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PREFACE 
This is the graduation thesis for completion of the master phase of the specialization Structural Design 

in the master track Architecture, Building and Planning of Eindhoven University of Technology. The 

thesis goes in-depth on the thermal and mechanical behaviour of a protected aluminium beam under 

fire load in comparison to that of a similar column as to warrant full scale beam tests as prescribed in 

EN13381 to determine the thermal properties of insulating materials when working with aluminium 

members. A full overview is achieved through methodical finite element analysis of both aluminium 

and steel sections which resulted in a project of more than 9000 lines of code.  

SUMMARY 
New insulating materials to be used with steel must be tested to determine their thermal properties 

according to NEN-EN 13381, which prescribes twelve unloaded columns and two full-scale loaded 

beam tests. During tests time and temperatures of gas, surfaces and cavities are measured. In tests with 

loaded sections deflection limits describe failure. With the use of Fourier differential equation and the 

heat equation, and inputting the test data plus densities and specific heat, the thermal conductivity of 

the insulation can be expressed as a function of temperature with additional linear regression analyses.  

The necessity of the full-scale loaded beam tests in EN13381 is due to the fact that steel is subject to 

larger deformations before failure. Due to this the insulation layer around the cross-section can be 

damaged and result in a more rapid heating of the beam. The question is however, if the same can be 

said in the case of aluminium cross-section in combination with insulation. 

Eurocode 3 and 9 describes simplified equations, assuming the thermal conductivity to be infinite and 

thus the temperature constant over the cross-section. The thermal and mechanical material properties at 

elevated temperatures in the Eurocode are based on steady state tests, however literature argues that 

transient state tests are more appropriate due to creep, overaging and annealing. To describe the stress-

strain relation at elevated temperatures the Ramberg-Osgood equation is commonly used. Creep strains 

can be described using the Dorn-Harmathy model or be implicitly incorporated for aluminium by 

adjusting the stress-strain relation.  

Typically a beam is subject to a three-sided fire, incurring a thermal gradient over the cross-sectional 

height between the exposed and ambient sides of the beam. This can affect both thermal and mechanical 

properties. The thermal gradient causes a distribution of the strength and stiffness, causing a shift of the 

neutral axis. Additionally, lengthwise thermal expansion differs between these sides, causing a thermal 

bowing effect. Strain is thus comprised out of elastic part, thermal expansion part and creep part.  

To evaluate the behaviour of (protected) steel and aluminium sections, a thermal analysis is followed 

by a mechanical analysis is performed within finite element environment Abaqus. Approximately a 

hundred scenarios were considered, ranging from a column exposed to elevated temperatures from all 

sides, to beam facing a fire from three sides, and an integrated beam with one exposed side. The thermal 

analysis also includes an approach to tackling intumescent paints, fibre blanket insulation and an 

evaluation of the thermal effects of different floor systems. The mechanical analysis includes both a 

look at a simply supported beam under an evenly distributed load and when subject to a four point 

bending test.  

The results show that as to be expected, the thermal gradient in uninsulated is much lower than for 

insulated section. In addition, the same can be said for aluminium section in comparison to steel, 

considering the larger thermal conductivity, this fits with conventional understanding. Overall it can be 

concluded that insulation has a tremendous effect on the temperature increase over time and the 

implementation of insulation and floor system on a beam is determining for the temperature distribution 

in the cross-section. For aluminium the effect appears to cause the thermal gradient over the cross-
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section to become more linear, while steel has an inherently larger gradient than aluminium given the 

fact that it has a lower thermal conductivity. 

Comparing the strain development between column and loaded beams for steel confirms that steel 

loaded beam sections showcase significant sagging before failure. The strain in the case of an insulated 

IPE section in combination with a lightweight floor shows clear deviation from 400℃ onwards before 

failure at circa 600 degrees. In contrast, for aluminium, the slope of the strain is similar up until failure. 

This leads to the conclusion that the deformation of a protected aluminium beam exposed to a fire load 

does not differ to any great extent from that of a similar column in such a manner that the protective 

insulation layer may be damaged prior to failure, and the heating of the beam would be affected. 

Following the results in chapter 7, there is a positive argument for the omission of full scale loaded 

beam tests for fire testing with new insulation materials in combination with aluminium. Considering 

the limit values in EN 13381 and the temperature from which the strain of the beam deviates from the 

column, to omit the beam test an additional safety margin of 25℃ on the critical temperature for 

insulated, loaded structures is a recommended. To absolve the need for the loaded aluminium beam test 

completely however, additional testing is advised to determine if the model fits with an actual fire test. 
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NOMENCLATURE 
Abbreviations 

FEM Finite element method 

ULS Ultimate limit state 

Symbols 

𝑓0,2, 𝑓𝑦 stress at 2‰ strain [N/mm2] 

𝑓𝑢 ultimate stress of aluminium [N/mm2] 

𝐸𝑚𝑜𝑑  Young’s modulus [N/mm2] 

L Span of the specimen [m] 

d distance between extreme fibres of 

member [mm] 

D, 𝛿 deflection [mm] 

q or h’ heat flux 

k, 𝜆 thermal conductivity 

ksh shadow effects 

A/V section factor, area over volume 

∇ Laplace operator  

αc heat transfer coefficient for convection, 

in W/m2K 

𝜃g, Tg gas temperature from nominal fire 

curve, in °C 

𝜃m  surface temperature of the member 

following from the material standard, in 

°C 

Φ  sight-factor, unless otherwise specified 

equal to 1.0 

εm  emission factor of the surface of the 

member; unless otherwise specified 

equal to 0.8 

εf  Emission factor of a fire, generally 

equal to 1.0  

σ  Stephan Boltzmann constant (= 5,67 · 

10-8 W/m2K4) 

𝜃r effective radiation temperature of the 

fire compartment, in °C 

𝜂 reduction factor of loading in case of 

extreme condition compared to 

ultimate limit state 

c specific heat 

𝜌 density 

𝜆𝑟𝑒𝑙 relative slenderness ratio 

𝜎, 𝜀 stress and strain 

𝛼𝐿  linear expansion coefficient 

𝑛  strain hardenings factor 

Subscripts  

Lim represents a limiting value of the 

quantity 

𝜃  quantity at elevated temperature 

𝑎𝑙 property of aluminium 

𝑠𝑡 property of steel 

𝑝 property of insulation 

𝑚 property of member 

c convection parameter 

r radiation parameter 

net netto value 

el elastic 

th thermal 

cr creep 
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1. INTRODUCTION 
The probability of a fire occurring within a dwelling is one in sixty-seven on a yearly bases according 

to CBS data on 2016 [1], proving it is one of the most common disasters to occur and thus to guard 

structures against. In general structures deteriorate during a fire, the reason why fire safety design is 

part of building design and implemented into the Eurocode standards. Within the standard it is presented 

as a minimal time period, depending on utility type, over which the element must retain its functionality 

as to allow for evacuation. It states that the fire resistance of a structure can either be determined through 

physical testing, by following standardized calculation methods or more advanced numerical models 

[2].  

The calculation methods to describe mechanical behaviour as presented in the Eurocodes, such as the 

strength reduction method, are dependent on member temperature. Temperatures are described using 

thermodynamic theory, specifically Fourier’s equation. This equation describes the heat flux as the 

product of thermal conductivity and the dimensional temperature gradient. To calculate the temperature 

of the member [2] the equation could be simplified by making assumptions regarding material 

properties and thermal processes. The Eurocode reduces Fourier’s equation to describe the heat flux as 

attributed to convection and radiation [2] and for aluminium and steel, assumes a constant temperature 

gradient over the cross-section due to the relatively high heat conductivity of the material [3][4]. The 

relation between thermal and mechanical behaviour of materials in this context is often presented in the 

form of reduction factors. These reductions factors with which the mechanical strength and/or stiffness 

value of a material is multiplied at a certain elevated member temperature, is often presented in table 

format [4]. The reduction factors for a material are based on experimental data, as found from 

mechanical stress tests while the sample is exposed to certain constant elevated temperature [3][4]. This 

displays an inherent overlap between theory based and empirical approaches to fire safety design. 

Given the fact that metals have a high heat conductivity, heating of a metal section occurs more quickly 

compared to concrete and timber. Such sections must be protected when the fire resistance would 

otherwise prove insufficient. Elevated temperatures affect the material properties of the metal and cause 

a rapid drop of the Young’s modulus and a sustained reduction of the load carrying capacity of the 

structure as the proof and ultimate strength limits,  𝑓0,2 and 𝑓𝑢 are diminished [2]. This can lead to large 

deformations and eventual collapse. Aluminium elements are more vulnerable in comparison to steel, 

showing the onset of deterioration at temperatures as low as 175℃ and an ultimate temperature of 

600℃ [5].  

To ensure structural elements meet the time requirement as set by the Eurocode, most cases require 

additional protective material. There are several factors tying into the behaviour of structural elements 

under fire load. Factors as thermal expansion, temperature, exposure to fire load, protective cover, 

loading, creep, and connections are expected to be influencing the behaviour of the structure and the 

performance of insulating material [6]. New insulating materials must be tested to determine their 

material properties such as heat conductivity. EN 13381 prescribes fire testing methods to determine 

these properties for use with structural members. The current setup for standard fire tests for aluminium 

elements is taken from the prescribed European standard for steel. However, it is unclear if the steel 

setup is representative when working with aluminium as a full evaluation has not yet been developed. 

This thesis examines the behaviour of insulated steel and aluminium sections exposed to elevated 

temperatures. The aim of this study is to gain insight into the deformation of insulated aluminium 

members exposed to fire and to determine a possible alternative fire test dedicated to aluminium 

members. Therefore, the chapters in this thesis represent the steps taken to achieve this, namely a literary 

review and a transient non-linear finite element analysis in Abaqus. The entire simulation comprises of 

a transient thermal analysis based on Fourier equation and a non-linear mechanical analysis – with 

transient state test material properties for aluminium and steel, IPE and RHS sections in loaded and 

unloaded scenario’s.   
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2. PROBLEM DESCRIPTION 

2.1 Problem introduction 
Even though the materials steel and aluminium are similar superficially – considering slenderness, 

thermal conductivity, ductility – there are still significant differences in properties and subsequent 

behaviour when exposed to elevated temperatures, such as the magnitude of thermal and creep 

deformations. This may imply that the materials require their own tests to acquire representative data 

on thermal conductivity and specific heat for different insulation materials. However, there is a 

European standard for steel fire test EN1363 and EN 13381 in which setup is described, while there is 

no such standard for aluminium to calculate fire resistance properties [7]. Currently the steel test 

requires twelve unloaded columns and two full scale loaded beam tests, from which the performance of 

the insulation material can be obtained [7]. The need for both column and loaded beam tests lays with 

the fact that a steel beam experiences significant sagging or larger deflections, potentially affecting the 

insulating material [8]. This can result in damage to the insulation layer or even a complete separation. 

Due to this loss of protection against elevated temperature, a steel section can heat more quickly at this 

stage. Hence the behaviour of protected sections can differ between that of a column and a beam. Full 

scale beam test are relatively expensive and considering the rate of return on investment in a smaller 

aluminium market compared to steel, it is of interest to determine if the loaded beam test is necessary 

considering the material behaviour. The question thus becomes, if the insulation performance of an 

unloaded aluminium column differs from that of a loaded beam as is with steel? 

Given the material properties of aluminium, it is to be expected that other failure mechanisms occur 

before excessive sagging compromises the protective layer. Herein the effect of creep under elevated 

temperatures is of significant interest [9]. This would imply that the protected beam would reach a 

critical internal temperature of approximately 200-400℃, depending on the utilization ratio, that is load 

divided by resistance, before sagging damages the protective covering. Thereby negatively affecting 

the heating rate of the aluminium section. Expectations are that the deflection of the aluminium beam 

compared to steel are more favourable in a sense that creep occurs faster, possibly even omitting the 

need for the fire beam test altogether.  

In addition to creep, aluminium has a higher thermal conductivity than steel. It is to be expected that 

the thermal gradient in this case is therefore lower, which carries into the effect of thermal bowing. 

Complementary, aluminium also has about a twice as large thermal expansion. All three aspect will 

come to light during the thesis. 

2.2 Problem statement 
The situation gives rise to the question whether the thermal and mechanical behaviour of a protected 

aluminium beam under fire load differs to that of a similar column. It is to be judged, if a protective 

insulating layer is negatively affected and a change in the gradual heating of the member is observed, 

as to warrant full scale beam tests as prescribed in EN13381 to determine the thermal properties of 

insulating materials when working with aluminium members. 

There is therefore a practical need for a more lucrative alternative to the fire test setup when working 

with aluminium, leading to the following research question: 

Does the deformation of a protected aluminium beam under fire load differ to that of a similar column, 

in such a way that the protective layer is affected and a change in the gradual heating of the beam is 

observed?  

To tackle this subject, a set of sub questions have been formulated to serve as a starting base. Herein a 

distinction can be made between geometric, material and mechanical specific questions. 
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Geometric  

a) What are the specifications of the standard steel fire test EN1363 concerning support, 

connections, beam size, length, and protective covering? 

b) What aluminium profiles are used in practice?  

c) What are the geometric specifications of comparable beam segments of steel and aluminium 

for FEM analysis? 

Material specifics 

d) What material properties are subject to change during a fire? 

e) What are determining factors for the fire resistance of a protected beam section that are to be 

considered or expected to occur, and are these coupled or sequential phenomenon? 

Mechanical 

f) What are appropriate failure criteria of the protective layer and beam section? 

 

FEM model 

g) What effect has a protective layer on the beam section heating over time and what are the 

protective layer equivalent properties within the FEM environment? 

h) What is the mathematical equivalent for the FEM implementation of the fire load? 

i) Is there comparative data available or attainable for verification of the model? 

j) What recommendations/observations can be made for a standardized aluminium fire test 

proposal? 

2.3 Approach 
To answer the main problem statement, the thesis is separated into two main parts, first that of a full 

literary study, and second a finite element analysis. The literary study is comprised out of evaluation of 

the data available in the ISO standards supplemented and evaluated with complementary research 

studies. All in all, this will set the basis for the theoretical background regarding the material properties 

at room and elevated temperatures for steel, aluminium and insulation materials in addition to the 

boundary conditions, available model techniques, failure mechanisms and validation possibilities.  

The numerical model will serve to determine if the deformations that occur during a numerical fire, are 

significantly larger for a loaded aluminium beam compared to that of an unloaded column, requiring a 

standard fire beam test as currently prescribed in EN1363. If the deformation rate is similar between 

the two, the need for a beam fire test can be omitted. Thus limiting the standard fire test for aluminium 

to 12 unloaded columns to determine the properties of insulating materials.  

The thermal and mechanical (creep and thermal expansion) analysis should be doable in sequential 

order, wherein the thermal analysis is input for the mechanical analysis. Combining the literary review, 

a numerical analysis and the critical review and improvement of the current standard EN1363 for 

aluminium, will comprise the complete thesis.  
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3. LITERATURE STUDY & THEORETICAL BACKGROUND 

3.1 Normative texts  
To test new insulating materials there are several standardized setups available that concern furnace 

specifications and the test specimen. The standards EN1363 and EN1365 respectively, describe the 

furnace specifications including air pressure, measuring sensors and equipment settings; and element 

specifications regarding material and usage typology. EN 13381 describes testing methods to determine 

the fire resistance of structural members due to protective measures such as insulation. Part 4 and 8 of 

standard EN13381 describe the setup of respectively passive and active fire protective measures with 

structural steel members. It is prescribed that for cases with steel structural members, it is necessary to 

test twelve unloaded columns and two full-scale loaded beams [7] to ascertain the properties of 

insulating materials. The need for two full-scale beam tests is based on the fact that steel beams 

experience significant sagging before failure[8], in comparison to columns. This behaviour implies that 

due to the deformation, the protective cover can be torn, cracked, fall away or be otherwise damaged 

and thus allow for more rapid heating of the section [7].  

3.1.1 Measured parameters  

Given that fire tests are performed to classify the insulation material, a difference is made between 

active and passive systems. An active system would be a reactive foaming coating for instance. What 

is known a priori of the insulation is the thickness of the applied layer, which is a parameter used for 

calculation at a later stage [8]. NEN-EN 13501-2:2016 Annex B prescribes that individual and mean 

temperatures of surfaces – both of member and outside insulation – and cavities are measured during 

testing [8]. From the thermal analysis a series of material dependent tables are produced which sets 

certain fire resistance periods (of 15, 30, 45, 60, 120, 180, 240 minutes) against critical design 

temperatures (for steel ranging between 350 to 750℃ with 50℃ increments) for certain insulated 

section factors Ap/V [8]. An example of such a table is table B.2 in the standard NEN-EN13501. Such 

a material dependent table can then be cross-referenced with technical datasheets of insulation 

fabricators to get the required insulation thickness [10].  

The values regarding the geometry of the cross-section, insulation thickness and the transient 

temperatures at the surfaces and cavities, as measured during testing, are used as input for the 

calculation of the material properties of the insulation [8]. The applied equations are based on Fourier 

Equations on thermodynamics. In basic form this would be 𝑞 = −𝑘∇𝜃 , describing the local heat flux 

density as the product of the negative thermal conductivity of all materials in the referenced space, 

multiplied by the spatial temperature gradient. By combining Fourier’s differential equation with the 

heat equation, as further discussed in chapter 3, and inputting the specific heat and density values as 

obtained from other tests, the effective thermal conductivity of the insulation is calculated [8]. The 

thermal conductivity is deemed effective because its value is expressed in relation to the (steel or 

aluminium) member temperature as to fit simplified mathematical models instead of its true absolute 

value that would be related to the temperature of the insulation material at that exact location. Adjusting 

the thermal conductivity is a necessity because the value of the temperature of the insulation in the test 

is not measurable but only established relatively to material surface temperatures which implies circular 

(mathematical) dependencies. The standard states that the variation of the thermal conductivity is a 

function of temperature, and its values are found using the mentioned equations [6]. Subsequent, the 

temperature dependency of the thermal conductivity is found through linear regression analysis [11].  

3.1.2 Fire test setup  

The size of the test is dependent on the size of the furnace, which is ordinarily no larger than five by 

seven metres [12]. Columns are subjected to fire on all sides, while beam tests are setup to simulate a 

three-sided fire. When performing a fire test aerated concrete blocks are used to simulate the flooring 

in case of beams. These are placed on top of the beams and are highly insulating to simulate three-sided 
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heating. Generally these blocks cover the entire length of the beam and are 600 mm wide and 120 mm 

high [13].  

The full-scale beam test is mechanically loaded, in contrast to the column tests – represented as a simply 

supported four-point static bending test loaded with hydraulic jacks [13]. The load is constant during 

the test. Given that a fire is an extreme load situation [14], the load is significantly less in comparison 

to the fundamental load combination as expressed in EN 1990. In case of fire, the utilization – applied 

load divided by carrying capacity – of the cross-section is suggested to be 0.65 for steel [3]. This value 

is based on the reduction of the extreme load due to combination factors under fire conditions.  

3.1.3 Failure criterion 

Failure of beam elements under fire conditions is expressed in both a deflection and a rate of deflection 

limit, equations (1) and (2) respectively [6][13]. These limiting values are based on securing a 

representative data range given the type of structural member and an adequate safety level to prevent 

damaging the equipment. Sudden and uncontrolled failure of specimens can cause damage to the 

furnace and equipment used in the setup. As some irregularity can occur before stable conditions are 

reached – such as settling due to initial loading – the rate of deflection limit is not applied until a 

deflection equal to L/30 has been reached [7].  

Deflection limit 𝐷𝐿𝑖𝑚 =
𝐿2

400𝑑
  𝑚𝑚 (1) 

Deflection rate limit 
𝑑𝐷

𝑑𝑡𝐿𝑖𝑚
=

𝐿2

9000𝑑
 𝑚𝑚/𝑚𝑖𝑛 (2) 

As the column tests are unloaded, deflection is not a failure criterion. Thus, failure of the section 

becomes an integrity problem [6]. To measure an integrity failure of a beam or column member, a gap 

gauge can be used to measure whether the insulation layer can be penetrated either by a gap of 6mm 

running 150mm long, or by a gap of 25mm [6], the length of the specimen is not discussed. Other failure 

criteria relate to the critical temperature of the material [6]. 

In literature for mechanical FEM models as to determine the fire resistance, failure of beams in three or 

four point bending tests is defined at one calculation step before material fracture [13]. In case of loaded 

columns, failure is defined at flexural buckling [15] as to describe the fire resistance. However, the 

columns exposed to fire are unloaded, failure is therefore not due to buckling. The column is subject to 

thermal expansion and eventual melting of the material. No models were found as to attain the thermal 

properties of insulating materials. When insulation was applied, the properties of the material were 

known a-priori and used as input for the model. 

To date, a normative setup specified for insulation fire tests with aluminium sections is not available.  

3.2 Thermal analysis 
As previously discussed, a fire test is performed to obtain data regarding the temperature of all possible 

surfaces and cavities of the test member, for which deflection values are determining for failure in case 

of beams. The result is then used to evaluate the material properties of the insulating material, that is 

the effective thermal conductivity [8]. The effective thermal conductivity is calculated using the 

differential equation method [8].  

3.2.1 Calculating properties from test data 

The calculations involved in finding the thermal conductivity are based on Fourier’s equation on 

thermodynamics 𝑞 = −𝑘∇𝜃 [8][16], describing the local heat flux density as the product of the negative 

thermal conductivity multiplied by the negative temperature gradient across the surface. This equation 

is combined with the heat differential equation 𝜕𝜃 𝜕𝑡⁄ − ∇2𝜃 = 0 given the law of conservation of 

energy. ∇ denotes the Laplace operator for a three dimensional problem. The heat transfer is obtained 
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by considering the difference between the gas temperature as generated by the fire, and the surface 

temperature of the member, attributed to convection and radiation [2]. The change in heat transfer per 

unit volume in the insulation is proportional to the change in member surface temperature multiplied 

by the specific heat and density of the insulation Δ𝑄 = 𝑐𝑝𝜌𝑝Δ𝜃 [4]. The temperature gradient is three-

dimensional and within the NEN standard [3][4] is simplified by assuming that the temperature is 

constant over the cross-section of the member, reducing it to a one-dimensional problem [3][4], 

𝜕𝑞 𝜕𝑡⁄ = −𝑘𝐴𝜕𝑇 𝜕𝑥⁄ . These assumptions and simplifications reduce the formula to (3) [17][16], which 

is a partial differential equation with one unknown, dependent on both t (time) and X (one-dimensional 

location). 

 
𝜕𝜃𝑔

𝜕𝑡
=

𝑘𝑝

𝑐𝑝𝜌𝑝
(
𝜕2𝜃𝑚

𝜕𝑥𝑝
2 ) + 𝑄 (3) 

Herein it is assumed that the effective thermal conductivity is constant over the thickness of the material 

(x) [8][18]. As expressed in paragraph 2.1 the effective thermal conductivity 𝑘𝑝 found by solving this 

differential equation for a series of temperatures and then performing a linear regression analysis 

dependent on the material temperature [8][11]. The change of gas temperature over time 𝜕𝜃𝑔 𝜕𝑡⁄ , is 

known as it is taken from experimental temperature measurements. The rate of change of the 

temperature of the material(s) over distrance 𝑥, and/or the spatial partial derivative of 𝜃 over 𝑥 twice, 

is approximated by considering the measured surface temperatures. 𝑄 stands for the heat energy added 

or lost in the system, also known. Inputting these values, in addition to the values for 𝑐 and 𝜌, into (3) 

leaves one unknown, the thermal conductivity of the insulation 𝑘𝑝. Note that 𝑘𝑝 is not a constant, but a 

function of the member temperature due to method with which it is established. Inconsistencies between 

test-setups such as geometry and the number of fire exposed sides are accounted for by adjusting the 

spatial derivative in the equation [3][4][8]. 

In summary, the fire tests are performed to obtain data regarding the surface temperature of the insulated 

member and to then calculate the thermal conductivity of the material. To do the calculations, it is 

necessary to collect data regarding the specific heat and density of both the member and insulation, the 

gas temperature and member surface temperatures. These values are used as input for (3) to calculate 

𝑘𝑝. In the thermal analysis a given k will be used to determine the member temperature (nodal 

temperatures within the material) [8], essentially performing the previously described calculation 

method in reverse order. 

3.2.2 Simulated fire 

During a standard fire test, the temperature development within the chamber follows that of the nominal 

fire curve [3][4][8]. This curve represents the environmental gas temperature due to a fire as described 

in Eurocode EN 1991-1-2, see equation (4) [2]. Herein t stands for the elapsed time in minutes and 𝜃0 

is the initial gas temperature. The initial values are described by ambient conditions and at t is zero the 

initial temperature is equal to the gas temperature and the member temperature, thus 20℃.  

 𝜃𝑔 = 345 log(8𝑡 + 1) + θ0 (4) 

The same gas-temperature curve is applied in several studies [13][18]. However, alternatively to this 

fire curve, steady state experiments wherein the temperature is set at a constant value are performed to 

evaluate post-fire behaviour [19], creep behaviour [15][18] and buckling [5][8][14][19][20] of protected 

and unprotected sections. The temperature range of the material itself as used in these studies, is limited 

to 200-500℃ given the aluminium melting temperature, which is lower than the temperature that might 

occur during a fire . Protection of the aluminium main load bearing structure is certainly required in 

these cases. 
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3.2.3 Member temperature  

The calculation of the temperature of an uninsulated aluminium or steel member (5) in [3][4] is 

straightforward and follows from Fourier’s equation. The change in member temperature Δ𝜃𝑎𝑙(𝑡) 

expressed as the multiplication of shadow effects 𝑘𝑠ℎ, inverse of specific heat 𝑐 times density 𝜌, the 

section factor 
𝐴𝑚

𝑉
, heat flux ℎ𝑛𝑒𝑡

′  and time increment Δ𝑡. In [3][4] the assumption is made that due to 

the relatively high thermal conductivity of aluminium the temperature over the cross section is constant, 

thus equalling 𝑘𝑚 to infinity. In case not all sides of the member are exposed to the fire, the section 

factor is adjusted [3][4] as in the spatial derivative of (3). The heat flux is expressed as the result of both 

convection and radiation, taken as the difference between gas and member temperature multiplied by 

the convection coefficient and emissivity of the material [4][16]. However, the heat flux can be 

substituted with Fourier’s law, as done in (3). Alternatively, the heat flux can be approximated 

considering the type of fuel for the fire after one hour of exposure. Cellulosic fuelled fire (q=150kW/m2) 

and hydrocarbon fuelled fire (q=200kW/m2) are generally used for testing of structural materials [16]. 

  

 Δ𝜃𝑎𝑙(𝑡) = 𝑘𝑠ℎ
1

𝑐𝑎𝑙𝜌𝑎𝑙

𝐴𝑚
𝑉
 ℎ′𝑛𝑒𝑡Δ𝑡 (5) 

Besides the thermal conductivity of the insulation, the effect on the temperature of the member due to 

the insulating layer is expressed with factor phi [3][4], taking the insulation specific heat and density 

over that of the aluminium properties multiplied by the thickness of the layer in comparison to the 

section factor [4]. The thermal conductivity of the metal is considered to be infinite and all material 

properties are assumed to be constant over the cross-section of the individual materials [4] as similarly 

done in (5). Given a parametric fire, heat energy is added to the system, making Q non-zero and 

expressed as the change in gas temperature [2]. Equation (3) can then be rewritten to express an 

approximation of the surface temperature of the metal integrated over both the one dimensional 

geometry of the cross-section and time, as expressed in (6)[3][4]. For insulating materials commercially 

available, the thermal properties are expressed to fit with this equation. 

The Eurocode approach to approximate the member temperature during a fire is generally reasonably 

accurate, though conservative [5][8][19] for insulation materials with low density and high thermal 

resistance in comparison to the exact solution found using Laplace transformation [13][18][5]. This is 

due to the adjustment of the spatial derivative, delayed thermal response through the exponent and the 

presumption that the thermal conductivity is infinite. The application of the exact solution is dependent 

on the complexity of the thermal parameters related to the thermal resistance of the materials [18].  

3.2.4 Thermal material properties 

The material properties that must be defined are the thermal conductivity (Figure 1), specific heat 

(Figure 2) and density values of the metal and insulation. These may be dependent on temperature and 

geometry. 

3.2.4.1 Insulation 

To fit the fire resistance requirements for structures, it may be necessary to provide metal members with 

insulating material. Generally there are three types of insulation, namely boards, spray mortar and 

coatings [23].  

Δ𝜃𝑎𝑙(𝑡) =
𝜆𝑝 𝑑𝑝⁄

𝑐𝑎𝑙𝜌𝑎𝑙

𝐴𝑝
𝑉
[

1

1 + Φ 3⁄
] (𝜃𝑔(𝑡) − 𝜃𝑎𝑙(𝑡))Δ𝑡 − (𝑒

𝜙 10⁄ − 1)Δθg(t)  

 With Φ =
𝑐𝑝𝜌𝑝

𝑐𝑎𝑙𝜌𝑎𝑙
 𝑡𝑝

𝐴𝑝

𝑉
  

(6) 
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The fire tests as discussed previously, are used to gauge the material properties of insulating material. 

In advance to the test, the data on the material is just an indication or unknown. In practice the result is 

often translated to design tables with a relation between A/V, fire resistance time and fire design 

temperature [8]. Even though experiments show a dependence of the thermal conductivity on 

temperature, the effective value is calculated with the differential equation method using the variation 

of the thermal conductivity, specific heat and density of the material [8]. 

These values can be taken from technical datasheets. An example can also be found in [18] for a ceramic 

fibre blanket. Other fibre based materials show comparable thermal properties [24][25][26][27][28]. 

𝑐𝑝 = 820 𝐽 𝑘𝑔𝐾⁄ ; 𝜌𝑝 = 96𝑘𝑔 𝑚3⁄ ; 𝑘𝑝[𝑊 𝑚𝐾⁄ ] = {
0.033 − 1.443 ∙ 10−8 ∙ 𝜃𝑝 + 2.875 ∙ 10

−7 ∙ 𝜃𝑝
2

0.12 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒
 

3.2.4.2 Contact and cavities 

At the cavity between the metal member and the insulation, some thermal resistance might occur. This 

thermal resistance is due to a lack of full contact between the materials. The contact resistance is 

determined by the roughness of the surfaces and the contact pressure between them [29]. However, this 

contact resistance is often neglected, due to the numerical difficulty of implementing its effect [29]. 

This would imply that the temperature on the inner surface of the insulation is the same as the 

temperature of the structural member, which would be a conservative assumption and is neglected in 

calculations for insulation materials [29]. Contact resistance of this nature has been evaluated between 

steel and concrete to be 200W/m2K [23][24][32].  

3.2.4.3 Steel 

EN 1993-1-2 [3] has a well-established base line for the material properties of steel. Even though the 

thermal conductivity is assumed to be uniform in thickness direction when calculating the member 

temperature, the parameter is temperature dependent. 

Density [3] 𝜌𝑠 = 7850𝑘𝑔 𝑚3⁄  

Poisons ratio 𝜈 = 0.29 − 0.31 between temperatures of 0-700℃ [33]. 

Thermal conductivity [3][22] 

𝜆𝑠[𝑊/𝑚𝐾] = {

54 𝑖𝑓 𝜃𝑠 < 20℃

54 − 3.33 ∙ 10−2 ∙ 𝜃𝑠 𝑖𝑓
27.3  𝑖𝑓 𝜃𝑠 ≥ 800℃

20℃ ≤ 𝜃𝑠 < 800℃ (7) 

Specific heat [3][13] 

𝑐𝑠[𝐽 𝑘𝑔𝐾⁄ ] =

{
  
 

  
 
425 + 7.73 ∙ 10−1 ∙ 𝜃𝑠 − 1.69 ∙ 10

−3 ∙ 𝜃𝑠
2 + 2.22 ∙ 10−6 ∙ 𝜃𝑠

3 𝑖𝑓 20℃ ≤ 𝜃𝑠 < 600℃ 

666 +
13002

738 − 𝜃𝑠
 𝑖𝑓 600℃ ≤ 𝜃𝑠 < 735℃

545 +
17820

𝜃𝑠 − 731
 𝑖𝑓 735℃ ≤ 𝜃𝑠 < 900℃

650 𝑖𝑓 900℃ ≤ 𝜃𝑠 < 1200℃

 (8) 

Alternatively to [3], [18] proposes for the specific heat a different singular equation. This simplification 

is based on the conclusion in [34] where the accuracy of the specific heat has little effect on the steel 

temperature calculations.  𝑐𝑠 [𝐽 𝑘𝑔𝐾⁄ ] = 472 + 3.8 ∙ 10−4 ∙ 𝜃𝑠
2 + 0.2 ∙ 𝜃𝑠   

3.2.4.4 Aluminium 

Material properties as expressed in [4] are based on steady state tests. For the thermal conductivity and 

specific heat properties, the values are often the same between literature [18][13][35] and Eurocode.  

Density [4] 𝜌𝑎𝑙 = 2700𝑘𝑔 𝑚3⁄   
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Poisons ratio [9] 𝜈 = {
0.33 − 0.40 𝑓𝑜𝑟 𝑎𝑙𝑙𝑜𝑦 6060 − 𝑇66
0.33 − 0.43 𝑓𝑜𝑟 𝑎𝑙𝑙𝑜𝑦 5083 − 𝐻111

  

Thermal conductivity [4][16] 

𝜆𝑎𝑙[𝑊 𝑚𝐾⁄ ] =  {
0.07 ∙ 𝜃𝑎𝑙 + 190 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑠 < 500℃ 𝑎𝑙𝑙𝑜𝑦 6𝑋𝑋𝑋
0.1 ∙ 𝜃𝑎𝑙 + 140 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑠 < 500℃ 𝑎𝑙𝑙𝑜𝑦 5𝑋𝑋𝑋

 (9) 

Specific heat [4][16] 

𝑐𝑠[𝐽 𝑘𝑔𝐾⁄ ] = 0.41 ∙ 𝜃𝑎𝑙 + 903 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑠 < 500℃  (10) 

 
Figure 1 – Thermal conductivity of the materials aluminium, steel and insulation (ceramic fibre blanket) as specified in chapter 

3.4. The grey and blue line refer to the right handed axis. 

 
Figure 2 –Specific heat values of aluminium, steel and insulation (ceramic fibre blanket) according to chapter 3.4. 
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3.2.4.5 Concrete 

To represent a floor system, the use of a concrete slab is a possibility. For that purpose, the thermal 

properties of concrete are taken as expressed in NEN-EN 1992-1-2.  

Density 

Thermal conductivity 

𝜆𝑐[𝑊 𝑚𝐾⁄ ] =  {
2 − 0.2451(𝜃/100) + 0.0107(𝜃/100)2    𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡

1.36 − 0.136(𝜃/100) + 0.0057(𝜃/100)2   𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
 (12) 

Specific heat 

3.2.5 Thermal gradient 

The Eurocode [3][4] makes the assumption that the temperature  over the cross-section is uniform, 

calculated following (6). This is, however, not the reality [8][29] and might yield conservative results 

[5][8][19]. Considering a three-sided fire, the heat input differs between sides and as the thermal 

conductivity of the material is not infinite, as seen in equation (7) and (9), a thermal gradient exists over 

the cross-section [8][29][37]. In studies, the thermal gradient is most often considered to be linear 

[22][38] or quadratic [19] over the height of the cross-section. The resultant thermal gradient is 

dependent on the material properties, the heat input and the geometry of the section.  

Due to the thermal gradient, both thermal and mechanical material properties of the member differ over 

the cross-section. This, in turn, affects the temperature distribution as the thermal conductivity and 

specific heat are temperature dependent. 

The mechanical implications of the thermal gradient include a difference in 𝐸 and 𝑓0,2 between the 

‘cold’ and ‘hot’ side of the member. The former causes a shift of the neutral axis to the colder side due 

to the higher stiffness [22]. This would induce an eccentricity and an additional moment [22] dependent 

on the axis of the applied load. Furthermore, the thermal gradient can induce a bowing effect by thermal 

expansion, given that the hotter flange would extend more causing an internal eccentricity from the 

neutral axis opposite to that due to stiffness [22].  

Additionally, the effect of the thermal gradient on the critical temperature of the cross-section of a 

column can be argued. [39] demonstrated that the critical temperature for a column is higher than with 

a uniform temperature distribution, while considering the maximum occurring temperature [22]. When 

considering the average temperature of the thermal gradient [22], [34][35] found that the fire resistance 

is reduced while [36][37] found it to have a higher resistance. The Eurocode [3] allows for the 

consideration of a thermal gradient, but specifies that the E and 𝑓0,2 values for the maximum temperature 

are to be used, to counterbalance the shift of the neutral axis [22]. 

