EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Heuristic modification procedures for building spatial design optimization

Snel, T.W.
Award date:
2019

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d017bbf4-3627-432c-9e86-75bfb25c6306

EINDHOVEN UNIVERSITY OF T ECHNOLOGY

Heuristic Modification Procedures for
Building Spatial Design Optimization

Supervisors:
Student: dr. ir. H. HOFMEYER
T.W. SNEL ir. S. BOONSTRA
0744694

prof. dr. ir. B. d. VRIES

September 23, 2019

M.Sc. Thesis

Project: Heuristic Modification Procedures for
Building Spatial Design Optimization

Status: Final

Date: September 23, 2019

Document no.: A-2019.285

Educational Institute

University:

Department:

Master’s degree program:
Research program:
Chair:

Eindhoven University of Technology
The Built Environment
Architecture, Building, & Planning
Structural Engineering and Design
Applied Mechanics

Graduation Committee

Chairman: dr.ir. H. (Hérm) Hofmeyer

274 member: ir. S.(Sjonnie) Boonstra

374 member: prof. dr. ir. B. (Bauke) d. Vries
Author

Student: T.W. (Tomas) Snel

Address: Constant Nefkensstraat 5B
ZIP-Code: 5613 ME Eindhoven

Phone no.: +31(0)613248826

Student no.: 0744694

Email: t.w.snel@student.tue.nl

tomas.snel@gmail.com

Contents

1 Introduction
1.1 Research Goals
1.2 Report Overview e

2 Need For Optimization
2.1 Designing Buildings
2.2 MDO in the AEC Industry
2.2.1 Optimization in general
2.2.2 Multi Objective Optimization
2.3 Cluster Approaches

3 Building Spatial Optimization Toolbox

3.1 User Defined Program,
311 Grammarso .o e e e e
3.2 Optimization approach L
4 Heuristic Building Optimization Algorithm
4.1 Normalized Performances
4.2 Performance Evaluation 00 0oL
4.3 Space Ranking
4.4 Building Modification o
4.4.1 Infeasible building spatial designs
4.5 Apossiblecycle
5 Results
5.1 Simulations Using Parameter Set 1
5.1.1 Structural Optimization
5.1.2 Building Physics Optimization
5.2 Simulations Using Parameter Set 2
5.2.1 Structural Optimization,
5.2.2 Building Physics Optimization
5.3 Unrealistic Building Spatial Designs
6 Discussion
7 Conclusions
8 Recommendations
References
A Overview HBO Toolbox
B Simulation Results
B.1 Parameter set 1
B.2 Parameter set 2
Code
D Cube versus Sphere in orthogonal space

10
10
11

13
13
13
14
14
16
16

17
17
17
20
20
21
22
24

26

27

28

30

CONTENTS CONTENTS

1 INTRODUCTION

Abstract

This research presents procedures developed for the heuristic optimization of early stage
building spatial designs using simulations of co-evolutionary design processes. The research
focuses on single disciplinary optimization and it shows that the procedure is capable of
optimizing a building spatial design for either structural or building physics performance.
Structural performance is defined as the total amount of strain energy, and building physics
performance is defined as the thermal energy loss due to heating and cooling of spaces.
The constraints for optimization are equal volume, equal space count, no overlap between
spaces, and no floating spaces. The procedure is divided into three sub procedures: per-
formance evaluation, space ranking, and building modification. For all stages multiple
parameters are developed and elaborated. For the performance evaluation procedure it is
shown that structural evaluation should rate spaces from best to worst as highest to lowest
strain energy. Building physics evaluation should rate spaces from best to worst as lowest
to highest thermal energy loss. Furthermore it can be stated that combining a geometrical
clustering approach with the evaluated performances is capable of improving a building
spatial design for both disciplines. The space ranking in this study is straightforward since
only one discipline is considered at a time. For the building modification sub procedure the
most effective parameters are those that move a building spatial design towards the most
optimal shape for the given discipline. For structural optimization this means a one storey
high, square floor plan. Building physics optimization finds the best solutions when the
modifications move the building spatial design towards a cuboid design. Unfortunately, a
part of the found solutions result in undesirable building spatial designs. These designs
contain spaces that have unrealistic ratios between their height, width and depth.

Keywords: Heuristic optimization, Structural optimization, Building physics optimiza-
tion, Farly stage building spatial designs.

1 Introduction

This graduation project is inspired by the project ”Ezxcellent building via forefront MDO.
Lowest energy use, optimal spatial and structural performance”, which is funded by the
Dutch foundation for technology sciences: NWO-TTW (grant number 13596). The NWO-
TTW project aims to develop and research techniques for multidisciplinary optimization
(MDO) of building spatial designs in the Architecture, Engineering, and Construction
(AEC) industry. Two disciplines are selected for optimization; namely structural design
(SD) and building physics (BP). The objectives for these disciplines are minimal strain
energy (SD), and minimal heating/cooling energy (BP). Three methods have been devel-
oped for the optimization (a) an Evolutionary Algorithm (EA) called SMS-EMOA, (b)
a Simulation of Co-evolutionary Design Process (SCDP) and (c¢) a combination of EA
and SCDP. Method (a) uses a mathematical approach in combination with a constricted
design space in order to find high quality Pareto front approximations (PFA). While a
PFA can be found within the given design space, the computational cost is high and
the global optimum might not be included in the design space. The second method (b)
applies a heuristic approach, to implement engineering knowledge as optimization rules.
This method allows for an exploration of the design search space, possibly altering it in
each cycle of optimization. Although optima are not found, this method generally can find
better designs in one or more disciplines. Combining these methods into (c) can provide
an approach that is capable of finding high quality PFAs with altering design search spaces.

1.1 Research Goals 1 INTRODUCTION

The research and development of the before mentioned heuristic rules are the topic for
this graduation project. Hofmeyer and Davila Delgado (2015) show that heuristics can
greatly reduce the amount of computational time required in building spatial optimization
(BSO) for structural optimization. They optimize a building spatial design by simply
removing the 50% worst performing spaces, then scaling the remaining spaces over the
x and y axis, and split the remaining spaces once across their longest dimension. The
procedure of this algorithm, as illustrated in Figure 1.1, and the Building Spatial Design
Toolbox (BSO Toolbox) as developed by (Boonstra et al., 2018) are taken as starting point
of this graduation project.

Struct.
design

Spatial
design
2n-1

Struct.
design
2n-1

Trans.
selection

Struct.
design
2n

Figure 1.1: Procedure of the SCDP as developed by Hofmeyer and Davila Delgado (2013)

1.1 Research Goals

The research goal of this graduation project is to develop new heuristic rules to optimize
early stage building spatial designs following the SCDP procedure. The developed SCDP
procedure will be applied on two disciplines currently implemented in the BSO Toolbox:
SD and BP. While the development of heuristic rules does include procedures that enable
multidisciplinary simulations, results focuses only on single disciplinary studies. In order
to achieve the goal two research questions have been formulated:

e How to interpret performance evaluations of an early stage building spatial design?

e How to use that interpretation to modify a building spatial design such that its
performance improves?

1.2 Report Overview

Some general definitions and concepts are introduced first in Chapter 2, which covers the
need for optimization procedures in early stage building design processes and the basic
formulas of optimization. Chapter 3 describes the formulations and representations of the
BSO Toolbox which is used for this graduation. In Chapter 4 the developed heuristic pro-
cedure are explained. Results of two parameter studies on single disciplinary simulations
with the new procedures are presented and analyzed in Chapter 5. After which a critical
discussion and the conclusions are presented in Chapters 6 and 7 respectively. Finally
recommendations are presented in Chapter 8.

2 NEED FOR OPTIMIZATION

2 Need For Optimization

The AEC industry is responsible for 40% of the annual usage of energy and resources world-
wide (European Construction Tehnology Platform, 2005) and with the climate agreement
of Paris 2015, the goal is set to reduce global emissions. In order to achieve more op-
timal building designs, and thus reducing energy and resources, engineering simulations
are becoming the norm for practice in the AEC industry. However, the potential for this
technology to support early-stage building design decisions is not fully utilized, because
current tools and processes do not support rapid generation and evaluation of building
design alternatives (Flager & Haymaker, 2007).

2.1 Designing Buildings

Horvéath (2005) defines a design process as ’an iterative search process in which design-
ers gather, generate, represent, transform, manipulate, and communicate information and
knowledge related to various domains of design concepts’. So designers iterate over mul-
tiple design options and alternatives to find a design that meets all performance criteria
to a satisfactory level. A correlation is found between the amount of alternatives, or it-
erations, and the quality of the final chosen design (Akin, 2001), where a higher amount
of alternatives correlates with a higher quality final design. Unfortunately, on average
only three alternatives are considered in a normal design process before the final design is
chosen. Experts in the AEC field spend on average over a month to generate and evaluate
a single design alternative (Flager, Welle, Bansal, Soremekun, & Haymaker, 2009). The
inability to quickly generate and analyze multiple alternatives considering multiple disci-
plines leaves a large area of the design search space unexplored. Flager and Haymaker
(2007) state that, if engineers are involved in the early stages of a building design they are
mainly validating alternatives rather than generating the design alternatives. Neverthe-
less, all decisions that have been made early in the design process have a significant impact
on the life-cycle, economic, and environmental performances of buildings. Okudan and
Tauhid (2008) find that an ill-defined conceptual design is almost never fixed at a later
stage. Additionally Rezaee, Brown, Haymaker, and Augenbroe (2018) state that there is
no practical framework for designers to generate more promising alternatives regarding
energy performance in the early design stage phase. The software used to analyse and
optimize various parameters in building spatial designs are generally based on detailed
building simulations (Machairas, Tsangrassoulis, & Axarli, 2014). Such simulations are
not suitable for conceptual designs, because they are computationally expensive and re-
quire many assumptions for design decisions that are decided in a later design stage.

The complexity of design processes in the AEC industry is another reason why opti-
mization is rarely applied in the exploration of design search spaces. Each discipline by
itself is complex, but an additional layer of complexity is added if two or more disciplines
would be considered simultaneously. Often disciplines contradict each other and no one
solution can be found that is optimal for all. Figure 2.1 shows a building spatial design
being optimized towards either SD or BP. However the optimal results differ from one
another so it is unclear what the optimal result is. Besides contradiction, an interdepen-
dency of parameters exists as described by Haymaker, Kunz, Suter, and Fischer (2004)
and Ritter, Geyer, and Borrmann (2013). Research has been conducted in all disciplines
of the AEC industry. Many of those are optimizations of a specific parameter or discipline,
but rarely focused on holistic searches that cover an array of disciplines and objectives.

2.2 MDO in the AEC Industry 2 NEED FOR OPTIMIZATION

~ O~ ~ N
2, > <> 3 b
[& =
| |
|
kA
: \I/ \/
|
|
~ | A
[) ~ Building
Structural Physics
optimization optimization
ST™M \/ BPS |
-« —— — | [
\ / ~ | -
~
STM optimized design Initial design BPS optimized design
V=4 V=4 V=4
A=16 A=18 A=15.3
E=1 E=3 E=2

Figure 2.1: A building spatial design that has been optimized twice, once for structural and once
for building physics objectives. Where the SD optimal design goes towards minimal building height,
the BP design moves to minimal surface area resulting in two different solutions. (Hofmeyer &
Emmerich, 2013)

2.2 MDO in the AEC Industry

In many industries multidisciplinary optimization is common practice when dealing with
complex design decisions. However, such tools do not exist to support the AEC indus-
try in early stage building design development. Incorporating performance models into
existing software to guide the generation process will yield tools that can help architects,
designers, and engineers to think critically yet qualitatively from the viewpoint of dif-
ferent disciplines. Unfortunately, providing these tools for specific design conditions and
performances remains a challenge (Shea, Aish, & Gourtovaia, 2005). Many of the cur-
rent analysis and simulation tools focus on a single discipline. However, it is necessary
to consider disciplines simultaneously. The following section will elaborate on single- and
multi-objective optimization.

2.2.1 Optimization in general

Optimization can be defined as ‘the procedure of finding the minimum or the maximum
value of a function by choosing a number of variables subject to a number of constraints’
(Machairas et al., 2014). This function is commonly known as the objective function.
Equation 2.1 gives the mathematical form of a generic single-objective optimization prob-
lem. X is the design search space that includes all possible designs = where f(z) is only
evaluated if the equality and inequality constraints g(x) and h(z) hold.

minimize f(x) reX
subject to g;(x) <0 je{l,2,...,m} (2.1)
hi(x) =0 ke{l,2,...,n}

Different techniques have been developed to solve these single-objective optimization
problems, e.g. expert systems, gradient optimization, evolutionary algorithms, and de-
sign grammars (Hofmeyer & Davila Delgado, 2015). As mentioned in section 2, much of
the research in the AEC industry focuses on only a single discipline. Examples of opti-
mization in the AEC industry are: Energy consumption by Cheung, Fuller, and Luther

2.2 MDO in the AEC Industry 2 NEED FOR OPTIMIZATION

(2005), and Friess, Rakhshan, Hendawi, and Tajerzadeh (2012). User comfort is opti-
mized by Bouchlaghem and Letherman (1990), and Torres and Sakamoto (2007). An
absorption chiller system is optimized by Chow, Zhang, Lin, and Song (2002), and an
HVAC envelope design by Bichiou and Krarti (2011). Structural stiffness is optimized by
Fuyama, Law, and Krawinkler (1997), and buckling load of a stayed columns by Verbeeck,
Van Steirteghem, De Wilde, and Samyn (2005)

2.2.2 Multi Objective Optimization

Translating a single-objective to a multi-objective optimization can be achieved by ex-
tending equation 2.1 into equation 2.2. The extension allows for new objectives to be
evaluated for solutions in the design search space. Often no one single solution exists that
is optimal for all objectives, a trade-off situation occurs when one objective cannot be
improved without declining others. Two major approaches can be identified to express
optimality of multi-objective problems: aggregation and Pareto optimality.

minimise f;(x) ie{l,2,.,l}xe X
subject to g;(x) <0 jed{1,2,...,m} (2.2)
hi(z) =0 ke{l,2,...n}

Aggregation Functions The classic solution to deal with multi-objective problems is
to rewrite them into a single-objective problem. Using aggregation functions objectives
can be combined, normally by normalizing objectives, and summing or multiplying them
into one objective to assess the problem as if it were a single-objective problem. Figure 2.2
shows different aggregation functions and their resulting values, the x and y axis describe
the (normalized) objectives fi(z) and fa(z) the z axis gives the aggregated result, f(x).

."

ZZT 777~ g LT 77
AT |] s
AT T ‘ :

77AALT

227 Sy sy

O
LA

(a) Sum (b) Product (c) Buclidean distance

Figure 2.2: Results from aggregation algorithms. The x and y azis show the normalized performance
f1(z) and fa(x), the z azis shows the aggregated result f(x).

Pareto Frontiers The second approach in MDO is inspired by Pareto (1896): a so
called Pareto Front, see figure 2.3. A Pareto Front is defined as the set of Pareto optimal
solutions, where a solution is Pareto optimal when for each of the objectives no objective
can be improved without diminishing another objective. During an optimization process a
Pareto Front Approximation (PFA) can be constructed. To achieve the PFA each solution
is evaluated whether it is Pareto optimal for the solutions found at that time. The PFA
is the set of Pareto optimal solutions until every solutions in the design search space has
been evaluated, then it becomes the Pareto Front.

2.3 Cluster Approaches 2 NEED FOR OPTIMIZATION

e Feasible Solutions
0.75r

Objective 2
o
(6]

0.25

T

Pareto Frontier

O 1 1 1 1

0.2 0.4 0.6 0.8 1 1.2
Objective 1

Figure 2.8: An example of a Pareto Frontier

Where which algorithm is used depends on the given problem; e.g. for some problems
the analytical solution can be solved. Adamski (2007) and Marks (1997) mathematically
describe the shape of a building and solve it with a numerical solution, finding the true
optimum. Jedrzejuk and Marks (2002) optimize the shape, functional structure and heat
utilization of single and multi-family houses using an analytical approach. In other cases
a Pareto based solution is required, e.g. D’Cruz and Radford (1987) optimize a simple
building with the objectives of thermal load, daylight, planning efficiency and capital
cost. Flager et al. (2009), who use a PFA in their multidisciplinary optimization of a
classroom.

2.3 Cluster Approaches

Data clustering is the process of grouping together (multi-)dimensional data-points into
a number of clusters or bins (der Merwe & Engelbrecht, 2003). Clustering is used to
gain a better understanding of data sets and therefore it is applied to a wide variety of
problems, e.g. exploratory data analysis, data mining, and mathematical programming.
An operational definition is given by Jain (2010) as 'Given a representation of n-objects,
find K -groups based on a measure of similarity such that the similarities between objects in
the same group are high while the similarities between objects in different groups are low’.
The similarities that determines clusters will alter for each problem and is based on the
definition of the objects. Clustering algorithms are divided into two classes: supervised
and unsupervised. If cluster parameters are predefined and an external source states to
which cluster a data-point belongs it is called supervised. However, in many cases the
potential clusters are not known a priori. For these unknown situations unsupervised
algorithms are developed which create clusters based on the distance of one data-point to
another.

The most well-known unsupervised cluster algorithm is K-means, Steinhaus (1956),
Lloyd (1982), Ball and Hall (1965), and MacQueen et al. (1967). It is defined as follows:
Let X = x;,1 = 1,...,n be the set of n d-dimensional points to be clustered into a set of
K clusters, C = ci, k= 1,..., K. K-means algorithm find a partition such that the squared
error between the empirical mean of a cluster and the points in the cluster in minimized
(Jain, 2010).

3 BUILDING SPATIAL OPTIMIZATION TOOLBOX

3 Building Spatial Optimization Toolbox

This section describes the Building Spatial Optimization toolbox (BSO Toolbox) as pre-
sented by Boonstra et al. (2018). Figure 3.1 shows the organisation of the BSO Toolbox.
The different elements in the BSO Toolbox and their interaction will be explained and
elaborated on. First it should be stressed that the functions and representation described
here are to evaluate building spatial designs and not to optimize them. The optimization
algorithms will be discussed in the Chapter 4.

Toolbox
Structural Design Spatial Design Building Physics Design
Realized by Realized by

A

Movable Sizable Supercube Model
Model

! I
! I
! I
! i
! Structural Model | i —i SD_Grammar_ -4 —i —| Building Physics l
! r———-- Model |
! I
! i
! I
! I
! I

[
| |
| Design Grammar(s) g D W
! !
[

P Optimization Method b
| |

. .|

Figure 3.1: Organisation of the BSO Toolbox as developed by (Boonstra et al., 2018)

Representations Three different building spatial design representations are implemented
in the BSO Toolbox. The first two are building spatial representations: Supercube (SC)
and Movable-Sizable (MS), Figure 3.1. The third available representation is a conformal
model. The latter representation helps to translate a building spatial design model into
domain specific models. In this graduation project the MS-representation is elaborated in
the following paragraph. For the other representations the reader is reffered to Boonstra
et al. (2018).

The MS-representation uses a single vector S to collect all spaces S;. Expression 3.1
shows the formulation and figure 3.2 shows an example of the representation. Each space
s; has two sets, the set C' describes the origin and set D defines the dimensions (width,
height, depth) of the space. Adding spaces can be done by simply appending its properties
to the S list. The MS-representation is a super structure free approach which allows for
spaces to be freely modified, deleted and created during optimization. Modification of
the building spatial design is achieved by altering, adding or removing elements of the S
list. However, since spaces are not interconnected, modifications may lead to infeasible
designs. When a space is modified it may overlap with other spaces, this obviously leads
to infeasible building spatial designs. Another limiting property is the formulation of the
MS-representation which only allows orthogonal building spatial designs to be formulated.
This alters some of the ideal shapes that can be constructed in the design search space,
e.g. a cubical shape is now the ideal ratio for surface to volume instead of a spherical
shape.

3.1 User Defined Program 3 BUILDING SPATIAL OPTIMIZATION TOOLBOX

S={s,s,8,.....8)}

s, = {{x,y,z}, {w,d, h}}
s, = {X, ¥, 25}, {w,d, h,}}
;= {{X5 V5251 {W;d; 0t}
4= WY 20 {w,d,h)}
s = X5 Y525} (W5 d5h 0}
6= X Y5 Zah {Wsdghel}

Figure 3.2: Movable-Sizable building representation

S :{Sla S2 ey SNspaces}
where

S; ={C, D} C ={x,y,z} D ={w,d, h} (3.1)

Building Analysis The BSO Toolbox uses the Finite Element Method (FEM) as a
computational analysis for structural performance. After the calculation has been finished
the structural strain energy (in N'mm) can be retrieved per space, or for the entire building.
For each space a performance is computed as the sum of strain energy in the walls and
floor that construct the space.

Thermal performances of a building spatial designs are measured by simulating the
amount of energy that is required in each space to keep the space’s temperature between a
lower and upper limit. Thermal energy loss is calculated by means of a Resistor-Capacitor
network representation (RC-network) (Boonstra, 2016), which only requires a low level of
detail of the building making it suitable for the used representations. The BSO Toolbox
provides the total energy loss for both the entire building or a single space (in kWh).

3.1 User Defined Program

A second structure, as illustrated in Figure 3.1, is required to provide input and request
output: the user defined program (UDP). The UDP consists of two parts: optimization
method(s) and grammars. The optimization method provides the BSO Toolbox with
building spatial design models, and uses the results of the BSO Toolbox analysis to opti-
mize the given building spatial design. To use a grammar, the user defines settings, which
are then used by the grammar to generate a domain specific model.

3.1.1 Grammars

In order to simulate and calculate the building spatial designs put into the BSO Toolbox,
a transformation from spatial representation to discipline specific model is required. Each
discipline in the BSO Toolbox requires its own grammar(s) with the discipline specific
settings. The structural grammar includes elements such as (structural) material proper-
ties, loads, and the amount of divisions to be made in the Finite Element analysis. The
BP grammar adds environmental data, an amount of time steps per hour that need to be
considered and thermal properties of building materials.

10

3.2 Optimization approach 3 BUILDING SPATIAL OPTIMIZATION TOOLBOX

Structural Grammar The grammer and settings that are used for the structural dis-
cipline in this graduation project assign flat shell components to each wall and floor in
the building spatial design. These flat shell components have a thickness of 150 mm and
material properties that resemble concrete, i.e. a Youngs modulus of 30000 N/mm? and
a Poisson’s ratio of 0.3. Five load cases have been added: a life load with a magnitude of
5 kN/m? in -z direction on each horizontal flat shell component. Four wind load cases,
+x, +y, -x, and -y, on each outside surface. The wind load itself has three components,
pressure 1.0 kN/m?, suction 0.8 kN/m?, and shear 0.4 kN/m?. Finally line supports are
added at the edge of each space with the coordinate z < 0. The FEM model is meshed
using three divisions in each direction.

Building Physics Grammar Also for the building physics grammar material proper-
ties are applied that resemble concrete are used: a specific weight of 2400 kg/m3, specific
heat capacity of 850 J/(K X kg), and a thermal conduction coefficient of 1.8 W/(K x m).
The parts of walls and floors which are only part of one space are assigned an additional
layer to their structure, namely a layer of insulation with a thickness of 150 mm with a
specific weight of 60 kg/m?, specific heat capacity of 850 J/(K x kg) and a thermal con-
duction coefficient of 0.04 W/(K x m). The temperature set points are 20 °C for heating
and 25 °C for cooling, the total available heating and cooling in spaces is set to 100 W/m?>.
The ventilation rate for each space in the design is one air change per hour. Real world
data which was measured in De Bilt, The Netherlands, by the Dutch Royal Meteorological
Institute (KNMI) is used for the temperature profile of the weather and the ground profile
has a constant temperature of 10 °C. The simulations use two periods of three days each,
a typical warm period (July 2nd - 4th 1976) and a typical cold period (December 30th
1978— January 1st 1979). Before these periods, a warm up period of four days is added in
order to start the periods with appropriate initial temperatures.

3.2 Optimization approach

The initial heuristic optimization approach is defined in the article published by Hofmeyer
and Davila Delgado (2015). This single-objective approach rank the spaces from high to
low strain energy and removes the 50% of the spaces with the lowest strain energy, scaled
the remaining spaces over the x- and y-axis to regain the initial volume and divided all
remaining spaces once over their largest span. This graduation project focuses on new
heuristics for the UDP.

Constraints In order to focus on feasible designs 2 constraints are defined: overlapping
and floating spaces. The possibility of overlapping spaces is enabled due to the definition
of spaces in the MS-representation, where each space is defined individually without any
direct links to other spaces. Overlap between spaces occurs due to modification techniques,
the procedures in the HBO toolbox are developed in such a way that overlap of spaces
does not occur. Floating spaces can occur when a space loses all its surrounding spaces
due to removal procedures. For these spaces a procedure is developed that checks for
each space if it is floating. If a design contains one or more floating spaces the cycle is
considered to the final one and the simulation is terminated. Another two constraints are
defined in order to keep comparable building spatial design throughout simulations: equal
volume and space count, i.e. the volume and the amount of spaces of the new building
spatial design should be equal to the initial building spatial design. Of course when a
building spatial design is made smaller or lower the performances for structural design

11

3.2 Optimization approach 3 BUILDING SPATIAL OPTIMIZATION TOOLBOX

and building physics will increase. However, this is not part of the design brief provided
by the initial building spatial design. A snap on function is implemented which prevents
numbers with a large amount of decimals to occur. This function might alter the volume
slightly. However if the difference in volume is within 1% this is considered to be satisfying
for the volume constraint.

12

4 HEURISTIC BUILDING OPTIMIZATION ALGORITHM

4 Heuristic Building Optimization Algorithm

The procedure of the heuristic building optimization (HBO) method can be divided into
three separate sub procedures namely: performance evaluation, space ranking, and build-
ing modification. Each of these sub procedures offers several options, applying these
options in a combinatorial fashion allows a single building spatial design to be modified
into a large variety of new designs which results in different design modifications. First,
the separate procedures are elaborated, after which an example cycle is given. The exact
procedure and codes developed for this research can be found in appendices A and C.

4.1 Normalized Performances

The HBO procedure is built for normalized performance values of spaces due to the differ-
ent nature of the included disciplines. The calculated performances for each discipline is
built up of different type of units, which cannot be compared one to one due to difference
of magnitude or being a complete different kind of unit. The normalization process is de-
scribed in Equations 4.1a and 4.1b. When normalized, the range of all values is between 0
and 1, with 1 being the best possible performance. The difference between the equations
can be found in which performances rate highest. Where 4.1a rates a high performance
value as best, whereas 4.1b rates a low performance value as best. Which equation is used
can be specified for each individual discipline.

Fx - F:c man
F, = : 4.1
mnorm Fx,mam - Fxmm (a)
F, - F
Fy,norm = ymer L (41b)

Fy,max - Fy,min

4.2 Performance Evaluation

In the Performance Evaluation procedure the results provided by the BSO toolbox are
evaluated. Firstly it must be determined whether the spaces in a design are considered
individually or as clusters of spaces. Arbitrary decisions can occur when identical spaces
need to be ranked, these arbitrary decisions can be parried when using clusters to assess
a building spatial design. Unfortunately, assessing clusters can lead to difficulties and
restrictions in the building modification stage while the individual selection allows for
more precise modifications, i.e. if the cluster of removed spaces differs in size with the one
of spaces that are split.

Two different cluster approaches are available. The first one is the K-means algorithm,
as described in section 2.3, which clusters the spaces based on their performances. The
second type is based on the geometrical properties of spaces. It clusters six times, for all six
different facades in a building. I.e. the north, east, south, west facade and the upper and
lower floor, see figure 4.1. The procedure searches the minimum and maximum x, y, andz,
for each of those values it searches the space with the largest width, depth and height
respectively. The six clusters are then constructed using these values as boundaries and
adding each space within to its cluster. Lastly, a set of spaces is created, which consists
out of the spaces that were not clustered in any of the other clusters. The performance of
such a geometrical cluster is set as the average value of the performances of the individual
spaces in that cluster.

13

4.3 Space Ranking 4 HEURISTIC BUILDING OPTIMIZATION ALGORITHM

East South West North Top Bottom
a7

Figure 4.1: Siz different geometrical clusters, a seventh set is constructed with all spaces that are
not included in any of the highlighted clusters.

After a choice has been made for the individual or clustered approach the provided
performances are processed. Note that this can be any number of disciplines. When only
one discipline is required, the evaluation is straightforward for the provided performances.
For a SCDP with multiple disciplines aggregation and non-aggregation of procedures are
available. Aggregation methods implemented are: summation, product, and euclidean
distance functions. When performances are non-aggregated they can still be altered with
weight functions, allowing the steering of solutions in the design search space.

4.3 Space Ranking

Spaces in the building spatial design are ranked based on their performance evaluation. If
only one performance per space is given such a ranking is straightforward the highest to
lowest value listed. However, when a non-aggregated procedure is used it is not straight-
forward which space is best or worst. Six different options are implemented to achieve
possibly different rankings. The first ranking is made on the criteria of best performance,
where best is taken as the shortest distance to the utopia point (the best possible point
). An opposite criteria can be set as well, ranking based on dystopian point (the worst
possible point). While in a one dimensional list both criteria will result in identical lists,
when in a multidimensional environment the list differs. E.g. a design which has two
points namely A (1,0) and B (0.5 ; 0.5). For the best performance criteria point B has
the shortest distance towards the utopia point and is thus considered better than point A.
However, for the worst performance criteria point B is again the space with the shortest
distance, however now towards the dystopia point, see Figure 4.2. The third and fourth
approach are ranking while altering between disciplines to select either the best or worst
performing space.

4.4 Building Modification

The last part of the HBO procedure is modifying the building spatial design using the data
constructed in the other sub procedures. This part contains three steps: space removal,
enforcing volume constraint, and enforcing space count constraint.

Space Removal The first step is to remove an amount of spaces based on the ranking
generated in the previous stage. For this six functions are implemented that differ in the
amount of spaces they remove. The options implemented are: one space/cluster, 10%,
20%, 30%, 40%, or 50% of all spaces removed.

Enforcing Volume Constraint After spaces are removed the new design has to meet
the volume constrain, which is set to the initial design. To comply to this volume constraint

14

4.4 Building Modificatiosd HEURISTIC BUILDING OPTIMIZATION ALGORITHM

Utopia Point 10

-
o

©
~
@

0.50

o

N

a
o
N}
3

Building Physics Performance
o
o

Building Physics Performance

D
Distopia\Point

0 025 050 075 1.0 0 0.25 050 075 1.0
Structural Performance Structural Performance
(a) Utopia point with distances towards it (b) Distopia point with distances towards it

Figure 4.2: Utopia and Dystopia point with projected distances towards the points

two types of functions are implemented: scaling and sweeping, as illustrated in Figure 4.3.
The scaling functions multiply the coordinates of spaces with the ratio between initial and
new design volume up until the volume constraint is met. Scaling allows for modification
over all three axis, and all combinations of them. Sweeping selects spaces on a given
orthogonal plane and extrudes all those spaces until the volume constrain is met. The
effectiveness of each modification option is dependent on the building spatial design type,
e.g. a highrise building will not improve when scaling or sweeping upwards in height but
a lowrise building might improve. Both the scaling and sweeping procedure preclude the
possibility of overlap between spaces.

Top view Sweeping . Scaling
: T | T L - 1
—> | | i » >
4 : ——
y Y — | [4 i 2 >
. Ll g - N
Initial Initial New Initial Initial New Initial New Initial New

(a) Top view of a 312 building (b) Top view, in red the swept (c¢) Top view, in red the scaled
spatial design building spatial design building spatial design

Figure 4.3: Building Modifications scaling and sweeping on a 2xz3 building spatial design

Enforcing Space Count Constraint The last part of the modification procedure is to
satisfy the space count constraint, this can be achieved by splitting specific spaces in the
new design into two. The four options for splitting are to split the largest, the smallest,
the best, or the worst space. For a designer it might feel normal to split the largest space
since it has the most potential to split into two feasible spaces, something that can be
an issue when splitting the smallest space. That can result into two spaces that are too
small to be used, however it gives opportunity to smoothly evolve a building design over
multiple iterations. Splitting the space with the best performance creates more spaces
around coordinates with good performance results. Splitting the worst performing space
altering its properties provides opportunity for it to improve its performance or for it
to gradually be removed in multiple cycles. A space will always be split over its largest

15

4.5 A possible cycle 4 HEURISTIC BUILDING OPTIMIZATION ALGORITHM

dimension. In case of two or three equal largest dimensions a preference can be set across
which dimension to split first. Dimensions smaller than 2000mm cannot be split, since
this would result in unrealistically small spaces.

4.4.1 Infeasible building spatial designs

It is possible that infeasible building spatial designs occur. The procedure to detect floating
spaces is as follows: First a list is made with all spaces that have a z coordinate where
z <0, i.e. they are not floating. Then for each wall or floor of the non floating spaces is
checked whether another space is connected to it, if a space is connected that space is also
marked as not floating. This cycle continues until no more spaces can be added to the non
floating list. Then it is checked whether all spaces are marked as not floating, if so the
building design is considered feasible. If a building spatial design is considered infeasible
the HBO procedure will not allow the SCDP to enter into a new cycle.

