation 5 till equation 27 is not unique. In this subsection, we provide
an alternative mathematical formulation based on an ordered set of routes that we refer to
as a route-plan. A route-plan is an ordered set of routes which can be feasibly carried out
by a taxi-driver and which satisfies a number of requests. A route-plan that serves request
z, visits both pz and dz in that order. Let A = {1, ...,m} be the set of all route-plans. We
define bi to be the binary indicator variable that determines whether we use route-plan i,
i = 1, ...,m. Let di be the cost of routeplan i (1 ≤ i ≤ m). We write z ∈ i to indicate

10

that request z ∈ Z is served by route-plan i, i = 1, ...,m. The model is then formulated
in a compact way as follows:

min
m∑
i=1

dibi(28)

subject to
∑
i:z∈i

bi = 1 ∀z ∈ Z(29)

bi ∈ {0, 1} ∀i = 1, . . . ,m(30)

Expression 28 is there to minimize the cost of the solution we want to find. Equation 29
ensures that each request z is in exactly one scheduled route. The expression 30 ensures
that our binary decision variables bi are indeed binary. The biggest difference with our
former formulation is that we assume we can have access to the set of feasible routes. So
we need a way to fabricate this set. Whereas in the first formulation we restrict ourselves
only to feasible routes through equations 6 till 27.

11

3 Valys Algorithm

In this chapter we explain the existing solution to the problem: The Valys Algorithm. This
algorithm is a combination of Simulated Annealing, some simple partial route feasibility
checks from here on called fast checks and the Time-Dependent Simple Temporal Net-
work. In section 3.1 we will explain Simulated Annealing in general and then show the
implementation in the Valys Algorithm in section 3.2. In section 3.3.1 the fast checks are
explained in more detail and we mention where our deep learning algorithm is inserted.
The full feasibility check is explained in section 3.3.2.

3.1 Simulated Annealing

Simulated Annealing, as explained by van Laarhoven and Aarts [20], is a heuristic method
for trying to approximate the optimum of a given function. A usual problem with methods
that try to find a global optimum is that they get stuck in a local optimum. Simulated
Annealing tries to tackle this by sometimes continuing with worse solutions to try to get
out of local optima and to the global optimum.

Algorithm 1: Simulated Annealing Pseudo Code [20]
Data: Function f , Random Neighbour function RNB, epochs e, starting

solution s0, algorithm constant k
Result: Solution s

1 Let s← s0 be the initial solution;
2 T ← e;
3 while T > 0 do
4 s∗ ← RNB(s);
5 if f(s∗) ≤ f(s) then
6 s← s∗
7 else
8 if e

f(s)−f(s∗)
k·T ≥ Random(0, 1) then

9 s← s∗

10 T ← T − 1;

In the algorithm 1 the initial solution s0 can be chosen in various ways. Usually
this a trivial solution, but it could also be a random chosen solution if such a thing can
be constructed easily. The epochs e is the number of iterations you want the algorithm to
run. This is usually dependant on the amount of time you have. The Random Neighbour
function RNB(s) is a function that selects a neighbour of s according to a distribution.
This distribution is the uniform distribution, but can be different if desired. In most sim-
ulated annealing approaches, as is in ours, feasibility is mainted for each intermediate

12

solution within the algorithm. This requirement fits into the framework above by setting
f(s) =∞ for all infeasible s.

3.1.1 Temperature

In the Simulated Annealing algorithm 1 we use a variable T, called temperature. This
variable starts out at a high number we called epoch and decreases linearly with each
iteration of the algorithm. The temperature is used to determine whether the considered
solution is accepted or not. The considered solution is always accepted if it is the best
so far, but if it is worse then it is accepted with a certain probability. This probability
depends on the temperature and the difference in quality between the best and the con-
sidered solution. With a higher temperature the probability of acceptance will be higher.
This makes it possible for the algorithm to accept low quality solutions in the beginning
in order to explore the solution space. This is so that in the beginning of the algorithm
we accept bad solutions to try to explore the solution space. In the later stages we care
more about getting to the global minimum, or at least a local minimum, and so we ac-
cept worse solutions less often. This process is analogous to the annealing process in
metallurgy. In that process, a metal that is heated past its melting point is slowly cooled,
analogous to our changing temperature variable to prevent imperfections from occurring
in the cooled metal. By slowly cooling, the atoms arrange themselves into states with the
lowest possible energy. This lowest possible energy state is analogous to our quality of a
solution.

3.1.2 Neighbourhood

First we will define what a neighbourhood is. A neighbourhood of a point is a set of
other points with the constraint that when a point a is in a neighbourhood of point b, then
point b is also in the neighbourhood of point a. In this case the points a and b are called
neighbours. We will now define the neighbourhood:

Neighbourhood(sn) = {sn0 , sn1 , sn2 , ..., snmn−1}(31)
Neighbour(s, s0) = True iff s0 ∈ Neighbourhood(s)(32)
Neighbour(s, s0) = Neighbour(s0, s)(33)

Where n is the number of solutions and nmn−1 is the number of neighbours of Soln.
The Neighbour relation is symmetrical, as seen in equation 33, and irreflexive. A similar
definition is stated by van Laarhoven and Aarts [20]. We call going from one solution
to a neighbour solution a move. We also want total connectivity, i.e. we can get from
any solution Soli to any other solution Solj through a finite number of moves. This is
so we don’t exclude an entire part of our solution space through our choice of the initial
solution. For easy calculations we want that the computations for cost and feasibility

13

for a neighbour solution are small. So our neighbours should look similar and in such
in way that computing the cost of our new solution is small. A simulated annealing
algorithm starts with a random or constructed solution to the problem and calculates its
cost. Then it goes to a random neighbour solution and calculates its cost. For example,
when one customer is transferred to a different taxi. Now we need to know whether we
want to continue with this neighbour or reject it and try another neighbour. The acceptance
decision is explained in the next section.

3.1.3 Acceptance

After we select a neighbour solution s∗ of our current solution s, we decide whether we
want to continue with this solution s∗. For this we check what the score f(s∗) for this new
solution is and compare it to the score f(s) of our current solution. If f(s∗) ≤ f(s), then
we continue the algorithm with s ← s∗. If not, we only continue with s∗ with a certain
probability. This probability is [20]:

(34) e
f(s)−f(s∗)

k·T

where T is the temperature, e is Euler’s number and k a constant specified for this al-
gorithm. In equation 34 we can see that the probability decreases when s∗ is bigger and
when the T gets lower. So when the new solution s∗ is worse or when we are further
in the algorithm, we will accept s∗ with a lower probability. After the acceptance or re-
jection of s∗ we will decrease the temperature T , select a neighbour of our current s and
continue with the algorithm from the start. If the temperature reaches 0 we will terminate
the algorithm.

3.2 Simulated Annealing for the Valys Algorithm

After discussing the general form of the Simulated Annealing algorithm, we can now
explain the details of the implementation in the Valys Algorithm.

We define a solution as an assignment of all the customer requests to the taxis and
an order of pick up and delivery of their customers for every taxi. For example, let
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 be customerID’s and a, b, c, d, e and f be taxis. Then a so-
lution is:
a : 2, 3, 3, 4, 2, 4
b : 0, 1, 1, 0
c :
d : 8, 7, 6, 6, 8, 7
e :
f : 5, 5
and

14

a : 2, 3, 3, 4, 2, 4
b : 0, 1, 1, 0
c :
d : 8, 7, 6, 8, 7, 6
e :
f : 5, 5
is a different solution, even though it has the same assignment, but it has a different or-
dering. The full Simulated Annealing pseudo code in the Valys algorithm is included in
algorithm 2.
In our case this will be that a move constitutes that one client is serviced by a different
taxi driver. All the other clients are serviced in the same order by the same taxi drivers.

Algorithm 2: Simulated Annealing for Valys Pseudo Code
Data: Customer Requests, epochs
Result: Route assignment

1 initialization;
2 Let s← s0 be the initial solution where every customer is assigned to a different

taxi;
3 ’ T ← epochs;
4 while Temperature T > 0 do
5 Take a customer c from a uniformly random selected driver xi;
6 n← 0;
7 while n < 20 do
8 n← n+ 1;
9 Take random other driver xj and insert customer c in uniform random

place in xj’s route;
10 if route passes fast checks then
11 if route passes full check then
12 calculate route cost;

13 if route cost < best route cost then
14 best route cost← route cost;
15 best route← route;
16 break;
17 else
18 if e bestroutecost−routecost

k·T ≥ Random(0, 1) then
19 best route cost← route cost;
20 best route← route;
21 break;

22 T ← T − 1;

15

3.3 Checking Feasibility

In this section we discuss the checking of feasibility of a proposal solution in the simulated
annealing part of the Valys algorithm. In most Simulated Annealing algorithms this part
is quite easy and does not take much time to compute. For example when Simulated
Annealing is applied on a simple Vehicle Routing problem the feasibility check only
consists of checking whether the capacity of a vehicle is not exceeded. This is matter
of adding n elements and checking n times in between addition whether the capacity is
exceeded. Here, n is the number of places this vehicle is scheduled to visit. In our problem
however we need to check many more constraints. The feasibility check consists of two
parts. The first part are the fast checks in Section 3.3.1. These checks are necessary, but
not sufficient for feasibility of a particular route. The second part is the full check, which is
described in section 3.3.2. For this full feasibility check we use a Time Dependent Simple
Temporal Network as described in the paper by Pralet, Cédric and Verfaillie, Gérard [17].