3.2.6 Thermal simulation model 

Within a finite element (FE) package such as DIANA or Abaqus it is possible to perform a heat transfer 

analysis. In literature, the model is often simulated as eight-node quadratic heat transfer elements 

DC3D8 [21][22] or twenty-node quadratic heat transfer bricks DC3D20 [19]. Given the time and 

𝜌𝑐[𝑘𝑔/𝑚
3] =  

{
 

 
𝜌𝑐(20℃) = 2300 𝑓𝑜𝑟 20℃ ≤ 𝜃 ≤ 115℃ 

𝜌𝑐(20℃) ∙ (1 − 0.02(𝜃 − 115) 85⁄ )𝑓𝑜𝑟 115℃ < 𝜃 ≤ 200℃

𝜌𝑐(20℃) ∙ (0.98 − 0.03(𝜃 − 200)/200) 𝑓𝑜𝑟 200℃ < 𝜃 ≤ 400℃

𝜌𝑐(20℃) ∙ (0.95 − 0.07(𝜃 − 400)/800)𝑓𝑜𝑟 400℃ < 𝜃 ≤ 1200℃

 (11) 

𝑐𝑐[𝐽/𝑘𝑔𝐾] =  {

900 𝑓𝑜𝑟 20℃ ≤ 𝜃 ≤ 100℃ 
900 + (𝜃 − 100)𝑓𝑜𝑟 100℃ < 𝜃 ≤ 200℃

1000 + (𝜃 − 200)/2 𝑓𝑜𝑟 200℃ < 𝜃 ≤ 400℃
1100 𝑓𝑜𝑟 400℃ < 𝜃 ≤ 1200℃

 (13) 
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temperature dependent material parameters, a transient, material non-linear FE analysis is a requirement 

[21][22][19] to obtain the nodal temperatures.  

3.3 Mechanical analysis 
As expressed in chapter 1, metal structural members show deterioration at elevated temperatures. The 

temperature range at which mechanical deterioration occurs is different for both aluminium and steel. 

For aluminium, the material properties are defined over the range 0-550℃ [4] and for steel this is 0-

1200℃ [3]. At higher temperatures the material properties go beyond the scope of mechanical 

engineering. Within this range, the strength and stiffness of the material is reduced to zero and failure 

is definitive [3][4][18][28].  

3.3.1 Material strength and Young’s modulus 

The Eurocode has formulated the material properties of aluminium based on steady state experiments. 

Herein, the specimen is subject to a constant temperature, a fixed strain rate and the stress is measured 

[9]. However, [15][18–22] argues that transient state tests are more appropriate in case of fire 

conditions. A difference may occur when considering transient state tests opposed to steady state tests, 

which are considered more appropriate to fire conditions [18][25][26]. This is attributed to creep, 

overaging and annealing [9]. Alternatively to a steady state test, in a transient state test the member is 

subject to a changing temperature, a certain stress and the strain is measured [9]. Comparing the result 

of the stress-strain relationship shows that for alloy 5083-H111 the proof stress found through steady 

state experiments as in [4] is 20 to 85 pct higher than found with transient state tests for a temperature 

range of 200-350℃ [9]. Contrarily, the proof stress of alloy 6060-T66 is found to be 5-40 pct lower in 

[4] than in transient state tests for the same temperature range [9].  

In literature several options are used to base proof stress and Young’s modulus data on. These range 

from Eurocode [13][22], Kaufman suggestion [15][9] as used in [44][29], transient state tests [19][18–

20][37][45] or steady state tests [20][37][46][47]. In Figure 3 and Figure 4 the development of the E-

modulus and proof stress respectively, are plotted against an increasing temperature.  

 
Figure 3 – Development of the Young's modulus at elevated temperatures compared to the nominal value at room temperature, 

as taken from different references [3][4][15][18].  
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Figure 4 – Development of 0.2% stress at elevated temperatures compared to the nominal value at room temperature, as taken 

from different references [3][4][15][5][31][42] for which the EC9 values for aluminium are based on steady state experiments. 

3.3.2 Strain 

In general static mechanics, Hooke’s Law 𝜀 = 𝜎/𝐸 is fundamental to describe the elastic relation 

between strain and stress [49]. or large strain, steel and aluminium show physical non-linear behaviour 

[49], as can be observed in Figure 5 as taken from [20].  

 
Figure 5 – Steady state stress-strain curves of (a) alloy 5083-H111 and (b) alloy 6060-T66 at elevated temperatures from [20]. 

3.3.2.1 Ramberg-Osgood relation 

To describe the stress strain relation at elevated temperatures, the Ramberg-Osgood equation (14) is 

commonly used in literature [5], [15], [21]. This equation utilizes the corrected strength and stiffness 

parameters at elevated temperatures. [5] argues that this equation describes the stress-strain curves 

relatively well up to strain values of 𝜀 = 0.01, which would be adequate for structural applications as 

these are generally limited to small strains.  

 𝜀 =
𝜎

𝐸𝜃
+ 0.002(

𝜎

𝑓0.2;𝜃
)

𝑛

 (14) 

Beyond strains of 𝜀 = 0.01 [5] and temperatures larger than half of the melting temperature (circa 

150℃) [9][16] however, these stress-strain relations are no longer accurate. This is attributed to creep. 
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Alloys of 6XXX are less susceptible to creep strains than alloys in 5XXX series [35]. In addition to 

creep, thermal expansion affects the deflection of an element [16].  

Considering these phenomena the total strain is a contingent of elastic strain, creep and that due to 

thermal expansion [16], which alludes to equation (15). 

 𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 + 𝛿𝑐𝑟𝑒𝑒𝑝 𝐼,𝐼𝐼,𝐼𝐼𝐼 (15) 

3.3.2.2 Thermal expansion 

In case of statically indeterminate structures, thermal expansion due to elevated temperatures causes 

additional forces in the specimen [16]. Considering a thermal gradient over the cross-section of the 

beam, the amount of thermal expansion differs between the ‘hot’ and ‘cold’ side, causing a thermal 

bowing effect [22].  The eccentricity from the neutral axis due to this deformation causes an addition 

bending moment [22].  

The lengthwise thermal expansion of steel is described as [3][22] 

Δ𝑙

𝑙
= {

1.2 ∗ 10−5 ∙ 𝜃𝑠 + 0.4 ∙ 10
−8 ∙ 𝜃𝑠

2 − 2.416 ∙ 10−4 𝑖𝑓 20℃ ≤ 𝜃𝑠 < 750℃

1.1 ∙ 10−2 𝑖𝑓 750℃ ≤ 𝜃𝑠 ≤ 860℃

2 ∙ 10−5 ∙ 𝜃𝑠 − 6.2 ∙ 10
−3 𝑖𝑓 860℃ < 𝜃𝑠 ≤ 1200℃

 (16) 

The lengthwise thermal expansion of aluminium is described as [4][16] 

Δ𝑙

𝑙
= 0.1 ∙ 10−7 ∙ 𝜃𝑎𝑙

2 + 22.5 ∙ 10−6 ∙ 𝜃𝑎𝑙 − 4.5 ∙ 10
−4 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑎𝑙 < 500℃ (17) 

Thermal bowing can occur in both restrained and unrestrained sections, [50] expressed deformation of 

this kind for unloaded and unrestrained steel I-sections with a linear thermal gradient (Δ𝑇) over the 

cross-section as equation (19).  

 𝛿 =
𝛼𝐿2Δ𝑇

8𝑑
 (18) 

3.3.2.3 Creep strain 

In steady state experiments the effect of creep is typically underestimated. This phenomenon is of 

particular interest when temperatures exceed half the melting temperature [16][9][35]. In transient state 

tests the effects of creep, overaging and annealing is captured [9][20]. Ref. [9] considered creep 

implicitly by adapting the steady state stress-strain curves for alloy 6060-T66. Alloys in the 6XXX 

series are less susceptible to creep than those in the 5XXX series [35], and thus this method was 

applicable for alloy 6060-T66 [9]. 

Creep can be described in three stages, the primary stage in which the strain rate decreases, the 

secondary stage where the strain rate is constant and the tertiary stage in which the strain rate rapidly 

increases. These stages can be recognized in Figure 6 as taken from [16][9]. To take creep strains 

explicitly into account, the creep strain of the primary and secondary stage can be described with the 

Dorn-Harmathy model (19) [16][9]. Herein, 𝜀𝐶̇ stands for the strain rate of subscript 𝐼 primary stage 

strain and 𝐼𝐼 secondary stage creep strain, 𝜀𝐶,𝐼+𝐼𝐼 for primary and secondary stage creep strain and 𝜀𝐶,0 

the projection of the secondary creep strain at time is zero. Equation (19) is explained in depth in [16][9].  

 𝜀𝐶̇,𝐼+𝐼𝐼(𝑡) = 𝜀𝐶̇,𝐼𝐼 coth
2(
𝜀𝐶,𝐼+𝐼𝐼
𝜀𝐶,0

) (19) 
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Figure 6 – Creep curve showcasing (a) primary, secondary and tertiary creep stage, source [9]. And (b) creep curves at 

different temperatures with constant loading of 50 MPa, source [16].  

3.3.3 Loading 

In structural design, fire design is part of ultimate limit state (ULS) as an accidental load case [51]. This 

implies that the loading - both permanent (𝐺𝑘) and variable (𝑄𝑘) loads - can be adjusted in comparison 

to the fundamental load case [14]. For consequence class 2 (CC2) the safety factor with which to 

multiply permanent loads is 𝛾𝐺 = 1.2 and for variable loads it is 𝛾𝑄 = 1.5 fundamentally[14].  For fire 

design, these safety factors (𝛾) are lower in addition to a reducing load combination factor Ψ𝑓𝑖. The 

result is a load 𝜂 times smaller than that of the fundamental load case, following equation (20) [4]. Thus, 

there is a certain degree of rest capacity, which is of crucial importance as the resistance of the member 

reduces under elevated temperatures, as can be observed in Figure 4[37].  

 𝜂𝑓𝑖 =
𝐺𝑘 +Ψ𝑓𝑖𝑄𝑘,1

𝛾𝐺𝐺𝑘 + 𝛾𝑄,1𝑄𝑘,1
 (20) 

EN 1990 suggests that the load can initially be assumed 65% of the fundamental load case for steel [4]. 

This value is based on a conservative estimation of the lowered safety factors for fire design.  

3.3.4 Failure mechanisms  

A distinction can be made in failure type, that would be strength or resistance (R), stability (S) or 

integrity (I) failure [8][6]. Failure in literature is often described as the point at which rapid strain occurs 

without further adding to the load [15] such as buckling and necking[45].  Aluminium is predominantly 

used as slender plate or extruded material [5]. Given a compressive load, an aluminium member is 

therefore especially susceptible to out-of-plane buckling [22][14][19][20][39][40]. Under tension, 

aluminium primarily shows ductile failure. A ‘neck’ or thinning of the cross-section occurs and after 

extensive plastic deformation, fracture. Fracture is the point where the material starts to separate [47]. 

This mechanism can occur in members subjected to tension and bending. In numerical models, the time 

step right before fracture occurs is often formulated as the failure criterion [45][47]. For steel the same 

applies [13].  

These phenomena can occur both at room temperatures and at elevated temperatures. However, strength 

and Young’s modulus of both steel and aluminium drop with increasing temperature, as discussed 

previously. Given a certain load in the elastic strain range of aluminium under room temperature 

conditions, would normally be no cause for concern. Yet, when exposed to elevated temperatures, the 

same load would result in plastic behaviour as the yield and ultimate strength limits are much lower, 

see Figure 4 and Figure 5 for reference.  

3.3.5 Mechanical simulation model 

To simulate the deformation of the beam and column in the mechanical model, the thermal output is 

used as input, as discussed in Chapter 1. The nodal temperatures of the thermal heat transfer bricks 
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discussed in 3.2.6 Thermal simulation model determine the local strength and stiffness parameters. 

Considering a thermal gradient over the cross-section, 𝐸𝜃 and 𝑓0.2𝜃 variate accordingly [8][29]. As 

discussed previously, the fire resistance can be affected both negatively and favourably when comparing 

the actual parameters, against that of the average temperature or that of the maximum temperature 

[34][35][36][37]. The Eurocode [3] prescribes that 𝐸𝜃 and 𝑓0.2𝜃 should follow from the maximum 

temperature, to account for effects as restrained thermal bowing [22].  

Within Abaqus, a finite element (FE) package, different element types have to be used given the type 

of analysis [21][22] thus heat transfer bricks for thermal analysis. Either analysis may be performed 

with a different number of elements and nodes, depending on their ability to describe the behaviour of 

the member accurately. Therefore, some interpolation might be necessary to generate the input data for  

intermediate nodes [19].  

With FE package DIANA, [5] modelled the mechanical elements with eight node shell elements, type 

CQ40S and [21][22] also did so with reduced integration. Alternatively, [46][53] used elements of four 

node shells S4 in Abaqus.  Other examples include [15] which applied linear, quadratic or cubic two 

node beam elements based on Timoshenko beam theory, while [19] proposes the use of fully integrated, 

solid, quadratic elements C3D20 as these can capture the linear stress gradient over the cross-section 

due to pure bending.  

3.4 Aluminium section types 
Aluminium is a material that can be extruded, such sections in practice are often designed to fit multiple 

purposes. An example is an Y-profile for offshore flight decks, which integrates an installation piping 

trench in the section, see Figure 8. A more general example is that of a decking element. Herein a 

slender aluminium member is designed similar to a truss in width direction with a solid circumference 

lengthwise. This setup makes for effective slender decking element Figure 7.  

 
Figure 7 - Aluminium bridge decking [54] 

As the beam test is focussed entirely on pure bending, an 

interesting section would be an I-section. The material 

distribution to the flanges of such a section lends itself well to 

bending. Beyond I-profiles and decking elements, there is an 

extensive amount of research done into the phenomenon of 

local buckling of aluminium sections, a most common 

evaluated profile would be that of a rectangular hollow section 

composed out of thin sheets for specific research purposes 

[22][19][15][5].  

Noting that no premature failure of the fire test specimen is 

allowed, the section should not be subject to local buckling. 

Thus – following the Eurocode – the section class [55][56] of 

the both the steel and aluminium specimens should be limited 

to that of class 1 to 3, consequently designed slightly more 

compact [5]. Class distinction can be made by regarding the 

Figure 8 – Photograph Y-profile as made by 

Bayards B.V. with an integrated installation 

trench. 
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relative slenderness 𝜆𝑟𝑒𝑙 of the plates constituting the section, expressed as the square root between the 

plastic resistance 𝑁𝑝𝑙 over the critical resistance of the section 𝑁𝑐𝑟. This can be likened to the square 

root of the yield stress 𝑓𝑦 over Youngs modulus 𝐸, as expressed in equation (21). To fit the class criteria 

this 𝜆𝑟𝑒𝑙 should not be below the value of 0.4 for aluminium [56].  

 𝜆𝑟𝑒𝑙 = √
𝑁𝑝𝑙
𝑁𝑐𝑟

≅ √
𝑓𝑦

𝐸
 (21) 

The Eurocode assumes that the section class of any member does not vary from room temperature 

conditions [4][5].  However, considering the normalised values of the Young’s modulus and yield stress 

of steel, it can be observed that for steel the Young’s modulus degrades faster than the yield stress does 

[3]. Following the relation of the relative slenderness as expressed in (21), this would result in a higher 

value at elevated temperatures and thus classify the section differently, that is of a higher order.  

For aluminium, the normalised values for the Young’s modulus and the 0.2 percent proof stress prove 

contrary to the normalised value for 𝐸 and 𝑓𝑦 of steel. Herein the stress value drops more quickly than 

the Young’s modulus [4], resulting in more favourable ratio and thus a lower section class with higher 

temperatures. This phenomenon showcases that there is no need to design an aluminium member as 

that of class 1 to circumvent local buckling mechanisms, as the section becomes less susceptible at 

elevated temperatures [5].  
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4. FINITE ELEMENT THERMAL ANALYSIS 

4.1 Model description 
As discussed in Chapter 3 Literature study & theoretical background the material properties of steel, 

aluminium and the insulation is dependent on temperature. Temperature is in this case a transient 

variable. The dependency is at first glance assumed a one-way street. This implies that a thermal and 

mechanical analysis can be done in sequential order. However, as previously discussed, in experimental 

studies a steel beam fire test is a necessity because a steel beam shows significant sagging before failure. 

This means that the insulation can be damaged and the temperature of the steel member is affected. To 

determine whether this is a concern for aluminium members, it is necessary to perform an extra check. 

Should the strain of the loaded beam exceed a limit, coupled thermal-mechanical simulation is 

necessary. This limit is dependent on the bond between the metal member and the strain of the insulation 

and will be addressed in the mechanical analysis. 

The full FEM analysis can be separated into two main parts: (1) thermal analysis and (2) non-linear 

mechanical analysis. Consequently, a check is performed to see if the final time step N is reached and 

if the strain limit for the insulation is not exceeded. If this limit is exceeded, an alternative analysis (3) 

is proposed. These two steps are repeated one after the other for step n, wherein n stands for the iteration 

step between 0 and N, until n=N, after which the process is terminated. As the thermal analysis is 

transient, the iteration between 0 and N is expressed in time, and n is thus a multitude of the time step. 

 
Figure 9 – FEM model set up, pertaining a thermal and mechanical analysis within the ABAQUS/CAE environment. 

4.2 Thermal analysis 
Initially it is assumed that the strain limit is not reached. Furthermore, the fire input for the member is 

constant over the length, in Z-direction. These assumptions present an opportunity for simplification of 

the FEM model. The nodal temperatures in the thermal analysis are found by modelling a two-

dimensional (XY-field) deformable body subject to heat transfer. This is a possibility because the nodal 



25 

 

temperature would be constant in Z-direction, only differing in X and Y direction depending on fire 

exposure.  

Depending on the configuration, the metal member comes into contact with a floor system and the 

insulation. It is assumed that due to a lack of full contact between the surfaces, a thermal resistance 

between these elements exists. The value of this resistance between elements is set to be either 200 

W/m2K as discussed in Chapter 3 Literature study & theoretical background or set at unit value. This 

counts for all interactions between elements. Thermal contact can be simulated using surface to surface 

contact discretization. As the bodies do not move relative to each other, sliding can be formulated as 

being small, which is an approximation of the general contact master-slave algorithm and thus faster 

than finite sliding, which is just a formality. The metal member acts as the master surface and the 

insulation is the slave. Inaccuracies can occur due to the use of a coarse mesh, this will be further 

discussed in paragraph 4.2.1.3 Sensitivity analysis of mesh density. 

The material properties of steel, aluminium and the insulating ceramic fibre blanket, namely thermal 

conductivity, density and specific heat, are prescribed in chapter 3 Literature study & theoretical 

background. Additional constants and conditions are as stated in Table 1 and Table 2. The convection 

coefficients are the same as stated in NEN-EN 1991-1-2 for fire loading. The transient temperature of 

the member, insulation and flooring is determinant by the temperature dependent properties as 

calculated in the thermal analysis. Three different geometries are considered, that would be a square 

hollow section, a typical I-section and a decking member as specified in Table 3. These measures are 

taken such that the section classes are specified as non-slender, thus < class 4. These geometries are 

then analysed in three different situations, that of a column, a beam with a floor on top and an integrated 

floor beam. These situations will be discussed more in-depth in the following paragraphs. 

Table 1 – Temperature description of FEM model attributes. *in accordance to a surface covered with soot during a fire. 

Attribute Fire side Member  Insulation Floor Ambient 

Initial temperature [℃] 20 20 20 20 20 

Transient temperature FEM [℃] Eq. (4) Dependent Dependent Dependent 20 

Transient temperature EC [℃] Eq. (4) Eq. (6) N/A N/A 20 

Emissivity (𝜀𝑚) 1.0 0.7*[9][13] 0.7[2] 0.9[3] 1.0 

Table 2 – FEM model thermal constants. 

Attribute Value  Unit 

Total time (𝑇) 90  Minutes 

Step time (𝑡) 6 Seconds 

Boltzmann constant  5.67e-11 W/m2K 

Convection coefficient ambient (𝛼𝑐,𝑎𝑚𝑏𝑖𝑒𝑛𝑡) 4 W/m2K 

Convection coefficient fire side (𝛼𝑐,ℎ𝑜𝑡) 25 W/m2K 

Table 3 – Geometric specifications of cross-section, all measures are in mm unless otherwise specified. 

 RHS IPE Decking Insulation 

 Steel Aluminium Steel Aluminium Aluminium Fibre blanket 

H eight 200 200 200 200 60 - 

W idth 200 200 100 100 514 - 

t hickness 9 6 - - - - 

tf flange - - 8.5 9 4.0 - 

tw web - - 5.6 5 2.0 - 

tp  - - - - - 20 
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4.2.1 Column: a four-sided fire simulation 

 
Figure 10 – Geometry of Rectangular Hollow Section and IPE cross-section respectively, measurements as given in Table 3. 

Considering that in this four-sided fire simulation, the heat input is constant along the cross-section, 

shadow effects are disregarded for simplicity. Due to the constant heating from all sides and the high 

thermal conductivity of metals, the temperature distribution in the member is close to constant. 

Therefore it is possible to mesh these sections using two-dimensional 8-node heat transfer bricks. This 

computational simplification is supported in references [21][22]. An appropriate mesh size is discussed 

later.  

4.2.1.1 Validation 

Abaqus performs a transient heat transfer analysis with temperature dependent material properties 

following traditional Fourier’s law differential equation (3). In comparison to the Eurocode this should 

yield a more exact solution of the time-temperature curve of the aluminium and steel member. The 

Eurocode uses a simplified formula (6) to calculate the member temperature. The material properties of 

the insulation in this equation, are all dependent on the member temperature. This is opposite to the 

FEM analysis were the temperature in the insulation is calculated locally, dependent on local thermal 

properties.  

For the FEM simulation, insulation data is based on that of a ceramic fibre blanket [18]. To determine 

whether the simulation is representative, the resultant member temperatures are compared to the 

outcome found with the simplified equation (6) for several commercial insulation types. These 

commercial types have their material properties tied to the temperature of the member, not local values 

as would be for a FEM analysis. The ceramic fibre blanket was used for the finite element analysis. The 

specifications for the thermal conductivity and specific heat is supplied in Table 4. The density of the 

blanket insulation types is 96kg/m3.  
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Table 4 - Thermal conductivity and specific heat for several insulation types with the same density 96 kg/m3  

θ 

Denka 

Blanket[24] 

Marine 

blanket[25] 

Kaowool 

blanket[26] 

Ceramic fibre 

blanket[18] 

Fyre 

wrap[27] Coating[28] 

 EC EC EC FEM EC 350kg/m3 

0    0,033  0,05 

200  0,05 0,06 0,044 0,06 0,05 

260 0,05   0,052  0,05 

400  0,1 0,11 0,078 0,09 0,05 

538 0,11   0,116  0,05 

600  0,15 0,16 0,136 0,14 0,05 

800  0,21 0,23 0,216 0,2 0,05 

816 0,19   0,223  0,05 

1000  0,29 0,32 0,320 0,29 0,05 

1093 0,3   0,377  0,05 

1371 0,44     0,05 

𝑐𝑝 1130 1130 1130 820 1130 1100 

 
Figure 11 – Comparison of FEM simulation temperature results for cross-section with four-sided heating, with that of the 

simplified Eurocode equation for several insulation types. FEM temperatures versus EC found temperatures.  

As is evident in Figure 11, the deviation between the FEM data and that of EC is significant, more than 

20%. The cross-sections in the FEM analysis are heating at a faster rate than calculated according to 

the Eurocode. Given the material properties from reference [18] and the similarity in value to that of 

the commercial types, the fallacy of the FEM simulation lays with a discrepancy in the thermal 

conductivity and its temperature dependency. In specific, the temperature dependency of the thermal 

conductivity of the insulation is in relation to the member temperature as used in equation (6), instead 

of the true local temperature at that particular FEM calculation node, as it should be. 
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As the deviation in these results do not sufficiently validate the thermal analysis, a literary reference is 

modelled and the results compared for additional confirmation. To achieve this, the model geometry is 

set to be a IPE of H140x100x6x6 with a 20mm thick spray-on coating, see last column in Table 4. The 

steel specimen in [28] was freely set in a furnace, thus heated from all sides, and the furnace temperature 

followed that of equation (4). The steel thermal properties follow from NEN-EN 1993-1-2. In Figure 

12 the black line represents the temperature data in the current FEM simulation as in Figure 13, which 

follows experimental and FEM ANSYS model of [28] quite closely. As the FEM model was setup in 

the same manner as previously discussed, and observing that the black line follows a similar trend in 

Figure 12, no full validation is achieved, though a certain level of correctness is observed. It is assumed 

that the model itself is representative and fault lies with incorrect insulation properties. 

 
Figure 12 – Comparison of literature reference temperature data of an insulated steel IPE to that found in the ABAQUS FEM 

simulation. The result is the superimposed black line.  

 
Figure 13 – Temperature - Time curve of thermal FEM analysis following the setup of the literary reference. [28] 

After a thorough search, the necessary insulation properties were not found. To obtain more 

representative temperature data the temperatures are scaled to fit. This is achieved by dividing the 

thermal conductivity dataset by 1.5. In doing so, the temperature data for the IPE sections fits into the 

10% deviation marker, see Figure 14. All figures in this chapter, with the exception of this paragraph, 

have been computed with the adjusted thermal conductivity.  
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Figure 14 – Comparison of FEM simulation with adjusted thermal conductivity temperature results for cross-section with 

four-sided heating, with that of the simplified Eurocode equation for several insulation types. FEM temperatures versus EC 

found temperatures. 

4.2.1.2 Thermal gradient 

As is to be expected, the maximum occurring temperature in the I-section is halfway its height, in the 

centre of the web, see Figure 15. Any ‘zigzagging’ in this figure is due to the averaging of the 

temperature over the width of the cross-section at height y, which is only a post-processing plotting 

issue The minimum is found at the flange. This is the case for both aluminium and steel column sections, 

as well as for different contact resistances between insulation and metal in paragraph 4.2.1.4. The 

difference in slope of the thermal gradient over the height of the cross-section between aluminium and 

steel is due to the thermal properties, namely thermal conductivity and the product of specific heat and 

density. These properties are significantly larger for aluminium, reducing the slope, and thus having a 

more uniform thermal gradient. Figure 16 shows what the average temperature is over the cross-section 

and how the minimum and maximum occurring temperature deviate from the average. Note that the 

temperatures in the figure go beyond the melting temperature of the metals, this is because the FEM 

program does not consider such limitations during calculation. 



30 

 

 

Figure 15 – Temperature gradient over cross-section when taking the mean over the width at height y for a column at overall 

mean cross-section temperature of 300℃, tIPE,alu = 30min, tIPE,steel = 40min, tRHS,alu = 50min, tRHS,steel = 50min. 

 
Figure 16 – Minimum and maximum absolute temperature deviation from transient average temperature in cross-section with 

contact resistance at 200W/m2K between metal and insulation. Left the absolute deviation from the average, right are the 

errorbars. 
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4.2.1.3 Sensitivity analysis of mesh density 

For computational optimization a mesh density refinement study for the insulation is performed on the 

RHS section. The element size of the insulation mesh is ranged from 1mm (10%), 2mm (20%), 

4mm(40%) to 10 mm(100%). The temperature outcomes are all compared to that found with the finest 

mesh (10%) to determine the accuracy with a coarser mesh. The deviation is calculated by dividing the 

result found with a coarser mesh by that at 10%-mesh density and examine the percentile difference. 

While comparing these values, all other settings are kept constant, such as the mesh density of the 

member. 

As discussed, the metal member itself is compiled out of 8-node linear heat transfer bricks. The accuracy 

of this setup is evaluated by variating the mesh-density of the member between four different settings, 

namely 1, 2, 4 and 10 elements over thickness, respectively 5mm, 2.5mm, 1.25mm and 0.2mm. The 

resultant temperatures are compared by dividing them with the result found for 1 element over thickness 

(1-5mm). While comparing, all model settings are kept constant, such as the mesh density of the 

insulation. 

Table 5 – Percentile deviation of member temperature from normalised set. For the member mesh compared with values found 

with a mesh of 1 element or 5mm thickness (coarsest). For the insulation the values are compared to those found with the 

finest mesh, 10% or 1mm.   

 Member mesh Insulation mesh 

Aluminium 10 4 2 100% 40% 20% 

Average [%] 0,157 0,082 0,034 0,245 0,027 0,006 

Minimum [%]  0,279 0,026 0,012 0,238 0,026 0,006 

Maximum [%] 0,390 0,109 0,026 0,293 0,032 0,007 

Steel 10 4 2 100% 40% 20% 

Average [%] 0,473 0,228 0,081 2,771 0,083 0,013 

Minimum [%]  0,062 0,074 0,020 2,572 0,071 0,011 

Maximum [%] 1,410 0,347 0,085 3,570 0,189 0,030 

Except for the maximum temperature for a 10-element mesh density over the member and that at 100% 

(10mm) insulation mesh, the deviation is below a half percent. Given this result, the mesh density of 

the insulation is set at 20%, which would be defined as 4*tp/2t or as 5 elements over the thickness. For 

the mesh density of the member a mesh density of one-element is deemed sufficiently accurate in 

comparison the aforementioned references. A visual of the insulation mesh sizes can be observed in 

Figure 17. 

 
Figure 17 – Rectangular Hollow Section 200x200x9mm. From left to right insulation mesh at 10%, 20%, 40% and 100%. 

For the mesh density of the member, an additional consideration must be made. This data has to be 

implemented into the mechanical analysis. In this case, the translation is done by superimposing the 

nodal temperatures of the cross-sectional contour on the mechanical shell-model and repeating the 2D 

temperatures along the length of the shell element for all nodes. Subsequently, Abaqus assigns the 

temperature data to the mechanical integration points through linear interpolation with the cross-section. 

In this manner a thermal gradient can be obtained over the height of the cross-section and all integration 
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points in the mechanical analysis have a temperature value. To achieve this, the mesh size has to be the 

same between thermal and mechanical analysis as the element types differ. This point is addressed in 

the next chapter. 

4.2.1.4 Sensitivity analysis of contact definition 

As discussed before, contact between insulation and member is defined as contact through surface-to-

surface discretization between master and slave surface. At this interface, heat transfer occurs between 

the insulation and the member. The thermal property at this interface is not specified in theory or 

literature references. Thermal resistance between materials is dependent on surface smoothness and the 

pressure between surfaces. This property has been evaluated between concrete and steel and been 

approximated at 200W/m2K [23][24][32]. For simplicity sake, the thermal resistance at the interface 

can be taken at a unit value of 1. This would be an overestimation of the actual thermal resistance. To 

determine the effect of the thermal resistance, the unit value is compared to a situation where the 

interface with insulation is set to be 200W/m2K. From this calculation it is evident that the difference 

in member temperature, as compared for both heat transfer resistance values, increases with increasing 

temperature over a range of 20-700℃. The maximum absolute percentile difference is expressed in 

Table 6, defined as the member temperature found with 200W/m2K divided by the member temperature 

with unit value multiplied by a 100%. Hence a value closer to 0% means the member temperatures of 

the two cases are the same. The difference between the two thermal resistance values does not exceed 

1.5%, therefore the thermal resistance is generally set at 200W/m2K.  

Table 6 – Maximum percentile difference of member temperature with variating thermal resistance between surfaces. 

𝜽%-Deviation between 200W/m2K / unit Minimum [%] Maximum [%] Average [%] 

Column RHS Aluminium 1,175 1,181 1,176  
IPE Steel 1,426 1,267 1,376  
IPE Aluminium 1,281 1,258 1,280 

Beam facing RHS Aluminium 0,979 1,045 1,016 

3 sides fire IPE Steel 0,861 1,196 1,009  
IPE Aluminium 1,048 1,202 1,128 

Beam facing RHS Aluminium 0,788 0,830 0,806 

1 side fire IPE Steel 0,527 1,204 0,874  
IPE Aluminium 0,841 1,119 0,972 

4.2.2 Beam: a three-sided fire simulation 

In this case, the model is subject to three-sided heating. The geometry of the model is altered, as a 

concrete slab is simulated on top of the flange of the metal member and the insulation is adjusted to fit 

the remaining circumference, see Figure 18. For the cross-sections the same measures apply as in Table 

3. The mesh size is set as in the previous paragraph. The material properties are as described in chapter 

3 Literature study & theoretical background. Contact with the concrete parts is modelled with the 

aforementioned thermal resistance value of 200W/m2K. For the insulated cases contact resistance 

between floor-member-insulation is set at 200W/m2K.  
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Figure 18 – Geometry of beam with a concrete floor slab on the top flange and 3-sided heating. 

However, aluminium members are often used because of their light weight and slenderness attributes 

and a flooring system often shares these specifications. Such floors are not made of highly insulating 

concrete material, but more often consist of metal with a thin layer of concrete or other plate material 

to mechanically tie it together and fit comfort criteria [57].   

Examples of lightweight flooring would have a density below 350kg/m2 such as Slimline, IDES and 

Starframe systems [57]. Such systems are combinations between aired openings, insulating material, 

steel or aluminium sheets and beams, and a concrete layer. For simplicity, the properties of such a 

system is regarded as a composition of the mean value over the temperature range of the material 

property due to the percentile contribution of each material to the system. For the floor this results into 

the material properties as expressed in Table 7. Each material’s percentile contribution to the systems 

make-up is considered, as to calculate a weighted material property. These values are input for an 

alternative to that of the concrete flooring with the same geometrical setup. This is a very simplified 

static rendition for a floor, the evident differences in the material properties and thus the resulting 

member temperatures are significant enough to relay the effect of a different system. 
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Table 7 – Approximation of the material properties of a lightweight floor system as a combination of the mean value of the 

individual material following its percentile makeup.  

Mean values Percentile 𝝀 [W/mK] 𝝆 [kg/m3] 𝒄 [J/kgK] 

Air 10% 0,025 1,225 1006 

Concrete 15% 0,87047 2176 1045 

Aluminium 15% 207,325 2700 1005,5 

Insulation 60% 0,12 96 820 

Total 100% 31,30382 789,1225 900,175 

 
Figure 19 – Comparison of the average temperature of the aluminium member (either an RHS or IPE) with different floor 

types, on the X-axis a concrete floor system and on the Y-axis that of the lightweight floor system described in Table 7. 

As is depicted in Figure 18, the insulation does not encompass the floor for the insulated cases. For non-

insulated cross-sections it is apparent that heating of the member is practically identical for different 

floor systems, see the straight line in Figure 19. The shift however for a lightweight floor system with 

an insulated beam indicates, that for a higher value of the thermal conductivity of the floor, the 

temperature of the member is influenced. which is the situation for both insulated cases, and due to the 

higher thermal conductivity of the lightweight floor in comparison to the concrete floor, the metal 

member heats quicker. This effect is also evident when reviewing the minimum and maximum deviation 

from the average temperature of the member in the right errorbars of Figure 20 & Figure 21, which has 

a much larger range than in Figure 16. This is complemented by the fact that ambient conditions are 

applied on the non-heated side. Therefore, due to convection, a larger thermal gradient is possible. This 

is especially true for the steel members, which has a smaller 
𝑘

𝑐∗𝜌
 factor than aluminium, thus having a 

larger difference between minimum and maximum temperatures.  

What is most curious however, is that for the insulated cases – where only the member is insulated – 

the thermal gradient is thusly affected that the maximum temperature can occur at the top flange. 

Apparently in these cases, the floor heats much more quickly than the insulated member, therefore more 

heat is transferred through this way instead of from fire to insulation to member. This reveals a reversed 

thermal gradient, maximum at the ‘ambient’ side and minimum at the fire side in Figure 22 & Figure 

23. 
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Figure 20 – Transient mean temperature curves for the three sided heated beam and the minimum, maximum deviation from 

that temperature occurring in the cross-section. Left the absolute deviation from the average, right are the errorbars. From 

top to bottom: IPE with concrete floor, RHS with concrete floor.  
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Figure 21 – Transient mean temperature curves for the three sided heated beam and the maximum and minimum temperature 

deviation. From top to bottom: IPE with lightweight floor, RHS with lightweight floor. 
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Figure 22 – Temperature gradient over three sided heated IPE beam section with flooring on top for insulated (top) and 

uninsulated (bottom) case as in Figure 18. tuninsulated = 7min, tinsulated,concrete = 45min, tinsulated,lightweight = 20-30min. 
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Figure 23 – Temperature gradient over three sided heated RHS beam section with flooring on top for insulated (top) and 

uninsulated (bottom) case as in Figure 18. tuninsulated = 7min, tinsulated,concrete = 70min, tinsulated,lightweight = 20-30min. 