4.5 A possible cycle

The sub procedures are written such that they chronologically follow each other in a SCDP.
Figure 4.4 illustrates a SCDP, the procedures from an initial building spatial design up
to the new building spatial design is considered a single cycle, at the new building spatial
design a new cycle starts. The first step is to calculate the discipline performances of a
building design, these performances are then normalized. Then spaces are clustered by
using the K-means procedure. After which for each cluster the performances are squared.
Since all clusters now have one performance value, they can easily be ranked. From this
ranking the cluster with the lowest performance is selected and all spaces in that cluster
are removed from the building spatial design. The remaining spaces are scaled over the x
and y axis by the square root of the initial volume divided by the current volume. Finally
the largest space in the building spatial design is split across its largest dimension, this
repeats until the space count constraint is satisfied.

Structural Model

New Building
; Spatial Design

Initial Building

Spatial Design

Figure 4.4: A simulation of co-evolutionary design process for structural optimization. From initial
building spatial design up to the new building spatial design is considered as a cycle. A SCDP can
contain multiple cycles

16

5 RESULTS

5 Results

Two parameter studies are carried out for this research. Their results are described in
the following sections, the Figures belonging to the results are presented in appendix B.
Simulations with parameter set one are presented first. Using the results and conclusions
of set one the procedures are adjusted for parameter set two. Due to the complexity
and vastness of possible parameter combinations, a selection is made which parameters to
research and elaborate. Simulations and analyses in this graduation project only include
single-disciplinary optimizations. The governing result of each simulation is the cycle that
has the best performing building spatial design, no matter on which cycle this result is
found.

Three different building spatial designs are optimized, see Figure 5.1. All spaces of
the initial designs have a width, depth, and height of three meters. The first design is a
cubic building, with a three times three spaces floor plan and three storeys in height. The
second design is a lowrise building consisting out of a three times eight floor plan with
three storeys. The third design is a highrise building constructed with a three times three
floor plan stretching out over nine storeys in total.

The results of these parameter studies are presented using boxplots, where the top
and bottom are the 25th and 75th percentiles of the data. The distance between the top
and bottom of the box is defined as the interquartile range. The line in the middle of
the box is the median of the data. Whiskers are drawn from the ends of the box to the
furthest data point within whisker length. The maximum length is defined as 1.5 times
the interquartile range, all data points outside that are considered outliers and marked
with a dot sign. The diamond indicates the average value of the data set.

5.1 Simulations Using Parameter Set 1

Set one only considers individual assessment of spaces and includes the parameters as
shown in table 5.1.

‘ Parameters
Performance Assessment | Individual
Best Performance SD: High or Low, BP: Low
Removal Options 1 space, 10%, 20%, 30%, 40%, 50 %
Number of cycles So that the amount of spaces removed over

all cycles equals at least the space count of the design

Scaling Options X,Y,7Z, XY, XZ,YZ, XYZ
Sweeping Options X, Y, 7Z axis at begin, middle or end
Splitting Options Largest, Smallest, Best, or Worst space
Splitting Preference If the height is more than 6000mm: Z-X-Y, else X-Y

Table 5.1: The parameters used in the first simulation set

5.1.1 Structural Optimization

Performance Normalization The HBO procedure allows for simulations with either
preference for high or low strain energy. Previous research (Hofmeyer & Davila Delgado,
2013) assumed that a high strain energy in the structural volume is beneficial for the
structural system, i.e. the volume is highly utilized. However, no research was presented to
confirm this assumption. The HBO approach allows for simulations with either preference
to high or low strain energy. Figure 5.2 shows the difference between considering high

17

5.1 Simulations Using Parameter Set 1 5 RESULTS

Design 1 Design 2 Design 3
Cube 3x3x3 Lowrise 3x8x3 Highrise 3x3x9
Isometric —
a | 14
a L
a pe
a
a
a
a a a
a a a
a a a
Floorplan
a a a
a a a
a a a
"a "a a a a a a a a a a "a a a
a =3000mm

Figure 5.1: The three different designs used for the simulations

versus low compliance as the best performance result. It can be seen that assuming a
high compliance as best performance results (on average) in building spatial designs that
have an increased performance over the initial design. When examining the cycles of a
low-compliance-best simulation it is evident why these result in decreased performances.
The HBO approach removes the worst performing spaces, i.e. those at the bottom of the
building spatial designs since they have the highest structural compliance. If and only if
a complete level is removed, this approach resolves in an increased performance. If one
or more spaces remain in the level, an overhang will be created increasing the structural
compliance in the entire building.

Performance assessment for structural optimization should be performed by ranking
spaces from highest to lowest compliance where the higher the compliance the better the
performance. The basic principle behind this approach is to add material where high stress
occur and to remove it where low stresses occur. This principle is in accordance with the
research of Biyikli and To (2015), they directly use the strain to distribute the material
for optimization, rather than using the density derivative to the strain and finding equal
optimal solutions with less computational time.

Removal Options The results of the different removal techniques, as illustrated in
Figure B.2, show that a more aggressive approach (30%, 40%, or 50%) leads to better
performances than less aggressive approaches(1 space, 10%, or 20%). This is due to the
optimal structural design will be found in low designs, i.e. a building spatial design one
or two storeys high. The 50 % approach is more effective than the lower rates due to

18

5.1 Simulations Using Parameter Set 1 5 RESULTS

Lowrise - Structural Design Highrise - Structural Design
S5r-1 Total Cycli Max4634 | [|~] Sr0f Total CycliMax2635 | | |]

45 Total Cycli Min:2906 45 Total C¥C|I Min:894
(0] (]
o 47 : 2 4
g : g
o357 . 535F :
8 i 8
c 31 : c 3r
© ©
g 251t i % 25+t
£ H b= i
& 2t ; $ 2t :
2 l | e e
= L = - T
215 } £ 1.5 ! |
Q 0] | 1
xr 1 — xr 1

o —
05 T 0.5 |
. .
0t ‘ ‘] of . .
Max Best Min Best Max Best Min Best

Minimum Or Maximum Compliance As Best Performance Minimum Or Maximum Compliance As Best Performance

(a) Lowrise Design (b) Highrise Design

Figure 5.2: Set 1 simulation results for three different building spatial designs optimized towards
structural design. Values are normalized towards the performance of the initial design. For each
design the high and low structural compliance results are shown.

the amount of spaces considered. When a 50% removal rate is applied over two cycles
for a building of 90 spaces, relation between the amount of spaces removed and the total
amount of spaces considered is 90 : 180 = 1 : 2. For 40% removal three cycles are required
giving a relation of 108 : 270 = 1 : 2.5. Thus a higher amount of spaces are considered
and the removal technique is less effective. FEach step to a lower amount of removed and
split spaces leads to an increase of spaces considered, with the largest results of removing
one space each cycle with a relation of 90 : 900 = 1 : 10. The results of the lowrise and
cube design show less preference towards the 50% removal technique, due to the designs
being three storeys high. Thus after the lower storey plus half of the second storey are
remaining, the second cycle of removing 50% will thus remove spaces located on the lowest
level. The removal options of 30% and 40% remove less per cycle thus only removing the
top two storeys.

Modification Options Figure B.3 shows the simulation results per modification tech-
nique. It can be seen that for the cube and lowrise spatial design the scaling and sweeping
modifications in the z direction are the most effective. This is due to the designs already
being near the optimum elevation number and thus modifications that adjust space shapes
become more effective. When a space is modified in z direction, the ratio between walls
and floors change and since the loads on the walls are lower than the floors, this leads to
a lower overall load on the building spatial design. If the total load on the building re-
duces, so does the compliance and thus the performance increases. Furthermore, it can be
said that scaling in two directions is more effective for the cube than the one dimensional
operations. Thus a square like shape is more effective than rectangular shapes. When
considering a rectangular shape, like the lowrise design, modifications in the y directions
are more effective than the x direction. This can also be seen as a preference of square
shapes since the initial lowrise design is longer in x than y direction. It can be seen that
the modifications operating only in z direction are less effective for the highrise design, this
is not surprising since the building is supposed to reduce in height for optimal SD perfor-

19

5.2 Simulations Using Parameter Set 2 5 RESULTS

mances. Another observation is that scaling operations are more effective than sweeping
operations.

Splitting Options Figure B.4 presents the performances for the different splitting tech-
niques, for SD optimization. The procedure that splits the largest space is the most effec-
tive splitting approach to increase the structural performance of a building spatial design.
This is followed by splitting the best performing space, this is not unexpected since large
spaces tend to have more compliance than small spaces and thus a better performance
because of the larger spans. Splitting largest or best also supports the principle of adding
material to locations where compliance is high, as mentioned in section 5.1.1 and Biyikli
and To (2015), since it creates an additional wall in the middle of the space. Expand-
ing this principle explains why splitting the smallest space is not as effective, since small
spaces are stiffer and have less deformation if material is added there it is not in the most
efficient place.

A subset of parameters can be made. In Removal options paragraph, it can be seen
that the 50% removal technique is the most effective, for that parameter the results are
filtered in Figure B.5. In these graphs, it can be seen that splitting the largest space is
the most effective procedure to achieve a performance increase. That the parameters of
splitting the best or worst space provide equal results can be explained straightforwardly
as half the building design is removed. So the other half needs to be split and since only
spaces can be split that have a performance indication all remaining spaces are split once.
This is in contrast with splitting the largest space where a space can be split again if it is
still the largest in a design.

5.1.2 Building Physics Optimization

Simulations using parameter set one do not consistently result in increased building physics
performances, as illustrated in Figure B.6. The combination of individual assessment and
removing the worst spaces in a building spatial design leads towards an approximation of a
sphere. However, the BSO Toolbox operates in an orthogonal space and thus the optimal
surface to volume ratio is a cubical design. Since the building physics performance is
dependent on the ratio of surface area and volume of a spatial design, evolving a spatial
design towards anything but a cubical shape will decrease its performance. Appendix
D elaborates on a spherical approximation versus cubical shape in the orthogonal space.
Acknowledging that the procedure of individual space assessment is in principle flawed for
the building physics discipline, no further in depth analysis of different parameters has
been carried out.

5.2 Simulations Using Parameter Set 2

Parameter set two focuses on the different assessment levels of spaces and includes the
parameters as shown in table 5.2.

20

5.2 Simulations Using Parameter Set 2 5 RESULTS

‘ Parameters
Performance Assessment | K-means, Geometrical Clustering, or Individual
Best Performance SD: High, BP: Low
Removal Options for individual assessment: 30 %, 40%, or 50 %
for cluster assessment: 1 cluster
Number of cycles So that the amount of spaces removed over
all cycles equals at least the space count of the design
Scaling Options X, Y, Z, XY, XZ, YZ, or XYZ
Sweeping Options X, Y, Z axis at begin, middle or end
Splitting Options Largest, Best, or Worst space
Splitting Preference X-Y-Z, X-Z-Y, Y-X-Z, Y-Z-X, Z-X-Y, or Z-Y-X

Table 5.2: The parameters used in the second simulation set

5.2.1 Structural Optimization

The structural optimization is carried out with performances as normalized in equation
4.1a, i.e. the higher the structural compliance the better a space’s performances is rated.

Performance Assessment Figure 5.3 show the results of different techniques to assess
performances. Geometric clustering outperforms both the K-means clustering significantly
and the individual techniques slightly in finding the more optimal performances. Figure
B.8 shows the cycles needed for the procedure to optimize the highrise building spatial
design. The average amount of cycles needed for geometric clustering is 6.8 cycles, whereas
the average amount of cycles required for individual assessment is 2.0 cycles. With the
size and complexity of the presented building designs a cycle takes around a minute to
complete, thus being a time difference of 6.8 versus two minutes.

Lowrise - Structural Design Highrise - Structural Design

2 2
18 Total Simulations: 1440 ; 18 Total Simulations: 1440
161 i 6
o} -+ 0 1.6
c | c
S14 - ! 1814t
O | : O
[
812 L | | 1812}
c | | c
© © S :
E 1= } E 1 ‘
g | B g 1 il
Dost - : 1 o8t ‘ !
0 : I 2 N |
'E 061 | | 1 E 06 | }
nq:) } 4L & T |
04 r e : 04 ; O
1
0.2 0.2
L -
0 1 1 1 O 1 1 1
Kmeans Geometric Individual Kmeans Geometric Individual
Space Assessment Techniques Space Assessment Techniques
(a) Lowrise Design (b) Highrise Design

Figure 5.3: Performance assessment results for set 2 for structural performances. Only the best
cycle of each parameter combination is considered.

21

5.2 Simulations Using Parameter Set 2 5 RESULTS

Modification Options Since parameter set 1 focused on the individual assessment
of spaces, and the K-means algorithm did not prove to be effective, for this section a
subset is filtered and includes only the solutions of geometrical clustering. The results
for the modification techniques of geometrical clustering are illustrated in Figure B.9.
Each of the modification techniques is capable of consistently improving a building spatial
design’s performance. Some difference can be observed in the scaling graphs between the
techniques that scale over a single axis and those that scale over multiple axis. Even for
the lowrise design which is stretched in x direction, thus scaling in y direction intuitively
seems as a more effective method. Nevertheless, scaling over simultaneously x and y axis
reaches a better solution than scaling over either x or y axis. The sweeping techniques
over the y dimension does outperform those which modify over the z dimension, with this
modification only a couple of spaces are altered and most of the spaces are still in their
cubical shape. While all solutions are within the stated constraints of space count and
volume, not all results are desired spatial designs. Especially with modifications over the
z direction spaces take shapes which are unrealistic for a normal space size, e.g. very high
spaces compared to their width and/or depth as Figure 5.4 illustrates. Section 5.3 will
elaborate more on the topic of unrealistic building designs.

Highrise Design

Geometrical Clusters - Sweeping Z/B - Split Worst Space - Split Preference ZXY

B " . | -
1:3.91e+06 2: 3.67e+06 3: 3.32e+06 4:2.95e+0 5: 2.60e+06

6:2.33e+06 7:2.16e+06

Figure 5.4: A simulation of co-evolutionary building spatial design optimization for the highrise
design for the structural discipline. As the optimization goes further in cycles the building spatial
design becomes more unrealistic with spaces of 3m wide, 3m deep and 18m high.

Splitting Options The results for the splitting options are illustrated in Figure B.10.
It can be observed that splitting the worst space results for both the cube and lowrise
design results in the best solutions. However, just as in section 5.2.1 these splitting result
in spaces that have an undesirable height to width/depth relation, as Figure 5.4 illustrates.
The other two options, split largest or best, have averages that are about equal and are
both capable of improving a building spatial design’s structural performance. Figure B.11
shows the difference in splitting preference.

5.2.2 Building Physics Optimization

In the following paragraphs the results of optimization of the three designs towards the
building physics discipline using parameter set 2 will be shown and elaborated.

22

5.2 Simulations Using Parameter Set 2 5 RESULTS

Performance Assessment Figure 5.5 shows the results of the performance assess-
ment techniques. The individual assessment approach does not lead to improved building
physics performances, in accordance with parameter set 1, see section 5.1.2. The K-means
techniques is comparable to the individual approach in such a manner that it groups equal
performing spaces. Thus instead of removing the corner spaces one-by-one, they are all
removed as one cluster and again moving to a spherical approach. The geometrical clus-
ter technique does result in increased building physics performances for all three designs.
With the approach of considering a facade as one cluster, designs are capable of retaining
the square shapes and smooth facades in the overall spatial design.

Lowrise - Building Physics Highrise - Building Physics

1.2 1.2
|
Total Simulations: 1440 T Total Simulations: 1440 }
| |
1.15 I 115+ I
0] | (0] l
o)) | o
C C
8 | e
O 11} . O 11¢F
(0] . [0 :
[&] [&] i
c] c H
@© ' @© .
Etosf 1 E105¢ ! :
5 | w 5 7 |
o ‘ o e
s gl L s o
s | - B 5 |
[0] [0] i
o o : T
0.95 0.95 .
0-9 1 1 1 09 1 1 1
Kmeans Geometric Individual Kmeans Geometric Individual

Space Assessment Techniques

Space Assessment Techniques

(a) Lowrise Design (b) Highrise Design

Figure 5.5: Performance assessment results for simulation set 2 for building physics performances.
Only the best cycle of each parameter combination is considered.

Modification Options Figure B.13 shows the results of the modification techniques
focused on geometrical clustering. The most effective modifications are those that steer a
design towards a cubical shape. Improvements for the cube design are minimal, the highest
improvement is 0.4%. While for the highrise design improvements of over 5 % are found.
The lowrise design profits most from modifications over the y axis, which is logical since the
building is directed in = direction thus the building spatial design evolving into a square
shape. For the highrise design the scaling over x and y axis combined is the most effective
approach. Except for modifications over only the z axis, all modification techniques show
the ability of improving a building physics design towards the BP discipline.

Splitting Options Figure B.14 show the results for the different split techniques for
geometrical clusters. For the cube and lowrise design the difference between the parameters
is small. Figure B.15 shows that their are small differences between the preferred splitting
dimensions. That differences are small is most likely due to that the best solutions are
found after multiple iterations, so the procedure has had the opportunity to split all
dimensions.

23

5.3 Unrealistic Building Spatial Designs 5 RESULTS

5.3 Unrealistic Building Spatial Designs

While certain parameters are capable of improving the performances of the initial building
spatial designs, not all solutions are desirable from an AEC engineer’s point of view, see
Figure 5.4. To investigate this, all simulations of parameter set 2 are checked for the
requirements given below.

o If a space’s height is more than the average of the width and depth, and the space’s
height is at least 3000 mm.

e If a space’s width is more than 20 times the depth.

o [f a space’s depth is more than 20 times the width.

These rules are set in order to maintain some kind of realistic shapes to spaces. The height
is related to the width and depth of a space, and not limited to a certain maximum height.
While not all spaces are required to be high, certain spaces require to be higher than the
3 meters of a standard work or living environment, i.e. foyers, theater stages, shops, etc.
When a building spatial design is checked with the requirements it’s level of unrealistic
spaces is also calculated. Let p be the ratio of spaces that are unrealistic versus the total
amount of spaces in a design, and v the set of designs that contain one or more unrealistic
spaces. The level of unrealistic spaces (L.U.) is defined as the average p for each design
in v.
amount of unrealistic spaces

= 5.1
a total amount of spaces (5.1)

Table 5.3 presents the values of unrealistic designs for the simulations in parameter set
2. All even columns show the percentage of unrealistic building for those parameters, all
uneven columns shows the level of unrealistic spaces, with 0 being completely unrealistic
and 1 being realistic. When calculating the average percentages for performance evaluation
it shows that 38% of all structural and 42% of all building physics optimizations result
in unrealistic buildings. From the table it is also clear that modifications which operate
in the z direction have a large impact on these numbers. Modifications over x and y
almost never result in unrealistic designs. The values for splitting dimension preference
are consistent for each design and discipline, showing that these parameters all have an
equal contribution to unrealistic building spatial designs.

24

5.3 Unrealistic Building Spatial Designs 5 RESULTS
H Cube Lowrise Highrise
SD SD BP BP SD SD BP BP SD SD BP BP
% LU % L.U. % LU % L.U. % L.U. % L.U.
Performance Assessment
Indi 38.0 0.083 43.0 0.072 \ 39.0 0.076 410 0.15 | 37.0 0.24 420 0.029
K- 44.0 0.17 44.0 0.23 43.0 0.22 44.0 0.29 41.0 0.33 44.0 0.24
means
Geo 30.0 0.14 370 0.052 | 31.0 0.091 440 042 |350 0.38 380 0.34
Scaling Modification
X 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0
Z 100.0 0.14 100.0 0.11 | 80.0 0.16 8.0 0.18 |80.0 031 80.0 0.09
XY 0 0 0 0 0 0 0 0 0 0 0 0
X7 100.0 0.12 100.0 0.13 97.0 0.044 100.0 0.34 93.0 0.53 100.0 0.24
YZ 100.0 0.11 100.0 0.11 100.0 0.11 90.0 0.53 93.0 0.56 100.0 0.25
XYZ | 920 0.079 95.0 0.2 90.0 0.15 930 0.29 |87.0 0.36 100.0 0.25
Sweeping Modification
X/B 0 0 0 0 0 0 0 0 0 0 0 0
X/M || 0 0 0 0 0 0 0 0 0 0 0 0
X/E 0 0 0 0 0 0 8.9 0.003 | O 0 0 0
Y/B 0 0 0 0 0 0 0 0 0 0 0 0
Y/M 0 0 0 0 0 0 0 0 0 0 0 0
Y/E 0 0 0 0 0 0 0 0 0 0 0 0
Z/B 69.0 0.1 92.0 0.057 | 87.0 0.13 100.0 0.11 79.0 0.069 93.0 0.044
Z/M 69.0 0.15 920 0.053 | 80.0 0.11 100.0 0.077 | 81.0 0.074 93.0 0
Z/E 69.0 0.11 92.0 0.071 | 79.0 0.09 100.0 0.14 83.0 0.032 93.0 0.027
Splitting Options

Large 36.0 0.089 40.0 0.086 | 35.0 0.12 41.0 0.22 31.0 0.34 39.0 0.15
Best 41.0 0.079 430 0.12 | 41.0 0.08 430 0.23 | 39.0 0.3 42.0 0.13

36.0 0.19 43.0 0.11 39.0 0.14 42.0 0.25 42.0 0.24 42.0 0.11
Worst

Splitting Dimension Preference

XYZ 38.0 0.11 42.0 0.15 39.0 0.12 42.0 0.31 38.0 0.35 41.0 0.17
XZY 38.0 0.1 42.0 0.14 39.0 0.07 43.0 0.19 39.0 0.25 41.0 0.13
YXZ 38.0 0.12 42.0 0.11 39.0 0.12 42.0 0.32 39.0 0.38 41.0 0.17
YZX 38.0 0.11 42.0 0.092 | 38.0 0.091 42.0 0.26 38.0 0.29 41.0 0.13
ZXY 37.0 0.12 41.0 0.067 | 38.0 0.14 42.0 0.18 35.0 0.23 41.0 0.11
7YX 37.0 0.13 41.0 0.073 | 38.0 0.14 42.0 0.14 35.0 0.22 41.0 0.071

Table 5.3: Every even columns shows the percentage of unrealistic building designs for the param-
eters given. FEvery uneven column shows the level of unrealistic(L.U.) spaces in those unrealistic
designs, with 1 being a complete unrealistic design and 0 being a realistic design.

25

6 DISCUSSION

6 Discussion

This study focuses on the extension of a heuristic optimization tool for early stage building
spatial designs. It shows that heuristics optimization procedures are capable of improving
a building spatial design for structural or building physics disciplines, evolving it during
multiple cycles and increasing its performance. While a multitude of parameters have
been implemented, many more can be developed. The study as shown provides an early
exploration of basic modifications and rules to learn from and get inspired by to find and
develop new heuristic procedures. The Heuristic Building Optimization toolbox offers an
infrastructure to accommodate future research and development. This chapter discusses
multiple topics which are up for debate and should be taken into consideration while
reading this thesis.

Multi-Disciplinary Optimization Due to the vastness and complexity of the param-
eter sets developed in this research no elaboration of multi-disciplinary optimization has
been carried out. An understanding of individual disciplines is necessary to ensure proce-
dures are, first of all, capable of optimizing at all. That not all the presented procedures
are capable of optimizing certain disciplines can be seen with the individual assessment of
spaces not being able to optimize for the building physics discipline.

Constraints The question if all solutions are desirable can be asked. Multiple param-
eter combination show that structural performances of buildings can increase due to a
decreasing floor area. That this is favorable for the resulting performance follows from the
fact that less floor area, gives less load on the structure and thus less structural compli-
ance. Two major parameters involved in these transformations are the modifications in
height and the splitting of the worst spaces in a design. While the study aims to improve
performances given a constant volume and space count, in the architecture, engineering
and construction industry the amount of floor area is largely of importance in determining
the monetary value of a building spatial design. Thus the argument can be made that the
volume constraint is not practical for building spatial design optimization, and a better
constraint would be floor area of a building spatial design. Another possibility can be
found in the addition of a new discipline for the BSO Toolbox focused on (monetary)
value of spaces and buildings, so if the floor area of a building decreases its real estate
performance decreases and the solution is worse than its predecessor.

Simulation Settings The structural and building physics properties are held constant
during this study to enable a comparison between the parameters introduced in the heuris-
tic procedure. Altering the load cases, material properties, and constraints might lead to
different solutions and insights. Especially since the ratio between floor and wall loading
proved to be relevant in this study.

Performance Assessment The K-means algorithm used in this study is not optimized
for these problems. It clusters spaces using a predefined maximum amount of clusters and
iterations after which it finds the optimal amount of clusters and distribution of spaces
over those given the provided settings. However, these settings might not result in the
global optimum for the clustering of building spatial designs. For geometrical clustering
only the outer layer of a facade is added to a cluster, however, adding multiple layers of
spaces to clusters might make the approach more powerful and efficient since less iterations
will be necessary to reach the optimal solution.

26

7 CONCLUSIONS

Space Removal For structural optimization, it can be stated that highly aggressive
removal approaches are more effective in moving towards a more optimal solution than low
aggressive removal approaches. This goes for both the quality of the found solution as well
as the amount of cycles required to reach it. Optimizing a building spatial design towards
the building physics discipline was only achieved after considering geometrical clusters,
those are only capable of removing one cluster at a time for the current implementation.

Modifications In the sweeping procedure three locations(begin, middle, end) are cur-
rently implemented. It should be obvious that more options are possible at any location in
the building, or using specific geometry properties of the building spatial design or spaces
in it.

Splitting Spaces are always split over their largest dimension in this study. The optimal
shape, for designs with a single space, for building physics is cubical and for structural
design it is a building with a square floor plan. In order to achieve these shapes it is re-
quired to split the largest dimension. However, when constructing building spatial designs
out of multiple spaces splitting over other dimensions might increase performances. For
structural design this is mainly due to the increase in structural volume that comes with
non-square floor plans, a square has the optimal ratio between circumference and area.

7 Conclusions

The goal of this graduation project is to develop heuristic rules for the optimization of early
stage building spatial designs. In order to answer this goal, two sub questions have been
formulated namely: 1: How to interpret performance evaluations of a early stage building
design?, and 2: How to use that interpretation to modify the early stage building spatial
design such that its performance improves? For the first question it can be concluded that
the performances of a building spatial design can be evaluated with either taking a high
or low energy as best performance for a space, which should be chosen is dependent on
the nature of the discipline optimized. The research shows that the structural discipline
should be evaluated with a high (strain) energy as best, i.e. spaces are rated from high to
low (strain) energy as best to worst performance. Thus the procedure removes material at
locations where it is not fully utilized and add material at locations where a high compli-
ance is. This principle is in accordance with the proportional topology research of Biyikli
and To (2015). The building physics discipline should be evaluated with a low (thermal)
energy (loss) as best, i.e. spaces are rated from low to high (thermal) energy (loss) as
best to worst performance. Thus the procedure removes the spaces with most facade area,
while keeping the spaces that are surrounded by others.

When the performances are set they are assessed with different procedures. For struc-
tural design all three assessment techniques (K-means clusters, geometrical sets, Individual
Spaces) are capable of improving the initial spatial design. Of these three techniques, geo-
metrical sets result in solutions with the best performances. However, the computational
time that is required for geometrical sets is higher than for the other techniques, up to
six times of the approach with individual spaces. Optimizing for the building physics
discipline is only possible with the geometrical cluster technique, both the K-means and
the individual approach do not consistently lead to an improvement for building physics
performances. The difference between the techniques can be found in the type of geomet-
rical object the technique wants to approach. For the individual and K-means technique

27

8 RECOMMENDATIONS

the optimization moves towards a spherical shape, whereas the geometrical technique let
the optimization move towards a cubical shape. A perfect sphere has the ideal surface
to volume ratio. However, the building spatial optimization toolbox is developed in an
orthogonal space, thus spherical shapes can only be approximated and the ideal surface
to volume ratio is found in the cubical shape.

The second question has several parameters involved. The first parameter concerns
the amount of spaces removed in each cycle and the amount of cycles required to reach the
best solution of that parameter. For structural design it can be stated that, when using the
individual assessment, a more aggressive removal approach (30%, 40%, or 50% of spaces
removed) leads to better performances than the less aggressive approaches (one space, 10%,
or 20% of spaces removed). Besides leading to a better result, the aggressive approaches
are also more effective, i.e. they reach their optimal solution in less cycles. Since the
individual assessment of spaces does not lead to improved solution for building physics
optimization, the individual removal percentages also do not result in improved solutions.
Removal in combination with cluster assessment is done by removing one cluster at the
time. For structural optimization removing a cluster of either K-means or geometrical
procedure result in more optimal solutions. For building physics optimization removing
a cluster constructed with the K-means procedure does not lead into improved solutions,
removing a cluster constructed by the geometrical procedure does result into improved
solutions.

After spaces are removed from the building spatial design the remaining spaces are
modified to meet the volume constraint set. The most optimal modification techniques
for structural heuristic optimization are those that reduce the total height of a building
spatial design and keep the floor plan of the building square. Several improved solutions
are found which included modification of the height of a design. However, they alter the
total amount of load applied to the building by reducing the total floor area while keeping
the total surface area equal to the initial design. So while the results are within the
boundaries set for this research, the question arises whether these results are wanted. The
most optimal techniques for building physics optimization are those that move the building
spatial design towards a cubical shape. For the lowrise design that can be observed with
the most effective method being modifications in the y direction. The highrise design
profits most from modifications over x and y simultaneously. Both lowrise and highrise
benefit from other modification techniques as well, steering the designs more towards a
cuboid shape.

The four different techniques (split largest, smallest, best, or worst) to split a space are
capable of improving a building spatial design’s performance. However, the procedures
of splitting the smallest or worst space result in a design where a set of small spaces and
a couple of large spaces are evolved. This leads to a reduction of total floor area when
combined with modifications in height direction. For the preference of which dimension
to split little difference can be found between the six options (preference X-Y-Z, X-Z-Y,
Y-X-Z, Y-Z-X, Z-X-Y, or Z-Y-X). This is mainly due to the fact that the procedure does
not find the optimal solution within a single cycle, and if the procedure runs over multiple
cycles the other dimensions will be split.

8 Recommendations

The presented heuristic building optimization procedure shows that it is capable of opti-
mizing building spatial design given the constraints and parameters provided. However,
a part of the solutions in the design search space are not desirable due to the geometric

28

8 RECOMMENDATIONS

properties and relations of spaces. Following research should reconsider the constraints
and definitions as stated in the presented research. A shift towards floor area constraints
instead of volume constraint might be a more preferable tool from an engineer’s point of
view.

The calculation of structural performances is another topic up for debate, currently the
structural performance of a space is the summation of the strain energy of all structural
elements of a space. When the stiffness of one wall would be lowered, e.g. due to windows,
the strain energy in the space would rise but whether the space should have a better
performance is uncertain. A possible solution to deal with this situation might be to set
a strain energy relative to the amount of structural volume in a space.

Another structural adjustment is the determination of maximum deflection. Currently,
the amount of deflection is not reviewed and taken into account while the size of most
real structural elements are determined by the maximum allowable deflection. Especially
when multiple materials are used in the structural models. A space with stiffer or thicker
material might have a higher amount of strain energy over a space with less stiff or thinner
material, while the later space might have a larger deformation and thus would benefit
from adding additional material, i.e. splitting the space.

The procedure for geometrical clustering can also be improved and evolved. Instead
of searching for the outer layer of spaces a range can be set, i.e. 20 % of the width, all
spaces within this range are clustered. This might allow for a more effective approach in
the sense of computational power.

A completely new approach might be to keep the global shape of a building spatial
design intact, and altering the configuration of spaces within the building spatial design,
e.g. for structural design it might be beneficial to merge spaces at the location of low
compliance and splitting spaces at the location of high compliance.

The structural loads in this study’s settings are completely symmetrical. However,
governing load combinations in real structures might include asymmetrical load such as
snow, wind, or life loading. These data are location specific but might result in different
optimal results. The building physics optimization of the cube design showed that the
optimal shape is near cubical but due to the ground temperature the height is slightly
smaller than the width and depth. Altering the ground profile might result in a different
optimal design.

The heuristic procedure as developed allows for multidisciplinary optimizations. How-
ever, no multidisciplinary study has yet been conducted since the procedure had to be
applied to single discipline optimizations first. A follow up study can make use of the in-
frastructure created and the parameters already investigated to execute multidisciplinary
optimizations.

Acknowledgments

The author wishes to express his gratitude towards H. Hofmeyer, S. Boonstra, and B.
d. Vries for their dedication, enthusiasm, and support during the supervision and devel-
opment of this research. Th. de Goede for his input, criticism and perspective on all
aspect concerning this project. Thanks to friends and fellow students for their questions
and interest, which made me critically think about formulations and explanations. And
special thanks to my family who fully supported and enabled this graduation project to
be made and finished.

29

References References

References

Adamski, M. (2007). Optimization of the form of a building on an oval base. Building
and Environment, 42(4), 1632 - 1643.

Akin, . (2001). Chapter 6 - variants in design cognition. In C. M. Eastman, W. M. Mc-
Cracken, & W. C. Newstetter (Eds.), Design knowing and learning: Cognition in
design education (p. 105 - 124). Oxford: Elsevier Science.

Ball, G. H., & Hall, D. J. (1965). Isodata, a novel method of data analysis and pattern
classification.

Bichiou, Y., & Krarti, M. (2011, 12). Optimization of envelope and hvac systems selection
for residential buildings. Energy and Buildings, 43, 3373-3382.

