
 Eindhoven University of Technology

MASTER

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Sangiliayyah, Harisankar

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c5417fe1-7331-4f48-a670-ea848b53e98f

Design of a Digital Twin
for a Smart Meeting
Room based on a

Model-Driven System
Engineering Approach

Final Graduation Thesis Report on Digital
Twin systems for a Smart meeting Room

Harisankar Sangiliayyah
Student Number: 1367878

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisor:
Dr. Ion Barosan

Graduation thesis report submitted in the partial fulfilment of the requirements of
the degree Master of Science in Embedded Systems

version 1.4

Eindhoven, November 2020

Abstract

The recent developments in Digital Twin systems and intelligent buildings have increased the
research interest in these domains. The improvements in building infrastructure, construction
planning, IoT interface and predictive analysis techniques has to be matched with a suitable
approach to design the Digital Twin system for such applications. The testing of product de-
velopment or life-cycle development of intelligent buildings is usually a time consuming process
and therefore it is a blockage in the productivity. However, the main advantage of Digital Twin
systems is its efficient operation and improved productivity. Therefore, as a graduation thesis, this
project addresses the typical concerns of developing a Smart Meeting Room (SMR) application
using a model-driven system engineering approach and designing a Digital Twin system in a 3D
virtual space. The objective of this method is to verify that the Digital Twin system can act as a
suitable testing method in testing the SMR application using the model-driven system engineering
approach.

In this project, firstly, a suitable SMR system is designed and developed in the IBM Rhapsody
developer tool. For this purpose, several subsystems were considered and initial assumptions were
made. subsequently, the considerations and assumptions are modelled as system requirements.
The SMR application is modelled using the SysML approach in the IBM Rhapsody tool. The
SMR application work as a stand-alone system and the simulation verifies the working of a typical
SMR application by having a GUI within the tool. Secondly, the project involves the design and
development of Digital Twin system to be integrated into the SMR system using Unity Game
Engine tool. For this purpose, the Digital Twin layered architecture is employed to develop a
modern office interior and integrate it with the system behaviour of the SMR application that
runs parallelly in IBM Rhapsody tool. However, to enable communication between two different
processes, the network socket communication is established. Finally, the model is extended for
HIL testing by porting the SMR application to a raspberry pi controller. However, to enable
project execution on a remote device certain constraints were met such as creating a linux based
profile on IBM Rhapsody tool and automating the process.

In short, the SMR application running in IBM Rhapsody tool together with the virtual model
in Unity Game Engine serves as a verification method that demonstrates the working of a Digital
Twin system for SMR application. Thereby, the project results in drawing conclusions on the
importance of Digital Twin system and stating the future scope of research in this domain.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

iii

Contents

Contents v

List of Figures vii

1 Introduction 1

2 Project Description 3
2.1 System under Test . 3
2.2 Question 1 . 3
2.3 Question 2 . 4
2.4 Question 3 . 4

3 Literature Survey on Digital Twin systems 5
3.1 Related Information . 5
3.2 Methods of modelling a Digital Twin System (DTS) 6

3.2.1 Digital Twin architectures . 6
3.2.2 A Digital Twin System Architecture for Building and City levels 6

4 Software development methodologies for SMR system and Digital Twin 9
4.1 Development stages in creating a Smart Meeting Room System (SMR) 10

4.1.1 Model-in-Loop (MIL) . 10
4.1.2 Software-in-Loop (SIL) . 10
4.1.3 Digital-Twin-in-Loop (DTIL) . 10

4.2 V-Model Project Development Method . 11

5 Requirements and system analysis of SMR 13
5.1 The analysis of Smart Meeting Room system (SMR) and its requirements 14
5.2 Subsystems of SMR system . 16

5.2.1 HVAC system . 16
5.3 Security and access system . 16
5.4 Lighting system . 17
5.5 Safety system . 17
5.6 Audio System . 17

6 Design of SMR system and its Digital Twin 19
6.1 System dynamics and control . 19

6.1.1 Modes of the SMR system . 19
6.2 Behaviour of the subsystems (devices and drivers) 21

6.2.1 HVAC and Safety System . 22
6.2.2 Lighting System . 22
6.2.3 Security and Access System . 22
6.2.4 Audio and visual system . 23

6.3 The Layered Architecture for the Digital Twin of Smart Meeting Room system (SMR) 24

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

v

CONTENTS

6.3.1 Data Abstraction Layer . 24
6.3.2 Transmission Layer . 25
6.3.3 Digital Modelling Layer . 25
6.3.4 Data/Model Integration Layer . 25
6.3.5 Application/Service Layer . 25

7 SMR system and Digital Twin Implementation 27
7.1 IBM Model Implementation . 27
7.2 Communication to Unity . 31

7.2.1 Modelling the User Input and display . 31
7.2.2 Modelling the ’SendToUnity’ block . 31
7.2.3 Model compilation and execution . 33

7.3 Implementation of Digital Twin system in Unity Game Engine 34
7.3.1 Development of 3D models . 34
7.3.2 Implementation of Digital Twin layered architecture 35

7.4 Implementation on a Raspberry pi controller . 38
7.4.1 Buidling the Rhapsody 0XF framework . 38
7.4.2 Building the project on a remote device . 39
7.4.3 Executing the Project . 40

8 Results 43
8.1 Demonstration of SMR system . 43

9 Conclusion and future scope 49
9.1 Application interoperability . 49
9.2 Flexiblity in development approach . 50

Appendix A 51

A SMR System Requirements 51

Appendix B 51

B Digital Twin Layered approach 55
B.1 Transmission layer . 55

B.1.1 TCP client . 55
B.1.2 TCP server . 56

B.2 Digital Modelling layer . 58
B.2.1 ’PlayerMovement’ script . 58
B.2.2 ’CameraControl’ script . 59

B.3 Data and Model integration layer . 59
B.3.1 ’Door opening’ script . 59
B.3.2 ’FlameChange’ script . 60
B.3.3 Collision and Trigger Script . 61

Bibliography 63

vi Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

List of Figures

3.1 Digital Twin model for Building level . 7
3.2 DT system Architecture . 7

4.1 Development process . 9
4.2 Modular approach to software designing . 10
4.3 Testing Procedure through various stages . 11
4.4 V-Model Project Development Stages . 12

5.1 List of all requirements for SMR model . 13
5.2 Context Diagram for the SMR system with its sub-systems 15
5.3 Domain model Diagram of the SMR system . 15

6.1 The state/behaviour of sub-systems in the control mode - Idle 20
6.2 The state/behaviour of sub-systems in the control mode - sleep 20
6.3 The state/behaviour of sub-systems in the control mode - Meeting 21
6.4 The state/behaviour of sub-systems in the control mode - Fire alarm 21
6.5 HVAC and safety system . 22
6.6 Lighting System . 23
6.7 Security and access system . 23
6.8 Audio and Visual System . 24

7.1 Project File structure in IBM Rhpasody Tool . 28
7.2 SMR system state machine diagram . 29
7.3 SMR system sequence diagram . 30
7.4 The value properties that bind to the Touch panel diagram 31
7.5 Touch Panel Diagram acting as GUI display for SMR system 32
7.6 State transition diagram of ’SendToUnity’ block 32
7.7 Attributes needed for communication in ’SendToUnity’ block 33
7.8 Attributes needed for communication in ’SendToUnity’ block 34
7.9 Scene view of the ’ModernOfficeInterior’ package from asset store 35
7.10 State Behaviour of the door used in SMR system 35
7.11 Input Manager that binds the server scripts in transmission layer of Digital Twin . 36
7.12 Camera, player and character control settings in Unity Game Engine 37
7.13 Workflow for automating the framework build process in Rhapsody 39
7.14 Workflow for automating the project build and compile process in Rhapsody . . . 40
7.15 Workflow for automating the project execution process in Rhapsody 41

8.1 Step 1a: Turn on Rhapsody GUI . 43
8.2 Step 1b: Run Game sequence in Unity . 44
8.3 Step 2a: Give access to the SMR in Rhapsody GUI 45
8.4 Step 2b: Enter into the Meeting room in Unity . 45
8.5 Step 3a: switch the SMR mode to Meeting . 46
8.6 Step 3b: verify the changes in the unity . 46

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

vii

LIST OF FIGURES

8.7 Step 4a: switch the SMR mode to Fire emergency in Rhapsody GUI 47
8.8 Step 4b: Verify the environment change in unity 47

A.1 List of all requirements for SMR model . 51
A.2 Requirement Diagram for General Requirements Package 52
A.3 Requirement Diagram for Communication system Package 52
A.4 Requirement Diagram for Temperature and Air control system Package 53
A.5 Requirement Diagram for Safety system Package 53
A.6 Requirement Diagram for Security and Access control system Package 54

viii Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Chapter 1

Introduction

The need for an intelligent environment has always been at peak ever since the onset of techno-
logy and Internet-of-Things (IoT) revolution. Re-imagining the world around us that behaves as a
connected and integrated organism which solves most of the day-to-day mechanical and repetitive
tasks, can be something very interesting. In this context, advanced intelligent buildings are defin-
itely a useful area of research. “ An intelligent building is one that is responsive to the occupants’
needs, satisfies the aims of an organization, and meets the long-term aspirations of society ” -
(Clements-Croome, 2009).

To define an effective intelligent building, the various life cycle processes including planning,
design, construction, commissioning, and facilities management are all vitally important. All these
processes are usually time-consuming and costly. Therefore, it is highly essential to devise some
common methodologies and standards to adopt so as to establish cost-effective ways of performing
the life cycle processes of an intelligent building. Designing and testing of the controllers used in
such applications is the first and foremost step. There are various levels of testing in controller
development. However, the models created in traditional methods do not always pertain to the
practical working of the hardware. The problem of diverging models poses a big challenge. It
is therefore necessary to incorporate an additional method that solves the problem of diverging
models. The goal of this project is to create a Model-in-loop, Software-in-loop, and a Digital-
Twin-in-the loop controller for a smart room application that serves as a testing method to verify
the controller.

This document entails the final graduation report of the thesis project on the design and
development of a Digital Twin system for a Smart Meeting Room (SMR) based on model-driven
system engineering approach. Therefore, the project is divided into four phases. First: model the
behaviour of all the sub-systems of the SMR and analyse all the attributes that interact with the
subsequent subsystems involved. Second: To create a central intelligence and logic for the overall
system and to generate the software code for all the subsystems and the controller. Third: To
develop the Digital Twin model in a 3D virtual environment. Fourth: Integrating the models to
observe the various scenarios in testing the controller behaviour in simulated virtual cases.