4.2.3 Integrated beam: a one-sided fire simulation 

Given that aluminium sections are often applied in tandem with lightweight floor systems where the 

structural height is minimised by having floor and beams in the same layer, an additional model setup 

is considered. An alternative model is that of the integrated beam wherein only the bottom part of the 

cross-section of both the IPE and RHS would be exposed to elevated temperatures. Contact with other 

elements is specified as having a thermal resistance equal to 200W/m2K, same as before. 

In this case it is assumed that a floor slab is placed on the bottom flange of the geometry. For an IPE 

section this can be achieved in a straightforward fashion. For the RHS, the section is slightly altered as 

to have external ledges as bottom flange for the slab to lay on. These ledges are 16mm in length on 

either side of the RHS and make the total width 232mm. Such a change on the geometry would be most 

peculiar when working with steel but for aluminium, extrusion makes this a feasible adjustment. The 

model is specified as visible in Figure 24.  

In this design there are several alternatives to consider. In Figure 24 an insulated cross-section with a 

concrete floor is visualized (variant 1), however in some cases similar sections would not be insulated 

(variant 2), and given that aluminium is a lightweight material a floor with the same attributes such as 

described Table 7 would be more appropriate (variant 3). 
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Exploring these variations reveals the effect that the floor system has on the heating of the member. 

Evidently a concrete floor is a capable insulator, which explains the relatively low aluminium member 

temperatures for the insulated case in comparison to that of the lightweight floor in Figure 25. This 

result is further supported by the relationships as sketched in Figure 26 & Figure 27. As expressed 

previously, the thermal gradient is in these cases even larger, Figure 28 & Figure 29. This fits with the 

amount of heated surface versus that with facing ambient convection and the respective thermal 

conductivity of the materials. 

 
Figure 24 – Geometry of model subjected to a one-sided fire load, total width of model with IPE is 800mm for RHS is 1000mm. 

 
Figure 25 – Member temperatures for an integrated beam subject with a floor slab, concrete versus a lightweight floor system. 
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Figure 26 – Transient mean temperature curves for a one sided heated beam and the minimum, maximum deviation from that 

temperature occurring in the cross-section. Left the absolute deviation from the average, right are the errorbars. From top to 

bottom: IPE with concrete floor, RHS with concrete floor. 
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Figure 27 – Transient mean temperature curves for a one-sided heated beam and the maximum and minimum temperature 

deviation. Left the absolute deviation from the average, right are the errorbars. From top to bottom: IPE with lightweight 

floor, RHS with lightweight floor.  
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Figure 28 – Temperature gradient over one side heated IPE beam section with flooring for insulated (top) and uninsulated 

(bottom) case as in Figure 24. tuninsulated,concrete =20min, tinsulated,concrete =90min, tuninsulated,lightweight =10min, tinsulated,lightweight 

=25min. 
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Figure 29 – Temperature gradient over one side heated RHS beam section with flooring  for insulated (top) and uninsulated 

(bottom) case as in Figure 24. tuninsulated,concrete = 10min, tinsulated,concrete = 90min, tuninsulated,lightweight = 15min, tinsulated,lightweight 

=25min. 

4.2.4 Alternative lightweight floor – sandwich panel 

At first glance, the lightweight floor description is indicative when working with less insulated slabs. 

However sandwich panels are comprised of layers of different stacked materials. To evaluate the effect 

of such a floor structure, an additional model is made, see Figure 30 with the material properties as 

described in Table 8. The resulting temperature shows a slightly reduced heating rate as compared to 

the earlier mentioned lightweight floor, as visible in Figure 31 too Figure 36. 

 

Figure 30 – Cross-sectional view of the three-sided beam and the integrated beam setup with alternative layered flooring. 
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Table 8 – Alternative lightweight floor setup. 

Material Layer  𝝀 [𝑾/𝒎𝑲] 𝝆 [𝒌𝒈/𝒎𝟑] 𝒄 [𝑱/𝒌𝒈𝑲] 

Aluminium 1 207 2700 1005 

Air & Aluminium 2 20.7 271 1005 

Concrete 3 0.8 2176 1045 

Insulation 4 0.12 96 820 

 

 

 

Figure 31 – Thermal gradient of an integrated beam with the alternative lightweight flooring. Time at 40 minutes. From top 

to bottom an IPE profile and an RHS profile. 
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Figure 32 – Thermal gradient of a beam with an alternative lightweight floor for a beam facing three sided fire. Time at 40 

minutes. From top to bottom an IPE profile and an RHS profiles. 

 
Figure 33 – Temperature time curve for an integrated IPE beam with an alternate lightweight floor. 
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Figure 34 – Temperature-time curve for an integrated RHS beam with an alternative lightweight floor. 

 
Figure 35 – Temperature time curve for an IPE heated from three sides with an alternate lightweight floor. 

 
Figure 36 – Temperature time curve for a RHS beam heated from 3 sides with an alternate lightweight floor. 

4.2.5 Intumescent paint  

Instead of hardboard, blankets or other fibrous materials, metals are increasingly covered with 

intumescent paints for fire protection. The difficulty in modelling such a material is that the thickness 

of the coating has a thermal response. The material properties are dependent both on the thickness and 

temperature of the coating. The most accurate methodology to describe the behaviour would require a 

coupled transient heat transfer analyses. After the initial thermal calculation, the geometry must be 

adjusted, hence requiring remeshing and interpolation of the nodal temperatures from the previous 
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calculation step. This process must be repeated every increment until the final time step is reached. This 

process could be simplified by considering the temperature range at which the foaming occurs and only 

performing the coupled analysis for this temperature frame. In [58] this range is expressed as 120-240℃ 

of the steel beam, for which before and after the thickness could be assumed constant and stable. 

Alternatively, which would fit with the previous thermal analysis setup, the thickness of the intumescent 

coating can be modelled as constant at maximum expansion but adjusting the thermal properties 

The numerical setup in [58] produces data which fits with the experimental results as described in the 

paper. The commercial water-based intumescent coating is described with constant values 𝑐𝑝 =

1200 𝐽 𝑘𝑔𝐾⁄  ;  𝜌𝑝 = 200 𝑘𝑔 𝑚3⁄  ;  𝜀𝑚 = 0.95 ; with an initial thickness of 𝑡𝑝 = 1500 𝜇𝑚, and the 

thermal conductivity calculated following equation (22).  

 𝜆𝑝 = 𝑡𝑝 ∗
𝑉

𝐴𝑝
∗ 𝑐𝑚,𝜃 ∗ 𝜌𝑚 ∗

1

(𝜃𝑓𝑖𝑟𝑒,𝑡 − 𝜃𝑚,𝑡) ∗ Δ𝑡
∗ Δ𝜃𝑚,𝑡 (22) 

Using the alternative approach, the thickness of the coating is set at a constant value, which would be 

at a maximum expansion of 45mm. Furthermore, the relation between temperature and thermal 

conductivity is assumed to be linear. The thermal conductivity can be approximated by considering the 

values found in [58] for the thickness of the coating, corresponding to temperature and thermal 

conductivity at 5 distinct points – start, coating activation, reaching minimal thermal conductivity, 

coating reaches maximum expansion and the end point. Considering the dependencies in equation (22), 

the temperature dependent thermal conductivity for the coating in combination with an aluminium 

member is approximated following 𝜆𝑝,𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚 = 𝜆𝑝,𝑠𝑡𝑒𝑒𝑙 ∗
(
𝑉

𝐴𝑝
)
𝑠𝑡𝑒𝑒𝑙

(
𝑉

𝐴𝑝
)
𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚

∗
𝑐𝜃,𝑠𝑡𝑒𝑒𝑙

𝑐𝜃,𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚
∗

𝜌𝑠𝑡𝑒𝑒𝑙

𝜌𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚
. 

The last term in (22) is neglected, as the difference between steel and aluminium in this regard would 

be relatively small in comparison to the aforementioned terms. This conclusion can be drawn from the 

earlier found temperature curves as the variables in the last term are either the same or within the same 

order of magnitude between the materials. Given all these considerations, the equivalent thermal 

conductivity in relation to temperature is as described in Figure 37. 

 

Figure 37 – Equivalent thermal conductivity of intumescent paint with constant thickness for different model descriptions, 

namely a section heated from all sides (column), three sides (beam3) or one side (beam1) for both aluminium and steel.  
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Using these values for the insulated cases as discussed before reveals that the thermal response in time 

slowed significantly after activation has been reached, see Figure 38 too Figure 42. The thermal gradient 

over the cross section reached after 40 minutes is however, very similar to earlier results, see Figure 43 

too Figure 46. In these models the floor is as discussed in 4.2.2. The seemingly inconsistent temperature 

deviation in the first 150℃ in Figure 43 seems to be due to the rapidly decreasing thermal conductivity 

of the insulation in the first stage of the calculation process. The model needs a small amount of time 

to reach stable conditions. However the  fluctuations are slight (< 5℃) and thus ignored.  

 
Figure 38 – Temperature time curve for an integrated IPE beam insulated with intumescent paint. 

 

Figure 39 – Temperature time curve for an integrated RHS beam insulated with intumescent paint. 

 
Figure 40 – Temperature time curve for a IPE beam insulated with intumescent paint facing a fire from three sides. 
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Figure 41 – Temperature time curve for a RHS beam insulated with intumescent paint facing a fire from three sides. 

 
Figure 42 – Temperature time curve for a column insulated with intumescent paint, fire from all sides.. 

 

Figure 43 – Thermal gradient for an integrated IPE beam covered with intumescent paint at t=40 minutes 
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Figure 44 – Thermal gradient of an IPE beam covered with intumescent paint with fire from three sides at t=40min. 

 
Figure 45 – Thermal gradient of a RHS beam covered with intumescent paint with fire from three sides at t=40min. 

 
Figure 46 – Thermal gradient of an integrated RHS beam covered  with intumescent paint at t=40min. 
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5. MECHANICAL ANALYSIS 
As expressed in the previous chapter, there are three different scenarios to evaluate, that of a 1metre 

long column, and a 3metre beam facing a three-sided fire (Figure 18)  and facing a one-sided fire 

(integrated beam Figure 24). Given the different loading conditions, thermal gradients and other not yet 

considered mechanisms, the model consists of a full 3D model. As the thermal gradient in thickness 

direction of flanges and web is practically nil, it is possible to work with shell elements. In the FEM 

environment this means that the 3D cross-section can be comprised out of homogenous shell planes, 

specified at the middle nodes with a set thickness, see Table 3.  

In the thermal analysis it was possible to model 2D as the heat input over the length of the section is 

constant. Due to this fact, the temperature data has to be imposed over the length – z-axis – of the cross-

section. To achieve this correctly, Abaqus has two options, namely direct interpolation between nodes 

when working with similar element types but a different mesh – for example a coarse and fine mesh – 

or midside node capability. As the elements between the two analysis differ – 2D solids versus 3D shells 

– only the midside node capability is an option, which requires the element size of the mesh between 

the two models to be identical. The temperatures of these central nodes in the mechanical shell elements, 

which is modelled following the central lines of the cross-section, are based on the temperatures from 

the corner nodes of the heat transfer elements. Using the temperatures of the corner nodes of the 

elements of the thermal analysis, Abaqus interpolates the midside node temperatures so that all nodes 

have temperature values assigned, using first order interpolation.  

It is assumed that the thermal and mechanical analysis can be performed sequentially, see Figure 9. The 

mechanical analysis iterates over the temperature frames. Within one temperature frame, a non-linear 

mechanical analysis can be performed. After convergence, the analysis is restarted for the next 

temperature frame, building on the strain, stresses and displacements of the previous step. As the 

thermal analysis is of transient nature, the mechanical analysis comprises a transient non-linear analysis 

due to the temperature depenedent material properties and possible large deflections. The output of the 

mechanical analysis consists of (true von Mises) stress and (true logarithmic and plastic) strain values 

at integration points, and coordinates, rotations, displacements at nodes, all in XYZ-plane. 

5.1 Strain relation 
Stress-strain relations at elevated temperatures are best presented through transient state experiments 

instead of steady state test. For steel, the data in EC3 is based on transient tests for which a determining 

bi-linear relation is observed, therefore the stress-strain relations can be straightforwardly modelled. 

Aluminium however, has a distinct non-linear stress-strain relation. This is also attributed to the early 

onset of creep. Creep strain can be accounted for implicitly by altering the stress-strain relation, as is 

done in [20][5] for alloy 6060-T66. Or explicitly by accounting for primary, secondary (and tertiary) 

creep as proposed in the Dorn-Harmathy method [16][9]. 

5.1.1 Implicit stress-strain relation 

In [5] the stress-strain relation is modelled taking creep implicitly into account, for which the 

temperature rate and stress is assumed constant. However, these assumptions are not principally valid. 

As can be observed in the figures Figure 16, Figure 20, Figure 21, Figure 26 and Figure 27, the 

temperature does not increase in a linear fashion necessarily. In addition, restrained movement of the 

specimen – for example boundary conditions restraining thermal expansion – can induce additional 

stresses to the mechanical loading. In Figure 47, the stress and strain relations at elevated temperatures 

taking creep implicitly into account following the Ramberg-Osgood equation is plotted. 
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Figure 47 – The altered stress-strain curves for left steel grade Fe E24 [59] (similar to S235) and right aluminium alloy 6060-

T66 with creep implicitly incorporated.  

5.2 Structural model 
In EN 13381 the fire test for column specimens is fairly straightforward. Therefore, the structural model 

for both IPE and RHS section can be specified as unloaded, 1 metre in length and fully restrained at one 

edge. For beams however, the setup is quite different considering loading, boundary conditions and 

lateral support.  

The lateral support for both the RHS and IPE at bottom and top edge is specified to prevent out-of-

plane displacement and focus on pure bending behaviour. Generally the beam is setup as a simply 

supported beam 3 metres in length, one edge supported with a roller and the other end a hinge. There 

are three different edge faces at which the support can be specified, that would be the (1) end face (all 

flanges and web),  (2) top flange or the (3) bottom flange.  

For loading, there is a difference in weight between the lightweight and concrete floor. In addition, the 

load face between the 3-sided beam and the integrated beam is different. As the 3-sided beam has the 

floor on the top edge, this is also where the load is transferred. However, for the integrated beam the 

load is introduced at both the bottom flange as the top flange. The loads are as described in Table 9. For 

the 3-sided beam this is situated at the top flange of the beam, while for the integrated beam the load is 

imposed by ¾ on the bottom flange and ¼ on the top edge, see Figure 48. 

Table 9 – Total load on the cross-section in the FEM model, equally distributed on the contact surface at T=0min. 

Floor types Load [kN] Utilization steel [-] Utilization aluminium [-] 

Concrete 49.5 0.43 0.48 

Lightweight 36 0.31 0.35 
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Figure 48 – Structural model for beam models, for both integrated (bottom) and beam facing three-sided heating in case of 

an evenly distributed load. 

In conjunction, for the four point bending test a separate loading scenario is described as in Figure 49. 

The distribution over top and bottom flanges is as described before, in case of the integrated beam the 

bottom flange supports ¾ of the load. 

 
Figure 49 – Structural model for beam facing 3 sided heating (top) and integrated/1-sided heating (bottom) in case of a four 

point bending test setup. 

5.3 Model limits 
To get a full overview of the mechanical model to judge and validate, the output includes stress and 

strain values at integration points of the shell, and rotations and displacements at mesh nodes. This is 

done at every time step n for in total 90 simulated minutes to ensure sufficiently high enough 

temperature values (>300℃) are reached despite the insulation. After the initial thermal analysis, the 90 

minute mark could be assessed to fit with the failure temperature as expressed in Chapter 3.  

Alternatively or in tandem to the critical temperature, failure of the metal can be defined following the 

deflection limits in Chapter 3 results in a limiting strain of 3.75‰ and a strain rate below 1.7 𝑑𝜀/𝑑𝑡. 
Additionally, to determine whether the insulation is not damaged before the aforementioned limits, a 

second limiting strain value is proposed. For intumescent paint used on a steel structure, the strain at 

which the paint layer is damaged has been observed to be 1.3‰ [58] additional strain after the coating 

has fully expanded, that would be strain at 250 à 300℃.  
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5.4 Validation mechanical model 

5.4.1 Column 

Given that the column models are unloaded, the only strain phenomenon to which the model is subjected 

would be thermal expansion. Contrary to the beam models, the displacement must be viewed in 

lengthwise direction of the geometry, Z-direction. Considering the relation for the thermal expansion 

as described in paragraph 3.3.2.2 it is possible to validate the numerically found displacement with that 

theoretically found using equations (16) and (17). For Abaqus, the thermal expansion coefficient is 

expressed by dividing the thermal strain with the temperature minus the reference temperature 𝛼𝐿,𝑖 =

𝜀𝑡ℎ,𝑖 /(𝜃𝑖 − 𝜃0). The reference temperature is used to correct the value because it is assumed that at 

initial conditions the expansion is zero, that would be at 𝜃0 = 20℃. The difference between the thermal 

expansion coefficient in FEM and theory is because the theoretical value was calculated assuming a 

linear increase in temperature instead of the true value. The resultant coefficient can be observed in 

Figure 50, in addition to the displacement calculated by hand for comparison and the Abaqus result. 

The maximum temperature in the cross-section is used for calculation. As is evident, the displacement 

between the models is practically identical and therefore sufficiently validated. Though note that 

Abaqus expresses true stresses and strains. 

 
Figure 50 – Thermal expansion coefficient and corresponding theoretical displacement in comparison to the lengthening of 

the columns found with Abaqus with maximum temperature. 

5.4.2 Beam 

The beams are loaded in bending – both the integrated beam and the 3-sided beam – and have a thermal 

gradient over the cross-sectional height due to the non-uniform heating conditions. Therefore the beam 

exhibits elasto-plastic behaviour in addition to creep and thermal strain, see equation (15). Thermal 

strain is a combination of thermal elongation and thermal bowing which act in orthogonal directions. 

Creep strains have been taken implicitly into account by adjusting the stress-strain curves. Presumably, 

the determining strain and displacement occurs at midspan in the hottest flange. To ascertain this the 

values at the centroid and at the centres of both flanges is inspected.  

The total strain in length direction – identified as Z-axis or S11 in Abaqus for this model – following 

from equation (15), the total strain can be approximated with equation (23) and the displacement at 

midspan as equation (24). Note that the temperature difference in this case is taken over the height of 

the cross-section. The strain hardening factor 𝑛 is determined by dividing the proof stress by 10 [15].  

Given the orientation of the model, the maximum strain occurs in length direction (Z-axis) and the 

maximum displacement happens orthogonally in the Y-direction at midspan.  
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𝜀𝑡𝑜𝑡𝑎𝑙 = (
𝜎

𝐸𝜃
+ 0.002(

𝜎

𝑓0.2;𝜃
)

𝑛

)
𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

+ (𝛼𝐿,𝜃
1
4⁄ Δ𝑇 + 𝛼𝐿,𝜃)

𝑡ℎ𝑒𝑟𝑚𝑎𝑙
 (23) 

𝐷𝑚𝑖𝑑𝑠𝑝𝑎𝑛 = (
5

384

𝑞𝐿4

𝐸𝜃𝐼
)
𝑒𝑙𝑎𝑠𝑡𝑖𝑐

+ (
𝛼𝐿,𝜃Δ𝑇𝐿

2

8ℎ
)
𝑡ℎ𝑒𝑟𝑚𝑎𝑙

+ 𝐷𝑝𝑙𝑎𝑠𝑡𝑖𝑐 (24) 

The variables in (23)&(24) are as in Figure 47 and Figure 50, which are dependent on the constant 

cross-sectional temperature as calculated in (6). The thermal gradient Δ𝑇 follows from the previous 

thermal analysis, Figure 20. The load for validation is 20N/mm for steel and for aluminium. Given the 

different geometry, the loading factor with this load is approximately 
𝜎

𝑓0.2,𝜃
=

1

2
 at 𝑇 = 20℃ for both. 

To determine whether both mechanical and thermal effects for strain and displacement are implemented 

correctly  three simulations were run, (1) that with only thermal expansion and no loading, (2) only 

loaded with no thermal expansion and with (3) both active. The results of all three is evaluated at 

midspan at 3 locations, middle of the web, at the centre of the top flange which is facing the ambient 

side, and the centre of the bottom flange which is heated. Note that all deflection downward, as in 

towards the fire side, is taken positive while toward the ambient side is negative.  

 
Figure 51 – Thermal expansion at midspan for an uninsulated IPE cross-section for both steel and aluminium, considering 

different cross-sectional locations: centre bottom flange, middle of web, centre of top (ambient) flange. Note that the result for 

middle and top coincide.  

With the thermal gradient as in Figure 22 the result of the model with only thermal expansion results in  

Figure 51. The irregularity for steel at circa 700℃ is due to the fact that the thermal expansion is 

constant for a range. The fact that the relation is representative of a concave parabola follows form the 

fact that the thermal gradient over the cross-section reduces with higher temperatures. Thermal 

expansion can continue until the melting temperature has been reached. Even though the thermal 

gradient in aluminium is lower – as expected given its higher thermal conductivity – the thermal 

expansion is higher, given that the thermal expansion is roughly twice as large. It is evident that the 

trend in the data is similar between FEM and theory, even if the percentile difference between the values 

can amount to 25%. The difference is attributed to the effect of the thermal gradient, which in the 

theoretical model is straightforwardly taken as the minimum and maximum temperature occurring in 

the cross-section. However in the FEM analysis, it is clear that the thermal gradient is not linear over 

the cross-section and the results plotted are the actual deflection at midspan with the corresponding 

local temperature. With this explanation, the implementation of the thermal expansion is assumed to be 

correct. 
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Figure 52 – Deflection for uninsulated IPE section with thermal expansion (1), for insulated IPE with no thermal expansion 

only loading (2), and deflection for an insulated IPE section with both thermal expansion and loading (3). 

In Figure 52 the deflection for all three scenario’s is plotted. The green line represents the full analysis, 

yellow that with only loading and blue with only expansion as in Figure 51. As the theoretical 

expression of the deflection due to elasto-plastic behaviour is only expressed for elastic behaviour, the 

vertical dash-dotted lines represent the asymptotes at which the stress values in the FEM model exceed 

the proofstress and ultimate stress. The fact that elastic deflection does not start at zero is due to the 

initial deflection at load introduction. In the initial elastic range, the FEM and theoretical results overlap. 

For steel it is evident that beyond the 205℃ the model starts experiencing plastic deformation which 

results in approaching the asymptote as expected. Note that these values are evaluated with the 

temperature at the centre of the bottom node, which exhibits the most extreme results. Except for the 

thermal bowing, the theoretical results are calculated following the temperature development as in EN 

1993-1-2 and EN 1999-1-2. The main difference therefore is that the temperature over the cross-section 

is assumed constant while this is not the case in the FEM analysis. The result of an underestimation of 

the deflection before failure fits with earlier found results in literature [5][8][19]. 

 
Figure 53 – Thermal strain for an uninsulated IPE section exposed to fire at three sides for both steel and aluminium, 

considering different cross-sectional locations: centre bottom flange, middle of web, centre of top (ambient) flange at midspan. 
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The thermal strain and its variation over the height of the beam causes thermal elongation and thermal 

bowing. For thermal strain, the same thermal gradient issue exists as with deflection. The temperature 

is not linearly distributed over the cross-sectional. Hence the difference between the different evaluation 

points at top, bottom and middle of the cross-section in Figure 53. The difference in theoretical value 

and that at top and middle nodes is due to that of the thermal gradient, which in the theory is taken as 

the minimum and maximum temperature occurring in the cross-section. While the temperature against 

which the values for top and middle are plotted are their actual local temperatures. The relation between 

temperature and thermal strain seems relatively linear, fitting with the thermal expansion coefficient.  

 
Figure 54 - Mechanical strain of an insulated IPE cross-section exposed to fire at three sides for both steel and aluminium, 

considering different cross-sectional locations: centre bottom flange, middle of web, centre of top (ambient) flange. 

For the mechanical strain the Ramberg-Osgood equation is used. Given that the load is constant, only 

the thermal dependent variables of Young’s modulus and proofstress are determining factors. The result 

of the theoretical value follows the asymptote of the ultimate stress. Given the cut-off of the red-line in 

Figure 54, it is evident that yield happens sooner in the centre of bottom flange. The apparent asymptotes 

that reached in Figure 54 agree with the ultimate yield criteria as in Figure 53. The difference between 

the theory and the FEM is due to the temperature, as the theoretical results are calculated following the 

temperature development in EN 1993-1-2 and EN 1999-1-2, see 3.2.3. In addition to this correction, 

the theoretical strain for aluminium showcases an earlier more gradual curve because of the smooth 

approximation of the proofstress at elevated temperatures as in Figure 47.  

In the FEM analysis Abaqus does not explicitly consider the effect of melting as these limits are not 

provided and approximates any necessary material properties through linear extrapolation when beyond 

the given scope. Note that simply taking the maximum values for strain and deflection which occur in 

the beam does not work, as locally the yield criteria can be met due to local plasticity elsewhere to 

midspan. This is especially a concern for steel as the Young’s modulus degrades faster than the yield 

stress does [3]. Area’s which are susceptible to this include At elevated temperatures it is therefore more 

susceptible to local yielding. The opposite is true for aluminium. 

Given the aforementioned observations, the result of the thermal expansion and mechanical part 

separately and combined show relatively accurate results for deflection, coinciding with theory in such 

a way that it can be initially assumed that the model is accurate. However, in further research, the 

preference for validation lies with an additional simulation model following an actual fire test and 

comparing the results, and perhaps, simulating a copy of a benchmarked literature reference. 
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6. RESULTS 
While considering the results in the coming figures, the deformed shapes have been plotted against their 

original shape (red outline) with a scale factor of 3 at the last converged step. For the columns, thermal 

elongation is taken as positive while shrinkage is negative value. Beyond this, for beams deflection 

towards the fire side is deemed positive, and toward the ambient side is negative. 

6.1 Column 
The uninsulated sections were relatively straightforward to develop. However as can be observed from 

the amount of steps completed with the insulated section, see Table 10, modelling insulation proved 

much more troublesome. As of yet, it is unclear why these problems were unable to converge. 

Evaluation of exaggerated results within the 16 steps reveal no clear cause or effect, as the results are 

consequently equal to zero and the temperature change does not move past ~5.0 ∗ 10−4 ℃. 

Convergence is not achieved either when incurring a minimal pressure load to the column head, or when 

describing a maximum deflection, or under different support conditions. The model that did succeed 

however, follows the same trends as where described in the validation 5.4.1 and forms a bases to 

proceed with to at least form a preliminary judgement for this thesis. 

Both steel insulated models were unable to run. However, given that similar experiments and models 

have been thoroughly tested and previously established, the temperature relation to strain for the 

insulated case can be extrapolated from the uninsulated case for comparison to the beam models. This 

approach can only be taken because the result of similar analysis has been well established in the past 

and the conclusion that beams exhibit significant sagging before failure in comparison to columns is a 

confirmed phenomenon and the reason for the fire test setup as previously discussed with both column 

and beam tests. 

The FEM model for columns is an unloaded situation with one end fully clamped. Therefore only 

thermal expansion in the lengthwise direction is subject of discussion in this case. Due to the fact that 

one end is fully clamped, peak stresses can occur at this support, as seen in Figure 55. However, due to 

the setup these can be neglected. Table 10 accompanies Figure 55.  

The overall temperature development in the cross-section, the second plot in Figure 55, shows a 

consistent temperature development with a minimal deviation. This is as expected given that the section 

is heated evenly from all sides. Within the 90 minute timeframe, the whole aluminium section achieves 

melting temperature, therefore the data is capped at a temperature of 500℃ which is at approximately 

45 minutes for the insulated section and less than 10 minutes for the uninsulated sections. The dip in 

the temperature development of steel at ~20 minutes is due to a shift in the thermal parameters as the 

specific heat reaches an asymptote as it is a rational function (1/x type)  at this temperature and the 

thermal conductivity switches from a linear description to constant. 

Given that the column models are unloaded, the strain result follows directly from the approximation 

of thermal elongation as established in the validation of section 5.4. As a result of the temperature 

dependency of the Young’s modulus and proofstress, the strain and deflection curves strongly resemble 

the shape of the temperature curve. A direct effect of there being no thermal gradient. 

Modelling up until the melting temperature of aluminium reveals that the FEM deflection result directly 

matches with the deflection and deflection rate limit as prescribed in EN 1363 [6][13].  
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Table 10 – Legend overview for Figure 55 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Minutes  Legend Model Minutes  Legend 

Aluminium IPE uninsulated 90 Pink Steel IPE uninsulated 90 Green 

Aluminium IPE insulated 90 Grey Steel IPE insulated 1.6 Red 

Aluminium RHS uninsulated 90 Brown Steel RHS uninsulated 90 Blue 

Aluminium RHS insulated 1.6 Purple Steel RHS insulated 1.6 Yellow 

 
Figure 55 – Results for the full analysis of column sections, showcasing stress, strain, deflection, temperature and the deformed 

shape, see D.1  Columns for larger images of the deformed shapes. 
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6.2 Beam: three sided fire 

6.2.1 Evenly distributed load 

Figure 57 shows some unexpected results considering the stress and deflection of the sections with the 

lightweight floor element. The reduction in the deflection of the RHS with the lightweight floor seems 

to coincide with that of a significant reduction, or convergence of the temperature values, reducing the 

thermal gradient. For this case, the combination with the lightweight floor, which has a higher thermal 

conductivity than concrete, causes the insulated cross-section to heat more quickly through contact with 

the floor opposed to directly from the fire through the insulation. The thermal gradient is therefore 

inverted, having the highest temperature at the top instead of the bottom which faces the fire, see. 

Subsequently thermal bowing causes an upward deflection before elastic deflection becomes dominant. 

Apparently, thermal bowing at this stage is determining for the deflection of this scenario. There is 

therefore a shift from ‘negative upward bending’ to positive bending toward the fire. 

 

Figure 56 – Beam facing fire from three sides with a lightweight floor, steel IPE section, having an inverted temperature 

gradient, top images show thermal gradient in which hottest temperature is red and blue is colder. Left is the situation at 30 

minutes and right at end 60 minutes. Bottom two images are the magnitude of the deflection in Y direction on the deformed 

shape, maximum deflection at midspan.  

The steel RHS section with the concrete floor seems to not fail within the given time limit and would 

require a revaluation. However, given the data in the figure, there are no unexpected deviations for this 

case. The deflection can be observed to steadily increase as would be expected. For the green line, the 

steel IPE section with a concrete floor, the stress, strain and deflection values all fit with within the 

expected range. Deflection steadily increases until failure is achieved and a rapid increase is observed.  

In all cases it appears that at temperatures exceeding  400℃, the behaviour of steel seems to change 

most, which fits with the fact that the yield stress starts to decrease at this point. The proportional stress 

at this stage would be at approximately a fourth of its original value, which would be about equal to the 

imposed stress on the sections. Therefore, plastic behaviour occurs from this point on. 
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Table 11 – Legend overview for Figure 57 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Minutes Legend Model Minutes Legend 

Steel IPE insulated 

concrete floor 

79 Green Steel RHS insulated  

concrete floor 

90 Blue 

Steel IPE insulated 

lightweight floor  

59 Red Steel RHS insulated 

lightweight floor 

90 Yellow 

 
Figure 57 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, steel insulated sections, showcasing 

stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of 

the deformed shapes. 

As is to be expected with uninsulated section, the thermal gradient is lower and the critical values are 

achieved within a short time period. Within 10 to 15 minutes the deflection of the beams already reaches 

limit values. This corresponds with the peaks found in the stress curve which shows a quick cutoff or 

drop after reaching yield. The dib before this point seems to be due to a redistribution of the stress 

within the cross-section when the beam roller support appears to yield, a by-product of local peak 

stresses at the support.  
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Table 12 – Legend overview for Figure 58 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE concrete floor 41 Pink Steel IPE concrete floor 96 Green 

Aluminium IPE lightweight floor 66 Grey Steel IPE lightweight 111 Red 

Aluminium RHS lightweight floor 111 Brown Steel RHS concrete 151 Blue 

Aluminium RHS concrete floor 111 Purple Steel RHS lightweight 176 Yellow 

 
Figure 58 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, uninsulated sections, showcasing 

stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of 

the deformed shapes. 

The cut-off temperature for aluminium is 500℃ after which the material properties are no longer of 

any mechanical magnitude. Apparently the case of an RHS with a concrete floor does not reach 

critical state. The other scenario’s however do. For both the IPE sections, the point at which failure 

occurs is quite evident, clear as the sharp point/dip in the stress value where the proofstress is 

exceeded. The sharp turn of the strain for the IPE with the lightweight floor at t=20 minutes seems to 

be a sharp switch from reaching the proofstress to reaching the ultimate stress of the section. In 

comparison to the steel results, the thermal gradient is much lower. This is as expected given the 

larger thermal conductivity of aluminium.  

As with the previous Steel IPE lightweight cross-section, the thermal gradient is inverted for the 

aluminium RHS cross-section with the lightweight floor. Having the highest temperature at the top 
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instead of the bottom which faces the fire. Subsequently thermal bowing causes an upward deflection 

before elastic deflection becomes dominant. Apparently, thermal bowing at this stage 17-35minutes is 

determining for the deflection of this scenario.  

Table 13 – Legend overview for Figure 59 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE concrete 

insulated  

416 Green Aluminium RHS concrete 

insulated 

901 Blue 

Aluminium IPE lightweight 

insulated  

336 Red Aluminium RHS lightweight 

insulated 

546 Yellow 

 
Figure 59 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, aluminium insulated sections, 

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images 

of the deformed shape. 

6.2.2 Four point bending test 

A recurring issue with the four point bending test is that local plasticity around the introduction of the 

load and support occurs, which can cause the analysis to ‘fail’ prematurely. This problem was initially 

addressed with the introduction of a rigid area at the partition at which the load is applied. Apparently, 
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this was not a severe enough action to achieve the intended result. With the data that was acquired 

however, it can be observed that heating happens much more quickly as opposed to an insulated section.  

The endpoints of the stress also fit with that of the proportionality stress and then ultimate stress, and 

the proofstress for respectively steel and aluminium. The stress, strain and deflection results also line 

up, finding their extreme when expected. What is also clear is the difference between steel and 

aluminium. The thermal gradient for aluminium is smaller, and the aluminium IPE with lightweight 

floor fails much earlier than the other scenario’s.  

The most stress inconsistencies seem to occur with a RHS section. Such section do show a higher 

moment of inertia than the prescribed IPE sections. Therefore it does fit that the stress with these 

sections is lower in comparison. Failure is thus at a later time. 

Table 14 – Legend overview for Figure 58 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE lightweight 36 Pink Steel IPE concrete 41 Green 

Aluminium RHS concrete 11 Brown Steel IPE lightweight 91 Red 

Aluminium RHS lightweight 111 Purple Steel RHS concrete 111 Blue 

   Steel RHS lightweight 136 Yellow 

 
Figure 60  – Results for the full analysis of 3-sided beam in a four point bending test, uninsulated sections, showcasing stress, 

strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of the 

deformed shapes. 
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The effect of the lightweight floor in this case is quite clear, Figure 61. Given the that the lightweight 

floor was oversimplified and therefore has a higher thermal conductivity. The aluminium cross-section 

can therefore absorb a lot more heat through this floor system than it would with concrete. Therefore 

both the RHS and IPE section with the lightweight floor reach the proofstress about twice to thrice as 

fast as that with a concrete floor. The same behaviour can be observed in Figure 62 for steel in 

combination with a lightweight floor. Even though the yield stress seems to have been exceeded in these 

sections, the deformed shape does not seem to support this. Displaying similar thermal expansion 

reminiscent of the original columns. The strain and deflection values seem to incorporate mechanical 

and thermal behaviour until proofstress has been reached, and then switch to only thermal expansion. 

Presumably an effect of the sudden drop of the stress to practically zero while the analysis continues. 

In this case, the result beyond the forty minute mark is therefore deemed unlikely.  

Table 15 – Legend overview for Figure 61 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE concrete 

insulated  

901 Green Aluminium RHS concrete 

insulated 

776 Blue 

Aluminium IPE lightweight 

insulated  

901 Red Aluminium RHS lightweight 

insulated 

511 Yellow 

 
Figure 61 – Results for the full analysis of 3-sided beam in a four point bending test, aluminium insulated sections, showcasing 

stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending test for larger images of the 

deformed shape. 
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Table 16 – Legend overview for Figure 62 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Steel IPE concrete insulated  901 Green Steel RHS concrete insulated 901 Blue 

Steel IPE lightweight 

insulated  

901 Red Steel RHS lightweight 

insulated 

816 Yellow 

 
Figure 62 – Results for the full analysis of 3-sided beam with a four point bending test, steel insulated sections, showcasing 

stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending testD.2 Evenly 

distributed load. for larger images of the deformed shapes. 
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6.3 Integrated beam 

6.3.1 Evenly distributed load 

Due to the fact that with an integrated beam, there is a minimum surface area exposed to the fire load 

directly. The section can however, gain heat indirectly through the floor which encompasses it. Note 

that the other side of the cross-section is subject to ambient conditions through which heat can also be 

lost. This makes it possible to result in larger thermal gradients. This is especially the case for the 

uninsulated sections in Figure 65 in which the thermal gradient for RHS cross-sections in combination 

with concrete floors show an unexpectedly large thermal difference. The difference seems exorbitant 

and unrealistic compared to the gradients found before, also considering the thermal conductivity of the 

metals themselves.  