Biyikli, E., & To, A. C. (2015, 12). Proportional topology optimization: A new non-
sensitivity method for solving stress constrained and minimum compliance problems
and its implementation in matlab. PLOS ONE, 10(12), 1-23.

Boonstra, S. (2016). Multi-disciplinary optimisation (master thesis)’. TU/e Repository.

Boonstra, S., van der Blom, K., Hofmeyer, H., Emmerich, M. T. M., van Schijndel,
A. W. M., & de Wilde, P. (2018, 3 20). Toolbox for super-structured and super-
structure free multi-disciplinary building spatial design optimisation. Advanced En-
gineering Informatics, 36, 86—100.

Bouchlaghem, N., & Letherman, K. (1990). Numerical optimization applied to the thermal
design of buildings. Building and Environment, 25(2), 117 - 124.

Cheung, C., Fuller, R., & Luther, M. (2005). Energy-efficient envelope design for high-rise
apartments. Energy and Buildings, 37(1), 37 - 48.

Chow, T., Zhang, G., Lin, Z., & Song, C. (2002). Global optimization of absorption chiller
system by genetic algorithm and neural network. Energy and Buildings, 34 (1), 103
- 109.

D’Cruz, N. A., & Radford, A. D. (1987). A multicriteria model for building performance
and design. Building and Environment, 22(3), 167 - 179.

der Merwe, D. W. V., & Engelbrecht, A. P. (2003, Dec). Data clustering using particle
swarm optimization. In Fvolutionary computation, 2003. cec ’03. the 2003 congress
on (Vol. 1, p. 215-220 Vol.1).

European Construction Tehnology Platform. (2005). Challenging and changing europe’s
built environment: A vision for a sustainable and competitive construction sector
by 2030.

Flager, F., & Haymaker, J. (2007). A comparison of multidisciplinary design, analysis
and optimization processes in the building construction and aerospace industries.

Flager, F., Welle, B., Bansal, P., Soremekun, G., & Haymaker, J. (2009). Multidisciplinary
process integration and design optimization of a classroom building. Journal of
Information Technology in Construction (ITcon), 14(38), 595-612.

Friess, W. A., Rakhshan, K., Hendawi, T. A., & Tajerzadeh, S. (2012). Wall insulation
measures for residential villas in dubai: A case study in energy efficiency. FEnergy
and Buildings, 44, 26 - 32.

Fuyama, H., Law, K., & Krawinkler, H. (1997). An interactive computer assisted system
for conceptual structural design of steel buildings. Computers And Structures, 63(4),
647 - 662. (Computing in Civil and Structural Engineering)

Haymaker, J., Kunz, J., Suter, B., & Fischer, M. (2004). Perspectors: Composable,
reusable reasoning modules to automatically construct a geometric engineering view
from other geometric engineering views. Advanced Engineering Informatics, 18,
49-67.

30

References References

Hofmeyer, H., & Davila Delgado, J. M. (2013). Automated design studies: Topology versus
one-step evolutionary structural optimisation. Advanced Engineering Informatics,
27(4), 427 - 443.

Hofmeyer, H., & Davila Delgado, J. M. (2015). Coevolutionary and genetic algorithm
based building spatial and structural design. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 29.

Hofmeyer, H., & Emmerich, M. T. M. (2013). Excellent buildings using forefront
mdo: Lowest energy consumption, optimal spatial and structural performance.
NWO-NTT Proposal. (For more information: https://www.nwo.nl/onderzoek-en-
resultaten/programmas,/open+technologieprogramma/projecten/2015/2015-13596,
accessed on 18-09-2019)

Horvéth, I. (2005). On some crucial issues of computer support of conceptual design
(D. Talaba & T. Roche, Eds.). Dordrecht: Springer Netherlands.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8), 651 - 666. (Award winning papers from the 19th International Conference on
Pattern Recognition (ICPR))

Jedrzejuk, H., & Marks, W. (2002). Optimization of shape and functional structure of
buildings as well as heat source utilisation. partial problems solution. Building and
Environment, 37(11), 1037 - 1043.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information
theory, 28(2), 129-137.

Machairas, V., Tsangrassoulis, A., & Axarli, K. (2014). Algorithms for optimization of
building design: A review. Renewable and Sustainable Energy Reviews, 31, 101-112.

MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate
observations. Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, 1(14), 281-297.

Marks, W. (1997). Multicriteria optimisation of shape of energy-saving buildings. Building
and Environment, 32(4), 331 - 339.

Okudan, G. E., & Tauhid, S. (2008). Concept selection methods—a literature review from
1980 to 2008. International Journal of Design Engineering, 1(3), 243-277.

Rezaee, R., Brown, J., Haymaker, J., & Augenbroe, G. (2018, 08). A new approach to
performance-based building design exploration using linear inverse modeling. , 1-27.

Ritter, F., Geyer, P., & Borrmann, A. (2013). The design space exploration assistance
method: constraints and objectives.

Shea, K., Aish, R., & Gourtovaia, M. (2005). Towards integrated performance-driven
generative design tools. Automation in Construction, 14(2), 253 - 264. (Education
and Research in Computer Aided Architectural Design in Europe (eCAADe 2003),
Digital Design)

Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bulletin de l’academie
polonaise des sciences, 1(804), 801.

Torres, S. L., & Sakamoto, Y. (2007). Facade design optimization for daylight with a
stmple genetic algorithm.

Verbeeck, B., Van Steirteghem, J., De Wilde, W. P., & Samyn, P. (2005). The need for nu-
merical techniques for the optimization of structures using morphological indicators.
Computer Aided Optimum Design in Engineering I1X, 65-72.

A OVERVIEW HBO TOOLBOX

A Overview HBO Toolbox

This appendix gives an graphic overview of the procedures in the HBO Toolbox as devel-
oped for this research. Illustrated in Figure A.1 is the loop which the HBO optimization
follows. The procedure of Performance Calculation is not elaborated since it was de-
veloped in earlier research. For Performance Evaluation, Space Ranking, and Building
Modification the different choices and parameters are elaborated in Figures A.2, A.3, and
A 4 respectively

No Final Design |
w Yes
New Design | | Initial Design |
/ i \
(Building Modification) (Performance CalculatiorD
(Space Ranking) (Performance Evaluation)

Figure A.1: The optimization loop of the heuristic building optimization procedure.

Euclidean Distance

Aggregate

Max Energy Individual

Evaluated Performances

Performance Values

Min Energy Clustered Non-Aggregate

K-Means
Geometrical
Figure A.2: All choices and possibilities developed to evaluate performances

Best Spaces
Worst Spaces

Evaluated Performances Spaces Ranked

Alternating Best
Alternating Worst

Figure A.83: All choices and possibilities developed to rank spaces

ii

A OVERVIEW HBO TOOLBOX

Remove 10 % ll Split Largest .
Remove 20 % Split Smallest

Spaces Ranked I——)(Remove 30 %)

Figure A.J: All choices and possibilities developed to modify building spatial designs

Building_Performances

- initial_volume:double
- initial_space_count:int

+ Building_Performances()

+ Building_Performances(MS_Building,
HBO_Settings 2
+ Building_Performances(MS_Building, group_performances
Building_Performances)

+ ~Building_Performances()

i . + space_|D:vector<int>

+ create_facade_clusters(MS_Building).:VO'd 1.* 1..1 | + initial_performances:vector<double>

+ add_group(Group_Performances):void <> + modified_performances:vector<double>
+ delete_group(int):void

+ ?d_count()':int o +id_in_space(int):bool
+ id_belonging_group(int):int + best_modified():double
o . + worst_maodified():double
+ best_group_initial():int J

+ worst_group_initial():int

+ best_group_modified():int
+ worst_group_modified():int
+ best_group_distance():int
+ worst_group_distance():int

+ get_initial_volume():double
+ get_initial_space_count():int

Figure A.5: UML class diagram of the Building Performances and Group Performances classes as
developed for this research

iii

A OVERVIEW HBO TOOLBOX

HBO_Settings

- discipline_involved:discipline
- cycles:int

- individual_or_clus:assessment_level
- clus_type:cluster_type

- ranking_type:space_ranking
- removal_type:space_removal_type

- rescaling:rescaling_options

- sweep_option:sweeping_options

- sweep_location:sweeping_location
- split:splitting_options

- split_pref:splitting_preference

- sd_results:SD_Building_Results
- bp_results:BP_Building_Results

- weights:vector<double>

- space_removal_requested:int
- space_removal_selected:int

- inverse_SD:bool

- realistic_building:double = 1.0
- terminate_simulation:bool = false

- assessment_options:performance_assessment
- aggregate_options:aggregate_disciplines

- modification_options:building_modification

Figure A.6: UML class diagram of the settings structure as developed for this research

v

B SIMULATION RESULTS

B Simulation Results

This appendix contains the boxplots with the simulation results.

B.1 Parameter set 1

Cube - Structural Design Lowrise - Structural Design
St Total Cycli Max:2256 | | | | S TTowiCyciMaxagad |~~~ |77
45} Total Cycli Min:1248 1 45t Total Cycli Min:2906 1
o o
> 4r 1 2 4r 1
8 . 8 .
O 35¢r f 1 O 351 . 1
8 = 8 ¢
c 3t i 1 c 3r : 1
£ ! £
= L H q = E t 4
S 25 i 8 2.5 ,
lg.) 2r T 1 g 2r : 1
= | = L 4
£15} ‘ | 1 715 !
(0] h‘ﬁ | [0] |
X 4 - o — ——
\
05} T 1 05F T |
ok . ‘] ot : .]
Max Best Min Best Max Best Min Best
Minimum Or Maximum Compliance As Best Performance Minimum Or Maximum Compliance As Best Performance
(a) Cube Design (b) Lowrise Design
Highrise - Structural Design
S~ TTowicyciMax2635 | [|]
45t Total Cych Min:894 |
S 4t 1
c
3 .
535F 1
8 3
c 3r T
@® .
Eost]
L i
o 2f 1
0 -
215} | ‘ 1
« \ ‘
[3) | 1
N —
05 ‘ 1
1
0 L L L 1
Max Best Min Best

Minimum Or Maximum Compliance As Best Performance
(¢) Highrise Design
Figure B.1: Simulation results from set 1 for three different building spatial designs optimized

towards structural design. Values are normalized towards the performance of the initial design.
For each design the high and low structural compliance results are shown.

B.1 Parameter set 1 B SIMULATION RESULTS

Cube - Structural Design Lowrise - Structural Design

2 T T 2 T T
"~] Total Simuiations: |~~~ "~~~ |~ | Total Simulations: |~~~ ~ "~ 7
181|416 B . 181 | 443]
\
2161 | 1 216 1
o)) — | [)) _ o
c | c | T
S 14F — [1 S 14¢ ‘ | J
o | | - o - | |
812t LT b 812} = ' .
5 N |3 - .
= 1 | I_Iﬁ | ! | 1= 1 | ’_L‘ l_‘_\
= | = -
s L] K [g B
& 0.8 N L o ‘ 1 & 0.8 i I 1
i I !
S os| ! ' ! | S Y N - |
®© N : | | © . | |
© : I | [[© | [T I I
o 04} - i | w 1 — @ 04t . N | | | 1
1 .
| | €L € I .
021 + 1 021 N 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 10% 20% 30% 40% 50% Top floor 1 10% 20% 30% 40% 50% Top floor
Removal Techniques Removal Techniques
(a) Cube Design (b) Lowrise Design
) Highrise - Structural Design
Total Simulations:
181 | 448 1
216} .
()]
5
S 14¢ .
O
12t .
g
E e
Ke) \
gosr . } T . : -
) | T - n
Z06f ' | | \ .
x \ %
[9)
@ 04f i E g EE' e
\
I
02} + ! | ‘ '
L n L 1 '
0 1 1 1 1 1 1 1

1 10% 20% 30% 40% 50% Top floor
Removal Techniques

(c) Highrise Design

Figure B.2: Normalized simulation results for three different building spatial designs. Normalized
values are calculated towards the performance of the initial design. For each design the difference
between the amount of removed spaces is shown.

vi

B.1 Parameter set 1

B SIMULATION RESULTS

Structural Design

Scaling Sweeping
2 T T T T T T T 15 T T T T T T T T T
\
(]
5 2 .
@
51.5- 16
' 1 8 e L H o
— = P
e El L o+ L g . = = =
o o
a 2 1 B £
o
- I ;
> L 41 =
ﬁOYS N i
© 1 T [}
x 1 e
ol 05— : : : : : : : :
X Y Z XY X7 74 XYZ XB XM XE Y/B .Y/M Y{E ZB ZM ZIE
Modification Techniques Modification Techniques
2 T T T T T T T 2 T T T T T T T T T
[0} (]
jo2] jo2}
g s
o 5151 16150 - . :
o : —
2 BE B I R -
@ . J—
E T T | | £ 4 EeS - | -
== = ST T 8 =]
‘© h = —
iy : 8 1l 1L @
o
.2 05} 1 1 205F 1
s 1|3 1
& 1 &
L L
0 X % z XY XZ %74 XYZ XB XM XE Y/B 'Y/M YI.E zZB ZIM ZIE
Modification Techniques Modification Techniques
2 T T T T T T T 2 T T T T T T T T T
[()
5 2
© |]l © |]
° 51'5 51.5
2 3 g
= 5 &
£ £ 4 . ; - § . ES € — - T
o 5 - ! - 15" '
— 2 _ €
o | - R N -
o (]
Rl @ Bl B B H & H ‘
© K
© [0}
2 1 g |1 I 1L 1 I 1 L
0 s ’ | . A L . . L . . A
X Y z XY Xz YZ XYZ XB XM XE YB YM YE zZB ZM ZE

Modification Techniques

Modification Techniques

Figure B.3: Scaling and sweeping modification results for structural performances for set 1. For
scaling the horizontal axis describes over which axis the building spatial design is scaled. The
horizontal axis for sweeping consist out of two elements: the first describes over which axis the
sweep is executed, the second at which location is the building spatial design with B, M, and E for
begin, middle, and end respectively.

vil

B.1 Parameter set 1 B SIMULATION RESULTS

Cube - Structural Design Lowrise - Structural Design

2 T T T 2 T T T
| | Total Simulations: 448 |~~~ ~ ~ T T T T |~ ~ [Total Simulations: 443 |~~~ — ~ T T T 7
1.8} 1 1.8}
816+ — 1 16
o \ o
14} ‘ — | 84}
S | 1 | | S T o
\ \ o | e - |
g 121 \ \ | | i g 127 <? <‘T> \ I
© \ I | ©) 03
E 1 “ 0 ' \ E 1 I i |
L L
Sf 08r ¢ | > 1 & 08r ‘
o ‘ [I o [
206 \ | 1 206 — ‘ \
L \ o ! ‘ \ |
9] | ‘ | © |
x 04r | £ L \ 1 r 04 r | e 1 I
e . L | * L
0 2 ' . 7 02 ' _I_
0 1 L 1 1 0 1 L 1 1
Largest Smallest Best Worst Largest Smallest Best Worst
Splitting Techniques Splitting Techniques
(a) Cube Design (b) Lowrise Design
5 Highrise - Structural Design
| Total Simulations: 448
18r 1
L 16¢ -
(o))
g
S 14¢ 1
O
812+ 1
c
R — ; o= j
[e) ‘ -T
Sosl | ' S
o \ - | |
: 0.6 | l ‘
-l m o
o ¢
x 04r T T b
| T I
02r ‘ £ | ‘ R
1 . e 1
O 1 1 1 1
Largest Smallest Best Worst

Splitting Techniques
(¢) Highrise Design

Figure B.4: Normalized simulation results from set 1 for three different building spatial designs.
Normalized values are calculated towards the performance of the initial design. For each design the
difference between splitting different spaces is shown.

viii

B.1 Parameter set 1 B SIMULATION RESULTS
5 Cube - Structural Design - 50 % Removal Lowrise - Structural Design - 50 % Removal
|~ [Total Simdlations: 32~ [~— ~ ~ T T T T |~ | Total Simulations: 39 [~ ~ ~ ~ T~ T T T
18} 1 18+
816} - 1 16+
(o)) ()]
< | c -
S 14 1 S14f | -
(@) o | _ _
812f o 1 812F 1 \ |
c c | | |
(] —_— (]
E 1 ‘ E 1
L % L
Sf 0.8 | b & 08r o o
[0 l (]
206} ‘ | g 2061
) | |) T I
Coal L | S .l [| | [
x 04 L r 04 | e | |
| | |
0.2¢ 1 02r 1 € .
0 1 1 0 1 1 1 1
Largest Smallest Largest Smallest Best Worst

- - -
S o] o] N

-
N

Relative Performance Changes
© o o o
N N (] o -

o

Splitting Techniques
(a) Cube Design

Highrise - Structural Design - 50 % Removal

‘ Total Simulations: 64 ‘

-1 . .
L \ I [1
\ — I [
i \ l 5 ‘ | | |
o)
© 1
L L L
Largest Smallest Best Worst

Splitting Techniques
(¢) Highrise Design

Splitting Techniques
(b) Lowrise Design

Figure B.5: Normalized simulation results for set 1 for three different building spatial designs.
Normalized values are calculated towards the performance of the initial design. For each design
the difference between splitting different spaces is shown. Only solutions are shown which have the
removal parameter of 50% removed.

X

B.1 Parameter set 1 B SIMULATION RESULTS

Cube - Building Physics Lowrise - Building Physics

N
n
L
N
©
T
.

° 135 Total Performances:29:13 ‘ 1 o 18r Total Performances:6047 1
o) + o)
c H C
8 137 ; . 817y]
O H O
8 1.25 | { g1°e
C C
g $ g 15} i
S 12 l 1 = .
£ £ 14} E _
5} o - .
o 1.15 _!_ 1 o H
2 | R ‘ 1
© 11r | 1 ©
© I o 12¢ :
o o o

1.05 7 11+ 4

T [4]
1 —+= 1 =
Building Physics Simulations Building Physics Cycles
(a) Cube Design (b) Lowrise Design
Highrise - Building Physics

15} . 1
o Total Performances:6§65
D14} 1
c
] .
<
o :
813t ! 1
bt .
© 1
£ !
o]
E 12} 1
o
9]
=
S 11t _
]
14 I

1

Building Physics Simulations

(¢) Highrise Design

Figure B.6: Normalized simulation results for set 1 for three different building spatial designs for
building physics. Normalized values are calculated towards the performance of the initial design.

B.2 Parameter set 2 B SIMULATION RESULTS

B.2 Parameter set 2

Cube - Structural Design Lowrise - Structural Design

2 2
‘ Total Simulations: 1248 ’ Total Simulations: 1440
1.8 : 1 1.8} . 1
g 1.6 ; % 1.6 A
e C |
-(CU 147 ° —_ b _E:D 141 —_ | i
(@] y _ | O : :
© | H [|] 3 L i I 1
% 1.2 4 | | % 1.2 —= : |
E 1 | : E 1= !
g —a— \ 8 S |
\
Lost —+ 9 1 dosp o : 1
2 | 2 : |
=06 T | 1 £ 06 | | 1
g ‘ | g : i
04+t 4 1 1 04t e _
02t 1 0.2f 1
0 1 1 0 1 1 1
Kmeans Geometric Individual Kmeans Geometric Individual
Space Assessment Techniques Space Assessment Techniques
(a) Cube Design (b) Lowrise Design
5 Highrise - Structural Design
’ Total Simulations: 1440
1.8+ 1
16 1

12r 1

Relative Performance Change

|
0.8 : 1
- I
06 ¢ } | |
\ |
04t o g
021 o ' 1
L L
0 1 1 1
Kmeans Geometric Individual

Space Assessment Techniques

(¢) Highrise Design

Figure B.7: Performance assessment results for set 2 for structural performances.

xi

B.2 Parameter set 2 B SIMULATION RESULTS

Highrise - Structural Design - Cycle Number
T

T T
8 | ! i
|
57f | f
) | o
o6 | T 7
[} I I
st \ \ 4
S |
z I
® 4+ | B
£ 3 !
KL —— — a
|
2+ T . | i
‘ |:’
1k 1 . i
1 L 1
Kmeans Geometric Individual

Space Assessment Techniques

Figure B.8: Optimal amount of cycles for the optimization of the highrise design towards structural
performance for different assessment techniques for set 2.

xil

B.2 Parameter set 2 B SIMULATION RESULTS

Structural Design - Geometrical Clusters

Scaling Sweeping
2 T T T T T T T 2 T T T T T T T T T
() ()
[=2} [}
5 5
§1.5- 515]
8 9 -
c % —
8f, gz - T - 1 T
33 P B Y T e P
8t 10 @ |°| [| £
=—] (0]
2 o5t 205 1
k& kS
2 @
0 Y 7 XY X7 Yz Xyz XB XM XE YB YM YE ZB ZM ZE
Modification Scaling Techniques Modification Sweeping Techniques
2 T T T T T T T 2 T T T T T T T T
S 3
= c
215t 215 T 1
© © T |
Q o _ ©
g | Pl
E E 1 E qllo] [o] o]
o £ s ':‘ = @ o M
3: 0@ D N : 2 o[L
o o
205} — = 4
3 L 509 L1
Q Q
o o
X Y z XY Xz Yz XYZ XB XM XE YB YM YE zZB zZM ZE
Modification Scaling Techniques Modification Sweeping Techniques
2 T T T T T T T 2 T T T T T T T T T
[(0]
o 61.5- 51,5- 1
2 & 8
[©
£ £ E 1
D) o S
=t £ o
o o) &
© © T ¢ <o
Z05F — 1 205F 1
© . T
2 7]
ilem Hasalliptems
0 . A L ol— L . L L L \ L L
X Y z XY Xz Yz XYZ XB XM XE YB YM YE zZB ZM ZE

Modification Scaling Techniques

Modification Sweeping Techniques

Figure B.9: Scaling and sweeping modification results for structural performances for set 2 for the
geometrical cluster technique. For scaling the horizontal axis describes over which azis the building
spatial design is scaled. The horizontal axis for sweeping consist out of two elements: the first
describes over which axis the sweep is executed, the second at which location is the building spatial
design with B, M, and E for begin, middle, and end respectively.

xiii

B.2 Parameter set 2 B SIMULATION RESULTS

Cube - Structural Design - Geometrical Clusters Lowrise - Structural Design - Geometrical Clusters
1.6 | Total Simulations: 288 1 16l | Total simuiations: 288 .
' |
|
2] L] » |
QE)’ 1.4 14 | .
c |
| 2
S 12r N ! 1 O 2t |]
8 \ ! 8 -
\ |
S ! | 5 | |
£ ! ! g | |
E 1 — ‘ ; E 1
Rel L ke ‘
g 5
08r L —] 0.8} J
2 | } 2 \
T e | 3 0.6 |
© 06} . o] e . L
T
\ 04} . e |
04r . L |
Largest Best Worst Largest Best Worst
Splitting Techniques Splitting Techniques
(a) Cube Design (b) Lowrise Design

Highrise - Structural Design - Geometrical Clusters
1

‘ Total Simulations: 288 |

09 1

0.8 1

0.7 - 1

\
[

06 } 1
\

05}

04

0.3

Relative Performance Changes

%444

02 ‘ 1

0.1 T 1

Largest Best Worst
Splitting Techniques

(c¢) Highrise Design

Figure B.10: Results for different split techniques for parameter set 2 for structural performances.

Xiv

B.2 Parameter set 2 B SIMULATION RESULTS

2 Cub‘e - Struc‘:tural Design - G‘eometri‘cal CIusFers 2Lowrise - Structural Design - Geometrical Clusters
18 Total Simulations: 288 Total Simulations: 288
8 1 181]
g 18] [gref :]
2 o
§ 14 J S 14 . |
<
12| | T | ST T]
8 1. | | 812 | . i | B
4 /4 [
(] © |
E 1 . , | —— ! . . |
ool L] MiE :
5 5 -
o8 1 o8t]
o v | | o v ‘ O
2 ' ! 2 ! |
T 06 | ' . F06F | | |]
& - | i : | S ‘ | 1 ! ! :
“oal " 1 L : L L o4f - 1L L
0.2r B 02 1
0 L L N \ L \ 0 L L L L L L
XYz XzY YXZ YzX ZXY ZYX XYz XzY YXZ YZX ZXY ZYX
Splitting Preference Splitting Preference
(a) Cube Design (b) Lowrise Design

2Highrise - Structural Design - Geometrical Clusters

‘ Total Simulations: 288 ‘

—_

M T
I
I
I
| T |
[[g
1 1 €L
XYz Xzy YXZ YzX ZXY ZYX
Splitting Preference

Relative Performance Changes

04r

021

(¢) Highrise Design

Figure B.11: Results for different split techniques for parameter set 2 for structural performances.

XV

B.

2 Parameter set 2

B SIMULATION RESULTS

Relative Performance Change

Relative Performance Change

Cube - Building Physics

1.2 T T
Total Simulations: 1247 e
|
115} }
|
1.1F
|
. |
1.05 . !
- ‘
|
[.
1 —
0.95
0.9 ! : !
Kmeans Geometric Individual
Space Assessment Techniques
(a) Cube Design
19 Highrise - Building Physics
. T T ?
‘ Total Simulations: 1440 :
|
1.15 |
|
111
H
1.05} ! :
L !
[!
— -
! [
—+
: T
0.95 L
0-9 1 1 1
Kmeans Geometric Individual

Space Assessment Techniques

(¢) Highrise Design

Relative Performance Change

1.2

1.15

11

1.05

0.95

0.9

Lowrise - Building Physics

Total Simulations: 1440 |
I
I
I
|
I
|

=3 L
T =

Kmeans Geometric Individual
Space Assessment Techniques

(b) Lowrise Design

Figure B.12: Performance assessment results for set 2 for building physics performances.

xvi

B.2 Parameter set 2 B SIMULATION RESULTS

Building Physics - Geometrical Clusters

Scaling Sweeping
o]], o]]
j=) o
g 5
F 4 <102 4
5 1.02 S5
8 8
§ 11— § 1M%<+ ¢ ¥ +
o £ ——= T = | E
Qo 5 S
3 2oost {5 008t]
(S o
2 2
= - 42096} 4
z 0.96 %
[}
o
“ooef 1% 004} |
X Y z XY XZ YZ XYZ XB XM XE YB YM YE zZB zZM ZE
Modification Scaling Techniques Modification Sweeping Techniques
jo2} jo2)
] s
S 1.02 1 6 1.02 E
g g 1 § 1 b————
v —o— © ————— —
= g == £ - & %=
S 3 - %‘ S o
g g 0.98 ==] % 098} -4 = 1
-l % %
2096 {1 2096 E
8 E
[0}
“ooaf] ®ooaf]
X Y z XY XZ YZ XYZ XB XM XE YB YM YE ZB ZM ZE
Modification Scaling Techniques Modification Sweeping Techniques
o 1041 1, roef]
2 o
(% c
§1o2r {1 8,0l i
Q o
2 8
S5 . g 1 ———
£ £ £ . . o
5 £
':% G 098 E == 1 Sossf |
== ~ Sml oo
S)
2096 g -;0.96-m ;] 1
© ©
o ===]
14
0.94 { & 094 4
X Y z XY Xz Yz XYz XB XM XE YB YM YIE ZIB ZIM ZIE
Modification Scaling Techniques Modification Sweeping Techniques

Figure B.13: Scaling and sweeping modification results for building physics performances for set 2
for the geometrical cluster technique. For scaling the horizontal azis describes over which azis the
building spatial design is scaled. The horizontal axis for sweeping consist out of two elements: the
first describes over which axis the sweep is executed, the second at which location is the building
spatial design with B, M, and E for begin, middle, and end respectively.

xvii

B.2 Parameter set 2

B SIMULATION RESULTS

Cube - Building Physics - Geometrical Clusters

T Tota! Simulations: 2881 | |

t |
I I

® 0.999

()]

S o

R o

O 0.998

o)

[&]

S [

©

€ 0.997 | :

g i |

2 | i

© 0.996 | |

2 I | :

K I | |

0] | |

0995 | ! |
! I
| |

0.994 : - -
Largest Best Worst

Splitting Techniques
(a) Cube Design

Relative Performance Changes

Highrise - Building Physics - Geometrical Clusters

1| Totar simuiations: 284 | i
| I
" |
© 099 - :
(@)
c
®
=
()
90981
s o
S |
2097} |
g |
[0} |
2 [| f
T 0.96 | ! |
& | | |
I | I
I | I
095} _L 1 i
Largest Best Worst

Splitting Techniques
(¢) Highrise Design

Lowrise - Building Physics - Geometrical Clusters

-

0.998

0.996

0.994

0.992

i Tota[Simulations: 288 } | :

L I]

o o _
‘ _
|
| _
|
I | |

L e
Largest Best Worst

Splitting Techniques

(b) Lowrise Design

Figure B.14: Results for different split techniques for parameter set 2 for building physics opti-

mization.

xviil

B.2 Parameter set 2

B SIMULATION RESULTS

Cube - Building Physics - Geometrical Clusters

Total Simulations: 288

=

= 7 BB T

0.95

Relative Performance Changes

0.9

XYZ XzY YXZ YZX ZXY ZYX
Splitting Preference

(a) Cube Design

] 05Highrise - Building Physics - Geometrical Clusters

‘ Total Simulations: 288

Relative Performance Changes

0.95 1 1 1
0.9 — : : : : :
XYZ XzYy YXZ YzX ZXY ZYX
Splitting Preference
(¢) Highrise Design
Figure B.15:
mances.

Xix

Relative Performance Changes

0.95

0.9

0SLowrise - Building Physics - Geometrical Clusters

Total Simulations: 288

OO

XYz Xzy YXzZ YZX ZXY ZYX
Splitting Preference

(b) Lowrise Design

Results for different split techniques for parameter set 2 for building physics perfor-

C CODE

C Code

This appendix contains the C++ code as developed in this research. First the main file is
presented which contains the logic for the loop and optimization. After which the HBO
settings, Building Performances, Performance Evaluation, Non Aggregate Performances,
Aggregate Performances, Space Ranking, Building Modification, Space Removal, Rescal-
ing, Sweeping, Splitting, and Non Feasible Solutions are provided. The final piece of code
given is the Movable Sizable document, this provides the movable sizable representation
as used in this research. However, only the last bit of code has been developed in this
research, the major part is developed by S. Boonstra and is presented in the multiple of
his researches (2016, 2018).