This project focuses on each aspect of designing a SMR system under consideration, the as-
sumptions made, establishing the overall objectives of the project, creating models for each sub-
system, identifying the attributes for system communications, and discussing a suitable method
of implementation for each of the phases of the project along with the step-by-step implementa-
tion tutorial. Furthermore, a literature study on a suitable digital twin systems was made. The
purpose, efficiency, and futuristic views of such systems are discussed.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

1

CHAPTER 1. INTRODUCTION

In this report, each phases of the project are documented as follows. After the introduction
chapter, chapter 2 establishes the project description along with the objectives and research ques-
tions. Next, Chapter 3 deals with the Literature survey on digital twin systems. This is done so as
to develop ideas and frame the design in suitable approach followed in previous implementations
of Digital Twin systems. Subsequently in chapter 4, the software development methodologies
followed for this project are established. Further, chapter 5 introduces to SMR system require-
ments and SMR system analysis. Next, chapter 6 moves on to designing the SMR system along
with the Digital Twin system needed for integration. After portraying the plausible design for
SMR system and Digital Twin, Chapter 7 discusses the implementation of the SMR system and
integrates it with the Digital Twin developed in Unity Game Engine, followed by chapter 8 which
demonstrates the results of implementation. Finally, Chapter 9 shows the conclusions and future
scope of improvement in each areas of the project.

2 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Chapter 2

Project Description

In this project, a miniature version such as a smart meeting room inside an intelligent building
is considered to represent a Digital Twin for intelligent buildings. The description of the project
along with the sub-systems required for suitable implementation are discussed in this chapter.
Furthermore, the objectives of this project is stated in the form of three research questions which
is discussed below in section 2.2.

2.1 System under Test

As a first step in researching the way of designing and developing a controller used in intelligent
buildings the following things are to be take care. A smart room with various drivers (sub-systems)
that interact with the central system (SMR) is considered. For instance, a typical Smart room has
the following devices: a HVAC system to control and monitor the room temperature, The security
and access system to avoid any unauthorized access, the safety system to alert the occupants of
any possible hazards such as fire and increased CO2 levels, an automatic lighting system that
provides adjustable lighting so as to maintain comfort and an audio system with speakers that
has inbuilt functionalities for making audio settings etc. The software controller takes the inputs
from all the simulated sensors and intelligently takes decision to actuate the devices in an efficient
way such that power consumption is minimal and also offers comfort to user.

This project mainly focuses on creating a Digital Twin as a testing method to verify the
software control and processes of a smart meeting room. The research questions here will be
about developing a Digital Twin model that best replicates the scenario of a meeting room and
also serves as a representational model for any intelligent building. It is therefore necessary to
analyse the models from individual sub-systems that are required to formulate an ideal smart
meeting room system. The models are to be created with Unity Game Engine with the help of
Unity’s asset store package that helps in developing models from templates that are suitable for
office interior environments.

2.2 Question 1

How to design the SMR system using a model-driven system engineering approach?

The Requirement, Design, Analysis and Specification of the SMR model is developed in the
V-model project development approach. Section 5.1 discusses the analysis of SMR system for
modelling it in IBM Rhapsody tool.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

3

CHAPTER 2. PROJECT DESCRIPTION

2.3 Question 2

How to design and implement a Digital Twin for Smart Meeting Room using a Digital Twin
approach and integrate it with the SMR system?

To implement a Digital Twin for SMR model, we make use of the Digital Twin layered ar-
chitecture for building levels discussed in chapter 2. The input/output variables from each of
the layers is described in section 6.3. The integration of Digital Twin with the SMR system is
discussed in section 7.2.

2.4 Question 3

How to couple the Digital Twin with a real system? How to test the functionality of the real
system using the Digital Twin?

To test the SMR system with a real system, we couple it with a Raspberry Pi controller. The
simulated user inputs are now fed into the controller. The responses of the Digital Twin system
and the Raspberry Pi controller are analysed in parallel. This is demonstrated by implementing
it in section 7.4.

Additionally, various sub-systems have to be tested by creating multiple versions of similar
models independently. Testing for basic functionalities of individual subsystems allow us to un-
derstand the behaviour in a real-life scenario. Furthermore, Creating multiple scenarios and testing
the interaction of various sub-systems will help us realize the goals of this project.

4 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Chapter 3

Literature Survey on Digital Twin
systems

Digital Twin serves as a testing method in different fields of engineering. The recent developments
in Digital Twin market, a literature survey of the Digital Twin System, and the system architecture
of a Digital Twin System are discussed in this chapter.

3.1 Related Information

The Digital Twin is a leading technology driving attention in fields like manufacturing, automobile,
healthcare, retail, smart cities, and industrial IoT. It is an integration of all modern intelligence
technologies, including Big Data, artificial intelligence, machine learning, and IoT used for pre-
dictive analysis of any system or equipment [3]. The Digital Twin combines real-time data and
predictive data from existing software products. Another important element is the technology
required to visualize the information that comes from the Digital Twin Systems. It helps in a
simple and effective way of improving cost efficiency, power optimization, speed and time discreet
sensors at different locations, collects data, and consolidate under one hub, making it possible for
everyone to access the data, which acts as a physical environment for digital space [4]. Digital

Twining has the ability to take the virtual representation of the elements and dynamics of how
the internet of things operates and works. The combination of physical elements and virtual ele-
ments aids better manufacturing, high tolerance, determination of product efficiency through a
different environment. In Digital Twins, the physical data influences the product design for better
performance and better manufacturing before taking the data in a Digital space, the dynamics of
the information is analysed through various analyses such as video processing, natural language
processing, acoustic analysis, video analysis, etc., to check the variance and tolerances [7]. In a
nutshell, Digital Twin is a complex data-driven model which has a purpose in almost all fields.

Latest advancements and developments in Digital Twins include:

• Digital Twin in product design.

• Digital Twin in smart manufacturing.

• Digital Twin job-shop.

• Modelling and simulation of Digital Twin.

• Smart interconnection and inter-operation of Digital Twin.

• Digital Twin in human-machine collaboration.

• Digital Twin in product life-cycle data management.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

5

CHAPTER 3. LITERATURE SURVEY ON DIGITAL TWIN SYSTEMS

3.2 Methods of modelling a Digital Twin System (DTS)

The context of the operation of Digital Twin involves an instrumented test-bed in which model-
based systems engineering (MBSE) tools(e.g., system modelling and verification tools) and op-
erational scenario simulations (e.g., discrete simulation and agent-based simulations) are used.
Insights from the operational environment are used to modify the system models used in the vir-
tual prototype [5]. Data Supplied by the Physical System (PS) are used by the Virtual prototype
to instantiate the Digital Twin System (DTS) [2].

The MBSE tool suite provides a means to model the processes of a system. The modelling
methods include Design Structure Matrix, Process dependency structure matrix, Probabilistic
models such as Partially-Observable Markov Decision Process (POMDP), Discrete event simula-
tion, agent-based simulation, Model-based storytelling, an MBSE knowledge base, and systems
engineering life cycle process models [5].

The recent industry trends have raised the extent of research attempts in the field of Digital
Twin development in building and city levels. The existing definitions related to DTS are discussed
in this section. New insights can be learned through the review of current literature discussing
limitations related to research efforts on the concepts of DTS in the Architecture, Engineering
and Construction, and Facilities Management industry (AEC/FM sector). This section aims at
providing an introduction to the system architecture followed in the development of Digital Twins.

3.2.1 Digital Twin architectures

There are various multi-tier architectures to support heterogeneous environments (e.g., multi-
function and a large amount of data). It can be classified as Cyber-Physical Systems (CPS), IoT
platform architectures, and smart cities architectures. Digital Twins can support many different
applications such as energy management, security, and health monitoring. Data requirements
differ for each application. Therefore, it becomes a problem when data comes from different
systems, because the system may have a different intended use of these data that does not fully
match the requirements of all those applications.

3.2.2 A Digital Twin System Architecture for Building and City levels

In this section, the system architecture used for DTs, which are specifically designed at both
the building and city levels is discussed based on the DT demonstrator developed for the West
Cambridge site (Developing a Digital Twin at Building and City Levels: A Case Study of West
Cambridge Campus - Qiuchen Lu) [6]. The figure represents the DT model for building level,
implemented at the West Cambridge campus.

A city is a comprehensive system that connects various physical, social, and business aspects.
A city can be considered as an asset that integrates different sub-assets such as buildings, bridges,
utilities, infrastructure, and people (sub-Digital Twin). A typical building level Digital Twin
consists of the cluster of sensors, the sensor manager platform, manager/user access, services,
Asset manager platform and the cloud database connection. A representation of the Digital Twin
model for building level is depicted in figure 3.1. Similarly, in this project, various sub-systems such
as the HVAC system, Audio system, safety system, access and security system, and lighting system
can be considered as sub-Digital Twins. Each sub-Digital Twins have a child-parent relationship
of Digital Twins at different levels.

The system architecture of Digital Twin development in a city is a layered architecture. This
architecture is comprised of 5 layers: Data acquisition layer, Transmission layer, a Digital model-
ling layer, Data/Model integration layer, and Service layer. Each layer in the system architecture
is depicted in figure 3.2.

6 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 3. LITERATURE SURVEY ON DIGITAL TWIN SYSTEMS

Figure 3.1: Digital Twin model for Building level

Figure 3.2: DT system Architecture

Data Acquisition layer

Data Acquisition layer is the foundation of each Digital Twin. The design of the data acquisition
mechanism and approach is a foremost and challenging task due to the large volume and heterogen-
eous nature of data in city levels. Examples of data collection techniques include contact-less data
collection (RFID, Image-based techniques), distributed sensor systems, wireless communication,
and mobile access (e.b., WiFi environment).

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

7

CHAPTER 3. LITERATURE SURVEY ON DIGITAL TWIN SYSTEMS

Transmission layer

The transmission layer aims at transferring the acquired data to the higher layers for modelling and
analysis. Communication technologies such as short-range coverage, access network technologies
(e.g., WiFi, Zigbee, near field communication (NFC), M2M, and Zwave) and some of the wider
coverage (i.e., 3G, 4G, 5G) can be used in this layer. For developing DTs in building and city
levels, the light fidelity (Li-Fi) and LP-WAN was considered as a promising means for wide-range
coverage. (Saini 2016; Silva et al. 2018).

Digital Modelling layer

This layer actually contains all the digital models of the physical assets (e.g., BIM, City Information
Modelling (CIM)) and supplements information (e.g., weather information, cultural backgrounds)
that supports the upper layers. Different models/model types can be used for different purposes
in Digital Twins. Examples of these are: real-time status/control, managing assets (e.g., asset
management model), planning infrastructure/cities (e.g., CIM), modelling scenarios and decision
support (Bolton et al., 2018; Kim et al., 2018).