3.3.1 Fast checks

Before the full feasibility check the algorithm does four incomplete feasibility checks.
The passing of these checks is necessary for feasibilty, but it is not sufficient to prove that
a particular route is feasible. These checks are computed relatively quickly. Since we
make no smart guesses for the next proposed solution step, these checks are succesful in
removing a lot of in the infeasible proposed solutions. These four checks are:

• checking whether the order of events is right with respect to the pickup windows.

• checking whether the pickup windows are reachable using the real unadjusted travel
lengths.

• checking whether the time each person is in a taxi is at most 150% of their direct
traveling time.

• checking whether the maximum time, 8 hours, is exceeded per taxidriver.

After these checks is the place were our deep learning models are inserted into the existing
Valys algorithm. This will be followed by the full check described in section 3.3.2. The
goal of these deep learning models is similar to that of the existing fast checks. Namely
to eliminate as much of the remaining infeasible instances while still letting almost all
feasible instances through to the full check. This check will not be a necessary check
for feasibility; some instances that fail this check will actually be feasible. For more
information on the deep learning models see chapter 6.

16

3.3.2 Full check

In this section we explain the full feasibility check of the existing Simulated Annealing
algorithm. Here the algorithm needs to check whether all constraints that are explained in
section 2 are adhered to. These can be written as constraints ct in the following form:

(35) y − x ≥ dmin(x, y)

where x and y represent the moment their related events X and Y take place and dmin(x, y)
represents the minimal distance these two events have to be apart. Events can be various
things such as the picking up of passengers or a zero time moment of the day. When we
add all these constraints together we get something called a Simple Temporal Network,
STN. In a STN this dmin(x, y) is independent on time. But in our case the distances
between events can be dependent on time. To incorporate this we use Time Dependent
Simple Temporal Networks, TDSTN. For more information on TDSTN’s we refer to the
paper by Pralet, Cédric and Verfaillie, Gérard [17]. A graph can be constructed from these
constraints, where the events are represented as the nodes and time constraints by labeled
directed edges. An example of such a graph can be found in figure 2.

Figure 2: The graph belonging to the STN of the Transvision problem.

We solve these TDSTN using Floyd-Warshalls shortest path algorithm in combi-
nation with a smart ordering of edges. For more information on the Floyd-Warshalls
algorithm see their paper[6]. For each event in the TDSTN we need a moment in time
in which this event can occur. Using the constraints ct we can find time windows for
these events. If for an event we ever find an empty time window, then that means there
is no solution possible. So we start with very big time window and by applying these
constraints we can prune these time windows until no change occurs or we find an empty
time window for an event.

17

First we define the delay function as follows:

(36) delayct(a, b) = a+ dmin(a, b)− b

As you can see this definition directly comes from equation 35. If delayct(a, b) ≤ 0 then
the requirement is violated for this pair of (a, b).
A requirement ct is delay monotonic if it adheres to the following two requirements:

(37) ∀a, a′ ∈ d(x),∀b ∈ d(y), (a ≤ a′)→ (delayct(a, b) ≤ delayct(a
′, b))

(38) ∀a ∈ d(x),∀b, b′ ∈ d(y), (b ≤ b′)→ (delayct(a, b) ≥ delayct(a, b
′))

Here d(x) and d(y) are the domains of events x and y respectively. Informally in our
situation rule 37 would imply that when you leave from a location later you cannot arrive
earlier than you would before. Rule 38 implies that when you arrive earlier you cannot
leave later than you would before. Since our restrictions are all concerned with how cars
drive, these restrictions are all delay monotonic.
Now we define earrct(a), ldepct(b), firstNeg(F,d(x)) and lastNeg(F,d(x)). earrct(a)
is the earliest arrival time for constraint ct, when the departure is a. ldepct(b) is the
latest departure for constraint ct, when the arrival is a. firstNeg(F,d(x)) is the smallest
a ∈ d(x), such that F (a) ≤ 0. lastNeg(F,d(x)) is the largest a ∈ d(x) such that
F (a) ≤ 0. How these equations are related can be found in Equations 39 and 40.

(39) ∀a ∈ d(x), earrct(a) = firstNeg(delayct(a, .), (y))

(40) ∀b ∈ d(y), ldepct(b) = lastNeg(delayct(., b), (x))

To find earr and ldep we thus need to find values for firstNeg and lastNeg. A possible
algorithm for finding the value of firstNeg is stated in Algorithm 3:

18

Algorithm 3: Possible way of computing firstNeg(F, I), with I = [a1, a2],
maxIter a maximum number of iterations, and prec a desired precision. [17]
1 firstNeg(F, [a1, a2],maxIter, prec);
2 begin
3 f1 ← F (a1); if f1 ≤ 0 then
4 return a1;

5 f2 ← F (a2); if f2 > 0 then
6 return∞;

7 for i = 1 to maxIter do
8 a3 =

f1·a2−f2·a1
f1−f2 ;

9 f3 = F (a3);
10 if f3 < prec then
11 return a3;
12 else
13 if f3 > 0 then
14 (a1, f1)← (a3, f3)
15 else
16 (a2, f2)← (a3, f3)

17 return a2;

Finding the value of lastNeg happens in an analogue way. Using this definition we
can now give a simple algorithm with which to update the domains of the time variables,
the so called time windows:

Algorithm 4: Rules for pruning the time windows
1 d(y)← d(y) ∩ [earr(min(d(x))),+ inf[;
2 d(x)← d(x)∩]− inf, ldep(max(d(y)))];

We can apply these rules indefinitely until no change occurs. A problem with this
is that it is possible that the changes are incrementally smaller each time and never stop,
but they do converge to an asymptote. But since our model only has integer values and
we have bounded time windows, we can not have an infinite sequence of decreasing time
windows. So applying the rules from algorithm 4 we eventually find whether the route
has a solution. Lastly it is now important to have a smart order in which you prune the
constraints. This is because not all constraints have the same direct or indirect influence
on all the time windows. So a good ordering is vital to minimize the amount of revisions
you have to do.

19

3.3.3 Acceptance

If our new solution is infeasible, then we reject it and go back to our original solution. If
it is feasible we compare the neighbour score with our current best score. If the neighbour
is better we continue with the neighbour. If the current score is better, then we continue
with the neighbour with a chance. This chance is equal to the following formula [20]:

e
S0−S1

T > RandUni(0, 1)

S0 is the old score, S1 is the new score, RandUni(0, 1) is a uniform random number
between 0 and 1. Note here that the score is the combined cost of all the taxirides. So
a lower score is better. The temperature is a variable that decreases over time during the
algorithm. This has as effect that the chance with which we accept worse scores becomes
lower over time.

20

4 Deep Learning

In the previous chapter we discussed the existing Valys algorithm and the mathematical
mechanism within that algorithm. In this chapter we go into detail about the mathematical
techniques used in the algorithm which we investigated: Deep Learning methods. Deep
Learning is a subclass of the machine learning methods as described in [7]. It uses arti-
ficial neural networks. Neural networks are nodes connected with each other that models
neurons from your brain. These nodes are ordered in layers. Each layer consists of a
number of nodes. The nodes in each layer are connected with weighted connections with
all nodes in the previous and next layer. There are different kinds of neural networks: su-
pervised, unsupervised or anything in between. For our purpose we use supervised Deep
Learning models. This means that the model is given guidance into what the output of the
model should be. Guidance means that the correct output is known for the given input.
In our case, there is enough data available with the correct labels so that is why we use
supervised learning.

4.1 Multilayer Perceptrons

Multilayer Perceptrons are a class of Deep Learning models where layers are fully con-
nected with the layers before and after the current layer. This means that every node in
a hidden layer has a connection with every node in the next layer. Each node is depen-
dent on every node in the last layer. They are universal function approximaters which is
shown by Leshno, Lin, Pinkus and Schocken [11]. This means that in theory you could
approximate real valued continuous functions to any degree that you want with Multi-
layer Perceptrons. This makes them very suitable for situations where a direct formula
is unknown, non-existent or expensive to calculate and only an as good as possible an-
swer is needed. In our case we have a time-expensive feasibility function we want to
approximate.

