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Abstract 

In this thesis, an important step is made towards improving the electron optical performance of the 

multibeam source designed for a multibeam scanning electron microscope, accounting for its better 

further commercialization for high throughput electron beam imaging and lithography techniques. The 

array of images produced by the multibeam source have been suffering from an unwanted octupole 

aberration introduced by the orthogonally distributed neighbor aperture lenses at the aperture lens array. 

This thesis focuses on the evaluation of this octupole defect systematically and proposes methods for its 

elimination and achieves this result in several steps. First, multiple computational strategies for 

characterization of the octupole field are discussed. It is concluded that the most accurate method to 

calculate the octupole aberration coefficient is through a so called “ray tracing and fitting”. In this method 

the electrons are traced through the numerically calculated 3D electrostatic field and then by mapping 

the initial particle positions and momenta to their positions and momenta on the image plane, octupole 

aberration coefficient is calculated. Octupole cancellation is done by engineering variations of the ALA 

micro-aperture shape, which include adding aperture walls, (blind hole) indentations, changing the 

aperture shapes to a semicircular or rounded square aperture shape and a hexagonally distributed 

aperture pattern with aperture walls, where each variation is characterized by an optimization parameter. 

This parameter is optimized for each geometry, leading to a minimized octupole aberration coefficient for 

each case. Then using the (𝐹𝑊50) sizes of both the central beamlets and an off-axis beamlet, the off-axial 

aberration influences, and the parameter sensitivity, different correcting methods are compared. Though 

the largest off-axial spot (in 𝐹𝑊50) is found for correction by indentations, the off-axial influences might 

be controlled through further investigation. The largest central spot is found for semicircular holes, which 

may be due to the introduction of higher order aberrations. Moreover, the higher precision required for 

the construction of semicircular holes, makes this a less viable option. The aperture walls are concluded 

to eliminate the octupole aberration while keeping the influence of other aberrations to a minimum.  
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1 An introduction to the multibeam electron optical system 
In a conventional light microscope, as shown schematically in Figure 1, the optical elements in the optical 

system bend the paths of the photons emerging from a light source to illuminate the sample and then 

using another set of lenses, the transmitted light beam is focused in the image plane to form an image of 

the sample. The interaction of the light beam with the sample causes absorption and scattering of photons 

in the bundle leading to a difference in intensity at different points in the image plane, called contrast. 

The optical resolving power and thus the resolution of the image depend on several optical limiting factors 

in the optical system but also on the sample itself and the nature of photon sample interaction. The 

ultimate resolution is, however, limited by the wavelength of the photons. Due to the wave nature of 

light, diffraction dictates the ultimate resolving power of the microscope. The best achievable resolution 

with a traditional light microscope using the shortest observable wavelength of 400 nm, is limited to 

similarly sized details. In order to improve the resolution of light -based imaging and pattering systems, 

there have been tremendous efforts dedicated to this subject in the past couple of decades. The most 

straight forward solution is to use “light” with a shorter wavelength from the EM spectrum.  One example 

being, the newest EUV-based lithography machines produced by ASML use an extreme ultraviolet source 

of 13.5 nm to fabricate sub-20 nm features and patterns to be used in semiconductor chip industry [1]. 
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Figure 1: schematic representation of light microscope. In a TEM, the idea of the setup is essentially the same, but here the light 
source is replaced by an electron source, and lens groups are replaced by electromagnetic optical elements such as coils / 

deflectors etc. 

An alternative technology, surpassing the diffraction limit of the light optical systems, is used in electron 

optical systems, or in general “Charged Particle Optical” systems. Unlike light optical systems, the ultimate 

resolution of charged particle optical systems is not determined by the wavelength of the electrons 

because the electron wavelength inversely scales with the acceleration voltage of the electrons and can 

be made extremely small by accelerating them to high energies. In fact, this was the main driving force 

behind the development of the very first electron microscope known as TEM (Transmission Electron 

Microscope) by E. Ruska and others [2]. Its design was somewhat an exact copy of light microscope in 

which the light source is replaced with electron source and light lenses are replaced with electromagnetic 

lenses. In a typical TEM, electrons accelerated to only 100 keV will have a wavelength of only 0.0037 nm 

[3]. Nowadays powerful TEM’s, equipped with aberration correctors and hight brightness electron source 

can produce images with 0.05 nm resolution at typical acceleration voltage of 300kV [4]. Immediately 

after the introduction of the TEM’s, another class of electron microscope, a Scanning Electron Microscope 

(SEM), emerged [5]. In an SEM, electrons are accelerated and focused using electromagnetic lenses down 

to a small point, an electron probe, on the surface of a sample. This focused probe is then scanned across 

the surface of the sample, by the deflection/scanning unit, pixel by pixel in order to produce an image of 

the surface topography of the sample or to write a pattern on it.  The current SEM design is schematically 

depicted in Figure 2 (be aware to imagine a standard SEM with only a single central beam in the figure).  

Light source 

Objective lens group 

Condenser lens group 

Sample 

Detector  
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State-of-the-art high-resolution SEMs can reach a resolution below 1 nm with a typical beam current of 

about 50 pA. With this typical probe current, making a sub-1 nm resolution image of a sample, or scanning 

roughly 106 pixels, is typically a matter of a second [6].  When used for patterning, this can take an order 

of magnitude longer. In short, when the sample surface scanning area is limited to µm2, current SEM is 

fast enough to produce images in a matter of seconds, minutes, or an hour depending on the size of the 

sample. This is not, however, true when imaging or patterning a larger area sample. Think about 

imaging/patterning the whole surface of a 350 mm Si-wafer used in semiconductor chip industry.  Using 

current SEM, it takes years to image /pattern all the features required for a single functioning chip in a full 

wafer. In order to increase the throughput, a higher probe current is required. Unfortunately, the probe 

current cannot be simply increased. Let’s see why is this true. The probe current in an SEM can be written 

as [7]: 

 𝐼 = 𝐵𝑟
𝜋2

4
(𝑑𝑔𝑒𝑜)

2
𝛼2𝑉, 

( 1 ) 

                      
Where 𝐵𝑟 is the reduced brightness of the electron source, 𝑑𝑔𝑒𝑜 = 𝑀𝑑𝑣  is the geometrical source image 

at the sample, 𝑀 is the total magnification of the electron lenses, 𝑑𝑣 is the virtual source size, 𝛼 is the half 

opening angle of the probe and 𝑉 is the acceleration voltage.  

From equation ( 1 ) it is clear that the probe current is ultimately limited by the reduced brightness of the 

electron source for an optimized α with which the aberration contributions from the lenses are minimized. 

Moreover, increasing the beam current increases the coulomb repulsion between electrons which 

degrades the resolution. 

Multi beam technology is a solution to the throughput problem of current SEM’s. To this end, a Multi 

Beam Scanning Electron Microscope (MBSEM) has been designed and developed at the Delft University 

of Technology which delivers an array of 14x14 (196) focused beams onto the sample simultaneously [7].  

Figure 2 shows the electron optical working principle of the MBSEM schematically. One of the essential 

parts of the MBSEM is the Multi Beam Source (MBS) which produces an array of beams for the rest of the 

electron optical column of the MBSEM. The MBS, depicted in Figure 3 is composed of the electron source 

unit, two macro-electrodes (E-1 and E-2) and an array of micro- apertures fabricated using MEMS 

techology. These micro-apertures play double roles: 1]- they split the solid emission cone of the electron 

source into an array of beams and 2]- in combination with the electron source unit and two macro-

electrodes produces aperture lens array (ALA) to focus different beams to the MBS image plane. The 

focused array of images of the source in the MBS image plane are consequently accelerated and directed 

to the SEM optics column by the accelerator lens (ACC.) and further focused by the downstream 

electromagnetic lenses (C2, INT and HR/UHR) onto the surface of a sample. By positioning the common 

crossover of the multiple beams at the variable aperture (VA) , the beam current of all individual beams 

can be tuned by simply selecting different sizes of the VA. With the configuration explained above, the 

MBSEM produces 196 beams at the sample with 1 nm resolutions and a typical current per beam of about 

50 pA, both comparable to the those of state-of-the-art high resolution (single) beam SEM. In this case, 

usually most of the current through the ALA is stopped by the VA. However, for very high current 

applications of around 1 nA per beam, the VA can no longer be a beam limiting aperture. As depicted in 

Figure 3, this means all the current through the ALA will contribute in the probe formation, which is 

indicated by the blue instead of the green bundle cross-section. That means the same micro-apertures at 
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the aperture array act also as a beam limiting apertures and the filling factor1 of these apertures becomes 

100%. Once this is the case, a remarkable octupole aberration appears in the probe, enlarging the probe 

size thus degrading the resolution remarkably. This octupole aberration is due to the influence of nearby 

apertures in the ALA that deviate the rotational symmetric field near every aperture hole.  

This leads to the main questions of this thesis, being “how can we evaluate this octupole aberration 

correctly” in the first place and the following question is, “how can we eliminate it?” The thesis is 

organized as follows: Section 2 introduces the multipole problem in more detail, and then answers the 

question “which computational strategy works best here?”. Then, in section 3, the numerical settings and 

other factors affecting the accuracy of the simulation are discussed. Then we may ask ourselves “how do 

we design the ALA such that the octupole is corrected?” To this end, different correction shapes are 

presented in section 4. In section 5, these correction methods are optimized and the differences are 

discussed. Further exploration of optical problems is discussed in section 6 and in section 7, a conclusion 

is drawn. 

The original plan in the project was first numerically optimize the ALA such that the octupole is eliminated. 

Due to COVID-19, the accessibility to Thermo Fisher Scientific’s premises was extremely limited and the 

production of the ALA itself was effectively put to a stop. Instead of pursuing this experimental verification 

of the shapes presented in section 5, it was decided that a (brief) comparison between older experiments 

and simulation here, should suffice to demonstrate the accuracy of the simulations. This is done as part 

of the discussion of the numerical accuracy in section 3.6. 

 
1Here the filling factor is defined as the ratio of the current filling the micro-aperture at ALA and the current in the 

corresponding probe at the sample. 
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Figure 2: Schematic drawing of an SEM column where with 
only one central beam it depicts an standard (single) beam 
SEM and with all multiple beams simultaneously, it depicts 
a multibeam scanning electron microscope (MBSEM). The 
Schottky source and the first two electrostatic lenses (E-1 
and E-2) together witht the aperture lens array (ALA) make 
up the multi beam source (MBS), which produces multiple 
beamlets. These are consequently accelerated by the 
accelerator lens (Acc.), and focused before the C2 lens to a 
common crossover, which is image by the C2 lens in 
another common crossover at the variable aperture (VA) 
plane. The VA  controls the beam opening angle and beam 
current in a single aperture for all beamlets. The 
intermediate lens (INT) fosuses the common crossover of 
the VA to the “coma free plane” of the ultra high resolution 
(UHR) objective lens. This ensures that off-axial aberrations, 
caused partly by scanning the probe over the sample using 
the scan coils, are minimized. Finally, the ultra high 
resolution (UHR) objective lens focuses the beamlets on the 
sample. The image is taken from [7]. 

 
Figure 3: Schematically depicts the MBS. As the name suggests, the 
extractor extracts electrons from a Schottky electron source. The 
beam is then modified by a macro-electrostatic lens. The macro 
electrodes, E-1 and E-2 were originally designed as a single apertures, 
but as can be seen in Figure 21, both are now designed as a pair of 
apertures. The ALA makes an array of focused images of the electron 
source. The green part of the beam (for every beamlets) indicates the 
part of the beam being let through by the VA whereas the whole 
current of every beamlet (blue) is used for when there is no VA (filling 
factor of the micro-apertures being 100%). The diameter of these 
apertures and the pitch between them are typically one or a few tens 
of micrometers. 

E-1 E-2 Extractor ALA 
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2 The octupole aberration of the ALA 
As mentioned earlier, to obtain higher probe current, the variable aperture (VA) is removed from the 

MBSEM and every micro-aperture in the ALA is the only beam limiting aperture in the system. That is, the 

filling factors of the micro-apertures are 100%, whereas for a high resolution MBSEM, this was less than 

5% (Figure 3). In this situation, the presence of many neighbor micro-aperture lenses in the ALA leads to 

an additional multipole effect in the individual beamlets. Due to many neighbor micro-aperture lenses, 

the electric fields around an aperture hole are not rotationally symmetric. This causes deflections of the 

electrons and leads to the octupole aberration, which will be introduced in section 2.1. 