The C++ code files included in order of appearance:
main.cpp
HBO_Settings.hpp
HBO_Settings.cpp
Building_Performance.hpp
Building_Performances.cpp
Performance_Evaluation.hpp
Non'Aggregate_Performances.hpp
Aggregate_Performances.hpp
Space_Ranking.hpp
Building_Modification.hpp
Space_Removal.hpp
Rescaling.hpp
Sweeping.hpp
Splitting.hpp
Non_Feasible_Solutions.hpp
Movable_Sizable.hpp

XX

O Joy Ul WN

WWWWRNNNNONNONNONNNNN R R R PP
WNFOW®O®IANUEWNRE OWO®D-J0U B WN - O W

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72

73
74
75
76
77
78
79
80

#include <BSO/Structural Design/SD Analysis.hpp>
#include <BSO/Building Physics/BP_Simulation.hpp>
#include <BSO/Spatial Design/Movable Sizable.hpp>
#include <BSO/Visualisation/Visualisation.hpp>
#include <BSO/Performance Indexing.hpp>

#include <BSO/HBO/Performance Evaluation/Building Performances.hpp>
#include <BSO/HBO/HBO_Settings.hpp>

#include <BSO/HBO/Performance Evaluation/Building Performances.cpp>
#include <BSO/HBO/HBO_Settings.cpp>

#include <BSO/HBO/Performance Evaluation/Performance Evaluation.hpp>
#include <BSO/HBO/Space Selection/Space Ranking.hpp>

#include <BSO/HBO/Space Selection/Space Removal.hpp>

#include <BSO/HBO/Building Modification/Building Modification.hpp>
#include <BSO/HBO/Building Modification/Splitting.hpp>

#include <BSO/HBO/Building Modification/Rescaling.hpp>

#include <BSO/HBO/Non Feasible Solutions.hpp>

#include <BSO/Trim And Cast.hpp>
#include <AEI Grammar/Grammar 2.hpp>

#include <iostream>
#include <vector>
#include <ctime>
#include <string>
#include <fstream>

/* Parameter Function */

BSO::Structural Design::SD_Building Results Calculate SD(BSO::Spatial Design::MS Buildingé&
Building)
BSO::Building Physics::BP Building Results Calculate BP(BSO::Spatial Design::MS Buildingé&
Building)

int main(int argc, char* argvl[])
{

std::vector<std::string> args(argv+!, argv+argc) ;

// settings for this study
BSO: :HBO: :Settings settings ;
bool visualise = false;

std::string name ;

std::string input file ;
std::string output file ;
std::string output file results ;
std::string output file solutions ;

int amount removed ;
int cycles = 0 ;
int snap = 10 ;

bool sd_sim = true ;
bool bp sim = true ;

// initiate the log files in which the progress during simulation can be tracked
std::ofstream log;

log.open("log.txt", std::ofstream::out | std::ofstream::trunc);

log.close();

auto it = args.begin();
if (it == args.end())
{
std::cerr << "Error, expected arguments, got nothing, -h or --help for help, exiting
now..." << std::endl;
exit (1),
while (it != args.end())
{
if (*it == "-h" || *it == "--help")
{

std::cout << "\n\nThis program is made to do a parameter study for the sweeping

building modification"
<< "\nOptions are:" << std::endl;

std::cout << "-h\t--help\t\t" << "Will give you this help menu.\n"
<< std::endl;

std::cout << "-i\t-—input\t\t" << "Allows you to specify the input file.\n"

<< std::endl;

81

82
83
84

85
86
87
88
89
90
91
92
93
94

95
96
97

98
99
100
101
102
103

104
105
106
107
108
109

110
111
112
113
114
115

116
117
118
119
120
121

122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

std::cout << "-d\t--discipline\t\t" << "Allows you to specify the disciplines used

in optimization. \n"
<< std::endl;

std::cout << "-cs\t--compliance sd\t\t" << "Determines whether a high or low
compliance for SD is considered best or worst. \n "
<< std::endl;

std::cout << "-v\t--visualise\t" << "Will give you a visualisation of the input.\n

<< std::endl;

std::cout << "-c\t--cycles\t"
<< "\n\t\t\tExpects a positive integer greater than 0.\n"
<< std::endl;

std::cout << "-al\t--assessment level\t"
the optimization is done using clusters or individual spaces.\n"
<< std::endl;

std::cout << "-pa\t--performance assessment\t" << "Determines whether an
aggregation is used or not.\n"
<< std::endl;

std::cout << "-ag\t--aggregate\t" << "Specifies the aggregation method used.\n"

<< std::endl;

std::cout << "-sr\t--space ranking\t"
creating rankings of the spaces.\n"
<< std::endl;

<< "Specifies the approach of

std::cout << "-rt\t--removal type\t" << "Specifies the approach of space removal.\n"

<< std::endl;

std::cout << "-ar\t--amount removed\t" << "Allows for the specification of the

amount of spaces to be removed.\n"
<< std::endl;

std::cout << "-m\t--modification\t" << "Specifies the modification approach.\n"

<< std::endl;

std::cout << "-sc\t--scaling\t" << "Specifies over which axis the scaling
function operates.\n"
<< std::endl;

std::cout << "-sw\t--sweeping\t" << "Specifies which sweeping option is used.\n"

<< std::endl;

std::cout << "-sp\t--splitting option\t"
are split.\n"
<< std::endl;

std::cout << "-pr\t--splitting preference\t" << "Specifies the preference in

which spaces are split. \n"
<< std::endl;
return 0; // end the program

}
else if (*it == "-i" || *it == "--input")
{
if (++it == args.end() || (*it)[0] == '-")
throw std::domain _error("Expected a value after -i or —--input");
name = *it;
boost::trim(name) ;
it++;
else if (*it == "-d" || *it == "--discipline”)
{
if (++it == args.end() || (*it)[0] == '-")
throw std::domain_error("Expected a value after -d or --discipline™) ;
int disc = BSO::trim and cast uint(*it) ;
if (disc >= (unsigned int)BSO::HBO::discipline::ARG_COUNT)
throw std::domain_error("Discipline value is larger than ARG COUNT") ;
settings.discipline involved = BSO::HBO::discipline(disc) ;
it++ ;
}
else if (*it == "-cs" || *it == "--compliance sd") // if called the program
{
if (++it == args.end() || (*it) [0] == '"-")
throw std::domain error("Expected a value after -cs or --compliance sd"

int cs = BSO::trim _and cast uint(*it) ;

)

<< "Specifies the number of simulation cycles."

<< "Allows you to specify whether

<< "Specifies which types of spaces

’

"

156

157 if (cs == 1))

158 settings.inverse SD = true ;

159 else if (cs == 0)

160 settings.inverse SD = false ;

161 else

162 throw std::domain_error("Expected a 0 or 1 after -cs or --compliance sd");

163

164 it++

165

166 else if (*it == "-v" || *it == "--visualise")

167 {

168 visualise = true;

169

170 it++;

171

172 else if (*it == "-c" || *it == "--cycles")

173 {

174 if (++it == args.end() || (*it)[0] == "-")

175 throw std::domain_error("Expected a value after -c or —--cycles");

176

177 int temp cycle = BSO::trim and cast uint(*it) ;

178 cycles = temp cycle ;

179

180 if (cycles < 1)

181 throw std::domain _error("Expected a positive int greater than zero after -c or
--cycles");

182

183 it++;

184 }

185

186 else if (*it == "-al" || *it == "--assessment level")

187 {

188 if (++it == args.end() || (*it) [0] == '"-")

189 throw std::domain_error("Expected a value after -al or --assessment level") ;

190

191 int ass 1lvl = BSO::trim and cast uint(*it) ;

192

193 if (ass_1lvl >= (unsigned int)BSO::HBO::assessment level::ARG COUNT)

194 throw std::domain_error("Error, assessment level argument is larger then
ARG _COUNT") ;

195

196 settings.individual or clus = BSO::HBO::assessment level(ass 1lvl) ;

197

198 ++it;

199

200 else if (*it == "-pa" || *it == "performance assessment")

201 {

202 if (++it == args.end() || (*it) [0] == "-")

203 throw std::domain_error("Expected a value after -pa or --performance assessment"
)

204

205 int perf ass = BSO::trim and cast uint(*it) ;

206

207 if (perf ass >= (unsigned int)BSO::HBO::performance assessment::ARG COUNT)

208 throw std::domain _error("Error, performance assessment argument is larger then
ARG _COUNT") ;

209

210 settings.assessment options = BSO::HBO::performance assessment(perf ass) ;

211 it++ ;

212 }

213 else if (*it == "-ag" || *it == "--aggregate')

214 {

215 if (++it == args.end() || (*it) [0] == '"-")

216 throw std::domain error("Expected a value after -ag or --aggregate") ;

217 int agg = BSO::trim and cast uint(*it) ;

218

219 if (agg >= (unsigned int)BSO::HBO::aggregate disciplines::ARG_COUNT)

220 throw std::domain error("Error, aggregate options is larger then ARG COUNT") ;

221 settings.aggregate options = BSO::HBO::aggregate disciplines(agg);

222

223 it++ ;

224 }

225 else if (*it == "-sr" || *it == "--space ranking")

226 {

227 if (++it == args.end() || (*it) [0] == '"-")

228 throw std::domain error ("Expected a value after -sr or --space ranking") ;

229 int space rank = BSO::trim and cast uint(*it) ;

230

231 if (space_rank >= (unsigned int)BSO::HBO::space ranking::ARG_COUNT)

232 throw std::domain error("Error, space rankinig is larger then ARG COUNT") ;

233 settings.ranking type = BSO::HBO::space ranking(space_rank);

234

235 it++ ;

236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308

309
310
311
312
313

}
else if (*it == "-rt" || *it == "--removal type")
{
if (++it == args.end() || (*it)[0] == "-')
throw std::domain error("Expected a value after -rt or --removal type") ;
int remove type = BSO::trim and cast uint(*it);
if (remove type >= (unsigned int)BSO::HBO::space_removal type::ARG_COUNT)
throw std::domain error("Error, removal type argument is larger then ARG COUNT"
)
settings.removal type = BSO::HBO::space removal type(remove type) ;
it++;
}
else if (*it == "-ar" || *it == "--amount removed")
{
if (++it == args.end() || (*it) [0] == '"-")
throw std::domain error("Expected a value after -ar or -—--amount removed") ;
int remove = BSO::trim and cast uint (*it) ;
amount removed = remove ;
it++ ;
else if (*it == "-m" || *it == "--modification")
{
if (++it == args.end() || (*it) [0] == "-")
throw std::domain _error("Expected a value after -m or --modification™)
int mod = BSO::trim and cast uint(*it) ;
if (mod >= (unsigned int)BSO::HBO::building modification::ARG_COUNT)
throw std::domain error("Error, modification argument is larger then ARG COUNT"
)
settings.modification options = BSO::HBO::building modification(mod) ;
++it ;
}
else if (*it == "-sc" || *it == "--scaling")
{
if (++it == args.end() || (*it) [0] == '"-")
throw std::domain error("Expected a value after -sc or --scaling") ;
int scale = BSO::trim and cast uint(*it) ;
if (scale >= (unsigned int)BSO::HBO::rescaling options::ARG_COUNT)
throw std::domain error("Error, rescaling argument larger then ARG COUNT") ;
settings.rescaling = BSO::HBO::rescaling options(scale) ;
it++;
else if (*it == "-sw" || *it == "--sweeping")
{
if (++it == args.end() || (*it)[0] == "')
throw std::domain_error("Expected a valua after -sw or --sweeping')
int sweep = BSO::trim and cast uint(*it) ;
if (sweep >= (unsigned int)BSO::HBO::sweeping options::ARG COUNT)
throw std::domain _error("Error, sweeping arguments larger than ARG COUNT") ;
settings.sweep option = BSO::HBO::sweeping options(sweep);
it++ ;
}
else if (*it == "-sp" || *it == "--splitting option")
{
if (++it == args.end() || (*it) [0] == "-")
throw std::domain error ("Expected a value after -sp or --splitting option") ;
int split = BSO::trim and cast uint(*it) ;
if (split >= (unsigned int)BSO::HBO::splitting options::ARG_COUNT)
throw std::domain error("Error, splitting option argument larger than
ARG _COUNT") ;
settings.split = BSO::HBO::splitting options(split) ;
it++
else if (*it == "-pr" || *it == "--splitting preference")
{
if (++it == args.end() || (*it)[0] == '-')
throw std::domain error("Expected a value after -pr or --splitting preference"

)
int split prefence = BSO::trim and cast uint(*it) ;
if (split prefence >= (unsigned int) BSO::HBO::splitting preference::ARG COUNT)

throw std::domain _error("Error, splitting preference argument larger than
ARG _COUNT") ;

wWwwwwwwwww
oUW NP O WwWOo Jo ul

DWW W

wwwwww
WWWWWWWWWWNNDNNDNDNDNNDNDNNRERERRRFRE

W oW -Jo Ul WN P O WO

wWwwwwww

w
>
o

L N N TS

iy

Wwwwwwwwwwww
> i

>
WN P OWOwWJo) Ul d WN -

w
oo o a1

w W
[S1E)]
ar

w W w
oo o U1
© 0 - o

w

wwwwww w W W WWwwwwwwwwwww
O ~J 3 3 J - ~ 3 3 ~ ~J O O O O) O) O) O) O) O) O
O W oo Joy U Sw N H O WwWwOo-JoUul b W+ O

w
[ee]
Ul

settings.split pref = BSO::HBO::splitting preference(split prefence);

it++
else if (*it == "-cl" || *it == "--cluster type")
{
if (++it == args.end() || (*it) [0] == "-")
throw std::domain_error("Expected a value after -cl or --cluster type") ;
int cluster = BSO::trim and cast uint(*it) ;
if (cluster > (unsigned int) BSO::HBO::cluster type::ARG COUNT)
throw std::domain_error("Error, cluster argument larger than ARG COUNT ");
settings.clus type = BSO::HBO::cluster type(cluster) ;
it++
}
else
{
throw std::invalid argument ("Argument: " + *it + " not recognised");
}
}
input_file = "/home/tomas/Documents/l Parameterstudy/0 Input/" + name + ".txt";
output file results = "/home/tomas/Documents/l Parameterstudy/0 Output/0 Result Files/" +
name + " Test Results.txt" ;
output file solutions = "/home/tomas/Documents/l Parameterstudy/0 Output/" + name + "/" +
name ;

BSO::Spatial Design::MS Building initial design(input file);

// Results vectors
std::vector<BSO::Spatial Design::MS Building> building designs ;
std::vector<BSO::Spatial Design::MS Building> non feasible results ;

// Calculation vectors
std::vector<BSO::Spatial Design::MS Building> building calc(Z?) ;
std::vector<BSO::HBO::Performance Evaluation::Building Performances> build perform(2) ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::SD)
settings.sd results = Calculate SD(initial design) ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::BP)
settings.bp results = Calculate BP(initial design) ;

building calc[0] = initial design ;

BSO: :HBO::Performance Evaluation::Building Performances initial build perform(
initial design, settings) ;
build perform[0] = initial build perform ;

settings.set cycles(initial build perform) ;
building calc.resize(settings.cycles + 51) ;
build perform.resize(settings.cycles + 51) ;

std: :cout << "SETTINGS" << std::endl ;

settings.cout file() ;

std: :cout << "BUILDING RESULTS" << std::endl
<< "ITERATION " ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||
settings.discipline involved == BSO::HBO::discipline::SD)
std::cout << "SD COMPLIANCE, SPACE COUNT, BUILDING VOLUME, REALISTIC " ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||
settings.discipline involved == BSO::HBO::discipline::BP)
std::cout << "BP COMPLIANCE, SPACE COUNT, BUILDING VOLUME, REALISTIC"

std::cout << std::endl

<< 0 ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::SD)
std::cout << " " << settings.sd results.m total compliance << " " << building calc[0
].obtain space count() << " " << building calc[0].get volume() << " " <<

settings.realistic building ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::BP)
std::cout << " " << settings.bp results.m total energy << " " << building calc[0
].obtain space count() << " " << building calc[0].get volume() << " " <<

settings.realistic building ;

w wwww
O 0 O 0
O W W J o

w w
0 ©

N =

w
Sw

w
o o

w w
0 ©

oy U1

~J

w
o o

w
[ee)

INNON)
O OO OO o oo v

J o U1

[NN N N N
SwWw NN R O W

NN
O W

I NN NN NN
SN

o~
A N ey T o e
[e0]

J o U1

i

NN

i
N = O w o

N
NN =

N
NN
w

N N S T A NI A NS i
oD WNEFE O WOoWw-Jo U IS

AN

NN
BWWwwwwwwwwwdhdNo NN

AN
i

NS
IS

NS
IS

NS
NS

NN
[N
O W W-JOo Ul WN PP O W

std::cout << std::endl ;

for (unsigned int 1 = ; 1 <= settings.cycles ; i++)
{
build perform[i -] = BSO::HBO::Performance Evaluation::evaluate performance (
build perform[i -], settings) ;
if (settings.terminate simulation) { break ; }
std::vector<int> ranked spaces = BSO::HBO::Space_Selection::rank spaces(build perform[
i - 11, settings) ;
if (settings.terminate simulation) { break ; }
building calc[1 - 1] = BSO::HBO::Space Selection::removal of spaces(building calc[i
- 1, ranked spaces, build perform[i -1], settings);

if (settings.terminate simulation) { break ; }
building calc[i] = BSO::HBO::Building Modification::building modification(

building calc[i - 1], build perform[i - 1], settings) ;

if (settings.terminate simulation) { break ; }

building calc[i] = BSO::HBO::Building Modification::split spaces(building calc[i],
build perform[i -], settings) ;

if (settings.terminate simulation) { break ; }
building calc[i].reset z zero() ;

building calc[i].snap on(10) ;

// write an .txt output file with the nwe building spatial design
int j = (unsigned int)settings.discipline involved ;

std::string solution name = output file solutions + " " + std::to_string((unsigned int)
settings.discipline involved) + std::to_string((unsigned int)
settings.individual or_clus) ;

if (settings.individual or clus == BSO::HBO::assessment level::CLUSTERS)
{
solution name += std::to string((unsigned int) settings.clus type) ;
else if (settings.individual or clus == BSO::HBO::assessment level::INDIVIDUAL)
{

// do nothing
}
solution name += std::to string((unsigned int) settings.assessment options) +
std::to_string((unsigned int) settings.ranking type) + std::to_string((unsigned int)
settings.removal type) + std::to string((unsigned int) settings.modification options) ;

if (settings.modification options == BSO::HBO::building modification::SCALE)
solution name += std::to string((unsigned int) settings.rescaling) ;
else if (settings.modification options == BSO::HBO::building modification::SWEEP)

solution name += std::to string((unsigned int) settings.sweep option) ;
else { std::cout << "Error in solution name building modification, exiting now ... (
main.cpp) " << std::endl; exit(l) ; }

solution name += std::to_string((unsigned int) settings.split) + std::to string(
(unsigned int) settings.split pref) + " " + std::to string(i) + ".txt"

if (settings.terminate simulation) { break ; }
building calc[i].write file(solution name) ;

// check if the building spatial design is feasible

if (BSO::HBO::detect infinity(building calc[i 1))

{
settings.terminate simulation = true ;
// 1f not feasible store in a different vector
non_feasible results.push back(building calc[i 1) 7
break ;

else if (BSO::HBO::detect floating space(building calc[i 1))

{
settings.terminate simulation = true ;
// if not feasible store in a different vector
non_ feasible results.push back(building calc[1 1) ;
break ;
}
else
{

// if feasible store in the general solutions vector
building designs.push back(building calc[1 1) ;
space boundary conditions_check(building calc[i], settings) ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::SD)
settings.sd results = Calculate SD(building calc[i]) ;

if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::BP)

settings.bp results = Calculate BP(building calc[i 1)

BSO: :HBO::Performance Evaluation::Building Performances temp build perform(
building calc[i], settings) ;

4156 build perform[i] = temp build perform ;

457

58 std::cout << 1 << " " ;

59 if (settings.discipline_involved == BSO::HBO::discipline::ALL ||
settings.discipline involved == BSO::HBO::discipline::SD)

460 std::cout << settings.sd results.m total compliance << " " << building calc[i
].obtain space count() << " " << building calc[i].get volume() << " " <<
settings.realistic building ;

461 if (settings.discipline involved == BSO::HBO::discipline::ALL ||

settings.discipline involved == BSO::HBO::discipline::BP)

462 std::cout << settings.bp results.m total energy << " " << building calc[i
].obtain space count() << " " << building calc[i].get volume() << " " <<
settings.realistic_building;

463 std::cout << std::endl ;

464 }

465 }

466

467 if (settings.terminate simulation)

468 {

469 std::cout << "Simulation terminated prematurely" <<std::endl ;

470 }

471 else if (!settings.terminate simulation)

472 {

473 std::cout << "Simulation completed" << std::endl ;

474 }

475

476 if (visualise) // if a visualisation is requested

477 {

478 BSO::Visualisation::init visualisation(argc, argv) ;

479

480 BSO::Spatial Design::MS Conformal CF(building designs.back(), &(BSO::Grammar::grammar 2)

)

481

482 BSO::Visualisation::visualise(initial design) ;

483

484 for (unsigned int 1 = 0 ; i < building designs.size() ; i++)

485 {

486 BSO::Visualisation::visualise(building designs[i]);

487 }

488

489 for (unsigned int 1 = 0 ; i < non feasible results.size() ; i++)

490 {

491 if (!'BSO::HBO::detect infinity(non feasible results[i])) // solutions with

infinite numbers cannot be visualised due to their nature

492 BSO::Visualisation::visualise(non feasible results[i]) ;

493 }

494

495 BSO::Visualisation::end visualisation() ;

496 }

497

498 return 0;

499 }

500

501 BSO::Structural Design::SD Building Results Calculate SD(BSO::Spatial Design::MS Buildingé&

Building)

502 {

503 BSO::Structural Design::SD Building Results temp result ;

504 static int SD calc _number = 0 ; SD calc_number++ ;

505

506 BSO::Spatial Design::MS Conformal CF (Building, &(BSO::Grammar::grammar 2));

507

508 BSO::Structural Design::SD_Analysis SD_building(CF); //std::cout << "Created the Structural

Design. - " << std::endl;

509

10 SD _building.analyse() ;

511 temp result = SD building.get results() ; //std::cout << "Analysed the structural design,
total compliance: " << temp_ result.m total compliance << std::endl ;

512
513 BSO::SD _compliance indexing(temp result); //std::cout<<"Assessed structural performance
(regarding compliance per space)." << std::endl ;

514

515 return temp_ result ;

516 }

517

518 BSO::Building Physics::BP Building Results Calculate BP(BSO::Spatial Design::MS Buildingé&
Building)

519 {

520 BSO::Building Physics::BP Building Results temp result ;

521 static int BP calc number = 0 ; BP calc number++ ;

522

523 BSO::Spatial Design::MS Conformal CF(Building, &(BSO::Grammar::grammar 2)) ;

524 //std::cout << "Made the building spatial design conformal. "<<std::endl ;

525

526 BSO::Building Physics::BP_Simulation BP_building(CF) ; //std::cout << "Created the

527
528

529
530
531
532

533
534
535

building physics model." << std::endl ;

BP building.sim period() ;// std::cout << "Simulated the thermal properties of the
building." << std::endl ;

temp_result = BP_building.get results() ;

BSO::BP_thermal demand indexing(temp_ result) ; //std::cout << "Assessed thermal performance.
- " << temp result.m total energy << std::endl ;

return temp result ;

C CODE

Heuristic Building Optimization Settings

XXix

O Joy Ul WN

O N N R N S e e e e N A SR
QB WN R OWWD-JOU B WN R O ©

26
27
28

29

30

31

32
33
34

35

36
37
38

39
40

41

42

43
44

45
46

47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

#ifndef
#define

#include

HBO SETTINGS HPP
HBO SETTINGS HPP

<BSO/Spatial Design/Movable Sizable.hpp>

#include <BSO/HBO/Performance Evaluation/Building Performances.hpp>

#include

#ifdef S
#include
fendif /

#ifdef B
#include
fendif /

#include
#include
#include
#include
#include

namespac

<BSO/Trim_And_ Cast.hpp>

D ANALYSIS HPP
<BSO/Structural Design/SD Analysis.hpp>
/ SD_ANALYSIS HPP

P _SIMULATION_ HPP
<BSO/Building Physics/BP Results.hpp>
/ BP SIMULATION HPP

<iostream>
<vector>
<sstream>
<cstdlib>
<fstream>

e BSO { namespace HBO{

enum class discipline{ ALL, SD, BP, ARG COUNT } ;

enum class sd compliance{ HIGH, LOW, ARG COUNT }

opti

//Pe

rformance Evaluation

’

mal, low considers a low compliance as optimal

// the disciplines implemented currently
// High considers a high compliance as

enum class assessment level{ INDIVIDUAL, CLUSTERS, ARG COUNT } ; // Whether spaces should be

eval

uated individually or in clusters

enum class cluster type{ KMEANS, FACADE, ARG COUNT } ;
tructed. KMEANS uses the k-means algorithm, FACADE constructs clusters based on the

cons
faca

de of a spatial design

// Determines the way clusters are

enum class performance assessment{ INDIVIDUAL, AGGREGATE, NON AGGREGATE, ARG COUNT } ; //
CARE individual is ment for running the

Eval
tool

uate by aggregating or multiple performances,
box with either SD or BP discipline

enum class aggregate disciplines{ SUMMATION, PRODUCT, DISTANCE, INVERSE PRODUCT, ARG COUNT }

;1

// s

Which aggregation function should be used

pace_Selection

enum class space ranking{ BEST, WORST, BEST DISTANCE, WORST DISTANCE, ALTER BEST,
R_WORST, ARG_COUNT } ;// In what way the spaces are ranked

TWENTIETH, */THIRTIETH, FORTIETH,
FIFTIETH, /* TOP_FLOOR, */ ARG_COUNT } ; // How many and which spaces are removed

ALTE
enum

// B

class space removal type{ ONE WORST, /*TENTH,

uilding Modification

enum class building modification{ SCALE, SWEEP, ARG COUNT } ; // Building modification

tech

niques

enum class rescaling options{ X, Y, Z, XY, XZ, YZ, XYZ, ARG COUNT } ; // Which axis scale
enum class sweeping options { X Z, X F, X H, Y 2, YF, YH, 2 2, 2 F, Z H, ARG COUNT }; //
ping options. First letter is the axis, second the location

enum class splitting options{ LARGEST, /* SMALLEST, */ BEST, WORST, ARG COUNT} ; // Which
spaces to split to reach the initial space count again
enum class splitting preference{ XYZ, X2ZY, YXZ, YZX, ZXY, ZYX, ARG COUNT } ; // In a space
equal sizes for 2 or 3 dimensions, which is split first

Swee

with

// 0Old options, are replaced by sweeping options, however they can still be used if a

spec

ific sweep is requested or tested

enum class sweeping options old{ X, Y, Z, ARG COUNT } ;
enum class sweeping location{ ZERO, FIFTY, HUNDRED, ARG COUNT }; // At what percentage of

the

building the sweep is executed

// Which axis to sweep;

// This structure contains the possible settings and data required for the optimization op a

buil
stru

{
publ

ding spatial design
ct Settings

ic:

discipline discipline involved ;
int cycles ;

assessment level individual or clus ;
cluster_ type clus_type ;

performance assessment assessment options ;
aggregate disciplines aggregate options ;

space_ranking ranking type ;
space removal type removal type ;

building modification modification_options ;
rescaling options rescaling ;

sweeping options sweep option ;

sweeping location sweep location ;

69
70
71
72
73
74
75
76
77
78
79
80
81
82

83
84

85
86

87
88

89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111

112
113
114
115
116
117
118

splitting options split ;
splitting preference split pref ;

#ifdef SD_ANALYSIS HPP
BSO::Structural Design::SD_Building Results sd_results ;
#endif // SD ANALYSIS HPP

#ifdef BP SIMULATION HPP
BSO::Building Physics::BP Building Results bp results ;
#endif // BP_SIMULATION HPP

std: :vector<double> weights ; // weight factors for the different performances
unsigned int space removal requested ; // the amount of spaces to be selected for
removal, can increase due to spaces with similar performance

unsigned int space removal selected; // the amount of spaces selected for removal

bool inverse SD ; // if true the spaces with low compliance are rated highly, if false
the spaces with high compliance are rated highly

double realistic building = 1 ; // the level of how realistic a building design is,
number is the ratio between realstic and unrealistic spaces with 1 being realistic and 0O
unrealistic

// modifications are not always capable of continueing due to e.g. to few spaces to
split.

// 1if so they provide the value true and the output file provides whether a space is
terminated before the given end

bool terminate simulation = false ;

Settings () // default settings

discipline involved = discipline::ALL ;
individual_or_clus = assessment_ level::INDIVIDUAL ;
assessment options = performance assessment::AGGREGATE ;
inverse_SD = false ;

aggregate options = aggregate disciplines::SUMMATION ;

ranking type = space_ranking::BEST ;
removal type = space removal type::ONE WORST ;
space_removal requested = §

modification options = building modification::SWEEP ;
split = splitting options::LARGEST ;
split _pref = splitting preference::XYZ ;

}

void write file(std::string output file) ; // creates an outputfile which display the
settings

void cout file() ; // gives a cout command displaying all settings

void set cycles(BSO::HBO::Performance Evaluation::Building Performances& build perform

) ; // set an amount of cycles based on the amount of spaces in a building spatial design

}; // Settings
} // namespace HBO

} // namespace BSO
#endif // HBO_SETTINGS

1 #ifndef HBO_SETTINGS_ CPP

2 #define HBO SETTINGS CPP

3

4 #include <BSO/HBO/Performance Evaluation/Building Performances.cpp>

5 #include <fstream>

6

7 namespace BSO { namespace HBO{

8

9 void Settings::write file(std::string output file)

10 {

11 std::ofstream output;

12 output.open(output file.c str(), std::ofstream::out | std::ofstream::app);

13

14 output << "Discipline: " << (int) discipline involved << std::endl

15 << "Assessment level: " << (int)individual or clus << std::endl

16 << "Assessment option: " << (int)assessment options << std::endl;

17

18 if (assessment options == performance assessment::AGGREGATE) // if the performances

are aggregated print the aggregate method

19 output << "Aggregate option: " << (int)aggregate options << std::endl ;

20 if (inverse SD)

21 output << "Inverse SD: 1" << std::endl ;

22 output << "Space ranking: " << (int)ranking type << std::endl

23 << "Space removal type: " << (int)removal type << std::endl

24 << "Modification option: " << (int)modification options << std::endl;

25 if (modification options == building modification::SCALE)

26 output << "Scaling option: " << (int)rescaling << std::endl;

27 else if (modification options == building modification::SWEEP)

28 {

29 output << "Sweeping option: " << (int)sweep_option << std::endl

30 << "Sweeping location: " << (int)sweep location << std::endl;

31 }

32 output << "Splitting option: " << (int)split << std::endl;

33 } // write file()

34

35 void Settings::cout file()

36 {

37 std::cout << "Discipline: " << (int) discipline involved << std::endl

38 << "Assessment level: " << (int) individual or clus << std::endl ;

39 if (individual or clus == assessment level::CLUSTERS)

40 std::cout << "Cluster type: " << (int) clus_type << std::endl ;

41 std::cout << "Assessment option: " << (int) assessment options << std::endl ;

42

43 if (assessment options == performance assessment::AGGREGATE)

44 std::cout << "Aggregate option: " << (int) aggregate options << std::endl ;

45 if (inverse SD)

46 std::cout << "Compliance: Min Best " << std::endl ;

47

48 std::cout << "Space ranking: " << (int) ranking type << std::endl

49 << "Space removal type: " << (int) removal type << std::endl

50 << "Modification option: " << (int) modification options << std::endl ;

51 if (modification options == building modification::SWEEP)

52 std::cout << "Sweep option: " << (int) sweep option << std::endl ;

53 if (modification options == building modification::SCALE)

54 std::cout << "Scaling option: " << (int) rescaling << std::endl ;

55 std::cout << "Splitting option: " << (int) split << std::endl

56 << "Splitting preference: " << (int) split pref << std::endl ;

57 }

58

59 void Settings::set cycles(BSO::HBO::Performance Evaluation::Building Performancesé&

build perform)

60 {

61 switch(removal type)

62 {

63 case space removal type::ONE WORST:

64 {

65 if (individual or clus == assessment level::CLUSTERS)

66 {

67 cycles = ceil((float) build perform.get initial space count () / 10) ;

68 }

69 else

70 {

71 cycles = build perform.groups.size() ;

72 }

73 break ;

74 }

75 //case space removal type::TENTH: { cycles =
(float)build perform.get initial space count() / ceil(
build perform.get initial space count() * 0.10) ; break ; }

76 //case space removal type::TWENTIETH: { cycles =
(float)build perform.get initial space count() / ceil(
build perform.get initial space count() * 0.20) ; break ; }

77 case space removal type::THIRTIETH: { cycles =

(float)build perform.get initial space count() / ceil(

build perform.get initial space count() * 0.30) ; break ; }
78 case space_removal type::FORTIETH: { cycles =
(float)build perform.get initial space count() / ceil(
build perform.get initial space count() * 0.40) ; break ; }
79 case space removal type::FIFTIETH: { cycles =
(float)build perform.get initial space count() / ceil(
build perform.get initial space count() * 0.50) ; break ; }

80 //case space removal type::TOP_FLOOR: { cycles = 2 ; break ; }

81 case space removal type::ARG COUNT: { std::cout << "Error, ARG COUNT reached for
removal (HBO Settings.hpp) " << std::endl ; exit(l) ; }

82 default: { std::cout << "Error default, exiting now... (HBO Settings.hpp)" <<
std::endl ; exit(l) ; }

83 }

84 }

85 } // namespace HBO

86 } // namespace BSO

87 #endif // HBO SETTINGS
88

C CODE

Building Performances Class

XXX1V

O Joy Ul WN

e el el
g WM oW

#ifndef BUILDING PERFORMANCES HPP
#define BUILDING PERFORMANCES HPP

namespace BSO { namespace HBO { namespace Performance Evaluation

{

class Building Performances;
} // namespace Performance Evaluation
} // namespace HBO

} // namespace BSO

#endif // BUILDING_ PERFORMANCES

O Joy Ul WN

WwwhNhdDNDNDNdDNDNMdDNNNMNNNRFRERRPRRRRR PR
N OWOWwW-JoUd WNEFE OWOW-JOo)U N WN - O O

33

34
35
36
37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

#ifndef
#define

#include

#ifdef S
#include
fendif /

#ifdef B
#include
fendif /

#include
#include
#include

#include

#include
#include
#include
#include

namespac
{
/* D

stru

{

};

clas

{

BUILDING PERFORMANCES CPP
BUILDING_ PERFORMANCES_ CPP

<BSO/Spatial Design/Movable Sizable.hpp>
D ANALYSIS HPP
<BSO/Structural Design/SD Analysis.hpp>
/ SD_ANALYSIS HPP
P _SIMULATION_ HPP
<BSO/Building Physics/BP_Results.hpp>
/ BP SIMULATION HPP
<BSO/Data.hpp>
<BSO/Clustering.hpp>
<BSO/Trim_And_ Cast.hpp>
<BSO/HBO/HBO_Settings.hpp>
<iostream>
<vector>
<cmath>
<fstream>
e BSO { namespace HBO { namespace Performance Evaluation

ata structures to process performance evaluations */

ct group performance

std::vector<int> space ID; // all space IDs that belong to this group

std::vector<double> initial performance; // stores the initial performances as

calculated for the space(s) belonging to this group

std::vector<double> modified performance; // the modified performances belonging to this

group, modified can be e.g. aggregated or with additional weights

bool id in space(int& id) // checks if a space ID belongs to this group object

{
for (unsigned int 1 = 0 ; i < space ID.size() ; i++)
{
if (space ID[i] == id) return true;
}
return false;
}

double best modified performance() // returns the best modified performance that this

groups has

{
double best perform = modified performance[0];
for (unsigned int i = 0 ; 1 < modified performance.size()
{
if (modified performance[i] > best perform)
{
best perform = modified performance[i];
}
}
return best perform;
}
double worst modified performance() // returns the worst performance that this group has
{
double worst perform = modified performance[0];
for (unsigned int 1 = 0 ; 1 < modified performance.size()
{
if (modified performance[i] < worst perform)
{
worst perform = modified performance[i];
}
}
return worst perform;
}

~group performance () {}

s Building Performances

private:

publ

HBO: :assessment_level assess_1lvl ;

double initial volume ; // stores the initial volume of the spatial design
int initial space count ; // stores the initial space count of the spatial design

ic:
Building Performances() ; // ctor, creates an empty object

’

’

i++)

i+)

82
83
84

85
86
87
88
89

90
91
92
93

94
95
96

97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146

147
148

149
150
151
152
153

}i

Building Performances(BSO::Spatial Design::MS Building&, Settingsé&) ;

Building Performances(BSO::Spatial Design::MS Building&, Building Performances&) ; //
ctor that is used when spaces are deleted so the 'old' Building Performances is not up
to date

~Building Performances(); // dtor

std::vector<group performance> groups ; // contains performance information of the spaces

void Create Facade Clusters(BSO::Spatial Design::MS Building&) ; // creates clusters
of the spaces at the facade of the building, NOTE spaces can belong to multiple clusters
void add_group(group performance) ; // adds a group to the group vector

void delete group(int group index) ; // remove the group at the group index

//std::vector<double> weights; // contains weights for the different disciplines, can be
empty. Should not be used, check HBO::HBO Settings for weights

int id count() ; // returns the total amount of space IDs over all groups

int id belonging group(int&) ; // searches the space vector for the id asked and
returns the index of the object in the vector

int best group_initial() ; // returns the index with the best initial performance

int best group modified() ; // returns the index with the best modified performance
int worst group_initial() ; // returns the space index with worst initial performance
int worst group modified() ; // return the space index with worst modified performance

int best group distance() ; // return the space index for the group with the shortest
distance to (1,1)
int worst group distance() ; // return the space index for the group with the shortest
distance to (0,0)

double get initial volume() ; // returns the initial volume
int get_initial_space_count() ; // returns the initial space count

//void print build perform(); // prints the content of this class to a .txt file

Building_ Performances::Building Performances ()

{

} //ctor

Building Performances::Building Performances(BSO::Spatial Design::MS Buildingé&
current design, Settings& settings)

{

#ifdef SD ANALYSIS HPP

#ifdef BP SIMULATION HPP

if (settings.discipline involved == HBO::discipline::ALL)

{
initial space count = current design.obtain space count();
initial volume = current design.get volume();

switch(settings.individual or clus)
{
case assessment level::INDIVIDUAL:
{
// for all spaces in ms_building
for(int 1 = 0 ; i < current design.obtain space count() ; i++)
{
group performance temp space;
temp space.space ID.push back(current design.obtain space(i).ID);

// search the sd result belonging to it

for (unsigned int j = 0 ; j < settings.sd results.m spaces.size() ; Jj++)
{
if (temp space.space ID.back() == settings.sd results.m spaces[j].m ID)
{
if (settings.inverse SD == false)
{

temp space.initial performance.push back(settings.sd results.m

_spaces[j].m rel performance);

else if (settings.inverse SD == true)

{
temp space.initial performance.push back(1 -
settings.sd results.m spaces[j].m rel performance) ;

}

else {std::cout<<"Error, in assinging SD performance.