Data/Model Integration layer

This layer aims at integrating all the data resources based on the designed data structure. This
layer also contains the functions required for data and model, manipulating, storing, analysing,
processing. In this Architecture, real-time data analysis and processing functions would update
as-is condition of the city assets (including transportation conditions and energy consumption).
Here, cloud storage and computing, and data/model visualization can be used to achieve dynamic
and effective data management in a city and building level. In addition, intelligent functions
can keep updating their embedded algorithms and supporting continuous applications in future
development.

Service layer

The service layer is the top and the implementation layer of the Digital Twin architecture that
interprets the knowledge from Kernel and enables the interaction between people/society and
the data/model integration layer. This layer provides services for different functions, evaluates
performances for the constructed Digital Twins.

8 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Chapter 4

Software development
methodologies for SMR system
and Digital Twin

The objectives of the project include the demonstration of the development process through Model-
in-Loop, Software-in-Loop, Digital-Twin-in-Loop and Hardware-in-Loop [8]. We know that it is
a challenge to create models that perfectly aligns with the actual hardware testing. The Digital-
Twin-in-Loop acts as a new interface that solves the problem of diverging models. Also, most
of the companies after Software-in-Loop testing move on to Hardware testing, which is more
expensive, slow and prone to error. Therefore, it becomes necessary to include Digital Twin
models. So, the new development process through various stages can be seen in figure 4.1. The
various Development Stages and Project Development Method are discussed in the below sections.

Figure 4.1: Development process

In this project, the MIL development is done in IBM Rhapsody. Once the models of the devices
and drivers are developed, the software code is generated and a meta model of the SMR application
is created to manage the functions of the smart room. The SMR application is then linked to
the Unity Game engine via C# scripting. In HIL phase, The signals from the software controller
will further be tested with a raspberry pi controller for conformity. The controller can further be
modelled in Simulink and made to interact with the IBM Rhapsody models. As shown in Figure
4.1 the development process is tested sequentially in each of the four phases. The research question
here is to find out the ways of interaction between the 3D models developed in the Unity game
engine and the SysML profiling done via IBM Rhapsody using the Prespective software package.

Fig 4.2 shows the modular approach to software designing [8]. The modular approach is so
as to segregate I/O nodes for the communication between various blocks. One functional layer
on top of other functional layers allows us to alter the logic and functionality of the system [8].
The functional layer is mainly responsible for making decisions, Processing data, dynamic scaling

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

9

CHAPTER 4. SOFTWARE DEVELOPMENT METHODOLOGIES FOR SMR SYSTEM
AND DIGITAL TWIN

to fulfil the functional requirements of the system. In case if there are any future updates, the
particular block can be modified and tested, which avoids redundant model checking and updates.

Figure 4.2: Modular approach to software designing

4.1 Development stages in creating a Smart Meeting Room
System (SMR)

4.1.1 Model-in-Loop (MIL)

In this stage, a model for the controller and individual devices are designed. The MIL development
is done in IBM Rhapsody and it does not require any kind of physical signals. The main goal of
MIL is to create a control algorithm and to ensure that the interactions between the controller
and the models do not violate the System Requirements.

The requirements are identified as functional, general, and specific for each of the sub-systems.
Satisfying all the derived requirements proves the validity of MIL testing.

SysML modelling

SysML is an enabling technology for Model-Based Systems Engineering (MBSE). SysML is a
dialect of UML 2 and is defined as a UML 2 Profile. A UML Profile is a UML dialect that
customizes the language via three mechanisms: Stereotypes, Tagged Values, and Constraints.

SysML approach is the cost-effective method of application of modelling systems to explore
and test system characteristics. Early testing and validation of system characteristics facilitate
timely learning about properties and behaviours, enabling fast feedback on requirements and
design decisions.

4.1.2 Software-in-Loop (SIL)

After meta-modelling is done, the models are made to generate C# code for the software controller.
The software code is coupled with the unity scripts to feed inputs to the 3D environment developed
in unity. Moreover, The software signals are essential for further HIL testing. The software signals
from IBM Rhapsody are ported to the Raspbian environment via a python interface so as to test
with the Raspberry Pi controller for HIL testing. The software also acts as an interface to connect
to the Unity engine via C hash scripting. This helps in serving the Digital-Twin.

4.1.3 Digital-Twin-in-Loop (DTIL)

A digital Twin represents a physical object virtually, which can be used to analyse the performance
of a developed system. The design for digital Twin modelling has to be done via Prespective

10 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 4. SOFTWARE DEVELOPMENT METHODOLOGIES FOR SMR SYSTEM
AND DIGITAL TWIN

software package which has inbuilt models. The smart meeting room which consists of a lighting
system, audio and visual systems, security and access systems, and safety systems are to be
modelled in unity scripts. The system interactions and controller behaviour which was modelled
in IBM Rhapsody is now fed to the 3D virtual environment. In this way, it enables us to actually
observe the responses of the smart room for multiple scenarios, use cases, and user inputs.

The structure of the overall development process is depicted in figure 4.3. To facilitate scenario-
based testing, blocks are identified as Driver, controller, and virtual.

Figure 4.3: Testing Procedure through various stages

4.2 V-Model Project Development Method

The research and development method planned to be followed in this project is the V-Model
continuous engineering process depicted in figure 4.4. In this method, a thorough study is per-

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

11

CHAPTER 4. SOFTWARE DEVELOPMENT METHODOLOGIES FOR SMR SYSTEM
AND DIGITAL TWIN

formed to understand the feasibility of this project. The Requirements are analysed and captured
in Requirement Diagrams as per the SysML model development Method. System Analysis and
Design consist of creating use cases for various scenarios of the Smart Meeting Room System
(SMR). In the Virtual Analysis and Integration stage, the 3D models created with Unity Scripts
are coupled with the SysML profiling and tested for functionality and use cases. The Physical
signals from the controller are then integrated with the simulated SMR system. In the Imple-
mentation stage, the system is further validated for acceptance. Once, the module is integrated,
tested, and implemented on a Raspberry Pi controller, it is now ready for deployment purposes.

Figure 4.4: V-Model Project Development Stages

12 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Chapter 5

Requirements and system analysis
of SMR

As a first step in development process, the project requires SMR system analysis and requirement
capturing. In this chapter the SMR system is analysed to capture the suitable requirements. In
accordance to the project description discussed in chapter 3, certain system requirements were
developed and are listed in the following figure 5.1. Also, the requirements are engineered as
per the SysML modelling which answers the research question 1. Furthermore, the additional
requirements for SMR system can be found in the appendix A section.

Figure 5.1: List of all requirements for SMR model

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

13

CHAPTER 5. REQUIREMENTS AND SYSTEM ANALYSIS OF SMR

5.1 The analysis of Smart Meeting Room system (SMR)
and its requirements

The main focus of the Smart Meeting Room model will be on expressing and recording require-
ments, design, analysis, and verification information. The SysML approach of modelling the Smart
Meeting Room consists of the following steps. a) Classifying the requirements based on the use
cases and capturing them in a requirement diagram b) Implementing of use case diagrams for
further requirement analysis c) Designing of simulation enabled Sequence diagrams and State ma-
chine diagrams to model the dynamic behaviour of the system d) Implementing package diagrams
to clearly specify the structure of the system. The SMR system can be represented in a context
diagram as follows in figure 5.2.

Components needed in the SMR model

• Intelligent lamps, HVAC system, fire sensors, CO2 sensors and occupancy sensors.

• An audio system that has its speakers enabled for different group settings.

• Security and Access system that grants access with a 3 digit PIN number.

Services needed in the SMR Model

• The system must monitor and control the temperature in the room in an intelligent way.

• The temperature and the lighting in the room must be based on the human presence in the
room.

• The user can remotely access all the services provided by the Smart Meeting Room

Classification of Requirements for the SMR model

Based on the purposes and use cases, the requirements can be classified in the following way. All
the requirements that follow the below classification are added in the appendix section.

• General Requirements

• Communication Requirements

• Safety Requirements

• Security and Access Requirements

• Temperature and Air Control Requirements

The individual subsystems, its composition of sensors and its association with the central
system can be depicted by a domain model diagram as shown in figure 5.3.

14 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 5. REQUIREMENTS AND SYSTEM ANALYSIS OF SMR

Figure 5.2: Context Diagram for the SMR system with its sub-systems

Figure 5.3: Domain model Diagram of the SMR system

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

15

CHAPTER 5. REQUIREMENTS AND SYSTEM ANALYSIS OF SMR

5.2 Subsystems of SMR system

5.2.1 HVAC system

An HVAC system is designed to control the environment in which it works. It achieves this by
controlling the temperature of a room through heating and cooling. It also controls the humid-
ity level in that environment by controlling the movement and distribution of air in the room.
More advanced models will offer variable fan speeds to reduce power usage, however, they remain
inefficient when compared to multi-stage systems, and are thus more expensive to run over the
long term. HVAC systems can also be built to offer humidity control, and both humidifiers and
Dehumidifiers can be added as options for heating and cooling systems. People that live in very
dry environments or the tropics find these additions to the system essential. With that being
said, some people prefer to install a separate humidifier or dehumidifier systems, so that they can
manage the humidity of their environment without also having to turn on the air conditioner.

The three main functionalities of an HVAC system are heating, cooling, and ventilation. The
objective of the HVAC system is to ensure that the meeting room environment is both safe and
comfortable for humans. Safety mainly concerns with indoor air quality (IAQ). The indoor air
should have enough oxygen and be free of noxious gases and this is achieved with the help of
inbuilt sensor systems. The sensors that are typically used in an HVAC system are CO2 sensors,
temperature sensors, humidity sensors, etc., specifically applying the DT technology and capability
to the world of HVAC, Digital Twins can be helpful with [9]:

• Tracking asset performance in real time to plan for maintenance and replacement;

• Training staff to learn key aspects of operation and maintenance much more quickly;

• Real-time decision-making, using repeated simulations and making adjustments to paramet-
ers;

• Decommissioning resources using detailed performance records for end-of-life analyses.

5.3 Security and access system

Since the information from the environment and various multimedia are fused together with fu-
turistic technologies such as smart cities and autonomous cars, the demand for higher value-added
spatial information contents and the necessity of technology for spatial information security are
increasing. However, there is a problem with unreliable or costly to modify security policy. Such
problems occur frequently in the process of coordination or integration of the information manage-
ment systems that are used in public institutions and private companies. Therefore, it is necessary
to maintain an updated security and access system that can adapt to future modifications. The
security and access system considered in this project has the following features for proper main-
tenance and provide security. The entry and exit from the room are detected by an occupancy
sensor. It authorizes the users after logging in to their personal account. The CCTV camera helps
record data for security purposes.