Given that the insulated cross-sections seem to be even better protected against heat gain, there is a 

larger number of models which do not reach failure within the time frame, as is with the concrete floor 

combinations. The same cannot be said for section in combination with the lightweight floors. In Figure 

63 the IPE section with the lightweight floor showcases a clear combination of mechanical loading and 

the effect of thermal bowing. In Figure 64, the same section but with steel does not reach failure, albeit 

a significant deflection can be observed. This result concurs with the expectation that loaded steel beams 

showcase larger deformations before failure. In such cases it would therefore be most interesting to 

proceed with a coupled thermal-mechanical analysis to describe the effect on the heating of the section 

due to damage to the insulation. The same observation can be made for the uninsulated steel sections in 

Figure 65.  
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Table 17 – Legend overview for Figure 63 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE concrete 

insulated  

901 Red  Aluminium RHS concrete 

insulated 

901 Blue 

Aluminium IPE lightweight 

insulated  

466 Green Aluminium RHS lightweight 

insulated 

461 Yellow 

 
Figure 63 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, aluminium insulated sections, 

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger 

images of the deformed shapes. 

  



69 

 

Table 18 – Legend overview for Figure 64 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Steel IPE lightweight 

insulated  

901 Green Steel RHS lightweight 

insulated 

246 Blue 

Steel IPE concrete insulated  901 Red Steel RHS concrete insulated 711 Yellow 

 
Figure 64 – Results for the full analysis an integrated beam with an evenly distributed Q-load, steel insulated sections, 

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger 

images of the deformed shapes. 
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Table 19 – Legend overview for Figure 65 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE lightweight 161 Green Steel IPE lightweight 296 Pink  

Aluminium IPE concrete 166 Red Steel IPE concrete 351 Grey  

Aluminium RHS concrete 206 Blue Steel RHS lightweight 396 Purple 

Aluminium RHS lightweight 186 Yellow Steel RHS concrete 301 Brown  

 
Figure 65 – Results for the full analysis of an integrated beam with an evenly distributed Q-load, uninsulated sections, 

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger 

images of the deformed shapes. 

6.3.2 Four point bending test 

Some of the same observations can be done for the four point bending scenario as with an evenly 

distributed load. There is a larger number of models which do not reach failure within the time frame. 

In the case of aluminium, the results in Figure 66 seem have a more gradual effect on the strain 

development, especially in combination with a concrete floor. In Figure 67, the steel RHS section show 

very curious stress results. There seems to be an instance of redistribution of the stress through the 

section. The combination with a concrete floor and steel does not reach failure or any significant 

deflection. For the lightweight floor though, the statement that loaded steel beams showcase larger 

deformations before failure. For these cases a coupled thermal-mechanical analysis to describe the 

effect on the heating of the section due to damage to the insulation would be of interest. As with the 

evenly distributed load, the same can be said for the steel sections in Figure 68. 
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Table 20 – Legend overview for Figure 66 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium RHS lightweight 

insulated 

271 Blue Aluminium IPE concrete 

insulated 

751 Yellow 

 
Figure 66 – Results for the full analysis of an integrated beam in a four point bending test, aluminium insulated sections, 

showcasing stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending test for larger 

images of the deformed shape. 
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Table 21 – Legend overview for Figure 67 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Steel IPE lightweight 

insulated  

531 Green Steel RHS lightweight 

insulated 

516 Blue 

Steel IPE concrete insulated  901 Red Steel RHS concrete insulated 901 Yellow 

 
Figure 67 – Results for the full analysis of an integrated beam with a four point bending configuration, steel insulated sections, 

showcasing stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending test for larger 

images of the deformed shapes. 

  



73 

 

Table 22 – Legend overview for Figure 68 with the number of steps completed in the FEM model. 900 steps confers with 90 

minutes which is the full time period over which the separate thermal analysis is run. 

Model Steps Legend Model Steps Legend 

Aluminium IPE concrete 56 Red Steel IPE lightweight 216 Pink  

Aluminium IPE lightweight 101 Green Steel IPE concrete 191 Grey 

Aluminium RHS concrete 96 Blue Steel RHS lightweight 221 Purple 

Aluminium RHS lightweight 151 Yellow Steel RHS concrete 186 Brown  

 
Figure 68 – Results for the full analysis of an integrated beam in a four point bending test, uninsulated sections, showcasing 

stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of 

the deformed shapes. 
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7. DISCUSSION OF RESULTS 
Overall it can be concluded that insulation has a tremendous effect on the temperature increase over 

time and the implementation of insulation and floor on a beam is determining for the temperature 

distribution in the cross-section. For aluminium the effect appears to cause the thermal gradient over 

the cross-section to become more linear, while steel has an inherently larger gradient than aluminium 

given the fact that it has a lower thermal conductivity. 

In particularly concerning the floors, if the floor has a high thermal conductivity and is not insulated 

while the section is, the heating of the section could be accelerated and the thermal gradient might be 

inverse to generally expected. 

 

 
Figure 69 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for 

integrated beams subject to a four point bending test.  

Plotting the strain results versus temperature of the analysis of the column next to that of the beams 

should reveal whether there is a distinction to be made between the two. Doing so leads to Figure 69, 

Figure 70, and Figure 72. In Figure 69 on the right hand side, the results of the steel cross-sections 

clearly support the fact that steel loaded beam sections show significant sagging before failure. The 

strain in the case of an insulated IPE section in combination with a lightweight floor shows clear 

deviation from 400℃ onwards before failure at circa 600 degrees. In contrast, for aluminium, even 

though the IPE section with a concrete floor (the red line) has a higher starting value that that of the 

columns, the slope of strain is similar up until rapid failure, further supported by that of an insulated 

RHS section with a lightweight floor and the uninsulated sections.  
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A difference in strain magnitude between beams and columns is only of significance when considering 

the situation in which the insulation is applied. When the insulation is applied in situ, on location when 

the load is already applied to the section than the magnitude is of little significance. This is due to the 

fact that the strain at t=0 minutes for a loaded beam may be 0.25‰, the insulation is applied at this point 

and thus has a strain of zero. However, if the insulation is applied before loading, the strain at start for  

a loaded beam and insulation is the same and non-zero.  

In Figure 72 the established fact that steel shows significant sagging before failure seems not to be 

supported for an insulated section. However, this is an effect of the data range which has been taken too 

small to support the theorem in this case. For aluminium though, the strain-temperature curves further 

support the assessment that the strain difference between column and beam before failure is of much 

smaller magnitude.   

Note in the figures below that for six cases the thermal gradient between temperatures of 50℃ to 350℃ 

is inverted. Therefore in Figure 70 aluminium RHS with lightweight floor shows a shift in the strain 

value before failure at 400℃ when the negative thermal bowing deflection is dominated by mechanical 

failure, as is for aluminium IPE lightweight in Figure 71 uninsulated and in Figure 72 insulated. 

 
Figure 70 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for a 

3-sided beam subject to a four point bending loading model. 

 
Figure 71 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for a 

3-sided beam subject to an evenly distributed load Q for uninsulated sections. 
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Figure 72 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for a 

3-sided beam subject to an evenly distributed load Q of insulated sections. 

This leads to the conclusion that the deformation of a protected aluminium beam exposed to a fire load 

does not differ to any great extent from that of a similar column in such a manner that the protective 

insulation layer may be damaged prior to failure, and the heating of the beam would be affected. It 

appears that failure in the case of aluminium happens swiftly when the limiting criteria have been met 

within a 25℃ range, therefor not implicating the insulation before the critical situation has already been 

met or is otherwise imminently present.  

There are several aspects still subject of debate. This includes the execution of the models itself within 

the available hardware and software. There was a repetitive occurring error which seemed overly trivial 

as it had nothing to do with the analysis itself and the results. Apparently the large load on the computer 

processor caused some Abaqus lock-files to stay active even after finishing an iteration. These lock-

files are temporary files to let Abaqus know that a certain analysis is running and while it is, no 

additional editing can be done. These restrictive files should automatically be deleted after completion 

of a step and continuing with the restart. However, this seems not to always be the case. This caused an 

error where the restart for the next iteration could not be achieved. There however, was no indication 

when this error might occur and a regular purge of cache and outdated model files did not seem to 

circumvent this issue as a whole and the problem remained present at random intervals. This might have 

caused some models to be prematurely quit, even though failure or time limits were not exceeded.  

During this thesis, more than a hundred varieties were attempted to achieve a full scope of the behaviour. 

This includes a combination of thermal and mechanical analysis. In some cases the focus might have 

started to deviate to quantity instead of ensuring quality for each model. The result is a database of more 

than 1TB of files, which would benefit from a fine tuning to the scenario and specific criteria. In general 

the time period for the analysis was set constant at 90 minutes while some insulated cases might not 

have reached failure within this time range.  

In addition to these considerations, the validation of the mechanical analysis still leaves questions 

regarding the exact accuracy of the model specification and why some analysis are unable to run 

properly. As of yet, this question remains unanswered.  

Another undiscussed topic is that of local plasticity. Especially the four point bending models are 

subject to this effect because the introduction of the load is on a slight area, causing high stresses locally. 

As can be seen when examining the deformed shapes closely, the places where the loads are introduced 

are often most heavily distorted. This problem was partially tackled by modelling the area around the 

introduction point of the load as rigid. However, this did not completely absolve the issue and local 

failure still occurred in some of the model scenario’s. The same behaviour can sometimes be observed 
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in the evenly loaded models, when looking at the supports. Especially in the range of the roller support, 

the top flange of the IPE section can sometimes be observed to have deflected. 

8. CONCLUSION 
Returning to questions asked in chapter 2, it is now possible to broker an answer to the question whether 

the deformation of a protected aluminium beam under fire load differs to that of a similar column, in 

such a manner that the protective layer is affected and a change in the gradual heating of the beam can 

be expected. Following the results in chapter 7, there is a positive argument for the omission of full 

scale loaded beam tests for fire testing with new insulation materials in combination with aluminium. 

Considering the limit values in EN 13381 and the temperature from which the strain of the beam 

deviates from the column, to omit the beam test an additional safety margin of 25℃ on the critical 

temperature for insulated, loaded structures is a recommended. To absolve the need for the loaded 

aluminium beam test completely however, additional testing is advised to determine if the model fits 

with an actual fire test, as has been proposed earlier and in chapter 9. 

9. FUTURE WORK 
There are several angles still left unexplored which would benefit this study further. First and foremost 

would be the execution of a fire test with aluminium following the recommendations from this report. 

Given the limited available data, having a more in depth understanding of the material properties from 

transient state tests could improve the accuracy of the FEM model. In conjunction, the stress-strain 

relation of aluminium can be improved by considering creep explicitly. In this study, creep has only 

been implicitly incorporated with adjusted stress-strain curves. However, especially when working with 

more creep sensitive alloys as the 5000 series would require such an adjustment for primary, secondary 

and tertiary stage creep as proposed by Dorn-Harmathy [6][14].  

Beyond the properties of aluminium, the input values of the insulation in this case have been 

approximated as true values were unavailable. In addition, it would be of interest to observe (early 

onset) damage and its effect on the thermal response of the metal specimen. Strain limits have been 

used to determine when the insulation may incur critical damage. However, due to sensitive corners, 

damage or other imperfections, the effectiveness of the layer may be compromised. This possibility has 

been ignored. This is a concern for both paints and other insulation types. 

The FEM model itself can be elaborated by considering different loading scenario’s, support conditions, 

geometries such as decking and the definition of contact between surfaces (beam – insulation – 

flooring). In addition, it is of interest whether a coupled thermal-mechanical analysis may improve the 

accuracy, especially in case of early onset damage to the insulation. Lastly, the fire conditions can be 

adjusted to represent a real fire instead of the standard fire curve as to observe a more realistic situation.  
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Figure 109 - Aluminium 3-sided beam with concrete floor left uninsulated, right insulated. ............ 101 

Figure 110 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated. ...... 101 
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Figure 112 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated. ...... 102 

Figure 113 - Steel 3-sided beam with concrete floor, left uninsulated right insulated. ...................... 102 

Figure 114 - Steel 3-sided beam with lightweight floor, left uninsulated, right insulated. ................. 102 

Figure 115 - Steel 3-sided beam with concrete floor, left uninsulated, right insulated. ..................... 102 

Figure 116 - Steel 3-sided beam with lightweight floor and left uninsulated and right insulated. ..... 102 
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B: MECHANICAL ANALYSIS WITH INTUMESCENT PAINT  

 

Figure 73 - Aluminium column insulated with intumescent paint. 

 

Figure 74 – Column covered with a layer of intumescent paint. 

As expressed earlier, this model also faced running issues. However that for an aluminium IPE insulated 

section was successful. In comparison with the columns as discussed in 6.1 Column, the failure time is 

slightly increased. The strain and deflection fit with earlier found relations. The same can be said for 
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the results found with 3-sided beams in both load situations. Especially for those in combination with a 

lightweight floor, for which the thermal gradient may be inverted as is with the insulated IPE section. 

 

 

Figure 75 - Steel column with intumescent paint 

 

Figure 76 -  3-sided beam with an intumescent paint layer in a four point bending test.  
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Figure 77 – 3-sided beam with intumescent paint layer with an evenly distributed load. 
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C: MECHANICAL ANALYSIS WITH SANDWICH FLOOR  

 

Figure 78 - Steel 3-sided beam with evenly distributed load, insulated. 

 

Figure 79 - Steel 3-sided beam with four sided beam insulated, right aluminium 3-sided beam with four sided load. 

 

Figure 80 - Aluminium 3-sided beam with lightweight floor with evenly distributed load, insulated. 
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Figure 81 – 3-sided beam with an alternative lightweight floor system, representative of a sandwich system and its effect on 

the temperature distribution. Load configuration as a four point bending test. 

As discussed in an earlier chapter, the lightweight floor has a direct effect on the thermal gradient in the 

section. Assuming that the sandwich panel is better insulated due too its layered built, the exposed side 

of the beam is better protected and thus heating of the section is slowed. As a result to less exposure the 

thermal gradient is also found to be considerable less. The effect on the temperature development is 

observed in both load cases, that of an evenly distributed load and an four point bending test. The 

behaviour of the strain and deflection fit with aforementioned patterns.  



94 

 

 

Figure 82 – 3-sided beam with an evenly distributed load with an alternative lightweight floor system, namely that of a 

sandwich panel. 
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D: FEM IMAGES OF DEFORMED MODEL SHAPES  
Original shape is outlined in red. The green shape is the deformed shape with a scalefactor of 3. 

D.1  Columns 

 

Figure 83 - Aluminium Column IPE uninsulated left, insulated right 

 

Figure 84 - Aluminium column RHS uninsulated left, insulated right 

 

Figure 85 - Steel column IPE section uninsulated left, insulated right 

 

Figure 86 - Steel column RHS section uninsulated left, insulated right 
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D.2 Evenly distributed load. 

 

Figure 87 – Steel 3-sided RHS beam with a concrete floor left uninsulated, right insulated with a distributed load Q 

 

Figure 88 –  Steel 3-sided beam RHS with a lightweight floor, left uninsulated, right insulated with a distributed load Q  

 

Figure 89 – Steel 3-sided IPE beam with a lightweight floor with an evenly distributed load Q, right uninsulated, left insulated. 

 

Figure 90 – Steel 3-sided IPE beam with a concrete floor with an evenly distributed load Q, right uninsulated, left insulated. 



97 

 

 

Figure 91 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated with distributed load. 

 

Figure 92 - Aluminium 3-sided beam with concrete floor and evenly distributed load Q, left uninsulated, right insulated. 

 

Figure 93 - Aluminium 3-sided beam with lightweight floor, evenly distributed load, left uninsulated, right insulated. 

 

Figure 94 - Aluminium 3-sided beam with concrete floor, evenly distributed load, left uninsulated, right insulated. 
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Figure 95 - Steel integrated beam lightweight floor evenly distributed load, left uninsulated, right insulated. 

 

Figure 96 - Steel integrated beam with concrete floor and evenly distributed load, left uninsulated and right insulated. 

 

Figure 97 - Steel integrated beam with lightweight floor and evenly distributed load, left uninsulated, right insulated. 

 

Figure 98 - Steel integrated beam with concrete floor and evenly distributed load, left uninsulated and right insulated. 
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Figure 99 - Aluminium integrated beam with lightweight floor and evenly distributed load, uninsulated left, insulated right. 

 

Figure 100 - Aluminium integrated beam with concrete floor and evenly distributed load, left uninsulated, right insulated. 

 

Figure 101 - Aluminium integrated beam with lightweight floor and evenly distributed load, left uninsulated and right 

insulated. 

 

Figure 102 - Aluminium integrated beam with concrete floor and evenly distributed load left uninsulated, right insulated. 
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D.3 Four point bending test 

 

Figure 103 - Aluminium integrated beam concrete floor four point bending test, left uninsulated, right insulated. 

 

Figure 104 - Aluminium integrated beam uninsulated, lightweight floor on the left, concrete floor on the right. 

 

Figure 105 - Aluminium integrated beam with lightweight floor four point bending test, left uninsulated, right insulated. 

 

Figure 106 - Steel integrated beam with concrete floor, left uninsulated, right insulated. 

 

Figure 107 - Steel integrated beam lightweight floor, left uninsulated, right insulated. 
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Figure 108 - Steel integrated beam with concrete floor left uninsulated, right insulated. 

 

Figure 109 - Steel integrated beam with lightweight floor, left uninsulated, right insulated. 

 

Figure 110 - Aluminium 3-sided beam with concrete floor left uninsulated, right insulated. 

 

Figure 111 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated.  

 

Figure 112 - Aluminium 3-sided beam with concrete floor insulated 
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Figure 113 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated. 

 

Figure 114 - Steel 3-sided beam with concrete floor, left uninsulated right insulated. 

 

Figure 115 - Steel 3-sided beam with lightweight floor, left uninsulated, right insulated. 

 

Figure 116 - Steel 3-sided beam with concrete floor, left uninsulated, right insulated. 

 

Figure 117 - Steel 3-sided beam with lightweight floor and left uninsulated and right insulated. 
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E: FEM THERMAL ANALYSIS SCRIPT 
  



1   #R.M. van der Wurff

2   #Date

3   

4   # -*- coding: mbcs -*-

5   # Abaqus works in true strains and stresses, absolute temperatures in Celsius

6   

7   #import extensions

8   from abaqus import *

9   from part import *

10   from material import *

11   from section import *

12   from assembly import *

13   from step import *

14   from interaction import *

15   from load import *

16   from mesh import *

17   from optimization import *

18   from job import *

19   from sketch import *

20   from visualization import *

21   from connectorBehavior import *

22   from datetime import *

23   from odbAccess import *

24   

25   import os

26   import csv

27   # sys.path.append(r"D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Scripts")

28   import input_variables

29   import csv_writer_thermal_analysis

30   import executable_time

31   

32   def main(material, insulated, interface, floor, mesh_size):

33   # 

----------------------------------------------------------------------------------

-------------------------

34   ## model Parameters ##

35   analysis =

"Thermal_Analysis_Beam3_IPE_"+material+"_"+floor+'_'+insulated+'_alt'

36   cwd = os.getcwd()

37   filelocation = str(cwd)+"\\"+str(date.today())+"_"+analysis+"\\"

38   name_model = analysis

39   

40   

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDIN

ATE)

41   Path_Data_Files = r"D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS"+'\\'+analysis

42   

43   #error check on file location

44   if not os.path.exists(Path_Data_Files):

45   try:

46   os.makedirs(Path_Data_Files)

47   except OSError as exc:

48   if exc.errno != errno.EEXIST:

49   raise

50   os.chdir(Path_Data_Files)

51   Scratch = Path_Data_Files

52   myModel_1 = mdb.Model(name = name_model)

53   if "Model-1" in mdb.models:

54   del mdb.models["Model-1"]

55   # 

----------------------------------------------------------------------------------

------------------

56   #Popening input variables

57   section= 'I-section'

58   Fire_Load = 'Standard_Fire'

59   model_values, geometry, Emissivity, Poisons_Alu, contactResistance =

input_variables.main(myModel_1, section, material, Fire_Load, insulated,

interface)

60   T, Step_time, Conv_hot, Conv_ambient = model_values

61   H,W,tf,tw,tp, Ws, Hs = geometry

62   Emissivity_metal, Emissivity_Ins, Emissivity_Floor = Emissivity



63   

64   # 

----------------------------------------------------------------------------------

------------------

65   ## Sketch + Part ##

66   # geometry values are inputted in mm

67   # Part 1 - Rectangular hollow section #

68   mySketch_1 = myModel_1.ConstrainedSketch(name=section, sheetSize=0.2)

69   xyCoords = ((-(0.5*W), -tf), (-(0.5*W), 0), (0.5*W, 0), (0.5*W, -tf),

70   ((0.5*tw), -tf), ((0.5*tw), -(H-tf)), (0.5*W, -(H-tf)), (0.5*W, -H),

71   (-(0.5*W), -H), (-(0.5*W), -(H-tf)), (-(0.5*tw), -(H-tf)), (-(0.5*tw), -

72   tf), (-(0.5*W), -tf))

73   # Please note: Coordinates have to be such order that section can be drawn 

fluently

74   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords [i],point2 =

xyCoords [i+1])

75   myPart_1 = myModel_1.Part(name = section, dimensionality = TWO_D_PLANAR,

type=DEFORMABLE_BODY)

76   myPart_1.BaseShell(sketch = mySketch_1)

77   del mySketch_1

78   

79   #Floor slab

80   if floor =='Concrete':

81   XYcoords =

((-0.5*Ws,Hs),(0.5*Ws,Hs),(0.5*Ws,0),(0.5*W+tp,0),(0.5*W,0),(-0.5*W,0),

82   (-0.5*W-tp,0),(-0.5*Ws,0),(-0.5*Ws,Hs))

83   mySketch_3 = myModel_1.ConstrainedSketch(name="Slab", sheetSize=0.2)

84   for i in range(len(XYcoords)-1): mySketch_3.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

85   myPart_3 = myModel_1.Part(name='Slab',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

86   myPart_3.BaseShell(sketch=mySketch_3)

87   

88   elif floor =='Lightweight':

89   mySketch_3 = myModel_1.ConstrainedSketch(name='Floor_top', sheetSize=0.2)

90   XYcoords =

((-0.5*Ws,Hs),(0.5*Ws,Hs),(0.5*Ws,Hs-10),(-0.5*Ws,Hs-10),(-0.5*Ws,Hs))

91   for i in range(len(XYcoords)-1): mySketch_3.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

92   myPart_3 = myModel_1.Part(name='Floor_top',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

93   myPart_3.BaseShell(sketch=mySketch_3)

94   

95   mySketch_4 = myModel_1.ConstrainedSketch(name='Floor_middle', sheetSize=0.2)

96   XYcoords =

((-0.5*Ws,Hs-10),(0.5*Ws,Hs-10),(0.5*Ws,1./2*Hs),(-0.5*Ws,1./2*Hs),(-0.5*Ws,Hs

-10))

97   for i in range(len(XYcoords)-1): mySketch_4.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

98   myPart_4 = myModel_1.Part(name='Floor_middle',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

99   myPart_4.BaseShell(sketch=mySketch_4)

100   

101   mySketch_5 = myModel_1.ConstrainedSketch(name='Floor_concrete', sheetSize=0.2)

102   XYcoords =

((-0.5*Ws,1./2*Hs),(0.5*Ws,1./2*Hs),(0.5*Ws,1./4*Hs),(-0.5*Ws,1./4*Hs),(-0.5*W

s,1./2*Hs))

103   for i in range(len(XYcoords)-1): mySketch_5.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

104   myPart_5 = myModel_1.Part(name='Floor_concrete',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

105   myPart_5.BaseShell(sketch=mySketch_5)

106   

107   mySketch_6 = myModel_1.ConstrainedSketch(name='Floor_ins',

sheetSize=0.2)

108   XYcoords =

((-0.5*Ws,1./4*Hs),(0.5*Ws,1./4*Hs),(0.5*Ws,0),(0.5*W+tp,0),(0.5*W,0),(-0.5*W,

0),(-0.5*W-tp,0),(-0.5*Ws,0),(-0.5*Ws,1./4*Hs))

109   for i in range(len(XYcoords)-1): mySketch_6.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

110   myPart_6 = myModel_1.Part(name='Floor_ins',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)



111   myPart_6.BaseShell(sketch=mySketch_6)

112   

113   # Part 2 - Insulation #

114   if insulated=='yes':

115   mySketch_2 = myModel_1.ConstrainedSketch(name='Insulation', sheetSize = 0.2)

116   xyCoords_out_Ins = ((-(0.5*W+tp), 0), (-(0.5*W),

0),((-0.5*W,-tf)),(-0.5*tw,-tf),(-0.5*tw,-(H-tf)),(-0.5*W,-H+tf),

117   

(-0.5*W,-H),(0.5*W,-H),(0.5*W,-H+tf),(0.5*tw,-H+tf),(0.5*tw,-tf),(0.5*W,-t

f),(0.5*W,0),(0.5*W+tp,0),

118   ((0.5*W+tp), -tf-tp), ((0.5*tw+tp), -tf-tp),((0.5*tw+tp), -H+tf+tp),

((0.5*W+tp), (-H+tp+tf)), (0.5*W+tp, (-H-tp)), (-(0.5*W+tp), -H-tp),

119   (-(0.5*W+tp), -H+tf+tp), (-(0.5*tw+tp), -H+tf+tp), (-(0.5*tw+tp),

-(tf+tp)), (-(0.5*W+tp), -tf-tp), (-(0.5*W+tp), 0))

120   # Please note: Coordinates have to be such order that section can be drawn 

fluently

121   for i in range (len(xyCoords_out_Ins)-1): mySketch_2.Line(point1 =

xyCoords_out_Ins [i],point2 = xyCoords_out_Ins [i+1])

122   myPart_2 = myModel_1.Part(name='insulation', dimensionality = TWO_D_PLANAR,

type=DEFORMABLE_BODY)

123   myPart_2.BaseShell(sketch = mySketch_2)

124   del mySketch_2

125   

126   # 

----------------------------------------------------------------------------------

-------------

127   ## Sets ##

128   #all sets based on geometry are copied into assembly

129   Outer_edge_IPE = myPart_1.edges.findAt(((-(0.5*W), -tf*0.5,0),), ((0.5*W,

-0.5*tf,0),), ((tw, -tf,0),),

130   (((0.5*tw), -0.5*H,0),), (((tw), -(H-tf),0),), ((0.5*W, -(H-0.5*tf),0),),

((0, -H,0),),

131   ((-(0.5*W), -H+0.5*tw,0),), ((-(tw), -(H-tf),0),), ((-(0.5*tw),

-(0.5*H),0),), ((-(tw), -tf,0),),)

132   IPE_Floor_edge = myPart_1.edges.findAt(((0,0,0),))

133   Surface_IPE = myPart_1.faces.findAt(((0,-0.5*tf,0),))

134   

135   mySet_11 = myPart_1.Set(edges=Outer_edge_IPE, name='Outside_IPE') #contact edge

136   mySet_13 = myPart_1.Set(name='IPE',faces = Surface_IPE)

137   mySurface_11 = myPart_1.Surface(name='Outside_IPE', side1Edges =Outer_edge_IPE)

#contact surface

138   mySurface_12 = myPart_1.Surface(name='IPE_Floor', side1Edges=IPE_Floor_edge)

139   

140   Floor_fire = myPart_6.edges.findAt(((-0.5*Ws+1,0,0),),((0.5*Ws-1,0,0),),)

141   Floor_top = myPart_3.edges.findAt(((0,Hs,0),),)

142   Floor_ins = myPart_6.edges.findAt(((-0.5*W-tp+1,0,0),),((0.5*W+1,0,0),),)

143   Floor_IPE = myPart_6.edges.findAt(((0,0,0),),)

144   mySet_31 = myPart_3.Set(name='Floor_top', edges = Floor_top)

145   mySet_32 = myPart_6.Set(name='Floor_fire', edges = Floor_fire)

146   mySurface_31 = myPart_6.Surface(name='Floor_fire', side1Edges=Floor_fire)

147   mySurface_32 = myPart_6.Surface(name='Floor_ins', side1Edges=Floor_ins)

148   mySurface_33 = myPart_6.Surface(name='Floor_IPE', side1Edges=Floor_IPE)

149   mySurface_34 = myPart_3.Surface(name='Floor_top', side1Edges=Floor_top)

150   

151   Floor_body_top = myPart_3.faces.findAt(((0,Hs-1,0),),)

152   Floor_body_middle = myPart_4.faces.findAt(((0,1./2*Hs+1,0),) ,)

153   Floor_body_concrete = myPart_5.faces.findAt(((0,1./4*Hs+1,0),),)

154   Floor_body_ins = myPart_6.faces.findAt(((0,1,0),),)

155   mySet_33a = myPart_3.Set(name='Floor_body_top', faces = Floor_body_top)

156   mySet_33b = myPart_4.Set(name='Floor_body_middle', faces = Floor_body_middle)

157   mySet_33c = myPart_5.Set(name='Floor_body_concrete', faces = Floor_body_concrete)

158   mySet_33d = myPart_6.Set(name='Floor_body_ins', faces = Floor_body_ins)

159   

160   if floor =='Lightweight':

161   Floor_top = myPart_3.faces.findAt( ((0,Hs-1,0),),)

162   Floor_ins = myPart_6.faces.findAt( ((0,1,0),),)

163   Floor_middle = myPart_4.faces.findAt( ((0,1./2*Hs+1,0),),)

164   Floor_concrete = myPart_5.faces.findAt( ((0,1./4*Hs+1,0),),)

165   Floor1a = myPart_3.edges.findAt( ((-0.5*Ws,Hs-10,0),),)

166   Floor2a = myPart_4.edges.findAt( ((-0.5*Ws,1./2*Hs,0),),)

167   Floor3a = myPart_5.edges.findAt( ((-0.5*Ws,1./4*Hs,0),),)

168   Floor1b = myPart_4.edges.findAt( ((-0.5*Ws,Hs-10,0),),)



169   Floor2b = myPart_5.edges.findAt( ((-0.5*Ws,1./2*Hs,0),),)

170   Floor3b = myPart_6.edges.findAt( ((-0.5*Ws,1./4*Hs,0),),)

171   

172   myFloor_top = myPart_3.Set(name='Floor_top', faces=Floor_top)

173   myFloor_ins = myPart_6.Set(name='Floor_ins', faces = Floor_ins)

174   myFloor_middle = myPart_4.Set(name='Floor_middle', faces = Floor_middle)

175   myFloor_concrete = myPart_5.Set(name='Floor_concrete', faces = Floor_concrete)

176   mySurface_Floor_1a = myPart_3.Surface(name='Floor1a', side1Edges=Floor1a)

177   mySurface_Floor_2a = myPart_4.Surface(name='Floor2a', side1Edges=Floor2a)

178   mySurface_Floor_3a = myPart_5.Surface(name='Floor3a', side1Edges=Floor3a)

179   mySurface_Floor_1b = myPart_4.Surface(name='Floor1b', side1Edges=Floor1b)

180   mySurface_Floor_2b = myPart_5.Surface(name='Floor2b', side1Edges=Floor2b)

181   mySurface_Floor_3b = myPart_6.Surface(name='Floor3b', side1Edges=Floor3b)

182   

183   if insulated=='yes':

184   Fire_Ins = myPart_2.edges.findAt((((0.5*W+tp), -tp,0),), (((tw+tp),

-tf-tp,0),), (((0.5*tw+tp), -0.5*H,0),),

185   (((tw+tp), -H+tf+tp,0),), (((0.5*W+tp), (-H),0),), ((0, (-H-tp),0),),

((-(0.5*W+tp), -H,0),),

186   ((-(tw+tp), -H+tf+tp,0),), ((-(0.5*tw+tp), -0.5*H,0),), ((-(tw+tp),

-(tf+tp),0),), ((-(0.5*W+tp), -tp,0),),)

187   IPE_Ins = myPart_2.edges.findAt(((-(0.5*W), -tf*0.5,0),), ((0.5*W,

-0.5*tf,0),), ((tw, -tf,0),),

188   (((0.5*tw), -0.5*H,0),), (((tw), -(H-tf),0),), ((0.5*W, -(H-0.5*tf),0),),

((0, -H,0),),

189   ((-(0.5*W), -H+0.5*tw,0),), ((-(tw), -(H-tf),0),), ((-(0.5*tw),

-(0.5*H),0),), ((-(tw), -tf,0),),)

190   Surface_Ins = myPart_2.faces.findAt(((-0.5*W-tp+1,-1,0),),)

191   Ins_Floor = myPart_2.edges.findAt(((-0.5*W-tp+1,0,0),),((0.5*W+1,0,0),),)

192   

193   mySet_21 = myPart_2.Set(name='Outside_Ins', edges=Fire_Ins)

194   mySet_22 = myPart_2.Set(name='Inside_Ins', edges=IPE_Ins) #contact edge

195   mySet_23 = myPart_2.Set(name='Blanket_1', faces=Surface_Ins)

196   mySurface_21 = myPart_2.Surface(name='Outside_Ins', side1Edges=Fire_Ins)

#fire side

197   mySurface_22 = myPart_2.Surface(name='Inside_Ins', side1Edges=IPE_Ins)

#contact surface

198   mySurface_23 = myPart_2.Surface(name='Ins_Floor', side1Edges=Ins_Floor)

199   

200   # 

----------------------------------------------------------------------------------

-------------

201   ## Section ##

202   myModel_1.HomogeneousSolidSection(material=material, name='IPE',thickness= None)

203   myModel_1.HomogeneousSolidSection(material='Insulation',

name='Blanket',thickness=None)

204   myModel_1.HomogeneousSolidSection(material=floor, name='Slab', thickness=None)

205   myModel_1.HomogeneousSolidSection(material='air-alu', name='air-alu',

thickness=None)

206   # 

----------------------------------------------------------------------------------

-------------------------

207   ## Section Assignment ##

208   myPart_1.SectionAssignment(offset = 0.0, offsetField = " ", offsetType =

MIDDLE_SURFACE,

209   region = myPart_1.sets['IPE'], sectionName = "IPE", thicknessAssignment =

FROM_SECTION)

210   if insulated=='yes':

211   myPart_2.SectionAssignment(offset = 0.0, offsetField = " ", offsetType =

MIDDLE_SURFACE,

212   region = myPart_2.sets['Blanket_1'], sectionName = "Blanket",

thicknessAssignment = FROM_SECTION)

213   if floor =='Concrete':

214   myPart_3.SectionAssignment(offset = 0.0, offsetField = " ", offsetType =

MIDDLE_SURFACE,

215   region = myPart_3.sets['Floor_body'], sectionName = "Slab",

thicknessAssignment= FROM_SECTION)

216   elif floor=='Lightweight':

217   myPart_3.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

218   region = myPart_3.sets['Floor_top'], sectionName='IPE',

thicknessAssignment=FROM_SECTION)



219   myPart_4.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

220   region = myPart_4.sets['Floor_middle'], sectionName='air-alu',

thicknessAssignment=FROM_SECTION)

221   myPart_6.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

222   region = myPart_6.sets['Floor_ins'], sectionName='Blanket',

thicknessAssignment=FROM_SECTION)

223   myPart_5.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

224   region = myPart_5.sets['Floor_concrete'], sectionName='Slab',

thicknessAssignment=FROM_SECTION)

225   

226   # 

----------------------------------------------------------------------------------

-------------------------

227   ## Step ##

228   myModel_1.HeatTransferStep (timePeriod = T, deltmx = 50, initialInc = 5, maxInc

= T,

229   maxNumInc = 10000, minInc = 0.001, name = "Heat Transfer", previous =

"Initial", response = TRANSIENT)

230   

231   # 

----------------------------------------------------------------------------------

-------------------------

232   ## Mesh ##

233   # Mesh IPE #

234   myPart_1.setMeshControls(algorithm=MEDIAL_AXIS, minTransition =ON,

235   technique = FREE, regions = Surface_IPE)

236   myPart_1.setElementType (regions = mySet_13, elemTypes = (ElemType( elemCode =