Building Performances.hpp, exiting now... "<<std::endl; exit(1l);}
break;

}
} // end sd result

// and the bp result belonging to it

155 for (unsigned int j = 0 ; j < settings.bp results.m space results.size()
;o J++)
156 {
158 if (temp_space.space ID.back() ==
BSO::trim and cast int(settings.bp results.m space results[j].m space
iD))
159 {
160

temp space.initial performance.push back(settings.bp results.m spa
ce_results[j].m rel performance);

161 break;

162 }

163 } // end bp result

164

165 groups.push back(temp space) ;

166 }

167

168 // check whether all groups have the same amount of performance values

169 for (unsigned int i = 0 ; i < groups.size() -1 ; i++)

170 {

171 if (groups[i].initial performance.size() ==

groups[i+!].initial performance.size())

172 {

173 continue;

174 }

175 else if(groups[i].initial performance.size() !=

groups[i+l].initial performance.size())
176 {
177 std::cout<< "Error, amount of performance values not equal...
exiting now (Building Performances.hpp)";

178 exit (1) ;

179 }

180 else

181 {

182 std::cout<<"Error in amount of spaces... exiting now

(Building Performances.hpp)";

183 exit (1) ;

184 }

185 }

186

187 break;

188 }

189

190 case assessment level::CLUSTERS:

191 {

192 switch(settings.clus_type)

193 {

194 case HBO::cluster type::KMEANS:

195 {

196 assess_1lvl = assessment level::CLUSTERS;

197 // get the results and put them in a vector (shared ptr for
clustering purposes)

198 std::shared ptr<std::vector<BSO::data point> > data set =
std::make shared<std::vector<BSO::data point> >();

199 std::vector<int> space_id list; // to track space ID's across
result structures of different disciplines

200 unsigned int number of spaces =

current_design.obtain_space_count(); // determine how many
spaces are in the design

201
202 for (unsigned int i = 0; i < number of spaces; i++)
203 { // for each space in the design
204 // initialise a data point and an ID
205 space_id list.push back(current design.obtain space(i) .ID);
206 BSO::data point temp = Eigen::Vector2d::Zero();
207 data_set->push_back (temp) ;
208 }
209
210 bool match check[space id list.size()] = {false}; // this list
will keep track if a performance has been found for each space
211
212 for (unsigned int 1 = 0; i <
settings.bp results.m space results.size(); i++)
213 { // for each space result
214 for (unsigned int j = 0; j < number of spaces; j++)
215 { // and for each space in the design
216 if (space id list[j] ==
BSO::trim and cast int(settings.bp results.m space results
[i] .m space ID))
217 { // check if space result matches with a space in the

design
218 (*data _set) [J](0) =

settings.bp results.m space results[i].m total energy;

219 match check[]j] = true;
220 }
221 }
222 }
223
224 for (unsigned int i = 0; i < number of spaces; i++)
225 { // for each space in the design
226 if (!'match check[i])
227 { // check if a performance has been found for space i
228 std::cout << "Error could not find BP performance of
space with ID: "
229 << space_id list[i] << "
(Building Performances.hpp), exiting now..."
<< std::endl;
230 exit (1) ;
231 }
232 }
233
234 for (unsigned int i = 0; 1 <
settings.sd results.m spaces.size(); i++)
235 { // for each space result
236 for (unsigned int j = 0; j < space _id list.size(); j++)
237 { // and for each space in the design
238 if (space id list[j] ==
settings.sd results.m spaces[i].m ID)
239 { // check if space result matches with a space in the
design
240 (*data set) [J] (1) =
settings.sd results.m spaces[i].m total compliance;
241 match check[]j] = false;
242 } //since the BP check set the values to true SD needs
to switch them back to false
243 }
244 }
245
246 for (unsigned int i = 0; i < number of spaces; i++)
247 { // for each space in the design
248 if (match check[i])
249 { // check if a performance has been found for space i
250 std::cout << "Error could not find structural
performance of space with ID: "
251 << space_id list[i] << "
(Building Performances.hpp), exiting now..."
<< std::endl;
252 exit (1) ;
253 }
254 }
255
256 // cluster the data set
257 // make k clusters, where k lies between 25% and 75% of the
number of spaces with a lower limit of 2 clusters
258 //std::vector<std::shared ptr<BSO::Cluster> > clustered data_ set
= clustering(data_set, 50, (2 < 1+number_of_spaces/8)?
l+number of spaces/4 : 2, 3*number of spaces/4, 2);
259 std::vector<std::shared ptr<BSO::Cluster> > clustered data set =
BSO::clustering(data set, 50, 6, 10, 2);
260
261 for (unsigned int 1 = 0 ; i < clustered data set.size() ; i++)
262 {
263 for (unsigned int j =0 ; j <
current design.obtain space count() ; j++)
264 {
265 if (clustered data set[i]->m bit mask[j] == 1)
266 {
267
clustered data set[i]->m space id list.push back(curre
nt design.obtain space(j) .ID);
268 }
269 }
270 }
271
272 for (unsigned int i = 0 ; i1 < clustered data set.size() ; i++)
273 { // for all clusters
274
275 group_performance temp group;
276
277 for (unsigned int j = 0 ; j <
clustered data set[i]->m space id list.size() ; j++)
278 { // add space ids to the space performance
279

temp group.space ID.push back(clustered data set[i]->m spa
ce id 1list[j]):

281 for (unsigned int 3 =0 ; j <
clustered data set[i]->m_centroid.size() ; Jj++)
282 { // add centroid to initial performance

temp group.initial performance.push back(clustered data se
t[i]->m centroid[j]);

284 }
85
286 groups.push back(temp group) ;
287 }
288
289 break;
290 }
291 case HBO::cluster type::FACADE:
292 {
293 this->Create Facade Clusters(current design) ;
294
295 // find all space performances belonging to the groups
296
297 for (unsigned int 1 = 0 ; i < groups.size() ; i++)
298 {
299 for (unsigned int j = 0 ; j < groups[1].space ID.size() ;
J++)
300 {
301 for (unsigned int k =0 ; k <
settings.sd results.m spaces.size() ; k++)
302 {
303 if (settings.sd results.m spaces[k].m ID ==
groups[i]l.space ID[j 1)
304 {
305 groups[i].initial performance.push back(
settings.sd results.m spaces[k
]1.m rel performance) ;
306 break ;
307 }
308 }
309 for (unsigned int k =0 ; k <
settings.bp_results.m space results.size() ; k++)
310 {
311 if (BSO::trim and cast_int(
settings.bp results.m space results[k].m space ID
) == groups[i].space ID[j])
312 {
313 groups[i].initial performance.push back(
settings.bp results.m space results[k
].m rel performance) ;
314 break ;
315 }
316 }
317 }
318 }
319
320 // average all performances of the groups
321 for (unsigned int 1 = 0 ; i < groups.size() ; i++)
322 {
323 double average value = 0 ;
324 for (unsigned int j = 0 ; j < groups|[1
].initial performance.size() ; Jj++)
325 {
326 average value += groups[i].initial performance[j] ;
327 }
328 average value = average value / groups[i].space ID.size() ;
329 groups[i].initial performance.clear() ;
330 groups[1].initial performance.push back(average value);
331 }
332
333 break ;
334 }
335 case HBO::cluster type::ARG COUNT:
336 {
337 std::cout<< "Error ARG COUNT in cluster type, exiting now... (
Building Performances.cpp)" << std::endl ;
338 exit(1) ;
339 break ;
340 }
341 default:
342 {
343 std::cout << "Error default in cluster type, exiting now... (
Building Performances.cpp) " << std::endl ;
344 exit(1) ;
345 }
346 }
347 break ;

348 }

349 case assessment level::ARG COUNT:

350 {

351 std::cout << "Error in Settings::assessment level, exiting now.... (
Building Performances.cpp)" << std::endl ;

352 exit(1) ;

353 break ;

354 }

355

356 default:

357 {

358 std::cout << "Error in ctor Building Performances, exiting now.... (

Building Performances.cpp)" << std::endl ;
exit(1)

} // switch(individual or cluster

}
#endif // BP SIMULATION HPP
#endif // SD ANALYSIS HPP

#ifdef SD ANALYSIS HPP

if (settings.discipline involved == HBO::discipline::SD)

{
initial space count = current design.obtain space count();
initial volume = current design.get volume();

switch(settings.individual or clus)

WWwWwWwWwWwWwWwWwWwWwWwWwWwWwWwWwWwwwwwwww
OO J I I I I I JJJJOHoOHoOHoooooyoy oy
P OWO-Jo b WNEF OWOOWJoyUd WN K O W

{
case assessment level::INDIVIDUAL:
{
for (unsigned int 1 = 0 ; 1 < current design.obtain space count() ; i++)
{
group_performance temp group;
temp group.space ID.push back(current design.obtain space (i) .ID);
for (unsigned int j = 0 ; j < settings.sd results.m spaces.size() ;
J++)
382 {
383 if (settings.sd results.m spaces[j].m ID ==
temp group.space ID.back())
384 {
385 if (settings.inverse SD == false)
386 temp group.initial performance.push back(
settings.sd results.m spaces[j].m rel performance);
387 else if (settings.inverse SD == true)
388 temp group.initial performance.push back(1 -
settings.sd _results.m spaces[j].m rel performance) ;
389 else { std::cout<< "Error in building performances.hpp, sd
contructor. Exiting now.. " << std::endl; exit(l) ; }
390 break;
391 }
392 }
393 groups.push_back(temp group) ;
394 }
395 break;
396 }
397 case assessment level::CLUSTERS:
398 {
399 switch(settings.clus_type)
400 {
401 case HBO::cluster type::KMEANS:
402 {
403 assess_1lvl = assessment level::CLUSTERS;
404 // get the results and put them in a vector (shared ptr for
clustering purposes)
405 std::shared ptr<std::vector<BSO::data point> > data set =
std::make shared<std::vector<BSO::data point> >();
406 std::vector<int> space_id list; // to track space ID's across
result structures of different disciplines
407 unsigned int number of spaces =
current_design.obtain_space_count(); // determine how many
spaces are in the design
408
409 for (unsigned int i = 0; i < number of spaces; i++)
410 { // for each space in the design
411 // initialise a data point and an ID
412 space_id list.push back(current design.obtain space(i) .ID);
413 BSO::data point temp = Eigen::Vector2d::Zero();
414 data_set->push_back (temp) ;
415 }
416
417 bool match check[space id list.size()] = {false}; // this list
will keep track if a performance has been found for each space
418

419 for (unsigned int 1 = 0; i <

420
421
422
423

424

425

426
427
428

429
430
431
432
433
434
435
436

437

438
439
440
441
442
443

445

446
447
448
449

450
451
452
453

454
455
456
457
458
459
460
461
462
463

464
465

466
467

468
469

470
471
472
473
474
475
476
477
478
479
480
481
482

settings.sd results.m spaces.size(); i++)
{ // for each space result
for (unsigned int j = 0; j < space_id list.size(); J++)
{ // and for each space in the design
if (space_id list[j] ==
settings.sd _results.m spaces[i].m ID)
{ // check if space result matches with a space in the
design
(*data set) [J]1(0) =
settings.sd results.m spaces[i].m total compliance ;
(*data set) [JI1(1) = 1 ;
match check[]j] = true;
} //since the BP check set the values to true SD needs
to switch them back to false

}

for (unsigned int i = 0; i < number of spaces; i++)
{ // for each space in the design

if (!match_check[i])

{ // check if a performance has been found for space i
std::cout << "Error could not find structural
performance of space with ID: "

<< space_id list[i] << "
(Building Performances.hpp), exiting now...
<< std::endl;

exit (1) ;
}

// cluster the data set

// make k clusters, where k lies between 25% and 75% of the
number of spaces with a lower limit of 2 clusters
//std::vector<std::shared ptr<BSO::Cluster> > clustered data_ set
= clustering(data set, 50, (2 < l+number of spaces/8)?
l+number of spaces/4 : 2, 3*number of spaces/4, 2);
std::vector<std::shared ptr<BSO::Cluster> > clustered data set =
BSO::clustering(data_set, 50, 6, 10, 1);

for (unsigned int i = 0 ; i1 < clustered data set.size() ; i++)
{
for (unsigned int 3 =0 ; j <
current design.obtain space count() ; j++)
{
if (clustered data set[i]->m bit mask[]j] == 1)
{

clustered data set[i]->m space id list.push back(curre
nt design.obtain space(j) .ID);

}

for (unsigned int i = 0 ; i < clustered data set.size() ; i++)
{ // for all clusters

group performance temp group;

for (unsigned int j =0 ; j <
clustered data set[i]->m space id list.size() ; j++)
{ // add space ids to the space performance

temp group.space ID.push back(clustered data set[i]->m spa
ce id list[j]);

}

for (unsigned int j = 0 ; j <

clustered data set[i]->m centroid.size() ; j++)

{ // add centroid to initial performance

temp group.initial performance.push back(clustered data_ se
t[i]->m centroid[jl]);

}
groups.push_back(temp group) ;
}
break;
}
case HBO::cluster type::FACADE:
{

this->Create Facade Clusters(current design) ;

// find all space performances belonging to the groups

483 for (unsigned int 1 = 0 ; i < groups.size() ; i++)
484 {

485 for (unsigned int j =0 ; j < groups[i].space ID.size() ;
J++)
486 {
487 for (unsigned int k =0 ; k <
settings.sd results.m spaces.size() ; k++)
488 {
489 if (settings.sd results.m spaces[k].m ID ==
groups[i].space ID[j])
490 {
491 groups[i].initial performance.push back(

settings.sd results.m spaces[k
].m rel performance) ;

492 break ;
493 }
494 }
495 }
496 }
497
498 // average all performances of the groups
499 for (unsigned int 1 = 0 ; i < groups.size() ; i++)
500 {
501 double average value = 0 ;
502 for (unsigned int j = 0 ; j < groups|[1
l.initial performance.size() ; Jj++)
503 {
504 average value += groups[i].initial performance[j] ;
505 }
506 average value = average value / groups[i].space ID.size() ;
507 groups[i].initial performance.clear() ;
508 groups[1].initial performance.push back(average value);
509 }
510
511 break ;
512 }
513 case HBO::cluster type::ARG COUNT:
514 {
515 std::cout<< "Error cluster type::ARG COUNT reached, exiting
now... (Building Performances.cpp)" << std::endl ;
516 exit (1)
517 }
518 }
519 break ;
520 }
521 case assessment level::ARG_COUNT:
522 {
523 std::cout << "Error in Settings::assessment level, exiting now....
(Building Performances.hpp)" << std::endl ;
524 exit (1) ;
525 break ;
526 }
527 default:
528 {
529 std::cout << "Error in ctor Building Performances, exiting now.... (

Building Performances.hpp)" << std::endl ;

530 exit (1)

531 break ;

532 }

533 } //switch(individual or cluster)

534 }

535 #endif // SD_ANALYSIS HPP

536

537 #ifdef BP_SIMULATION_HPP

538 if (settings.discipline involved == HBO::discipline::BP)

539 {

540 initial space count = current design.obtain space count();

541 initial volume = current design.get volume();

542

543 switch(settings.individual or clus)

544 {

545 case assessment level::INDIVIDUAL:

546 {

547 for (unsigned int i = 0 ; i < current design.obtain space count () ; i++)

548 {

549 group_performance temp group;

550 temp group.space ID.push back(current design.obtain space (i) .ID);

551

552 for (unsigned int j =0 ; j <
settings.bp results.m space results.size() ; j++)

553 {

554 if (BSO::trim and cast int(settings.bp results.m space results|[

j 1.m space ID) == temp group.space ID[0])

555 {

556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

572

573

574

575
576
577
578
579
580
581
582
583
584

585
586

587
588
589
590

593
594
595
596
597
598
599
600
601
602

604
605
606
607
608
609

611

612
613
614
615

616
617
618

}

}

break;

}

temp group.initial performance.push back(
settings.bp_results.m space results[j].m rel performance);
break ;

}

groups.push_back(temp group) ;

case assessment level::CLUSTERS:

{

switch (settings.clus type)

{

case HBO::cluster type::KMEANS:

{

assess_1lvl = assessment level::CLUSTERS;

// get the results and put them in a vector (shared ptr for
clustering purposes)

std::shared ptr<std::vector<BSO::data point> > data set =
std::make shared<std::vector<BSO::data point> >();
std::vector<int> space_id list; // to track space ID's across
result structures of different disciplines

unsigned int number of spaces =
current_design.obtain_space_count(); // determine how many
spaces are in the design

for (unsigned int i = 0; i1 < number_ of spaces; i++)

{ // for each space in the design
// initialise a data point and an ID
space_id list.push back(current design.obtain space(i) .ID);
BSO::data point temp = Eigen::Vector2d::Zero();
data_set->push back (temp) ;

}

bool match check[space id list.size()] = {false}; // this list
will keep track if a performance has been found for each space

for (unsigned int i = 0; 1 <
settings.bp results.m space results.size(); i++)
{ // for each space result
for (unsigned int j = 0; j < number of spaces; j++)
{ // and for each space in the design
if (space_id list[j] ==
BSO::trim and cast int(settings.bp results.m space results
[i] .m space ID))
{ // check if space result matches with a space in the
design
(*data_set) [J](0) =
settings.bp results.m space results[i].m rel performan

ce;
match check[]j] = true;
}
}
}
for (unsigned int i = 0; i < number of spaces; i++)

{ // for each space in the design

if (!'match_check[i])

{ // check if a performance has been found for space i
std::cout << "Error could not find BP performance of
space with ID: "

<< space_id list[i] << "
(Building Performances.hpp), exiting now...
<< std::endl;

exit (1) ;
}

// cluster the data set

// make k clusters, where k lies between 25% and 75% of the
number of spaces with a lower limit of 2 clusters
//std::vector<std::shared ptr<BSO::Cluster> > clustered data set
= clustering(data set, 50, (2 < l+number of spaces/8)?

l+number of spaces/4 : 2, 3*number of spaces/4, 2);
std::vector<std::shared ptr<BSO::Cluster> > clustered data set =
BSO::clustering(data set, 50, 6, 10, 1);
for (unsigned int 1 = 0 ; i < clustered data set.size() ; i++)
{

for (unsigned int 3 =0 ; j <

current design.obtain space count() ; j++)

{

if (clustered data set[i]->m bit mask[]j] == 1)

{

o
=
o

) O) O) O) O) O) O) O)Y O O
NN DNDDNDDNDDN
o Ul W NP O

O © J

o O

w w
= O

w w
w N

O O) O) O)Y O)Y O O) O) O) O) O) O) O
BB DD S bW WwWww

> >
P O WwWOo-JoUhd WNEFH O WOWw-Jo

Y O O)

o
[S2N@))

w N

o o)

e}
[S,N@))
g

o O
[S1N@))
J o

O O O) O) O) O) O)Y O O O O
oY O O O O O OY OY O U1 U1
O ~Jo U W O W

N J 33 Jo

~
H O WO -Joy Ul WM O W

O O) O) O)Y O) O) O) O) O) O) O) O) O
~

0o 0o —J

(o)
w N

clustered data set[i]->m_space id list.push back(curre
nt design.obtain space(j) .ID);

}

for (unsigned int i = 0 ; i < clustered data set.size() ; i++)
{ // for all clusters

group performance temp group;

for (unsigned int j = 0 ; j <
clustered data set[i]->m space id list.size() ; j++)
{ // add space ids to the space performance

temp group.space ID.push back(clustered data set[i]->m spa
ce id 1list[j]);

}

for (unsigned int 3 =0 ; J <

clustered data set[i]->m centroid.size() ; j++)

{ // add centroid to initial performance

temp group.initial performance.push back(clustered data_ se
t[i]->m centroid[j]);

}
groups.push_back(temp group) ;
}
break;
}
case HBO::cluster type::FACADE:
{
this->Create Facade Clusters(current design) ;
// find all space performances belonging to the groups
for (unsigned int i = 0 ; i < groups.size() ; i++)
{
for (unsigned int j =0 ; j < groups[i].space ID.size() ;
J++)
{
for (unsigned int k =0 ; k <
settings.bp results.m space results.size() ; k++)
{
if (BSO::trim and cast int(
settings.bp_results.m space results[k].m space ID
) == groups[i].space ID[j])
{
groups[i].initial performance.push back(
settings.bp_results.m space results[k
]1.m rel performance) ;
break ;
}
}
}
}
// average all performances of the groups
for (unsigned int i = 0 ; i < groups.size() ; i++)
{
double average value = 0 ;
for (unsigned int j = 0 ; j < groups[i
].initial performance.size() ; j++)
{
average value += groups[i].initial performancel[j 1 ;
}
average value = average value / groups[i].space ID.size() ;
groups[1].initial performance.clear() ;
groups[i].initial performance.push back(average value);
}
break ;
}
case HBO::cluster type::ARG_COUNT:
{
std::cout<< "Error ARG COUNT reached, exiting now... (
Building Performances.cpp)" << std::endl ;
exit(1) ;
break ;
}
default:

{

687 std: :cout<< "Default error, exiting now... (

Building Performances.cpp) " << std::endl ;
688 exit(1) ;
689 break ;
690 }
691 }
692 break ;
693 }
694 case assessment level::ARG COUNT:
695 {
696 std::cout << "Error in Settings::assessment level, exiting now....
(Building Performances.hpp)" << std::endl ;
697 exit(1) ;
698 break ;
699 }
700 default:
701 {
702 std::cout << "Error in ctor Building Performances, exiting now.... (
Building Performances.hpp)" << std::endl ;
703 exit(1)
704 break ;
705 }
706 }
707 }
708 #endif // BP_SIMULATION_ HPP
709
710 }
711
712 Building Performances::Building Performances (BSO::Spatial Design::MS Building& design,
Building Performances& initial perform)
713 {
714 std::vector< int > ids present;
715
716 for (unsigned int 1 = 0 ; i < design.obtain space count() ; i++) {
ids present.push back(design.get space ID(i)); }
717
718 for (auto itl = initial perform.groups.begin() ; itl '= initial perform.groups.end() ;
) // iterate over all original groups
719 {
720 group performance temp group = *itl; // get the group performance belonging to the
space id
721
722 for (auto it2 = temp group.space ID.begin() ; it2 != temp group.space ID.end() ;)
// iterate over all space ids in that group
723 {
724 bool id removed = false;
725
726 for (auto it3 = ids present.begin() ; it3 != ids present.end() ;) // iterate
over all ids in the new building
727 {
728
729 if (*it2 == *it3) // if the space id is present in the new building,
search for the next id in group
730 {
731 ids present.erase(it3);
732 id removed = true;
733
734 }
735 else
736 {
737 ++it3;
738 }
739
740 } // end ids present loop
741
742 if ('id removed)
743 {
744 temp group.space ID.erase(1it2);
745 }
746 else { ++it2; }
7477
748 } // end temp group loop
749 if ('temp group.space ID.empty())
750 groups.push_back(temp group) ;
751 ++itl;
752 } // end groups loop
753
754 } //ctor (MS Building, initial build perform)
755
756
757
758 Building Performances::~Building Performances ()
759 {

760

761 } //dtor

763 void Building Performances::Create Facade Clusters(BSO::Spatial Design::MS Buildingé&
current design)
764 {
765 std::vector< group_performance > temp_ groups () ; // create 7 groups, 1 for each outer
facade and 1 for all non facade spaces
66
767 // create cluster for =z = min
68 double min z = current design.obtain space(0).z ;
769 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
7 {
771 if (current design.obtain space(i).z < min z)
772 {
773 min z = current design.obtain space(i).z ;
774 }
775 }
776
777 double height = 0 ;
778
779 // find the height of the facade elements to be removed
780 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
781 {
782 if (current design.obtain space(i).z == min z && current design.obtain space(i
) .height > height)
783 {
784 height = current design.obtain space(i).height ;
785 }
786 }
787
788 // find all spaces that are within this column
789 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
790 {
791 if (current design.obtain space(i).z == min z || (abs(
current design.obtain space(i).z) + current design.obtain space(i).height) <=
height)
792 {
793 temp groups[O].space ID.push back(current design.obtain space(i).ID) ;
794 }
795 }
796
797 // create cluster for z = max
798 double max height = 0 ;
799 B
800 // find the top level of the building
801 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
802 {
803 if (current design.obtain space(i).z + current design.obtain space(i).height >
max_height)
804 {
805 max_height = current design.obtain space(i).z + current design.obtain space(i
) .height ;
806 }
807 }
808
809 double low_z = max_height ;
810 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
811 {
812 if (current design.obtain space(i).z + current design.obtain space(i).height ==
max_height && current design.obtain space(i).z < low z)
813 {
814 low_z = current design.obtain space(i).z ;
815 }
816 }
817
818 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
819 {
820 if (current design.obtain space(i).z >= low z)
821 {
822 temp groups[|].space ID.push back(current design.obtain space(i).ID) ;
823 }
824 }
825
826 // create cluster for x = min
827 double min x = current design.obtain space(0).x ;
828 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
829 {
830 if (current design.obtain space(i).x < min x)
831 {
832 min x = current design.obtain space(i).x ;
833 }
834 }
835

836 double width = 0 ;

837 for (unsigned int i = 0 ; i < current design.obtain space count () ; i++)

838 {

839 if (current design.obtain space(i).x == min x && current design.obtain space(i
) .width > width)

840 {

841 width = current design.obtain space(i).width ;

842 }

843 }

844

845 for (unsigned int 1 = 0 ; 1 < current design.obtain space count() ; i++)

846 {

847 if (current design.obtain space(i).x == min x || (abs(
current design.obtain space(i).x) + current design.obtain space(i).width) <=
width)

848 {

849 temp groups[2].space ID.push back(current design.obtain space(i).ID) ;

850 }

851 }

852

853 // create cluster for x = max

854 double max_width = 0 ;

855 for (unsigned int 1 = 0 ; 1 < current design.obtain space count() ; i++)

856 {

857 if (current design.obtain space(i).x + current design.obtain space(i).width >
max_width)

858 {

859 max width = current design.obtain space(i).x + current design.obtain space(i

) .width ;

860 }

861 }

862

863 double max_x = max_width ;

864 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

865 {

866 if (current design.obtain space(i).x < max x && current design.obtain space(i
) .x + current design.obtain space(i).width == max width)

867 {

868 max_x = current design.obtain space(i).x ;

869 }

870 }

871

872 for (unsigned int 1 = 0 ; i1 < current design.obtain space count() ; i++)

873 {

874 if (current design.obtain space(i).x >= max x)

875 {

876 temp groups[3].space ID.push back(current design.obtain space(i).ID) ;

877 }

878 }

879

880 // create cluster for y = min

881 double min y = current design.obtain space(0).y ;

882 for (unsigned int 1 = 0 ; 1 < current design.obtain space count() ; i++)

883 {

884 if (current design.obtain space(i).y < min_ y)

885 min y = current design.obtain space(i).y ;

886 }

887

888 double depth = 0 ;

889 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

890 {

891 if (current design.obtain space(i).depth > depth && current design.obtain space (
i).y = min y)

892 depth = current design.obtain space(i).depth ;

893 }

894

895 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

896 {

897 if (current design.obtain space(i).y == min y || (abs(
current design.obtain space(i).y) + current design.obtain space(i).depth <=
depth))

898 temp groups[4].space ID.push back(current design.obtain space(i).ID) ;

899 }

900

901

902 // create cluster for y = max

903 double max depth = 0 ;

904 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

905 {

906 if (current design.obtain space(i).y + current design.obtain space(i).depth >
max depth)

907 max depth = current design.obtain space(i).y + current design.obtain space(i

) .depth ;

910 double max_y = max_depth ;

911 for (unsigned int 1 = 0 ; 1 < current design.obtain space count() ; i++)

912 {

913 if (current design.obtain space(i).y + current design.obtain space(i).depth ==

max_depth && current design.obtain space(i).y < max y)

914 max_y = current design.obtain space(i).y ;

915 }

916

917 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

918 {

919 if (current design.obtain space(i).y >= max y)

920 temp groups[5].space ID.push back(current design.obtain space(i).ID) ;

921 }

922

923 // assign all spaces that do not belong to one of these groups to the last group

924 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

925 {

926 bool space found = false;

927 for (unsigned int j = 0 ; j < temp groups.size() ; j++)

928 {

929 for (unsigned int k = 0 ; k < temp groups[j].space ID.size() ; k++)

930 {

931 if (current design.obtain space(i).ID == temp groups[j].space ID[k])

932 {

933 space found = true ;

934 break ;

935 }

936 }

937 if (space found)

938 break ;

939 }

940

941 if (!space found)

942 {

943 temp groups[¢].space ID.push back(current design.obtain space(i).ID) ;

944 }

945 }

946

947 groups = temp groups ;

948 }

949

950 void Building Performances::add group(group performance new_group)

951 {

952 groups.push _back(new_group);

953 }

954

955 void Building Performances::delete group(int group index)

956 {

957 groups.erase (groups.begin() + group index) ;

958 }

959

960 int Building Performances::id count ()

961 {

962 int id count = 0;

963 for (unsigned int 1 = 0 ; i < groups.size() ; i++)

964 {

965 id count += groups[i].space ID.size();

966 }

967

968 return id count;

969 }

970

971 int Building Performances::id belonging group (inté& id)

972 {

973

974 for (unsigned int 1 = 0 ; i < groups.size() ; i++)

975 {

976 for (unsigned int j = 0 ; j < groups[i].space ID.size() ; j++)

977 {

978 if (groups[i].space ID[]j] == id)

979 {

980 return i;

981 }

982 }

983 }

984 // 1if no space objects can be found with the id give error and exit

985 std::cout<< "Error no space ID :" << id <<" cannot be found, exiting now... (
Building Performances.hpp)"<<std::endl;

986 exit (1) ;

987 }

988

989 int Building Performances::best group initial()

990 {

991 int best index = 0;