16 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 5. REQUIREMENTS AND SYSTEM ANALYSIS OF SMR

5.4 Lighting system

Lighting controls are the means to provide lighting functionality and saves lighting energy. The
strategies mentioned below (or a combination of strategies) are often incorporated to realize a
compliant design [10].

Time/astronomical scheduling:

Lighting in a defined area turns on or off, or dims, based on a predetermined, customizable
schedule.

Occupancy/vacancy control:

In each area of the building, lighting is turned on, off, or to a predetermined level based on
occupancy level detected. With “vacancy” control lights are automatically turned off when space
becomes vacated. The users no longer need to manually turn on the light. Often, room conditions
may not require electric lighting, as in the case of a day-lit office. In this type of situation,
vacancy sensors are able to save energy that would have otherwise been automatically consumed if
an occupancy sensor forced the lights on. For this reason, vacancy sensors are generally considered
more efficient than, therefore preferable to, occupancy sensors, driving the inclusion of prescriptive
vacancy sensors in many versions of updated electrical codes.

Daylight harvesting:

Light levels are manually and/or automatically adjusted based on the amount of natural light
in a space. Appropriate light levels are provided for functional purposes, and total illumination
is maintained throughout the space. Different ways of harvesting daylight include continuous
dimming of the lighting systems (the most efficient option), bi-level or multi-level zone dimming
or switching, or simple on/off controls provided for lighting zones where ample daylight is expected.

5.5 Safety system

A typical fire alarm system has a number of devices that work synchronously to warn and alert
people through visual and audio appliances when smoke, fire, carbon monoxide, or other emer-
gencies are detected. The system can be activated automatically from smoke detectors and heat
detectors or may also be activated alternatively using manual fire alarm activation devices such as
manual call points or pull stations. Functionalities of the safety system include alerting the users
of a potential fire hazard and when the Co2 levels have reached beyond the permissible limit. The
alarms can be of the form of speakers that sound an alarm and gives an evacuation message to
not use the elevators. Fire sensors and Co2 sensors are inbuilt in this system.

5.6 Audio System

The audio system for the meeting room needs to be designed in a way that satisfies the users and
moreover complies with the comfort and efficiency concerns. The automatic control for speakers
are made available using a central intelligence that suits for different kinds of group settings.
Additionally, there is manual control to turn on/off, increase/decrease volume, place video calls,
and share screen. The room has facilities to conduct meetings that require video conferencing to
a small group of people. It requires internet connectivity.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

17

Chapter 6

Design of SMR system and its
Digital Twin

6.1 System dynamics and control

The smart meeting room as a system operates in different modes that suit the conditions of the
environment, adjusting automatically with the ambience.

The control of the system has to be clearly defined to ensure that the system meets the
safety and comfort needs of the users. The various sub-systems interact and function together
in an intelligent and efficient way. To define a central intelligence and determine the nature of
the interaction between multiple functionalities and subsystems, it is essential to identify and
segregate the different states of the system based on the needs of the users.

6.1.1 Modes of the SMR system

Based on the requirements, the states of the SMR system can be classified as idle, sleep, meeting,
fire alarm. Each of the states is explained and depicted pictorially in this section. The figures
show at each state of the system, the corresponding sub-system/component behaviour.

Idle

When the meeting room is in the Idle state the lights, speakers, CCTV cameras are all turned off
and remains off until the state changes. The doors remain closed during this period. However,
the HVAC system needs to be running in order to maintain the temperature level in the room.
It is not possible to control the HVAC system in this state, hence the functioning of the HVAC
system will be based on some predefined schedule or according to the weather prediction data.
The system enters idle mode automatically when no human presence is detected for a specific
duration of time. Alternatively, the meeting room can be manually controlled to enter into the
Idle state by a remote controller. The overall behaviour and the state of the subsystems in Idle
mode is depicted in figure 6.1.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

19

CHAPTER 6. DESIGN OF SMR SYSTEM AND ITS DIGITAL TWIN

Figure 6.1: The state/behaviour of sub-systems in the control mode - Idle

Sleep

When the meeting room is in sleep state all the devices and subsystems are turned off including
the HVAC system. If the users decide to lock down the meeting room with all its functionalities
being turned off, they can do so manually using the remote controller. The meeting room will
automatically go into the Sleep state if it remains in the idle state for a long period of time. The
temperature in the room is no longer need to be maintained, based on the assumption that the
room needs no cooling/heating/ventilation and the room remains in the ideal temperature. The
overall behaviour and the state of the subsystems in Sleep mode is depicted in figure 6.2.

Figure 6.2: The state/behaviour of sub-systems in the control mode - sleep

Meeting

If the room needs to be prepared for the meeting, the users can manually enter into Meeting state.
To facilitate the meetings, the lighting of the room needs to be set in an appropriate way. By
default, the lighting setup goes into meeting mode. However, it can be toggled between intelligent,
normal and meeting. The HVAC system functions as per the schedule/ weather prediction data,
the doors remain closed, the CCTV cameras remain turned ON, the and speakers are turned on
for any audio/video output. The overall behaviour and the state of the subsystems in Meeting
mode is depicted in figure 6.3.

20 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 6. DESIGN OF SMR SYSTEM AND ITS DIGITAL TWIN

Figure 6.3: The state/behaviour of sub-systems in the control mode - Meeting

Fire alarm

When the fire sensors/CO2 sensors have detected an emergency situation, the meeting room enters
into a Fire alarm state. In this state, a warning message is announced through the speakers as an
alarm followed by alarm sounds. The doors will remain open, the HVAC system will be turned off,
the lighting system will be turned off after a short period of time to allow users to leave the room.
The CCTV cameras and the touch panels are turned off. All the sub-systems will immediately be
turned off in this state. The Fire alarm state of the meeting room cannot be triggered manually.
It is to be noted that the fire alarm and CO2 sensors will remain online throughout all of the
states of the system. The overall behaviour and the state of the subsystems in Fire alarm mode
is depicted in figure 6.4.

Figure 6.4: The state/behaviour of sub-systems in the control mode - Fire alarm

6.2 Behaviour of the subsystems (devices and drivers)

A representation of the behaviour of the HVAC system, lighting System, Safety System, Security
and Access system, and the Audio Visual System are depicted as services using use-case diagrams.
This is a part of the SysML agile development of models for the Smart Meeting Room. Some
of the subsystems mentioned below are clubbed together to create a generic use case that serves
multiple purposes.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

21

CHAPTER 6. DESIGN OF SMR SYSTEM AND ITS DIGITAL TWIN

6.2.1 HVAC and Safety System

In figure 6.5, we see the use case diagram for the service of HVAC and safety system combined. The
user can turn on/off the HVAC system and manually control the room temperature. The HVAC
system has functions of heating, Air conditioning, and providing ventilation to the room. The
central system which has inputs from the occupancy sensor detects the increased human presence
and provides ventilation and air conditioning automatically. Whenever the safety system detects
fire through its fire sensor it triggers the fire alarm and therefore the HVAC system is turned off
automatically. The Carbon-dioxide sensors in the safety system check for the permissible limits
of CO2 and triggers a warning message whenever the threshold is reached.

Figure 6.5: HVAC and safety system

6.2.2 Lighting System

The lighting system service is represented in a use case diagram in figure 6.6. The user can
manually turn on the lights and adjust the brightness or the central system can detect the entry
and exit at the door through its occupancy sensor and turn on/off the lights whenever needed.
Whenever the audio and the visual system does the screen sharing function, the brightness of the
room has to go down so as to provide a better display and viewing for the occupants.

6.2.3 Security and Access System

The security and access system of the smart room provides an option for the users to login with
a password. The entry to the room can be restricted to a limited number of people. The Central
system constantly monitors for entry at the door. Whenever there is an entry at the door, the
CCTV camera is turned on automatically. This is done to monitor the room events for security
purposes. The service of a security and access diagram is represented as a use case diagram in
figure 6.7.

22 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 6. DESIGN OF SMR SYSTEM AND ITS DIGITAL TWIN

Figure 6.6: Lighting System

Figure 6.7: Security and access system

6.2.4 Audio and visual system

In figure 6.8, the service of Audio and Visual system is depicted. The touch panel in the smart
room allows users to interact by logging in to their personal account. The touch panel has options
to make conference calls and allow screen sharing.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

23

CHAPTER 6. DESIGN OF SMR SYSTEM AND ITS DIGITAL TWIN

Figure 6.8: Audio and Visual System

6.3 The Layered Architecture for the Digital Twin of Smart
Meeting Room system (SMR)

The layered architectural approach previously discussed in section 3.2.2 can be established in
this project to answer the research question 2. In this context, developing a virtual space in
Unity Game Engine can be accomplished with the help of the principles of Digital Twin layered
architecture. In this section, adopting the SMR system to each layers of Digital Twin architecture
is discussed.

6.3.1 Data Abstraction Layer

All the Data that are collected from different components and its sensors are encapsulated in this
layer. The SysML models created using IBM Rhapsody contain all the data in this layer.

General Input Data variables of the SMR model

• Movement detection flag

• Occupancy detection flag

Input Data variables from HVAC system

• Current Room Temperature

• Current outside Temperature

• Current CO2 level

• Current Humidity level

• Weather prediction data

24 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 6. DESIGN OF SMR SYSTEM AND ITS DIGITAL TWIN

Input Data variables from Safety system

• Fire Alarm flag

• CO2 alarm flag

Input Data variables from the Lighting system

• Room Illumination index

• Outside illumination index

• Window panel adjustment

Input Data variables from Security and Access system

• PIN number

• CCTV flag

Input Data variables from Audio and Visual system

• Conference flag

• Speaker flag

• User ID

6.3.2 Transmission Layer

All the data from the sensors and sub-systems which are collected in the Data acquisition layer
is now transmitted to the controller domain. In this domain, the data is manipulated to offer the
services of the SMR system. Although, the physical inputs from the sensors are simulated using
SysML models and user inputs, there is need for a transmission layer because, it acts as a bridge
between the IBM Rhapsody model and 3D Virtual model. The Data values from the IBM model
is transmitted to the Unity Game Engine using a suitable communication protocol. Therefore, a
separate service that transmits the input data from the SysML model is necessary to control the
SMR system in an organised way.