This effect has been observed experimentally previously using a slightly different setup where multiple 

array elements are involved [8], and more recently [9] for a design where the ALA is the only non-

rotationally symmetric element. This effect is found to be a dominant aberration contribution enlarging 

the spot size of the beams at the MBS image plane.  Figure 4b shows a simulated spot profile at the MBS 

image plane for an axial micro-aperture lens with neighbor micro-aperture lenses. Figure 4d shows the 

spot profile for the same micro-aperture lens when all neighbor aperture lenses are removed. The 

aberrations induced by the neighbor apertures enlarges the spot size by a factor of 2.7, measured in 

𝐹𝑊50 
2. Judging from the rectangular aperture pattern around the central aperture, the aberrations that 

are induced are expected to be 4-fold symmetric. In Figure 4b it appears that the four-fold symmetric 

shape isn’t very obvious in the focus plane but rather there is a large spread in the spot. To see the four-

fold shape in the beam more pronounced, the spot profiles are also shown before and after the focus 

plane, for the same simulation. Figure 4a and Figure 4c show the same spot shown at Figure 4b at two 

different planes of under- and over-focus demonstrating clearly the octupole effect. From these two 

figures it appears that the start shape has “changed” the direction by 45 degrees. This means that only 

judging from the orientation of the star shaped spot or its size is not enough to determine the direction 

and strength of the octupole, which calls for an adequate fitting procedure. It should be noted that all 

simulations have been carried out using newly developed software BEM+GPT by Pulsar Physics [10]. This 

software will be briefly introduced and discussed in section 3.1.  

 
2Measure to define the size of a spot, where 𝐹𝑊50 is the diameter of the spot that contains 50% of the beamlet current [7]. 
Other percentages and methods could be applied, but usually taking a number like 50% is much better than 100%, since only an 
irrelevantly low number of particles could be scattered extremely far from the center of the spot. 
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Figure 4: Simulation results of the octupole aberration caused by an ALA: In the first plane positioned before focus (a), the 
weaker focal strength in horizontal and vertical directions results in an image which resembles a + sign, and the x sign which 
follows after focus (c) results from particles in diagonal directions that have already passed the optical axis to form the outer 

ends of this shape. The top right figure (b) depicting the focal point shows the round spot in focus, where the size is enlarged due 
to particles being scattered in both directions. Figure (d) depicts the spot that is focused by a single aperture lens, without 

neighbor apertures. 

Figure 5 a, b and c show the experimental verification of the octupole effect in focused, over- and under-

focused spots at the MBS image plane. To produce these experimental images, the MBS (the same MBS 

as the one simulated to produce Figure 4) has been mounted in a stand-alone vacuum setup as shown in 

Figure 6. To see the individual spots, a YAG screen is mounted in the MBS image plane. An (optical) 

objective lens, looking at the YAG screen, creates magnified images of the individual multi beam spots 

onto CCD camera.  

In section 2.2, a simple method is first used to compare the octupole field strength between an analytical 

approximation and a simulation and it was found that the analytical approximation is inadequate to 

(a) (b) 

(c) (d) 
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substitute for more time consuming simulations in section 2.3. In section 2.4, a simpler geometry is briefly 

discussed as a potential alternative to isolate the octupole effect instead of simulating the entire MBS. In 

section 2.5 the multipole field expansion itself is addressed as a method to eliminate the octupole 

aberration. The fitting procedure used here has its limitations and is thus not preferred over the more 

widely applicable plane-to-plane optical path fitting procedure that is discussed in section 2.6. However, 

the field fitting method will be used for discussion in section 5.3. 

 

Figure 5: octupole aberration in an experimental MBS setup. The images depict the same spot in different planes after the MBS. 
The asymmetric charge distribution around closely packed aperture holes leads to an octupole aberration that is observed as a 

star shaped spot before (left) and after focus (right). In focus (middle), the round spot is enlarged by the octupole aberration and 
after focus the aberration is inverted. This figure was obtained in an expiremental setup by Ali Gheidary and colleagues at the 

Delft University of Technology, but has not been published so far. 

 

Figure 6: A setup to see MBS spots. The picture is taken from [9] with permission. A YAG screen is used to capture the image of 
the beamlets projected by the multibeam source onto its image plane (instead of being accelerated by the accelerator lens, 

being the next step of the SEM as depicted by Figure 2). 

2.1 The octupole aberration 
The resolution of an electron optical system is limited by defects causing unwanted deflections of particles 

that cause the particles to be spread over a larger area than what would otherwise be expected when 

trying to image the initial particle source plane to the sample plane. The octupole aberration that is a 

major defect in an ALA is first introduced here from a basic optical system. A simple optical system is 

depicted in Figure 7. Here, two trajectories for particles emitted from a point source located at 𝑧 = 𝑧0 are 

drawn. Before reaching the first optical element at 𝑧 = 𝑧1, the particles will have an 𝑥-coordinate that 
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linearly scales with the initial transversal velocity 𝑥̇1. For an ideal lens, the amount of deflection to the 

particles between  𝑧 = 𝑧1 and 𝑧 = 𝑧2 then scales linearly with the 𝑥-coordinate of particles at the middle 

of the lens 
𝑧1+𝑧2

2
. This implies that trajectories originating from a point at 𝑧0 (given that this is a coordinate 

further from the lens than the focal distance) are imaged to a single point at 𝑧3. However, there can be 

aberrations in the lens that cause more (or less) deflection than desired. This is illustrated by the blue 

curve.  

  

Figure 7: Single lens imaging of electron. The optical system is drawn in the standard cartesian system, and the directions of the 
cylindrical coordinate representation are shown here as well. 

To describe aberrations near an electromagnetic lens, the electric field that causes deflections are 

examined. The electric potential can be separated into different multipole terms [11], where the 

monopole (𝜙0(𝑧)), quadrupole (𝜙2(𝑧))  and octupole (𝜙4(𝑧)) terms are given by 

 

Φ = 𝜙0 −
1

4
(𝑥2 + 𝑦2)𝜙0

(2) +
1

64
(𝑥2 + 𝑦2)2𝜙0

(4) − 𝑂(𝜙0
(6)) 

+
1

2
(x2 − y2)𝜙2 −

1

24
(x4 − y4)ϕ2

(2) + O(ϕ2
(4)) 

+
1

24
𝜙4(𝑥

4 − 6𝑥2𝑦2 + 𝑦4) −
1

480
𝜙4
(2)(𝑥2 + 𝑦2)(𝑥4 − 6𝑥2𝑦2 + 𝑦4) + 𝑂 (𝜙4

(4)). 

 

( 2 ) 

The higher indices 𝜙(𝑛) indicate the 𝑛 -th derivative with respect to the z-direction and the lower index 

𝜙𝑚
(𝑛) indicates the degree of rotational symmetry. For example, by transforming to cylindrical coordinates 

using 𝑟2 = 𝑥2 + 𝑦2 and tan 𝜃 =
𝑥

𝑦
 (Figure 7), the octupole term (𝑥4 − 6𝑥2𝑦2 + 𝑦4) can be rewritten as 

𝑟4 cos(4𝜃), which explains the lower index 𝜙4. Because the design for an ALA is typically 4-fold symmetric 

in 𝜃 around the central aperture, the expected multipole contributions for this aperture are also expected 

to be symmetric multiples of 4-fold symmetry (8-pole, 16-pole, 24-pole, etc.). The quadrupole term 𝜙2 

causes a linear deflection for 𝑥 and 𝑦, but it induces a different focal strength for the 𝑥 and 𝑦 directions, 

called astigmatism, which can focus the beam horizontally in a different 𝑧-plane than vertically, thereby 

effectively enlarging the spot. Though this is not a contributing factor for the central aperture, the off-

axial beams can have astigmatism through a combination of a lower degree of geometric symmetry 

around an off-axial aperture, the beam not traveling straight through the aperture and other factors. 

𝑧Ԧ 

𝑥Ԧ 

𝑧0 
𝑧1 𝑧2 

𝑧3 
𝑦Ԧ 

𝜃 
𝑟 
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Now the deflection for an octupole aberrated lens are derived. For non-relativistic particles3, the change 

in the 𝑥-velocity, given by 𝑥̇2 − 𝑥̇1 between positions 𝑧2 and 𝑧1 respectively, through lens action is 

 𝑥̇2 − 𝑥̇1 =
𝑞

𝑚
∫ 𝐸𝑥

𝑧2

𝑧1

𝑑𝑡 =
𝑞

𝑚𝑣
∫ 𝐸𝑥

𝑧2

𝑧1

𝑑𝑧, ( 3 ) 

where the integral of the 𝑥 component of the electric field 𝐸𝑥 can be rewritten as an integral over 𝑧, 

assuming constant particle velocity 𝑣1 ≈ 𝑣(𝑧) ≈ 𝑣2 and  𝑥̇ ≪ 𝑧̇ ≈ 𝑣 (paraxial approximation). Using  𝐸⃗Ԧ =

−∇Φ and substituting only the lowest order monopole and octupole terms, while changing time derivative 

𝑥̇ to 𝑧-derivative 𝑥′ (again paraxial approximation) gives 

 𝑥2
′ − 𝑥1

′ =
𝑞

𝑚𝑣2
∫

1

2
𝜙0
(2)(𝑧)𝑥(𝑧) −

1

24
𝜙4(𝑧)(4𝑥(𝑧)

3 − 12𝑥(𝑧)𝑦(𝑧)2)
𝑧2

𝑧1

𝑑𝑧. ( 4 ) 

Assuming a thin lens4, the particle positions 𝑥(𝑧) and 𝑦(𝑧) are held constant within the lens (thus 

dependence (𝑧) is replaced with a lower index (𝑥1 and 𝑦1) for the 𝑧-position at the lens plane, and can be 

taking out of the integral, resulting in  

 

𝑥2
′ − 𝑥1

′ = 𝑃0𝑥1 + 𝑃4(𝑥1
3 − 3𝑥1𝑦1

2), 
with  

𝑃0 =
𝑞

2𝑚𝑣2
∫

1

2
𝜙0
(2)𝑑𝑧

𝑧2
𝑧1

=
𝑞

2𝑚𝑣2
[𝜙0
(1)
]
𝑧1

𝑧2
 and 𝑃4 = ∫

4

24
𝜙4𝑑𝑧

𝑧2
𝑧1

 

( 5 ) 

where 𝑃0 and 𝑃4 indicate the integrated monopole and octupole terms respectively. Here, 𝑃0 shows the 

fundamental property of an ideal (aperture) lens where the deflection scales linearly with 𝑥, and the 

strength is determined by the difference in electric field strength before and after the aperture ([𝜙0
(1)
]
𝑧1

𝑧2
), 

which is the reason why an aperture with a different electric field on either side works as a lens in the first 

place. After 𝑃0𝑥1 in eq. ( 5 ), an arbitrary amount of (multipole) aberrations can be incorporated. Here, 

this is only an octupole aberration. 

Now similarly, 

 𝑦̇2 − 𝑦̇1 =
𝑞

𝑚
∫ 𝐸𝑦

𝑧2

𝑧1

𝑑𝑡 ( 6 ) 

leads to 

 
𝑦2
′ − 𝑦1

′ = 𝑃0𝑦1 + 𝑃4(𝑦1
3 − 3𝑦1𝑥1

2). 
 

( 7 ) 

Then, the radial deflection 𝑟2
′ − 𝑟1

′  is given by the inner with unit vector 𝑟̂ as 

 𝑟2
′ − 𝑟1

′ = 𝑟̂ ∙ (
𝑥2
′ − 𝑥1

′

𝑦2
′ − 𝑦1

′) = 𝑃0𝑟1 + 𝑃4𝑟1
3 cos(4𝜃), 

( 8 ) 

 
3 Though in an electron microscope the electron velocities can reach relativistic velocities, this is not the case inside the MBS 
where typical electrode voltages are smaller than 10 kV.  
4 For an electron optical system in the paraxial approximation, typically the 𝑧-velocity, 𝑧̇, is much larger than the tangential 𝑥-
velocity, 𝑥̇ .In a thin lens, particles entering the lens will have roughly the same 𝑥, 𝑦 coordinates throughout the lens, and this 
displacement can thus be neglected.  
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with 𝑟1 = √𝑥1
2 + 𝑦1

2. For particles traveling along the 𝑥 or 𝑦 axes, cos(4𝜃) = 1, the octupole contribution 

will exactly be the opposite of the diagonal directions, where cos(4𝜃) = −1. Because of the field free 

region after the lens, 𝑟2
′ is constant and thus, the radial position after the lens is given by 

 (𝑧) = 𝑟1 + (𝑧 −
𝑧1 + 𝑧2
2

) 𝑟2
′. 

( 9 ) 

The radial positions for particles traveling exactly along the  cos(4𝜃) = +1 and cos(4𝜃) = −1 planes 

after the lens are denoted 𝑟+ and 𝑟− and are given by 

 

𝑟+ = 𝑟1 + (𝑧 −
𝑧1 + 𝑧2
2

) (𝑟1
′ + 𝑃0𝑟1 + 𝑃4𝑟1

3) 

𝑟− = 𝑟1 + (𝑧 −
𝑧1 + 𝑧2
2

) (𝑟1
′ + 𝑃0𝑟1 − 𝑃4𝑟1

3). 

 

( 10 ) 

This difference in radial deflection for particles along the 𝑟+ and 𝑟− directions results in a 4-fold symmetric 

star shape spot, as depicted in Figure 8. By measuring the positions of particles in the minimum and 

maximum deflected positions of this spot, and filling them in as 𝑟− and 𝑟+  in equation ( 10 ) it is possible 

to deduce the octupole strength from a relatively simple measurement. However, when eliminating the 

octupole, the goal is  to minimize the octupole strength, in which case it is no longer possible to leave out 

other terms from equation ( 2 ) than just the first lensing term and the first octupole term. Moreover, the 

aim of octupole reduction is generally to optimize the spots in the focal plane, whereas the star-shaped 

contours are only observed at out of focus planes. This calls for a more elaborate fitting procedure, where 

more aberration terms can be extracted. 