4.1.1 Layers, Nodes, Weights and Biases

We differentiate between three layers: input, hidden and output layers. The input layer,
which we usually only have one of, is the layer where values from an instance comes
into the model. A hidden layer is a layer in the black box part of the model. There,
values are stored for further processing and put through to other layers. The output layer
is where the output of the model is stored. Every layer in a neural network consists of a
number of nodes. Every node receives input from nodes from the previous layer. A linear
transformation is applied on the input data of the following form,

(41) zi,k =
∑
j

wi,j,k · youtj,k−1 + bi,k,

21

with zi,k the weighted value of node i in layer k, wi,j,k the so-called weight corresponding
to the connection from node j in layer k − 1 to node i in layer k, bi,k is the so-called
bias added to the node zi,k and youtj,k−1 the output of the node from layer k − 1. Now an
activation function f can be applied resulting in the output of node i in layer k of the
form,

(42) youti,k = f(zi,k).

These models need to store their parameters for further use of the model. The models
we use store their parameters in tensors. Tensors are three or more dimensional matrices
containing numbers. In figure 3 we can see an example of a model with one hidden layer,
where every node is fully connected.

Figure 3: A representation of a Neural Network2

4.1.2 Activation Functions

Activation functions are functions that determine if a node passes a signal on and if so,
how big the signal is. These functions need to be differentiable everywhere for the back-
propagation to work. We explain this backpropagation later in section 4.1.4. Because of

2This figure can be found in [2]

22

this reason we can not use the most natural activation function. This activation function
is the following:

(43) Binair(x) =

{
1 if x > 0

0 if x ≤ 0.

The derivative of this function is 0 everywhere and undefined in 0. This means that the
backpropagation never changes the weights, since the change is a constant times this
derivative which is 0. There are different kinds of activation functions which do deriva-
tives with which we can work. The most used activation functions are Sigmoid and ReLU
functions. ReLU(x) is called the rectified linear unit. The function is zero for x < 0 and
x for x ≥ 0. So

(44) ReLU(x) = max(x, 0).

This function is differentiable everywhere except x = 0. In practice the value for d
dx

ReLU(x) =
0 or 1. The Sigmoid function is defined as follows [8]:

(45) S(x) =
1

1 + e−x
.

This function is differentiable everywhere, stays between 0 and 1 and has the following
nice property for the derivative [8]:

(46) S ′(x) = S(x)(1− S(x)).

This is a nice property, because it makes it easy to compute the derivative. We already
have the value S(x), so computating the derivative computating using equation 46 is
relatively easy.

4.1.3 Forward Pass

In a forward pass an instance is fed to the neural network. This instance gets multiplied
with all the weights while it passes through the layers. At the end you have some values
in the output nodes. In our case this is the prediction that an instance is a feasible route.
If the model is in training mode it can be helpful to calculate the gradient of your tensors,
because you need this gradient for the backpropagation.

4.1.4 Backpropagation

After the forward pass we want to adjust our model according to how far off we were. We
compare our predicted value with the actual label using the loss function that we chose.
A loss function is a function that maps its variables to a real number, in our case bounded

23

Figure 4: Gradient Descent fins a local minimum and possibly the global minimum[3].

below by 0. This number represents a loss or a cost that you generally want to minimize.
A simple loss function is the Mean Squared Error. The MSE has the following formula
[22]:

(47) MSE(y,y∗) =
1

|y|
∑
i∈[|y|]

|yi − y∗i |2.

Where y and y∗ are the output vector of the model and label vector respectively. Another
loss function which is often used for binary classification is Binary Cross Entropy [14]:

(48) BCE(y,y∗) = − 1

|y|
∑
i∈[|y|]

(yi · log(y∗i) + (1− yi) · log(1− y∗i)).

From [4] we know that for a binary classification problem the BCE is an appropri-
ate loss function for our models. After that we change the weights and biases in response
to faulty label predictions. Gradient Descent is a usefull method for this. Gradient de-
scent calculates the gradients of the loss function in respect to the weights and biases all
individually and then change those weights and biases into the opposite direction of the
gradient with an appropriate amount. This moves the state of the learnable parameters

24

towards a local minimum. For this to work, we need to have gradients and thus all the
functions in the model need to be differentiable. When the weights and biases reaches the
local minimum the gradient is zero, so it stops changing. In Figure 4 a function with a
global minimum and local minimum can be seen. With gradient descent we could either
end up in the local minimum or the global minimum depending on where we start rela-
tive to the local maximum. To cross this local maximum we could use something called
momentum. Momentum uses the gradient of the last batch to keep going more steadily in
the same direction. This could push the state of the parameters over maxima and into a
better minimum.

4.2 Overfitting

Overfitting is when you use too many parameters to try to fit data. This gives you a result
that perfectly fits those datapoints, but does not find the underlying connection. This is a
problem if you want to use your model to predict something on data it has never seen, so
called out-of-sample performance. This is usually the case with Deep Learning models.
To rectify this we could use Dropout or Dropconnect. Dropout is a layer you place after
normal layers. It puts the activation value of some nodes in that layer to 0 with a preset
chance. Dropconnect is a layer you put before a normal layer. It sets some weights of the
layer to 0 with a preset probability. To some extent, this ensures that the model does not
become too reliant on single nodes for the predicted label.

To check whether you are overfitting we separate our data into 3 groups: train,
validation and test data. We use the train data to train our model on. We use the validation
data to check when we need to stop with training. If the model stops improving on the
validation data we stop as well. When we continue beyond this point, we improve the
performance on the training set, but potentially worsen out-of-sample performance as
overfitting occurs. We need to use data for this on which the model was not trained,
because the model learns specific elements of the train data. This means that the loss on
the train data decreases long after the model has stopped improving. Lastly we use test
data to give a definite score to the model. We needs this last set, because we implicitly
shape our model to the validation data. So this test data is a set of data which the model
has completely not seen before and thus suitable for as a score giver.

4.3 Convolutional Neural Networks

A convolutional network is especially useful in situations where you want to detect the
same pattern in different parts of your input. For example, you want to detect if a dog is
present in a picture. You want to get a positive result whether the dog is in the center, top
right or anywhere else in the picture. Convolutional layers use the same weights variables
for different nodes in the same layer. Thus, they are also learned together. We could use

25

this in our project because errors later in a route could also occur earlier in the route. For
this approach to work, the input types have to be the same everywhere where we apply
this weight-matrix also know as kernel. Otherwise the same weights would not make
sense.

4.3.1 Pooling Layers

Pooling layers combine the outputs of subsets of neurons. They act the same as convo-
lutional layers, except that their weights and biases are not learnable. The two pooling
layers we use, are maximum pooling layers and average pooling layers. Maximum pool-
ing layers take the maximum of their input nodes. Average pooling layers take the average
of their input nodes.

4.4 Normalization layers

To further improve our model we use normalization layers. A normalization layer en-
sures that the layer after that specific normalization layer gets their input from a certain
interval. So it scales the input. This makes learning faster, because bigger learning rates
can be used. Without normalization layers this could cause problems with nodes that get
high or low activation values, which would slow down or halt training. It also has some
small regularization benefits. We used two different normalization layers: Instance nor-
malization and batch normalization. Batch normalization normalizes over the batches and
instance normalization normalizes over each input node.

4.5 Type I and Type II errors

An error is when the prediction of an instance by the model is not equal to the label
corresponding to that particular instance. For our problem you can divide these errors
into two kinds: feasible instances that are predicted infeasible and infeasible instances
that are predicted feasible. We call these the Type I and Type II errors respectively.
Usually you try to optimize your model to reduce all errors, but sometimes Type I errors
are more important than Type II errors or vice versa.

The goal of our model is to know if a route-proposal is feasible or infeasible. How-
ever, after applying the deep learning models on our input, this does not result in the
binary classified output feasible and infeasible. The model outputs a number between
zero and one, where the model has trained to try to match their output as closely to the
associated labels ”0” and ”1”. A ”0” constitutes an infeasible route-proposal and a ”1”
constitutes a feasible route-proposal. Now, a post-processing procedure has to be applied
to categorize all the output in feasible and infeasible route-proposals. A natural way to
categorize is to say that every output below a threshold t = 0.5 means infeasible and

26

every output equal to or above t = 0.5 is feasible. However, you can take any threshold t
between 0 and 1, it does not have to be 0.5. For example, take 0.1. Then, every number
above 0.1 is feasible, and any number below 0.1 is infeasible. There are multiple reasons
why you would want to do this:

1. There can be a situation where you only need the feasible-instances and not the
infeasible-instances, and it is important that you have almost all feasible instances.
Then, when setting your threshold at 0.5, you possibly miss a lot of feasible -
instances, because you discarded everything below 0.5. When you set your thresh-
old at a lower number, you still discard a lot of infeasible instances, but much less
feasible instances.