6.3.3 Digital Modelling Layer

The Smart Meeting Room with all its components are modelled in this layer. The free asset store
in Unity game engine is used for this purpose. The 3D models of Meeting Room background and
components are to be developed from available templates. Furthermore, the C# scripts help in
developing a game like scenario to generate player movements inside the SMR system application.

6.3.4 Data/Model Integration Layer

In this layer, the C# scripts for the virtual model in Unity is designed as per the system behaviour
and bounded together with the C++ code that is auto generated from the IBM Rhapsody models.
The integration should be in such a way that it offers flexibility and adaptability to the code.

6.3.5 Application/Service Layer

Once the SysML model is integrated with the 3D model, the data needs to be manipulated and
accessed in an intelligent way. The sequencing of the services needs to be in a proper way to
facilitate real case scenarios.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

25

Chapter 7

SMR system and Digital Twin
Implementation

The project is implemented in the following 3 stages. Firstly, The SMR system is modelled in
IBM Rhapsody followed by Virtual model integration in Unity Game Engine. Finally, the coupled
model is made portable to a linux environment for HIL implementation on a raspberry pi device
connected remotely. In this chapter, section 7.1 discusses the IBM model implementation followed
by its communication to Unity and Implementation of Digital Twin in Unity Game Engine in
subsequent sections. Finally, section 6.3 discusses the raspberry pi adaptation of the integrated
SMR system and Digital Twin.

7.1 IBM Model Implementation

IBM model implementation is the first and foremost step towards the project. The project de-
scription established in chapter three provides us with necessary information to design a suitable
SMR system in consideration. The IBM Rhapsody developer 8.4 edition together with Visual
Studio 2017 Community edition is used as the modelling tool for this project. Further, In the
IBM tool, a new C++ project is created with the default project configurations and compilation
instructions specific to a windows system that uses x86 processor.

Firstly, The requirements are modelled in a separate package named ’RequirementAnalysisPkg’
which is added in the appendix A - SMR system Requirements. Secondly, the system context and
block definitions diagram together with the class diagram of the SMR model are created as shown
previously in figures 5.2 and 5.3. These diagrams help in defining the blocks and components
needed for a Typical SMR system. Moreover, the diagrams establishes a relationship between the
subsystems and its respective components. As a next step, we maintain a file structure such that
the individual components are made as object blocks for the package named ’default’. This is
represented in the following figure 7.1. each of these objects are listed in the appendix section.
Thus, in an effort To make use of the object oriented programming in C++, the subsystems
and its components are made available as objects which further contains associations, attributes,
operations, state transition charts and value properties to execute and simulate the application
for different use case scenarios.

Once the objects together with its respective attributes and operations are defined, we move
on to implementing the system dynamics and control. The SMR system is operated in five modes
namely, Idle, Online, Sleep, Meeting, Fire/Emergency as mentioned in section 6.1.1. However, to
implement these modes, it is essential to make use of the state transition diagrams and events.
For instance, in the event of absence of humans inside the room for a time period of ’t’ through

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

27

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.1: Project File structure in IBM Rhpasody Tool

the motion detection sensors in the system, the system goes into ’Idle’ state. similarly, each of
the mode has its own trigger and set of actions to perform and therefore the corresponding design
of state transition diagram is shown in the figure 7.2. Furthermore, The state change must be
designed in such a fashion that it not leads to a deadlock situation. In addition, The overall
process of the SMR system can be depicted with the help of a sequence diagram as shown in figure
7.3.

28 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.2: SMR system state machine diagram

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

29

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.3: SMR system sequence diagram

30 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

7.2 Communication to Unity

The SMR model implemented in IBM Rhpasody needs to communicate with the virtual model
of the SMR system in Unity Game Engine. For this purpose, the individual subsystems such as
the HVAC system, Fire and safety system, lighting system, access and control system, and audio
and visual system needs to update its status variable and actuate a set of actions in the Unity
Game Engine. These set of actions are based on the user input that determines the scenario and
the control state in which the SMR operates. As far as the communication method is concerned,
network socket programming enables sufficient and flexible communication of raw data between
applications. In this section, the GUI display of SMR system, the block that implements the socket
communication in the SMR model -’SendToUnity’, and the attributes and data values needed for
successful communication are further discussed in detail.

7.2.1 Modelling the User Input and display

The touch panel acts as a GUI for the SMR system. every buttons, knobs, display and switches in
the control panel are bound to an event or an attribute in the instance specification of the SMR
system. The Touch panel diagram that takes input from the user is modelled as shown in figure
7.5. the value properties that bind to the GUI are shown in the below figure 7.4.

Figure 7.4: The value properties that bind to the Touch panel diagram

7.2.2 Modelling the ’SendToUnity’ block

The ’SendToUnity’ block of the SMR model is the most essential part of this project and helps in
accomplishing the fundamental objective by integrating the SMR system with the Digital Twin.
This feature answers the second part of the research question 2. Since ’SendToUnity’ block is a
salient feature that communicates with the virtual model back and forth, it is an important step
in the model-driven system engineering approach. It offers the necessary output ports enabled in

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

31

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.5: Touch Panel Diagram acting as GUI display for SMR system

Unity Game Engine and acts as a testing method to verify the SMR model in the Virtual space.
The state transition diagram of the ’SendToUnity’ block is shown in the below figure 7.5. The
variables in the block are auto updated with a time interval of 5000ms as portrayed in fig 7.6.
However, the ’CallMain()’ function that receives and sends data to and from Rhapsody tool is
called recursively with a time delay of 1000ms.

Figure 7.6: State transition diagram of ’SendToUnity’ block

The SMR model in the IBM Rhapsody and virtual model in Unity Game Engine do run on
the same windows machine in this implementation that has been demonstrated in this report.
However, it is important to note that it is possible to establish such communication between two
processes even while running on two different machines provided they operate in the same network.

32 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Since network socket communication makes use of TCP/IP communication protocol, it becomes
easier to implement the functionality in the IBM Rhapsody tool. The ’WINSOCK’ library present
in the C++ software development environment has the structure and predefined functions for
enabling Socket communication in IBM Rhapsody tool. The raw data and string values that
needs to be sent/received are given separate individual ports. In addition, The ’SendToUnity’
block essentially acts as a client that wants to connect to specific ports on the server that runs on
Unity Game Engine. The code for TCP client functionality is attached in the appendix B section.
The attributes that are needed for establishing the network socket communication are shown in
following figures 7.7 and 7.8.

Figure 7.7: Attributes needed for communication in ’SendToUnity’ block

7.2.3 Model compilation and execution

Once the SMR model is designed, it is necessary to check for model errors. The model free from
all errors is able to auto generate the C++ source files, header files and makefile required for
compiling and executing the project. The framework for the default c++ configuration needs
to be built and compiled. The framework will build the debug information files for the library.
Running the executable file enables the animation toolbar. The demonstration and execution of
the project will be discussed stepwise in chapter 8.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

33

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.8: Attributes needed for communication in ’SendToUnity’ block

7.3 Implementation of Digital Twin system in Unity Game
Engine

The virtual models required for visualising the SMR system is developed in the Unity Game Engine
2019.1.0f2. This tool allows the user to develop 3D models either from scratch or directly from
the asset store. Moreover, The asset store in unity software consists of a lot of 3D models which
is freely available and is open source. The assets are imported as a package to the project and
it is possible to import assets that contain animations and behaviours predefined. The following
subsections describe the details of creating a SMR system from scratch namely, the development
of 3D models in Unity and the Digital Twin layered architecture.

7.3.1 Development of 3D models

The ’ModernOfficeInterior’ package is imported from the asset store and contains almost all the
necessary components of SMR system. As a consequence, the scene that shows the three dimen-
sional visualisation of the office interior after importing to the project is shown in figure 7.9. As
seen in the figure 6.9., the package consists of necessary subsystems and components such as the
occupancy sensors, ’WallVent’ for symbolising the HVAC system, Flat screen TV, Walls, Floor,
Fan, Ceiling lights, etc. However, certain objects and animations need to be added separately.
For instance, the Meeting room needs a door that opens only when the user gives the correct PIN
number in the GUI of IBM Rhapsody. In addition, a fire animation is required to depict the emer-
gency situation inside the meeting room. For this purpose, the package ’Tim’sAssets Door’ and
the prefab ’FlamesParticleEffect’ are used. Both the aforementioned components require further
detailing of its animations so as to make it look fitting with the SMR environment. Therefore, in
case of the door, the state behaviour of the door is defined so as to animate it. The state behaviour
of the door is depicted in the figure 7.10. The state transition A has no triggers or conditions, so

34 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

the door will remain in the wait state without any action. However, the state transitions B and D
require the condition that the flag variable is set to ’true’. finally, since, fire explosion model has
predefined animation embedded, it can be used as such. However, the flame size and colour can
be changed using the Inspector toolbar in unity Game Engine. Thus, in this way, the 3D models
are developed, animated and visualised for the SMR system.

Figure 7.9: Scene view of the ’ModernOfficeInterior’ package from asset store

Figure 7.10: State Behaviour of the door used in SMR system

7.3.2 Implementation of Digital Twin layered architecture

As discussed in section 6.3, the digital twin of the SMR system is developed in a layered archi-
tecture. The first and the basic layer is the data abstraction layer followed by transmission layer,
digital modelling layer, data/model integration layer and finally the application/service layer. As
far as this project is considered, it is not in the scope to implement physical data collection and

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

35

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

abstraction from hardware sensors and components. The sensor values and user inputs are collec-
ted from IBM Rhapsody model. However, the transmission layer, Data/Model integration layer,
and the application/service layer are implemented in separate C# scripts and are discussed in
detail in the below sections.

Transmission layer

The transmission layer helps in communicating the sensor values and user inputs from Rhapsody
model to the Unity Game Engine. The client-server communication using windows socket pro-
gramming concept is already discussed in the previous section 6.2. While IBM Rhapsody acts as
the client with relevant sensor data and user information, the Unity game engine acts as the server
that enables the ports and therefore establishes communication to IBM Rhapsody. The server side
source code implementation in c# language is attached in the appendix B section for reference.

Figure 7.11: Input Manager that binds the server scripts in transmission layer of Digital Twin

36 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Digital Modelling layer

In this layer, the scene view of the SMR system has to be modelled in a game like fashion. For
this purpose, the player movement inside the office interior and the respective camera control and
mouse positioning are designed in this layer. The scripts for player movement control, camera
control and mouse position control are bound to the game object ’Player’ in the unity project.
The character controller tutorial helps in realising a simple player movement [11]. In addition,
after testing the player movement inside the office interior, the final character control settings are
shown in the figure 7.12.