 

 

Figure 8: typical star-shaped spot before focus. Radial distances 𝑟+ and 𝑟− are drawn to give a measure for the octupole 
aberration. 

2.2 Analytical approximation for multiple holes in a plate compared to a simulation 

equivalent 
With full 3D simulation software (e.g. BEM+GPT from Pulsar Physics), it is possible to simulate the 

Octupole effect very accurately. However, due to the complexity of the MBS geometry, the computation 

time can be very long depending on the required accuracy. Because of this, it is worth the effort to see if 

an analytical approximation can achieve similar results. A setup consisting of two charged conducting 

𝑟− 

𝑟+ 
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plates, where one of the plates contains an aperture lens array with 3x3 apertures is used to explore how 

well the MBS can be approximated analytically. This geometry is depicted in Figure 9, where the two plates 

are drawn in blue on the left-hand side. The surface charge distribution is displayed on the right-hand 

side. The charge around an aperture in a conducting plate, which is responsible for the fields in equation 

( 2 ) is highest (on an absolute scale) near the edges of an aperture. The blue regions around the edges of 

the aperture are thus expected to exert the highest electric force on the passing electrons. Even though 

the fields nearby this geometry carry a significant octupole aberration in the region where electrons pass 

the lens field, the charge distribution around apertures appears to be rotationally symmetric: the blue 

region around an aperture is (roughly) equally thin in all directions, and also the density (color) is roughly 

the same all around the edge. If indeed the charge density closely around an aperture in the conducting 

material is indeed rotationally symmetric around the aperture, the (blue) ring of charges is hardly affected 

by the presence of nearby holes. Hence, it seems justified to compare the fields that are calculated using 

a simulation for the 3x3 aperture array to an approximation, which can be made by constructing an array 

of holes that do not influence each other. For a single aperture (in an infinitely thin, infinitely large 

conducting plate) there is an analytical expression that can be used for this comparison. In this section, 

an analytical approximation for the fields near an ALA is constructed and in section 2.3 this is compared 

to a simulation result. 

 

  

Figure 9: 2-plate geometry simplification. The fields are generated by applying 2 different voltages to the two round plates 
displayed in this figure. The enlarged section (enclosed by the red rectangle) displays the ALA itself, and the charge distribution 

for the 3x3 array of holes. The charges built up near the hole seem to be relatively localized near the hole edges, which serves as 
a motivation for a comparison between a BEM result and a sum of single hole electric potential functions. The charge densities 

are unitless normalized values, that are used to compute the fields when the geometry is used in GPT. On a relative scale they do 
represent the charge distribution, and thus e.g. indicate that most of the charge is localized around the edges of an aperture. 

For an infinitely thin, conducting infinitely large flat plate with a single round hole, exposed to constant 

electric fields from on sides, as depicted in Figure 10, the electric potential is given by [12] 

 𝜙 = { 
−𝐸0𝑧 + 𝛿 (𝑧 > 0)

−𝐸1𝑧 + 𝛿 (𝑧 < 0)
}, 

( 11 ) 

where 𝐸0 and 𝐸1 represent the constant electric field strength to which the field converges away from the 

hole, for 𝑧 coordinates higher and lower than 0 respectively. Given any radial distance 𝑟 from the 𝑧-axis 

and hole diameter 𝑎, this geometry has an analytical solution which is derived in [12] as  

 𝛿(𝑟, 𝑧) =
(𝐸1−𝐸0)𝑎

𝜋
[√

𝑅−𝜆

2
−
|𝑧|

𝑎
tan−1 (√

2

𝑅+𝜆
)], 

( 12 ) 
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where  

 𝜆 =
1

𝑎2
(𝑧2 + 𝑟2 − 𝑎2) and 𝑅 = √𝜆2 +

4𝑧2

𝑎2
 

 

 

  

Figure 10: Infinitely thin and infinitely large flat plate with a hole 

The charge density effects of an aperture are strongest near the edges of an aperture. For this reason, it 

may be possible to approximate an aperture array by a sum of displaced versions of 𝛿(𝑟, 𝑧), which is done 

by substituting 𝑟 = (𝑥 − 𝑛𝐷)2 + (𝑦 −𝑚𝐷)2, where 𝐷 is the pitch between apertures. This substitution 

allows the approximation of the potential by the influence of the aperture array as 

 Φ = { 
𝐸0𝑧 + ∑ 𝛿(√(𝑥 − 𝑛𝐷)2 + (𝑦 −𝑚𝐷)2, 𝑧)1

𝑛,𝑚=−1  (𝑧 > 0)

𝐸1𝑧 + ∑ 𝛿(√(𝑥 − 𝑛𝐷)2 + (𝑦 −𝑚𝐷)2, 𝑧)1
𝑛,𝑚=−1  (𝑧 < 0)

}, 
( 13 ) 

where 𝛿 remains described by ( 12 ). Here, 𝑛 and 𝑚 take integer values from -1 to 1 to represent the 9 

contributions from a 3x3 aperture array.  

The comparison between this crude approximation and the simulation is done by building a simple 

geometry with a 3x3 micro-apertures ALA in the BEM+GPT electrostatic field simulation package.  For this 

purpose, a 2-plate geometry is built, which is displayed in Figure 9. Because the two plates have a much 

higher radius than the size of the ALA, the fields along the plate should be roughly constant for distances 

of the order of the aperture size. This means that near the apertures themselves, the fields should 

resemble those near an infinitely thin, infinite plate with holes. In this geometry, the radius of a single 

hole is 10 µm, the pitch between holes is 30 µm and the plate thickness is 10 µm. The resulting charge 

distribution nearby the hole is also displayed in Figure 9. The comparison is done in section 2.3. 

 

2.3 Multipole effect by nearby apertures: analytical and numerical comparison 
Because the radius of the plates, as depicted in Figure 9, is relatively small compared to the distance 

between them, the field strength is not simply given by 𝐸0 =
ΔΦ

𝑑
. In order to find both electric field 

strengths 𝐸0 and 𝐸1, the simulation result itself is used to find the electric field strengths on both sides of 

the ALA.  For the given simulation, the voltage difference ΔΦ is 4000 V and the separation between then 

𝑧 

𝑦 

x 

𝐸1 

𝐸0 
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plates is 11mm. Then the field strengths before and after the aperture plate are found by reading the 

electric potential for several positions in a ring near the aperture, for several 𝑧-positions. These rings of 

positions are represented by Figure 11. 

 

Figure 11: Rings of points near the aperture, for multiple values of z. These can be used to calculate e.g. the average potential 
for a given 𝑧, but also octupole information. The 12 dots drawn in this picture represent the 100 different points on the ring that 

are actually used, for 100 𝑧-planes instead of just 3. 

From Figure 12 it is clear that the slope of the electric potential becomes constant, while the differences 

in electric potential around the ring drop at only a few times the aperture radius away from the aperture. 

Thus, the field strength there can be used to fit values for 𝐸0 and 𝐸1 in equation ( 13 ). These field strengths 

before and after the plate are found to be 9.4 × 105 V/m (indeed higher than 
ΔΦ

𝑑
= 3.6 × 105 V/m) and 

−9.0 × 105 V/m respectively and when plugged in 𝐸0 and 𝐸1 in equation ( 13 ), this leads to an analytical 

approximation for the fields near the ALA. The same procedure of reading the potential at points on a ring 

for different 𝑧-positions near the central aperture is applied to the analytical approximation. The averaged 

electric potential from this procedure is also depicted in Figure 12. At 𝑧 = 0, the curve for the field around 

an infinitely thin plate (orange) bends in a single interval5, whereas the fields obtained through the more 

cumbersome BEM procedure in GPT is bent around in 2 short intervals, with a field free region in between. 

 
5 Though the bend is relatively sharp compared to the simulation result, it is not mathematically sharp (no discontinuity in the 
derivative). The electric potential inside the aperture is continuous, but the infinitely thin conducting plate does have a 
discontinuity in the electric fields (before and after) through the material of the infinitely thin plate. 

𝑧Ԧ 
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Figure 12: Left: averaged potential for a ring of particles around the z-axis. The orange curve displays the behavior for the field 
around an infinitely thin plate, while the blue curve shows the behavior around a plate with a finite thickness. The blue curve 

bends twice to accommodate the change in electric field strength, while the other bends in a more localized region. 
Right: The electric potential in V on one quarter of a full ring around the optical axis for the simulated geometry. The average 

values (displayed left) have been subtracted for each ring to allow the more subtle differences for different 𝜃 to show. The same 
“flat” region around 𝑧=0 (taken at the center of the aperture) is observed here, and the octupole aberration drops a few times 

the aperture radius away from the hole. 

By calculation of the potential on a ring it is now also possible to compare the octupole strength. This is 

also illustrated in Figure 13: the left figure depicts the average potential on a ring of points, and the right 

figure depicts the voltage on all points for all points on all rings minus the average potential for points on 

that ring. The average value for a given z coordinate is thus always 0 in this figure, allowing the relatively 

small octupole to become visible, which drops quickly drops to 0 for z-coordinates away for z-coordinates 

far away from the aperture. The octupole can be quantified by a linear projection of the cosine function 

𝑓 = cos 4𝜃 on the electric potential along the ring of points distributed by 𝜃 for all z-coordinates. This is 

a rather crude method for several reasons: there is no distinction between the first and higher order 

octupole strength, and because of that, choosing an appropriate radius for these points is rather tricky. 

Therefore, this method was later abandoned. 

However, this experiment does lead to an interesting comparison. The octupole resulting from this 

method is plotted along 𝑧, for the analytical approximation and the more cumbersome boundary element 

method in Figure 15. As can be seen in the figure, the field free region inside the aperture as portrayed in 

Figure 14 is visible here as well. The difference in octupole strength is found by dividing the integral over 

the 𝑧-coordinate of both functions, and results in a factor of 1.7.  

This difference could be due to a number of things, such as the finite thickness of the aperture plate which 

could, by introducing a field free region, allow a higher surface charge density to become located on the 

edges of the apertures and effectively lowering the charge density in the flat regions away from the 

apertures. Then because of the relatively higher concentration of charges near neighbor apertures instead 

of the flat material around an aperture, this could lead to a higher octupole aberration. Moreover, though 

the ring of higher surface charge density (blue) along the edges of an aperture appears to be rotationally 

symmetric, there might be slight variations in density around the aperture, which are not clearly 

observable in a surface charge plot, that effectively increase or decrease the octupole strength. The 

reason may be difficult to pin-point, since the surface charge distribution around conducting shapes can 

be hard to predict simply by intuition or an analytical approach, which is the reason simulations are used 

here in the first place. 
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This result serves as a motivation to stop pursuing the approximation of the final solution through addition 

of analytically derived functions, and instead switch to numerical simulation completely. If the result for 

both methods would have been close, a likely approach would have been to approximate additional 

shapes such as walls around holes (discussed in section 4.3.2) as a homogenous ring charge. This is 

unfortunately not simply possible. 

 

Figure 15: Octupole field strength in 
𝑉

𝑚4 near a simulated array of holes (blue), versus an approximation through a sum of 9 holes 

in an infinitely thin plate. 

2.4 Simple test case 
In the electron source used for this research, the electrons are seem to originate from a small virtual point, 

known as virtual source with a typical 𝐹𝑊50 size of 50 nm, whereas the apertures in  the ALA have a 

diameter of 15 µm. This means that most of the spread of the electrons is caused by the angles of the 

electrons initially, and the finite size of the source can be considered to add undesired “blur” in the final 

spot. In order to mimic the whole electron source to a simpler case, one might thus want to create a 

geometry where an infinitely small source (or a source small compared to the other dimensions in the 

geometry) is placed inside a simplified version of the source. This example using two plates is depicted in 

Figure 9. A few complications exist with such a simplification, which are explained in this section. 

 In this simplified geometry the electrons are generated in front of the first plate and the ALA holes are 

“drilled” into the second plate. Then, assuming the electric field between the two plates 𝐸0 is roughly 

constant and given by 

 𝐸0 = −
(Φ2 −Φ1)

𝑑
= −

ΔΦ

𝑑
, 

( 14 ) 

where Φ1 and Φ2 represent the potentials for the first and second plate respectively and d represents 

the distance between them. For particles emitted at 𝑟 = 0 and 𝑧 = 0, the initial radial velocity (𝑟̇0) is 

assumed constant and small compared to the 𝑧-velocity ( 𝑧̇0), while the 𝑧-acceleration between the plates 

is given by 

 
𝑧̈ = −

𝑞ΔΦ

𝑚𝑑
, 

( 15 ) 
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where 𝑚 is the mass and 𝑞 represents the (negative) charge of the electron, which solves to 

 
𝑧 = −

𝑞ΔΦ

2𝑚𝑑
𝑡2 + 𝑧̇0𝑡. 