2. The goal is to maximise the accuracy and the maximum accuracy is not achieved at
t = 0.5 .

3. The environment in which your model is deployed has a skewed data distribution
and your model has a skewed accuracy table.

In our situation we want to reduce the number of infeasible instances we need to fully
check, but certainly not discard some feasible instances. In this project the situation as
described in the first item is applicable.

4.6 PyTorch

Deep learning is around for some time, so people have made various libraries in python
and other coding languages to make the process of training and deploying models easier.
We use PyTorch as our library in python. The library maintains weights, biases and gradi-
ents. It also has methods for applying the model and the accompanying backpropagation.
Every model consists of different layers applied one after another. These layers could be
any of the mentioned layers above or any other implemented layerstructure. Furthermore,
there are various optimizers, loss functions and datastructures implemented [10].

27

28

5 Data Generation

In Chapter 4 we explained the mathematics behind the deep learning model. For these
models to train we need data. In this chapter we explain how we extract our data and how
it is going to look. In section 5.1 we explain how much data we extract. How we extract
this data and how this data is sampled is explaind in section 5.2. We need to divide this
data into three parts. Why and how we do this is explained in section 5.3. In the last
section of this chapter we go into detail about how we shape the instances we feed to the
models.
However first we need a place to extract our data from. Fortunately enough we can run the
existing algorithm on 60 runs of separate days and extract data from those runs. The big
question is now: what data do we want? First and foremost we want route instances that
passed the fast checks of the existing algorithm 3.3.1. This only leaves us with those that
would normally go through the expensive full check. So it would only encounter instances
that passed the fast checks. Then we could simply extract all the available information
on routes that pass the fast checks and use that for the models. This gives us about 2.7
billion instances where each instance consist of about 500 numbers. This is way too much
to store and too much to put through the algorithm. Thus we need to make a selection
with enough instances to get a good first training session, but not too few for competent
training. Another problem is the differing size of the routes. Models are usually built for
one input size. Not all our instances contain the same number of customer requests. More
requests per route means more information. So we need a way to solve this problem. We
call the number of customer requests per route the route cardinality.

5.1 Data Size

The first idea is to get 10,000 instances per route cardinality, feasibility and day combina-
tion. Since we have six cardinalities, two feasibility options and 60 days, this results in a
total of 7.2 · 106 instances. For each instance we would store the Route ID’s in the order
in which they are picked up and dropped of together with whether it was feasible or not.
For the actual input to the models we add some information, but we can extract that from
this in due time. For example for an route cardinality 2:

(49) 1, 0776293, 0776293, 0662732, 0662732

where the 1 indicates that this instance is feasible and 0776293 and 0662732 are Route
ID’s. The example means that the customer 0776293 is first picked up and dropped off,
after which customer 0662732 is picked up and then dropped off. This gives approxi-
mately 3.5 GB of data, which is big enough in and in itself. We take the same number
of instances per feasibility bit, since it is usefull to have a balanced dataset. If you would
have more instances which are infeasible, then the model gets pulled more towards giving

29

an infeasible rating. At the extreme if a model only gets infeasible instances it would
just have 0 as output regardless of the input. Even with some feasible instances it would
probably always output 0 or something very close to it. When your data is skewed and
not numerous, there is a method which uses all the data and mitigates this pulling effect.
This method simply exists of taking equal shares from the feasible and infeasible data per
training run. The smallest class you take completely and for the bigger class you sample
a set with the same size as the smallest class. This way you can use all your data, but you
do not train with skewed results.

5.2 Data Sampling

These 10000 instances are taken uniformly over all the instances that the algorithm en-
counters. We do this uniformly, since we do not have a reason to prioritize different parts
of the data stream. In some situations it could be useful to take more from the end of
the algorithm, since there, improvement is hard so we really need to test all feasible so-
lutions. Or it might be better to get more instances from the beginning, since there we
need to spread out our search for the global minimum as much as possible. In the afore-
mentioned described cases we would assume that the routes tested from the beginning are
structurally different from routes tested at the end. Instead we assume the opposite: That
the routes from the beginning of the data stream are structurally the same as the routes
from the end. We sample this as if we get the data in an infinite stream. For this we use
Reservoir Sampling by Vitter [21]. This version has a time complexity of O(10000(1 +
log(n/10000)), but we use a somewhat simpler version which has time complexity O(n).
The pseudo code for the O(n) variant can be found in algorithm 5. We choose to use
the O(n) variant, since the time complexity of the rest of the algorithm is O(n2) or
worse. So our algorithm runs with about the same running time with this insertion.

Algorithm 5: Reservoir Sampling Pseudo Code [21]
Data: Datastream d, Reservoir Size n
Result: Sampled set r

1 i=0;
2 while True do
3 i++;
4 k=RandomInteger[0,i) if k < n then
5 r[k]=d[i];

6 if End of stream then
7 break;

30

5.3 Train, Validation and Test

When we get our data we need to split our data into 3 sets as mentioned in section 4.2,
namely: Train data, Validation data and Test data. The question is how we want to split
this data. Since eventually we train our model on data from some days and use it for other
days with, in theory, independent routes, we are going to assign whole days of data to
each of these 3 sets.
Because of this we do not want to do cross-validation. Cross validation would mean that
we would join the train and validation data and choose a different part of this set to use
as validation data each epoch. This would mix the day sets and as such is only advisable
if you do not have a lot of data. As stated in section 5.1 we use 60 days of data, which
gives approximately 1.2 million instances for our models. 60% of this is enough to train
our networks on.

5.4 Data processing

When we get the necessary data we need to process before we can feed it into the models.
The model can only use linearly scaleable data. For example a route duration of 20 means
that it is two times as long as a route duration of 10. However, a route ID of 20 does not
mean that it is two times as big as a route ID of 10. It is just a different ID. So these ID’s
must be transformed into dummy variables. This means that if we have n different ID’s
we transform each ID into a serie of n booleans. The first ID we encounter, we correspond
with 1000 · · · 000. The second with 0100 · · · 000 and so on. These booleans are linearly
scale able. This is because a 1 corresponds with the occurrence of a particular ID and a
0 with the absence. So a 0 corresponds with 0 · 1. We also need some more information
about the routes, which we extract using the Route ID’s. We need the pickup window
for each customer in the route and the maximal length that each customer can be in the
car. We use the coordinates of the pickup and dropoff location of every customer. This
transformation makes the instance in table 49 into:

Table 1: Processed data of the example data found in equation 49
1
0 1 43 36900 52.294924 4.9799599 0
0 1 43 36900 52.202983 5.2963768 0
1 0 130 43200 52.241340 5.1651836 0
1 0 130 43200 51.443094 5.6277974 0

This is formatted in a two dimensional array for readability. In the model it is in
a one dimensional array. The label of the instance is the only entry in the first row. The

31

first two columns, except for the first row, correspond to the dummy representation of
the tripID’s. The third column is the maximum time allotted to corresponding customers.
The fourth column is the pickup time for the customer. If the request corresponding to the
customer is an arrival guarantee request, then this column is zero at that position. Column
five and six correspond to the coordinates of the pick up or drop off location. The two
requests were not arrival guarantee request, so the last column is all zeros. After this
transformation we separate the label in front from the rest of the data. Now we can train
the models on the data.

32

33

6 Models for the Valys problem

In this Chapter, we explain the architecture of the models for the Valys problem we trained
and tested. For these models we performed hyper-parameter optimization on a defined set
of parameters which we explain further in this chapter. This produced 425 models in
total for the Route-cardinalities two untill seven combined in the first run. We can divide
these models into two types of models: Multi layer perceptron models and Convolutional
models. For the first run of these models we used one instance normalization layer.

For the second round we only considered models with a layer depth of one, switched
the normalization layer to batch normalization, changed the number of kernels per layer
and used only the halving layer width method for the MLP models. This led to 30 models.

6.1 Inputlayer

From the data generation we get instances of cardinality k in the following form:

(50) RouteID0, RouteID1, · · · , RouteID2k−2, RouteID2k−1

where RouteIDi ∈ [k] and every element in [k] is visited twice. After every RouteID we
add the following five variables: Geo coordinates, Max Route Duration, Pick up window
and Arrival guarantee deadline. From the last two exactly one is nonzero, because in the
case of an arrival guarantee no pick up window is given and vice versa. After this the
RouteID’s are transformed into dummy variables. For the case of k = 2 there is an
example in table 1. In total this has 2 ∗ k ∗ (k + 5) variables. For more details on form of
the data view chapter 5.