237   DC2D4,elemLibrary = STANDARD), )) #2D linear heat transfer blocks, 4 nodes 

per element

238   myPart_1.seedPart (deviationFactor = 1, minSizeFactor = 1, size = mesh_size)

239   myPart_1.generateMesh()

240   

241   if insulated=='yes':

242   # Mesh Insulation #

243   myPart_2.setMeshControls(algorithm=MEDIAL_AXIS, minTransition =ON,

244   technique = FREE, regions = Surface_Ins)

245   myPart_2.setElementType (regions = mySet_23, elemTypes = (ElemType( elemCode

=DC2D8,

246   elemLibrary = STANDARD), )) #2D quadratic heat transfer blocks, 8 nodes 

per element

247   myPart_2.seedPart (deviationFactor = 1, minSizeFactor = 1, size = tp/4)

248   myPart_2.generateMesh()

249   

250   #Mesh Slab

251   myPart_3.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

252   technique = FREE, regions = Floor_body_top)

253   myPart_3.setElementType(regions = mySet_33a, elemTypes=(ElemType(elemCode =

254   DC2D8, elemLibrary = STANDARD),))

255   myPart_3.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

256   myPart_3.generateMesh()

257   myPart_4.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

258   technique = FREE, regions = Floor_body_middle)

259   myPart_4.setElementType(regions = mySet_33b, elemTypes=(ElemType(elemCode =

260   DC2D8, elemLibrary = STANDARD),))

261   myPart_4.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

262   myPart_4.generateMesh()

263   myPart_5.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

264   technique = FREE, regions = Floor_body_concrete)

265   myPart_5.setElementType(regions = mySet_33c, elemTypes=(ElemType(elemCode =

266   DC2D8, elemLibrary = STANDARD),))

267   myPart_5.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

268   myPart_5.generateMesh()

269   myPart_6.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

270   technique = FREE, regions = Floor_body_ins)

271   myPart_6.setElementType(regions = mySet_33d, elemTypes=(ElemType(elemCode =

272   DC2D8, elemLibrary = STANDARD),))

273   myPart_6.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

274   myPart_6.generateMesh()

275   # 



----------------------------------------------------------------------------------

-------------------------

276   ## Assembly ##

277   myAssembly = myModel_1.rootAssembly

278   myAssembly.DatumCsysByDefault (CARTESIAN)

279   myAssembly.Instance(dependent = ON, part = myPart_1, name = "IPE-1")

280   myAssembly.Instance(dependent = ON, part = myPart_3, name = "Slab_top")

281   myAssembly.Instance(dependent = ON, part = myPart_4, name = "Slab_middle")

282   myAssembly.Instance(dependent = ON, part = myPart_5, name = "Slab_concrete")

283   myAssembly.Instance(dependent = ON, part = myPart_6, name = "Slab_ins")

284   if insulated=='yes':

285   myAssembly.Instance(dependent = ON, part = myPart_2, name = "Blanket_1")

286   #all previously made sets are copied into assembly, only applicable to geometry 

dependent sets

287   

288   # 

----------------------------------------------------------------------------------

---------------------------

289   ## Fire Loads ##

290   if insulated=='yes':

291   region = myAssembly.instances['Blanket_1'].surfaces['Outside_Ins']

292   Emissivity = Emissivity_Ins

293   else:

294   region = myAssembly.instances['IPE-1'].surfaces['Outside_IPE']

295   Emissivity = Emissivity_metal

296   

297   if Fire_Load == 'Standard_Fire':

298   # Convection Fire Side #

299   myModel_1.FilmCondition(createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

300   filmCoeff = Conv_hot, name = 'Convection_Fire_Side',

sinkDistributionType = UNIFORM,

301   sinkTemperature = 1, sinkAmplitude = "Standard Fire", surface = region)

302   myModel_1.FilmCondition(createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

303   filmCoeff = Conv_hot, name = 'Convection_Fire_Side_Floor',

sinkDistributionType = UNIFORM,

304   sinkTemperature = 1, sinkAmplitude = "Standard Fire", surface =

myAssembly.instances['Slab_ins'].surfaces['Floor_fire'])

305   

306   # Radiation Fire Side #

307   myModel_1.RadiationToAmbient (ambientTemperature = 1, ambientTemperatureAmp

= 'Standard Fire',

308   createStepName = 'Heat Transfer', emissivity = Emissivity_Ins, name =

'Radiation_Fire_Side',

309   distributionType = UNIFORM, surface=region)

310   myModel_1.RadiationToAmbient (ambientTemperature =1, ambientTemperatureAmp =

'Standard Fire',

311   createStepName = 'Heat Transfer', emissivity = Emissivity_Floor, name =

'Radiation_Fire_Side_Floor',

312   distributionType = UNIFORM, surface =

myAssembly.instances['Slab_ins'].surfaces['Floor_fire'])

313   

314   # Ambient side

315   myModel_1.FilmCondition (createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

316   filmCoeff = Conv_ambient, name = 'Convection_Ambient_Side',

sinkDistributionType = UNIFORM,

317   sinkTemperature = 20, surface =

myAssembly.instances['Slab_top'].surfaces['Floor_top'])

318   myModel_1.RadiationToAmbient (ambientTemperature = 20, createStepName =

'Heat Transfer',

319   emissivity = Emissivity_Floor, name = 'Radiation_Ambient_Side',

320   distributionType = UNIFORM,surface =

myAssembly.instances['Slab_top'].surfaces['Floor_top'])

321   

322   if Fire_Load == 'Hydrocarbon':

323   myModel_1.EdgeHeatFlux(name = 'heatflux on insulation', createStepName =

324   'Heat Transfer', region = region, magnitude =

myModel_1.TabularAmplitude['Hydrocarbon'])

325   myModel_1.EdgeHeatFlux(name = 'heatflux on Floor', createStepName = 'Heat 

Transfer',



326   region = myAssembly.instances['Slab_ins'].surfaces['Floor_fire'],

327   magnitude = myModel_1.TabularAmplitude['Hydrocarbon'])

328   

329   if insulated=='yes':

330   # Contact Resistance insulation - RHS #

331   myModel_1.ContactProperty ('Contact_Resistance_IPE_ins')

332   

myModel_1.interactionProperties['Contact_Resistance_IPE_ins'].ThermalConductan

ce(

333   clearanceDepTable =((contactResistance, 0), (0, 1)), clearanceDependency

= ON, definition = TABULAR)

334   myModel_1.SurfaceToSurfaceContactStd (name = 'Contact_Resistance', master

=myAssembly.instances['IPE-1'].surfaces['Outside_IPE'],

335   slave = myAssembly.instances['Blanket_1'].surfaces['Inside_Ins'],

createStepName = 'Heat Transfer', interactionProperty

='Contact_Resistance_IPE_ins',

336   sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

337   # Contact Resistance insulation - Floor #

338   myModel_1.ContactProperty ('Contact_Resistance_Slab_Ins')

339   

myModel_1.interactionProperties['Contact_Resistance_Slab_Ins'].ThermalConducta

nce(

340   clearanceDepTable =((contactResistance, 0), (0, 1)), clearanceDependency

= ON, definition = TABULAR)

341   myModel_1.SurfaceToSurfaceContactStd (name = 'Contact_Resistance_Ins_Floor',

master =myAssembly.instances['Slab_ins'].surfaces['Floor_ins'],

342   slave = myAssembly.instances['Blanket_1'].surfaces['Ins_Floor'],

createStepName = 'Heat Transfer', interactionProperty

='Contact_Resistance_Slab_Ins',

343   sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

344   

345   # Contact Floor - RHS #

346   myModel_1.ContactProperty ('Contact_Resistance_Floor_IPE')

347   

myModel_1.interactionProperties['Contact_Resistance_Floor_IPE'].ThermalConductance

(

348   clearanceDepTable =((200e-3, 0), (0, 1)), clearanceDependency = ON,

definition = TABULAR)

349   myModel_1.SurfaceToSurfaceContactStd (name = 'Contact_Resistance_Floor_IPE',

master =myAssembly.instances['IPE-1'].surfaces['IPE_Floor'],

350   slave = myAssembly.instances['Slab_ins'].surfaces['Floor_IPE'],

createStepName = 'Heat Transfer', interactionProperty

='Contact_Resistance_Floor_IPE',

351   sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

352   

353   # Contact in floor

354   myModel_1.ContactProperty('Contact_Floor_top')

355   myModel_1.interactionProperties['Contact_Floor_top'].ThermalConductance(

356   clearanceDepTable=((0,0),(0,1)), clearanceDependency=ON, definition=TABULAR)

357   myModel_1.SurfaceToSurfaceContactStd(name='Contact_Floor_top', master =

myAssembly.instances['Slab_top'].surfaces['Floor1a'],

358   slave=myAssembly.instances['Slab_middle'].surfaces['Floor1b'],

createStepName='Heat Transfer', interactionProperty= 'Contact_Floor_top',

359   sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

360   myModel_1.ContactProperty('Contact_Floor_middle')

361   myModel_1.interactionProperties['Contact_Floor_middle'].ThermalConductance(

362   clearanceDepTable=((0,0),(0,1)), clearanceDependency=ON, definition=TABULAR)

363   myModel_1.SurfaceToSurfaceContactStd(name='Contact_Floor_middle', master =

myAssembly.instances['Slab_middle'].surfaces['Floor2a'],

364   slave=myAssembly.instances['Slab_concrete'].surfaces['Floor2b'],

createStepName='Heat Transfer', interactionProperty= 'Contact_Floor_middle',

365   sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

366   myModel_1.ContactProperty('Contact_Floor_bottom')

367   myModel_1.interactionProperties['Contact_Floor_bottom'].ThermalConductance(

368   clearanceDepTable=((0,0),(0,1)), clearanceDependency=ON, definition=TABULAR)

369   myModel_1.SurfaceToSurfaceContactStd(name='Contact_Floor_bottom', master =

myAssembly.instances['Slab_concrete'].surfaces['Floor3a'],

370   slave=myAssembly.instances['Slab_ins'].surfaces['Floor3b'],

createStepName='Heat Transfer', interactionProperty= 'Contact_Floor_bottom',

371   sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

372   

373   # fire if not insulated



374   if insulated!='yes':

375   myModel_1.FilmCondition(createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

376   filmCoeff = Conv_hot, name = 'Convection_Fire_Floor',

sinkDistributionType = UNIFORM,

377   sinkTemperature = 1, sinkAmplitude = "Standard Fire", surface =

myAssembly.instances['Slab_ins'].surfaces['Floor_ins'])

378   myModel_1.RadiationToAmbient (ambientTemperature = 1, ambientTemperatureAmp

= 'Standard Fire',

379   createStepName = 'Heat Transfer', emissivity = Emissivity_Floor, name =

'Radiation_Fire_Floor',

380   distributionType = UNIFORM,

surface=myAssembly.instances['Slab_ins'].surfaces['Floor_ins'])

381   

382   # 

----------------------------------------------------------------------------------

---------------------------

383   ## BCs ##

384   # Predifined field - constant initial temperature of 20 C #

385   myModel_1.Temperature (createStepName = "Initial", crossSectionDistribution =

386   CONSTANT_THROUGH_THICKNESS, distributionType = UNIFORM, magnitudes =(20, ),

name = "Initial TemperatureIPE",

387   region = myAssembly.instances["IPE-1"].sets["IPE"])

388   myModel_1.Temperature ( createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

389   distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature 

Floor1",

390   region = myAssembly.instances["Slab_top"].sets['Floor_body_top'])

391   myModel_1.Temperature ( createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

392   distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature 

Floor2",

393   region = myAssembly.instances["Slab_middle"].sets['Floor_body_middle'])

394   myModel_1.Temperature ( createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

395   distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature 

Floor3",

396   region = myAssembly.instances["Slab_concrete"].sets['Floor_body_concrete'])

397   myModel_1.Temperature ( createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

398   distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature 

Floor4",

399   region = myAssembly.instances["Slab_ins"].sets['Floor_body_ins'])

400   if insulated=='yes':

401   myModel_1.Temperature (createStepName = "Initial", crossSectionDistribution =

402   CONSTANT_THROUGH_THICKNESS,

403   distributionType = UNIFORM, magnitudes =(20, ), name = "Initial 

Temperature insulation",

404   region = myAssembly.instances["Blanket_1"].sets["Blanket_1"])

405   

406   # 

----------------------------------------------------------------------------------

-------------------------

407   ## Output Request ##

408   myModel_1.fieldOutputRequests['F-Output-1'].setValues(variables = ('NT','COORD'),

409   frequency = 1, region = myAssembly.instances['IPE-1'].sets['IPE'])

410   myModel_1.FieldOutputRequest (name = 'Temperature_XY_Output_Surface',

createStepName =

411   'Heat Transfer', timeInterval = Step_time, variables = ('COORD', 'NT'),

region =

412   myAssembly.instances['IPE-1'].sets['IPE'])

413   

414   # 

----------------------------------------------------------------------------------

-------------------------

415   ## Job ##

416   myJob_1 = mdb.Job(name = name_model, model = myModel_1, type = ANALYSIS,scratch

= Scratch)

417   myJob_1.submit(consistencyChecking=OFF)

418   myJob_1.waitForCompletion()

419   

420   odb = session.openOdb(name = name_model+'.odb')



421   frames = odb.steps['Heat Transfer'].frames

422   numFrames = int(len(frames))

423   # mySurface_odb = odb.rootAssembly.instances['IPE-1'].nodeSets['OUTSIDE_IPE']

424   csv_writer_thermal_analysis.csv_coordinates(odb, name_model)

425   csv_writer_thermal_analysis.csv_temperatures(odb, name_model, numFrames)

426   csv_writer_thermal_analysis.csv_thermal_result(name_model)

427   #odb.close()

428   executable_time.ExecTime(name_model)

429   return numFrames



104 

 

F: FEM MECHANICAL ANALYSIS SCRIPT 
  



1   #Mechanical test for abaqus run

2   

3   #import extensions

4   from abaqus import *

5   from part import *

6   from material import *

7   from section import *

8   from assembly import *

9   from step import *

10   from interaction import *

11   from load import *

12   from mesh import *

13   from optimization import *

14   from job import *

15   from sketch import *

16   from visualization import *

17   from connectorBehavior import *

18   from datetime import *

19   from odbAccess import *

20   

21   import os

22   import csv

23   sys.path.append(r"D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Scripts")

24   import input_variables, csv_writer_thermal_analysis

25   

26   def main(type, material, elements, section, floor, insulated, interface, numFrames,

mesh_size):

27   analysis = 'Mech_' + type + '_' + material + '_' + elements + '_' +

section + '_' + floor + '_' + insulated + '_'+str(mesh_size)

28   cwd = os.getcwd()

29   filelocation = str(cwd)+"\\"+str(date.today())+"_"+analysis+"\\"

30   myModel_1 = mdb.Model(name=analysis)

31   

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDIN

ATE)

32   Path_Data_Files = r"D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS"+'\\'+analysis

33   

34   #error check on file location

35   if not os.path.exists(Path_Data_Files):

36   try:

37   os.makedirs(Path_Data_Files)

38   except OSError as exc:

39   if exc.errno != errno.EEXIST:

40   raise

41   os.chdir(Path_Data_Files)

42   Scratch = Path_Data_Files

43   myModel_1 = mdb.Model(name = analysis)

44   if "Model-1" in mdb.models:

45   del mdb.models["Model-1"]

46   

#---------------------------------------------------------------------------------

---------------------------

47   ## First model setup ##

48   

#---------------------------------------------------------------------------------

---------------------------

49   ## getting input variables - material properties, general model data ##

50   Fire_Load = 'Standard_Fire'

51   # input variables has to be editted to include mechanical properties!!!!

52   if section=='IPE': section='I-section'

53   else: pass

54   model_values, geometry, Emissivity, Poisons_Alu, contactResistance =

input_variables.main(myModel_1, section, material, Fire_Load, insulated,

interface)

55   T, Step_time, Conv_hot, Conv_ambient = model_values

56   Emissivity_metal, Emissivity_Ins, Emissivity_Concrete = Emissivity

57   if type=='Column': L=1000 #mm

58   else: L=3000 #mm

59   if floor=='Concrete': load=36000 #Newton

60   elif floor=='Lightweight': load=20000

61   



62   if section=='I-section':

63   section='IPE'

64   H,W,tf,tw,tp,Ws,Hs = geometry

65   elif section=='RHS':

66   H,W,t,tp,Ws,Hs = geometry

67   

#---------------------------------------------------------------------------------

---------------------------

68   ## Sketch + Part ##

69   if elements=='volume':

70   if section=='RHS':

71   if type!='Beam1':

72   e=0

73   else: #integrated RHS beam

74   e=16

75   # RHS part

76   mySketch_1 = myModel_1.ConstrainedSketch(name='RHS', sheetSize=0.2)

77   xyCoords =

((W,H),(W,Hs),(W,t),(W+e,t),(W+e,0),(-e,0),(-e,t),(0,t),(0,Hs),(0,H),(W,H)

)

78   for i in range (len(xyCoords)-1): mySketch_1.Line(point1=xyCoords[i],

point2=xyCoords[i+1])

79   mySketch_1.rectangle(point1=(t,t), point2=(W-t,H-t))

80   myPart_1 = myModel_1.Part(name = 'RHS', dimensionality = THREE_D,

type=DEFORMABLE_BODY)

81   myPart_1.BaseShellExtrude(depth=L ,sketch = mySketch_1)

82   elif section=='Decking':

83   # Part 1 - Decking #

84   mySketch_1 = myModel_1.ConstrainedSketch(name=section, sheetSize=0.2)

85   side = c*tw

86   xyCoords_outer = ((0,0), (W+10*side,0), (W+10*side, -tf-side),

((0.9*W+11*side-c*tf), -H),

87   ((0.1*W+c*tf-side), -H), (0, -tf-side), (0,0))

88   # Please note: Coordinates have to be such order that section can be 

drawn fluently

89   for i in range (len(xyCoords_outer)-1): mySketch_1.Line(point1 =

xyCoords_outer [i],point2 = xyCoords_outer [i+1])

90   #first cut out

91   xyCoords = ((2*side,-tf),(0.2*W,-tf),(0.1*W+side,-H+tf),(2*side,-tf))

92   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

93   #second cut out

94   xyCoords =

((0.2*W+2*side,-tf),(0.3*W+side,-H+tf),(0.1*W+3*side,-H+tf),(0.2*W+2*side,

-tf))

95   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

96   #third cutout

97   xyCoords =

((0.2*W+4*side,-tf),(0.4*W+2*side,-tf),(0.3*W+3*side,-H+tf),(0.2*W+4*side,

-tf))

98   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

99   #fourth cutout

100   xyCoords =

((0.4*W+4*side,-tf),(0.5*W+3*side,-H+tf),(0.3*W+5*side,-H+tf),

(0.4*W+4*side,-tf))

101   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

102   #fifth cutout

103   xyCoords = ((0.4*W+6*side,-tf), (0.5*W+5*side,-H+tf),

(0.6*W+4*side,-tf),(0.4*W+6*side,-tf))

104   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

105   #sixth cutout

106   xyCoords =

((0.6*W+6*side,-tf),(0.5*W+7*side,-H+tf),(0.7*W+5*side,-H+tf),(0.6*W+6*sid

e,-tf))

107   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

108   #seventh cutout

109   xyCoords =



((0.6*W+8*side,-tf),(0.8*W+6*side,-tf),(0.7*W+7*side,-H+tf),(0.6*W+8*side,

-tf))

110   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

111   #eighth cutout

112   xyCoords =

((0.8*W+8*side,-tf),(0.7*W+9*side,-H+tf),(0.9*W+7*side,-H+tf),

(0.8*W+8*side,-tf))

113   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

114   #ninth cutout

115   xyCoords = ((0.8*W+10*side,-tf),(1*W+8*side,-tf),(0.9*W+9*side,-H+tf),

(0.8*W+10*side,-tf))

116   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

117   myPart_1 = myModel_1.Part(name = section, dimensionality = THREE_D,

type=DEFORMABLE_BODY)

118   myPart_1.BaseShellExtrude(depth= L, sketch = mySketch_1)

119   elif section=='IPE':

120   mySketch_1 = myModel_1.ConstrainedSketch(name=section, sheetSize=0.2)

121   xyCoords = ((-(0.5*W), -tf), (-(0.5*W), 0), (0.5*W, 0), (0.5*W, -tf),

122   ((0.5*tw), -tf), ((0.5*tw), -H+tf+Hs),(0.5*tw,-H+tf), (0.5*W,

-(H-tf)), (0.5*W, -H),

123   (-(0.5*W), -H), (-(0.5*W), -(H-tf)), (-(0.5*tw), -(H-tf)),

(-0.5*tw,-H+Hs+tf),

124   (-(0.5*tw), -tf), (-(0.5*W), -tf))

125   # Please note: Coordinates have to be such order that section can be 

drawn fluently

126   for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

127   myPart_1 = myModel_1.Part(name = section, dimensionality = THREE_D,

type=DEFORMABLE_BODY)

128   myPart_1.BaseShellExtrude(depth=L, sketch = mySketch_1)

129   

130   elif elements=='shell':

131   if section=='RHS':

132   e=-0.5*t #mm

133   if type=='Beam1':

134   e=16 #mm

135   # RHS member section

136   mySketch_1 = myModel_1.ConstrainedSketch(name='RHS', sheetSize=0.2)

137   mySketch_1.Line(point1=(-e,0.5*t),point2=(W+e,0.5*t))

138   mySketch_1.Line(point1=(0.5*t,0.5*t),point2=(0.5*t,H-0.5*t))

139   mySketch_1.Line(point1=(0.5*t,H-0.5*t), point2=(W-0.5*t,H-0.5*t))

140   mySketch_1.Line(point1=(W-0.5*t,H-0.5*t), point2=(W-0.5*t,0.5*t))

141   myPart_1 = myModel_1.Part(dimensionality=THREE_D, name='RHS', type =

DEFORMABLE_BODY)

142   myPart_1.BaseShellExtrude(depth=L,sketch=mySketch_1)

143   elif section=='IPE':

144   # member section IPE

145   mySketch_1 = myModel_1.ConstrainedSketch(name='IPE', sheetSize =0.2)

146   mySketch_1.Line(point1=(-0.5*W,-0.5*tf), point2=(0.5*W,-0.5*tf))

147   mySketch_1.Line(point1=(0,-0.5*tf), point2=(0,-(H-(0.5*tf))))

148   mySketch_1.Line(point1=(-0.5*W,-(H-(0.5*tf))),

point2=(0.5*W,-(H-(0.5*tf))))

149   myPart_1 = myModel_1.Part(dimensionality=THREE_D, name='IPE',

type=DEFORMABLE_BODY)

150   myPart_1.BaseShellExtrude(depth=L, sketch=mySketch_1)

151   

152   elif section=='Decking':

153   pass

154   # 

----------------------------------------------------------------------------------

-------------

155   ## Section ##

156   # integration points over thickness can be inputted here, default at 5IP's

157   if elements =='shell':

158   if section=='IPE':

159   Flanges = myPart_1.faces.findAt(

160   ((-(0.2*W),-(0.5*tf),(0.1*L)),),((0.2*W,

-0.5*tf,0.1*L),),((-0.2*W,-(H-(0.5*tf)),0.1*L),),((0.2*W,-(H-(0.5*tf))

,0.1*L),),



161   ((-(0.2*W),-(0.5*tf),(0.5*L)),),((0.2*W,

-0.5*tf,0.5*L),),((-0.2*W,-(H-(0.5*tf)),0.5*L),),((0.2*W,-(H-(0.5*tf))

,0.5*L),),

162   ((-(0.2*W),-(0.5*tf),(0.8*L)),),((0.2*W,

-0.5*tf,0.8*L),),((-0.2*W,-(H-(0.5*tf)),0.8*L),),((0.2*W,-(H-(0.5*tf))

,0.8*L),),)

163   Set_11 = myPart_1.Set(name='Flanges', faces = (Flanges,))

164   myModel_1.HomogeneousShellSection(material=material, name ='Flanges',

thickness=tf)

165   myModel_1.parts['IPE'].SectionAssignment(offset=0.0, offsetType =

MIDDLE_SURFACE,

166   region = myModel_1.parts['IPE'].sets['Flanges'], sectionName =

'Flanges',

167   thicknessAssignment = FROM_SECTION)

168   

169   Web = myPart_1.faces.findAt( ((0,-0.5*H,0.5*L),),)

170   Set_12 = myPart_1.Set(name='Web', faces = (Web,))

171   myModel_1.HomogeneousShellSection(material=material, name='Web',

thickness = tw)

172   myModel_1.parts['IPE'].SectionAssignment(offset=0.0,

offsetType=MIDDLE_SURFACE,

173   region = myModel_1.parts['IPE'].sets['Web'], sectionName='Web',

174   thicknessAssignment = FROM_SECTION)

175   ## partitions for loading

176   myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=1./3*L)

177   myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=2./3*L)

178   myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[4], faces =

179   myPart_1.faces.findAt(

((-0.2*W,-0.5*tf,0.5*L),),((0.2*W,-0.5*tf,0.5*L),),

180   ((-0.2*W,-H+0.5*tf,0.5*L),),((0.2*W,-H+0.5*tf,0.5*L),),))

181   myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[5], faces =

182   myPart_1.faces.findAt(

((-0.2*W,-0.5*tf,0.5*L),),((0.2*W,-0.5*tf,0.5*L),),

183   ((-0.2*W,-H+0.5*tf,0.5*L),),((0.2*W,-H+0.5*tf,0.5*L),),))

184   myPart_1.Set(name='Load_top1', vertices = myPart_1.vertices.findAt(

185   ((0,-0.5*tf,

1./3*L),),((-0.5*W,-0.5*tf,1./3*L),),((0.5*W,-0.5*tf,1./3*L),),))

186   myPart_1.Set(name='Load_top2', vertices = myPart_1.vertices.findAt(

187   ((0,-0.5*tf,

2./3*L),),((-0.5*W,-0.5*tf,2./3*L),),((0.5*W,-0.5*tf,2./3*L),),))

188   myPart_1.Set(name='Load_bottom1', vertices = myPart_1.vertices.findAt(

189   ((0,-H+0.5*tf,

1./3*L),),((-0.5*W,-H+0.5*tf,1./3*L),),((0.5*W,-H+0.5*tf,1./3*L),),))

190   myPart_1.Set(name='Load_bottom2', vertices = myPart_1.vertices.findAt(

191   ((0,-H+0.5*tf,

2./3*L),),((-0.5*W,-H+0.5*tf,2./3*L),),((0.5*W,-H+0.5*tf,2./3*L),),))

192   

193   elif section=='RHS' :

194   if type=='Beam1':

195   Sides = myPart_1.faces.findAt(

(((W-0.5*t),0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

196   

((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.5*L),),((-0.5*e,0.5*t,0.1*L

),),((W+0.5*e,0.5*t,0.1*L),),

197   (((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L),),

198   

((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),((-0.5*e,0.5*t,0.5*L

),),((W+0.5*e,0.5*t,0.5*L),),

199   (((W-0.5*t),0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

200   

((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),((-0.5*e,0.5*t,0.8*L

),),((W+0.5*e,0.5*t,0.8*L),),)

201   else:

202   Sides = myPart_1.faces.findAt(

203   ((W-0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),

204   ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

205   ((W-0.5*t,0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

206   ((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.1*L),),

207   ((W-0.5*t,0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

208   ((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),)

209   Set_11 = myPart_1.Set(name='Flanges', faces = (Sides,))



210   myModel_1.HomogeneousShellSection(material=material, name ='Flanges',

thickness=t)

211   myModel_1.parts['RHS'].SectionAssignment(offset=0.0,

offsetType=MIDDLE_SURFACE,

212   region = myModel_1.parts['RHS'].sets['Flanges'],

sectionName='Flanges',

213   thicknessAssignment = FROM_SECTION)

214   ## partitions for loading

215   myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=1./3*L)

216   myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=2./3*L)

217   myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[3], faces =

218   

myPart_1.faces.findAt((((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5

*L),),

219   ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

220   ((-0.5*e,0.5*t,0.5*L),),((W+0.5*e,0.5*t,0.5*L),),))

221   myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[4], faces =

222   

myPart_1.faces.findAt(((W-0.5*t,0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L

),),

223   ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

224   ((-0.5*e,0.5*t,0.5*L),),((W+0.5*e,0.5*t,0.5*L),),))

225   myPart_1.Set(name='Load_top1', vertices = myPart_1.vertices.findAt(

226   ((0.5*t,H-0.5*t, 1./3*L),),((W-0.5*t,H-0.5*t,1./3*L),),))

227   myPart_1.Set(name='Load_top2', vertices = myPart_1.vertices.findAt(

228   ((0.5*t,H-0.5*t, 2./3*L),),((W-0.5*t,H-0.5*t,2./3*L),),))

229   myPart_1.Set(name='Load_bottom1', vertices = myPart_1.vertices.findAt(

230   ((-e,0.5*t, 1./3*L),),((W+e,0.5*t,1./3*L),),

231   ((0.5*t,0.5*t, 1./3*L),),((W-0.5*t,0.5*t,1./3*L),),))

232   myPart_1.Set(name='Load_bottom2', vertices = myPart_1.vertices.findAt(

233   ((-e,0.5*t, 2./3*L),),((W+e,0.5*t,2./3*L),),

234   ((0.5*t,0.5*t, 2./3*L),),((W-0.5*t,0.5*t,2./3*L),),))

235   elif section=='Decking':

236   pass

237   

238   # section if volume elements

239   elif elements =='volume':

240   pass

241   # 

----------------------------------------------------------------------------------

-------------------------

242   ## Assembly ##

243   myAssembly = myModel_1.rootAssembly

244   myAssembly.DatumCsysByDefault (CARTESIAN)

245   myAssembly.Instance(dependent = ON, part = myPart_1, name = (section+'-1'))

246   # 

----------------------------------------------------------------------------------

-------------------------

247   ## Mesh ##

248   if elements=='shell':

249   if section=='IPE':

250   mySet_19 = myAssembly.Set(name='IPE', faces =

myAssembly.instances['IPE-1'].faces.findAt(

251   

((0.1*W,-0.5*tf,0.1*L),),((-0.1*W,-0.5*tf,0.1*L),),((0.1*W,-H+0.5*tf,0

.1*L),),((-0.1*W,-H+0.5*tf,0.1*L),),

252   

((0.1*W,-0.5*tf,0.5*L),),((-0.1*W,-0.5*tf,0.5*L),),((0.1*W,-H+0.5*tf,0

.5*L),),((-0.1*W,-H+0.5*tf,0.5*L),),

253   

((0.1*W,-0.5*tf,0.8*L),),((-0.1*W,-0.5*tf,0.8*L),),((0.1*W,-H+0.5*tf,0

.8*L),),((-0.1*W,-H+0.5*tf,0.8*L),),

254   ((0,-0.5*H,0.1*L),),))

255   elif section=='RHS':

256   if type=='Beam1':

257   mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

258   

((-0.5*e,0.5*t,0.1*L),),((0.5*W,0.5*t,0.1*L),),((W+0.5*e,0.5*t,0.1

*L),),

259   

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*H,0.



1*L),),

260   

((-0.5*e,0.5*t,0.5*L),),((0.5*W,0.5*t,0.5*L),),((W+0.5*e,0.5*t,0.5

*L),),

261   

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*H,0.

5*L),),

262   

((-0.5*e,0.5*t,0.8*L),),((0.5*W,0.5*t,0.8*L),),((W+0.5*e,0.5*t,0.8

*L),),

263   

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*H,0.

8*L),),))

264   else:

265   mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

266   

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*H,0.

1*L),),((0.5*W,0.5*t,0.1*L),),

267   

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*H,0.

5*L),),((0.5*W,0.5*t,0.5*L),),

268   

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*H,0.