992 double best performance = groups[(0].initial performance[0];
993
994 for (unsigned int i = 0 ; i < groups.size() ; i++)
995 {
996 for (unsigned int j = 0 ; j < groups[i].initial performance.size() ; Jj++)
997 {
998 if (groups[i].initial performance[j] > best performance)
999 {
1000 best performance = groups[i].initial performance[j];
1001 best_index = i;
1002 }
1003 }
1004 }
1005 return best index;
1006 } // best_initial group
1007
1008 int Building Performances::best group modified()
1009 {
1010 int best index = 0;
1011
1012 double best performance = groups[(].modified performance[0];
1013
1014 for (unsigned int i = 0 ; i < groups.size() ; i++)
1015 {
1016 for (unsigned int j = 0 ; j < groups[i].modified performance.size() ; Jj++)
1017 {
1018
1019 if (groups[i].modified performance[j] > best performance)
1020 {
1021 best performance = groups[i].modified performance[]];
1022 best index = i;
1023 }
1024 }
1025 }
1026 return best index;
1027 } // best group modified
1028
1029 int Building Performances::worst group initial()
1030 {
1031 int worst index = 0;
1032 double worst performance = groups[(].initial performance[0];
1033
1034 for (unsigned int i = 0 ; i < groups.size() ; i++)
1035 {
1036 for (unsigned int j = 0 ; j < groups[i].initial performance.size() ; Jj++)
1037 {
1038 if (groups[i].initial performance[]j] < worst performance)
1039 {
1040 worst performance = groups[i].initial performance[]j];
1041 worst index = i;
1042 }
1043 }
1044 }
1045 return worst index;
1046 } // worst group initial
1047
1048 int Building Performances::worst group modified()
1049 {
1050 int worst index = 0;
1051 double worst performance = groups[0U].initial performance[(O];
1052
1053 for (unsigned int 1 = 0 ; i < groups.size() ; i++)
1054 {
1055 for (unsigned int j = 0 ; j < groups[i].modified performance.size() ; j++)
1056 {
1057 if (groups[i].modified performance[]j] < worst performance)
1058 {
1059 worst performance = groups[i].modified performancel[]j];
1060 worst index = i;
1061 }
1062 }
1063 }
1064 return worst index;
1065 } // worst_group_modified
1066
1067 int Building Performances::best group distance()
1068 {
1069 int best group = 0 ;
1070 double best performance = 0;
1071 for (unsigned int 1 = 0 ; i < groups[0].modified performance.size() ; i++)
1072 {
1073 best performance += (| - groups[0].modified performance[i]) ;
1074 }

1075 best performance = pow(best performance, 1.0 / groups[0].modified performance.size()

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

1105
1106
1107
1108
1109
1110
1111
1112
1113

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

)

for (unsigned int i = ; 1 < groups.size() ; i++)
{
double temp performance = 0 ;
for (unsigned int j =0 ; j < groups[i].modified performance.size() ; Jj++)
{
temp performance += (| - groups[i].modified performancel[j 1)
}
temp performance = pow(temp performance, 1.0 / groups[i
] .modified performance.size()) ;
if (temp performance < best performance)
{
best performance = temp performance ;
best group = i ;
}
}
return best group ;
} // best_group distance
int Building Performances::worst group distance()
{
int worst group = 0 ;
double worst performance = 0 ;
for (unsigned int 1 = 0 ; i < groups[0].modified performance.size() ; i++)
{
worst performance += groups[0].modified performance[i] ;
}
worst performance = pow(worst performance, 1.0 / groups[0
] .modified performance.size()) ;
for (unsigned int i = 0 ; i < groups.size() ; i++)
{
double temp performance = 0 ;
for (unsigned int j =0 ; j < groups[i].modified performance.size() ; j++)
{
temp performance += groups[i].modified performance[j] ;
}
temp performance = pow(temp performance, 1.0 / groups[i

] .modified performance.size()) ;

if (temp performance < worst performance)
{
worst performance = temp performance ;
worst group = i ;
}
}
return worst_group ;
} // worst group distance

int Building Performances::get initial space count ()

{
return initial space count;
}
double Building Performances::get initial volume ()
{
return initial volume;
}

} // namespace Performance Evaluation
} // namespace HBO
} // namespace BSO

#endif // BUILDING PERFORMANCES

1 #ifndef PERFORMANCE EVALUATION_ HPP
2 #define PERFORMANCE EVALUATION HPP
3
4 #include <BSO/HBO/HBO_ Settings.hpp>
5 #include <BSO/HBO/Performance Evaluation/Non Aggregate Performances.hpp>
6 #include <BSO/HBO/Performance Evaluation/Aggregate Performances.hpp>
7
8 #include <iostream>
9 #include <vector>
10
11 namespace BSO { namespace HBO { namespace Performance Evaluation {
12
13 HBO::Performance Evaluation::Building Performances evaluate performance (
HBO: :Performance Evaluation::Building Performances& build perform, HBO::Settings& settings)
14 {
15 switch(settings.assessment options)
16 {
17 case BSO::HBO::performance assessment::INDIVIDUAL: { return
BSO::HBO::Performance Evaluation::non aggregate performance(build perform, settings) ; }
18 case BSO::HBO::performance assessment::AGGREGATE: { return
BSO::HBO::Performance Evaluation::aggregate performances(build perform, settings) ;}
19 case BSO::HBO::performance assessment::NON AGGREGATE: { return
BSO::HBO::Performance Evaluation::non aggregate performance(build perform, settings) ;}
20 case BSO::HBO::performance assessment::ARG COUNT: { std::cout << "Error ARG COUNT
reached, exiting now... (Performance Evaluation.hpp" << std::endl ; exit(l) ; }
21 default: { std::cout << "Error default, exiting now... (Performance Evaluation.hpp)" <<
std::endl ; exit(l) ; }
22 }
23 }
24 } // Performance Evaluation

25 } // HBO

26 } // BsO

27

28 #endif // PERFORMANCE EVALUATION HPP

O Joy Ul WN

e el el
g WM oW

16
17
18
19
20
21

22
23

24
25
26
27
28
29

30
31
32
33
34

35
36

37
38
39
40
41
42
43
44
45
46
47
48

#ifndef NON AGGREGATED PERFORMANCES HPP
#define NON AGGREGATED PERFORMANCES HPP

#include <BSO/HBO/HBO_Settings.hpp>
#include <BSO/HBO/Performance Evaluation/Building Performances.hpp>

#include <vector>
namespace BSO { namespace HBO { namespace Performance Evaluation {
/*
Functions that do not aggregate space performances

*/

HBO::Performance Evaluation::Building Performances non_ aggregate performance (
HBO: :Performance Evaluation::Building Performances& build perform, HBO::Settingsé& settings)

{
HBO: :Performance Evaluation::Building Performances temp build perform = build perform;
if (settings.weights.empty()) // if no weights are assigned, set all weights equal
{
for (unsigned int 1 =0 ; i <
temp build perform.groups[0].initial performance.size() ; i++)
{
settings.weights.push back(1.0 /
temp build perform.groups[0].initial performance.size());
}
}
if (settings.weights.size() '= temp build perform.groups[(].initial performance.size())
{
std::cout<< "Amount of weights and initial performances do not match, exiting now...
(Non Aggregate Performances.hpp)"<<std::endl; exit(1);
}
for (unsigned int i = 0 ; i1 < temp build perform.groups.size() ; i++)
{
for (unsigned int 3 =0 ; j <
temp build perform.groups[i].initial performance.size() ; j++)
{
temp build perform.groups[i] .modified performance.push back(
temp build perform.groups[i].initial performance[j] * settings.weights[j])’
}
}
return temp build perform;
}

} // namespace Performance Evaluation
} // namespace HBO
} // namespace BSO

#endif // NON_AGGREGATED PERFORMANCES HPP

B e
N O Wow-doy Ul W -

e
© ®J oUW

NN DN DN
w N = O

24
25
26
27
28
29

w w w w w w S
ar o w N)

~J o

w
[ee)

40
41
42
43
44
45
46
47

48
49
50
51

52
53
54
55

58
59
60

61

S O O O
oy U1 W W

67

#ifndef AGGREGATE DISCIPLINES HPP
#define AGGREGATE DISCIPLINES HPP

#include
#include
#include
#include

#include
#include

#include
#include
#include

<BSO/Spatial Design/Movable Sizable.hpp>
<BSO/Structural Design/SD Results.hpp>
<BSO/Building Physics/BP Results.hpp>
<BSO/Trim And Cast.hpp>

<BSO/HBO/Performance Evaluation/Building Performances.hpp>
<BSO/HBO/HBO_Settings.hpp>

<iostream>
<vector>
<cmath>

namespace BSO { namespace HBO { namespace Performance Evaluation {

/*
Functions that aggregate space performances
*/

Performance Evaluation::Building Performances

aggregate performances (Performance Evaluation::Building Performances& build perform,
Settings& settings)

{

int space count;
Performance Evaluation::Building Performances temp_build perform = build perform ;

if (settings.weights.empty()) // if no weights are initialized, give all
disciplines equal weight

{
for (unsigned int 1 = 0 ; 1 < temp build perform.groups[0
].initial performance.size() ; i++)
{
settings.weights.push back(1.0 / temp build perform.groups[0
].initial performance.size()) ;
}
}
if (settings.weights.size() !'= temp build perform.groups[0
].initial performance.size()) // check whether there are enough weights for the
performances
{
std::cout << "The amount of weights does not equal the amount of performances,
exiting now... (Aggregate Performances.hpp)" << std::endl ; exit(1) ;
}
for (unsigned int i = 0 ; i < temp build perform.groups.size() ; i++)
{
switch(settings.aggregate options)
{
case aggregate disciplines::SUMMATION:
for (unsigned int j = 0 ; j < temp build perform.groups[i
l.initial performance.size() ; Jj++)
{
if(j == 0)
{

temp build perform.groups[i
] .modified performance.push back(temp build perform.groups[i
].initial performance[j] * settings.weights[j]) ;

}
else if(j !'= 0)
{
temp build perform.groups[i].modified performance[0] +=
temp build perform.groups[i].initial performance[j] *
settings.weights[7 1
}
else{ std::cout<<"Error in summation, exiting now...
(Aggregate Performances.hpp)"; exit(1); '}
}
break;

case aggregate disciplines::PRODUCT:

for(unsigned int j = 0 ; j < temp build perform.groups[i
].initial performance.size() ; Jj++)
{

if(j == 0)

{

temp build perform.groups[i
] .modified performance.push back(temp build perform.groups[i
].initial performance[j] * settings.weights[j 1)

~J

~

~
O 0 ~J o U W

~N 3

oo
= O

[ee)
[\

83

\\e]
\S}

O W WY YW
arbd W

~ o

O O
O

100
101

102
103
104
105

106
107

108
109
110
111

112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

else if(j !'= 0)

{
temp build perform.groups[i].modified performance[0] *=
temp build perform.groups[i].initial performance[j] *
settings.weights[j 1 ;

}

else { std::cout << "Error in product, exiting now...
(Aggregate Performances.hpp)" << std::endl ; exit() 5}
}

break;

case aggregate disciplines::DISTANCE:

{
for (unsigned int j = 0 ; j < temp build perform.groups[i
]l.initial performance.size() ; Jj++)
{
if (J == 0)
{
temp build perform.groups[i].modified performance.push back (pow((
1 - temp build perform.groups[i].initial performance[j] *
settings.weights[3 1), 2))
}
else if(j '= 0)
{
temp build perform.groups[i].modified performance[O] += pow((
- temp build perform.groups[i].initial performancel[j] *
settings.weights[3 1), 2) ;
}
else { std::cout << "Error in euclidean distance, exiting now... (
Aggregate Performances.hpp)" << std::endl ; exit(l) ; }
temp build perform.groups[i].modified performance[O] = pow(
temp build perform.groups[i].modified performance[O], 1.0 /
temp build perform.groups[i].initial performance.size()) ;
temp build perform.groups[i].modified performance[0] = pow(2, 1.0/2) -
temp build perform.groups[i].modified performance[0]
break ;
}
case aggregate disciplines::INVERSE PRODUCT:
for (unsigned int j = 0 ; j < temp build perform.groups[i
].initial performance.size() ; j++)
{
if (J = 0)
{

temp build perform.groups[.modified performance.push back((1 -
temp build perform.groups[i].initial performance[j 1) *
settings.weights[7 1),

-
—

else if (j !'= 0)

{

-

temp build perform.groups[] .modified performance[O] *= (1 -
temp build perform.groups[i].initial performance[j]) *
settings.weights[j 1;

}
else { std::cout << "Error in inverse product, exiting now... (
Aggregate Performances.hpp)'" << std::endl ; exit(1); }

}

break;

case aggregate disciplines::ARG COUNT:
std::cout << "Error ARG COUNT in aggregate options, exiting now...
(Aggregate Performances.hpp)" << std::endl ;
exit(1)
break ;
default:
std::cout << "Error in aggregate options, exiting now...
(Aggregate Performances.hpp)" << std::endl ;
exit(1)
} // end switch

} // for all temp build.groups
return temp build perform ;
} // aggregate performances
} // namespace Performance evaluation
} // namespace HBO
} // namespace BSO

#endif // AGGREGATE DISCIPLINES

Sw N

~ o U

= el el el
N DU WN R O W o

1
(o]

19

20

NN
w N

BB D W W W w w w w w w w NN NN
WN P O Wwow o (€3] i w N = o O 0 ~J o U b

AN
[N

oo o (G2 G2 BNE 2 BNE BTN N N >
S W N HE O WOwJdo U b W N O WO (o)}

o Oy O OY O O U1

Ul

#ifndef
#define

#include
#include

#include
#include

namespac

/*

*/

std:
Perf
std:
Perf
std:
HBO:
std:
HBO:
std:
HBO:
std:
HBO:

std:
HBO:
{

std:
Perf
{

SPACE_RANKING NON_ AGGREGATED HPP
SPACE RANKING NON AGGREGATED HPP

<BSO/HBO/Performance Evaluation/Building Performances.hpp>
<BSO/HBO/HBO_Settings.hpp>

<vector>
<cmath>

e BSO { namespace HBO { namespace Space Selection {

Functions to rank space with non aggregated performances
ALL LISTS ARE GENERATED WITH WORST PERFORMANCE AT THE ZERO INDEX

:vector<int> rank spaces_best performance (

ormance Evaluation::Building Performancesé& , HBO::Settingsé&) ;

:vector<int> rank spaces_worst performance (

ormance Evaluation::Building Performancesé& , HBO::Settingsé&) ;

:vector<int> rank spaces_best distance(Performance Evaluation::Building Performancesg,
:Settingsé&) ;

:vector<int> rank spaces_worst distance(Performance Evaluation::Building Performancesg,
:Settingsé&) ;

:vector<int> rank spaces_alter best(Performance Evaluation::Building Performancesé& ,
:Settingsé&) ;

:vector<int> rank spaces_alter worst(Performance Evaluation::Building Performancesé& ,
:Settingsé&) ;

:vector<int> rank spaces(Performance Evaluation::Building Performancesé& build perform,
:Settings& settings)

std::vector<int> spaces_ranked ;

switch(settings.ranking type)

{
case space_ranking::BEST: { spaces_ranked = rank spaces best performance (
build perform, settings) ; break ; }
case space_ranking::WORST: { spaces_ranked = rank spaces worst performance (
build perform, settings) ; break ; }
case space_ranking::BEST DISTANCE: { spaces_ranked = rank spaces best distance (
build perform, settings) ; break ; }
case space_ranking::WORST DISTANCE: { spaces_ranked = rank spaces worst distance(
build perform, settings) ; break ; }
case space_ranking::ALTER BEST: { spaces_ranked = rank spaces_alter best (
build perform, settings) ; break ; }
case space_ranking::ALTER WORST: { spaces_ranked = rank spaces worst performance (
build perform, settings) ; break ;}
case space_ranking::ARG COUNT: { std::cout << "Error ARG COUNT, exiting now...
(Space Ranking.hpp)" << std::endl ; exit(l) ; }
default: { std::cout << "Error default, exiting now ... (Space Ranking.hpp)" <<
std::endl; exit(l) ; }

}

return spaces_ranked;

:vector<int> rank spaces_best performance (
ormance Evaluation::Building Performancesé& build perform, HBO::Settings& settings)

// Orders the spaces by their best performance, no matter what the other performances
are
BSO: :HBO::Performance Evaluation::Building Performances temp_build perform =
build perform;
std::vector<int> spaces ranked;
// take the best group at a time and add its IDs to the list
for (unsigned int 1 = 0 ; i < build perform.groups.size() ; i++)
{
int best group = temp build perform.best group modified();

for (unsigned int j = 0 ; j < temp build perform.groups|[best group].space ID.size()
; j++) // This method ranks the best space at element 0, so it needs to be reversed

spaces_ranked.push back(temp build perform.groups[best group].space ID[]]);

}
temp build perform.groups.erase(temp build perform.groups.begin() + best group);
}
// reverse the space list
for (unsigned int i = 0 ; i < (spaces_ranked.size() / 2) ; i++)
{
int temp id = spaces ranked[i];
spaces_ranked[i] = spaces_ranked[spaces ranked.size() - i - 1 1;
spaces ranked[spaces ranked.size() - i - 1] = temp id;

~ o O O O)
O W O ~J o

100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123

124
125
126
127
128
129
130
131

132
133

134
135
136
137
138
139

return spaces_ranked;

std::vector<int> rank spaces worst performance (
Performance Evaluation::Building Performances& build perform, HBO::Settingsé& settings)

{

}

std::vector< int > rank spaces best distance(Performance Evaluation::Building Performancesé&

// Order spaces by their worst performance, not matter what the other performances are
BSO: :HBO::Performance Evaluation::Building Performances temp_build perform =

build perform;

std::vector<int> spaces ranked;

//take the worst group at a time and add its IDs to the list

for (unsigned int 1 = 0 ; 1 < build perform.groups.size() ; i++)
{
int worst group = temp build perform.worst group modified();
for (unsigned int 3 =0 ; j <
temp build perform.groups[worst group].space ID.size() ; Jj++)
{

spaces_ranked.push back(temp build perform.groups[worst group].space ID[]]);

temp build perform.groups.erase(temp build perform.groups.begin() + worst group);

}

return spaces_ranked;

build perform, HBO::Settings& settings)

{

}

// Order spaces by the distance to the utopia point (1, 1)
BSO: :HBO::Performance Evaluation::Building Performances temp build perform =
build perform ;

std::vector< int > spaces_ranked ;

// take the group with the shortest distance and at its IDs to the list

for (unsigned int 1 = 0 ; i < build perform.groups.size() ; i++)
{
int best group = temp build perform.best group distance();
for (unsigned int j = 0 ; j < temp build perform.groups[best group
].space ID.size() ; j++)
{
spaces_ranked.push back(temp build perform.groups[best group].space ID[j 1)
}
temp build perform.groups.erase(temp build perform.groups.begin() + best group) ;
}
// reverse the space list so the space with the largest distance is at index 0
for (unsigned int 1 = 0 ; i < (spaces ranked.size() / 2) ; i++)
{
int temp id = spaces ranked[i];
spaces ranked[i] = spaces ranked[spaces ranked.size() - i - 1];
spaces_ranked[spaces ranked.size() - i - 1] = temp_ id;

}

return spaces_ranked ;

std::vector< int > rank spaces_worst distance (
Performance Evaluation::Building Performances& build perform, HBO::Settingsé& settings)

{

// Order spaces by the distance to (0, 0)

BSO::HBO::Performance Evaluation::Building Performances temp_build perform =
build perform ;

std::vector< int > spaces ranked ;

// take the group with the shortest distance and at its IDs to the list

for (unsigned i = 0 ; i < build perform.groups.size() ; i++)
{
int worst group = temp build perform.worst group distance() ;
for (unsigned int j = 0 ; j < temp_build perform.groups[worst group
].space ID.size() ; j++)
{

spaces ranked.push back(temp build perform.groups[worst group].space ID[j 1]
)

}

temp build perform.groups.erase(temp build perform.groups.begin() + worst group)

}

return spaces_ranked ;

’

’

B e e
o)y O)Y O O)Y O
bW NP O

(€1

s WNhEFE O WOWJdo

4 J JJJJJJJ-J00 o000
~J O

PR RRPRRRRRRRERPRRRPRP B

oo
= O v ©

-
[ee]
N

183
184
185

186
187
188

=
O
[@3Ne)

0 O O ©

> O O

o w N

O O WKL

o O

NNNONNNNRRRRRRPR R RP R
0 o
B WN B O W

o

N
o
I

206
207
208
209
210
211
212
213

std::vector<int> rank spaces alter best(Performance Evaluation::Building Performancesé&
build perform, HBO::Settings& settings)

{

}

// Order spaces alternating between the disciplines, choosing the best performance
BSO: :HBO::Performance_ Evaluation::Building Performances temp_build perform =
build perform;

std::vector<int> spaces ranked;

int discipline_number = 0 ;
for (unsigned int 1 = 0 ; 1 < build perform.groups.size() ; i++)
{
discipline number++ ;
if (discipline number >= build perform.groups[O].modified performance.size())

discipline number = ;
double best performance = temp build perform.groups[O].modified performance][
discipline number] ;
int best group = 0 ;
for (unsigned int j = 0 ; j < temp build perform.groups.size() ; j++)
{
if (temp build perform.groups[j].modified performance[discipline number] >
best performance)
{
best performance = temp build perform.groups[j].modified performance[
discipline number] ;
best group = j ;
}
}
for (unsigned int j = 0 ; j < temp build perform.groups[best group
].space ID.size() ; j++)
{
spaces_ranked.push back(temp build perform.groups[best group].space ID[j 1)
}
temp build perform.delete group(best group) ;
}
for (unsigned int 1 = 0 ; i < (spaces ranked.size() / 2) ; i++)
{
int temp id = spaces ranked[i];
spaces ranked[i] = spaces ranked[spaces ranked.size() - i - 1 1;
spaces_ranked[spaces ranked.size() - i -] = temp_id;
}

return spaces_ranked;

std::vector<int> rank spaces alter worst(Performance Evaluation::Building Performancesé&
build perform, HBO::Settingsé& settings)

{

// Order spaces alternating between the disciplines, choosing the worst performace

BSO::HBO::Performance Evaluation::Building Performances temp_build perform =
build perform;
std::vector<int> spaces ranked;

for (unsigned int 1 = 0 ; i < build perform.groups.size() ; i++)
{
for (unsigned int j = 0 ; j < build perform.groups[(0].modified performance.size() ;
J++)
{
double worst perform = temp build perform.groups[(0].modified performancel[]j];
int worst group = 0;
for (unsigned int k = 0 ; k < temp build perform.groups.size() ; k++)
{
if (temp build perform.groups[k].modified performance[]j] < worst perform)
{
worst group = k;
worst perform = temp build perform.groups[k].modified performance[j];
}

}

for (unsigned int k =0 ; k <
temp build perform.groups[worst group].space ID.size() ; k++)
{

spaces ranked.push back(temp build perform.groups[worst group].space ID[k]);

}

temp build perform.groups.erase(temp build perform.groups.begin() + worst group);

}

return spaces ranked;

214
215
216
217
218
219

} // namespace Space Selection
} // namespace HBO
} // namespace BSO

#endif // SPACE RANKING NON AGGREGATED HPP

C CODE

Building Modification

Ix

1 #ifndef BUILDING MODIFICATION_ HPP

2 #define BUILDING MODIFICATION_HPP

3

4 #include <BSO/Spatial Design/Movable Sizable.hpp>

5 #include <BSO/HBO/Performance Evaluation/Building Performances.hpp>

6 #include <BSO/HBO/Building Modification/Rescaling.hpp>

7 #include <BSO/HBO/Building Modification/Sweeping.hpp>

8

9 #include <BSO/HBO/HBO_Settings.hpp>

10

11 #include <iostream>

12 #include <vector>

13

14 namespace BSO { namespace HBO { namespace Building Modification {

15

16 BSO::Spatial Design::MS Building building modification(BSO::Spatial Design::MS Buildingé&
current_design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO::HBO::Settings& settings)

17 {

18

19 switch(settings.modification options)

20 {

21 case BSO::HBO::building modification::SCALE: { return

BSO: :HBO::Building Modification::rescale building(current design, build perform,
settings) ; }

22 case BSO::HBO::building modification::SWEEP: { return
BSO::HBO::Building Modification::sweep building(current design, build perform,
settings) ; }

23 case BSO::HBO::building modification::ARG COUNT: { std::cout <<" Error ARG COUNT,
exiting now... (Building Modification.hpp) " << std::endl; exit(l) ; }

24 default: { std::cout << "Error default. Exiting now... (Building Modification.hpp)
" << std::endl ; exit(l) ;}

25 } // end switch

26

27 } // building modification ()

28 } // Building Modification

29 '} // HBO

30} // BSO

31

32 #endif // BUILDING MODIFICATION HPP

=
B O wWow-Jo U WN

e
S W N

=
o U

17
18
19
20

27
28
29
30

41
42
43
44

45
46

47

#ifndef SPACE REMOVAL HPP
#define SPACE REMOVAL_ HPP

#include <BSO/Spatial Design/Movable Sizable.hpp>

#include <BSO/Trim And Cast.hpp>

#include <BSO/HBO/Performance Evaluation/Building Performances.hpp>
#include <BSO/HBO/HBO_Settings.hpp>

#include <AEI Grammar/Grammar 2.hpp>

#include <iostream>
#include <vector>
#include <cmath>

namespace BSO { namespace HBO { namespace Space Selection {

/*
Functions to remove spaces from building spatial designs

*/
BSO::Spatial Design::MS Building remove 1 space(BSO::Spatial Design::MS Buildingé&
current_design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
std::vector<int>& spaces_ranked) ;
BSO::Spatial Design::MS Building remove x worst spaces(
BSO::Spatial Design::MS Building& current design, std::vector<int>& spaces ranked,
BSO: :HBO: :Settingsé& settings) ;
BSO::Spatial Design::MS Building remove x best spaces(BSO::Spatial Design::MS Buildingé&
current design, std::vector<int>& spaces ranked, BSO::HBO::Settings& settings) ;
BSO::Spatial Design::MS Building remove top floor(BSO::Spatial Design::MS Buildingé&
current design, std::vector<int>& spaces ranked, BSO::HBO::Settings& settings) ;
BSO::Spatial Design::MS Building remove bp function(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Settings& settings) ;

BSO::Spatial Design::MS Building removal of spaces(BSO::Spatial Design::MS Buildingé&
current design, std::vector<int>& spaces_ranked ,
BSO::HBO::Performance Evaluation::Building Performances& build perform, BSO::HBO::Settingsé&

settings)
{

switch(settings.removal type)

{
case HBO::space removal type::ONE WORST: { return remove 1 space(current design,
build perform, spaces ranked) ; break ; }
//case HBO::space removal type::TENTH: { settings.space removal requested = ceil(
current design.obtain space count() * 0.10) ; return remove x worst spaces (
current design, spaces_ranked, settings) ; }
//case HBO::space removal type::TWENTIETH: { settings.space removal requested =
ceil (current design.obtain space count() * 0.20) ; return remove x worst spaces(
current design, spaces ranked, settings) ; }
case HBO::space removal type::THIRTIETH: { settings.space removal requested = ceil(
current design.obtain space count() * 0.30) ; return remove x worst spaces(
current design, spaces_ranked, settings) ; }
case HBO::space removal type::FORTIETH: { settings.space removal requested = ceil(
current design.obtain space count() * 0.40) ; return remove x worst spaces(
current design, spaces ranked, settings) ;
case HBO::space removal type::FIFTIETH: { settings.space removal requested = ceil(
current design.obtain space count() * 0.50) ; return remove x worst spaces(
current design, spaces_ranked, settings) ; }
//case HBO::space removal type::X BEST: { return remove x best spaces (
current design, spaces_ranked, settings) ; break ; }
//case HBO::space removal type::TOP FLOOR: { return remove top floor(
current design, spaces_ranked, settings) ; break ; }
//case HBO::space removal type::BP REMOVAL: { return remove bp function(
current design, settings); break ; }
case HBO::space removal type::ARG COUNT: { std::cout<<"Error ARG COUNT reached,
exiting now... (Space Removal.hpp)"<<std::endl; exit(l) ; }
default: { std::cout<<"Error default, exiting now...
(Space Removal.hpp) "<<std::endl; exit(l) ; }

}

} // removal of spaces

BSO::Spatial Design::MS Building remove 1 space(BSO::Spatial Design::MS Buildingé&
current_design, BSO::HBO::Performance Evaluation::Building Performancesé& build perform,
std::vector<int>& spaces_ranked)
{
// removes the worst spaces in the building design until spaces are removed equal to the
worst group in build perform
int remove = build perform.groups[build perform.worst group modified()
].space ID.size() ;
BSO::Spatial Design::MS Building new design =
for (unsigned int i = 0 ; i < remove ; i++)

{

current design ;

new design.delete space(new design.get space index(spaces ranked[i 1));

}

return new_design;

~J o U

o or Ul

S w N HE O w oo

Y O OY OY OY O O O U1 U1

~ o O
O W o J oy Ul

~J

~
SwWw N

0 0 00 0O 0 0 ~J J ~ J 33
~ o U1 W NP O wo J o U1

o
S wWw e O w oo

=
O O VYWV VWY IWLW W WL ®©
H O wWow-Jo U

i
o
N

103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

} // remove 1 space

BSO::Spatial Design::MS Building remove x worst spaces(BSO::Spatial Design::MS Buildingé&
current design, std::vector<int>& spaces ranked, BSO::HBO::Settingsé& settings)
{

// removes the x worst spaces in the building design

BSO::Spatial Design::MS Building new design = current design;

for (unsigned int 1 = 0 ; i < settings.space removal requested ; i++)
{
new design.delete space(new design.get space index(spaces ranked[i 1)):

}

return new_design;
} // remove x worst_ spaces

BSO::Spatial Design::MS Building remove x best spaces(BSO::Spatial Design::MS Buildingé&
current design, std::vector<int>& spaces ranked, BSO::HBO::Settingsé& settings)
{

// removes the x best spaces in the building design

BSO::Spatial Design::MS Building new design = current design;

for (unsigned int 1 = 0 ; i < settings.space removal requested ; i++)
{
new design.delete space(
new _design.get space index(spaces_ranked[spaces_ranked.size() - 1 - 1]));

}

return new design;
} // remove x best spaces

BSO::Spatial Design::MS Building remove top_ floor(BSO::Spatial Design::MS Buildingé&
current design, std::vector<int>& spaces ranked, BSO::HBO::Settingsé& settings)
{

// removes the top floor of a building spatial design

BSO::Spatial Design::MS Building new design = current design;

// reset the removal count
settings.space removal requested = 0;

// find the highest z value
double z_high = 0 ;

for (unsigned int 1 = 0 ; i < new design.obtain space count () ; i++)
{

if (new design.obtain space(i).z > z high)

{

z_high = new_design.obtain space(i).z ;

}
}
// remove all spaces with the highest z value
for (unsigned int 1 = 0 ; 1 < new_design.obtain space count() ; i++)
{

if (new_design.obtain space(i).z == z high)

{

settings.space removal requested++ ;
new design.delete space(i) ;
i--

}

return new_design;
} // remove 1 floor

BSO::Spatial Design::MS Building remove bp function(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Settingsé& settings)
{

BSO::Spatial Design::MS Building new design = current design ;

std::vector< int > space indexes for removal ;

settings.space removal requested = 0 ;

BSO::Spatial Design::MS Conformal CF(new design, &(BSO::Grammar::grammar 2)) ;

for (unsigned int i = 0 ; 1 < CF.get space count() ; i++)
{
int adjacent spaces = 0 ;
for (unsigned int j =0 ; j < 6 ;j++)
{
bool space found = false;
for (unsigned int k = 0 ; k < CF.get space(i1)->get surface ptr(j
) ->get rectangle count() ; k++)
{

BSO::Spatial Design::Geometry::Rectangle* rectangle =

e el el el el el
wwwww
~J oUW

w w
O

141
142
143
144
145
146
147
148
149
150
151
152

CF.get_space (i)->get surface ptr(j)->get rectangle ptr(k) ;

for (unsigned int 1 = 0 ; 1 < rectangle->get surface count() ; 1++)
{
if (rectangle->get surface count() == 2)
{
space found = true ;
break ;
}
}
if (space_found)
break ;
}
adjacent spaces++ ;
}
if (adjacent spaces <= 2)
{
new design.delete space(new design.get space index(CF.get space(i)->get ID()
))
settings.space removal requested++ ;
}

}

return new design ;
} // remove bp function

} // Space Selection
} // HBO
} // BSO

#endif // SPACE_REMOVAL_ HPP

B e e
N O Wow-doy Ul W -

w

NN DNDDNDDNDDNDN
~J oUW NP O

>N N
[ee]

w W N
= O WO

Sw N

w w www
6]

o)

[N A N N SR wW W W
O J oy Ui WN = O W 0 J

ar o

[S2lN6;1
S wWw N R O W

o O O O) oy oy oy U1 UT Tl U U1 U1
N HE O WwOoJdo w

oy U W

[)

J o
O 0 ©

N =

#ifndef RESCALING_HPP
#define RESCALING HPP

#include
#include
#include

<BSO/Spatial Design/Movable Sizable.hpp>
<BSO/HBO/Performance Evaluation/Building Performances.hpp>
<BSO/HBO/HBO_Settings.hpp>

<vector>
<cmath>

#include
#include

namespace BSO { namespace HBO { namespace Building Modification {
BSO::Spatial Design::MS Building rescale building(BSO::Spatial Design::MS Buildingé&

current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO: :HBO: :Settingsé& settings)

{

BSO::Spatial Design::MS Building new_design

if (new design.get volume ()

= current design ;

build perform.get initial volume())