6.1.1 Loss function

As a loss function we use Binary Cross Entropy which we defined in equation 48. This is
a good loss function for a binary classification problem as stated in [4].

6.1.2 Optimizer

As optimizer we chose RMSProp. The learning rate is 0.01 with a scheduler that reduces
the rate with a factor 0.5 when the loss does not decrease for 6 epochs. We chose these
hyper-parameters as such through trial and error.

6.2 Multilayer Perceptron

For the multilayer perceptron models we tried variations in the number of hidden layers
and the number of nodes in these layers. The output layer always contain one node, which

34

is the feasibility prediction of the model. The widths of the other layers we handled in
three different ways. We choose to always decrease the widths of the layers to make the
execution of the models faster. We decreased it linearly, multiplicatively and divided it
by two with a last jump to one. So lets say that n is the number of nodes in the input
layer and we have m hidden layers. Then the number of nodes in the linearly decreasing
schedule is:

(51) n,
⌊ n ·m
m+ 1

⌋
,
⌊n · (m− 1)

m+ 1

⌋
, · · · ,

⌊ n · 1
m+ 1

⌋
, 1.

For multiplicatively the width schedule would look like this:

(52) n, bn
m

m+1 c, bn
m−1
m+1 c, · · · , bn

2
m+1 c, bn

1
m+1 c, 1

For divide by 2 the width schedule would look like this:

(53) n,
⌊n
2

⌋
,
⌊ n

22

⌋
, · · · ,

⌊ n

2m−1

⌋
,
⌊ n

2m

⌋
, 1

For this last one we assumed n ≥ 2m, which with our m ∈ [4] and n ≥ 28 was always
satisfied. Some of these coincided for specific numbers, so there are not 3∗4∗(7−2+1) =
72 MLP models, but rather there are 65 models. In the second run we only used the
halving method and one hidden layer per Route cardinality. So there are six models in the
second run.

6.3 Convolutional models

The convolutional models have more hyperparameters in which they differ. They have
the following differing hyperparameters: depth, width, kernel size and average or maxi-
mum pooling layers. The depth is here the number of layers. The widths is number of
different kernels per layer. The kernel size concerns the size of the of kernels used for the
hidden layers after the first hidden layer. For the first hidden layer we use a kernel width
dimensions of 2RouteCardinality by 1. If the kernel size is equal to r then the kernel is a
square matrix with dimensions r×r. The model uses either average or maximum pooling
layers.

The depth ranges from one to four. The width is in the set {2, 4, 8} as the starting
width. The kernel size is in the set {3, 5, 7}. In the second set of convolutional models we
used the starting width set {16, 32}. The kernel set becomes irrelevant, because the first
hidden layer has a different layer structure than the rest of the layers and is set. We still
tried maximum and average pooling layers.

35

7 Results

In this chapter we state the results of the training of the various models as described in
chapter 6. There are 3 different metrics on which we judge these models in chapter 8:
Accuracy, execution speed and threshold performance. We subdivided these results into
the results for the models with the instance normalization layers in section 7.1 and the
results for the models with batch normalization in section 7.2.

7.1 Instance Normalization

7.1.1 Accuracy

In the table 2 we can see that the accuracy is slightly worse for models with higher route
cardinality. This is not unexpected, since larger route cardinality instances are complexer
and thus more difficult to predict. We also see that the accuracy only increases with the
number of hidden layers for cardinality 2. For higher cardinalities it stays about the same
or even decreases. This could be because a model with more variables is harder to train.
In table 3 we see slightly better results than in their MLP counterparts in table 2. And
here the model’s performance does not decrease when the number of layers is increased.

Table 2: Best accuracy percentages for the MLP models.
Route Cardinality 2 3 4 5 6 7
1 Hidden Layer 89.03 88.84 88.51 87.97 87.30 86.25
2 Hidden Layers 90.55 88.75 88.95 87.77 86.95 84.97
3 Hidden Layers 90.56 89.07 87.78 87.46 85.61 85.38
4 Hidden Layers 90.17 88.38 88.59 88.15 84.88 82.69

Table 3: Best accuracy percentages for the Convolutional models.
Route Cardinality 2 3 4 5 6 7
1 Hidden Layer 91.13 89.37 88.63 88.28 87.41 86.54
2 Hidden Layers 91.27 89.38 89.63 88.73 88.27 87.41
3 Hidden Layers 91.25 89.63 89.48 89.15 88.57 87.43
4 Hidden Layers 91.27 89.43 89.82 89.50 88.66 87.66

7.1.2 Execution speed

Each execution speed test is performed on 240000 instances. So the results you see in for
example table 4 are in seconds per 240000 instances. For the MLP models you can see in

36

for example table 4 the execution speed is approximately the same for the different widths.
When the number of hidden layers is increased the execution duration does increase.
When the Route Cardinality is increased, such as in table 6, you can see that the execution
speed also does not increase. This means that when comparing different models on their
accuracy only a consideration needs to be taken concerning the number of hidden layers.
For the Convolutional models we have the same pattern as with the MLP models as you
can see in table 5. What is important to note is that the convolutional layers in general
are slower than their MLP counterparts. They are about 20 to 35 percent slower. A note
has to be taken that these tests have been done in Python, while the model is deployed in
C++, which is a lower level code and therefore expected to evaluate faster. The rest of the
execution speed test tables can be found in the Appendix 8.3.

Table 4: Speed test results for the MLP models with route cardinality 2
Route Cardinality 2 Width Halving Width Linear Width Power

Decrease Decrease
1 Hidden Layer 58.92 58.96 58.97
2 Hidden Layers 76.49 76.18 76.30
3 Hidden Layers 93.04 93.17 92.75
4 Hidden Layers 109.22 105.78 105.27

Table 5: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 7.

Route Cardinality = 7,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.41 71.23 71.31
2 Layers 95.12 95.75 95.26
3 Layers 118.27 118.42 118.07
4 Layers 146.71 147.17 148.00

Table 6: Speed test results for the MLP models with route cardinality 7

Route Cardinality 7 Width Halving Width Linear Width Power
Decrease Decrease

1 Hidden Layer 57.62 56.80 56.88
2 Hidden Layers 73.53 73.59 73.22
3 Hidden Layers 89.20 89.09 89.14
4 Hidden Layers 104.91 105.21 104.74

37

7.1.3 Threshold

In figure 5, figure 6, figure 7 and figure 8 we can see the accuracy values for different
thresholds. The Accuracy lines represent the accuracy values over all in the instances.
The Infeasible Accuracy and Feasible Accuracy lines represent the accuracy values over
the infeasible and feasible instances respectively. We are interested in the accuracy values
in the deployed environment, so where the ratio between feasible and infeasible instances
is different. These values are represented by the Realised Accuracy lines. We tested these
models for threshold values in the range of [0, 1] with increments of 0.005. So in total we
have 200 data-points per graph. In these graphs we can see that we can achieve a very
high accuracy, ≥ 99.50%, for the feasible instances, while still achieving a reasonable
accuracy, around 65% for the infeasible instances. All graphs for the instancenorm models
can be found in the Appendix 8.3.

Figure 5: Accuracy for different thresh-
olds where inputsize= 2

Figure 6: Accuracy for different thresh-
olds where inputsize= 7

38

Figure 7: Accuracy for different thresh-
olds where inputsize= 2 and convolu-
tional

Figure 8: Accuracy for different thresh-
olds where inputsize= 7 and convolu-
tional

7.2 Batch Normalization

7.2.1 Accuracy

The accuracy is much higher with batch normalization versus instance normalization.
The increase is around 4 percentage points. Convolutional layer models are oddly enough
worse than their MLP counterparts. Except for the case of routecardinality 2. Even though
the convolutional models were better than the MLP models in the instance normalization
case.

Table 7: Best accuracy percentages for the batch normalization models.
Route Cardinality 2 3 4 5 6 7

MLP model 95.06 94.25 94.29 93.99 93.34 93.98
Conv model 95.15 92.30 91.70 90.54 91.38 92.97

7.2.2 Execution Speed

These speed tests on these models are done in the same way as described in section 7.1.2.
The speed overall is about 10 percent slower in comparison to the Instancenorm coun-
terparts in section 7.1.2 as can be seen in the tables below. The speed difference when
increasing the number of layers is the same as with the instance norm case. The difference
when switching to the convolutional models is also similair to that of the instance norm.

39

Table 8: Best speed percentages for the batch normalization models.