( 16 ) 

Solving 𝑡 for particles approaching the second plate at 𝑧 = 𝑑 gives  

 

𝑡 =
𝑧̇0 ±√𝑧̇0

2 −
2𝑞ΔΦ
𝑚

𝑞ΔΦ
2𝑚𝑑

, 

( 17 ) 

where the parabolic shape of the 𝑧(𝑡) implies a second crossing, which does not occur due to 

discontinuation of the constant field strength after the second plate. This means only the minus-signed 

solution will occur, with a radial position near the aperture of 𝑟1 = 𝑟̇0𝑡. The 𝑧-velocity (𝑧̇1) at the front of 

the aperture plate (beginning of the lens) is found by substituting ( 17 ) into the first time-derivative of ( 

16 ) and is given by 

 

𝑧̇1 = √𝑧̇0
2 −

2𝑞ΔΦ

𝑚
. 

( 18 ) 

This amounts for the drift region of this geometry. Then, using ( 8 ) for the approximation of an ideal lens 

(no octupole, only using 𝑃0), the deflection in the lens is given by 

 𝑟̇1 − 𝑟̇0 =
𝑞

2𝑚𝑧̇1
(𝐸1 − 𝐸0)𝑟1, 

( 19 ) 

where now the electric field strengths before and after the lens are written as 𝐸0 and 𝐸1 respectively and 

𝑧̇1 is not squared because this is 𝑟̇1 − 𝑟̇0 instead of 𝑟1
′ − 𝑟0′. If the radius of the two plates is large compared 

to the distance between the plates 𝑑, then the (constant) electric field strength between the plates can 

be approximated by 𝐸0 ≈ −
ΔΦ

𝑑
. In Figure 12, the slope in potential is roughly equal and opposite in sign, 

thus giving 𝐸1 = −𝐸0 ≈ −
ΔΦ

𝑑
. 

Then substituting 𝑧̇1 and 𝑟1 in ( 19 ) gives 

 

𝑟̇1 − 𝑟̇0 = −
𝑞ΔΦ

𝑚𝑑
𝑟̇0

(

 
𝑧̇0 −√𝑧̇0

2 −
2𝑞ΔΦ
𝑚

𝑞ΔΦ
2𝑚𝑑 )

 

(

 
1

√𝑧̇0
2 −

2𝑞ΔΦ
𝑚 )

 ,  

( 20 ) 

which can be reduced and rearranged to 

 
𝑟̇1
𝑟̇0
=

(

 
2𝑧̇0

√𝑧̇0
2 −

2𝑞ΔΦ
𝑚

− 1

)

 . 

( 21 ) 

For the particles from a point to be able to be focused back to a point, the radial velocities before and 

after the lens have to be related inversely by 
𝑟̇1

𝑟̇0
< 0, thus requiring 

 2𝑧̇0

√𝑧̇0
2 −

2𝑞ΔΦ
𝑚

< 1, 
( 22 ) 
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which does not have any real solutions. The square root here implies that for a Δ𝑉 high enough to focus 

the particles after the second plate, there will be a potential difference over the plates too high for the 

particles to reach the second plate at all. Instead of assuming 𝐸1 = −𝐸0, It might be possible to alter the 

geometry or voltages such as to change value 𝛼 in  𝐸1 = 𝛼𝐸0 to lower values than −1 in order to satisfy ( 

22 ) and create a spot. However, this could require more complicated geometries, and in the end results 

in a situation where most of the focusing effect is dependent on the field after the aperture lens, whereas 

in the real situation this region is to be assumed field free, while all of the octupole aberration (correction) 

is introduced in the region before crossing the aperture plate. Because of these complications involved in 

making a simplified geometry to learn about the octupole effect, this approach is abandoned, and a more 

realistic version of the MBS is simulated immediately. 

2.5 Potential function multipole expansion fitting 
 For the octupole aberration of the electric potential near an ALA, a comparison between an analytically 

derived approximation, and a more accurate Boundary Element Method (BEM) incorporated in GPT is 

drawn in Section 2.3.  Though this method suffices to demonstrate the difference in strength of the 

fourfold-symmetric field effect, there is no assertion for correctness of these multipole coefficients in an 

absolute sense. For example, when using a ring of particles with a fixed radius about the 𝑧-axis to fit the 

octupole strength, the numerical value for the first octupole 𝜙4 ( 2 ) will be linearly dependent with the 

second octupole term 𝜙4
(2). In order to get rid of this issue, one might read the potential at a sufficiently 

large number of positions, and arrange them as 

 

 (

Φ1
Φ2
⋮
Φ𝑚

) =

(

 
 
 
 
1 −

1

4
(𝑥1
2 + 𝑦1

2) …
1

24
(𝑥1
4 − 6𝑥1

2𝑦1
2 + 𝑦1

4) … 𝐹𝑛,1

1 −
1

4
(𝑥2
2 + 𝑦2

2) …
1

24
(𝑥2
4 − 6𝑥2

2𝑦2
2 + 𝑦2

4) … 𝐹𝑛,2

⋮ ⋮  ⋮ ⋱ ⋮

1 −
1

4
(𝑥𝑚
2 + 𝑦𝑚

2 ) …
1

24
(𝑥𝑛
4 − 6𝑥𝑛

2𝑦𝑛
2 + 𝑦𝑛

4) … 𝐹𝑛,𝑚)

 
 
 
 

(

 
 
 
 

𝜙0

𝜙0
(2)

⋮
𝜙4
⋮
𝑓𝑛 )

 
 
 
 

, 
( 23 ) 

where 𝐹𝑛,𝑚 indicates the 𝑛-th fitting function incorporated to approximate the electric potentials Φ𝑚 at 

all 𝑚 locations and 𝑓𝑛 is the value for any aberration term incorporated, including the octupole 𝜙4. 

Abbreviating the first vector with Potential values as 𝑃, the matrix with polynomials 𝑀 and the vector 

with aberration values as 𝐴, this equation can be solved as a least squares fitting method by [13] 

 𝐴 = (𝑀𝑇𝑀)−1𝑀𝑇𝑃, 
( 24 ) 

given that enough different positions are included to make the equations linearly independent. (𝑚 ≥ 𝑛). 

Though this approach can be used to fit multipole values to the electric potential, the effect on the beam 

is not fully explored in this method. For thin lenses, it is possible to integrate 𝜙4 = ∫ 𝜙4(𝑧)𝑑𝑧 and optimize 

the geometry such that the octupole 𝑃4 = 0. However, the octupole will only be gone if the thin lens 

approximation made to get equation ( 5 ) holds. However, in practice, there might be significant off-axial 

particle motion, thereby invalidating the thin lens approximation. In that case, requiring 𝜙4 = ∫ 𝜙4(𝑧)𝑑𝑧 

=0 is not accurate enough to eliminate octupole aberration. Moreover, this method runs into problems 

when applied to off-axis holes. For off-axis holes, the optical axis is not always perpendicular to the ALA, 

and thus correction of a multipole in the electrostatic potential when integrated along an axis taken 
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constantly perpendicular to the ALA does not carry the information relevant to fit all multipole values. 

Moreover, getting rid of aberrations such as “regular” two-fold astigmatism by correcting for the 

quadrupole term in the potential fitting result, in general doesn’t mean that there is no astigmatism in the 

final spot. As touched upon in section 2.1, this can be due to the off-axial trajectory of the beam in a 

combination with higher order monopole expansion terms around the 𝑧-axis. 

Alternatively, aberrations can be corrected by tracing particles and fitting aberrations to the particle 

positions themselves, similarly to the method described by equation ( 23 ). This method is addressed in 

section 2.6. 

2.6 Plane to plane beam aberration fitting 
The wave-front of a wave-like particle electron beam at the image plane 𝜓𝑖𝑚 is related to the object 

plane 𝜓𝑜𝑏𝑗 through  

 𝜓𝑖𝑚 ∝ 𝜓𝑜𝑏𝑗 exp(−2𝜋𝑖𝜒), 
( 25 ) 

where 𝜒 is the phase aberration function representing the extra phase shift of the wavefront due to the 

lens aberrations. This can be converted to the wave aberration by 𝑊 =
𝜆𝜒

2𝜋
, which through conversion with 

wavelength 𝜆 represents the optical path difference of waves [14].  

The wave aberration can be expanded to a linear contribution of its nonlinear aberration components. 

This is typically done by a collection of terms where 𝑤0 = 𝑥0 + 𝑖𝑦0 represents the complex initial particle 

position and 𝜔0 = 𝜔𝑥0 + 𝑖𝜔𝑦0 =
𝑝𝑥0+𝑖𝑝𝑦0

𝑞0
 the initial transversal particle momentum. These coordinates 

allow polynomial expansion in the following form [15] 

 
𝑊 = ℜ{𝐴0𝜔̅ +

1

2
𝐴1𝜔̅

2 +
1

2
𝐶1𝜔̅𝜔 +

1

3
𝐴2𝜔̅

3 +
1

3
𝐵2𝜔̅

2𝜔 +
1

4
𝐴3𝜔̅

4 +
1

4
𝐵3𝜔̅

3𝜔

+
1

4
𝐶3𝜔̅

2𝜔2 +
1

3
𝐵31𝜔̅

2𝜔𝑤 + [𝐴0𝑐𝜔̅ +
1

2
𝐶1𝑐𝜔̅𝜔 + 𝐴11𝑐𝜔̅𝑤]

ΔΦ

Φ
+⋯} .  

( 26 ) 

Here, 𝐶1 represents defocus, 𝐶3 represents spherical aberration, and higher 𝐶𝑖 terms represent higher 

order cylindrically symmetric aberrations. Likewise, first order astigmatism terms are grouped by 𝐴𝑖, 

where 𝐴3 represents octupole aberration and terms indexed 𝑐 indicate first order chromatic aberrations; 
ΔΦ

Φ
 is the relative variation of accelerating voltage. The image aberration Δ𝑤𝑖𝑚 or particle (extra) 

deflection can then be computed through differentiation of this term [15] [5]: 

 Δwim = −𝑀(
𝜕𝑊

𝜕𝜔𝑥
+ 𝑖

𝜕𝑊

𝜕𝜔𝑦
) = −𝑀

2𝜕𝑊

𝜕𝜔̅
,  

( 27 ) 

where 𝑀 is the magnification. Though very similar in notation, the aberration terms fitted by the particle 

tracing program GPT discard the wavelike background and behavior of these equations, and instead 

directly map particle positions from plane to plane through a fitting procedure that minimizes  

 S2 =∑‖‖𝑤𝑖 − ∑ 𝑤𝑗𝑘𝑙𝑚𝑐,𝑖

𝑗+𝑘+𝑙+𝑚+𝑐
<𝑜𝑟𝑑𝑒𝑟

𝑗≤𝑘,𝑙,𝑚,𝑐

‖‖ ,

𝑖

  
( 28 ) 

where particle 𝑖 is traced to xy-position 𝑤𝑖, and 𝑤𝑗𝑘𝑙𝑚,𝑖 are the contributions from different aberrations. 

The x-y coordinate 𝑤𝑖 is equal to Δwim evaluated for the initial conditions of particle 𝑖. The expanded 
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aberrations 𝑤𝑗𝑘𝑙𝑚,𝑖 are defined through a potential like aberration function that resembles ( 2 ) where the 

terms are given by 

 

𝜓𝑗𝑘𝑙𝑚𝑐(𝑥
′, 𝑦′, 𝑥, 𝑦, 𝛿) = (

ΔΦ

Φ
)
𝑐

(𝑥′2 + 𝑦′2)
𝑗+𝑘
2 (𝑥2 + 𝑦2)

𝑙+𝑚
2 (𝐶𝑗𝑘𝑙𝑚𝑐 cos𝜑 − 𝐷𝑗𝑘𝑙𝑚𝑐 sin𝜑) 

with 

𝜑 = (𝑗 − 𝑘) arctan(
𝑦′

𝑥′
) + (𝑙 − 𝑚)𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦

𝑥
). 

( 29 ) 

The 𝑥 and 𝑦 components of 𝑤𝑗𝑘𝑙𝑚𝑐,𝑖 are then given by 
𝜕𝜓𝑗𝑘𝑙𝑚𝑐

𝜕𝑥′
 and 

𝜕𝜓𝑗𝑘𝑙𝑚𝑐

𝜕𝑦′
. Because of the linear 

independence of aberration terms 𝑤𝑗𝑘𝑙𝑚𝑐,𝑖, the aberration coefficients 𝐶𝑗𝑘𝑙𝑚𝑐, 𝐷𝑗𝑘𝑙𝑚𝑐 can be found with 

the same procedure as presented in ( 23 ) and ( 24 ), where vector 𝑃 is now filled with all positions 𝑤𝑖 and 

matrix 𝑀 with the polynomials 𝑤𝑗𝑘𝑙𝑚𝑐,𝑖. Though there is a notational difference between equations ( 26 ) 

and ( 29 ), both cover the same solution space and there is high similarity between the two. In equation ( 

29 ), the octupole contribution is represented by 𝜓4 0 0 0 0, while it is 𝐴3 in equation ( 26 ). For this reason, 

𝐶4 0 0 0 0 is called A3r and 𝐷4 0 0 0 0 is referred to as A3i in GPT. Because the apertures are arranged in an 

x-y aligned grid, A3i does not appear (or any other 𝐷𝑗𝑘𝑙𝑚𝑐 terms in our geometry, because these terms, 

contrary to the design, are all asymmetric in the 𝑥-plane). Similarly, the quadrupole term 𝜓2 0 0 0 0, or 

“regular” astigmatism is represented by A1r and A1i for the 𝐶2 0 0 0 0 and 𝐷2 0 0 0 0 respectively. 
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3 Numerical procedure 
The simulation procedure contains several numerical accuracy settings in order to achieve reliable 

aberration results, that allow the elimination of the octupole aberration. An overview of GPT and the 

newly developed BEM tools is given in section 3.1. Using this program, an optimization of two numerical 

settings has been done, which are the chamfering value and the BEMsolve tolerance. These parameters 

play an important role in making sure the electric fields calculated for the MBS are sufficiently accurate 

for fitting the optical aberrations and will be described in sections 3.2 and 3.3. The results of those 

optimizations are presented in section 3.4. The octupole aberration is largest when the aperture has a 

filling factor of 100% (when the VA is removed). However, a small radial margin of the aperture near the 

edges of the aperture is still not used by the simulations, which is discussed in section 3.5. Finally, an 

experimental image from a spot produced using a corrected ALA is compared visually to a simulated 

equivalent in section 3.6. 