Figure 7.12: Camera, player and character control settings in Unity Game Engine

Data/Model integration layer

As far as Data/model integration layer is considered, the individual subsystem behaviour are
modelled by integrating with the game objects inside the office interior package. For instance, the
collision and trigger script helps in realising the function of the occupancy sensor by turning on
the lights whenever the player has entered the room. Similarly, the light adjustment script helps
in modifying the intensity of the lights used. It is important to note that it even is possible to
change the colour of the lights used. Furthermore, the ’Flamechange’ and ’door opening’ scripts
helps in realising the functionality of the fire explosion scenario and animation of the door opening
respectively. The integration layer scripts are added in the appendix B section for reference.

Application layer

In this layer, the overall SMR system control is established. The multiple modes of SMR system are
modelled in a script named ’ChangeText’. The system values such as HVAC status, Temperature,
lighting status, Meeting room message are displayed in a text format in the screen along with the
audio output. The script takes the mode input value from the IBM Rhapsody model and changes
the system behaviour accordingly.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

37

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

7.4 Implementation on a Raspberry pi controller

The application created by the IBM Rhapsody models and Unity Game Engine can be ported to
a remote device and its functionality can be tested for a real system. In fact, the answer to the
research question 3 is based on coupling the SMR system with a raspberry pi controller that is
connected remotely. Typically a microcontroller has limited resources and no operating system.
Therefore, building a cross compiler and setting its configuration for a linux OS is required so
as to implement a project on the remote device. In such a case, the generated executable file is
then ported to the remote device for running the application. However, the raspberry pi controller
has its own operating system - the Raspbian GNU/Linux 10. Therefore, through capitalizing the
powerful CPU of raspberry pi, it is possible to eliminate the time consuming process of setting up
of a cross compiler platform in IBM Rhapsody project. In this way, the model can build project
files directly inside the remote target and execute the application remotely. In this section, the
workflow followed in automating the creation of the application executable for raspberry pi OS
environment is described [12].

7.4.1 Buidling the Rhapsody 0XF framework

Firstly, the linux configuration hex files are needed to be ported to the remote target device. In
order to port the project files to a remote device, the remote secure scripting concept is utilised.
Since the IBM Rhapsody user interface supports the development of remote device deployment,
the concept of automated build, compile and run process is preferred. However, for this purpose,
the linux profile requires extensive usage of putty as SSH client. Therefore, it requires putty,
plink.exe, and pscp.exe in the tool directory. As a prerequisite, successful connection to the remote
target and permission to the remote target’s SSH key is ensured. This is a one time operation
per local host.The plink command with the appropriate user-id and password will SSH connect
to the remote device and create a project work-space directory inside the raspberry pi memory.
Further, the pscp command will help transfer the linux tar files from host machine to target device.
Once the linux tar files are downloaded on the target system, the plink command initiates the
extraction process inside the target system to convert it into necessary hex files. Finally, the file
access permissions are modified and the command to build framework is processed. The overall
procedure is depicted in the figure 7.13.

38 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.13: Workflow for automating the framework build process in Rhapsody

7.4.2 Building the project on a remote device

The make command in the Rhapsody interface initiates the project build process. However,
to initiate the build process in a remote device that uses linux OS, the following tool-chain is
preferred. Firstly, the plink makes an ssh connection to the remote device and creates a target
directory inside the device. subsequently, the pscp command executes the consecutive file transfer
of c++ source files, header files and make files to the target system. finally, the plink initiates the
make build process which will compile the project source files and outputs the object files in the
target directory followed by compiling the makefile which outputs the project executable in the
same folder. The overall process is depicted in a sequence diagram in the figure 7.14.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

39

CHAPTER 7. SMR SYSTEM AND DIGITAL TWIN IMPLEMENTATION

Figure 7.14: Workflow for automating the project build and compile process in Rhapsody

7.4.3 Executing the Project

Typically, when the run command is issued in a project that runs in the host machine, the
executable file present in the project workspace directory is directly invoked and the output is
presented in the Rhapsody client interface. However, when working on a remote device, the
project executable is present on the remote device’s memory. Therefore, the plink makes an SSH
connection to remote device and then issues the run command over the executable file. The overall
workflow is depicted as a sequence diagram in figure 7.15.

40 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Figure 7.15: Workflow for automating the project execution process in Rhapsody

Chapter 8

Results

In this chapter, the results obtained upon successful completion of the project is described in detail.
The following series of pictures demonstrates the working of SMR system in different scenarios
when Rhapsody application is coupled with Unity Game Engine. The results observable in each
state verifies the working of SMR system using the Digital Twin approach. The following steps 1
to 8 were performed to demonstrate the results displayed.

8.1 Demonstration of SMR system

Figure 8.1: Step 1a: Turn on Rhapsody GUI

1. Run the project execution in Rhapsody. The animation toolbar is automatically turned ON.
As, a first step, make the executable go into idle state and then press Go in the animation
toolbar.The room is vacant initially as observed in Figure 8.1. The system On button in the
control panel needs to be toggled for enabling the SMR system.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

43

CHAPTER 8. RESULTS

2. Once, the SMR system is turned on in the Rhapsody GUI, the Unity Project can be executed.
As per the implementation, the The display at Unity will welcome the user into the SMR
room as observable in figure 8.2. The user can now move around the office interior to verify
the player movements and camera control.

Figure 8.2: Step 1b: Run Game sequence in Unity

3. Secondly, the user can now enter the PIN number to gain access inside the room. The
PIN number ”159” provides access into the room and the display message in Rhapsody GUI
suggests that the door is now unlocked. The control panel has has display messages designed
which helps in step-by-step model verification as shown in figure 8.3.

4. After gaining access inside the room by providing the correct credentials in Rhapsody GUI,
the Door for SMR in Unity will automatically unlock and open itself. The user can now move
inside the room and the SMR system is found to be in sleep state as shown in figure 8.4.
The lighting level, HVAC status and Room Temperature were also found to be displaying
proper values as per design.

44 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

CHAPTER 8. RESULTS

Figure 8.3: Step 2a: Give access to the SMR in Rhapsody GUI

Figure 8.4: Step 2b: Enter into the Meeting room in Unity

5. Now the system can be controlled to modify the temperature and Lighting level by the user.
Additionally, the user can now switch to the meeting mode. As per the design, the meeting
mode has predefined set of values which can be verified in the Rhapsody GUI. Figure 8.5.
shows the Rhapsody GUI that displays the SMR in meeting mode with its corresponding
subsystem states.

6. The meeting mode of SMR system in unity aligns perfectly synchronous to the Rhapsody
application. The unity model in figure 8.6 shows that the lighting level and temperature of
the SMR system are changed as per the data sent by the rhapsody application. Additionally,
the speakers are also enabled and its output is audible in this mode. This verifies the working
of SMR system in meeting mode.

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

45

CHAPTER 8. RESULTS

Figure 8.5: Step 3a: switch the SMR mode to Meeting

Figure 8.6: Step 3b: verify the changes in the unity

7. The scenario of fire emergency can be simulated by using the Fire button modelled in the
control panel. Pressing the fire button, simulates the SMR beahviour and displays the results
in the display as shown in figure 8.7. We can observe that the HVAC system, Lighting system
are all turned off with an evacuation message.

8. The fire simulation yields the following result in Unity game engine as shown in figure 8.8. We
can observe that the Rhapsody application enables the SMR system in unity by performing
the necessary controls and generating the observed system results. It is possible to disable
the Fire alarm and the SMR system will reiterate back to the sleep state.

46 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Figure 8.7: Step 4a: switch the SMR mode to Fire emergency in Rhapsody GUI

Figure 8.8: Step 4b: Verify the environment change in unity

Chapter 9

Conclusion and future scope

In conclusion, the developed SMR application satisfies the fundamental objectives of this gradu-
ation thesis and answers the research questions effectively. This is accomplished by answering the
research question 1 in section 5.1, research question 2 in section 6.3 and 7.2, and finally the re-
search question 3 in section 7.4. During the course of this project, there were a number of learning
experiences, challenges, personal improvement and shortcomings. However, the shortcomings are
minimal and less significant in comparison to the rest of the aspects of this project.

Firstly, on evaluation of the SMR system implementation, it is observed that it satisfies the
basic set of requirements listed in section 5.1. However, certain subsystems were not implemen-
ted as per the design considerations and use case specifications mentioned in chapter 6.2. For
instance, the CCTV camera operations in security system, the touch panel activation in audio
visual system, the conferencing and video calling features in the TV, the motion detection sensors
and window panel activation are removed from SMR system implementation. This is mainly
because of the complexity in the virtual realisation of the actors and components in the Unity
Game Engine. Moreover, it does not serve any additional purpose to contribute to the research
questions. Therefore, these use cases and and its related actors were removed out of the SMR
system implementation.

Secondly, in regards to the third research question, testing the use cases of SMR system to
communicate with Digital Twin was unable to be performed. This is mainly because the animation
enabled in IBM Rhapsody does not allow to perform the operations in linux ports on Raspberry
Pi controller. Although, The SMR system can be executed successfully on a remote device, the
functionalities of SMR system were not fully tested on Raspberry Pi controller. However, since
there are no changes in the model implementation, it can be argued that the test cases will
function similar to the windows implementation. Moreover, since testing and evaluation of HIL
implementation is not part of the research question, it can be left for future scope of development.
A suitable workaround for this situation can be by exporting the control panel diagram to a web
interface and accessing the webpage from the Raspberry Pi controller to give user inputs to the
Digital Twin. In addition, new insights and the future scope of improvement related to the design
of a digital twin based on a model-driven system engineering approach are found and discussed in
the below sections.

9.1 Application interoperability

The SMR application developed in the project has the functionality and advantage of being inter-
operable between different processes. The SysML modelling in IBM Rhapsody tool helps in auto
generating the C++ source files required for the successful execution of the project. The advantage
of IBM Rhapsody as an interoperable tool between a different application has been exploited to
a great extent in this project. Indeed, the virtual model in 3D space developed in Unity Game

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

49

CHAPTER 9. CONCLUSION AND FUTURE SCOPE

Engine is successfully coupled with the SMR application. In addition, Since C++ offers portability
of the code in various OS environments, it is easier to execute the project on remote devices with
the help of suitable profiling of the models for the required OS environment in IBM Rhapsody
tool. This has been demonstrated with the help of linux profiling of the SMR application and
thereby executing the project in a remotely connected raspberry pi controller (Raspbian OS - a
linux based OS).

Moreover, the application can be extended to have additional controller and stand-alone com-
ponents that runs parallelly either on same or different host machines. For instance, an additional
control layer can be adopted in MATLAB/simulink software to allow multi agent simulations. Al-
though, this has not been implemented in this project, it is a useful concept that can be exploited
in the future.