Batch normalization MLP Max Pool16 Avg Pool16 Max Pool32 Avg Pool32
Route Cardinality 2 57.95 74.51 71.36 73.64 71.13
Route Cardinality 3 57.76 73.40 71.38 73.58 71.42
Route Cardinality 4 58.26 74.12 71.27 74.02 71.03
Route Cardinality 5 58.05 74.67 70.88 74.13 70.87
Route Cardinality 6 57.76 74.43 70.90 74.89 70.85
Route Cardinality 7 58.14 74.46 71.12 74.86 70.97

7.2.3 Sensitivity Analysis

In figure 9 and figure 10 we see the results of the best batch normalization models for
inputsize two and seven respectively with different threshold values. In section 7.1.3 we
explained what the different lines represent. Threshold results for lower numbers are very
promising. For a route cardinality of 2 at 0.005 we have 99.97% accuracy for feasible
instances and still 72.74% accuracy for infeasible instances. What the preferred values
for the threshold is, can not be directly stated from this data. The different threshold
values should be tested in the entire route finding algorithm to find the best one. This is
because the effect of discarding feasible solutions is hard or even impossible to quantify.

Figure 9: Accuracy for different thresh-
olds where inputsize= 2

Figure 10: Accuracy for different
thresholds where inputsize= 7

40

41

8 Discussion and Conclusion

In this chapter we discuss the results from Chapter 7 in section 8.1. Afterwards we give
a conclusion in section 8.2. We end this chapter with a list of possible further research in
section 8.3.

8.1 Discussion of the various models

Here we briefly remark the findings in chapter 7 and point out some interesting findings.

8.1.1 Accuracy

In section 7.1.1 we can see that for the instance normalization models we can reach around
87 − 91% accuracy. For the batch normalization models in section 7.2.1 we see that we
can achieve substantially higher accuracy around 93− 95%. This means that so long the
execution speed of the batch normalization models is not substantially lower than that of
the instance normalization models we should use the batch normalization models. Oddly
the convolution models are almost all worse than their MLP counterparts with the same
number of hidden layers when using the batch normalization models. One thing to note
is that we used coordinates of the addresses instead of the direct distances. Were we
to use the direct distances, still without the dynamic adjustments, we could improve on
the models a lot. We did not use these, since we thought accessing this data would take
too much time. From the models with input cardinality 2, which should be a really easy
problem, we can see that we have a lot of room for improvement. If we used the direct
distances we could probably get very close to the 100 percent.

8.1.2 Execution Speed

From the results in sections 7.1.2 and 7.2.2 we can find that the convolutional models are
substantially slower than their MLP counterparts. Since in section 8.1.1 we stated that
their accuracy was also lacking we can state that the batch normalization MLP models
are the ones we want to use. Sadly we also saw in 8 that all models are too slow for
300.000.000 iterations. The fastest model would execute in about 17 hours, but the entire
algorithm can not take longer than 4 hours. Note that this speed testing has been done
in Python with a Pytorch package, with is expected to be much faster in C++. To fully
understand whether the deep learning model is fast enough, the model evaluation should
be benchmarked versus the current full checks.

42

8.1.3 Sensitivity Analysis

For the batch normalization MLP models we saw in section 7.2.3 that the results for low
threshold values were still good. At a threshold value of 0.05 we could still filter out
72 − 78% of the infeasible solutions, while maintaining 99.79 − 99.93% of the feasible
solutions. So if these models prove to be fast enough in a C++ implementation, we could
improve the entire Valys Algorithm.

8.2 Conclusion

The batch normalization and full layer variant seem superior to their instance normaliza-
tion or convolutional layer counterparts. For the precise value of the threshold it should
be looked at the implementation what the result is on the actual outcome. Especially con-
sidering the speed of the models. The results are also very promising for higher route
cardinalities than 7. So, there could be some gains to train models for higher route cardi-
nalities than 7. We set out to find a fast accurate deep learning model to help the existing
simulated annealing model find better solutions to a variant of the VRPTW. The models
we found are fairly accurate, but in Python they are too slow. It could be the case that is
is only an issue in Python, but not if we would implement it in C++.

8.3 Further research

For further research there are a few avenues left open. We mention and discuss these
briefly below.

• Testing this framework in different simulated annealing settings. CQM also
applies simulated annealing for pickup and delivery problems around gasoline sta-
tions, distribution centers, among others. The same principles of expensive neigh-
bourhoods could apply there and the deep learning framework is flexible enough to
cover other situations as well.

• Removing the Fast checks and retrain the deep learning models. The Fast
checks are there just to swiftly remove a number of infeasible route solutions. They
fulfill in that sense the same role as the deep learning model. If we remove the fast
checks and retrain the deep learning model for the new input range, we could do
more iterations. This could help solve the issue of the lacking speed of the deep
learning model. Careful consideration should be taken for the choice for the input
data. For when naively we would take the same approach as in 5.2, it is possible we
overtrain on the instances which would not pass the fast checks. This is because a
lot more instances get rejected by the fast checks than that are passed by them.

43

• Use the static distance between visiting places. At the moment, the deep learning
models use the coordinates of the places that are to be visited, since accessing that
data is faster than retrieving the static distances. However, this leads to some infor-
mation loss. If we were to use the static distances, we could maybe significantly
improve the models with only a relative small loss in execution speed.

• Interpret the output of the deep learning model as a probability of feasibility.
The models compare the output of the deep learning models against a preset thresh-
old value and assign a prediction of infeasible or feasible according to whether the
output is bigger or smaller. Since the deep learning models are deterministic we al-
ways get the same prediction for the same instances. This means that some feasible
instances are excluded from being predicted feasible. This could lead to the exclu-
sion of certain important parts of the solution field. If we would instead interpret
the outcome of the model as an percentage chance that an instance is feasible, we
would exclude fewer parts of the solution field.

• Converting the models into C++ and merging the models in the existing model.
To truly know whether the deep learning models could be an improvement we
would need to implement them into the existing algorithm. For this to work the
models also need to be implemented in C++.

• Removing more layers for increase in speed. The models could be lacking in
execution speed, so a possible solution for that could be removing more layers from
the model. This would result in a loss of accuracy, but the upside of increased speed
could be worth it. The most promising layers to be removed are: ReLU activation
functions and the dropout layers.

• Implement the deep learning models without packages. It could be that the
models would be faster if instead of using packages, the models were implemented
directly.

• Further hyperparameter optimization. Not all possibilities for hyperparameter
optimization have been exhausted. One could look for example further into the
shapes of the layers and into Long Short-term memory networks.

• Threshold testing in the implemented model. We have done testing for different
threshold values. Which threshold is best is hard to say, without knowing what kind
of effect it has on the complete model. Testing this would give a better idea of what
the optimal threshold value would be.

• Making models for higher route cardinalities. Since the calculation of the feasi-
bility is more time consuming for routes of higher cardinalities, it would be inter-
esting to train models for cardinalities higher than 7. The data as we generated it

44

had a lot of duplicates and was low on the number of feasible instances for these
cardinalities. So this would have to be solved for this to work.

• Adjusting the Simulated Annealing algorithm. The models are slow when we
put instance one by one through the models. But it can handle a lot of instances in
parallel. If we could alter the existing algorithm such that it would feed the deep
learning models multiple instances at the same time, that could help in solving the
execution speed issue.

45

References

[1] How to solve vehicle routing problems: Route optimization software and
their apis. https://www.altexsoft.com/blog/business/how-to-solve-vehicle-routing-
problems-route-optimization-software-and-their-apis/0, 2020. [Online; accessed
26-May-2020].

[2] M. Chan. Classical neural network: What really are nodes and lay-
ers? https://towardsdatascience.com/classical-neural-network-what-really-are-
nodes-and-layers-ec51c6122e09 [Accessed 10 Augustus 2020], 2020.

[3] Y. Chauvin and D. E. Rumelhart. Backpropagation: theory, architectures, and ap-
plications. Psychology press, 1995.

[4] F. Chollet. Deep Learning with Python Video Edition. Manning Publications, 2017.

[5] M. Desrochers, J. Desrosiers, and M. M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research, 40(2):342–
354, 1992.

[6] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[8] J. Han and C. Moraga. The influence of the sigmoid function parameters on the
speed of backpropagation learning. In International Workshop on Artificial Neural
Networks, pages 195–201. Springer, 1995.

[9] W. Joe and H. C. Lau. Deep reinforcement learning approach to solve dynamic
vehicle routing problem with stochastic customers. In J. C. Beck, O. Buffet, J. Hoff-
mann, E. Karpas, and S. Sohrabi, editors, Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, Nancy, France, October 26-30,
2020, pages 394–402. AAAI Press, 2020.

[10] N. Ketkar. Introduction to pytorch. In Deep learning with python, pages 195–208.
Springer, 2017.

[11] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural
Networks, 6(6):861 – 867, 1993.