8*L),),((0.5*W,0.5*t,0.8*L),),))

269   elif section=='Decking':

270   pass

271   elif elements=='volume':

272   pass

273   myAssembly.setElementType (elemTypes= (ElemType( elemCode = S4R, elemLibrary =

274   STANDARD),), regions = mySet_19)

275   myModel_1.parts[section].seedPart(deviationFactor=0.1, minSizeFactor = 0.1,

size=mesh_size)

276   myModel_1.parts[section].generateMesh()

277   

278   

#---------------------------------------------------------------------------------

---------------------------

279   ## Start incrementation ##

280   increment = 0

281   while increment<=numFrames:

282   print('Start incrementation '+ analysis+': '+str(increment))

283   model_Name_2 = str(increment) +'_'+ analysis

284   myModel_2 = mdb.Model(name=model_Name_2)

285   myModel_2.setValues(absoluteZero = -273.15, stefanBoltzmann = 5.67e-11)

286   # Load part / material / Section #

287   myPart_21 = myModel_2.Part(section, myModel_1.parts[section])

288   myModel_2.Material(material, myModel_1.materials[material])

289   myModel_2.Section('Flanges', myModel_1.sections['Flanges'])

290   if section=='IPE':

291   myModel_2.Section('Web', myModel_1.sections['Web'])

292   myModel_2.Instance(section+'-1', myAssembly.instances[section+'-1'])

293   

294   if increment>1: step = 5

295   else: step = 1

296   NewJob = '3D_Model_GA_new'+str(increment)

297   PrevJob = '3D_Model_GA_new'+str(increment-step)

298   NewStep = 'General_Analysis_'+str(increment)

299   PrevStep = 'General_Analysis_'+str(increment-step)

300   # Loading Restart File #

301   if increment>0:

302   myModel_2.setValues(restartJob = PrevJob, restartStep = PrevStep,

303   restartIncrement = STEP_END)

304   

305   

#-----------------------------------------------------------------------------

-------------------------------

306   ## Assembly ##

307   #print('Start assembly')

308   myAssembly = myModel_2.rootAssembly

309   # 

------------------------------------------------------------------------------



-----------------

310   ## Surfaces ##

311   #print('Start surfaces')

312   if elements=='shell':

313   if section=='RHS':

314   mySurface_11 = myAssembly.Surface(name='Top Beam', side2Faces=

315   myAssembly.instances['RHS-1'].faces.findAt( ((t, H-0.5*t,0.1*L),),

316   ((t, H-0.5*t,0.5*L),),((t, H-0.5*t,0.8*L),),))

317   if type=='Beam1':

318   mySurface_13 = myAssembly.Surface(name='Side face1 RHS',

side1Edges =

319   myAssembly.instances['RHS-1'].edges.findAt(

320   ((0.5*t,

0.5*H,0),),((0.1*W,H-0.5*t,0),),((W-0.5*t,0.5*H,0),),

321   

((0.1*W,0.5*t,0),),((-0.5*e,0.5*t,0),),((W+0.5*e,0.5*t,0),

),))

322   mySurface_12 = myAssembly.Surface(name='Bottom flange',

side2Faces=

323   myAssembly.instances['RHS-1'].faces.findAt(

324   ((-0.25*e,0.5*t,0.1*L),),((W+0.25*e,0.5*t,0.1*L),),

325   ((-0.25*e,0.5*t,0.5*L),),((W+0.25*e,0.5*t,0.5*L),),

326   ((-0.25*e,0.5*t,0.8*L),),((W+0.25*e,0.5*t,0.8*L),),))

327   else:

328   mySurface_13 = myAssembly.Surface(name='Side face1 RHS',

side1Edges =

329   myAssembly.instances['RHS-1'].edges.findAt(

330   ((0.5*t, 0.5*H,0),),((0.1*W,H-0.5*t,0),),

331   ((W-0.5*t,0.5*H,0),),((0.1*W,0.5*t,0),),))

332   elif section=='IPE':

333   mySurface_11 = myAssembly.Surface(name='Top beam', side2Faces =

334   myAssembly.instances['IPE-1'].faces.findAt(

335   ((0.1*W,-0.5*tf,0.1*L),),((-0.1*W,-0.5*tf,0.1*L),),

336   ((0.1*W,-0.5*tf,0.5*L),),((-0.1*W,-0.5*tf,0.5*L),),

337   ((0.1*W,-0.5*tf,0.8*L),),((-0.1*W,-0.5*tf,0.8*L),),))

338   mySurface_13 = myAssembly.Surface(name='Side face1 IPE', side1Edges =

339   myAssembly.instances['IPE-1'].edges.findAt(

340   ((0.1*W,-0.5*tf,0),),((0.1*W,-H+0.5*tf,0),),((0,-0.5*H,0),),

341   ((-0.1*W,-0.5*tf,0),),((-0.1*W,-H+0.5*tf,0),),))

342   if type=='Beam1':

343   mySurface_12 = myAssembly.Surface(name='Bottom Flange beam',

side2Faces=

344   myAssembly.instances['IPE-1'].faces.findAt(

345   ((-0.2*W,-H+0.5*tf,0.1*L),),((0.2*W,-H+0.5*tf,0.1*L),),

346   ((-0.2*W,-H+0.5*tf,0.5*L),),((0.2*W,-H+0.5*tf,0.5*L),),

347   ((-0.2*W,-H+0.5*tf,0.8*L),),((0.2*W,-H+0.5*tf,0.8*L),)))

348   elif section=='Decking':

349   pass

350   elif elements=='volume':

351   pass

352   # 

------------------------------------------------------------------------------

-----------------

353   ## Sets ##

354   #print('Start sets')

355   if elements=='shell':

356   if section=='IPE':

357   # in part instance

358   Flanges = myPart_21.faces.findAt(

359   ((-(0.2*W),-(0.5*tf),(0.1*L)),),((0.2*W,

-0.5*tf,0.1*L),),((-0.2*W,-(H-(0.5*tf)),0.1*L),),((0.2*W,-(H-(0.5*

tf)),0.1*L),),

360   ((-(0.2*W),-(0.5*tf),(0.5*L)),),((0.2*W,

-0.5*tf,0.5*L),),((-0.2*W,-(H-(0.5*tf)),0.5*L),),((0.2*W,-(H-(0.5*

tf)),0.5*L),),

361   ((-(0.2*W),-(0.5*tf),(0.8*L)),),((0.2*W,

-0.5*tf,0.8*L),),((-0.2*W,-(H-(0.5*tf)),0.8*L),),((0.2*W,-(H-(0.5*

tf)),0.8*L),),)

362   Set_11 = myPart_21.Set(name='Flanges', faces = (Flanges,))

363   Web = myPart_21.faces.findAt( ((0,-0.5*H,0.5*L),),)

364   Set_12 = myPart_21.Set(name='Web', faces = (Web,))

365   # in assembly



366   mySet_11 = myAssembly.Set(name='Top Flange edge1', edges =

myAssembly.instances['IPE-1'].edges.findAt(

367   ((0.1*W,-0.5*tf,0),),((-0.1*W,-0.5*tf,0),),))

368   mySet_12 = myAssembly.Set(name='Top Flange edge2', edges =

myAssembly.instances['IPE-1'].edges.findAt(

369   ((0.1*W,-0.5*tf,L),),((-0.1*W,-0.5*tf,L),),))

370   mySet_13 = myAssembly.Set(name='Bottom Flange edge1', edges =

myAssembly.instances['IPE-1'].edges.findAt(

371   ((0.1*W,-H+0.5*tf,0),),((-0.1*W,-H+0.5*tf,0),),))

372   mySet_14 = myAssembly.Set(name='Bottom Flange edge2', edges =

myAssembly.instances['IPE-1'].edges.findAt(

373   ((0.1*W,-H+0.5*tf,L),),((-0.1*W,-H+0.5*tf,L),),))

374   mySet_15 = myAssembly.Set(name='Side face1 IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

375   

((0.1*W,-0.5*tf,0),),((0.1*W,-H+0.5*tf,0),),((0,-0.5*H,0),),((-0.1

*W,-0.5*tf,0),),((-0.1*W,-H+0.5*tf,0),),))

376   mySet_16 = myAssembly.Set(name='Side face2 IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

377   

((0.1*W,-0.5*tf,L),),((0.1*W,-H+0.5*tf,L),),((0,-0.5*H,L),),((-0.1

*W,-0.5*tf,L),),((-0.1*W,-H+0.5*tf,L),),))

378   # Edges of flange on one side, left followed by right side

379   mySet_17 = myAssembly.Set(name='Side edge IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

380   ((-0.5*W,-0.5*tf,0.1*L),),((-0.5*W,-H+0.5*tf,0.1*L),),

381   ((-0.5*W,-0.5*tf,0.5*L),),((-0.5*W,-H+0.5*tf,0.5*L),),

382   ((-0.5*W,-0.5*tf,0.8*L),),((-0.5*W,-H+0.5*tf,0.8*L),),))

383   mySet_18 = myAssembly.Set(name='Side edge2 IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

384   ((0.5*W,-0.5*tf, 0.1*L),),((0.5*W,-H+0.5*tf,0.1*L),),

385   ((0.5*W,-0.5*tf, 0.5*L),),((0.5*W,-H+0.5*tf,0.5*L),),

386   ((0.5*W,-0.5*tf, 0.8*L),),((0.5*W,-H+0.5*tf,0.8*L),),))

387   # full beam

388   mySet_19 = myAssembly.Set(name='IPE', faces =

myAssembly.instances['IPE-1'].faces.findAt(

389   

((0.1*W,-0.5*tf,0.1*L),),((-0.1*W,-0.5*tf,0.1*L),),((0.1*W,-H+0.5*

tf,0.1*L),),((-0.1*W,-H+0.5*tf,0.1*L),),

390   

((0.1*W,-0.5*tf,0.5*L),),((-0.1*W,-0.5*tf,0.5*L),),((0.1*W,-H+0.5*

tf,0.5*L),),((-0.1*W,-H+0.5*tf,0.5*L),),

391   

((0.1*W,-0.5*tf,0.8*L),),((-0.1*W,-0.5*tf,0.8*L),),((0.1*W,-H+0.5*

tf,0.8*L),),((-0.1*W,-H+0.5*tf,0.8*L),),

392   ((0,-0.5*H,0.1*L),),))

393   

394   elif section=='RHS':

395   mySet_11 = myAssembly.Set(name='Top edge1', edges =

myAssembly.instances['RHS-1'].edges.findAt(

396   ((0.1*W,H-0.5*t,0),),))

397   mySet_12 = myAssembly.Set(name='Top edge2', edges =

myAssembly.instances['RHS-1'].edges.findAt(

398   ((0.1*W,H-0.5*t,L),),))

399   mySet_13 = myAssembly.Set(name='Bottom edge1', edges =

myAssembly.instances['RHS-1'].edges.findAt(

400   ((0.1*W,0.5*t,0),),((-0.5*e,0.5*t,0),),((W+0.5*e,0.5*t,0),),))

401   mySet_14 = myAssembly.Set(name ='Bottom edge2', edges =

myAssembly.instances['RHS-1'].edges.findAt(

402   ((0.1*W,0.5*t,L),),((-0.5*e,0.5*t,L),),((W+0.5*e,0.5*t,L),),))

403   

404   if type=='Beam1':

405   # part instance

406   Sides = myPart_21.faces.findAt(

(((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L),),

407   

((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),((-0.5*e,0.5*t,0

.5*L),),((W+0.5*e,0.5*t,0.5*L),),

408   (((W-0.5*t),0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

409   

((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.1*L),),((-0.5*e,0.5*t,0

.1*L),),((W+0.5*e,0.5*t,0.1*L),),



410   (((W-0.5*t),0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

411   

((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),((-0.5*e,0.5*t,0

.8*L),),((W+0.5*e,0.5*t,0.8*L),),)

412   Set_11 = myPart_1.Set(name='Flanges', faces = (Sides,))

413   mySet_15 = myAssembly.Set(name='Side face1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

414   ((0.5*t,

0.5*H,0),),((0.1*W,H-0.5*t,0),),((W-0.5*t,0.5*H,0),),((0.1*W,0

.5*t,0),),

415   ((-0.5*e,0.5*t,0),),((W+0.5*e,0.5*t,0),),))

416   mySet_16 = myAssembly.Set(name='Side face2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

417   ((0.5*t,

0.5*H,L),),((0.1*W,H-0.5*t,L),),((W-0.5*t,0.5*H,L),),((0.1*W,0

.5*t,L),),

418   ((-0.5*e,0.5*t,L),),((W+0.5*e,0.5*t,L),),))

419   mySet_17 = myAssembly.Set(name='Side edge1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

420   ((-e,0.5*t,0.1*L),),((0.5*t,H-0.5*t,0.1*L),),

421   ((-e,0.5*t,0.5*L),),((0.5*t,H-0.5*t,0.5*L),),

422   ((-e,0.5*t,0.8*L),),((0.5*t,H-0.5*t,0.8*L),),))

423   mySet_18 = myAssembly.Set(name='Side edge2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

424   ((W+e,0.5*t,0.1*L),),((W-0.5*t,H-0.5*t,0.1*L),),

425   ((W+e,0.5*t,0.5*L),),((W-0.5*t,H-0.5*t,0.5*L),),

426   ((W+e,0.5*t,0.8*L),),((W-0.5*t,H-0.5*t,0.8*L),),))

427   mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

428   

((-0.5*e,0.5*t,0.1*L),),((0.5*W,0.5*t,0.1*L),),((W+0.5*e,0.5*t

,0.1*L),),

429   

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*

H,0.1*L),),

430   

((-0.5*e,0.5*t,0.5*L),),((0.5*W,0.5*t,0.5*L),),((W+0.5*e,0.5*t

,0.5*L),),

431   

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*

H,0.5*L),),

432   

((-0.5*e,0.5*t,0.8*L),),((0.5*W,0.5*t,0.8*L),),((W+0.5*e,0.5*t

,0.8*L),),

433   

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*

H,0.8*L),),))

434   

435   else:

436   Sides = myPart_1.faces.findAt(

(((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L),),

437   ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

438   (((W-0.5*t),0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

439   ((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.1*L),),

440   (((W-0.5*t),0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

441   ((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),)

442   Set_11 = myPart_1.Set(name='Flanges', faces = (Sides,))

443   mySet_15 = myAssembly.Set(name='Side face1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

444   ((0.5*t,

0.5*H,0),),((0.1*W,H-0.5*t,0),),((W-0.5*t,0.5*H,0),),((0.1*W,0

.5*t,0),),

445   ))

446   mySet_16 = myAssembly.Set(name='Side face2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

447   ((0.5*t,

0.5*H,L),),((0.1*W,H-0.5*t,L),),((W-0.5*t,0.5*H,L),),((0.1*W,0

.5*t,L),),

448   ))

449   mySet_17 = myAssembly.Set(name='Side edge1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

450   ((0.5*t,0.5*t,0.1*L),),((0.5*t,H-0.5*t,0.1*L),),



451   ((0.5*t,0.5*t,0.5*L),),((0.5*t,H-0.5*t,0.5*L),),

452   ((0.5*t,0.5*t,0.8*L),),((0.5*t,H-0.5*t,0.8*L),),))

453   mySet_18 = myAssembly.Set(name='Side edge2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

454   ((W-0.5*t,0.5*t,0.1*L),),((W-0.5*t,H-0.5*t,0.1*L),),

455   ((W-0.5*t,0.5*t,0.5*L),),((W-0.5*t,H-0.5*t,0.5*L),),

456   ((W-0.5*t,0.5*t,0.8*L),),((W-0.5*t,H-0.5*t,0.8*L),),))

457   mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

458   

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*

H,0.1*L),),((0.5*W,0.5*t,0.1*L),),

459   

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*

H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

460   

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*

H,0.8*L),),((0.5*W,0.5*t,0.8*L),),))

461   elif section=='Decking':

462   pass

463   

464   elif elements=='volume':

465   pass

466   # 

------------------------------------------------------------------------------

-----------------

467   # Local coordinate system #

468   #print('start local coordinate')

469   if section=='IPE':

470   myLocCoor_1 = myAssembly.DatumCsysByThreePoints(coordSysType = CARTESIAN,

471   name='Local Coordinates 1',

472   

origin=myAssembly.instances[section+'-1'].vertices.findAt((0,-0.5*tf,0

),),

473   

point1=myAssembly.instances[section+'-1'].vertices.findAt((0.5*W,-0.5*

tf,0),),

474   

point2=myAssembly.instances[section+'-1'].vertices.findAt((0,-H+0.5*tf

,0),),)

475   LC_1 = myLocCoor_1.id

476   myModel_2.parts[section].DatumCsysByThreePoints(coordSysType = CARTESIAN,

477   name='Datum csys-1',

478   origin=myModel_2.parts[section].vertices.findAt((0,-0.5*tf,0),),

479   point1=myModel_2.parts[section].vertices.findAt((0.5*W,-0.5*tf,0),),

480   point2=myModel_2.parts[section].vertices.findAt((0.5*W,-H+0.5*tf,0),))

481   

myModel_2.parts[section].MaterialOrientation(additionalRotationType=ROTATI

ON_NONE,

482   axis=AXIS_2, angle=0.0, localCsys =

myModel_2.parts[section].datums[15],

483   orientationType=SYSTEM, region=Set_11)

484   

myModel_2.parts[section].MaterialOrientation(additionalRotationType=ROTATI

ON_NONE,

485   axis=AXIS_2, angle=0, localCsys=myModel_2.parts[section].datums[15],

486   orientationType=SYSTEM, region=Set_12)

487   elif section=='RHS':

488   if increment==0: count=12

489   else: count+=1

490   myLocCoor_1 = myAssembly.DatumCsysByThreePoints(coordSysType = CARTESIAN,

491   name='Local Coordinates 1',

492   

origin=myAssembly.instances[section+'-1'].vertices.findAt((0.5*t,0.5*t

,0),),

493   

point1=myAssembly.instances[section+'-1'].vertices.findAt((0.5*t,H-0.5

*t,0),),

494   

point2=myAssembly.instances[section+'-1'].vertices.findAt((W-0.5*t,H-0

.5*t,0),))

495   LC_1 = myLocCoor_1.id



496   myModel_2.parts[section].DatumCsysByThreePoints(coordSysType = CARTESIAN,

497   name='Datum csys-1',

498   origin=myModel_2.parts[section].vertices.findAt((0.5*t,0.5*t,0),),

499   point1=myModel_2.parts[section].vertices.findAt((0.5*t,H-0.5*t,0),),

500   point2=myModel_2.parts[section].vertices.findAt((W-0.5*t,H-0.5*t,0),))

501   

myModel_2.parts[section].MaterialOrientation(additionalRotationType=ROTATI

ON_NONE,

502   axis=AXIS_2, angle=0, localCsys =

myModel_2.parts[section].datums[count],

503   orientationType=SYSTEM, region=Set_11)

504   

505   # Reference Points #

506   if section=='IPE':

507   myReferencePoint_1 = myAssembly.ReferencePoint(point=(0,-H+0.5*tf,0))

508   elif section=='RHS':

509   myReferencePoint_1 = myAssembly.ReferencePoint(point=(0.5*t,0.5*t,0))

510   elif section=='Decking':

511   pass

512   RP_1 = myReferencePoint_1.id

513   mySet_RP1 = myAssembly.Set(name='Reference Point 1',

referencePoints=(myAssembly.referencePoints[RP_1],))

514   

515   if section == 'IPE':

516   myReferencePoint_2 = myAssembly.ReferencePoint(point=(0,-0.5*tf,1./3*L))

517   myReferencePoint_3 = myAssembly.ReferencePoint(point=(0,-H+0.5*tf,1./3*L))

518   myReferencePoint_4 = myAssembly.ReferencePoint(point=(0,-0.5*tf,2./3*L))

519   myReferencePoint_5 = myAssembly.ReferencePoint(point=(0,-H+0.5*tf,2./3*L))

520   elif section=='RHS':

521   myReferencePoint_2 = myAssembly.ReferencePoint(point=(-e,0.5*t,1./3*L))

522   myReferencePoint_3 = myAssembly.ReferencePoint(point=(W, 0.5*t, 1./3*L))

523   myReferencePoint_4 = myAssembly.ReferencePoint(point=(-e,0.5*t,2./3*L))

524   myReferencePoint_5 = myAssembly.ReferencePoint(point=(W, 0.5*t, 2./3*L))

525   RP2 = myReferencePoint_2.id

526   RP3 = myReferencePoint_3.id

527   RP4 = myReferencePoint_4.id

528   RP5 = myReferencePoint_5.id

529   mySet_RP2 = myAssembly.Set(name='RP2',

referencePoints=(myAssembly.referencePoints[RP2],))

530   mySet_RP3 = myAssembly.Set(name='RP3',

referencePoints=(myAssembly.referencePoints[RP3],))

531   mySet_RP4 = myAssembly.Set(name='RP4',

referencePoints=(myAssembly.referencePoints[RP4],))

532   mySet_RP5 = myAssembly.Set(name='RP5',

referencePoints=(myAssembly.referencePoints[RP5],))

533   

534   # thermal expansion coefficient #

535   path_Properties = r'D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\properties'

536   if material=='Aluminium':

537   with open(path_Properties+'\\'+'ThermalExpAlu EC9.csv','r') as f:

538   reader=(csv.reader(f, delimiter=';'))

539   Expansion = ()

540   for row, column in enumerate(reader):

541   v=[]

542   for value in column:

543   v=v+[float(value),]

544   Expansion = Expansion + (v,)

545   f.close()

546   elif material=='Steel':

547   with open(path_Properties+'\\'+'ThermalExpSteel EC3.csv', 'r') as f:

548   reader=(csv.reader(f, delimiter=';'))

549   Expansion=()

550   for row, column in enumerate(reader):

551   v=[]

552   for value in column:

553   v=v+[float(value),]

554   Expansion = Expansion + (v,)

555   f.close()

556   myModel_2.materials[material].Expansion(type=ORTHOTROPIC,

temperatureDependency=ON, zero=20,

557   table=Expansion)



558   del Expansion, v

559   

560   # 

------------------------------------------------------------------------------

-----------------------------

561   ## Step ##

562   #print('start step')

563   if increment== 0:

564   myModel_2.StaticStep(name='General_Analysis_0', nlgeom = ON,

previous='Initial',

565   maxNumInc=1000, initialInc=1, minInc=1e-9)

566   # creating restart file

567   myModel_2.steps['General_Analysis_0'].Restart(frequency=1,

numberIntervals=0,

568   overlay=ON, timeMarks=OFF)

569   elif increment==1:

570   myModel_2.StaticStep(name='General_Analysis_0', nlgeom=ON,

previous='Initial',

571   maxNumInc=1000, initialInc=1, minInc=1e-9)

572   myModel_2.StaticStep(name=NewStep, nlgeom=ON,

previous='General_Analysis_0',

573   maxNumInc=1000, initialInc=1, minInc=1e-9)

574   # creating restart file

575   myModel_2.steps[NewStep].Restart(frequency = 1, numberIntervals=0,

576   overlay=ON, timeMarks=OFF)

577   elif increment>1:

578   myModel_2.StaticStep(name=PrevStep, nlgeom = ON, previous='Initial',

579   maxNumInc=1000, initialInc=1, minInc=1e-9)

580   myModel_2.StaticStep(name=NewStep, nlgeom=ON, previous=PrevStep,

581   maxNumInc=1000, initialInc=1, minInc=1e-9)

582   # creating restart file

583   myModel_2.steps[NewStep].Restart(frequency = 1, numberIntervals=0,

584   overlay=ON, timeMarks=OFF)

585   # 

------------------------------------------------------------------------------

-----------------------------

586   ## Ties ##

587   #print('start ties')

588   myModel_2.Coupling(controlPoint=mySet_RP1, couplingType = KINEMATIC,

589   influenceRadius = WHOLE_SURFACE, name = 'CP-1', surface=mySurface_13,

590   u1=ON,u2=ON, u3=ON,ur1=ON,ur2=ON,ur3=ON)

591   if section=='IPE':

592   mySurface_4a = myAssembly.Set(name='Top flange', faces =

myAssembly.instances['IPE-1'].faces.findAt(

593   

((-0.1*W,-0.5*tf,1/4.*L),),((-0.1*W,-0.5*tf,1/2.*L),),((-0.1*W,-0.5*tf

,3/4.*L),),

594   

((0.1*W,-0.5*tf,1/4.*L),),((0.1*W,-0.5*tf,1/2.*L),),((0.1*W,-0.5*tf,3/

4.*L),),))

595   mySurface_4b = myAssembly.Set(name='Bottom flange', faces =

myAssembly.instances['IPE-1'].faces.findAt(

596   

((-0.1*W,-H+0.5*tf,1/4.*L),),((-0.1*W,-H+0.5*tf,1/2.*L),),((-0.1*W,-H+

0.5*tf,3/4.*L),),

597   

((0.1*W,-H+0.5*tf,1/4.*L),),((0.1*W,-H+0.5*tf,1/2.*L),),((0.1*W,-H+0.5

*tf,3/4.*L),),))

598   elif section =='RHS':

599   mySurface_4a = myAssembly.Set(name='Top flange', faces =

myAssembly.instances['RHS-1'].faces.findAt(

600   

((0.5*W,H-0.5*t,1/4.*L),),((0.5*W,H-0.5*t,1/2.*L),),((0.5*W,H-0.5*t,3/

4.*L),),))

601   if type=='Beam3':

602   mySurface_4b = myAssembly.Set(name='Bottom flange', faces =

myAssembly.instances['RHS-1'].faces.findAt(

603   

((0.5*W,0.5*t,1/4.*L),),((0.5*W,0.5*t,1/2.*L),),((0.5*W,0.5*t,3/4.

*L),),))

604   elif type=='Beam1':

605   mySurface_4b = myAssembly.Set(name='Bottom flange', faces =



myAssembly.instances['RHS-1'].faces.findAt(

606   

((-0.5*e,0.5*t,1/4.*L),),((0.5*W,0.5*t,1/4.*L),),((W+0.5*e,0.5*t,1

/4.*L),),

607   

((-0.5*e,0.5*t,1/2.*L),),((0.5*W,0.5*t,1/2.*L),),((W+0.5*e,0.5*t,1

/2.*L),),

608   

((-0.5*e,0.5*t,3/4.*L),),((0.5*W,0.5*t,3/4.*L),),((W+0.5*e,0.5*t,3

/4.*L),),))

609   

610   all_nodes = myAssembly.instances[section+'-1'].nodes

611   left_nodes_top = []

612   length_left = []

613   length_right = []

614   right_nodes_top = []

615   left_nodes_bottom = []

616   right_nodes_bottom = []

617   for Length in list(range(-5,6,1)):

618   length_left.append( L/3.+Length*mesh_size )

619   length_right.append( 2*L/3.+Length*mesh_size )

620   

621   for n in all_nodes:

622   ycoord = n.coordinates[1]

623   zcoord = n.coordinates[2]

624   if section =='IPE':

625   if ycoord == -0.5*tf:

626   if zcoord in length_left: left_nodes_top.append(n)

627   elif zcoord in length_right: right_nodes_top.append(n)

628   elif ycoord==-H+0.5*tf:

629   if zcoord in length_left: left_nodes_bottom.append(n)

630   elif zcoord in length_right: right_nodes_bottom.append(n)

631   else:

632   if ycoord== H-0.5*t:

633   if zcoord in length_left: left_nodes_top.append(n)

634   elif zcoord in length_right: right_nodes_top.append(n)

635   elif ycoord == 0.5*t:

636   if zcoord in length_left: left_nodes_bottom.append(n)

637   elif zcoord in length_right: right_nodes_bottom.append(n)

638   

639   left_top = myAssembly.Set(nodes=MeshNodeArray(left_nodes_top),

name='left_top')

640   left_bottom = myAssembly.Set(nodes=MeshNodeArray(left_nodes_bottom),

name='left_bottom')

641   right_top = myAssembly.Set(nodes=MeshNodeArray(right_nodes_top),

name='right_top')

642   right_bottom = myAssembly.Set(nodes=MeshNodeArray(right_nodes_bottom),

name='right_bottom')

643   

644   myModel_1.RigidBody(name='left_top', refPointRegion=mySet_RP2,

645   tieRegion=left_top, refPointAtCOM=ON)

646   myModel_1.RigidBody(name='left_bottom', refPointRegion=mySet_RP3,

647   tieRegion=left_bottom, refPointAtCOM=ON)

648   myModel_1.RigidBody(name='right_top', refPointRegion=mySet_RP4,

649   tieRegion=right_top, refPointAtCOM=ON)

650   myModel_1.RigidBody(name='right_bottom', refPointRegion=mySet_RP5,

651   tieRegion=right_bottom, refPointAtCOM=ON)

652   

653   ## Boundary conditions ##

654   # these can differ between top edge, bottom edge or end face

655   if type=='Column':

656   myModel_2.DisplacementBC (createStepName='Initial', name= 'Bottom',

657   u1=0,u2=0,u3=0,ur1=0, ur2=0, ur3=0, region= mySet_RP1)

658   

659   else:

660   myModel_2.DisplacementBC (createStepName='Initial', name = 'Hinge',

661   u1=UNSET, u2=0, u3=0, ur1=UNSET, ur2=UNSET, ur3=UNSET, region=

mySet_RP1)

662   myModel_2.DisplacementBC (createStepName='Initial', name = 'Roller',

663   u1=UNSET,u2=0,u3=UNSET,ur1=UNSET,ur2=UNSET,ur3=UNSET, region=

mySet_12)

664   myModel_2.DisplacementBC (createStepName= 'Initial', name='Lateral',



665   u1=0,u2=UNSET,u3=UNSET,ur1=UNSET,ur2=UNSET,ur3=UNSET, region=

mySet_17)

666   

667   # 

------------------------------------------------------------------------------

-----------------------------

668   ## Loads ##

669   if section == 'RHS': divide = 2

670   elif section =='RHS' and type=='Beam1': divide=4

671   else: divide = 3

672   if type=="Beam3":

673   myModel_2.ConcentratedForce(name='Load1', createStepName = NewStep,

674   region = myAssembly.instances[section+'-1'].sets['Load_top1'],

675   cf2 = -load/divide, distributionType=UNIFORM, field='',

localCsys=None)

676   myModel_2.ConcentratedForce(name='Load2', createStepName = NewStep,

677   region = myAssembly.instances[section+'-1'].sets['Load_top2'],

678   cf2 = -load/divide, distributionType=UNIFORM, field='',

localCsys=None)

679   elif type=='Beam1':

680   myModel_2.ConcentratedForce(name='Load1', createStepName = NewStep,

681   region = myAssembly.instances[section+'-1'].sets['Load_top1'],

682   cf2 = -0.25*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

683   myModel_2.ConcentratedForce(name='Load2', createStepName = NewStep,

684   region = myAssembly.instances[section+'-1'].sets['Load_top2'],

685   cf2 = -0.25*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

686   myModel_2.ConcentratedForce(name='Load3', createStepName = NewStep,

687   region = myAssembly.instances[section+'-1'].sets['Load_bottom1'],

688   cf2 = -0.75*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

689   myModel_2.ConcentratedForce(name='Load4', createStepName = NewStep,

690   region = myAssembly.instances[section+'-1'].sets['Load_bottom2'],

691   cf2 = -0.75*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

692   

693   # 

------------------------------------------------------------------------------

-----------------------------

694   ## Predifined field ##

695   ## Initial ##

696   #print('Start predefined field: '+str(increment))

697   if increment==0:

698   myModel_2.Temperature (createStepName = 'Initial',

crossSectionDistribution =

699   CONSTANT_THROUGH_THICKNESS, distributionType=UNIFORM,

magnitudes=(20.0,),

700   name = 'Initial Temperature', region = mySet_19)

701   if increment>0:

702   myModel_2.InitialState(createStepName='Initial', endIncrement=STEP_END,

endStep=LAST_STEP,

703   fileName=PrevJob, instances=(myAssembly.instances[section+'-1'],),

704   name='Initial Temperature', updateReferenceConfiguration=OFF)

705   if type!='Column':

706   Thermal =

'Thermal_Analysis_'+type+'_'+section+'_'+material+'_Ins_'+insulated+'_

'+floor

707   elif type=='Column':

708   Thermal =

'Thermal_Analysis_'+type+'_'+section+'_'+material+'_Ins_'+insulated

709   path = r"D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS"+"\\"+Thermal

710   myList = input_variables.Temperature_field(path,L, Thermal, increment,

mesh_size)

711   

712   myModel_2.MappedField(description = 'midside', fieldDataType = SCALAR,

localCsys = None,

713   name = 'Coord_Temp_field', partLevelData = False, pointDataFormat =

XYZ,

714   regionType = POINT, xyzPointData = myList)

715   myModel_2.Temperature(createStepName=NewStep, crossSectionDistribution=



716   CONSTANT_THROUGH_THICKNESS, distributionType=FIELD, field =

'Coord_Temp_field',

717   interpolate=MIDSIDE_ONLY, magnitudes=(1.0,), name = 'Temperature',

region = mySet_19)

718   del myList

719   

720   # 

------------------------------------------------------------------------------

-----------------------------

721   ## Output request ##

722   Variables = ('COORD','TEMP','S', 'U','LE','PE','E')

723   myModel_2.fieldOutputRequests['F-Output-1'].setValues(variables = Variables,

frequency = Step_time)

724   # 

------------------------------------------------------------------------------

-----------------------------

725   print('Start job of increment '+analysis+': '+str(increment))

726   ## Job ##

727   try:

728   try:

729   if increment==0:

730   myModel_2.keywordBlock.synchVersions(storeNodesAndElements=False)

731   myJob = mdb.Job(name = NewJob, model = myModel_2, type =

ANALYSIS, scratch = Scratch)

732   else:

733   myJob = mdb.Job(name = NewJob, model = myModel_2, type =

RESTART, scratch = Scratch)

734   myJob.submit(consistencyChecking=OFF)

735   myJob.waitForCompletion()

736   

737   # result writing to csv

738   if increment==0: step_name='General_Analysis_0'

739   else: step_name = NewStep

740   odb = session.openOdb(name = NewJob +'.odb')

741   csv_writer_thermal_analysis.CSV_writer_mechanical(odb, NewJob,

step_name)

742   odb.close()

743   

744   if myJob.status != ABORTED:

745   if increment == 0: increment+=1

746   else: increment+=5

747   else:

748   odb = session.openOdb(name = NewJob + '.odb', readOnly=False)

749   odb.save()

750   break

751   except:

752   odb = session.openOdb(name = NewJob + '.odb', readOnly=False)

753   odb.save()

754   break

755   except OdbError, error:

756   print(error)

757   break

758   
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G: POSTPROCESSING SCRIPT 



1   ##  figure plotting  ##

2   import matplotlib.pyplot as plt

3   import matplotlib.image as mpimg

4   import matplotlib.ticker as ticker

5   import matplotlib.gridspec as gridspec

6   import matplotlib.patches as patches

7   from matplotlib.lines import Line2D

8   from matplotlib.ticker import AutoMinorLocator

9   from mpl_toolkits.axisartist.axislines import SubplotZero

10   import scipy

11   from scipy import ndimage

12   from scipy import interpolate

13   from scipy.signal import savgol_filter

14   from statsmodels.nonparametric.smoothers_lowess import lowess

15   import matplotlib.transforms as mtransforms

16   import pandas as pd

17   import numpy as np

18   import copy

19   import sys

20   import csv

21   import cowsay

22   sys.path.append(r"D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\Scripts\Intumescent paint")

23   

24   # Mechanische analyse

25   def read_data(numframes, model, variable, location): #variable of type ['Coord', 

'Temp','Stresses','Displacements','Rotations','Log_strains','Plastic_strains']

26   try:

27   if location=='': location==r'D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS'

28   path = location+'\\'+str(model)+'\\3D_Model_GA_new'

29   if variable == 'Temp':

30   name=['']

31   dict1 = pd.read_csv(path+str(0)+'_'+variable+'.txt', header=None,

names=name)

32   elif variable == 'Coord' or variable == 'Displacements' or variable

=='Rotations':

33   name=['X', 'Y', 'Z']

34   dict1 = pd.read_csv(path+str(0)+'_'+variable+'.txt', delimiter=',',

header=None, names=name)

35   else: #Stresses, Log Strains and Plastic strains

36   name=['S11','S12', 'S13', 'S22']

37   dict1 = pd.read_csv(path+str(0)+'_'+variable+'.txt', delimiter=',',

header=None, names=name)

38   #data = pd.DataFrame(dict1.items(), columns=[0], copy=True)

39   data = {0: dict1}

40   for frame in range(1,902,5):

41   try:

42   dict1 = pd.read_csv(path+str(frame)+'_'+variable+'.txt',

header=None, names=name)

43   data[frame] = dict1

44   except IOError:

45   break

46   return data

47   except FileNotFoundError: return None

48   

49   def find_paint_strain(item):

50   # find first occurance where temperature value is above a certain value

51   try:

52   LE = pd.DataFrame()

53   PE = pd.DataFrame()

54   stress_temp = pd.DataFrame()

55   for L, P, T in zip(item[3], item[4], item[2]):

56   LE = pd.concat([LE, item[3][L]], axis=1)

57   PE = pd.concat([PE, item[4][P]], axis=1)

58   stress_temp = pd.concat([stress_temp, item[2][T]], axis=1)

59   location = (stress_temp.min().values > 250).argmax()

60   paint_strain = ((LE['S11'].max()).iloc[location] +

(PE['S11'].max()).iloc[location])*100+1.3

61   return paint_strain

62   except: []

63   



64   def Temp_time(dictionary):

65   plt.figure()

66   plt.figsize=(6.27,3.5)

67   plt.subplots_adjust(left=0.14,bottom=0.14,right=0.96,top=0.92,hspace=0)

68   plt.ylabel('T$_{FEM}$ [Celsius]')

69   plt.xlabel('Time [min]')

70   plt.grid(lw=0.3, which='major', axis='both')

71   plt.grid(lw=0.1, which='minor', axis='both')

72   plt.xlim(right=90, left =0)

73   errorticks = [i for i,item in zip(range(30,100,5), range(40)) if

item<(len(dictionary[0][1])/2)] # get list of differing tick spaces so lines 

don't overlap

74   plt.ylim(bottom=0,top=800)

75   counter=0

76   for item in dictionary:

77   try:

78   if item[1] == None: continue

79   else:

80   if 'Column' in item[0]:

81   type = 'Columns'

82   item[0] = item[0].replace('Mech_Column_', '')

83   item[0] = item[0].replace('_Concrete','')

84   elif 'Beam3' in item[0]:

85   type='3-sided Beams'

86   item[0] = item[0].replace('Mech_Beam3_', '')

87   elif 'Beam1' in item[0]:

88   type = 'Integrated Beams'

89   item[0] = item[0].replace('Mech_Beam1_', '')

90   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

91   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

92   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

93   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

94   item[0] = item[0].replace('_', ' ')

95   

96   Label = item[0]

97   data = pd.DataFrame()

98   for j in item[1]:

99   data = pd.concat([data,item[1][j]],axis=1)

100   y = data.mean()

101   x = list(range(0,len(y), 1))

102   x = [item / 2 for item in x]

103   lowerlim = y - data.min()

104   upperlim = data.max() - y

105   limits=[lowerlim, upperlim]

106   plt.errorbar(x,y,yerr=limits, label = Label, lw=0.8,

107   elinewidth=0.4, errorevery=errorticks[counter])

108   counter+=1

109   except TypeError: continue

110   

111   plt.title('Temperature - Time curve '+type)

112   plt.minorticks_on()

113   plt.legend(loc='lower right', fontsize=9, frameon=True, shadow=False,

framealpha=0.5)

114   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'temp.png', dpi=400)

115   plt.show()

116   plt.close()

117   

118   def Strain_time(dictionary):

119   fig = plt.figure(figsize=(8,6))

120   grid = fig.add_gridspec(nrows=2,ncols=2)

121   fig.subplots_adjust(left=0.1,bottom=0.14,right=0.9,top=0.9, wspace=0.3, hspace=.5)

122   strain = fig.add_subplot(grid[0])

123   deflect = fig.add_subplot(grid[1])

124   stress = fig.add_subplot(grid[2])

125   

126   strain.grid(lw=0.3, which='major', axis='both')

127   strain.grid(lw=0.1, which='minor', axis='both')

128   deflect.grid(lw=0.3, which='major', axis='both')

129   deflect.grid(lw=0.1, which='minor', axis='both')

130   stress.grid(lw=0.3, which='major', axis='both')



131   stress.grid(lw=0.1, which='minor', axis='both')

132   

133   for item in dictionary:

134   try:

135   if item[1] == None: continue

136   else:

137   if 'Column' in item[0]:

138   type = 'Columns'

139   item[0] = item[0].replace('Mech_Column_', '')

140   item[0] = item[0].replace('_Concrete','')

141   elif 'Beam3' in item[0]:

142   type='3-sided Beams'

143   item[0] = item[0].replace('Mech_Beam3_', '')

144   elif 'Beam1' in item[0]:

145   type = 'Integrated Beams'

146   item[0] = item[0].replace('Mech_Beam1_', '')

147   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

148   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

149   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

150   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

151   item[0] = item[0].replace('_', ' ')

152   

153   Label= item[0]

154   LE = pd.DataFrame()

155   PE = pd.DataFrame()

156   disp = pd.DataFrame()

157   Strs = pd.DataFrame()

158   for L, P, D, S in zip(item[1], item[2],item[3], item[4]):

159   LE= pd.concat([LE,item[1][L]], axis=1)

160   PE= pd.concat([PE,item[2][P]], axis=1)

161   disp = pd.concat([disp, item[3][D]], axis=1)