3.1 GPT and BEMdraw 
GPT is a well-established simulation tool for the design of accelerators and beam lines. GPT is based on 

3D particle tracking techniques, providing a solid basis for the study of all 3D and non-linear effects of 

charged particle dynamics in electromagnetic fields [10]. The program allows the incorporation of 

relatively simple shapes such as analytical models of infinitely thin plates with an aperture as depicted in 

Figure 10, or analytical descriptions of electrostatic or magnetic multipoles to study the beamlines of for 

example particle accelerators and in our case, electron optics. Recently, a combination of tools has been 

added that allows the construction and optimization of electrostatic conducting free forms in GPT. These 

different tools are briefly addressed in this section.  

In order to construct 3D shapes, in the first place a programmable drawing tool is required. Though a 

collection of 3D drawing programs were readily available, most programs did not fit the requirements for 

this application. One prevalent problem is that some drawing programs do not very well support the 

construction of shapes with high accuracy on different length scales in the same shape. For example, the 

MBS electron source is typically multiple millimeters long. For the regions of the source where the beam 

is not close to the material (the outer corners of the partially displayed cylinder as depicted in Figure 21), 

the features of the material do not always have to be drawn accurately down to sub-micrometer accuracy. 

In the ALA however, a sub-micrometer defect can completely determine the result, as is evident from the 

sensitivity to the correction shapes that will be discussed in section 4. Contrary to the BEMdraw tool 

developed by Pulsar, most 3D drawing programs will simply allow the specification of the accuracy by a 

single feature size parameter, that will draw too much computational effort to relatively unimportant 

areas. BEMdraw instead, allows the specification of the maximum angle between two adjacent triangles 

on a curved surface, which is more suitable for this application. For this reason, it is very helpful to have 

a program that allows forcefully adding more detail at some places, as is described in section 3.2. In 

addition to this drawing procedure, the next step is transforming the drawn shape into one suitable for 

simulation purposes. This process is depicted in Figure 16, where the construction of a single ring-shaped 

electrode is depicted. The left half (blue) is the output from BEMdraw, which is a set of triangles that make 

up the surfaces of a 3-dimensional ring. The triangles are the output of the drawing procedure and the 

surface described by the triangles describes the outer surface of the electrode to within a design accuracy. 

This means the boundaries of the ring shape are accurately defined. However, the mesh is not yet optimal 

for simulation. For example, a single triangle connects the inner radius to the outer radius of the ring, 

which does not allow the calculation of charge densities along this direction of the surface. Furthermore, 
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the sharp shape of the same triangle is numerically unfavorable. For these reasons, the same surface must 

be redistributed into smaller triangles, which is called remeshing. The right half (white) of Figure 16 depicts 

the result of this step. In remeshing procedure, the program adds triangles by splitting up larger sharply 

pointed triangles, to add enough triangles to simulate the charge distribution of a continuous charge 

distribution along a conducting ring, while making triangles as equilateral as possible. 

 

Figure 16: Remeshing of a ring shaped electrode. The left (blue) side is the geometry as provided by BEMdraw. The remeshing 
result is displayed in the right side of the image. 

The next step in our simulation is calculating the charges along the surfaces of these 3D shapes. Because 

of the field free inner regions of our conducting shapes, a boundary element method (BEM) is more 

favorable over a finite element method, which would require a 3D distribution of tetrahedron-like shapes 

filling up the entirety of the shapes. Instead, the triangles making up the surface of each conducting shape 

carry all the charges of the shape, which allows a BEM approach. The way this works and an important 

accuracy parameter are described in more detail in section 3.3. 

Finally, the charge distribution calculated for each shape is used to trace particles. The fitting procedure 

that uses the collection of terms in equation ( 29 ) to fit all aberrations from the source plane to the image 

plane, was still under development by GPT during the start of my graduation project. This is the reason 

different approaches such as calculating the octupole fields using the electric potential on a ring of points 

(section 2.3) were initially tried in the first place. The next step was reading the electric potentials in an 

array of 𝑧-planes and doing the fitting procedure as described in section 2.5. When Thermo Fisher 

Scientific received the fitting tool that does the aberration fitting procedure as described in section 2.6, 

the script incorporated all terms described by equation ( 29 ) up to certain polynomial order to calculate 

the optical aberrations. Typically, there are hundreds of terms present that do not contribute, such as a 

hexapole in a 4-fold symmetric geometry, which are eliminated by the fitting tool in a time-consuming 

procedure. Some of my modifications and suggestions such an option to exclude all 𝐷𝑗𝑘𝑙𝑚𝑐 terms were 

incorporated in the newest version of this GPT fitting procedure, along with an electric field fitting option 

as described in section 2.5. 
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The output of the fitting procedure is a list of aberrations along with a value  𝐶𝑗𝑘𝑙𝑚 and 𝐷𝑗𝑘𝑙𝑚, along with 

a “blur” value for each aberration. This blur is calculated using the deflections 
𝜕𝜓𝑗𝑘𝑙𝑚𝑐

𝜕𝑥′
 and 

𝜕𝜓𝑗𝑘𝑙𝑚𝑐

𝜕𝑦′
, which 

are a function of initial coordinates (𝑥𝑖
′, 𝑦𝑖

′, 𝑥𝑖 , 𝑦𝑖 , 𝛿𝑖) for a particle 𝑖, by 

 
𝑏𝑙𝑢𝑟𝑗𝑘𝑙𝑚𝑐 =

√∑ (
𝜕𝜓𝑗𝑘𝑙𝑚𝑐
𝜕𝑥′

(𝑥𝑖
′, 𝑦𝑖

′, 𝑥𝑖 , 𝑦𝑖 , 𝛿𝑖))

2

+ (
𝜕𝜓𝑗𝑘𝑙𝑚𝑐
𝜕𝑦′

(𝑥𝑖
′, 𝑦𝑖

′, 𝑥𝑖, 𝑦𝑖 , 𝛿𝑖))

2

𝑁
𝑖

N
, 

( 30 ) 

where 𝑁 is the number of particles. This value is thus the root mean square deflection of the particles in 

the spot, due to an aberration indicated by indices 𝑗𝑘𝑙𝑚𝑐. Because of the different polynomial orders of 

different aberrations, the order of magnitude of an aberration itself does not tell a lot about the 

magnitude of contribution by an aberration. The blur allows users to compare the deflections on a 

meaningful length scale and determine which is the most relevant.  

3.2 Edge chamfering value 
The drawing and BEMsolver tools supplied by Pulsar physics contain a remeshing tool that transforms the 

three-dimensional design into a mesh suitable for simulation. Because of the asymptotic behavior of 

charge and field effects near sharp edges on a surface, the sharp edges are computationally more 

expensive to solve, and require more attention for accurate results. This can be seen in Figure 9, which 

depicts an aperture array with walls (discussed in section 4.3.2). The charge density on flatter surfaces 

around the apertures and on the cylindrical inner surfaces of the aperture is relatively constant. However, 

the charge density sharply increases 5 orders in magnitude at the blue convex rims of the walls around 

the apertures, compared to the red concave edges that connect the flat plate to the walls around the 

apertures. This distribution is typical for conducting surfaces: due to the self-repelling nature of positive 

and negative surface charges, a higher amount of charge can accumulate on a convex surface or rim 

because that is where less repelling force from other parts of the material will be felt. This makes the 

charges around a sharp edge numerically difficult (or in some case impossible) to compute accurately. 

Simply increasing the number of triangles near a sharp edge may thus not be the best way to calculate 

the charges in order to accurately represent the charges around a 90° angle. In order to calculate the 

charge distribution around sharp angles accurately, all edges near the electron beam are numerally 

chamfered. This method is depicted in Figure 17. The chamfered edge forces a smaller feature size near 

the sharp edges of the aperture, which causes the remeshing tool to include more triangles near the edge. 

At the same time, the blunted angle causes a slightly less steeply evolving charge density across the edge. 

When the size of the chamfered corner is small enough, this does not effectively change the shape of the 

geometry, while making the problem computationally faster and more reliable. 
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Figure 17: chamfering of edges in a geometry with aperture walls. The solution for the charge density (unitless normalized 
quantities) induced by the nearest electrode set at 1V has been used as a color scale in this figure. Due to the chamfered edge, 

the charge density changes more gradually across the edges of the aperture compared to an edge without chamfering. 

3.3 BEMsolve tolerance 
The Boundary Element Method solver (BEMsolve) used in this work [16] calculates the surface charge 

density 𝜎𝑖 at each triangle 𝑖. Because the voltages applied to the different electrodes could change 

between different simulations, the charge distributions and electric fields will change as well. This means 

that when the electric fields are calculated for a single configuration of voltages, this time-consuming 

process has to be repeated when different voltages are used. Instead BEMsolve takes a different 

approach. The main algorithm of the BEM solver calculates the equivalent uniform surface charge density 

of each of the triangles such that the potential is 1 V on one electrode and 0 V on all other electrodes. In 

our case where there are 6 electrodes, this results in an output file where a collection of 6 charge density 

distributions is stored for the whole geometry. The resulting charge density can subsequently be fed into 

GPT to describe the complete 3D fields. In GPT, an input file is used to set the actual settings for the 

potentials. The final resulting charge distributions are thus calculated by scaling the charges for unit 

potentials with the actual voltages applied to the electrodes and adding all 6 contributions from the 6 

voltages applied to the 6 electrodes. 

Because the charge densities are stored in a 6-fold solution where there is always only one electrode at 1 

V and the others at 0 V, this is also what the charge density plots such as in Figure 29 depict. In our case, 

this is not important: the configuration is such that the nearest electrode at 1V completely carries all 

information about the charge density on the ALA. This is because the ALA itself is always at 0 V, and the 

second nearest electrode induces surface charges that are one or more orders of magnitude lower on the 

ALA. Therefore, in order to qualitatively compare the charge distribution on the ALA, this is good enough. 

The charge distribution is solved numerically using 

 𝑉𝑗 =∑𝑀𝑖𝑗𝜎𝑖,

𝑖

 ( 31 ) 
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where 𝑉𝑗 should, after correct calculation of charge density values 𝜎𝑖, be equal to the unit potentials 𝑈𝑗  

that are known beforehand for each triangle 𝑗, and where matrix element 𝑀𝑖𝑗 describes the electrostatic 

repulsion/attraction force due to charges on triangles 𝑖 and 𝑗. Though the vector containing all elements 

𝜎𝑖, fully describes the surface charges around a surface, it is a normalized (unitless) quantity to avoid 

multiplying and dividing by the vacuum constant, electron charge and pi (present in the description of 

𝑀𝑖𝑗) which would slow down computation and could increase the risk of rounding errors. Instead, GPT 

uses the unitless charge densities 𝜎𝑖 (which is also depicted in all 3D figures that show a charge 

distribution) to compute the fields when particle tracing starts. 𝜎𝑖 is found by inversion of 𝑀𝑖𝑗. Because 

the program aims to work with large amounts of triangles, the matrix 𝑀𝑖𝑗 is never stored in full in memory. 

Instead, an iterative solver is used such that only the result of the matrix multiplication 𝑀𝜎 is needed. This 

inversion thus leads to a result for all charge densities 𝜎𝑖, where there is a discrepancy between 

∑ 𝑀𝑖𝑗𝜎𝑖 =𝑖 𝑉𝑗 and 𝑈𝑗 . 