[12] B. Lin, B. Ghaddar, and J. Nathwani. Deep reinforcement learning for electric vehi-
cle routing problem with time windows. CoRR, abs/2010.02068, 2020.

46

[13] J. Lysgaard. Clarke & wright’s savings algorithm. Department of Management
Science and Logistics, The Aarhus School of Business, 44, 1997.

[14] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[15] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác. Reinforcement learning for
solving the vehicle routing problem. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pages 9861–
9871, 2018.

[16] B. Peng, J. Wang, and Z. Zhang. A deep reinforcement learning algorithm using dy-
namic attention model for vehicle routing problems. CoRR, abs/2002.03282, 2020.

[17] C. Pralet and G. Verfaillie. Time-dependent simple temporal networks. In Inter-
national Conference on Principles and Practice of Constraint Programming, pages
608–623. Springer, 2012.

[18] M. W. Savelsbergh. The vehicle routing problem with time windows: Minimizing
route duration. ORSA journal on computing, 4(2):146–154, 1992.

[19] P. Toth and D. Vigo. The vehicle routing problem (siam, philadelphia). Monographs
on Discrete Mathematics and Applications, Philadelphia, 2002.

[20] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

[21] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, Mar. 1985.

[22] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a new look at
signal fidelity measures. IEEE signal processing magazine, 26(1):98–117, 2009.

[23] L. A. Wolsey. Integer programming, volume 52. John Wiley & Sons, 1998.

47

Appendices

A Speed test tables

Table 9: Speed test results for the MLP models with route cardinality 2
Route Cardinality 2 Width Halving Width Linear Width Power

Decrease Decrease
1 Hidden Layer 58.92 58.96 58.97
2 Hidden Layers 76.49 76.18 76.30
3 Hidden Layers 93.04 93.17 92.75
4 Hidden Layers 109.22 105.78 105.27

Table 10: Speed test results for the MLP models with route cardinality 3
Route Cardinality 3 Width Halving Width Linear Width Power

Decrease Decrease
1 Hidden Layer 56.93 57.16 57.10
2 Hidden Layers 73.49 73.87 73.88
3 Hidden Layers 91.12 89.90 89.55
4 Hidden Layers 105.17 106.10 105.68

Table 11: Speed test results for the MLP models with route cardinality 4

Route Cardinality 4 Width Halving Width Linear Width Power
Decrease Decrease

1 Hidden Layer 56.99 56.84 57.22
2 Hidden Layers 73.55 73.66 73.73
3 Hidden Layers 89.79 89.60 90.47
4 Hidden Layers 105.07 104.60 105.31

Table 12: Speed test results for the MLP models with route cardinality 5

Route Cardinality 5 Width Halving Width Linear Width Power
Decrease Decrease

1 Hidden Layer 56.75 56.68 57.04
2 Hidden Layers 73.27 73.39 73.30
3 Hidden Layers 89.52 89.40 89.53
4 Hidden Layers 105.09 104.79 105.00

48

Table 13: Speed test results for the MLP models with route cardinality 6

Route Cardinality 6 Width Halving Width Linear Width Power
Decrease Decrease

1 Hidden Layer 56.79 56.78 56.59
2 Hidden Layers 73.27 73.39 73.26
3 Hidden Layers 89.18 89.06 89.07
4 Hidden Layers 105.05 104.45 104.64

Table 14: Speed test results for the MLP models with route cardinality 7

Route Cardinality 7 Width Halving Width Linear Width Power
Decrease Decrease

1 Hidden Layer 57.62 56.80 56.88
2 Hidden Layers 73.53 73.59 73.22
3 Hidden Layers 89.20 89.09 89.14
4 Hidden Layers 104.91 105.21 104.74

Table 15: Speed test results for the convolutional models with maximum pooling layers,
kernel size 3 and route cardinality 2.

Route Cardinality = 2,
max pool and kernel = 3 # kernel = 2 # kernel = 4 # kernel = 8

1 Layer 73.87 74.32 74.47
2 Layers 94.94 95.05 94.60
3 Layers 114.64 116.05 115.00
4 Layers 147.36 147.46 146.73

Table 16: Speed test results for the convolutional models with maximum pooling layers,
kernel size 3 and route cardinality 3.

Route Cardinality = 3,
max pool and kernel = 3 # kernel = 2 # kernel = 4 # kernel = 8

1 Layer 73.39 73.71 73.39
2 Layers 95.32 94.79 94.46
3 Layers 115.00 114.23 114.71
4 Layers 146.83 146.47 146.58

49

Table 17: Speed test results for the convolutional models with maximum pooling layers,
kernel size 3 and route cardinality 4.

Route Cardinality = 4,
max pool and kernel = 3 # kernel = 2 # kernel = 4 # kernel = 8

1 Layer 73.59 73.71 74.71
2 Layers 94.30 94.53 94.40
3 Layers 114.49 114.11 114.20
4 Layers 142.41 142.76 143.42

Table 18: Speed test results for the convolutional models with maximum pooling layers,
kernel size 3 and route cardinality 5.

Route Cardinality = 5,
max pool and kernel = 3 # kernel = 2 # kernel = 4 # kernel = 8

1 Layer 73.60 73.65 73.56
2 Layers 96.32 94.87 94.81
3 Layers 114.55 114.39 116.75
4 Layers 142.60 142.73 143.66

Table 19: Speed test results for the convolutional models with maximum pooling layers,
kernel size 3 and route cardinality 6.

Route Cardinality = 6,
max pool and kernel = 3 # kernel = 2 # kernel = 4 # kernel = 8

1 Layer 73.98 73.70 73.61
2 Layers 94.38 94.63 94.25
3 Layers 114.53 114.08 114.32
4 Layers 142.13 142.53 143.05

Table 20: Speed test results for the convolutional models with maximum pooling layers,
kernel size 3 and route cardinality 7.

Route Cardinality = 7,
max pool and kernel = 3 # kernel = 2 # kernel = 4 # kernel = 8

1 Layer 74.34 73.83 73.93
2 Layers 95.19 95.51 94.46
3 Layers 114.86 114.83 114.68
4 Layers 142.57 143.00 142.96

50

Table 21: Speed test results for the convolutional models with average pooling layers,
kernel size 3 and route cardinality 2.

Route Cardinality = 2,
avg pool and kernel = 3 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.11 71.35 71.78
2 Layers 92.28 92.69 92.41
3 Layers 112.18 112.36 113.16
4 Layers 141.96 142.13 142.13

Table 22: Speed test results for the convolutional models with average pooling layers,
kernel size 3 and route cardinality 3.

Route Cardinality = 3,
avg pool and kernel = 3 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.00 71.17 71.23
2 Layers 92.96 92.36 93.14
3 Layers 112.44 112.00 112.48
4 Layers 142.56 141.95 141.78

Table 23: Speed test results for the convolutional models with average pooling layers,
kernel size 3 and route cardinality 4.

Route Cardinality = 4,
avg pool and kernel = 3 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.31 71.21 72.08
2 Layers 92.36 92.11 92.20
3 Layers 113.68 111.83 111.94
4 Layers 137.49 137.55 138.19

Table 24: Speed test results for the convolutional models with average pooling layers,
kernel size 3 and route cardinality 5.

Route Cardinality = 5,
avg pool and kernel = 3 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.17 71.24 71.15
2 Layers 92.11 92.52 92.51
3 Layers 112.45 112.12 112.22
4 Layers 137.90 137.70 137.90

51

Table 25: Speed test results for the convolutional models with average pooling layers,
kernel size 3 and route cardinality 6.

Route Cardinality = 6,
avg pool and kernel = 3 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.16 71.22 71.42
2 Layers 93.39 92.03 92.46
3 Layers 111.98 111.54 111.91
4 Layers 137.48 137.61 138.19

Table 26: Speed test results for the convolutional models with average pooling layers,
kernel size 3 and route cardinality 7.

Route Cardinality = 7,
avg pool and kernel = 3 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.30 71.27 71.40
2 Layers 92.15 93.49 91.92
3 Layers 112.54 112.59 112.61
4 Layers 137.60 137.48 137.61

Table 27: Speed test results for the convolutional models with maximum pooling layers,
kernel size 5 and route cardinality 2.

Route Cardinality = 2,
max pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 74.32 74.00 73.74
2 Layers 97.49 97.75 98.70
3 Layers 121.17 120.30 120.44
4 Layers 150.67 151.44 152.12

Table 28: Speed test results for the convolutional models with maximum pooling layers,
kernel size 5 and route cardinality 3.

Route Cardinality = 3,
max pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.56 73.54 73.96
2 Layers 97.27 97.60 97.42
3 Layers 120.01 121.27 121.43
4 Layers 150.66 151.68 152.20

52

Table 29: Speed test results for the convolutional models with maximum pooling layers,
kernel size 5 and route cardinality 4.