162   Strs = pd.concat([Strs, item[4][S]], axis=1)

163   

164   y1 = LE['S11'].max()+PE['S11'].max()

165   y2 = disp['Y'].max()

166   y3 = Strs['S11'].max()

167   x= list(range(0,len(y1),1))

168   x= [i / 2 for i in x]

169   strain.plot(x,y1, label=Label, lw=0.8)

170   deflect.plot(x,y2, label=Label, lw=0.8)

171   stress.plot(x,y3, label=Label, lw=0.8)

172   except TypeError: continue

173   

174   strain.set(ylabel=r'$\epsilon_{FEM}$ ', xlabel='Time [min]',

175   title='Strain - Time curve '+type, xlim=(0,90))

176   deflect.set(ylabel='u$_{FEM}$ [mm]', xlabel='Time [min]',

177   title='Deflection - Time curve '+type, xlim=(0,90))

178   stress.set(ylabel= r'$\sigma_{FEM}$ [MPa]', xlabel='Time [min]',

179   title='Stress - Time curve '+type, xlim=(0,90))

180   deflect.minorticks_on()

181   strain.minorticks_on()

182   stress.minorticks_on()

183   

184   handles,labels = stress.get_legend_handles_labels()

185   legend = fig.add_subplot(grid[3])

186   legend.axis('off')

187   legend.legend(handles,labels, loc='center left', fontsize=9, frameon=True,

shadow=False,

188   framealpha =0.5)

189   

190   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'stress-disp-strain.png', dpi=400)

191   plt.show()

192   plt.close()

193   

194   def stress_strain(dictionary):

195   fig = plt.figure(figsize=(6.27,3.5))

196   fig.subplots_adjust(left=0.10,bottom=0.14,right=0.94,top=0.9, wspace=0)

197   strain = fig.add_subplot()

198   strain.grid(lw=0.3, which='major', axis='both')

199   strain.grid(lw=0.1, which='minor', axis='both')



200   

201   for item in dictionary:

202   try:

203   if item[1] == None: continue

204   else:

205   if 'Column' in item[0]:

206   type = 'Columns'

207   item[0] = item[0].replace('Mech_Column_', '')

208   item[0] = item[0].replace('_Concrete','')

209   elif 'Beam3' in item[0]:

210   type='3-sided Beams'

211   item[0] = item[0].replace('Mech_Beam3_', '')

212   elif 'Beam1' in item[0]:

213   type = 'Integrated Beams'

214   item[0] = item[0].replace('Mech_Beam1_', '')

215   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

216   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

217   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

218   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

219   item[0] = item[0].replace('_', ' ')

220   

221   Label= item[0]

222   LE = pd.DataFrame()

223   PE = pd.DataFrame()

224   Strs = pd.DataFrame()

225   Temp = pd.DataFrame()

226   proof_stress = list()

227   for L, P, S, T in zip(item[1], item[2],item[3], item[4]):

228   LE= pd.concat([LE,item[1][L]], axis=1)

229   PE= pd.concat([PE,item[2][P]], axis=1)

230   Strs = pd.concat([Strs, item[3][S]], axis=1)

231   Temp = pd.concat([Temp, item[4][T]], axis=1)

232   for T in Temp.max():

233   if 'Alu' in Label:

234   if T<175: proof_stress.append(((120-205)/(175-20))*T+205)

235   elif T<200: proof_stress.append(((110-120)/25)*T+(120+70))

236   elif T<225: proof_stress.append(((100-110)/25)*T+(110+80))

237   elif T<250: proof_stress.append( ((88-100)/25)*T+(100+108))

238   elif T<275: proof_stress.append( ((75-88)/25)*T+(88+130))

239   elif T<300: proof_stress.append( ((60-75)/25)*T+(75+165))

240   elif T<325: proof_stress.append( ((46-60)/25)*T+(60+168))

241   elif T<350: proof_stress.append( ((34-46)/25)*T+(46+156))

242   elif T<450: proof_stress.append( ((1-34)/100)*T+(34+462))

243   else: proof_stress.append(0)

244   else:

245   if T<200: proof_stress.append(((203.9-800)/180)*T+800)

246   elif T<300:

proof_stress.append(((137.6-203.9)/100)*T+(203.9+132.6))

247   elif T<400:

proof_stress.append(((112.5-137.6)/100)*T+(137.6+75.3))

248   elif T<500:

proof_stress.append(((89.3-112.5)/100)*T+(112.5+92.8))

249   elif T<600:

proof_stress.append(((47.5-89.3)/100)*T+(89.3+209))

250   elif T<800:

proof_stress.append(((0.1-47.5)/200)*T+(47.5+142.2))

251   else: proof_stress.append(0)

252   y=list()

253   #print(proof_stress)

254   #print(Strs['S11'].max())

255   #print(len(proof_stress),len(Strs['S11'].max()), len(Temp.max()))

256   for s1, s2 in zip(Strs['S11'].max(), proof_stress):

257   try: y.append(s1/s2)

258   except : y.append(0)

259   x = LE['S11'].max() + PE['S11'].max()

260   strain.plot(x,y, label=Label, lw=0.8)

261   except TypeError: continue

262   

263   strain.set(ylabel=r'$\sigma_{0.2\theta}$ / $\sigma_{FEM}$ ',

xlabel=r'$\epsilon_{FEM}$',

264   title='Stress - Strain curve '+type, )



265   strain.minorticks_on()

266   strain.legend(loc='upper right', fontsize=9, frameon=True, shadow=False,

framealpha=0.5)

267   

268   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'stress-strain.png', dpi=400)

269   plt.show()

270   plt.close()

271   

272   def strain_and_rate(dictionary):

273   fig = plt.figure(figsize=(6.27,3.5))

274   grid = fig.add_gridspec(nrows=1,ncols=2)

275   fig.subplots_adjust(left=0.1,bottom=0.14,right=0.98,top=0.9, wspace=0.3,

hspace=.5)

276   strain = fig.add_subplot(grid[0])

277   strain_rate = fig.add_subplot(grid[1])

278   

279   strain.grid(lw=0.3, which='major', axis='both')

280   strain.grid(lw=0.1, which='minor', axis='both')

281   strain_rate.grid(lw=0.3, which='major', axis='both')

282   strain_rate.grid(lw=0.1, which='minor', axis='both')

283   

284   # if 'paint' in dictionary[0][0]:

285   # strain.plot([0,90],[1.3,1.3], 'k-.', label='Paint strain limit', lw=0.6) # 

need to add strain at 120 degrees celsius

286   strain.plot([0,90],[3.75,3.75], 'k-.', label='Limit value', lw=0.6)

287   strain_rate.plot([0,90],[1.7,1.7], 'k-.', lw=0.6)

288   linenumber = 1

289   for item in dictionary:

290   try:

291   if item[1] == None: continue

292   else:

293   if 'Column' in item[0]:

294   type = 'Columns'

295   item[0] = item[0].replace('Mech_Column_', '')

296   item[0] = item[0].replace('_Concrete','')

297   elif 'Beam3' in item[0]:

298   type='3-sided Beams'

299   item[0] = item[0].replace('Mech_Beam3_', '')

300   elif 'Beam1' in item[0]:

301   type = 'Integrated Beams'

302   item[0] = item[0].replace('Mech_Beam1_', '')

303   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

304   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

305   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

306   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

307   item[0] = item[0].replace('_', ' ')

308   

309   Label= item[0]

310   LE = pd.DataFrame()

311   PE = pd.DataFrame()

312   for L, P, in zip(item[1], item[2]):

313   LE= pd.concat([LE,item[1][L]], axis=1)

314   PE= pd.concat([PE,item[2][P]], axis=1)

315   

316   y1 = LE['S11'].max()+PE['S11'].max() #logarithmic true strains

317   x= list(range(0,len(y1),1))

318   x= [i / 2 for i in x]

319   #y2 = LE['S11'].max()) # LE strains and plastic strains

320   y3 = np.zeros(y1.shape, np.float)

321   y3[0:-1] = np.diff(y1)/np.diff(x)# derivative of a fitted polyline 

to y2

322   y3[-1] = (y1[-1] - y1[-2]) / (x[-1] * x[-2])

323   strain.plot(x,y1*100, label=Label, lw=0.8)

324   Color = strain.get_lines()[linenumber].get_color()

325   #strain.plot(x,y2, '--', color = Color, lw=0.8)

326   del x[-1]

327   strain_rate.plot(x,y3*100, color = Color, label=Label, lw=0.8)

328   linenumber+=1

329   except TypeError: continue

330   



331   if 'type' in locals():

332   strain.set(ylabel=r'$\epsilon_{FEM}$ $\u2030$ ', xlabel='Time [min]',

333   xlim=(0,90))

334   strain_rate.set(ylabel=r'$\delta\epsilon_{FEM}$/$\delta$t', xlabel='Time 

[min]',

335   xlim=(0,90))

336   strain_rate.set_title('Strain rate '+type, fontsize=9)

337   strain.set_title('True Strain '+type, fontsize=9)

338   if type=='3-sided Beams':

339   strain.set_ylim(0,5)

340   strain_rate.set_ylim(0,2)

341   else: Label=''

342   

343   strain.minorticks_on()

344   strain_rate.minorticks_on()

345   strain_rate.plot([],[],'k--', lw=0.6, label='True Logarithmic strain')

346   strain_rate.legend(loc='best', fontsize=6, frameon=True, shadow=False,

347   framealpha =0.5)

348   

349   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'strain_rate.png', dpi=400)

350   plt.show()

351   plt.close()

352   

353   def stress_strain_normalised(dictionary):

354   fig = plt.figure(figsize=(6.27,3.5))

355   fig.subplots_adjust(left=0.10,bottom=0.14,right=0.94,top=0.9, wspace=0.3)

356   grid = fig.add_gridspec(nrows=1, ncols=2)

357   strain_stress = fig.add_subplot(grid[0])

358   strain_normalised = fig.add_subplot(grid[1])

359   

360   strain_stress.grid(lw=0.3, which='major', axis='both')

361   strain_stress.grid(lw=0.1, which='minor', axis='both')

362   strain_normalised.grid(lw=0.3, which='major', axis='both')

363   strain_normalised.grid(lw=0.1, which='minor', axis='both')

364   

365   # if 'paint' in dictionary[0][0]:

366   # strain.plot([1.3,1.3],[0,3], 'k-.', label='Paint strain limit', lw=0.6) # 

need to add strain at 120 degrees celsius

367   #strain_stress.plot([3.75,3.75],[0,3], 'k-.', label='Strain limit', lw=0.6)

368   #strain_normalised.plot([3.75,3.75],[0,1], 'k-.', label='Strain limit', lw=0.6)

369   for item in dictionary:

370   try:

371   if item[1] == None: continue

372   else:

373   if 'Column' in item[0]:

374   type = 'Columns'

375   item[0] = item[0].replace('Mech_Column_', '')

376   item[0] = item[0].replace('_Concrete','')

377   elif 'Beam3' in item[0]:

378   type='3-sided Beams'

379   item[0] = item[0].replace('Mech_Beam3_', '')

380   elif 'Beam1' in item[0]:

381   type = 'Integrated Beams'

382   item[0] = item[0].replace('Mech_Beam1_', '')

383   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

384   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

385   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

386   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

387   item[0] = item[0].replace('_', ' ')

388   

389   Label= item[0]

390   LE = pd.DataFrame()

391   PE = pd.DataFrame()

392   Strs = pd.DataFrame()

393   Temp = pd.DataFrame()

394   proof_stress = list()

395   for L, P, S, T in zip(item[1], item[2],item[3], item[4]):

396   LE= pd.concat([LE,item[1][L]], axis=1)

397   PE= pd.concat([PE,item[2][P]], axis=1)

398   Strs = pd.concat([Strs, item[3][S]], axis=1)



399   Temp = pd.concat([Temp, item[4][T]], axis=1)

400   for T in Temp.max():

401   if 'Alu' in Label:

402   if T<175: proof_stress.append(((120-205)/(175-20))*T+205)

403   elif T<200: proof_stress.append(((110-120)/25)*T+(120+70))

404   elif T<225: proof_stress.append(((100-110)/25)*T+(110+80))

405   elif T<250: proof_stress.append( ((88-100)/25)*T+(100+108))

406   elif T<275: proof_stress.append( ((75-88)/25)*T+(88+130))

407   elif T<300: proof_stress.append( ((60-75)/25)*T+(75+165))

408   elif T<325: proof_stress.append( ((46-60)/25)*T+(60+168))

409   elif T<350: proof_stress.append( ((34-46)/25)*T+(46+156))

410   elif T<450: proof_stress.append( ((1-34)/100)*T+(34+462))

411   else: proof_stress.append(0)

412   else:

413   if T<200: proof_stress.append(((203.9-800)/180)*T+800)

414   elif T<300:

proof_stress.append(((137.6-203.9)/100)*T+(203.9+132.6))

415   elif T<400:

proof_stress.append(((112.5-137.6)/100)*T+(137.6+75.3))

416   elif T<500:

proof_stress.append(((89.3-112.5)/100)*T+(112.5+92.8))

417   elif T<600:

proof_stress.append(((47.5-89.3)/100)*T+(89.3+209))

418   elif T<800:

proof_stress.append(((0.1-47.5)/200)*T+(47.5+142.2))

419   else: proof_stress.append(0)

420   y = Strs['S11'].max()

421   x = LE['S11'].max() + PE['S11'].max()

422   strain_stress.plot(x*100,y, label=Label,lw=0.8)

423   y = list()

424   for s1, s2 in zip(Strs['S11'].max(), proof_stress):

425   try: y.append(s1/s2)

426   except : y.append(0)

427   

428   strain_normalised.plot(x*100,y, label=Label, lw=0.8)

429   except TypeError: continue

430   

431   if 'type' in locals():

432   strain_normalised.set(ylabel=r'$\sigma_{FEM}$ / $\sigma_{0.2\Theta}$',

xlabel=r'$\epsilon_{FEM}$ $\u2030$',)

433   strain_normalised.set_title('Normalised stress - strain curve 

'+type,fontsize=9)

434   strain_stress.set(ylabel=r'$\sigma_{True,FEM}$ [MPa]',

xlabel=r'$\epsilon_{FEM}$ $\u2030$')

435   strain_stress.set_title('True stress - strain curve '+type, fontsize=9)

436   else: Label=''

437   strain_normalised.minorticks_on()

438   strain_stress.minorticks_on()

439   strain_normalised.legend(loc='best', fontsize=6, frameon=True, shadow=False,

framealpha=0.5)

440   

441   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'stress-strain-normalised.png', dpi=400)

442   plt.show()

443   plt.close()

444   

445   def Stress_deflect(dictionary):

446   fig = plt.figure(figsize=(6.27,3.5))

447   grid = fig.add_gridspec(nrows=1,ncols=2)

448   fig.subplots_adjust(left=0.14,bottom=0.14,right=0.98,top=0.9, wspace=0.3,

hspace=.5)

449   stress = fig.add_subplot(grid[1])

450   deflect = fig.add_subplot(grid[0])

451   

452   stress.grid(lw=0.3, which='major', axis='both')

453   stress.grid(lw=0.1, which='minor', axis='both')

454   deflect.grid(lw=0.3, which='major', axis='both')

455   deflect.grid(lw=0.1, which='minor', axis='both')

456   

457   path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

458   Stress_Alu = pd.read_csv(path_Properties+'\\proof stress6060-T66 20-TRUE.csv',

delimiter=';', header=None, names=['Stress', 'Strain', 'Temperature'],



dtype=np.float64)

459   Stress_Steel = pd.read_csv(path_Properties+'\\proof stressSteel EC3.csv',

delimiter=';', header=None, names=['Stress', 'Strain', 'Temperature'],

dtype=np.float64)

460   

461   stress_alu = Stress_Alu.sort_values(by=['Strain', 'Stress'], ascending =False)

462   stress_alu = stress_alu.reset_index(drop=True)

463   stress_alu.loc[90]=[1,0,450]

464   stress.plot(stress_alu['Temperature'][81:91], stress_alu['Stress'][81:91],'k--',

label = r'$\sigma_{0.2}$ Aluminium', lw=0.8)

465   stress_steel = Stress_Steel.sort_values(by=['Strain','Temperature'])

466   stress_steel = stress_steel.reset_index(drop=True)

467   stress.plot(stress_steel['Temperature'][0:7], stress_steel['Stress'][0:7],

'k-.', label = r'$\sigma_{0.2}$ Steel', lw=0.8)

468   

469   for item in dictionary:

470   try:

471   if item[1] == None: continue

472   else:

473   if 'Column' in item[0]:

474   type = 'Columns'

475   item[0] = item[0].replace('Mech_Column_', '')

476   item[0] = item[0].replace('_Concrete','')

477   elif 'Beam3' in item[0]:

478   type='3-sided Beams'

479   item[0] = item[0].replace('Mech_Beam3_', '')

480   elif 'Beam1' in item[0]:

481   type = 'Integrated Beams'

482   item[0] = item[0].replace('Mech_Beam1_', '')

483   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

484   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

485   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

486   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

487   item[0] = item[0].replace('_', ' ')

488   

489   Label= item[0]

490   disp = pd.DataFrame()

491   Strs = pd.DataFrame()

492   Temp = pd.DataFrame()

493   for D, S, T in zip(item[1], item[2], item[3]):

494   disp = pd.concat([disp, item[1][D]], axis=1)

495   Strs = pd.concat([Strs, item[2][S]], axis=1)

496   Temp = pd.concat([Temp, item[3][T]], axis=1)

497   if type=='Columns': y1=disp['Z'].max()

498   else: y1 = disp['Y'].max()

499   y2 = Strs['S11'].max()

500   x = list(range(0,len(y1),1))

501   x = [i / 2 for i in x]

502   x2 = Temp.max()

503   deflect.plot(x,y1, label=Label, lw=0.8)

504   stress.plot(x2,y2, label=Label, lw=0.8)

505   except TypeError: continue

506   

507   deflect.set(ylabel='u$_{FEM}$ [mm]', xlabel='Time [min]',

508   xlim=(0,90))

509   stress.set(ylabel= r'True $\sigma_{FEM}$ [MPa]', xlabel='T$_{member}$ [Celsius]',

510   xlim=(0,700), ylim=(0,300))

511   if 'type' in locals():

512   deflect.set_title('Deflection - Time curve '+type, fontsize=9)

513   stress.set_title('Stress - Time curve '+type, fontsize=9)

514   else: Label=''

515   deflect.minorticks_on()

516   stress.minorticks_on()

517   stress.legend(loc='best', fontsize=6, frameon=True, shadow=False,

518   framealpha =0.5)

519   

520   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'stress-disp.png', dpi=400)

521   plt.show()

522   plt.close()

523   



524   # create list with all model names and corresponding data

525   # possible variables ['Coord', 

'Temp','Stresses','Displacements','Rotations','Log_strains','Plastic_strains']

526   column_list = ['Mech_Column_Steel_shell_RHS_Concrete_no_10',

527   'Mech_Column_Steel_shell_RHS_Concrete_yes_10',

528   'Mech_Column_Steel_shell_I-section_Concrete_no_10',

529   'Mech_Column_Steel_shell_I-section_Concrete_yes_10',

530   'Mech_Column_Aluminium_shell_RHS_Concrete_no_10',

531   'Mech_Column_Aluminium_shell_RHS_Concrete_yes_10',

532   'Mech_Column_Aluminium_shell_I-section_Concrete_no_10',

533   'Mech_Column_Aluminium_shell_I-section_Concrete_yes_10',

534   ]

535   beam3_ins_list = ['Mech_Beam3_Steel_shell_RHS_Concrete_yes_10',

536   'Mech_Beam3_Steel_shell_RHS_Lightweight_yes_10',

537   'Mech_Beam3_Steel_shell_I-section_Concrete_yes_10',

538   'Mech_Beam3_Steel_shell_I-section_Lightweight_yes_10',

539   'Mech_Beam3_Aluminium_shell_RHS_Concrete_yes_10',

540   'Mech_Beam3_Aluminium_shell_RHS_Lightweight_yes_10',

541   'Mech_Beam3_Aluminium_shell_I-section_Concrete_yes_10',

542   'Mech_Beam3_Aluminium_shell_I-section_Lightweight_yes_10',

543   ]

544   beam1_ins_list = ['Mech_Beam1_Aluminium_shell_RHS_Concrete_yes_10',

545   'Mech_Beam1_Aluminium_shell_RHS_Lightweight_yes_10',

546   'Mech_Beam1_Aluminium_shell_I-section_Lightweight_yes_10',

547   'Mech_Beam1_Aluminium_shell_I-section_concrete_yes_10',

548   'Mech_Beam1_Steel_shell_RHS_Lightweight_yes_10',

549   'Mech_Beam1_Steel_shell_RHS_Concrete_yes_10',

550   'Mech_Beam1_Steel_shell_I-section_Lightweight_yes_10',

551   'Mech_Beam1_Steel_shell_I-section_Concrete_yes_10',

552   ]

553   

554   beam3_noins_list = list()

555   beam1_noins_list = list()

556   for K, Z in zip(beam3_ins_list, beam1_ins_list):

557   beam3_noins_list.append( K.replace('yes', 'no'))

558   beam1_noins_list.append( Z.replace('yes', 'no'))

559   

560   def temps(myList, numframes):

561   dictionary_Temp=list()

562   for model in myList:

563   Temp = read_data(numframes,model,'Temp', '')

564   dictionary_Temp.append([model,Temp])

565   Temp_time(dictionary_Temp)

566   def stresses(myList, numframes):

567   dictionary_stress = list()

568   for model in myList:

569   LE = read_data(numframes,model,'Log_strains', '')

570   PE = read_data(numframes,model,'Plastic_strains','')

571   stress = read_data(numframes, model, 'Stresses','')

572   Temp = read_data(numframes,model,'Temp','')

573   dictionary_stress.append([model,LE,PE,stress,Temp])

574   stress_strain(dictionary_stress)

575   def strains(myList, numframes):

576   dictionary_strain =list()

577   for model in myList:

578   LE = read_data(numframes,model,'Log_strains','')

579   PE = read_data(numframes,model,'Plastic_strains','')

580   disp = read_data(numframes,model,'Displacements','')

581   stress = read_data(numframes, model, 'Stresses','')

582   dictionary_strain.append([model,LE,PE,disp,stress])

583   Strain_time(dictionary_strain)

584   

585   def strains2(myList, numframes):

586   dictionary = list()

587   for model in myList:

588   LE = LE = read_data(numframes,model,'Log_strains','')

589   PE = read_data(numframes,model,'Plastic_strains','')

590   if 'four_point' in model: model = model[24:]

591   dictionary.append([model,LE,PE])

592   strain_and_rate(dictionary)

593   del LE, PE

594   dictionary.clear()



595   for model in myList:

596   LE = read_data(numframes,model,'Log_strains','')

597   PE = read_data(numframes,model,'Plastic_strains','')

598   stress = read_data(numframes, model, 'Stresses','')

599   Temp = read_data(numframes,model,'Temp','')

600   if 'four_point' in model: model = model[24:]

601   dictionary.append([model,LE,PE,stress,Temp])

602   stress_strain_normalised(dictionary)

603   del LE, PE, stress, Temp

604   dictionary.clear()

605   for model in myList:

606   disp = read_data(numframes,model,'Displacements','')

607   stress = read_data(numframes, model, 'Stresses','')

608   Temp = read_data(numframes,model,'Temp','')

609   if 'four_point' in model: model = model[24:]

610   dictionary.append([model,disp,stress, Temp])

611   Stress_deflect(dictionary)

612   

613   # Plot_Emod()

614   # Plot_conductivity()

615   # Plot_specific_heat()

616   # Plot_proofStress()

617   

618   def mechanical_plotting_columns():

619   strains(column_list, 901)

620   stresses(column_list,901)

621   #temps(column_list, 901)

622   def mechanical_plotting_beam3():

623   strains(beam3_ins_list, 901)

624   stresses(beam3_ins_list,901)

625   #temps(beam3_ins_list, 901)

626   def mechanical_plotting_beam1():

627   strains(beam1_ins_list, 901)

628   stresses(beam1_ins_list,901)

629   #temps(beam1_ins_list, 901)

630   

631   def four_point_bending():

632   #mechanical_plotting_columns()

633   #mechanical_plotting_beam3()

634   #mechanical_plotting_beam1()

635   strains2(column_list, 901)

636   counter=0

637   for item in beam3_ins_list:

638   beam3_ins_list[counter] = 'four_point_bending_test\\'+item

639   counter+=1

640   strains2(beam3_ins_list, 901)

641   counter =0

642   for item in beam1_ins_list:

643   beam1_ins_list[counter] = 'four_point_bending_test\\'+item

644   counter+=1

645   strains2(beam1_ins_list, 901)

646   #four_point_bending()

647   def distributed_load():

648   for item in column_list: item = 'Combined odb\\'+item

649   for item in column_list: item = 'Combined odb\\'+item

650   for item in column_list: item = 'Combined odb\\'+item

651   mechanical_plotting_columns()

652   mechanical_plotting_beam3()

653   mechanical_plotting_beam1()

654   # distributed_load()

655   

656   def thermal_expansion(dictionary):

657   x_steel = list(range(20,1205,5))

658   y_steel = list()

659   y_aluminium =list()

660   x_aluminium = list(range(20,505,5))

661   for item in x_steel:

662   if item-x_steel[0]==0: y_steel.append(0)

663   else:

664   if item<750:

y_steel.append((1.2e-5*item+0.4e-8*item*item-2.416e-4)/(item-x_steel[0]))

665   elif item<861: y_steel.append(1.1e-2/(item-x_steel[0]))



666   else: y_steel.append((2e-5*item-6.2e-3)/(item-x_steel[0]))

667   for item in x_aluminium:

668   if item-x_aluminium[0]==0: y_aluminium.append(0)

669   else:

y_aluminium.append((0.1e-7*item*item+22.5e-6*item-4.5e-4)/(item-x_aluminium[0]

))

670   if 'Column' in dictionary[0][0]: L=1e3

671   else: L=3e3

672   

673   fig = plt.figure(figsize=(8,4))

674   grid = fig.add_gridspec(nrows=1,ncols=2)

675   fig.subplots_adjust(left=0.1,bottom=0.14,right=0.9,top=0.9, wspace=0.5, hspace=.5)

676   expand = fig.add_subplot(grid[0])

677   displace = expand.twinx() #fig.add_subplot(grid[1], sharex=expand)

678   left = fig.add_subplot(grid[1])

679   left2 = left.twinx()

680   

681   expand.grid(lw=0.3, which='major', axis='both')

682   expand.grid(lw=0.1, which='minor', axis='both')

683   left.grid(lw=0.3, which='major', axis='both')

684   left.grid(lw=0.1, which='minor', axis='both')

685   

686   expand.plot(x_steel,y_steel, 'k--', label=r'$\alpha_{L}$', lw=0.6)

687   left.plot(x_aluminium, y_aluminium,'k--', label=r'$\alpha_{L}$', lw=0.6)

688   

689   # thermal expansion coefficient #

690   path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

691   with open(path_Properties+'\\'+'ThermalExpAlu EC9.csv','r') as f:

692   reader=(csv.reader(f, delimiter=';'))

693   Expansion_alu = ()

694   x_alu = list()

695   y_alu = list()

696   for row, column in enumerate(reader):

697   v=[]

698   for value in column:

699   v=v+[float(value),]

700   Expansion_alu = Expansion_alu + (v,)

701   f.close()

702   for item in Expansion_alu:

703   x_alu.append(item[3])

704   y_alu.append(item[0])

705   with open(path_Properties+'\\'+'ThermalExpSteel EC3.csv', 'r') as f:

706   reader=(csv.reader(f, delimiter=';'))

707   Expansion_steel=()

708   x_ste = list()

709   y_ste = list()

710   for row, column in enumerate(reader):

711   v=[]

712   for value in column:

713   v=v+[float(value),]

714   Expansion_steel = Expansion_steel + (v,)

715   f.close()

716   for item in Expansion_steel:

717   x_ste.append(item[3])

718   y_ste.append(item[0])

719   disp_steel = list()

720   disp_alu = list()

721   for item, temp in zip(y_ste,x_ste):

722   if temp-x_ste[0]>0: disp_steel.append(item*(temp-x_ste[0]) * L)

723   else: disp_steel.append(0)

724   for item, temp in zip(y_alu, x_alu):

725   if temp-x_alu[0]>0: disp_alu.append(item*(temp-x_alu[0])*L)

726   else: disp_alu.append(0)

727   left.plot(x_alu,y_alu,'r--', lw=0.6, label=r'$\alpha_{L,FEM}$')

728   expand.plot(x_ste,y_ste,'r--', lw=0.6, label=r'$\alpha_{L,FEM}$')

729   displace.plot(x_ste, disp_steel, label='Theoretical', lw=2)

730   left2.plot(x_alu, disp_alu, label='Theoretical', lw=2)

731   

732   for item in dictionary:

733   try:

734   if item[1] == None: continue

735   else:



736   if 'Column' in item[0]:

737   type = 'Columns'

738   item[0] = item[0].replace('Mech_Column_', '')

739   item[0] = item[0].replace('_Concrete','')

740   elif 'Beam3' in item[0]:

741   type='3-sided Beams'

742   item[0] = item[0].replace('Mech_Beam3_', '')

743   elif 'Beam1' in item[0]:

744   type = 'Integrated Beams'

745   item[0] = item[0].replace('Mech_Beam1_', '')

746   if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

747   elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

748   if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

749   if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', ' 

IPE')

750   item[0] = item[0].replace('_', ' ')

751   

752   Label= item[0]

753   disp = pd.DataFrame()

754   Temp = pd.DataFrame()

755   for D, T in zip(item[1], item[2]):

756   disp = pd.concat([disp, item[1][D]], axis=1)

757   Temp = pd.concat([Temp, item[2][T]], axis=1)

758   

759   y = disp['Z'].max()

760   x = Temp.max()

761   if 'Steel' in Label:

762   Label = Label.replace('Steel ', '')

763   displace.plot(x,y, label=Label,lw=0.8)

764   else:

765   Label = Label.replace('Aluminium ','')

766   left2.plot(x,y, label=Label, lw=0.8)

767   

768   except TypeError: continue

769   

770   fig.suptitle('Thermal expansion '+type)

771   expand.set(title='Steel', ylabel=r'$\alpha_{L}$ [K$^{-1}$]',ylim=(0,1.6e-5),

xlabel='T$_{MAX}$ [Celsius]',xlim=(0,1000))

772   displace.set(ylabel= 'Displacement [mm]',ylim=(0,16))

773   left2.set(ylabel= 'Displacement [mm]',ylim=(0,16))

774   left.set(title='Aluminium', ylabel=r'$\alpha_{L}$ [K$^{-1}$]',

ylim=(0,3e-5),xlabel='T$_{MAX}$ [Celsius]',xlim=(0,500))

775   

776   start1, end1 = expand.get_ylim()

777   expand.yaxis.set_ticks(np.arange(start1,end1,end1/5))

778   left.yaxis.set_ticks(np.arange(start1,3e-5,(3e-5)/5))

779   #expand.yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f')) # set 

major ticks

780   expand.ticklabel_format(axis='y', style='sci', scilimits=(-5,-5))

781   left.ticklabel_format(axis='y', style='sci', scilimits=(-5,-5))

782   

783   start2, end2 = displace.get_ylim()

784   displace.yaxis.set_ticks(np.arange(start2,end2,end2/5))

785   left2.yaxis.set_ticks(np.arange(start2,end2,end2/5))

786   displace.minorticks_on()

787   expand.minorticks_on()

788   left.minorticks_on()

789   left2.minorticks_on()

790   

791   handles1,labels1 = expand.get_legend_handles_labels()

792   handles2,labels2 = displace.get_legend_handles_labels()

793   for item in handles2: handles1.append(item)

794   for item in labels2: labels1.append(item)

795   expand.legend(handles1,labels1,loc='best', fontsize=7, frameon=True, shadow=False,

796   framealpha =0.5)

797   left.legend(handles1,labels1,loc='best', fontsize=7, frameon=True, shadow=False,

798   framealpha =0.5)

799   

800   plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+Label+'thermal_expand.png', dpi=400)

801   plt.show()

802   plt.close()



803   

804   # dictionary=list()

805   # for model in column_list:

806   # disp = read_data(901,model,'Displacements')

807   # Temp = read_data(901,model,'Temp')

808   # if 'four_point' in model: model = model[24:]

809   # dictionary.append([model,disp, Temp])

810   # thermal_expansion(dictionary)

811   

812   def beams_validation(dictionary,loading):

813   q_load_steel = 0.2*100 #N/mm 100 is width of I-section

814   q_load_aluminium = 0.2*100

815   P_concrete = 49.5e6

816   P_lightweight = 36e6

817   P_alternate = 20e6

818   

819   # material properties

820   path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

821   Emod_Alu = pd.read_csv(path_Properties+'\\EmodAlu 6060-T66 18.csv',

delimiter=';', header=None, names=['fraction', 'Temperature', 'Emod'],

dtype=np.float64, decimal=',')

822   stress_alu = pd.read_csv(path_Properties+'\\proofstressAlu.csv', delimiter=';',

header=None, names=['Temperature', '0.2', 'yield'], dtype=np.float64, decimal=',')

823   Emod_Steel = pd.read_csv(path_Properties+'\\EmodSteel.csv', delimiter=';',

header=None, names=['Temperature','Emod'], dtype=np.float64, decimal=',')

824   stress_steel = pd.read_csv(path_Properties+'\\proofstressSteel.csv',

delimiter=';', header=None, names=['Temperature','yield', '0.2', 'hi'],

dtype=np.float64, decimal=',')

825   Expansion_Alu = pd.read_csv(path_Properties+'\\ThermalExpAlu EC9.csv',

delimiter=';', header=None, names=['Alpha', 'beta', 'c', 'Temperature'],

dtype=np.float64)

826   Expansion_Ste = pd.read_csv(path_Properties+'\\ThermalExpSteel EC3.csv',

delimiter=';', header=None, names=['Alpha', 'beta', 'c','Temperature'],

dtype=np.float64)

827   

828   # figure plotting stresses

829   fig = plt.figure(figsize=(8,4))

830   grid = fig.add_gridspec(nrows=1,ncols=2)

831   fig.subplots_adjust(left=0.1,bottom=0.14,right=0.96,top=0.87, wspace=0.22,

hspace=.5)

832   steel = fig.add_subplot(grid[0])

833   aluminium = fig.add_subplot(grid[1])

834   

835   steel.grid(lw=0.3, which='major', axis='both')

836   steel.grid(lw=0.1, which='minor', axis='both')

837   aluminium.grid(lw=0.3, which='major', axis='both')

838   aluminium.grid(lw=0.1, which='minor', axis='both')

839   

840   #second image strains

841   fig2 = plt.figure(figsize=(8,4))

842   grid2 = fig2.add_gridspec(nrows=1, ncols=2)

843   fig2.subplots_adjust(left=0.1,bottom=0.14,right=0.96,top=0.87,

wspace=0.22,hspace=0.5)

844   steel2 = fig2.add_subplot(grid2[0])

845   aluminium2 = fig2.add_subplot(grid2[1])

846   

847   steel2.grid(lw=0.3, which='major', axis='both')

848   steel2.grid(lw=0.1, which='minor', axis='both')

849   aluminium2.grid(lw=0.3, which='major', axis='both')

850   aluminium2.grid(lw=0.1, which='minor', axis='both')

851   

852   #fourth image displacement

853   fig4 = plt.figure(figsize=(8,4))

854   grid4 = fig4.add_gridspec(nrows=1,ncols=2)

855   fig4.subplots_adjust(left=0.1,bottom=0.14,right=0.96,top=0.87,

wspace=0.22,hspace=0.5)

856   steel4 = fig4.add_subplot(grid4[0])

857   aluminium4 = fig4.add_subplot(grid4[1])

858   

859   steel4.grid(lw=0.3, which='major', axis='both')

860   steel4.grid(lw=0.1, which='minor', axis='both')

861   aluminium4.grid(lw=0.3, which='major', axis='both')



862   aluminium4.grid(lw=0.1, which='minor', axis='both')

863   

864   # plot stress-temp curve

865   steel.plot(stress_steel['Temperature'], stress_steel['yield'], 'k--',

label='Yield Stress', lw=0.8)

866   aluminium.plot(stress_alu['Temperature'], stress_alu['yield'], 'k--',

label='Yield Stress', lw=0.8)

867   steel.plot(stress_steel['Temperature'], stress_steel['0.2'], 'k-.',

label='Proportional Stress', lw=0.8)

868   aluminium.plot(stress_alu['Temperature'], stress_alu['0.2'], 'k-.', label='Proof 

Stress', lw=0.8)

869   

870   # plot strain limits

871   steel2.plot([0,1000],[3.75,3.75], 'k--', label = 'Ultimate strain limit', lw=0.8)

872   aluminium2.plot([0,1000],[3.75,3.75], 'k--', label= 'Ultimate strain limit',

lw=0.8)

873   steel2.plot([0,1000],[2.,2.], 'k-.', label = 'Yield limit', lw=0.8)

874   #aluminium2.plot([0,1000],[2.,2.], 'k-.', label='Yield limit', lw=0.8)

875   # plot deflection limit

876   if 'Column' in dictionary[0][0]: deflect = 1000**2 / (400 * 200)

877   else: deflect = 3000**2 / (400*200)

878   steel4.plot([0,1000],[deflect,deflect],'k--', label = 'Deflection limit', lw=0.8)

879   aluminium4.plot([0,1000],[deflect,deflect],'k--', label = 'Deflection limit',

lw=0.8)

880   

881   for item in dictionary:

882   try:

883   # theoretical stress

884   if loading=='q_load':

885   if 'Steel' in item[0]: M=q_load_steel

886   else: M=q_load_aluminium

887   elif loading =='Lowered':

888   if 'oncrete' in item[0]: M=P_lightweight

889   else: M=P_alternate

890   else:

891   if 'oncrete' in item[0]: M=P_concrete

892   else: M=P_lightweight

893   if 'Steel' in item[0]:

894   Emod = Emod_Steel['Emod']

895   Temp = Emod_Steel['Temperature']

896   t,tf,tw,b,h = [6.0,8.5,5.6,100.,200.]