The iterative solving process stops when the residual precision given by 

 √
1

𝑁
∑ ((∑𝑀𝑖𝑗𝜎𝑖

𝑖

) − 𝑈𝑗)

2

𝑗
< 𝜖 

( 32 ) 

has reached the target setting value of 𝜖. Here, 𝑁 is the number of triangles. This means that this precision 

value is an important accuracy parameter. The BEMsolver allows n-th fold symmetry in the geometry to 

be accounted by solving only 1/n-th of the whole geometry ( Because the geometry for a square ALA grid 

is 8-fold symmetric, the input geometry for the charge solver is also 1/8th of the whole geometry, speeding 

up the simulation or allowing higher precision (lower 𝜖) in the same time. Termination of the iterative 

charge solver leaves residual errors which, when copied symmetrically into all 7 other directions, results 

in an octupole aberration. For this reason, an octupole contribution to the electric field as a numerical 

artifact is to be expected, even for a cylindrically symmetric design. This illustrated in Figure 18, where a 

single aperture is drawn such that the color of each triangle represents the residual error (∑ 𝑀𝑖𝑗𝜎𝑖𝑖 ) − 𝑈𝑗  

for that triangle. Indeed, there is a fourfold symmetric residual error around the aperture. 

Though this may sound as a disadvantage introduced by simulating only part of the geometry, it is not: 

simulation of the whole geometry instead of 1/8th does not mean there will not be an octupole 

erroneously introduced numerically. Instead, using the same 𝜖 for the whole (1/1-th of a) geometry 

instead of 1/n-th will result in the same root mean square precision in the voltages 𝑉𝑗 across the surface 

and thus the electric fields which scale linearly with 𝑉𝑗 will be wrong by the same proportion. This means 

using 1/n-th to calculate charges only speeds up the simulation due to the lower number of triangles 

involved. The octupole aberration that appears in either case (so full simulation or 1/n-th partial 

simulation) due to the numerical tolerances in a cylindrically symmetric geometry should thus be 

representative of the accuracy in the value of this aberration, and is thus used to estimate the effect of 

the errors in 𝑉𝑗 on the spot. 

Moreover, a 1/n-th cut-out of the geometry makes sure that only multipoles that are a multiple of n can 

remain after the charge solving procedure. This is because the charge distribution resulting from copying 

a partial charge distribution in n directions, will be n-fold symmetric, eliminating multipole terms that do 

not have this property. For this reason, it is certain that no lower order multipoles (excluding the 

monopole) than n will be present.  
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Figure 18: The residual error in 𝑉𝑗  in Volt for triangles near a single aperture hole, for the solution where 0 V is applied to the 

ALA, and 1 V being applied to the nearest electrode. Because the iterative process leaves a residual error in 1/8th of the 
geometry that is copied to all other directions, the resulting residual error contributes an octupole aberration to the electric 

field. 

3.4 Edge chamfering and BEMsolve tolerance optimization 
Though the chamfering of important edges improves the solvability of equation ( 31 ), the chamfering 

itself also changes the geometry, and can induce new field aberrations. For a geometry with a grid of 

apertures, increasing the chamfer value also increases the octupole effect, since this effectively enlarges 

the size of the apertures. The “normal” geometry consists of an ALA where the thickness of the plate itself 

is 10 µm, the pitch between the centers of aperture holes is 20 µm and the radius of the holes is 7.5 µm. 

By creating 3 different geometries with different chamfer values (the value is equal to the thickness of the 

edge that is chamfered away), the resulting octupole can be compared, judging from the different fitted 

octupole aberrations in the procedure in the same plane (in this case at z=30 mm). The resulting octupoles 

and blur are given in Table 1. The octupole blur is calculated by computing the deflection for the outer 

particles in the beam due to the octupole aberration in the given plane. Though the blur scales linearly 

with the fitted aberration, the values in Table 1 do not exactly share this property. This may be due to 

outer particles being removed from the simulation because the outer edges of the beam itself can be 

slightly altered due to the influence of a chamfered edge. 

As can be seen in the table, a chamfering of 1 µm significantly increases the multipole effect, while this 

apparently non-linear effect quickly diminishes for lower chamfer values. Between 0.2 and 0.1 µm for 

chamfering value, the difference is 14 m. This means the error in octupole for a chamfered edge of 0.1 

µm will probably be 14 m (or 4% of the octupole) at most, but probably lower. Here, the goal is to eliminate 

an aberration that, in the case of Figure 4, causes the spot to be enlarged 2.7 times, or 1.7 times for the 

geometry discussed in section 4. For an optimization where 4% of the 0.7 increasing factor is left, this will 

leave the spot enlarged by a factor of approximately 1.03 (=1+0.7x0.04, where the factor 0.7 is considered 

the octupole contribution), which can be considered low enough since other aberrations may become 

more important at this point. This is thus decided to be accurate enough.  



27 
 

Then by comparing different BEMsolve tolerances for a geometry with a single hole, a tolerance of 𝜖 = 

2e-6 is found to be sufficiently accurate. For a single hole (so no neighbor apertures) with this tolerance, 

the residual field defects caused by the iterative charge solver leave an octupole aberration of A3r=-2 m. 

This is considerably lower than the aberration caused by the chamfering of the edges themselves, and 

thus also good enough. The upper estimate of 14 m as an error due to chamfering is then used as an 

estimate of the accuracy in the octupole aberration. 

Table 1: Octupole aberration due to different chamfer values in the same plane 

Chamfer size (𝜇m) A3r (m) Octupole blur (nm) 

0.1 372.28 653 

0.2 386.731 661 

1 505.995 865 

3.5 Positional particle-aperture margins 
As described in section 2, the higher order aberrations such as the octupole become dominant when the 

beam diameter is increased and the ALA approaches (or becomes) the beam limiting aperture. In order to 

simulate the ALA as a beam limiting aperture, particles are removed from the tracing procedure when 

they “hit” the aperture membrane instead of passing through the hole. However, the fields generated by 

the material of the ALA is simulated by treating mesh triangles as point triangles, where the accuracy of 

the fields calculated by the BEMsolve procedure drops when approaching the mesh “nearby”. In this case, 

“nearby” means when the distance between the electron beam and the aperture wall becomes roughly 

equal to the distance between the point charges that make up the aperture wall. This effect is somewhat 

mitigated by the “oversample” setting where a parameter 𝑁 splits every triangle into 𝑁2 points of equal 

charge, which makes sure that for increasing 𝑁, the fields generated by a mesh triangle approach the field 

of triangle with a uniform charge density, which supposedly is a better approximation of the fields near a 

surface than the collection of point charges positioned at only the centers triangles that make up the mesh 

of the surface. 

Even though this effect can thus be limited by oversampling and by reducing the size of triangles at 

important edges, which in this case is done by the chamfering process, there is a limit to how close 

particles can get to the surfaces before their trajectory loses its significance.  

For this reason, particles are removed from the simulation at a 𝑧-margin slightly before the aperture plate. 

For an ideal “thin” lens, particles are only deflected by a lens which changes their transverse velocity, 

while keeping the transverse xy-position constant. Even though the presence of spherical aberration 

terms proves this cannot be completely accurate, the simulation result is very insensitive to this 

parameter.  

There is also a radial margin for particles to stay away from the aperture edges when passing the removal 

plane (at a z-plane slightly before the aperture itself). This radial margin is more important, since from ( 

29 ) can be seen that aberrations scale directly with some power of the radial distance 𝑟. For a larger 𝑟-

margin, the resulting aberration coefficient should remain the same because the coefficients themselves 

simply do not depend on 𝑟. However, when increasing the margin, effectively decreasing the beam 

diameter, the higher order aberrations are more quickly lost to numerical noise as they scale with a higher 

order of 𝑟. This means that for a lower 𝑟-margin, or larger effective beam diameter, higher order terms 

can start to contribute. For example, a 16-pole effect or 24-pole aberration can begin to contribute for 

the 4-fold symmetric geometry of our square aperture array. When lowering the radial margin to 0, we 
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would effectively have to include an infinite amount of aberrations 𝜓𝑗𝑘𝑙𝑚𝑐(𝑥
′, 𝑦′, 𝑥, 𝑦, 𝛿) in order to 

match the source to the image plane.  

This also means the contribution of higher order terms that can actually occur, such as 16-pole, will reduce 

the quality of the fit defined by ( 28 ) if they are not included in the fitting procedure and can even lead 

to the fitting procedure failing. For this reason, the r-margin is chosen with care when fitting optical 

aberrations. When trying to reproduce an image from experimental results without fitting aberrations, 

there is more liberty in setting this parameter because it can only start to produce wrong results when 

particles are as close to the aperture walls as the distance between point charges that make up the wall.  

In order to optimize octupole correction shapes by fitting the aberrations, a radial margin of 1 𝜇𝑚 is 

generally sufficient to optimize geometry for a chamfering parameter (or typical edge triangle size) of 0.1 

𝜇m. This does lead to problems in some cases as is addressed in section 4.3.4.  

In principle, the order of aberrations included could be increased instead of increasing the r-margin. 

However, the tools incorporated by GPT assumes one cannot always know beforehand which aberration 

terms might be affecting the result, and therefore includes all terms up to a certain order in transverse 

position and momentum, and then procedurally kicks out terms that do not play a role until a limited set 

of aberrations specified by a minimum amount of “blur” is included. Currently, the highest possible 

aberration “order” is set to 6, which excludes the 16-pole (that is of polynomial order 7). If the order is 

increased beyond 6, the amount of potential aberrations quickly grows from hundreds to thousands, 

which poses new problems for solving the matrix inversion described by ( 24 ). 

3.6 Comparison with experimental results 
To verify whether the MBS can be simulated accurately enough with the given numerical procedure in 

order to get rid of the octupole aberration, an experimental result simulated and discussed here. The 

experiment itself concerns an attempt to get rid of multipole defects. After observing the Octupole effect 

in simulations and its verification in experiment by Mohammadi-Gheidari, et al. [9], a correction method 

was proposed based on modifying the shape of the micro-apertures, from round holes into square holes 

with rounded corners (the same correction method is used for optimization with the new software in 

section 4.3.4). The parameter to be optimized for this geometry is the separation distance between the 

centers of the circles that make up the outer corners of the round square or semicircular hole, Δ𝑟, as 

shown in Figure 19a. Δ𝑟 = 400 nm was found as an optimum value for eliminating the four-fold effect. An 

aperture lens array with this geometry was made and installed in the MBS experiment. However, the 

measured spot shape was not found to be round yet. Though the four-fold symmetric effect seemed to 

be suppressed greatly, higher order contributions, especially an eight-fold symmetric (sixteen pole) effect 

appeared in the spot shape as shown in Figure 20a.  The experimental result did not confirm the prediction 

of the simulation that resulted in a spot without octupole contribution. This discrepancy remained 

unexplained for a while. However later it was found that they have not been able to calculate the 

electrostatic field of the MBS to an acceptable accuracy using the simulation program available at that 

time, i.e. Opera3D. It also turned out that the parameter Δ𝑟 = 400nm is not the optimal value.  
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Figure 19: Semicircular hole correction and description of the correction parameter 𝛥𝑟. The distance between the centers of 4 
cylinders that form the corners of a rounded square defines the correction relative to the “normal” case of a round aperture. 

Though the right figure depicts what the aperture ends up looking like, 𝛥𝑟 is typically smaller compared to the size of the hole 
(this is just an exaggeration) and does not make the hole look different from round visually. 

The additional tools have been added to GPT, to allow the simulation of the MBS to an acceptable level 

of accuracy, in order to get rid of the octupole aberration. A MBS similar to the one that is discussed in 

more detail in section 4 and thereafter optimized to get rid of the octupole, was used to produce the spot 

visible in Figure 20a. Though the 𝑧-position for this image is not precisely known, the design of the MBS 

and voltages used in the experiment have been used to compare the experiment to the results of a 

simulation. The result of this simulation is shown in Figure 20b, which depicts the particles scattered for 

at a z-position where the spot visually matches the shape of the spot seen in an experiment. It appears 

that, like can be observed in the experimental result, the spot is larger in cos(4𝜃) = −1 (diagonal) 

directions than along the cos(4𝜃) = 1 (horizontal and vertical) directions, which is the result of a residual 

octupole aberration. Moreover, a significant 16-pole aberration appears be present as well, which is 

evident from the way the spot is pinched in 8 directions. The close visual resemblance and the fact that 

now the octupole (as well as the 16-pole) appear to be correctly predicted indicate that enough attention 

has been paid to numerical details at this point to proceed to the optimization of an aperture lens array. 

This is done in section 5. 

Δ𝑟 Δ𝑟 
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Figure 20: (a): Experimental result of a MBS where a semicircular hole correction shape (depicted in Figure 19) has been applied 
as an attempt to correct for the octupole aberration. The semicircular hole modification used here is 400 nm. 

(b): simulated version of particles traced through the same geometry. The experimental and simulation techniques produce very 
similar spots. 

 

4 The multibeam source design 
In this chapter, the design of the multibeam source is first briefly described in section 4.1. Then in section 

4.2 more information about the Schottky electron source in this geometry is given. In section 4.3, the 

modifications which aim to correct the octupole aberration are described. 

4.1 The multibeam source 
In Figure 5, the experimentally obtained spot clearly shows the octupole effect, which initially sparked the 

interest in correcting this aberration. The results of the simulation of this MBS can be seen in Figure 4, 

which demonstrates that the same effect can be seen numerically. In an effort to correct the octupole, a 

correction to the ALA design was implemented [9], which resulted in the spot that can be seen in Figure 

20, where a remainder of the octupole aberration can be observed. 