{
std::cout << "Warning, volume before scaling is equal to initial volume. " <<
std::endl;
}
switch(settings.rescaling)
{
case rescaling options::X:
{
new design.scale x(build perform.get initial volume() / new design.get volume ()
)
return new design;
}
case rescaling options::Y:
{
new design.scale y(build perform.get initial volume() / new design.get volume ()
)
return new design;
}
case rescaling options::Z:
{
new design.scale z(build perform.get initial volume() / new design.get volume ()
)
return new design;
}
case rescaling options::XY:
{
double factor = sqgrt(build perform.get initial volume() /
new_design.get volume()) ;
new design.scale x(factor) ;
new_design.scale y(factor) ;
return new design;
}
case rescaling options::XZ:
{
double factor = sqrt(build perform.get initial volume() /
new_design.get volume()) ;
new design.scale x(factor) ;
new_design.scale z(factor) ;
return new design ;
}
case rescaling options::YZ:
{
double factor = sqrt(build perform.get initial volume() /
new_design.get volume()) ;
new design.scale y(factor) ;
new _design.scale z(factor) ;
return new design ;
}
case rescaling options::XYZ:
{
double factor = cbrt(build perform.get initial volume() /
new_design.get volume()) ;
new design.scale x(factor) ;
new_design.scale y(factor) ;
new design.scale z(factor) ;
return new design ;
}
case rescaling options::ARG_COUNT:
{
std::cout << "Error ARG COUNT, exiting now... (Rescaling.hpp)" << std::endl ;
exit (1) ;
}
default:

{

74

75
76
77
78
79
80
81
82
83

std::cout << "Error default, exiting now...

exit (1) ;
}
} // end switch
} // rescale building

} // namespace Building Modification
} // namespace HBO
} // namespace BSO

#endif // RESCALING HPP

(Rescaling.hpp)" << std::endl

’

=
B O wWow-Jo U WN

-
A8}

B e e e
<oy U W

18

19

20
21

22
23
24
25

26

27

28

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

#ifndef SWEEPING_HPP
#define SWEEPING HPP

#include <BSO/Spatial Design/Movable Sizable.hpp>
#include <BSO/HBO/Performance Evaluation/Building Performances.hpp>
#include <BSO/HBO/HBO_Settings.hpp>

#include <vector>
#include <cmath>

namespace BSO { namespace HBO { namespace Building Modification {

/*
Functions that sweep a building spatial design
*/

BSO::Spatial Design::MS Building sweep x axis(BSO::Spatial Design::MS Buildingé,
BSO: :HBO: :Performance Evaluation::Building Performances&, BSO::HBO::Settings&);
BSO::Spatial Design::MS Building sweep y axis(BSO::Spatial Design::MS Buildingé,
BSO: :HBO::Performance Evaluation::Building Performances&, BSO::HBO::Settings&);
BSO::Spatial Design::MS Building sweep z axis(BSO::Spatial Design::MS Buildingé,
BSO: :HBO: :Performance Evaluation::Building Performances&, BSO::HBO::Settings&);
/*
BSO::Spatial Design::MS Building sweep building(BSO::Spatial Design::MS Buildings
current_design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO::HBO::Settingsé& settings)
{

switch (settings.sweep option)

{

case HBO::sweeping options::X: { BSO::Spatial Design::MS Building temp design =

sweep X axis(current design, build perform, settings) ; return temp design ; }
case HBO::sweeping options::Y: { BSO::Spatial Design::MS Building temp design =
sweep y axis(current design, build perform, settings) ; return temp design ; }
case HBO::sweeping options::Z: { BSO::Spatial Design::MS Building temp design =
sweep z axis(current design, build perform, settings) ; return temp design ; }
case HBO::sweeping options::ARG COUNT: { std::cout<< "Error ARG _COUNT, exiting
now... (Sweeping.hpp)"<<std::endl; exit(l) ; }

default: { std::cout<< "Error default, exiting now... (Sweeping.hpp) "<<std::endl;
exit (1) ; }

} // end switch
} // sweep building ()
*/

BSO::Spatial Design::MS Building sweep building(BSO::Spatial Design::MS Buildingé&
current_design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO::HBO::Settings& settings)

{
switch (settings.sweep option)
{
case HBO::sweeping options::X Z:
{
settings.sweep location = HBO::sweeping location::ZERO ;
return sweep x axis(current design, build perform, settings) ;
}
case HBO::sweeping options::X F:
{
settings.sweep location = HBO::sweeping location::FIFTY ;
return sweep x axis(current design, build perform, settings) ;
}
case HBO::sweeping options::X H:
{
settings.sweep location = HBO::sweeping location::HUNDRED ;
return sweep x axis(current design, build perform, settings) ;
}
case HBO::sweeping options::Y_ Z:
{

settings.sweep location = HBO::sweeping location::ZERO ;
return sweep y axis(current design, build perform, settings) ;

}

case HBO::sweeping options::Y F:

{
settings.sweep location = HBO::sweeping location::FIFTY ;
return sweep y axis(current design, build perform, settings) ;
}
case HBO::sweeping options::Y H:
{
settings.sweep location = HBO::sweeping location::HUNDRED ;
return sweep y axis(current design, build perform, settings) ;
}
case HBO::sweeping options::Z Z:
{

settings.sweep location = HBO::sweeping location::ZERO ;
return sweep z axis(current design, build perform, settings) ;

)

~N 0099
O ~J o) U > W

~J
e

o
= O

0 0 o
B w N

W 0 O O 0
O W O ~J o U+

O 0 W W o
g w N

96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

case HBO::sweeping options::Z_F:

{
settings.sweep location = HBO::sweeping location::FIFTY ;
return sweep z_ axis(current design, build perform, settings) ;
}
case HBO::sweeping options::Z H:
{
settings.sweep location = HBO::sweeping location::HUNDRED ;
return sweep z axis(current design, build perform, settings) ;
}
case HBO::sweeping options::ARG COUNT:
{
std::cout<< "Error ARG COUNT, exiting now... (Sweeping.hpp)"<<std::endl;
exit (1)
}
default:
{
std::cout << "Error default, exiting now... (Sweeping.hpp)" << std::endl ;
}
} // end switch (sweep options)

} // sweep building

BSO::Spatial Design::MS Building sweep x axis(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO: :HBO: :Settingsé& settings)
{
/*
Determine the values for sweeping

*/
BSO::Spatial Design::MS Building new design = current design;

double area swept = 0.0;
double x_value;

switch(settings.sweep location)

{
case HBO::sweeping location::ZERO: { x value = 0; break;}
case HBO::sweeping location::FIFTY:
{
double temp x = 0;
for (unsigned int i = 0 ; i < new design.obtain space count() ; i++)
{
if (new_design.obtain space(i).x + new design.obtain space(i).width >
temp_x)
{
temp x = new design.obtain space(i).x + new design.obtain space (i) .width;
}
}
x value = temp x * 0.5 ;
break;
}
case HBO::sweeping location::HUNDRED:
{
double temp x = 0;
for (unsigned int i = 0 ; i < new design.obtain space count() ; i++)
{
if (new_design.obtain space(i).x + new design.obtain space(i).width >
temp_x)
{
temp x = new design.obtain space(i).x + new design.obtain space (i) .width ;
}
}
x _value = temp_x;
break;
}
case HBO: :sweeping location::ARG COUNT:
{
std::cout<<"Error ARG COUNT, exiting now... (Sweeping.hpp)"<<std::endl; exit(1);
break;
}
default:
{
std::cout<<"Error default, exiting now... (Sweeping.hpp)'"<<std::endl; exit(l);
}
}

// Check whether there are spaces at that x value comp

bool space at x = false ;

for (unsigned int i = 0 ; i < new design.obtain space count() ; i++)

{
if (new_design.obtain space(i).x <= x value && new design.obtain space(i).x +
new design.obtain space (i) .width > x value)

{

152
153
154
155
156
157
158
159

-
o)
S

o
o

B e
NN
® J o

179
180
181
182
183
184
185
186
187
188

196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224

}

space at x = true ;
break ;

int range

0
0 ;

// If there is no space found at the x value, shift the value with small increments
until a value is found for which a space is found
while (!space at x)

{
if (new design.obtain space count() == 0)
{
settings.terminate simulation = true ;
return new_design ;
}
for (unsigned int 1 = 0 ; i < new design.obtain space count() ; i++)
{
if (new design.obtain space(i).x <= (x value - range) &é&
new_design.obtain space(i).x + new design.obtain space(i).width > (x value -
range))
{
space_at x = true ;
x_value -= range ;
break ;
else if (new design.obtain space(i).x <= (x value + range) &&
new _design.obtain space(i).x + new_design.obtain space(i).width > (x value +
range))
{
space_at x = true ;
x_value += range ;
break ;
}
}
range += 10 ;
} // end while() , note that no additional stopping criteria is formulated.

// determine the area that is being swept
for (unsigned int i = 0 ; i < new design.obtain space count() ; i++)

{

}

if (new_design.obtain space(i).x <= x value && new design.obtain space(i).x +
new design.obtain space (i) .width > x value)

{

area swept += new design.obtain space (i) .depth *
new _design.obtain space(i).height ;

// the length of sweeping
double sweeping distance = (build perform.get initial volume() -
new design.get volume()) / area swept ;

new_design.sweep x(x _value, sweeping distance);

return new_design;
} // sweep x axis(

BSO::Spatial Design::MS Building sweep y axis(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO: :HBO: :Settingsé& settings)

{

/*

*/

Determines the values to sweep a building over the y axis

BSO::Spatial Design::MS Building new design = current design ;

double area swept = 0 ;
double y value;
double sweeping distance ;

switch(settings.sweep location)

{

case HBO::sweeping location::ZERO: { y value = 0; break; }
case HBO::sweeping location::FIFTY:

{

double temp y = 0;
for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

{

if (current design.obtain space(i).y + current design.obtain space(i).depth
> temp vy)

temp y = current design.obtain space(i).y +

current design.obtain space (i) .depth;

225 }
226 }
227 y value = temp y * 0.5 ;
228 break;
229 }
230 case HBO::sweeping location::HUNDRED:
231 {
232 double temp y = 0 ;
233 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
234 {
235 if (current design.obtain space(i).y + current design.obtain space (i) .depth
> temp vy)
236 {
237 temp y = current design.obtain space(i).y +
current design.obtain space (i) .depth ;
238 }
239 }
240 y value = temp y ;
241 break;
242 }
243 case HBO::sweeping location::ARG COUNT:
244 {
245 std::cout << "Error ARG COUNT, exiting now... (Sweepings.hpp)" <<std::endl ;
exit (1),
246 }
247 default:
248 {
249 std::cout << "Error default, exiting now... (Sweeping.hpp)" << std::endl ;
exit (1)
25 }
251 }
252 // Check whether there are spaces at that y value
253 bool space at y = false ;
254 for (unsigned int 1 = 0 ; i < new design.obtain space count () ; i++)
255 {
256 if (new design.obtain space(i).y <= y value && new design.obtain space(i).y +

new_design.obtain space(i).depth > y value)

257 {

258 space_at_y = true ;

259 break ;

260 }

261 }

262

263 int range = 10 ;

264 // If there is no space found at the x value, shift the value with small increments

until a value is found for which a space is found

265 while (!space_at_y)

266 {

267 if (new_design.obtain space count() == 0)

268 {

269 settings.terminate simulation = true ;

270 return new design ;

271 }

272 for (unsigned int 1 = 0 ; i < new design.obtain space count () ; i++)

273 {

274 if (new design.obtain space(i).y <= (y value - range) &é&
new_design.obtain space(i).y + new design.obtain space(i).depth > (y value -
range))

275 {

276 space_at y = true ;

2717 y_value -= range ;

278 break ;

279

280 else if (new design.obtain space(i).y <= (y value + range) &&
new _design.obtain space(i).y + new design.obtain space(i).depth > (y value +
range))

281 {

282 space at y = true ;

283 y_value += range ;

284 break ;

285 }

286 }

287 range += 10 ;

288 } // end while() , note that no stopping criteria is formulated.

289 for (unsigned int 1 = 0 ; i < new design.obtain space count() ; i++)

290 {

291 if (new_design.obtain space(i).y <= y value && new design.obtain space(i).y +

new design.obtain space(i).depth > y value)

29 {

293 area swept += new design.obtain space (i) .width *
new _design.obtain space(i).height ;

2 }

e
[e)}

wwwN NN N

O O O O W ww
WN O WO

w

w W W
NN
= o o

w w
NN

w N

wWwwwwww
W NN NDDNDN

w w w w
w w w w w
DWW NP O WO Jo U

w
o U1

w
w

wWwwwww
S B s W W W
SwWw NP O W oo

w w
S

w W w
FNTN

i
0 ~J oy Ul

w
>

>

w W
o UL WN P O

wWwwwwww wwwwww
oY O O O OY O U1 U1 L1 [S3NC, INC RN NG, NG NG
ads WNhEFE O WwWwOowJ

w W

w W w
o) O) O
@ J o

sweeping distance = (build perform.get initial volume() - new design.get volume()) /
area_swept ;

new_design.sweep_y(y value, sweeping distance);

return new_design;
} // sweep y axis(

BSO::Spatial Design::MS Building sweep z axis(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO: :HBO: :Settingsé& settings)
{

/*

Sweeps a building over the z axis

*/

BSO::Spatial Design::MS Building new design = current design ;

double area_swept = 0 ;

double z value ;

switch(settings.sweep location)

{
case BSO::HBO::sweeping location::ZERO: { z value = 0 ; break ; }
case BSO::HBO::sweeping location::FIFTY:
{
double temp_z = 0 ;
for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
{
if (current design.obtain space(i).z +
current design.obtain space (i) .height > temp z)
{
temp z = current design.obtain space(i).z +
current design.obtain space(i).height ;
}
}
z value = temp_z * 0.5 ;
break ;
}
case BSO::HBO::sweeping location::HUNDRED:
{
double temp z = 0 ;
for (unsigned int 1 = 0 ; 1 < current design.obtain space count() ; i++)
{
if (current design.obtain space(i).z +
current design.obtain space(i).height > temp z)
{
temp z = current design.obtain space(i).z +
current design.obtain space (i) .height ;
}
}
z value = temp z ;
break ;
}
case BSO::HBO::sweeping location::ARG _COUNT:
{
std::cout << "Error ARG COUNT, exiting now... (Sweeping.hpp)" << std::endl;
exit (1)
}
default:
{
std::cout << "Error default, exiting now... (Sweeping.hpp)" << std::endl ;
exit (1) ;
}
}

// Check whether there are spaces at that z value

bool space at z = false ;

for (unsigned int i = 0 ; i < new design.obtain space count() ; i++)

{
if (new_design.obtain space(i).z <= z_value && new design.obtain space(i).z +
new design.obtain space(i).height > z value)

{
space_at z = true ;
break ;
}
}
int range = 10 ;

// If there is no space found at the z value, shift the value with small increments
until a value is found for which a space is found

while (!space at z)

{

if (new_design.obtain space count() == 0)

369 {

370 settings.terminate simulation = true ;

371 return new_design ;

372 }

373 for (unsigned int 1 = 0 ; i < new design.obtain space count() ; i++)

374 {

375 if (new design.obtain space(i).z <= (z_value - range) &é&
new_design.obtain space(i).z + new_design.obtain space(i).height > (z_value -
range))

376 {

377 space_at z = true ;

378 z_value -= range ;

379 break ;

380

381 else if (new design.obtain space(i).z <= (z value + range) &&
new _design.obtain space(i).z + new_design.obtain space(i).height > (z_value +
range))

382 {

383 space_at z = true ;

384 z_value += range ;

385 break ;

386 }

387 }

388 range += 10 ;

389 } // end while() , note that no stopping criteria is formulated.

390

391

392 for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)

393 {

394 if (current design.obtain space(i).z <= z value && current design.obtain space(i).z

+ current design.obtain space(i).height > z value)

395 {

396 area_swept += current design.obtain space (i) .width *
current design.obtain space (i) .depth ;

397 }

398 }

399

400 double sweeping distance = (build perform.get initial volume() -

new design.get volume()) / area_ swept ;

401

402 new design.sweep z(z value, sweeping distance);

403

404 return new design;

405 } // sweep z axis(

406

407 } // namespace Building Modification

408 } // namespace HBO
409 } // namespace BSO
410

411 #endif //SWEEPING_HPP

Sw N

B e e
WNHOW®-Ioy U

[
~

15

17
18
19
20

NN NN
SwWw N

o U1

28

w W w
Sw N

w w
~J o Ul

w

NN
w N

[S3NS; INC, INC, INC, INC, T I NN NN N
o W N O W O ~J oy U W

w (62N
o

o Oy O OY O O U1
S w N e O

Ul

#ifndef SPLITTING_ HPP
#define SPLITTING HPP

#include
#include
#include

#include
#include

<BSO/Sp
<BSO/HB
<BSO/HB

<vector
<cmath>

atial Design/Movable Sizable.hpp>
O/Performance Evaluation/Building Performances.hpp>
O/HBO_Settings.hpp>

>

namespace BSO{ namespace HBO { namespace Building Modification ({

BSO:
BSO:
BSO:
BSO:
BSO:
BSO:
BSO:
BSO:

:Spatial
:HBO: : Pe
:Spatial
:HBO: : Pe
:Spatial
:HBO: : Pe
:Spatial
:HBO: : Pe

_Design::MS Building split largest space(BSO::Spatial Design::MS Buildingé,

rformance Evaluation::Building Performancesé&, BSO::HBO::Settingsé&) ;

_Design::MS Building split smallest space(BSO::Spatial Design::MS Buildingg,

rformance Evaluation::Building Performancesé&, BSO::HBO::Settingsé&) ;

_Design::MS Building split best space(BSO::Spatial Design::MS Buildingé,

rformance Evaluation::Building Performancesé&, BSO::HBO::Settingsé&) ;

_Design::MS Building split worst space(BSO::Spatial Design::MS Buildingg,

rformance Evaluation::Building Performancesé&, BSO::HBO::Settingsé&) ;

void split space new(BSO::Spatial Design::MS Buildingé&, int, Settingsé&) ;

BSO::Spatial Design::MS Building split spaces(BSO::Spatial Design::MS Buildingé&
current_design, BSO::HBO::Performance Evaluation::Building Performancesé& build perform,
BSO::HBO::Settings& settings)

{

BSO::Spatial Design::MS Building new design ;

switch(settings.split)

{

}

case
spli
// c
spli
case
spli
case
spli
case
exit

BSO::HBO::splitting options::LARGEST: { new design =

t largest space(current design, build perform, settings) ; break ; }
ase BSO::HBO::splitting options::SMALLEST: { new _design =

t smallest space (current design, build perform, settings) ; break ;}
BSO::HBO::splitting options::BEST: { new_design =

t best space(current design, build perform, settings) ; break ; }
BSO::HBO::splitting options::WORST: { new design =

t worst space(current design, build perform, settings) ; break ; }
BSO::HBO::splitting options::ARG _COUNT: { std::cout << "Error ARG COUNT,
ing now... (Splitting.hpp)" << std::endl ; exit(l) ; }

default: { std::cout << "Error default, exiting now... (Splitting.hpp)" <<

std:

cendl; exit (1) ;}

return new_design;

}

BSO::Spatial Design::MS Building split largest space(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO: :HBO: :Settingsé& settings)

{

// function to find the space with the largest volume and split it. it prefers spaces
with lower x coordinates

BSO::Spatial Design::MS Building new design = current design;

int spaces_to_split = (build perform.get initial space count() -

current design.obtain space count());

for (unsigned int i = 0 ; i < spaces_to split ; i++) // for the amount of spaces to be
split
{
double largest volume = 0 ;
int space index ;
for (unsigned int j = 0 ; j < new_design.obtain space count() ; j++) // find the
largest volume
{
if (new_design.obtain space(j).get_volume() > largest volume)
{
largest volume = new design.obtain space(Jj).get volume() ;
space _index = j ;
}
}
// if multiple spaces have the largest volume split the space with the lowest x
coordinate
std::vector<int> equal spaces;
equal spaces.push back(space index);
for (unsigned int j = 0 ; j < new design.obtain space count() ; j++)
{
if (new design.obtain space(j).get volume() == largest volume)

{

66 equal spaces.push back(j);

67 }

68 }

69

70 double lowest z = new design.obtain space(equal spaces[(]).z ;

71

72 for (unsigned int j = 0 ; J < equal spaces.size() ; Jj++)

73 {

74 if (new design.obtain space(equal spaces[]j]).z < lowest z)

75 {

76 lowest z = new design.obtain space(equal spaces[j]).z ;

77 space_index = equal spaces[j] ;

78 }

79 }

80

81 // split the largest space

82 split space new(new design, space index, settings) ;

83 }

84

85 return new_design;

86 } // split largest space

87

88 BSO::Spatial Design::MS Building split smallest space(BSO::Spatial Design::MS Buildingé&

current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO: :HBO: :Settingsé& settings)
89 {
90 // function to find the smallest space and split it, prefers spaces with lower x
coordinates
9 BSO::Spatial Design::MS Building new design = current design ;
92 int spaces_to_split = build perform.get initial space count() -
current design.obtain space count() ;

93

94 for(unsigned int i = 0 ; i < spaces_to _split ; i++) // for the amount of spaces to split
95 {

96 double smallest volume = 0 ;

97 int space_index = 0;

98

99 for (unsigned int j = 0 ; j < new design.obtain space count() ; Jj++) // find the

smallest volume
100 {
101 if (smallest volume == 0 && (new design.obtain space(j) .width > 2000 ||
new_design.obtain space(j).depth > 2000))
102 {
103 smallest volume = new design.obtain space(Jj).get volume() ;
104 space index = j ;
105 }
106
107 if (new design.obtain space(j).get volume() < smallest volume)
108 {
109 if (new_design.obtain space(j).width > 2000 || new design.obtain space(j
) .depth > 2000)
110 {
111 smallest volume = new design.obtain space(j).get volume() ;
112 space_index = j
113 }
114 }
115 }
116
117 // 1f multiple spaces have the smallest volume split the space with the lowest x
coordinate

118 std::vector<int> equal spaces;
119
120 equal spaces.push back(space index);
121
122 for (unsigned int j = 0 ; j < new design.obtain space count() ; j++)
123 {
124 if (new design.obtain space(j).get volume() == smallest volume)
125 {
126 equal spaces.push back(j);
127 }
128 }
129
130 double lowest x = new design.obtain space(equal spaces[(]).x ;
131
132 for (unsigned int j = 0 ; j < equal spaces.size() ; j++)
133 {
134 if (new design.obtain space(equal spaces[]j]).x < lowest x)
135 {
136 lowest x = new design.obtain space(equal spaces[j]).x ;
137 space index = equal spaces[j]
138 }
139 }
140

141 // split the smallest space

142
143
144
145
146
147
148
149

150
151
152

153

16

-
o
=

e
o OOy oY oY O
TS W

=

o o
O o

186
187
188
189
190
191

199
200
201

203
204
205
206
207
208
209

split space new(new design, space index, settings) ;
//new _design.split space (space index) ;

}

return new design;
} // split smallest space

BSO::Spatial Design::MS Building split best space(BSO::Spatial Design::MS Buildingé&
current _design, BSO::HBO::Performance Evaluation::Building Performancesé& build perform,
BSO::HBO::Settings& settings)
{

BSO::Spatial Design::MS Building new design = current design ;

int spaces to split = build perform.get initial space count() -

current design.obtain space count();

BSO: :HBO: :Performance Evaluation::Building Performances temp build perform(

current design, build perform) ;

std::vector<int> selected spaces;

for (unsigned int 1 = 0 ; 1 < build perform.groups.size() ; i++)
{
if (temp_build perform.groups.empty() && selected spaces.size() != spaces_to_split)
{
std::cout<< "No more spaces to split while still more are required, exiting
now... " << std::endl ;
settings.terminate simulation = true ;
return current design ;
}
int best group = temp build perform.best group modified() ;
for (unsigned int j = 0 ; j < temp build perform.groups[best group
].space ID.size() ; j++)
{
int space index = current design.get space index(temp build perform.groups[

best group].space ID[j 1) ;
if (current design.obtain space(space_index).width > 2000 ||
current design.obtain space(space index).depth > 2000)

{
selected spaces.push back(
temp build perform.groups[temp build perform.best group modified()].space ID[]
1)
}
if (selected spaces.size() == spaces_to split)
{
break; // if enough spaces are selected for split end the loop
}
if (selected spaces.size() == spaces to split)
{
break ;
}

// if all space IDs of the best group are added remove the group so it can not be
found again
temp build perform.delete group(temp build perform.best group modified()) ;

}

for (unsigned int 1 = 0 ; i < selected spaces.size() ; i++)

{
split space new(new design, new design.get space index(selected spaces[i]),
settings)
//new _design.split space(new design.get space index(selected spaces[i]));

}

return new_design;
} // split best space

BSO::Spatial Design::MS Building split worst space(BSO::Spatial Design::MS Buildingé&
current design, BSO::HBO::Performance Evaluation::Building Performances& build perform,
BSO::HBO::Settingsé& settings)
{
BSO::Spatial Design::MS Building new design = current design ;
int spaces_to_split = build perform.get initial space count() -
current design.obtain space count() ;
BSO: :HBO: :Performance Evaluation::Building Performances temp build perform(
current design, build perform) ;
std::vector<int> selected spaces ;
for(unsigned int i = 0 ; 1 < build perform.groups.size() ; i++)
{
if (temp build perform.groups.empty() && selected spaces.size() != spaces_to _split)
{

std::cout<< "No more spaces to split while still more are required, exiting

210
211
212
213
214
215

>

216
217

NN
=

220

NN

N NN
’)
w N =

DN DNDNDDND DN
NN DNDDNDDNDDN
© 0 ~J o) U

DN NDNDDNDNDN
wWwwwwwww
o W N O

>N
w
[ee]

N
w
o

240
241
242
243
244

245
246
247
248
249
250
251

252
253
254
255
256

257

n

~J

NN NN
o oy U1 U
= O W

~ ~J O O O) O O)Y O O) O

DN NDNDNDNDNDNDNDNDDNDDN
WN P OWOWJo) Ul d WN

~

}

endloop:

now... " << std::endl ;
settings.terminate simulation = true ;
return current_design ;

}
int worst group index = temp build perform.worst group modified() ;
//std::cout<< "Groups size: "<< temp build perform.groups[worst group index
] .space ID.size() << std::endl;
for (unsigned int j = 0 ; j < temp build perform.groups[worst group_ index
].space ID.size() ; j++)
{
int space index = new design.get space index(temp build perform.groups|[
worst group index].space ID[j 1)
bool split ok = false ;
if (new_design.obtain space(space_index).width > 2000 ||
new design.obtain space(space index).depth > 2000)
{
split_ok = true ;
}
if (split ok)
selected spaces.push back(temp build perform.groups[worst group index
1.space_ID[3]) ;
if (selected spaces.size() == spaces to split)
{
goto endloop;
}
}

// if all space IDs of the worst group are added remove the group so it can not be
found again
temp build perform.delete group(worst group index) ;

for (unsigned int i = 0 ; i < selected spaces.size() ; i++)

{

}

split_space new(new design, new design.get space index(selected spaces[1 1),
settings) ;
//new_design.split space(new design.get space index(selected spaces[i])) ;

return new design ;
} // split worst space

void split space new(BSO::Spatial Design::MS Building& current design, int space_ index,
Settings& settings)

{

switch (settings.split pref)

{

case BSO::HBO::splitting preference: :XYZ:

{

}
{

if (current design.obtain space(space index).width >= 0.9999 *
current design.obtain space(space_index).depth && current deSLgn obtain_space (
space_index).width >= 0.9999 * current design.obtain space(space index
) .height)
{
current design.split space n(space index, 0, 2) ;
}
else if (current design.obtain space(space index).depth >=
current design.obtain space(space index) .height)
{
current design.split space n(space index, 1, 2) ;
}
else
{
current design.split space n(space index, 2, 2) ;
}
return ;
case BSO::HBO::splitting preference::XZY:
if (current design.obtain space(space index).width >= 0.9999 *
current design.obtain space(space index).depth && current design.obtain space (
space index).width >= 0.9999 * current design.obtain space(space index
) .height)
{
current design.split space n(space index, 0, 2) ;
}

else if (current design.obtain space(space_index).height >= 0.9999 *

J
O ©

00 0O 0O CO QO ~

fee)
o) U W N

NN NDNDDNDNDNDNDDNDND

0
o

[N

NN
[NelVe]
) = O

NN
0 O
w N

\S}

NN
J o) U1

NN
O W W W W W

(=) o
S wWw e O w oo

WwwwwwN
o o

o

w w w Ww
NN DN
S w N

ul

J o

[ee]

WWwWwwwwwwdhdND NN

WWwWwwwwwwwwww
J o Ul WN P O W

S w W

w w w w
= O v ©

w w w
[NV
N~ W N

current design.obtain space(space index) .depth)

{
current design.split space n(space index, 2, 2) ;
}
else
{
current design.split space n(space index, 1, 2) ;
}
return ;
}
case BSO::HBO::splitting preference::YZX:
{
if (current design.obtain space(space index).depth >= 0.9999 *
current design.obtain space(space_index).width && current design.obtain space (
space_index).depth >= 0.9999 * current design.obtain space(space index
) .height)
{
current design.split space n(space index, 1, 2) ;
}
else if (current design.obtain space(space_index).height >= 0.9999 *
current design.obtain space(space index) .width)
{
current design.split space n(space index, 2, 2) ;
}
else
{
current design.split space n(space index, 0, 2) ;
}
return ;
}
case BSO::HBO::splitting preference::YXZ:
{
if (current design.obtain space(space index).depth >= 0.9999 *
current design.obtain space(space_index).width && current design.obtain space (
space_index).depth >= 0.9999 * current design.obtain space(space index
) .height)
{
current design.split space n(space index, 1, 2) ;
}
else if (current design.obtain space(space_index).width >= 0.9999 *
current design.obtain space(space index) .height)
{
current design.split space n(space index, 0, 2) ;
}
else
{
current design.split space n(space index, 2, 2) ;
}
return ;
}
case BSO::HBO::splitting preference::ZYX:
{
if (current design.obtain space(space index).height >= 0.9999 *
current design.obtain space(space_index).width && current design.obtain space (
space index).height >= 0.9999 * current design.obtain space(space index
) .depth)
{
current design.split space n(space index, 2, 2) ;
}
else if (current design.obtain space(space_index).depth >= 0.9999 *
current design.obtain space(space index) .width)
{
current design.split space n(space index, 1, 2) ;
}
else
{
current design.split space n(space index, 0, 2) ;
}
return ;
}
case BSO::HBO::splitting preference::ZXY:
{
if (current design.obtain space(space index).height >= 0.9999 *
current design.obtain space(space_index).width && current design.obtain space (
space index).height >= 0.9999 * current design.obtain space(space index
) .depth)
{
current design.split space n(space index, 2, 2) ;
}
else if (current design.obtain space(space index).width >= 0.9999 *
current design.obtain space(space index) .depth)
{
current design.split space n(space index, 0, 2) ;

}

345
346
347
348
349
350
351
352
353

354
355
356
357
358
359

360
361
362
363
364
365
366
367
368
369

}

else
{
current design.split space n(space index, 1, 2) ;
}
return ;
}
case BSO::HBO::splitting preference::ARG COUNT:
{
std::cout << "Error ARG COUNT reached in split space new, exiting now...
Splitting.hpp) " << std::endl ;
exit(1)
break ;
}
default:
{
std::cout << "Error default reached in split space new, exiting now...
Splitting.hpp) " << std::endl ;
exit(1)
}

} // Building Modification

} // HBO
} // BSO

fendif

C CODE

Support Functions

Ixxix

O Joy Ul WN

el el el
DU WN O W

17
18
19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35

36
37

38
39
40
41
42

43
44

45
46

47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

#ifndef NON_FEASIBLE DESIGNS
#define NON_FEASIBLE DESIGNS

#include
#include
#include
#include
#include
#include

#include
#include

<BSO/Spatial Design/Movable Sizable.hpp>
<BSO/Spatial Design/Supercube.hpp>
<BSO/Spatial Design/Conformation.hpp>
<BSO/Spatial Design/Geometry/Rectangle.hpp>
<AEI Grammar/Grammar 2.hpp>
<BSO/HBO/HBO_Settings.hpp>

<vector>

<cmath>

namespace BSO { namespace HBO {

/* Detect whether floating spaces occur within the given MS building design.

are defined as a space which is not connected to the ground through shared surfaces
two spaces connected thourgh a single edge are considered not interconnected*/
bool detect floating space(BSO::Spatial Design::MS Buildingé& current design)

{

BSO::Spatial Design::MS Conformal CF(current design, &(BSO::Grammar::grammar 2));

// create a vector with lists of space IDs, the spaces with neighbours[i][0] id is the

space from which perspective is viewed, the following numbers are the spaces connected

to the space at 0
std::vector< std::vector<int> > spaces_with neighbours (
current design.obtain space count()) ;

// for all spaces in the conformal model
for (unsigned int i = 0 ; 1 < CF.get space count() ; i++)

{

}

// get the space ID for which the connected spaces will be found
spaces _with neighbours[i].push back(CF.get space(i)->get ID()) ;

// for all surfaces of a space (6
for (unsigned int 3 =0 ; j < 6 ; j++)

{

// for all rectangles that construct that surface
for (unsigned int k =0 ; k <
CF.get_space(i)->get surface ptr(j)->get rectangle count() ; k++)

{

BSO::Spatial Design::Geometry::Rectangle* rectangle =
CF.get space(i)->get surface ptr(j)->get rectangle ptr(k) ;