9.2 Flexiblity in development approach

The model-driven system engineering approach has the advantage of being flexible to development
at different stages. It was found during the project that the flexibility of SysML modelling offers
new feature additions as well as modification of existing attributes of features and services in an
easy and less redundant method. For instance, adding a new feature such as an animated door in
the 3D space requires software signals to actuate it. These software signals has to be generated
from the SMR application through the SysML models. Therefore, it requires additional ports for
socket communication and subsequently appropriate designing in the model integration layer as
well as application/service layer. However, these changes do not in any way interfere with the
working of pre-existing components or services as they are all segregated by individual layers.
Therefore, there is minimum rework in flexible model-driven system engineering approach which
improves productivity and thus increases the cost effectiveness of the life cycle development.

Further, The SMR application can be interfaced with IoT application through the interaction
with cloud environments and servers. Since there are numerous advantages to enable cloud services
to SMR application, this extension is a plausible future scope of development. For instance, the
HVAC control can be fed directly from cloud based servers based on weather forecast. Additionally,
new prediction analysis modles can be incorporated with the system to improve performance of
the SMR application in terms of energy consumption and comfort provided.

50 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Appendix A

SMR System Requirements

All the requirements are captured and given a Requirement ID as per SysML modelling standards.
The following figure A.1 consists of the requirements captured under SMR model. The Require-
ment diagrams for each package namely General, Communication, Temperature and Air Control,
safety, Security and Access package are shown in subsequent diagrams.

Figure A.1: List of all requirements for SMR model

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

51

APPENDIX A. SMR SYSTEM REQUIREMENTS

Figure A.2: Requirement Diagram for General Requirements Package

Figure A.3: Requirement Diagram for Communication system Package

52 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

APPENDIX A. SMR SYSTEM REQUIREMENTS

Figure A.4: Requirement Diagram for Temperature and Air control system Package

Figure A.5: Requirement Diagram for Safety system Package

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

53

APPENDIX A. SMR SYSTEM REQUIREMENTS

Figure A.6: Requirement Diagram for Security and Access control system Package

54 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

Appendix B

Digital Twin Layered approach

B.1 Transmission layer

B.1.1 TCP client

#i f n d e f WIN32 LEAN AND MEAN
#de f i n e WIN32 LEAN AND MEAN
#de f i n e WINSOCKDEPRECATEDNOWARNINGS
#end i f

#inc lude <s t d i o . h>
#inc lude <sys / socke t . h>
#inc lude <arpa/ i n e t . h>
#inc lude <ne t i n e t / in . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <un i s td . h>

char o u t s t r i n g f o r h v a c [1 0 2 4] ;

//HVAC
memset(&address hvac , 0 , s i z e o f (address hvac)) ;
address hvac . s i n f am i l y = AF INET ;
address hvac . s i n p o r t = htons (portHVAC) ;
address hvac . s i n addr . s addr=ine t addr (serverName) ;

//INITIALIZE THE SOCKET
listenSocketForHVAC = socket (AF INET ,SOCK STREAM,IPPROTO TCP) ;

//CONNECT THE SOCKET
iResultHVAC = connect (listenSocketForHVAC , (s t r u c t sockaddr ∗)&address hvac , s i z e o f (

address hvac)) ;

//ASSIGN VALUES TO SEND
sp r i n t f (o u t s t r i n g f o r hva c , ”%f ” , hvac) ;

//SEND VALUE
iSendResultHVAC = sendto (listenSocketForHVAC , (char ∗)&ou t s t r i n g f o r h v a c , s i z e o f (

u i n t 32 t) , 0
, (sockaddr ∗) & address hvac , s i z e o f (address hvac)) ;
//SHOW SENT VALUES IN CONSOLE
p r i n t f (”HVAC Status va lue sent : %s \n” , o u t s t r i n g f o r h v a c) ;

//RECIEVED VALUE OF HVAC
iResultHVAC = recv (listenSocketForHVAC , recvbuf , r ecvbuf l en , 0) ;
p r i n t f (”HVAC value r e c i e v ed : %f \n” , a t o f (recvbuf)) ;
i n t hvactocheck = ato f (recvbuf) ;

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

55

APPENDIX B. DIGITAL TWIN LAYERED APPROACH

i f (hvactocheck==1){
hvac text = ”HVAC i s ON” ;

}
e l s e {

hvac text = ”HVAC i s OFF” ;
}
//CLOSE THE SOCKET
c l o s e (listenSocketForHVAC) ;

re turn 0 ;

B.1.2 TCP server

us ing System ;
us ing System . Co l l e c t i o n s ;
us ing System . Co l l e c t i o n s . Generic ;
us ing System . Threading ;
us ing System . Net ;
us ing UnityEngine ;
us ing UnityEngine . UI ;
us ing System . Net . Sockets ;
us ing System . Text ;
us ing UnityEngine . SceneManagement ;

pub l i c c l a s s ServerForTest : MonoBehaviour
{

[S e r i a l i z e F i e l d]
// p r i va t e Canvas panelPayment ;

pub l i c TcpListener s e r v e r ;

// Defau l t host and port
s t r i n g host = ” 1 2 7 . 0 . 0 . 1 ” ;
i n t portTest = 52051 ;
p r i va t e s t r i n g d i sp laymessage = ”” ;
// pub l i c Text connect ionStatus ;
// pub l i c Text va r i ab l e ;
pub l i c f l o a t t e s t f r omServe r = 0 ;

Thread tcpListenerThread ;

// Use t h i s f o r i n i t i a l i z a t i o n
pub l i c void Star t ()
{

tcpListenerThread = new Thread (() => ListenForMessages ()) ;
tcpListenerThread . S ta r t () ;
d i sp laymessage = ”Not Connected ! ” ;

}

pub l i c void Update ()
{

// d i sp layConnect ionStatus () ;
// d i sp l ayVar i ab l e () ;

}

pub l i c void ListenForMessages ()
{

t ry
{

// Set the TcpListener on port 13000 .
IPAddress loca lAddr = IPAddress . Parse (host) ;

56 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

APPENDIX B. DIGITAL TWIN LAYERED APPROACH

// TcpListener s e r v e r = new TcpListener (port) ;
s e r v e r = new TcpListener (localAddr , portTest) ;

// Star t l i s t e n i n g f o r c l i e n t r eque s t s .
s e r v e r . S ta r t () ;

// Buf f e r f o r read ing data
Byte [] bytes = new Byte [1 0 2 4] ; //The byte array conta in ing the

sequence o f bytes to decode .
S t r ing data = nu l l ;
i n t counter = 0 ;
// Enter the l i s t e n i n g loop .
whi l e (t rue)
{

i f (counter == 0)
{

// counterForScene = 0 ;
d i sp laymessage = ”Waiting f o r a connect ion . . . ” ;
Debug . Log (d i sp laymessage) ;

}

// Perform a b lock ing c a l l to accept r eque s t s .
// You could a l s o user s e r v e r . AcceptSocket () here .
us ing (TcpClient c l i e n t = s e r v e r . AcceptTcpClient ())
{

i f (counter == 0)
{

disp laymessage = ”Connected ! ” ;
Debug . Log (d i sp laymessage) ;
counter = 1 ;
// counterForScene = 1 ;

}

data = nu l l ;

// Get a stream ob j e c t f o r read ing and wr i t i ng
NetworkStream stream = c l i e n t . GetStream () ;

i n t i ; //The number o f bytes to decode

// Loop to r e c e i v e a l l the data sent by the c l i e n t .
whi l e ((i = stream . Read (bytes , 0 , bytes . Length)) != 0)
{

// Trans late data bytes to a ASCII s t r i n g .
data = System . Text . Encoding . ASCII . GetStr ing (bytes , 0 , i) ;

// 0 i s The index o f the f i r s t byte to decode .
f l o a t testfromRhapsody = (f l o a t) Convert . ToDouble (data) ;

t e s t f r omServe r = testfromRhapsody ;

// Process the data sent by the c l i e n t .
data = data . ToUpper () ;

byte [] msg = System . Text . Encoding . ASCII . GetBytes (data) ;

// Send back a response .
stream . Write (msg , 0 , msg . Length) ;
//Debug . Log (” Test : ” + te s t f r omServe r . ToString ()) ;

}
// Shutdown and end connect ion
c l i e n t . Close () ;

}

}

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

57

APPENDIX B. DIGITAL TWIN LAYERED APPROACH

}
catch (SocketExcept ion e)
{

Debug . LogError (S t r ing . Format (” SocketExcept ion : {0}” , e)) ;
}
f i n a l l y
{

// Stop l i s t e n i n g f o r new c l i e n t s .
s e r v e r . Stop () ;

}
}

}

B.2 Digital Modelling layer

B.2.1 ’PlayerMovement’ script

us ing System . Co l l e c t i o n s ;
us ing System . Co l l e c t i o n s . Generic ;
us ing UnityEngine ;

pub l i c c l a s s PlayerMovement : MonoBehaviour
{ //on p laye r

pub l i c f l o a t speed = 6 .0 f ;
pub l i c f l o a t g rav i ty = −9.8 f ;
p r i va t e Charac t e rCont ro l l e r charCont ;

// Use t h i s f o r i n i t i a l i z a t i o n
void Sta r t ()
{

charCont = GetComponent<Characte rContro l l e r >() ;
}

// Update i s c a l l e d once per frame
void Update ()
{

f l o a t deltaX = Input . GetAxis (”Hor i zonta l ”) ∗ speed ;
f l o a t de l taZ = Input . GetAxis (” Ve r t i c a l ”) ∗ speed ;
Vector3 movement = new Vector3 (deltaX , 0 , de l taZ) ;
movement = Vector3 . ClampMagnitude (movement , speed) ; // Limits the

maximum speed o f the p laye r

movement . y = grav i ty ;

movement ∗= Time . deltaTime ;
movement = trans form . TransformDirect ion (movement) ;

charCont .Move(movement) ;
}

}

58 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

APPENDIX B. DIGITAL TWIN LAYERED APPROACH

B.2.2 ’CameraControl’ script

us ing System . Co l l e c t i o n s ;
us ing System . Co l l e c t i o n s . Generic ;
us ing UnityEngine ;

pub l i c c l a s s CameraControl : MonoBehaviour
{

pub l i c enum Rotat ionAxis
{

MouseX = 1 , //on p laye r
MouseY = 2 //on camera

}

pub l i c Rotat ionAxis axes = Rotat ionAxis .MouseX ;

pub l i c f l o a t minimumVert = −45.0 f ;
pub l i c f l o a t maximumVert = 45 .0 f ;
pub l i c f l o a t s en sHor i zon ta l = 10 .0 f ;
pub l i c f l o a t s e n sVe r t i c a l = 10 .0 f ;

pub l i c f l o a t ro tat ionX = 0 ;