Recently, a new MBS has been designed, where the geometry and voltages are optimized such that no 

off-axial aberrations, such as the A1r term, should occur [17]. This optimization has been done for a 

geometry where, instead of an aperture array, a single aperture is placed at off-axis angles (so not in the 

center of the geometry) without off-axial aberrations enlarging the spot. For this reason, this design is 

used to eliminate the octupole in this work, in order to isolate precisely the effect of the aperture array 

and the corrections being made here.  

Unfortunately, no experimental work could be done yet to compare the new design to earlier ones. For 

this reason, only experimental results are shown of earlier designs. In the remainder of this thesis only 

results of simulations will be discussed. The goal was initially to optimize and test a MBS in an experiment 

to verify whether the result of simulations performed here matches experimental observations. However, 

as mentioned in the introduction, due to limitations posed by COVID-19, this has not been achieved. 

In the electron microscope, the MBS is set at a high negative voltage to accelerate the electrons into the 

optical focusing column. In order to prevent these accelerating fields from penetrating and affecting the 

(a) (b) 
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optical properties inside the MBS, another shielding element is constructed around the MBS to create a 

field free region after the ALA. This means all optical properties of the MBS are determined inside the 

MBS, and simulations can be isolated to this region. The design of the MBS optimized in this work is shown 

in Figure 21. The figure depicts 1/8th of the geometry, as this is the portion needed for BEMsolve. The 

shielding element after the ALA itself present in experiments is not needed here. To create a field free 

space after the ALA, the voltage of the ALA element (the outer cylinder depicted in Figure 21) is set to 0V. 

In a functioning microscope, the voltages of all elements in the MBS are lowered by the same accelerating 

voltage applied to the ALA, which results in the same electric fields inside the MBS.  

The electron beam emerging from the Schottky type electron source (depicted by a blue arrow at Figure 

21)  is first modified by a macro-electrostatic lenses consisting of the extractor, the light blue element (a), 

two sets of macro electrodes (red and green, or b and c) which both consist of two rings (light and dark). 

The encasing cylinder (d), colored dark blue, contains the aperture array. 

 

Figure 21: Geometry of the multibeam source. The particles are generated near the light blue element (a) which mimics the real 
source for a multibeam electron source. The beam is then modified using two electrostatic lenses (red and green, or b and c) 
which both consist of two rings (light and dark, or left and right). The encasing cylinder depicted in dark blue (d) contains the 

aperture array, which is consists of µm sized apertures that are not visible when displaying the other (mm sized) elements, hence 
the enlarged picture of the ALA (indicated with a red arrow) in the top right corner.  The light blue shape represents the Schottky 

source extractor, where the electrons are generated in the virtual source plane, indicated by the green arrow. 

4.2 The Schottky electron source 
The electrons are generated from a standard Schottky type electron source, which is depicted in 

schematically in Figure 22 and is adapted from [18]. The Schottky electron source itself is a complicated 

element in the MBS. The source tip of the source produces electrons through field enhanced thermionic 

emission at a temperature of typically 1800 K. The source tip, drawn as a pointy end to the source element 

itself in Figure 22 can have multiple types of shapes, and slowly changes shape during operation. The 

extractor is placed at several thousands of Volts positive to the source tip to extract the electrons towards 

the extractor.  As the name suggests, the suppressor suppresses emission of electrons at other positions 

than the source tip in unwanted directions by putting it at a few hundred Volts negative to the tip. The 

𝑧Ԧ 

a d b c 
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fields generated between the source tip, the suppressor and the extractor act as a lens. Because of this, 

the trajectories of the electrons that have passed the extractor appear to come from a different plane 

(indicated by dotted lines coming together) than the actual source tip from which the electrons are 

emitted. This plane is called the virtual source and is typically located behind the surface of the source. 

The source used for optimization to get rid of the octupole effect here is assumed to have a 𝐹𝑊50 size of 

50 nm in its virtual source plane. In all simulations however, the physical electron source and the field are 

simply replaced with a point source, the virtual source with the same size (𝐹𝑊50 = 50 nm). It is located 30 

µm behind the physical emitter and the electrons are emerging from this point towards the extractor with 

an initial energy equal to the potential energy of the extractor. With this simplification, the cumbersome 

simulation of the emitter is not required.  

   

Figure 22: Schematic drawing of a Schottky electron source, adapted from [18]. The source tip produces electrons through field 
enhanced thermionic emission at a temperature of typically 1800 K. The extractor is placed at several thousands of Volts positive 

to the source tip to extract the electrons towards the extractor.  As the name suggests, the suppressor suppresses emission of 
electrons at other positions than the source tip in unwanted directions by putting it at a few hundreds of Volts negative to the 

tip. The virtual source is typically located behind the surface of the source tip itself and is indicated by the crossing dotted green 
lines. 

4.3 ALA multipole correction shapes 
In this section, the aperture grid of the ALA is first discussed in 4.3.1. Then, the different shapes that are 

used to correct the octupole aberration are introduced. The results for these different geometries are 

discussed in chapter 5. 

4.3.1 Reference rectangular array 
The ALA depicted in Figure 23 is the only non-cylindrically symmetric element in the MBS and causes the 
octupole aberration. All apertures in the ALA have a diameter of 15 µm and are distributed orthogonally 
with a pitch of 20 µm on a (thinned) Si wafer of 10 µm thickness. The array is a set of 25 holes arranged 
in a 5x5 square pattern. More off-axial apertures could be included here, but this quickly increases 
computational time required. The 5x5 array is chosen here so the first off axial aperture will have all 8 
neighbor apertures and can thus be used to check for residual octupoles and other aberrations. 

suppressor extractor 

source 

virtual source plane 

source tip 
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Figure 23: ALA with a regular array of apertures distributed in a square pattern (for simulation we assumed an array of 5x5 
aperture holes). The central aperture and first off axial aperture through which particles are traced are indicated. 

 

4.3.2 Aperture Walls 
Adding walls around the apertures (see Figure 24) could compensate charge deficits at neighbor 
aperture locations by adding charges on the rims of these walls, while also potentially providing a barrier 
around the aperture which shields from field effects by nearby apertures. These walls are parameterized 
by their height and have a width of 1 µm. 

 

Figure 24: Walls around aperture 

4.3.3 Indentations 
Assuming the octupole is induced by nearby apertures due to the local relative charge deficit at the 
position of a hole, the multipole effect could be compensated by adding indentations to cause charge 
deficits in diagonal (cos(4𝜃) = −1) directions. Similarly, to the holes themselves, these indentations are 
characterized by their diameter. Their depth is held constant at half the wafer thickness. These 
indentations are depicted in Figure 25. 
 

 
Figure 25: Indentations between holes corners 

central aperture 

First off axial aperture 
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4.3.4 Semi-circular holes 
Though only relatively subtle changes to the aperture shape seem to be required, a counteracting 
octupole effect can be induced by changing the shapes of the apertures. Instead of cylindrical, the 
shapes are defined as squares with rounded corners, where the lengths of the squares’ sides remain equal 
to the regular hole diameter. The length of the straight edges of the aperture holes, or distance between 
the centers of 4 circles forming the corners of the rounded squares are small compared to the diameter 
of the round holes. The effect is slightly exaggerated in Figure 26 for illustration. 
As described in section 3.5, excluding high order fitting terms which do play a significant role in the 
resulting spot can lead to problems. In the case of semi-circular holes, the radial margin must be increased 
to fit aberrations, because this shape seems to induce higher order terms such as higher order octupole 
terms and 16-pole astigmatism near the edges. Though the aberration fitting procedure could in principle 
be  extended to higher order terms (16-pole and others), this will only slow down the fitting procedure, 
while the goal is to eliminate the octupole, which can be done for a larger r-margin (or smaller effective 
beam radius). 

 

Figure 26: Semi-circular holes 

4.3.5 Hexagonal hole pattern 
For a hexagonal array of holes, the pitch between neighbor holes is the same as the pitch used for a square 
aperture pattern. Therefore, the aperture distribution pattern is expected to cause an approximately 
equal multipole deflection at the edges of an aperture hole. However, because this multipole will be 6-
fold symmetric, the strength will also drop with a power six on the radius 𝑟 for particles closer to the 
optical axis. The beamlet diameters can be reduced by another aperture array later, thus this geometry 
might help reduce the effective multipole aberration as well. Moreover, walls have been added around 
the holes in this geometry to examine the effect of further suppressing the induced 12-pole in this 
geometry. The thickness of these walls is 1 µm, and their height is variable. The hexagonal ALA pattern, 
with the addition of aperture walls is depicted in Figure 27. 

 
Figure 27: Hexagonal hole array, with aperture walls 
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5 Optimization of- and comparison between different correction 

shapes 
The optimal correction parameters are calculated and presented in section 5.1. The charge distribution 

around these optimized apertures is shown and used to calculate the sizes of the spots for the central and 

first off-axial apertures in section 5.2. The difference between these results is discussed as well. 

5.1 Multipole correction parameter optimization 
The correction shapes introduced in sections 4.3.2 - 4.3.5 all aim to eliminate the octupole aberration that 

result in an undesired spot enlargement. Though the reason for the effectiveness of different correction 

shapes is briefly explained in section 4.3, there is absolutely no guarantee that the methods will work, 

because the complicated nonlinear behavior of the surface charge distribution that is iteratively solved 

here, can be difficult to predict. For correction methods that do compensate the octupole aberration as 

was hypothesized, the behavior of the residual octupole strength as a function of the correction 

parameters may be highly nonlinear. In this case, optimization can be done by an iterative process where 

two geometries with a slightly different correction parameter are compared, and the zero-intersection of 

the octupole strength is determined by interpolation between two points.  

The error in the multipole strength is estimated as the same constant value for all points, which is due to 

the chamfering process (which increases the octupole strength by effectively enlarging apertures). 

Division of this error by the slope of the aberration between the two points used for interpolation yields 

the error in the correction parameter. This is consequently equal to the construction tolerance of these 

different correction shapes, with the accuracy as discussed in section 3.4. The multipole strengths for all 

correction methods with varying correction parameters are displayed in Figure 28, along with the 

optimized parameters for all these geometries in the corner of each figure. For the hexagonal hole pattern, 

this is a 12-pole, similarly to A3r, denoted by A5r. As discussed in section 3.4, the error in A3r is 14 m in 

all points for the square, which corresponds to a blur (equation ( 30 )) of 24 nm. For the hexagonal hole 

pattern, this blur can be used to estimate the error in A5r at 6 × 106m.  

For aperture walls and semicircular apertures, the data points lie close to a straight line (Figure 28a and 

Figure 28c). However, this linearity is by no means a known behavior that is to be expected. For aperture 

walls, the motivation to attempt this correction is the addition of charges around neighbor apertures to 

compensate the deficits induced by neighbor apertures. Though the surface area of the walls increases 

proportionally to the height, the charges are mostly located on surface at the top of the walls (as can be 

seen in Figure 17), which does not increase. Similarly, for semicircular holes, it is rather a surprising 

incident to see a linear relationship rather than something to be expected. 

Because of this, the interpolation between two points is preferred over a linear fit to all data points that 

might disregard physical effects that contribute nonlinear details. The fact that the relationship seems 

approximately linear does mean that no further iteration around the zero-intersection is needed with the 

current precision. 

For indentations (Figure 28b) there is a clear curvature in the behavior of A3r. Initial interpolation between 

indentation widths of 5 µm and 8 µm gives 7.8±0.1 µm as an optimal result6. Because of the direction of 

 
6 Though 7.8 µm lies “just” within the range 7.87±0.08 µm. Still, the tolerance represents an upper limit on the effect of 

aperture chamfering and thus the new value 7.87 is deemed better. 



36 
 

the curve, the optimal correction value is expected to be slightly higher. For this reason, another iteration 

is done by interpolation between 7.8 µm and 8 µm is done, where the higher slope yields a lower 

construction tolerance and the result is 7.87±0.08 µm. For indentations, the relative tolerance is lower 

than for the other shapes, because of the curvature displayed in Figure 28b. However, on an absolute 

scale the tolerance for this shape is still the largest, and therefore the least sensitive to construction 

defects. The nonlinearity in Figure 28b can be explained by the motivation given in section 4.3.3: the area 

of the indentation quadratically increases with its width, which could result in quadratically increasing 

charge deficits in diagonal directions.  

For the hexagonal pattern, the behavior due to an increasing aperture height appears to deviate from 

linearity. However, the relative error in the 12-pole is a lot higher than for A3r in a rectangular grid, since 

A5r induces less blur. The lower blur is to be expected due to the 6-th order dependence on the radial 

position 𝑟 for 12-pole field strength. This also leads to a relatively high tolerance in the optimal wall height 

and because of that, the more nonlinear behavior of this curve for higher wall heights (Figure 28d) can be 

ignored (no further iteration is required with the given tolerance). 

 

Figure 28: Optimization of the correction shapes. The octupole is depicted for varying aperture wall heights (a), indentations 
with varying widths (b) and semicircular holes with varying shape values (c) and the 12-pole aberration (A5r) is depicted for 
varying wall heights around a hexagonal aperture grid (d). The optimal correction parameter is given in the legend of each 

figure in µm. 