// get all surfaces that are constructed with the rectangle
for (unsigned int 1 = 0 ; 1 < rectangle->get surface count() ; 1l++)

{

BSO::Spatial Design::Geometry::Surface* surface =
rectangle->get surface ptr(l) ;

if (rectangle->get surface count() == 1 ||
rectangle->get surface count() == 2)
{

if (surface->get space ptr(0)->get ID() ==

CF.get space(i)->get ID()) { /* if the surface belongs to the same

space do nothing */ }

else

{
spaces _with neighbours[i].push back(
surface->get space ptr(0)->get ID()) ;

std::vector<int> connected spaces;

// find all spaces that are connected to the ground (z = 0)
for(unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
{

if (current design.obtain space(i).z == 0)

{

connected spaces.push back(current design.obtain space(i).ID) ;

Floating spaces

for (unsigned int j = 0 ; j < spaces with neighbours.size() ; j++)

{
if (spaces _with neighbours[j][0] == current design.obtain space(i).ID)
{

spaces _with neighbours.erase(spaces_with neighbours.begin() + j)
break;

’

O O W o
O ~J oy U W

100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146

147
148
149
150

}
}
while(!spaces with neighbours.empty()) // as long as there are non connected spaces
{
beginning:
bool space moved = false; // check whether a space moved to the connected group
for(unsigned int i = 0 ; i < spaces with neighbours.size() ; i++)
{
for (unsigned int j = 1 ; j < spaces _with neighbours[i].size() ; Jj++)
{
for (unsigned int k = 0 ; k < connected spaces.size() ; k++)
{
if (spaces with neighbours[i][j] == connected spaces[k])
{
connected spaces.push back(spaces _with neighbours[i] [0]) ;
spaces with neighbours.erase(spaces with neighbours.begin() + i) ;
space_moved = true;
i =0; // atm gaat i naar -1 en daardoor word de for loop van j
gebroken
j=1;
goto beginning;
}
}
}
}
if (space moved == false && !spaces with neighbours.empty()) // if in an entire
iteration none of the remaining spaces are moved from not connected to connected the
remaining spaces are floating
{
return true;
}
}
if (connected spaces.size() == current design.obtain space count ())
{
return false;
}
else
{
std::cout << "Error with floating spaces, exiting now...(Floating Spaces.hpp)" <<
std::endl; exit (1),
}

} // detect floating space ()

// In very rare cases the dimension of a space might go to infinity due to division by 0. It
is not neccesary to check, however this function can be used when unknown errors occur
bool detect infinity(BSO::Spatial Design::MS Building& current design)
{
for (unsigned int 1 = 0 ; i < current design.obtain space count() ; i++)
{
BSO::Spatial Design::MS Space temp space = current design.obtain space (i) ;
if(!std::isfinite(temp_space.x))
return true ;
else if (!std::isfinite(temp space.y))
return true ;
else if (!std::isfinite(temp space.z))
return true ;
else if (!std::isfinite(temp space.width))
return true ;
else if (!std::isfinite(temp space.depth))
return true ;
else if (!std::isfinite(temp space.height))
return true ;
}
return false ;
} // detect infinity()

/* This function checks whether spaces of a building design are realistic, and if not how
many unrealistic spaces a building contains

the level of unrealisticness is set in the settings file belonging to the simulation*/
void space boundary conditions check(BSO::Spatial Design::MS Building& current design,
BSO::HBO::Settings& settings)
{

int unrealistic_spaces = 0 ;
for (unsigned i = 0 ; i < current design.obtain space count() ; i++)

151 {

152

153 // if a space complies to any of these rules it is considered to be a space of
unrealistic dimensions

154 if (current design.obtain space (i) .height > (current design.obtain space (i) .width +
current design.obtain space(i).depth) / 2
current design.obtain space(i).height > 3

155 unrealistic_spaces++ ;

156 else if (current design.obtain space (i) .depth > 20 *
current design.obtain space (i) .width)

157 unrealistic spaces++ ;

158 else if (current design.obtain space(i).width > 20 *
current design.obtain space (i) .depth)

159 unrealistic_spaces++ ;

160

161 }

162 settings.realistic building = ((float)current design.obtain space count() -

(float)unrealistic spaces)/ (float)current design.obtain space count() ;

163

164 return ;

165 }

166

167 } // namespace HBO

168 } // namespace BSO

169

170 fendif // NON_FEASIBLE_DESIGNS

C CODE

Movable-Sizable Building

Ixxxiii

Sw N

0 J oy

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

#ifndef
#define

#include
<string>
#include

#include
#include

#include
#include
#include
#include
#include
#include

namespac

{
"
*/
// s

stru

{

|

/*

*/

MOVABLE SIZABLE HPP
MOVABLE_SIZABLE_HPP

<BSO/Spatial Design/Supercube.hpp> // for operator overloading, this also loads in

and <vector>
<BSO/Trim_And_ Cast.hpp>

<boost/tokenizer.hpp>
<boost/algorithm/string.hpp>

<iostream>

<fstream>

<stdexcept>

<algorithm> // for vector::sort()
<cmath>

<cstdlib>

e BSO { namespace Spatial Design

tructure definition:
ct MS Space

int ID; // space identification number

std::string m space_ type;

double width, depth, height; // room dimensions

double x, y, z; // room coordinates (closest to origin)

bool surfaces given; // TG 22-03-2017 checks if surface types of ALL cardinal
directions are given, false if incomplete

bool space type given;

std::string surface type [6]; // TG 22-03-2017 cardinal directions {north, east,
west, top, bottom}

double get_area()

south,

{
return width*depth;
}
double get_ volume ()
{
return width*depth*height;
}
double get aspect ratio()
{
return (width>depth) ? width/depth : depth/width;
}
void init zero()
{
ID = 0;
width = 0;
depth = 0;
height = 0;
x = 0.0;
y = 0.0;
z = 0.0;
m_space_type = "";
surfaces _given = false;
space_type given = false;
for (int i = 0; i < 6; i++) // TG 22-03-2017 clear the temp space.surface types to
obtain an empty in case of invalid amount of surface types
{
surface type[i] = "";
}
}
MS Space ()
{
init zero();
}
/ MS_Space

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105

106
107

109
110
111
112
113
114

115

116
117
118
119
120
121
122

123

124
125
126
127

128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

// Class definition:

class MS_Building
{
private:
std::vector<MS_Space> m_spaces;
int m last space ID;
public:
MS Building(SC_Building); // ctor, converts from Supercube to Movable Sizable
MS Building(std::string); // ctor, initializes the class by reading an input file
MS Building(); //ctor, creates an empty MS Build object
~MS_Building(); // dtor

void read file(std::string); // reads an input file (e.g. "Filename.txt")
void write file(std::string); // writes an output file (e.g. "Filename.txt")

operator SC Building() const; // converts from Movable Sizable to Supercube

int obtain space count(); // returns the size of the rooms vector
double get volume(); // returns the volume of the building

MS_Space obtain_space(int space_index); // returns a MS_Space structure from the

m spaces vector at a certain index

int get_space_index(int space_ID); // returns the index from the m spaces vector if the
space ID is found

int get space ID(unsigned int space_index); // NEW returns the space ID if the index
from the m spaces vector is found

std::string get space type(unsigned int space index);

std::string get surface type(int space index, int surface type); // NEW returns the
surface type from the m spaces vector at a certain index

bool get_ surfaces_given(int space_index); // NEW returns boolean surfaces_given from the
m_spaces vector at a certain index

void add_space(MS_Space); // adds a space to the building
void delete space(int space_index); // deletes a space from the building

void split_ space(int space_index); // splits a space across its largest dimensions

void split space(int space index, int axis); // splits in the middle across axis:

[0,1,2] for respectively [x,vy,z]

void split space n(int space index, int axis, unsigned int n_divisions); // a space into
n equal parts, across axis: [0,1,2] for respectively [x,v,z]

void scale(double n, int 1i); // scales the building design about the {i} axis;
void scale x(double n); // scales the building design about the x axis
void scale_y(double n); // scales the building design about the y axis
void scale z(double n); // scales the building design about the z axis

void snap_on(double m); // snaps the coordinates and dimensions of the spatial designs
onto a grid defined by multiples of 'm'

void snap_on(double m, int axis); // snaps the coordinates and dimensions of the spatial
designs onto a grid defined by multiples of 'm'

void clear design();

void reset_z_zero(); // resets the z-coordinates in the building design if there are no
z-coordinates equal to zero

bool check cell(SC Building S, int cell index, int space ID,
double x origin, double y origin, double z origin) const; // checks if a
cell of Supercube S belongs to a certain room ID, also requires the x-
y- and z- coordinates of the supercube (first values of x , y_ and
z_values vectors)

// TS added functions
int get last space_id(); // retrieves the last space ID used in the MS Building
void search last space id(); // searches in the MS Building for the last used space id

void sweep x(double location, double distance);
void sweep y(double location, double distance);
void sweep z(double location, double distance);

}; // MS_Building

// Implementation of the member functions:

MS Building::MS Building(SC_Building S) //conversion from Supercube to MovableSizable
{
m last space ID = -1;
int w_origin = S.w_size(); // initialize the indexes which will contain the origin of
the Movable Sizable representation
int d origin = S.d size(); // these are initialized to the cell containing the largest

151
152
153
154
155
156
157
158

161
162
163
164

(€]

167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202

203
204

205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221

coordinates, to be updated later
int h origin = S.h_size();

std::vector<double> w_coord values(S.w_size()+1);
std::vector<double> d coord values(S.d size()+1);
std::vector<double> h coord values(S.h_size()+1);

// find which cell willcontain the origin
for (unsigned int cell index = 1; cell index <= (S.w _size()*S.d size()*S.h size());
cell index++) // starts with 1, since first index is the room ID // each cell is checked
for each room, whether it describes a room
{ // for each cell
int w_index = S.get w _index(cell index); // compute the grid indexes of the
considered cell
int d index = S.get d index(cell index);
int h_index = S.get_h index(cell index);

for (unsigned int i = 0; i < S.b _size(); i++) // check each room for the considered
cell, whether it describes a room
{
if (S.request b(i, cell index) == 1) // if it does describe a room, then update
the origin indexes
{
if (w_index < w _origin) { w origin = w _index; } // update the indexes
containing the origin of the MS representation
if (d_index < d_origin) { d _origin = d index; }
if (h_index < h_origin) { h_origin = h_index; }

}

}
}
// compute the global coordinates for each cell's origin
w_coord values[w_origin] = 0;
for (unsigned int i = w_origin+l; i < w_coord values.size(); i++)
{

w_coord values[i] = w_coord values[i-1] + floor(S.request w(i-1));
}
d coord values[d origin] = 0;
for (unsigned int i = d origin+l; i < d coord values.size(); i++)
{

d coord values[i] = d coord values[i-1] + floor(S.request d(i-1));
}
h coord values[h origin] = 0;

for (unsigned int i = h origin+l; i < h coord values.size(); i++)

{

h coord values[i] = h _coord values[i-1] + floor(S.request h(i-1));
}
// compute each MS space
for (unsigned int i = 0; i < S.b_size(); i++)
{

MS Space temp_space; // initializing all values in an object of the RoomMS structure
temp space.ID = i + 1; // assigning the room ID to the RoomMS object

int maximum = 0, minimum = 0; // initializing minimum and maximum indexes of the
space with id: i+1
for (unsigned int cell index = 0; cell index < S.b row_size(i); cell index++) //
finds the min and max indexes
{

if (minimum == 0 && S.request b(i, cell index) == 1) // finds first

cell index with value 1 in the cell vector, this is the cell containing the
room's origin assuming spaces are cuboid
{minimum = cell index;}
if (S.request b(i, cell index) == 1) // finds the last index with value 1 in
the cell array, this is the room's outmost cell assuming spaces are cuboid
{maximum = cell index;}

int min w = S.get w_index(minimum), max w = S.get w_index(maximum),
min_d = S.get_d index(minimum), max d = S.get_d index(maximum),
min h = S.get h index(minimum), max h = S.get h index(maximum) ; // computes
the grid indexes of the min and max cells

temp_space.x = w_coord values[min w];
temp space.width = w_coord values[max w] + floor(S.request w(max w)) - temp space.x;
temp space.y = d coord values[min d];
temp space.depth = d coord values[max d] + floor(S.request d(max d)) - temp space.y;
temp_space.z = h_coord values[min_ h];
temp space.height = h coord values[max h] + floor(S.request h(max h)) - temp space.z;

m_spaces.push back(temp space); // stack the RoomMS structure in the rooms vector
if (m_last_space ID < m_spaces.back().ID)
{

222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259

260
261
262
263

264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

m last space ID = m_spaces.back() .ID;

}
} //ctor

MS Building::MS Building(std::string filename)

{
m_last space ID = -1;
if (filename.empty())
throw std::runtime error("No file name specified to initialise a MS building spatial
design") ;
read file(filename);//ctor
} // ctor

MS Building::MS Building()
{

}

MS Building::~MS Building()

{
} // dtor
void MS_Building::read_file(std::string file_ name)
{
std::ifstream input(file name.c str()); // initialize input stream from file: file name
if ('input.is open() && file name !'= "empty")
throw std::runtime_error("Could not open file: " + file name);

std::string line;

boost::char separator<char> sep(","); // defines what separates tokens in a string
typedef boost::tokenizer< boost::char separator<char> > t tokenizer; // settings for the
boost::tokenizer

while ('input.eof() && file name !'= "empty") // continue while the End Of File has not
been reached
{

getline (input,line); // get next line from the file
boost::algorithm::trim(line); // remove white space from start and end of line (to
see if it is an empty line, remove any incidental white space)
if (line == "") //skip empty lines (tokenizer does not like it)
{
continue; // continue to next line

}

t tokenizer tok(line, sep); // tokenize the line

t tokenizer::iterator token = tok.begin(); // set iterator to first token

int number of tokens = std::distance(tok.begin(), tok.end()); // TG 22-03-2017
determine number of tokens within a line of the input file

if (*token != "R")
{

continue; // continue to next line in text file

else // if the first token is an "R" then this line describes a space

{
MS Space temp space; // this MS Space structure will temporarily hold the space
described by the considered line
token++; // this is the 'ID'
temp space.ID = trim and cast_ int (*token);

token++; // this is 'width'
temp space.width = trim and cast double (*token) ;

token++; // this is 'depth'
temp space.depth = trim and cast double (*token);

token++; // this is 'height'
temp space.height = trim and cast double(*token);

token++; // this is 'x-coordinate'
temp space.x = trim and cast double(*token) ;

token++; // this is 'y-coordinate'
temp space.y = trim and cast double (*token) ;

token++; // this is 'z-coordinate'
temp space.z = trim and cast double(*token) ;

300

301 switch (number of tokens) // TG 22-03-2017 defines boolean of surface given

302 {

303 case S:

304 {

305 break;

306 }

307 case O:

308 {

309 token++; // space type

310 temp space.m space type = *token;

311 boost::algorithm::trim(temp space.m space_ type);

312 temp space.space type given = true;

313 break;

314 }

315 case 15:

316 {

317 token++; // space type

318 temp space.m space type = *token;

319 boost::algorithm::trim(temp_space.m space_ type);

320 temp space.space type given = true;

321 // NOTE no break, so we continue to the next case!

322 }

323 case 14:

324 {

325 token++; // TG 22-03-2017 this is 'north-surface'

326 temp space.surface type[0] = *token;

327 boost::algorithm::trim(temp space.surface typel[0]);

328

329 token++; // TG 22-03-2017 this is 'east-surface'

330 temp space.surface type[l] = *token;

331 boost::algorithm::trim(temp space.surface typel[l]);

332

333 token++; // TG 22-03-2017 this is 'south-surface'

334 temp space.surface typel[?] = *token;

335 boost::algorithm::trim(temp space.surface typel[?]);

336

337 token++; // TG 22-03-2017 this is 'west-surface'

338 temp space.surface type[3] = *token;

339 boost::algorithm::trim(temp space.surface typel[3]);

340

341 token++; // TG 22-03-2017 this is 'top-surface'

342 temp space.surface typel[4] = *token;

343 boost::algorithm::trim(temp space.surface typel[4]);

344

345 token++; // TG 22-03-2017 this is 'bottom-surface'

346 temp space.surface type[5] = *token;

347 boost::algorithm::trim(temp space.surface typel[5]);

348

349 temp space.surfaces given = true;

350 break;

351 }

352 default:

353 {

354 std::cerr << "Space ID " << temp space.ID << " contains invalid amount of

tokens. (Movable Sizable.hpp)" << std::endl;

355 exit (1) ;

356 break;

357 }

358 }i

359

360 m_spaces.push back(temp space); // stack the MS Space structure in the m spaces

vector

361

362 if (m last space ID < m_spaces.back().ID)

363 {

364 m last space ID = m spaces.back().ID;

365 }

366 }

367 }

368 } // read file()

369

370 void MS Building::write file(std::string filename)

371 {

372 std::ofstream output; // initialize output stream

373 output.open(filename.c str(), std::ofstream::out | std::ofstream::trunc); // stream to
file: filename

374

375 for (unsigned int i = 0; i < m spaces.size(); i++) // for each room write the
description as follows:

376

//R,width, depth, height, x-coor, y-coor, z
-coor,north-surf, east-surf,
south-surf, west-surf, top-surf,

383

> W
©
ar

w wwww
O 0 O 0o
O WO Jo

wWwwwwwwww
O W W W W wwowo
O 0 ~J o Ul WN

428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450

451
452
453
454
455

bottom-surf

{
output << "R," << m_spaces[i].ID << "," << m_spaces[i].width
<< "," << m_spaces[i].depth << "," << m spaces[i].height
<< "," << m_spaces[i].x << "," << m_spaces[i].y
<< "," << m_spaces[i].z;
if (m_spaces[i].space type given == true)
{
output << ", " << m spaces[i].m space type;
}
if (m spaces[i].surfaces given == true) // TG 22-03-2017
{
output << ", " << m spaces[i].surface type[0] << "," << m spaces[i].surface typel[l]
<< "," << m_spaces[i].surface type[?] << "," << m_spaces[i].surface type[3]
<< "," << m spaces[i].surface type[4] << "," << m spaces[i].surface type[5];
}
output << std::endl;
}

output.close(); // terminate the output stream
} // write file()

int MS Building::obtain space count ()
{

return m spaces.size();
} // obtain space count ()

double MS Building::get volume ()

{
double volume = 0O;
for (unsigned int i = 0; 1 < m spaces.size(); i++)
{

volume += m spaces[i].get volume();

}
return volume;
} // get volume ()

MS Space MS Building::obtain space (int space_ index)
{

return m_spaces[space index];
} // obtain room()

int MS Building::get space index(int space ID)

{
for (unsigned int i = 0; i < m_spaces.size(); i ++)
{
if (space ID == m spaces[i].ID)
{
return i;
}
}
std::cerr << "Could not find space by its ID (Movable Sizable.hpp), exiting now... " <<
std::endl;
exit (1) ;
}

std::string MS Building::get space type(unsigned int space index)
{

return m spaces[space index].m space type;
} // get sapce type()

int MS Building::get space ID(unsigned int space index) // NEW

{

if (space_index >= m spaces.size()) // NEW error if requested space index is not valid
{
std::cerr << "Could not find space ID by its index (Movable Sizable.hpp), exiting
now... " << std::endl;
exit (1)
}

{
return m spaces[space index].ID;

}

} // NEW get space ID()

std::string MS Building::get surface type(int space index, int surface type) // NEW
{
return m spaces[space index].surface typel[surface typel; // cardinal directions
{0=north, l=east, 2=south, 3=west, 4=top, 5=bottom}
} // NEW get surface type ()

bool MS Building::get surfaces given(int space index) // NEW

{
return m spaces[space index].surfaces given; // returns true if surface types of ALL
cardinal directions are given

456 } // get surfaces given()

457

458 void MS Building::add space (MS_Space space)

459 {

460 m_spaces.push back (space) ;

461 if (m_last space ID < m_spaces.back().ID)

462 {

463 m last space ID = m_spaces.back().ID;

464 }

465 }

466

467 void MS Building::delete space(int space_ index)

468 {

469 m _spaces.erase(m_spaces.begin() + space_ index);

470 }

471

472 void MS Building::split space(int space index)

473 {

474 if (m spaces[space_ index].height < 6000)

475 {

476 if (m_spaces[space index].width < 0. 9 * m spaces[space index].depth)

477 { // if the space is deeper than its width

478 this->split space n(space index, 1, 2) ;

479 }

480 else

481 { // if the space is wider than its depth or as wide as deep

482 this->split space n(space index, 0, 2) ;

483 }

484 }

485 else

486 {

487 if (m_spaces[space index].width < 0.9999 * m spaces[space_index].depth &&
m_spaces[space index].height < 0.9999 * m spaces[space index].depth)

488 { // if the space is deeper than 1ts width and height

489 this->split space n(space index, 1, 2) ;

490 }

491 else if (m spaces[space index].depth < 0.9999 * m spaces[space index].width &&
m_spaces[space_index].height < 0.9999 * m spaces[space index].width)

492 {

493 this->split space n(space_index, 0, 2) ;

494 }

495 else

496 {

497 this->split space n(space_index, 2, 2) ;

498 }

499 }

500 } // split_space()

501

502 void MS Building::split space(int space index, int axis)

503 {

504 this->split space n(space index, axis, 2);

505 } // split space()

506

507 void MS Building::split space n(int space_index, int axis, unsigned int n_division)

508 {

509 if (n_division < 2)

510 {

511 return ;

512 }

513 MS Space temp = m_spaces[space index];

514 double * loc = nullptr ;

515 double * dim = nullptr ;

516

517 if (axis == 0)

518 {

519 loc = &temp.x ;

520 dim = &temp.width ;

521 }

522 else if (axis == 1)

523 {

524 loc = &temp.y;

525 dim = &temp.depth;

526 }

527 else if (axis == 2)

528 {

529 loc = &temp.z;

530 dim = &temp.height;

531 }

532 else

533 {

534 throw std::invalid_argument ("In function split space n (Movable Sizable.hpp) :
expected the axis number to be either 0, 1, or 2.");

535 }

536

537 double delta = floor (*dim / (double)n division);

538 double init loc = *loc;

539 double init_dim = *dim;

540

541 for (unsigned int i = 0; i < n division; i++)

542 {

543 temp.ID = ++m last space ID;

544 *dim = delta;

545 if (i == n division - 1)

546 {

547 *dim = (init dim + init loc) - (*loc);

548 }

549

550 m_spaces.push_back(temp) ;

551 *loc = *loc + *dim;

552 }

553 delete space (space_ index);

554 } // split space n()

555

556 void MS Building::scale(double n, int axis)

557 {

558 for (unsigned int i = 0; i < m _spaces.size(); i++)

559 { // scale each space

560 MS Space * space ptr = &m_spaces[i];

561 double * loc = nullptr;

562 double * dim = nullptr;

563

564 // scale space i in the selected axis

565 if (axis == 0)

566 {

567 loc = &(space ptr->x);

568 dim = &(space_ptr->width);

569 }

570 else if (axis == 1)

571 {

572 loc = &(space_ptr->y);

573 dim = &(space ptr->depth);

574 }

575 else if (axis == 2)

576 {

577 loc = &(space ptr->z);

578 dim = &(space ptr->height);

579 }

580 else

581 {

582 throw std::invalid argument ("In function split space n (Movable Sizable.hpp):
expected the axis number to be either 0, 1, or 2.");

583 }

584

585 // scale with the selected scaling factor n

586 double temp _sum = *loc + *dim; // calculate the coordinate of the end of the space
in that axis

587 temp sum = round(temp sum * n); // scale the end coordinate

588 *loc = round(*loc * n); // scale the begin coordinate

589

590 *dim = temp sum - *loc; // calculate the dimension from the end and begin coordinate

591 }

592

593 }

594

595 void MS Building::scale x(double n)

596 {

597 scale(n,0);

598 }

599

600 void MS Building::scale_ y(double n)

601 {

602 scale(n,1);

603 }

604

605 void MS Building::scale z(double n)

606 {

607 scale(n,?);

608 }

609

610 void MS Building::snap_on(double m)

611 {

612 snap_on(m,0) ;

613 snap on(m,1);

614 snap_on(m,?2) ;

615 } // snap on()

616

617 void MS Building::snap on(double m, int axis)

618 {

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657

658

659
660

661
662
663
664
665
666
667
668
669
670

671
672
673

674
675
676
677

678
679

680
681

682
683

684
685
686

687
688
689

for (unsigned int i = 0; i < m_spaces.size(); i++)
{ // snap each space
MS Space * space ptr = &m spaces[i];

double * loc = nullptr;

double * dim = nullptr;

// snap dimensions and locations in the selected axis
if (axis == 0)
{

loc = &(space ptr->x);

dim = &(space ptr->width);

}
else if (axis == 1)
{
loc = &(space ptr->y);
dim = &(space_ptr->depth);
}
else if (axis == 2)
{
loc = &(space_ptr->z);
dim = &(space ptr->height);
}
else
{

throw std::invalid argument ("In function split space n (Movable Sizable.hpp):
expected the axis number to be either 0, 1, or 2.");

}

double n loc = *loc + *dim;

*loc = round((*loc) / m) * m;
n loc = round(n loc / m) * m;
*dim = n loc - *loc;

}

} // snap on()

MS Building::operator SC Building() const // conversion from MovableSizable to Supercube

{

SC_Building S; // initialize an object of class Supercube, information will be added and
then it will be returned at the end

std::vector<double> x_values, y values, z_values; // these vectors will contain all x-
y- and z-values of the MS representation

for (unsigned int i = 0; i < m_spaces.size(); i++) // this stacks every x- y- and
z-coordinate of every room in the respective vectors
{
x values.push back(m spaces[i].x);
x values.push back(m spaces[i].x+m spaces[i].width) ;
y_values.push back(m spaces[i].y);
y_values.push back(m spaces[i].y+m spaces[i].depth);
z_values.push back(m_spaces[i].z);
z values.push back(m spaces[i].z+m spaces[i].height);

}

sort (x_values.begin(), x values.end()); // sorts all values in the vectors in ascending
order

sort (y_values.begin(), y_values.end());

sort (z _values.begin(), z values.end()):;

x_values.erase (unique (x_values.begin(), x values.end()), x values.end()); // erases all
duplicates from the vectors

y_values.erase (unique(y_values.begin(), y _values.end()), y values.end());

z values.erase (unique (z_values.begin(), z values.end()), z values.end());

double x origin = x values[0], y origin = y values[0], z origin = z values[0]; // saves
the coordinates of the super cube's origin

for (unsigned int i = 0; i < x values.size()-1; i++) // computes widths of super cube
grid and puts them in the w values vector

{ S.stack w value(x values[i+l] - x values[i]); }
for (unsigned int i = 0; i < y values.size()-1; i++) // computes depths of super cube

grid and puts them in the d values vector
{ S.stack d value(y values[i+!] - y values[i]); }

for (unsigned int i = 0; i < z values.size()-1; i++) // computes heights of super
cube grid and puts them in the h values vector

{ S.stack h value(z _values[i+l] - z values[i]); }
int cube size = S.w size()*S.d size()*S.h size(); // initialize variable containing

super cube size
std::vector<int> b _values_row; // initializes a vector for the b values matrix

for (unsigned int i = 0; i < m spaces.size(); i++) // computes a row of the b values
matrix and adds these to the matrix for each room

{

691
692

693
694

695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

730
731

732
733
734

735
736
737
738
739
740
741
742
743

744

745

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

b_values_row.clear(); // clears the vector's data from previous iteration
b _values_row.push back(i + 1); // index 0 contains the room ID, for the super cube
the count starts again from 1.

for (int cell index = 1; cell index <= cube_size; cell_index++) // checks each cell
within the super cube if it belongs to room with ID: i

{

b _values row.push back((check cell(S, cell index, i, x origin, y origin,
z origin) ? 1 : 0)); // If a cell belongs to the room assign 1 to index, if not 0

}

S.stack_b value_row(b_values_row); // adds the row to the b _values matrix

}

return S;

} // operator SC Building() const

void MS Building::clear design()

{

m_spaces.clear();

m last space

ID

} // clear design()

= -1

void MS _Building::reset z zero()

{

int min = m_spaces[(0].z;
// find the minimum value of the z-coordinates in the building
for (unsigned int i = 1; i < m_spaces
{ // for each space

if (m_spaces[i].z < min)

{ // check if this space's z is smaller than min

.size(); i++)

min = m_spaces[i].z; // if yes, assign its value to min
}
}
for (unsigned int i = 0; i < m_spaces.size(); i++)
{ // for each space
m_spaces[i].z -= min; // shift the z-coordinates down by min
}

} // reset z zero()

bool MS Building::check cell(SC Building S, int cell index, int space_index, double
x origin, double y origin, double z origin) const

{

int w_index =
cell index

int d_index =
int h index =
double x_coor

for (int k =
{ x coor
for (int k =
{ y coor
for (int k =
{ z _coor

if ((x_coor >=

S

S
S

0;
0;
0;

m

.get_w_index(cell index); // compute the indexes of cell with index:

.get d index(cell index);
.get_h index(cell index);
x origin, y coor =y origin, z coor = z origin; // initialize the
coordinates of the cell's origin to the coordinates of the super cube's origin

k < w_index; k++)
S.request w(k); }
k < d_index; k++)
S.request d(k); }
k < h_index; k++)
S.request h(k); }

spaces[space index].x

m_spaces[space index].width) &&
(y_coor >= m spaces[space index].y
m_spaces[space index].depth) &&
(z_coor >= m spaces[space index].z
m_spaces [space index].height)) //

true

{ return true; }

else

{ return false;

} // check cell()

int MS_Building::get_last_space_id()

{
}

return m last space ID;

void MS Building::search last space id()

{

m_last space

ID

=O;

for(unsigned int 1 = 0 ; 1 < m_space

{

// update the x_ coordinates of the
// update the y coordinates of the

// update the z_coordinates of the

&& x coor < m spaces[space index]
&& y coor < m spaces[space index]

&& z coor < m_spaces[space index]
if a cell is within the bounds of

} // if not return false

s.size() ; i++)

if (m_spaces[i].ID > m_last space ID)

cell's origin
cell's origin

cell's origin

.x +

.y +

.z +

space r return

~J

B N B N B B e N Y
N JJJJJJJo0o0 o000
oUW N O WO Joy Ul

~ 3
~
O

780
781
782
783
784
785
786
787
788
789
790
791
792
793

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

{

m last space ID = m_spaces[i].ID;

}
}
return;
}
void MS_Building::sweep x(double location, double distance)
{
for(unsigned int i = 0 ; i < m spaces.size() ; i++)
{
if(m spaces[1].x + m _spaces[1].width < location) { }
else if (m spaces[i].x <= location && m spaces[i1].x + m spaces[i].width >
location)
{
m spaces[i1].width += distance ;
}
else if (m spaces[i].x > location)
{
m spaces[i1].x += distance;
}
}
}
void MS Building::sweep y(double location, double distance)
{
for(unsigned int i = 0 ; 1 < m spaces.size() ; i++)
{
if(m spaces[i].y + m spaces[i].depth < location) { }
else if (m spaces[i].y <= location && m spaces[1].y + m_spaces[i].depth >
location)
{
m spaces[i].depth += distance ;
else if (m spaces[i].y > location)
{
m spaces[i].y += distance;
}
}
}
void MS_Building::sweep_ z(double location, double distance)
{
for(unsigned int i = 0 ; i < m spaces.size() ; i++)
{
if(m spaces[1 1.z + m_spaces[i1].height < location) { }
else if (m spaces[i].z <= location && m spaces[i].z + m spaces[i1].height >
location)
{
m spaces[i1].height += distance ;
}
else if (m spaces[i].z > location)
{
m spaces[1].z += distance;
}
}
}

} // namespace Spatial Design
} // namespace BSO
#endif // MOVABLE_ SIZABLE_HPP

D CUBE VERSUS SPHERE IN ORTHOGONAL SPACE

D Cube versus Sphere in orthogonal space

The building physics discipline as implemented in this research mainly operates on the
relation between surface area and volume. The perfect shape in an ideal world for this
ratio is spherical, however, the BSO toolbox operates in a design search space where only
orthogonal shapes are possible. While no perfect spheres can exist in an orthogonal space,
approximations can be constructed using a granulation of the surface area. Figure D.1
illustrates three circles with different a granulation, while they provide a representation of
a circle it is not the optimal ratio of circumference versus area.

10x 15x 20x

APPROXIMATION 1 APPROXIMATION 2 APPROXIMATION 3

Area = 76 2 Area =177 x? Area =316 x*

Circumference = 40 x Circumference = 60 x Circumference = 80 x

Sauage 1 SQUARE 2 SQUARE 3

Area=76x? Area=177 X2 Area=316 x?

Circumference =4 * 8.72 x =349 x Circumference =4 *13.3x=53.2x Circumference=4*177x=71.1x

Figure D.1: Area and circumference of three different approximations of a circle. All approzima-
tions are compared to a square with equal area as the circle approrimations

Even when moving to a near-infinite granulation of the circumference the approxima-
tion of a circle is not optimal. This can be graphically proven as illustrated in Figure D.2.
In this figure it is shown that part of the approximate circle can be relocated to another
location on the surface while reducing the circumference.

10x

10x 10x

10x 10x 9x

Figure D.2: Graphical transformation of a circle, these steps can be repeated until the approximation
1s fully transformed into a square.

XCV