// Update i s c a l l e d once per frame
void Update ()
{

i f (axes == RotationAxis .MouseX)
{

trans form . Rotate (0 , Input . GetAxis (”Mouse X”) ∗ s ensHor i zonta l , 0) ;
}
e l s e i f (axes == RotationAxis .MouseY)
{

ro tat ionX −= Input . GetAxis (”Mouse Y”) ∗ s e n sVe r t i c a l ;
ro tat ionX = Mathf . Clamp(rotat ionX , minimumVert , maximumVert) ; //

Clamps the v e r t i c a l ang le with in mix and max l im i t s (45 degree s)
f l o a t rotat ionY = transform . l o ca lEu l e rAng l e s . y ;

trans form . l o ca lEu l e rAng l e s = new Vector3 (rotat ionX , rotationY , 0) ;
}

}
}

B.3 Data and Model integration layer

B.3.1 ’Door opening’ script

us ing UnityEngine ;
us ing System . Co l l e c t i o n s ;
us ing System . Co l l e c t i o n s . Generic ;
us ing UnityEngine . SceneManagement ;

pub l i c c l a s s Door opening : MonoBehaviour
{

Animator anim ;
// Star t i s c a l l e d be f o r e the f i r s t frame update
ServerForDoor p1 ;
ServerForTest T1 ;

void Sta r t ()
{

anim = GetComponent<Animator>() ;

p1 = GameObject . Find (”InputManager”) . GetComponent<ServerForDoor >() ;

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

59

APPENDIX B. DIGITAL TWIN LAYERED APPROACH

T1 = GameObject . Find (”InputManager”) . GetComponent<ServerForTest >() ;
}

// Update i s c a l l e d once per frame
void Update ()
{

//Animator anim = GetComponent<Animator>() ;
i f (p1 . Doorstatus f romServer == 1)
{

anim . SetBool (”open” , t rue) ;
Debug . Log (”Door opened”) ;

}

e l s e i f (p1 . Doorstatus f romServer == 0 && T1 . t e s t f r omServe r == 6)
{

// Fi re f l ame . F i r e = true ;
Star tCorout ine (ExampleCoroutine ()) ;

}
}

IEnumerator ExampleCoroutine ()
{

y i e l d re turn new WaitForSeconds (20) ;

anim . SetBool (”open” , f a l s e) ;
Debug . Log (”Door c l o s ed ”) ;

}
}

B.3.2 ’FlameChange’ script

us ing System . Co l l e c t i o n s ;
us ing System . Co l l e c t i o n s . Generic ;
us ing UnityEngine ;

pub l i c c l a s s Flamechange : MonoBehaviour
{

ServerForTest T1 ;
//ChangeText F i re ;
pub l i c GameObject goMyObject ;
Renderer myR;
Vector3 i n i S c a l e ;
pub l i c AudioSource aud iosource ;
// Star t i s c a l l e d be f o r e the f i r s t frame update
void Sta r t ()
{

T1 = GameObject . Find (”InputManager”) . GetComponent<ServerForTest >() ;
goMyObject = GameObject . Find (” F l amesPa r t i c l eE f f e c t ”) ;
i n i S c a l e = transform . l o c a l S c a l e ;

}

// Update i s c a l l e d once per frame
void Update ()
{

i f (T1 . t e s t f r omServe r == 3 | | T1 . t e s t f r omServe r == 4 | | T1 . t e s t f r omServe r
== 5)

{
trans form . l o c a l S c a l e = Vector3 . ze ro ;

}

i f (T1 . t e s t f r omServe r == 6)
{

;

60 Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

APPENDIX B. DIGITAL TWIN LAYERED APPROACH

trans form . l o c a l S c a l e = i n i S c a l e ;
i f (! aud iosource . i sP l ay i ng)
aud iosource . Play () ;

}
}

}

B.3.3 Collision and Trigger Script

us ing System . Co l l e c t i o n s ;
us ing System . Co l l e c t i o n s . Generic ;
us ing UnityEngine ;

pub l i c c l a s s Co l l i s i onAndTr igger : MonoBehaviour
{

pub l i c Light l i g h t 1 ;
pub l i c Light l i g h t 2 ;
pub l i c Light l i g h t 3 ;
pub l i c Light l i g h t 4 ;
pub l i c Light l i g h t 5 ;

// pub l i c GameObject l i g h t 6 ;

// Star t i s c a l l e d be f o r e the f i r s t frame update
void Sta r t ()
{

l i g h t 1 . enabled = f a l s e ;
l i g h t 2 . enabled = f a l s e ;
l i g h t 3 . enabled = f a l s e ;
l i g h t 4 . enabled = f a l s e ;
l i g h t 5 . enabled = f a l s e ;

}

// Update i s c a l l e d once per frame
void Update ()
{

}

pr i va t e void OnTriggerEnter (Co l l i d e r other)
{

Debug . Log (other . name + ” Has Entered ! ”) ;
l i g h t 1 . enabled = true ;
l i g h t 2 . enabled = true ;
l i g h t 3 . enabled = true ;
l i g h t 4 . enabled = true ;
l i g h t 5 . enabled = true ;

}
pr i va t e void OnTriggerExit (Co l l i d e r other)
{

Debug . Log (other . name + ” Has Exited ! ”) ;
l i g h t 1 . enabled = f a l s e ;
l i g h t 2 . enabled = f a l s e ;
l i g h t 3 . enabled = f a l s e ;
l i g h t 4 . enabled = f a l s e ;
l i g h t 5 . enabled = f a l s e ;

}
}

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

61

Bibliography

[1] O’Connor, C. IBM IoT Platform. Available online: https://www.ibm.com/blogs/internet-of-
things/leaderiot- platforms/ (accessed on 28 January 2019).

[2] F. Tao and M. Zhang, ”Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart
Manufacturing,” in IEEE Access, vol. 5, pp. 20418-20427, 2017.

[3] A. Barni, A. Fontana, S. Menato, M. Sorlini and L. Canetta, ”Exploiting the Digital Twin in the
Assessment and Optimization of Sustainability Performances,” 2018 International Conference
on Intelligent Systems (IS), Funchal - Madeira, Portugal, 2018, pp. 706-713.

[4] F. Tao, H. Zhang, A. Liu and A. Y. C. Nee, ”Digital Twin in Industry: State-of-the-Art,” in
IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405-2415, April 2019.

[5] Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based
Systems Engineering. Systems 2019, 7, 7.

[6] Lu, Qiuchen & Parlikad, Ajith Kumar & Woodall, Philip & Xie, Xiang & Liang, Zhenglin &
Konstantinou, Eirini & Heaton, James & Schooling, Jennifer. (2019). Developing a dynamic
digital twin at building and city levels: A case study of the West Cambridge campus. Journal
of Management in Engineering. 36. 10.1061/(ASCE)ME.1943-5479.0000763.

[7] Mohammadi, N., Taylor, J. E. (2017). “Smart city digital twins.” 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), IEEE, pp. 1-5.

[8] S. Paladi, MIL, SIL, HIL for Testing Electronic Controls in Vehicle Engineering, Master In-
ternship. 2019.

[9] ”The Advantages of Using Digital Twins in HVAC Systems: A Primer”, HPAC Engineer-
ing, 2020. [Online]. Available: https://www.hpac.com/iaq-ventilation/article/21133096/the-
advantages-of-using-digital-twins-in-hvac-systems-a-primer. [Accessed: 08- Jun- 2020]

[10] ”Lighting control system”, En.wikipedia.org, 2020. [Online]. Available: ht-
tps://en.wikipedia.org/wiki/Lighting control system. [Accessed: 08- Jun- 2020]

[11] ”Medium. 2020. How To Write A Simple 3D Character Controller In Unity.” [on-
line] Available at: ¡https://itnext.io/how-to-write-a-simple-3d-character-controller-in-unity-
1a07b954a4ca¿ [Accessed 25 November 2020].

[12] Ibm.com. 2020. Using IBM Rhapsody C/C++ With The Raspberry Pi. [online] Available at:
¡https://www.ibm.com/support/pages/node/275367¿ [Accessed 25 November 2020].

Design of a Digital Twin for a Smart Meeting Room based on a Model-Driven System
Engineering Approach

63

	Contents
	List of Figures
	Introduction
	Project Description
	System under Test
	Question 1
	Question 2
	Question 3

	Literature Survey on Digital Twin systems
	Related Information
	Methods of modelling a Digital Twin System (DTS)
	Digital Twin architectures
	A Digital Twin System Architecture for Building and City levels

	Software development methodologies for SMR system and Digital Twin
	Development stages in creating a Smart Meeting Room System (SMR)
	Model-in-Loop (MIL)
	Software-in-Loop (SIL)
	Digital-Twin-in-Loop (DTIL)

	V-Model Project Development Method

	Requirements and system analysis of SMR
	The analysis of Smart Meeting Room system (SMR) and its requirements
	Subsystems of SMR system
	HVAC system

	Security and access system
	Lighting system
	Safety system
	Audio System

	Design of SMR system and its Digital Twin
	System dynamics and control
	Modes of the SMR system

	Behaviour of the subsystems (devices and drivers)
	HVAC and Safety System
	Lighting System
	Security and Access System
	Audio and visual system

	The Layered Architecture for the Digital Twin of Smart Meeting Room system (SMR)
	Data Abstraction Layer
	Transmission Layer
	Digital Modelling Layer
	Data/Model Integration Layer
	Application/Service Layer

	SMR system and Digital Twin Implementation
	IBM Model Implementation
	Communication to Unity
	Modelling the User Input and display
	Modelling the 'SendToUnity' block
	Model compilation and execution

	Implementation of Digital Twin system in Unity Game Engine
	Development of 3D models
	Implementation of Digital Twin layered architecture

	Implementation on a Raspberry pi controller
	Buidling the Rhapsody 0XF framework
	Building the project on a remote device
	Executing the Project

	Results
	Demonstration of SMR system

	Conclusion and future scope
	Application interoperability
	Flexiblity in development approach

	Appendix A
	SMR System Requirements
	Appendix B
	Digital Twin Layered approach
	Transmission layer
	TCP client
	 TCP server

	Digital Modelling layer
	'PlayerMovement' script
	'CameraControl' script

	Data and Model integration layer
	'Door_opening' script
	'FlameChange' script
	Collision and Trigger Script

	Bibliography