Route Cardinality = 4,
max pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.69 73.53 73.50
2 Layers 97.11 97.33 97.79
3 Layers 119.41 120.17 120.23
4 Layers 150.34 151.30 151.63

Table 30: Speed test results for the convolutional models with maximum pooling layers,
kernel size 5 and route cardinality 5.

Route Cardinality = 5,
max pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 74.13 73.55 73.77
2 Layers 97.45 97.70 97.63
3 Layers 119.66 120.24 121.30
4 Layers 150.68 151.74 152.33

Table 31: Speed test results for the convolutional models with maximum pooling layers,
kernel size 5 and route cardinality 6.

Route Cardinality = 6,
max pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.64 73.75 73.56
2 Layers 97.27 97.65 97.52
3 Layers 119.97 120.53 120.53
4 Layers 150.79 151.19 151.58

Table 32: Speed test results for the convolutional models with maximum pooling layers,
kernel size 5 and route cardinality 7.

Route Cardinality = 7,
max pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.81 74.05 73.95
2 Layers 97.19 97.27 97.70
3 Layers 120.31 120.39 120.59
4 Layers 150.94 151.91 152.08

53

Table 33: Speed test results for the convolutional models with average pooling layers,
kernel size 5 and route cardinality 2.

Route Cardinality = 2,
avg pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.33 71.56 71.68
2 Layers 94.89 96.02 95.11
3 Layers 117.20 118.06 118.59
4 Layers 146.25 146.82 146.95

Table 34: Speed test results for the convolutional models with average pooling layers,
kernel size 5 and route cardinality 3.

Route Cardinality = 3,
avg pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 70.99 71.20 71.66
2 Layers 95.12 95.13 94.80
3 Layers 117.83 118.27 118.12
4 Layers 146.43 147.04 147.22

Table 35: Speed test results for the convolutional models with average pooling layers,
kernel size 5 and route cardinality 4.

Route Cardinality = 4,
avg pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.43 71.36 72.39
2 Layers 94.49 95.03 94.95
3 Layers 117.44 117.88 117.65
4 Layers 145.65 146.57 147.03

Table 36: Speed test results for the convolutional models with average pooling layers,
kernel size 5 and route cardinality 5.

Route Cardinality = 5,
avg pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.13 71.54 71.25
2 Layers 94.86 95.99 95.66
3 Layers 117.51 118.06 118.16
4 Layers 145.86 146.90 147.39

54

Table 37: Speed test results for the convolutional models with average pooling layers,
kernel size 5 and route cardinality 6.

Route Cardinality = 6,
avg pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.34 71.39 71.41
2 Layers 94.64 95.08 95.17
3 Layers 117.41 118.13 118.80
4 Layers 145.96 146.80 147.06

Table 38: Speed test results for the convolutional models with average pooling layers,
kernel size 5 and route cardinality 7.

Route Cardinality = 7,
avg pool and kernel = 5 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.24 71.32 71.34
2 Layers 94.88 94.98 95.39
3 Layers 118.19 118.66 118.31
4 Layers 146.84 147.34 147.56

Table 39: Speed test results for the convolutional models with maximum pooling layers,
kernel size 7 and route cardinality 2.

Route Cardinality = 2,
max pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.90 74.20 73.76
2 Layers 97.76 97.44 97.72
3 Layers 119.42 120.40 120.98
4 Layers 151.02 151.38 152.33

Table 40: Speed test results for the convolutional models with maximum pooling layers,
kernel size 7 and route cardinality 3.

Route Cardinality = 3,
max pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.79 74.08 74.08
2 Layers 97.24 97.40 97.59
3 Layers 119.56 120.39 121.40
4 Layers 150.43 151.51 152.30

55

Table 41: Speed test results for the convolutional models with maximum pooling layers,
kernel size 7 and route cardinality 4.

Route Cardinality = 4,
max pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.63 73.54 73.46
2 Layers 97.19 97.27 97.49
3 Layers 119.78 120.01 121.42
4 Layers 150.08 152.93 152.03

Table 42: Speed test results for the convolutional models with maximum pooling layers,
kernel size 7 and route cardinality 5.

Route Cardinality = 5,
max pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.70 73.90 74.22
2 Layers 98.27 99.56 97.89
3 Layers 121.67 120.27 120.53
4 Layers 150.88 152.84 153.56

Table 43: Speed test results for the convolutional models with maximum pooling layers,
kernel size 7 and route cardinality 6.

Route Cardinality = 6,
max pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.78 73.66 73.96
2 Layers 97.47 98.38 97.74
3 Layers 121.40 120.89 120.16
4 Layers 150.78 152.09 152.51

Table 44: Speed test results for the convolutional models with maximum pooling layers,
kernel size 7 and route cardinality 7.

Route Cardinality = 7,
max pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 73.90 74.17 73.83
2 Layers 97.34 98.39 97.77
3 Layers 120.04 120.81 120.20
4 Layers 151.84 152.38 152.61

56

Table 45: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 2.

Route Cardinality = 2,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.59 71.64 71.33
2 Layers 95.19 95.54 95.00
3 Layers 118.20 117.74 118.33
4 Layers 146.31 146.77 146.74

Table 46: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 3.

Route Cardinality = 3,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.86 71.14 71.35
2 Layers 94.76 95.07 94.93
3 Layers 119.64 117.95 118.19
4 Layers 145.82 146.70 147.23

Table 47: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 4.

Route Cardinality = 4,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.16 71.18 71.29
2 Layers 94.64 95.86 95.57
3 Layers 118.71 117.79 118.11
4 Layers 146.12 146.99 147.38

Table 48: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 5.

Route Cardinality = 5,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 72.68 71.36 71.26
2 Layers 95.31 95.75 95.68
3 Layers 119.21 118.67 118.88
4 Layers 146.26 147.03 147.62

57

Table 49: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 6.

Route Cardinality = 6,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.36 71.26 71.16
2 Layers 94.82 95.27 94.78
3 Layers 117.92 117.45 117.46
4 Layers 146.54 147.09 147.81

Table 50: Speed test results for the convolutional models with average pooling layers,
kernel size 7 and route cardinality 7.

Route Cardinality = 7,
avg pool and kernel = 7 start# kernel = 2 start# kernel = 4 start# kernel = 8

1 Layer 71.41 71.23 71.31
2 Layers 95.12 95.75 95.26
3 Layers 118.27 118.42 118.07
4 Layers 146.71 147.17 148.00

58

B Threshold Graphs

Figure 11: Accuracy for different
thresholds where Route Cardinality= 2

Figure 12: Accuracy for different
thresholds where Route Cardinality= 3

Figure 13: Accuracy for different
thresholds where Route Cardinality= 4

Figure 14: Accuracy for different
thresholds where Route Cardinality= 5

59

Figure 15: Accuracy for different
thresholds where Route Cardinality= 6

Figure 16: Accuracy for different
thresholds where Route Cardinality= 7

Figure 17: Accuracy for different
thresholds where Route Cardinality= 2
and convolutional

Figure 18: Accuracy for different
thresholds where Route Cardinality= 3
and convolutional

60

Figure 19: Accuracy for different
thresholds where Route Cardinality= 4
and convolutional

Figure 20: Accuracy for different
thresholds where Route Cardinality= 5
and convolutional

Figure 21: Accuracy for different
thresholds where Route Cardinality= 6
and convolutional

Figure 22: Accuracy for different
thresholds where Route Cardinality= 7
and convolutional

61

Figure 23: Accuracy for different
thresholds where Route Cardinality= 2

Figure 24: Accuracy for different
thresholds where Route Cardinality= 3

Figure 25: Accuracy for different
thresholds where Route Cardinality= 4

Figure 26: Accuracy for different
thresholds where Route Cardinality= 5

62

Figure 27: Accuracy for different
thresholds where Route Cardinality= 6

Figure 28: Accuracy for different
thresholds where Route Cardinality= 7

63

	Introduction
	Problem Description
	Important considerations for the model
	Integer Linear Programming

	Valys Algorithm
	Simulated Annealing
	Simulated Annealing for the Valys Algorithm
	Checking Feasibility

	Deep Learning
	Multilayer Perceptrons
	Overfitting
	Convolutional Neural Networks
	Normalization layers
	Type I and Type II errors
	PyTorch

	Data Generation
	Data Size
	Data Sampling
	Train, Validation and Test
	Data processing

	Models for the Valys problem
	Inputlayer
	Multilayer Perceptron
	Convolutional models

	Results
	Instance Normalization
	Batch Normalization

	Discussion and Conclusion
	Discussion of the various models
	Conclusion
	Further research

	Appendices
	Speed test tables
	Threshold Graphs