5.2 Octupole correction effects on the spot 
The optimized parameters that eliminate the multipole aberrations are used to construct optimized 

geometries. The resulting charge distribution (induced by the nearest electrode set to 1V and the others 

(d) 

(b) 

(c) 

(a) 
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to 0V) is displayed in Figure 29 for the regular 5x5 rectangular aperture grid without corrections, and the 

correction through aperture walls, indentations and semicircular holes. 

 

Figure 29: Charge distribution induced by nearest electrode to the ALA. The image consists of four quadrants where the top left 
presents the reference shape, the top right presents the correction by walls, the bottom left presents the correction by 

indentations and the bottom right presents the semi-circular holes. The color scale is the same for all quadrants. The highest 
negative surface charges (blue) are concentrated at the convex rims of the aperture holes. 

The highest negative surface charges (blue) are concentrated at the convex rims of the aperture holes. As 

predicted the walls appear to compensate (negative) charge deficits introduced by nearby holes, while 

also adding positive charges to compensate the relatively excessive negative charges in diagonal 

directions. For the indentations, the charge deficits in horizontal and vertical directions are compensated 

by more concentrated positive charge in diagonal directions, in line with predictions in Section 4.3.3. 

 Though the compensating effect is visible from the figure for correction by walls and indentations, the 

difference for semicircular holes appears more subtle. This is due to the fact the correction by semicircular 

holes requires a modification accuracy smaller than 4 nm for eliminating the octupole effect. Though the 

difference between a round and a semicircular hole is hardly visible due to the 0.37 μm modification being 

small compared to the hole diameter of 15 μm, the octupole is fully eliminated. With a tolerance of 10 

nm, the semicircular holes are also the most sensitive to construction defects. With a tolerance of 80 nm, 

the indentations are the least sensitive to errors, even considering the nonlinear behavior of the curve.  

However, the assumption for this geometry is a perfectly round aperture, whereas any physical round 

aperture will probably also have small defects that could cause field effects similar to the fields near the 

semicircular apertures. 

Having obtained these optimal geometries, the different correction methods are compared by tracing 

particles through the central and the first off-axis aperture. The difference in the spots and thus the effect 

of these different correction methods is compared by measuring the 𝐹𝑊50 in the focal planes. For a 

beamlet through the central aperture, the Full-Width-50 is denoted as 𝐹𝑊50,0 and for a beamlet through 

the first off-axis aperture the Full-Width-50 is denoted as 𝐹𝑊50,1. Table 2 summarizes these values for a 

single hole, a regular 5x5 aperture array and all optimized correcting geometries. The table also includes 
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the correction parameters and the fitted A1r astigmatism coefficient. The A1r coefficient is included here 

because there seems to be a significantly contributing factor in the difference between the spot sizes of 

the different corrected geometries: the lowest A1r term is attributed to octupole correction through 

aperture walls, resulting in the smallest 𝐹𝑊50,1 and the lowest A1r term is attributed to indentations, 

resulting in the largest 𝐹𝑊50,1 (excluding the uncorrected regular 5x5 grid). 

From checking the particle distributions, it becomes clear that indeed the A1r term becomes a major 

aberration after correcting the octupole. This is demonstrated in Figure 30, where the electrons are 

scattered in two different z-positions, just before and just after focus for the simulation done with the 

geometry optimized with aperture walls and the geometry optimized with indentations. The horizontal 

and vertical scale is the same scale in all figures (1:1). For the geometry with walls (figures a and c), the 

spots look perfectly round, and thus the astigmatism term appears to be insignificant. For the geometry 

with indentations, the spot at 𝑧 = 0.03 m (before focus) looks more spread out horizontally than 

vertically, and the opposite is happening at 𝑧 = 0.034 m. This indicates a different focal plane horizontally 

and vertically, leading to a larger spot overall. Due to the A1r aberration, the correction through 

indentations leads to the largest spot. In fact, when comparing spot sizes, it turns out that an indentation 

of 7.809 μm (the result of the first iteration) in diameter leads to a smaller spot with FW50,1 = 0.64 μm, 

compared to FW50,1 = 0.67 μm for a geometry without an octupole contribution. This indicates that A1r 

becomes very dominant for the given corrections.  

Though the indentations lead to a larger spot here, the construction tolerance is lowest and the A1r 

contribution might be correctable (discussed in section 5.4), which makes the indentations a viable option 

to reduce the spot size by eliminating the octupole contribution. However, for the given geometry, the 

correction through aperture walls leads to a relatively low A1r term and thereby also results in the 

smallest spot. Though semicircular holes lead to a relatively low A1r contribution, the central spot is larger 

(in FW50,0) compared to geometries with walls and indentations. Moreover, the construction tolerance 

of the semicircular holes is lowest, making this the least promising method to correct the octupole 

contribution. The 16-pole visible in Figure 20 for a different geometry is not visible in the spot for 

semicircular apertures here (hence not shown), but the effect might be playing a role in enlarging the 

spot. 

Table 2: The Full-Width-50 (𝐹𝑊50) results of beamlets through all central corrected aperture holes and the first off-axis hole. The 
𝐹𝑊50 for a single hole and a regular 5x5 grid are added for comparison. The parameter values and 𝐹𝑊50 are displayed in µm. 

Correction shape Parameter 
Value (μm) 

𝑭𝑾𝟓𝟎,𝟎(μm) 𝑭𝑾𝟓𝟎,𝟏(μm) A1r (m) 

Single hole - 0.54 - - 

5x5 grid regular - 0.96 0.98 -1.66e-4 

Walls 0.88 0.54 0.53 -1.65e-5 

Indentations 7.87 0.54 0.67 -2.30e-4 

Semi-circular 0.37 0.56 0.61 -1.58e-4 

Hexagonal regular - 0.56 0.59 -9.33e-5 

Hexagonal walls 0.66 0.54 0.54 -4.01e-5 
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Figure 30: Spots for the ALA’s corrected by aperture walls (Figures a and c) and by indentations (Figures b and d) for two 
different z-positions, indicated at the top of each figure. All values displayed are in m. 

5.3 Multipole field expansion 
When fitting the particle position aberrations, as described in section 2.6, for the optimized geometries 

aimed at eliminating the octupole aberrations, the calculated octupole aberration coefficient is either 

nullified or negligibly small. Another method to compare the effective removal of the octupole aberration 

from the field is by using the fitting procedure described in section 0, where the multipole field expansions 

are fitted. In Figure 31, 𝜙4[Vm
−4 ] along the z-axis[μm] is plotted  for a single aperture lens, the regular 

5x5 grid and all square grid correction shapes. The octupole field for the single hole is shown to indicate 

the residual octupole field from the iterative charge BEMsolver. The vertical black lines indicate the front 

and back of the aperture plate (excluding aperture walls). 

For a regular 5x5 grid, the multipole is mostly induced in front of the aperture plate. The three correction 

methods eliminate the effective multipole in different ways. For semicircular holes, this octupole field is 

equally strong before the aperture, but then corrected within the boundary of the aperture plate. The 

aperture walls and indentations seem to correct in a more stable manner by first lowering the initial 

(a) (b) 

(c) (d) 
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octupole field and then correcting the already lowered aberration contribution. The walls around 

apertures and indentations seem to work similarly, except for the fact that the potential aberration of the 

aperture lens with wall seems to be shifted slightly to a lower z-coordinate. This may be due to the wall 

protrusion effectively shifting the aperture lens by the height of the wall around it. This is a potential 

reason for the difference in the A1r term resulting from the simulations. 

Integrating the potential aberrations to obtain 𝑃𝑛 = ∫ 𝜙𝑛(𝑧)𝑑𝑧 gives a value of -9.81e16 Vm-3 for the 

regular grid, and 7e14 Vm-3 for the single hole. This is acceptably low given that e.g. also the chamfering 

of aperture edges produces aberrations of this scale, and thus this contribution can be considered zero. 

Similarly, the values for the corrected ALA’s are -3e14, -6e14 and -6e14 Vm-3 for aperture walls, 

indentations and semicircular holes respectively, which all add up to a lower field aberration than the 

octupole field aberration for a single aperture and can thus be considered zero as well. Therefore, the 

approach chosen in section 0 would have sufficiently got rid of the octupole for a central hole. However, 

this does not allow a comparison of the second largest aberration for off-axis apertures, which is the 𝐴1 

astigmatism contribution. 

 

Figure 31: 𝜙4 potential aberration in Vm-4 for the single hole given along the 𝑧-axis in 𝜇m (now with 𝛥𝑧 = 0 at the center of the 
ALA), the regular 5x5 grid and all square grid correction shapes. The octupole field for the single hole is shown to indicate the 
residual octupole field from the iterative charge BEMsolver. The vertical black lines indicate the front and back of the aperture 

plate (excluding aperture walls). 

5.4 Two-fold astigmatism caused by nearby holes 
As pointed out in section 4, the geometry of the MBS and the voltages have been optimized such that the 

contribution from geometrical off-axial aberrations, especially from (two-fold) astigmatism, 𝐴1, is 

significantly suppressed. This optimization to eliminate the off-axial aberrations has been done by A. 

Mohammadi-Gheidari et al [9], where the rotationally symmetric fields calculated for a single central 

aperture are assumed to be valid when translated to the off-axis aperture locations to approximate the 

fields of a single aperture that is physically positioned off-axis. This approximation is only valid to a given 

𝜙4 (
𝑉

𝑚4
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limit. As seen for the aberration fitting result for a regular 5x5 aperture array, there is a significant A1r 

contribution here. Though the effect is only minor for a regular 5x5 array compared to the more dominant 

octupole aberration and for the wall-corrected ALA in the first off-axis spot, one might wonder what will 

happen to further off-axis spots.  

For that reason, another few further test cases are designed. The first being a check of the corrected 

astigmatism term in a geometry where only a single hole is displaced by 20 µm (which is equal to the pitch 

for the ALA). Indeed, we find an A1r term of only 4.75e-6 m, compared to -1.66e-4 m for an aperture array 

(also, there is no spot enlargement compared to an ALA with a single central aperture). This means that 

the addition of other apertures do play a role in spot enlargement, through an increased astigmatism 

term.  

Another step is taken by comparing the aberrations for a single aperture hole that is displaced by 200 µm, 

to a geometry with a 3x3 grid of holes with a pitch of 200 µm where particles are traced through one of 

the off-axis holes. Both lead to some astigmatism, with A1r = -1.08e-5 m, for the single hole, and A1r = 

2.15e-05 m for the 3x3 grid. In both cases, the octupole term is negligible, but despite this the field seems 

to be modified enough for problems to arise. Given that the value for A1r seems to be going up for an 

increasing number of holes in the plate, one might expect that this trend continues for more holes. When 

attempting to add more holes around the target hole by creating a 5x5 array (with pitch 100 um), the 

resulting astigmatism goes down again to A1r = -1.34e-05 m. This indicates that more work may be 

required to explore the effect. However, the study of only a 5x5 grid shows that the astigmatism resulting 

from the field modification by nearby holes may somewhat be compensated by adding walls around 

apertures. The extend of the applicability of this measure for further off-axis apertures is yet unknown 

and requires more study. 

Because of the A1r contributions near the apertures, one could try altering the shapes and voltages for 

this geometry to get rid of the effect. For now, it appears that the aperture walls correct the effect 

considerably as well, making it a better option than indentations, assuming the desired construction 

tolerance of 30 nm can be achieved by MEMS technology. 

6 Conclusion 
The aperture lens array that splits the emission cone of the electron source into multiple beamlets, 

introduces an octupole aberration in these beamlets through the electrostatic interaction of nearby 

apertures. The practical quantification, and elimination of the octupole aberrations in this application is 

not commonly practiced. In this thesis, the method of tracing particles through the whole multi beam 

source, and fitting all (multipole) aberrations by mapping the position and momentum of the electrons 

from object plane to the image plane, a procedure that is now incorporated in GPT, is used to quantify 

the aberration coefficients. In order to eliminate the multipole induced by small cylindrically asymmetric 

structures, several approaches are discussed. It turns out that instead of fitting aberrations to traced 

particles, the more quickly calculated integrated electric field aberrations could have sufficed for 

correcting the octupole to within the tolerances used here. 

Several correction methods, namely aperture walls, indentations, semicircular holes and a hexagonal 

aperture pattern (with and without aperture walls) have been applied to correct the octupole. All these 

methods eliminate the octupole for particles through the central aperture. However, there is a difference 

in parameter sensitivity for different methods in the multipole correcting shapes. Besides demonstrating 
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(dis)advantages between different types of solutions, this sensitivity also demonstrates the required 

precision to certain aspects of the ALA construction process. 

For off-axis apertures, there are differences between the astigmatism, or effective quadrupole aberration, 

observed in the spot. The aperture walls seem to best preserve the behavior of the fields optimized for a 

single off-axis hole without astigmatism. For this reason, it is currently assumed to be the best correction 

method for this application, for which the desired construction sensitivity can also be achieved. The 

optimized indentations result in higher astigmatism and because of that the largest off-axial spot. This is 

an effect that can be studied more detail for the MBS in the future, and may be eliminated at some point. 

Semicircular apertures are less favorable due to their highly demanding construction accuracy and the 

less effective central spot size reduction, but also due to the suboptimal off-axis beam aberrations 

involved. 
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