897   elif 'Aluminium' in item[0]:

898   Emod = Emod_Alu['Emod']

899   Temp = Emod_Alu['Temperature']

900   t,tf,tw,b,h = [9.0,9.0,5.,100.,200.]

901   if 'RHS' in item[0]: I= 1/12*(b*2)*h**3 - 1/12*((b*2)-2*t)*(h-2*t)**3#mm4

902   elif 'I-section' in item[0] or 'IPE' in item[0]: I= 1/12*b*(tf**3) +

b*tf*(1/2*h-1/2*tf)**2 + 1/12*tw*((h-2*tf)**3) + 1/12*b*(tf**3) +

b*tf*(1/2*h-1/2*tf)**2 #mm4

903   stress=list()

904   stress_temp = list()

905   z=1/2*h #mm

906   counter = 0

907   if 'Column' in item[0]: L=1e3

908   else: L=3e3

909   if loading =='q_load': M = 1/8*M*L**2

910   else: M = M*1/2*L - M*1/6*L

911   for E in Emod:

912   stress.append( M*z/I)

913   stress_temp.append(Temp[counter])

914   counter+=1

915   if item[1] == None: continue

916   else:

917   if 'Column' in item[0]:

918   type = 'Columns'

919   Label = item[0].replace('Mech_Column_', '')

920   Label = Label.replace('_Concrete','')

921   elif 'Beam3' in item[0]:

922   type='3-sided Beams'

923   Label = item[0].replace('Mech_Beam3_', '')

924   elif 'Beam1' in item[0]:

925   type = 'Integrated Beams'



926   Label = item[0].replace('Mech_Beam1_', '')

927   if 'yes' in item[0]: Label=Label.replace('_yes_10', ' insulated')

928   elif 'no' in item[0]: Label=Label.replace('_no_10',' uninsulated')

929   if 'shell' in item[0]: Label=Label.replace('_shell', '')

930   if 'I-section' in item[0]: Label=Label.replace('_I-section', ' IPE')

931   Label = Label.replace('_', ' ')

932   if 'Steel' in Label:

933   Label = Label.replace('Steel ', '')

934   steel.plot(stress_temp,stress, '--', label='Theoretical',lw=0.8)

#plot theoretical stress

935   Label = Label.replace(' ', 'Steel')

936   Color = steel.get_lines()[-1].get_color()

937   

938   else:

939   Label = Label.replace('Aluminium ','')

940   aluminium.plot(stress_temp, stress, '--', label='Theoretical',

lw=0.8) #plot theoretical stress

941   Label = Label.replace(' ','Aluminium')

942   Color = aluminium.get_lines()[-1].get_color()

943   

944   # plot abaqus stress-temp curve (has 3 directions)

945   print('stress')

946   stress = pd.DataFrame()

947   stress_temp = pd.DataFrame()

948   for S, T in zip(item[1], item[2]):

949   stress = pd.concat([stress, item[1][S]], axis=1)

950   stress_temp = pd.concat([stress_temp, item[2][T]], axis=1)

951   

952   if 'Column' in item[0]:

953   loc_middle = 334

954   loc_top = 2

955   loc_bottom = 7

956   else:

957   loc_middle = 6938

958   loc_top = 163

959   loc_bottom = 1112

960   middle_node = abs(stress['S11'].loc[loc_middle])

961   top_node = abs(stress['S11'].loc[loc_top])

962   bottom_node = abs(stress['S11'].loc[loc_bottom])

963   print(middle_node,top_node,bottom_node)

964   

965   x_top = stress_temp.loc[loc_middle]

966   x_bottom = stress_temp.loc[loc_bottom]

967   x_middle = stress_temp.loc[loc_middle]

968   

969   if 'Steel' in Label:

970   Label = Label.replace('Steel', ' ')

971   #steel.plot(x_middle,middle_node, label=Label+ ' centroid', 

lw=0.8, alpha=0.5)#color = Color,

972   #steel.plot(x_top,top_node, label=Label+ ' top centre', lw=0.8, 

alpha=0.5)#color = Color,

973   steel.plot(x_bottom,bottom_node, color = Color, label=Label+ ' 

bottom centre', lw=0.8, alpha=0.5)#color = Color,

974   

975   else:

976   Label = Label.replace('Aluminium',' ')

977   #aluminium.plot(x_middle,middle_node, label=Label+ ' centroid', 

lw=0.8, alpha=0.5)#color = Color,

978   #aluminium.plot(x_top,top_node, label=Label+ ' top centre', 

lw=0.8, alpha=0.5)#color = Color,

979   aluminium.plot(x_bottom,bottom_node, color=Color, label=Label+

' bottom centre', lw=0.8, alpha=0.5)#color = Color,

980   

981   # strain plotting

982   print('strain plotting')

983   # try: paint_strain = find_paint_strain(item)

984   # except:pass

985   

986   if 'Steel' in item[0]:

987   input_stress = stress_steel

988   input_emod = Emod_Steel

989   else:



990   input_stress = stress_alu

991   input_emod = Emod_Alu

992   

993   input_stress.sort_values(['Temperature'], ascending=True,

inplace=True)

994   input_stress =

input_stress.loc[input_stress['Temperature'].isin(input_emod['Temperat

ure'])].reset_index(drop=True)

995   input_emod =

input_emod.loc[input_emod['Temperature'].isin(input_stress['Temperatur

e'])]

996   

997   temp = input_stress['Temperature']

998   if 'Steel' in item[0]: proofstress = input_stress['yield']

999   else: proofstress = input_stress['0.2']

1000   emod = input_emod['Emod'].reset_index(drop=True)

1001   disp_proof = np.argwhere( (M*z/I) > input_stress['0.2'] )

1002   disp_yield = np.argwhere( (M*z/I) > input_stress['yield'] )

1003   

1004   if 'Steel' in item[0]: expansion = Expansion_Ste

1005   else: expansion = Expansion_Alu

1006   alpha =

copy.deepcopy(expansion['Alpha'].loc[expansion['Temperature'].isin(tem

p)].reset_index(drop=True))

1007   temp =

copy.deepcopy(temp.loc[temp.isin(expansion['Temperature'])].reset_inde

x(drop=True))

1008   

1009   strain_total = list()

1010   deltaT = []

1011   deflect_total = list()

1012   elastic_strain_all = list()

1013   for item2 in temp:

1014   location = np.argwhere(stress_temp.mean() >item2)

1015   deltaT.append(0)

1016   if len(location) == 0:

1017   try: deltaT[-1] = (stress_temp.max().iloc[-1] -

stress_temp.min().iloc[-1])

1018   except: pass

1019   else: deltaT[-1] = (stress_temp.max().iloc[location[0]] -

stress_temp.min().iloc[location[0]])

1020   

1021   for i in range(0,len(temp),1):

1022   n = proofstress[i] / 10 # reference 13

1023   if type!='Columns': L = 3e3

1024   else: L=1e3

1025   try: temp_diff = deltaT[i]

1026   except: temp_diff=0

1027   if item[6]=='expansion':

1028   elastic_strain =0

1029   elastic_disp = 0

1030   bowing_strain = alpha[i]*(temp[i]-temp[0]) + alpha[i] *

temp_diff / 4

1031   bowing_disp = ((alpha[i] * temp_diff * (L**2)) / (8*h))

1032   Label2 = 'Theoretical Thermal bowing'

1033   elif item[6]=='elastic':

1034   elastic_strain = (M*z/I) / emod[i] + 2e-3 * ((M*z/I) /

proofstress[i])**n

1035   elastic_disp = (5/384) * ((M*8/(L**2))*(L**4))/(emod[i]*I)

1036   bowing_strain = 0

1037   bowing_disp = 0

1038   

1039   if (M*z/I)>proofstress[i]:

1040   print('proofstress has been exceeded')

1041   Label2 = 'Theoretical Mechanical only'

1042   else:

1043   elastic_strain = (M*z/I) / emod[i] + 2e-3 * ((M*z/I) /

proofstress[i])**n

1044   elastic_disp = (5/384) * ((M*8/(L**2))*(L**4))/(emod[i]*I)

1045   bowing_strain = alpha[i]*(temp[i]-temp[0])+ alpha[i] *

temp_diff / 4

1046   bowing_disp = ((alpha[i] * temp_diff * (L**2)) / (8*h))



1047   if (M*z/I)>proofstress[i]:

1048   print('proofstress has been exceeded')

1049   Label2 = 'Theoretical total'

1050   elastic_strain_all.append(elastic_strain)

1051   strain_total.append( (elastic_strain + bowing_strain)*100 )

1052   deflect_total.append( elastic_disp + bowing_disp )

1053   if elastic_strain>(4/100): break

1054   

1055   if 'Steel' in item[0]:

1056   steel2.plot(temp[0:len(strain_total)],strain_total, '--', label

= Label2, lw=0.8)

1057   Color = steel2.get_lines()[-1].get_color()

1058   steel4.plot(temp[0:len(deflect_total)],deflect_total,

'--',color = Color, label = Label2, lw=0.8)

1059   else:

1060   aluminium2.plot(temp[0:len(strain_total)],strain_total, '--',

label =Label2, lw=0.8)

1061   Color = aluminium2.get_lines()[-1].get_color()

1062   aluminium4.plot(temp[0:len(deflect_total)],deflect_total, '--',

color=Color, label =Label2, lw=0.8)

1063   

1064   LE = pd.DataFrame()

1065   PE = pd.DataFrame()

1066   disp = pd.DataFrame()

1067   for L, P, D in zip(item[3], item[4], item[5]):

1068   LE = pd.concat([LE, item[3][L]], axis=1)

1069   PE = pd.concat([PE, item[4][P]], axis=1)

1070   disp = pd.concat([disp, item[5][D]], axis=1)

1071   

1072   if 'Column' in item[0]:

1073   loc_middle = 334

1074   loc_top = 2

1075   loc_bottom = 7

1076   else:

1077   loc_middle = 6938

1078   loc_top = 163

1079   loc_bottom = 1112

1080   middle_node = abs(LE['S11'].loc[loc_middle]) +

abs(PE['S11'].loc[loc_middle])

1081   top_node = abs(LE['S11'].loc[loc_top]) + abs(PE['S11'].loc[loc_top])

1082   bottom_node = abs(LE['S11'].loc[loc_bottom]) +

abs(PE['S11'].loc[loc_bottom])

1083   

1084   x_top = stress_temp.loc[loc_middle]

1085   x_bottom = stress_temp.loc[loc_bottom]

1086   x_middle = stress_temp.loc[loc_middle]

1087   

1088   if 'Steel' in item[0]:

1089   #steel2.plot(x_middle,middle_node*100, label=Label+ ' middle', 

lw=0.8, alpha=0.5)

1090   #steel2.plot(x_top,top_node*100, label=Label+ ' top', lw=0.8, 

alpha=0.5)

1091   steel2.plot(x_bottom,bottom_node*100, color=Color, label=Label+

' bottom', lw=0.8, alpha=0.5)

1092   

1093   else:

1094   #aluminium2.plot(x_middle,middle_node*100, label=Label+ ' 

middle', lw=0.8, alpha=0.5)

1095   #aluminium2.plot(x_top,top_node*100,  label=Label+ ' top', 

lw=0.8, alpha=0.5)

1096   aluminium2.plot(x_bottom,bottom_node*100, color=Color,

label=Label+ ' bottom', lw=0.8, alpha=0.5)

1097   

1098   # deflection

1099   if 'Column' in item[0]:

1100   loc_middle = 334

1101   loc_top = 2

1102   loc_bottom = 7

1103   disp = disp['Z']

1104   else:

1105   loc_middle = 6938

1106   loc_top = 163



1107   loc_bottom = 1112

1108   disp= disp['Y']

1109   

1110   middle_node = abs(disp.loc[loc_middle])

1111   top_node = abs(disp.loc[loc_top])

1112   bottom_node = abs(disp.loc[loc_bottom])

1113   print(middle_node)

1114   

1115   x_top = stress_temp.loc[loc_middle]

1116   x_bottom = stress_temp.loc[loc_bottom]

1117   x_middle = stress_temp.loc[loc_middle]

1118   

1119   if item[6]=='expansion':

1120   itera = 0

1121   for Q in bottom_node:

1122   if Q>20: break

1123   itera+=1

1124   

1125   middle_node = middle_node[0:itera]

1126   top_node = top_node[0:itera]

1127   bottom_node = bottom_node[0:itera]

1128   

1129   x_top = x_top[0:len(top_node)]

1130   x_bottom = x_bottom[0:len(bottom_node)]

1131   x_middle = x_middle[0:len(middle_node)]

1132   

1133   first_yield = input_stress['Temperature'].loc[disp_proof[0][0]]

1134   ultimate_yield = input_stress['Temperature'].loc[disp_yield[0][0]]

1135   print(first_yield,ultimate_yield)

1136   

1137   if 'Steel' in item[0]:

1138   #steel4.plot(x_middle,middle_node, label=Label+ ' middle', 

lw=0.8, alpha=0.5)

1139   #steel4.plot(x_top,top_node, label=Label+ ' top', lw=0.8, 

alpha=0.5)

1140   steel4.plot(x_bottom,bottom_node, color=Color,label=Label+ ' 

bottom', lw=0.8, alpha=0.5)

1141   

1142   if item[6]!='expansion':

1143   steel4.plot([first_yield,first_yield],[0,200], 'k-.', label

= 'First yield', lw=0.8)

1144   steel4.plot([ultimate_yield,ultimate_yield],[0,200], 'k-.',

label = 'Ultimate yield', lw=0.8)

1145   

1146   else:

1147   #aluminium4.plot(x_middle,middle_node, label=Label+ ' middle', 

lw=0.8, alpha=0.5)

1148   #aluminium4.plot(x_top,top_node,  label=Label+ ' top', lw=0.8, 

alpha=0.5)

1149   aluminium4.plot(x_bottom,bottom_node, color=Color, label=Label+

' bottom', lw=0.8, alpha=0.5)

1150   

1151   if item[6]!='expansion':

1152   aluminium4.plot([220,220],[0,200], 'k-.', label = 'First 

yield', lw=0.8)

1153   aluminium4.plot([280,280],[0,200], 'k-.', label = 'Ultimate 

yield', lw=0.8)

1154   

1155   except TypeError: continue

1156   if 'type' in locals(): pass

1157   else: type =''

1158   

1159   fig.suptitle('Stress - Temperature curves '+type)

1160   steel.set(title='Steel', ylabel='\u03C3  [MPa]', xlabel='Temperature 

[Celsius]',xlim=(0,800),ylim=(0,300))

1161   aluminium.set(title='Aluminium', ylabel='\u03C3  [MPa]', xlabel='Temperature 

[Celsius]',xlim=(0,550),ylim=(0,300))

1162   

1163   steel.minorticks_on()

1164   aluminium.minorticks_on()

1165   steel.legend(loc='best', fontsize=7, frameon=True, shadow=False,framealpha =0.5)

1166   aluminium.legend(loc='best', fontsize=7, frameon=True, shadow=False,



framealpha=0.5)

1167   

1168   fig2.suptitle('Strain - Temperature curves '+type)

1169   steel2.set(title='Steel', ylabel= '$\epsilon$ [\u2030]', xlabel='Temperature 

[Celsius]',xlim=(0,800), ylim=(0,4))

1170   aluminium2.set(title='Aluminium', ylabel= '$\epsilon$ [\u2030]',

xlabel='Temperature [Celsius]',xlim=(0,550), ylim=(0,4))

1171   steel2.minorticks_on()

1172   aluminium2.minorticks_on()

1173   steel2.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha=0.5)

1174   aluminium2.legend(loc='best', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1175   

1176   fig4.suptitle('Displacement - Temperature curves '+type)

1177   steel4.set(title='Steel', ylabel='Deflection [mm]', xlabel='Temperature 

[Celsius]',xlim=(0,800),ylim=(0,120))

1178   aluminium4.set(title='Aluminium', ylabel='Delfection [mm]', xlabel='Temperature 

[Celsius]',xlim=(0,550),ylim=(0,120))

1179   steel4.minorticks_on()

1180   aluminium4.minorticks_on()

1181   steel4.legend(loc='upper left', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1182   aluminium4.legend(loc='upper left', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1183   

1184   fig.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+'Stress - Temperature curves Elastic '+type+'.png', dpi=400)

1185   fig2.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+'Strain - Temperature curves Elastic '+type+'.png', dpi=400)

1186   fig4.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+'Deflect = Temperature curves Elastic '+type+'.png', dpi=400)

1187   

1188   plt.show()

1189   plt.close()

1190   

1191   def checker():

1192   myList =

['Mech_Beam3_Aluminium_shell_I-section_Concrete_no_10','Mech_Beam3_Steel_shell_I-s

ection_Concrete_no_10']

1193   dictionary=list()

1194   for item in myList:

1195   print(item)

1196   check = 'expansion'

1197   path = r'D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS\Validation\noloading'

1198   item1 = item

1199   stress=read_data(901,item1,'Stresses',path)

1200   temp = read_data(901, item1, 'Temp',path)

1201   LE = read_data(901, item1, 'Log_strains',path)

1202   PE = read_data(901, item1, 'Plastic_strains',path)

1203   disp = read_data(901,item1,'Displacements',path)

1204   dictionary.append([item1, stress, temp, LE, PE, disp,check])

1205   #beams_validation(dictionary,'q_load')

1206   myList =

['Mech_Beam3_Aluminium_shell_I-section_Concrete_yes_10','Mech_Beam3_Steel_shell_I-

section_Concrete_yes_10']

1207   

1208   for item in myList:

1209   print(item)

1210   item1=item

1211   path= r'D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS\Validation\noexp'

1212   check= 'elastic'

1213   stress=read_data(901,item1,'Stresses',path)

1214   temp = read_data(901, item1, 'Temp',path)

1215   LE = read_data(901, item1, 'Log_strains',path)

1216   PE = read_data(901, item1, 'Plastic_strains',path)

1217   disp = read_data(901,item1,'Displacements',path)

1218   dictionary.append([item1,stress,temp,LE,PE,disp,check])

1219   #beams_validation(dictionary,'q_load')

1220   for item in myList:

1221   print(item)



1222   item1 =item

1223   path= r'D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\ABAQUS\Validation\norm'

1224   check = ''

1225   stress=read_data(901,item1,'Stresses',path)

1226   temp = read_data(901, item1, 'Temp',path)

1227   LE = read_data(901, item1, 'Log_strains',path)

1228   PE = read_data(901, item1, 'Plastic_strains',path)

1229   disp = read_data(901,item1,'Displacements',path)

1230   dictionary.append([item1,stress,temp,LE,PE,disp,check])

1231   loading = 'q_load'

1232   beams_validation(dictionary, loading)

1233   

1234   #checker()

1235   

1236   def postprocessing(dictionary, name):

1237   # material properties

1238   path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

1239   stress_alu = pd.read_csv(path_Properties+'\\proofstressAlu.csv', delimiter=';',

header=None, names=['Temperature', '0.2', 'yield'], dtype=np.float64, decimal=',')

1240   stress_steel = pd.read_csv(path_Properties+'\\proofstressSteel.csv',

delimiter=';', header=None, names=['Temperature','yield', '0.2', 'hi'],

dtype=np.float64, decimal=',')

1241   

1242   # figure plotting stresses

1243   fig = plt.figure(figsize=(8,8))

1244   grid = fig.add_gridspec(nrows=3,ncols=2)

1245   fig.subplots_adjust(left=0.08,bottom=0.08,right=0.92,top=0.9, wspace=0.45,

hspace=.5)

1246   plot11 = fig.add_subplot(grid[0]) #stress-time 

1247   plot111 = plot11.twinx() #utilization-time

1248   plot12 = fig.add_subplot(grid[1]) #temp-time

1249   plot21 = fig.add_subplot(grid[2]) #strain-time

1250   plot31 = fig.add_subplot(grid[4]) #deflect-time

1251   plot311 = plot31.twinx() #deflection rate - time

1252   

1253   # image print

1254   item_counter = 0

1255   for item in dictionary:

1256   if item[1]==None: continue

1257   else: item_counter+=1

1258   

1259   if item_counter==0:

1260   plot22 = fig.add_subplot(grid[3]) #legend

1261   plot32 = fig.add_subplot(grid[5])

1262   elif item_counter>0 and item_counter<5:

1263   #plot22 = fig.add_subplot(grid[3]) #legend

1264   grid2 = grid[1:,-1].subgridspec(item_counter+1,1)

1265   elif item_counter>4 and item_counter<7:

1266   #plot22 = fig.add_subplot(grid[3]) #legend

1267   grid2 = grid[1:,-1].subgridspec(item_counter/2+1,2)

1268   elif item_counter>6:

1269   grid2 = grid[1:,-1].subgridspec(5,2)

1270   

1271   for plots in [plot11,plot111,plot12,plot21,plot31,plot311]:

1272   plots.grid(lw=0.3, which='major', axis='both')

1273   plots.grid(lw=0.1, which='minor', axis='both')

1274   

1275   # plot strain limits

1276   plot21.plot([0,800],[3.75,3.75], 'k--', label = 'Ultimate strain limit', lw=0.5)

1277   if 'no' in dictionary[1][0]:

1278   plot21.text(12,3.5, '$\epsilon_{ultimate,limit}$', fontsize=9)

1279   else:

1280   plot21.text(60,3.5, '$\epsilon_{ultimate,limit}$', fontsize=9)

1281   # plot deflection limit

1282   if 'Column' in dictionary[0][0]: deflect = 1000**2 / (400 * 200)

1283   else: deflect = 3000**2 / (400*200)

1284   plot31.plot([0,800],[deflect,deflect],'k--', label = 'Deflection limit', lw=0.5 )

1285   if 'no' in dictionary[1][0]:

1286   plot31.text(12,deflect, 'Deflection limit', fontsize=7)

1287   else: plot31.text(60,deflect, 'Deflection limit', fontsize=7)

1288   # Deflection rate limit



1289   if 'Column' in dictionary[0][0]: deflect_rate = 1000**2 / (9000*200)

1290   else: deflect_rate = 3000**2 / (9000*200)

1291   plot311.plot([0,800], [deflect_rate,deflect_rate], 'k-.', label='Deflection rate 

limit', lw=0.5)

1292   if 'no' in dictionary[1][0]:

1293   plot311.text(12,deflect_rate, 'Deflection rate limit', fontsize=7)

1294   else: plot311.text(55,deflect_rate, 'Deflection rate limit', fontsize=7)

1295   

1296   item_counter = 0

1297   for item in dictionary:

1298   try:

1299   if item[1] == None: continue #if empty dataset don't run it

1300   else:

1301   print(item[0])

1302   # create a label

1303   if 'Column' in item[0]:

1304   type = 'Columns'

1305   Label = item[0].replace('Mech_Column_', '')

1306   Label = Label.replace('_Concrete','')

1307   length = 1e3

1308   elif 'Beam3' in item[0]:

1309   type='3-sided Beams'

1310   Label = item[0].replace('Mech_Beam3_', '')

1311   length=3e3

1312   elif 'Beam1' in item[0]:

1313   type = 'Integrated Beams'

1314   Label = item[0].replace('Mech_Beam1_', '')

1315   length=3e3

1316   if 'yes' in item[0]: Label=Label.replace('_yes_10', ' insulated')

1317   elif 'no' in item[0]: Label=Label.replace('_no_10',' uninsulated')

1318   if 'shell' in item[0]: Label=Label.replace('_shell', '')

1319   if 'I-section' in item[0]: Label=Label.replace('_I-section', ' IPE')

1320   if 'Beam' in item[0] and 'uninsulated' in Label:

1321   Label=Label.replace(' uninsulated', '')

1322   type = type + ' uninsulated'

1323   

1324   Label = str(item_counter+1)+' '+Label.replace('_', ' ')

1325   

1326   #plot temperature - time curve

1327   print('Temperature plotting')

1328   stress_temp = pd.DataFrame()

1329   for T in item[2]:

1330   stress_temp = pd.concat([stress_temp, item[2][T]], axis=1)

1331   

1332   y = stress_temp.mean()

1333   lowerlim = stress_temp.min()

1334   upperlim = stress_temp.max()

1335   

1336   if 'Aluminium' in item[0]:

1337   itera = 0

1338   for Q in y:

1339   if Q>500:break

1340   itera+=1

1341   elif 'Steel' in item[0]:

1342   itera=0

1343   for Q in y:

1344   if Q>1200: break

1345   itera+=1

1346   

1347   y= y[0:itera]

1348   lowerlim = lowerlim[0:itera]

1349   upperlim = upperlim[0:itera]

1350   x= [i / 2. for i in list(range(0,len(y),1))]

1351   

1352   plot12.plot(x,y, label=Label, lw=0.8)

1353   Color = plot12.get_lines()[-1].get_color()

1354   plot12.plot(x, lowerlim, color=Color,lw=0.6, alpha=0.5)

1355   plot12.plot(x,upperlim, color=Color, lw=0.6, alpha=0.5)

1356   plot12.fill_between(x,upperlim,lowerlim, color=Color, alpha=0.05)

1357   

1358   # plot abaqus stress-temp curve (has 3 directions) S11 is in the 

length direction



1359   print('Stress plotting')

1360   stress = pd.DataFrame()

1361   for S in item[1]:

1362   stress = pd.concat([stress, item[1][S]], axis=1)

1363   

1364   if 'Column' in item[0]:

1365   if 'I-section' in item[0] or 'IPE' in item[0]:

1366   loc_middle = 334

1367   loc_top = 2

1368   loc_bottom = 7

1369   else:

1370   loc_middle = 252

1371   loc_top = 386

1372   loc_bottom = 18

1373   else:

1374   if 'I-section' in item[0] or 'IPE' in item[0]:

1375   loc_middle = 6938

1376   loc_top = 163

1377   loc_bottom = 1112

1378   else:

1379   if 'Beam3' in item[0]:

1380   loc_list = [9422,14804,4049,1145,810,176,493]

1381   else: loc_list = [10625,16008,7495,1751,1416,1060,162]

1382   loc_middle, loc_top, loc_bottom, edge_top1, edge_top2,

edge_bottom1, edge_bottom2 = loc_list

1383   

1384   middle_node = abs(stress['S11'].loc[loc_middle])

1385   top_node = abs(stress['S11'].loc[loc_top])

1386   bottom_node = abs(stress['S11'].loc[loc_bottom])

1387   temp_bottom = abs(stress_temp.loc[loc_bottom])

1388   

1389   bottom_node = bottom_node[0:itera]

1390   temp_bottom = temp_bottom[0:itera]

1391   

1392   y1 = bottom_node

1393   

1394   # if 'Column' in item[0]: y1=stress['S11'].max()

1395   # else: 

1396   # datarange = len(stress['S11'])/300

1397   # start = 0.5*(len(stress['S11'])-datarange)

1398   # end = 0.5*(len(stress['S11'])+datarange)

1399   # y1 = stress['S11'].loc[start:end].max() #stress at midspan

1400   

1401   plot11.plot(x,y1, color=Color, label=Label, lw=0.8, alpha =0.5)

1402   

1403   # utilization

1404   print('utilization')

1405   if 'Steel' in item[0]:

1406   input_stress = stress_steel

1407   else:

1408   input_stress = stress_alu

1409   

1410   input_stress.sort_values(['Temperature'], ascending=True,

inplace=True)

1411   temp = input_stress['Temperature'].reset_index(drop=True)

1412   if 'Steel' in item[0]:

1413   proofstress = input_stress['yield'].reset_index(drop=True)

1414   else: proofstress = input_stress['0.2'].reset_index(drop=True)

1415   

1416   utilization = []

1417   time = []

1418   counter = 0

1419   for T in temp:

1420   try:

1421   location = np.argwhere(temp_bottom>T)

1422   loc = location[0]

1423   time.append( x[loc[0]] )

1424   utilization.append(y1.iloc[loc[0]]/proofstress.iloc[counter])

1425   counter+=1

1426   except: continue

1427   

1428   plot111.plot(time,utilization, '--', color = Color, label=Label,



lw=0.8, alpha=0.5)

1429   

1430   # strain plotting

1431   print('strain plotting')

1432   #try: 

1433   # paint_strain = find_paint_strain(item)

1434   # plot21.plot([0,800],[paint_strain, paint_strain], '-.', label 

='Paint limit', alpha=0.3,lw=0.8)

1435   #except:pass

1436   

1437   LE = pd.DataFrame()

1438   PE = pd.DataFrame()

1439   for L, P in zip(item[3], item[4]):

1440   LE = pd.concat([LE, item[3][L]], axis=1)

1441   PE = pd.concat([PE, item[4][P]], axis=1)

1442   

1443   middle_node = abs(LE['S11'].loc[loc_middle] +

PE['S11'].loc[loc_middle])

1444   top_node = abs(LE['S11'].loc[loc_top] + PE['S11'].loc[loc_top])

1445   bottom_node = abs(LE['S11'].loc[loc_bottom] +

PE['S11'].loc[loc_bottom])

1446   

1447   bottom_node = bottom_node[0:itera]

1448   y=bottom_node

1449   

1450   # if 'Column' in item[0]:

1451   # y = LE['S11'].max()+PE['S11'].max()

1452   # else:

1453   # datarange = len(LE['S11'])/300

1454   # start = 0.5*(len(LE['S11'])-datarange)

1455   # end = 0.5*(len(LE['S11'])+datarange)

1456   # LE1 = copy.deepcopy(LE['S11'].loc[start:end])

1457   # PE1 = copy.deepcopy(PE['S11'].loc[start:end])

1458   # y1 = LE1.max()+PE1.max()

1459   # y = abs(LE1.mean()+PE1.mean())

1460   

1461   if len(x)>len(y): del x[-1]

1462   if len(y)>len(x): del y[-1]

1463   

1464   plot21.plot(x,y*100, color=Color, label=Label, lw=0.8, alpha=0.5)

1465   

1466   # deflection

1467   print('deflection plotting')

1468   disp = pd.DataFrame()

1469   for D in item[5]:

1470   disp = pd.concat([disp, item[5][D]], axis=1)

1471   

1472   if 'Column' in item[0]:

1473   disp = disp['Z']

1474   else:

1475   disp = disp['Y']

1476   

1477   middle_node = abs(disp.loc[loc_middle])

1478   top_node = abs(disp.loc[loc_top])

1479   bottom_node = abs(disp.loc[loc_bottom])

1480   

1481   bottom_node = bottom_node[0:itera]

1482   y=bottom_node

1483   

1484   plot31.plot(x,y, label=Label, color=Color, lw=0.8, alpha=0.5)

1485   

1486   # deflection rate

1487   print('deflection rate')

1488   deflect_rate = []

1489   datarange = np.argwhere(y> (length/30))

1490   print(datarange)

1491   if len(datarange)==0: datarange=[[0]]

1492   for i in range(datarange[0][0],len(y),1):

1493   deflect_rate.append( (y.iloc[i]-y.iloc[i-1]) / (x[i]-x[i-1]) )

1494   deflect_x = x[datarange[0][0]:]

1495   plot311.plot(deflect_x,deflect_rate, '--', color=Color, label=Label,

lw=0.8, alpha=0.5)



1496   

1497   # image print

1498   print('image print')

1499   img = item[6]

1500   counter = 0

1501   for item2 in grid2:

1502   counter+=1

1503   print(counter)

1504   

1505   if 'plot32' in locals():

1506   plot32.imshow(img)

1507   else:

1508   if counter>5:

1509   row = int(item_counter/2+1)

1510   column = item_counter % 2

1511   print(row,column, item_counter)

1512   imager = fig.add_subplot(grid2[item_counter+2])

1513   else:

1514   imager = fig.add_subplot(grid2[item_counter+1])

1515   imager.imshow(img)

1516   imager.axis('off')

1517   imager.text(0.9, 0.1,str(item_counter+1), ha='center',

va='center', transform=imager.transAxes, fontsize=7)

1518   

1519   item_counter+=1

1520   

1521   except TypeError: continue

1522   if 'type' in locals(): pass

1523   else: type =''

1524   

1525   # manual legend entries

1526   lstyle = ['-', '--']

1527   lines = [Line2D([0],[0], color='k', lw=0.6, ls=style) for style in lstyle]

1528   labels = ['Stress', 'Utilization']

1529   plot11.legend(lines,labels, loc='upper right', fontsize=7, frameon=False)

1530   labels = ['Deflection', 'Deflection rate']

1531   plot31.legend(lines,labels, loc='best', fontsize=7, frameon=False)

1532   

1533   fig.suptitle(type)

1534   plot11.set(title='Stress - Time curve', ylabel='\u03C3  [MPa]',xlabel='Time 

[min]',xlim=(0,90),ylim=(0,250)) #stress-time 

1535   plot111.set(ylabel='Utilization', ylim=(0,2.5)) #utilization-time

1536   plot12.set(title='Temperature - Time curve', ylabel='Temperature [Celsius]',

xlabel='Time [min]',xlim=(0,90),ylim=(0,1000)) #stress-time  #temp-time

1537   

1538   plot21.set(title='Strain - Time curve', ylabel='\u03B5 [\u2030]', xlabel='Time 

[min]',xlim=(0,90), ylim=(0,4)) #strain-time

1539   handles,labels = plot11.get_legend_handles_labels()

1540   if 'plot22' in locals():

1541   plot22.axis('off')

1542   plot22.legend(handles,labels, loc='center left', fontsize=7, frameon=True,

shadow=False, framealpha =0.5)

1543   plot32.set_title('Deformed shape vs Initial state')

1544   else:

1545   if item_counter<5:

1546   plot22 = fig.add_subplot(grid2[0,:])

1547   plot22.axis('off')

1548   plot22.legend(handles,labels, loc='upper center', fontsize=7,

frameon=True, shadow=False, framealpha =0.5)

1549   else:

1550   plot22 = fig.add_subplot(grid2[0,:])

1551   plot22.axis('off')

1552   plot22.legend(handles,labels, loc='upper left', fontsize=6,

frameon=True, shadow=False, framealpha =0.5, ncol=2)

1553   if 'Aluminium' in dictionary[0][0]:loc_y=-590

1554   else: loc_y=-990

1555   if 'no' in dictionary[1][0]: loc_x = 2

1556   else: loc_x=5

1557   plot12.text(loc_x,loc_y, 'Deformed shape vs Initial state', fontsize=11)

1558   

1559   plot31.set(title='Deflection - Time curve',ylabel='Deflection [mm]',

xlabel='Time [min]', xlim=(0,90), ylim=(0,125)) #deflect-time



1560   plot311.set(ylabel='Deflection rate [mm/min]', ylim=(0,6.25))

#deflection rate - time

1561   if 'no' in dictionary[1][0]:

1562   plot11.set_xlim(0,20)

1563   plot111.set_xlim(0,20)

1564   plot12.set_xlim(0,20)

1565   plot21.set_xlim(0,20)

1566   plot31.set_xlim(0,20)

1567   plot311.set_xlim(0,20)

1568   if 'Aluminium' in dictionary[0][0]:

1569   plot12.set_ylim(0,600)

1570   if 'Column' in dictionary[0][0]:

1571   plot11.set_ylim(0,40)

1572   plot111.set_ylim(0,4)

1573   plot21.set_ylim(0,4)

1574   plot31.set_ylim(0,30)

1575   plot311.set_ylim(0,3)

1576   

1577   for plots in [plot11,plot111,plot12,plot21,plot31,plot311]:

1578   plots.minorticks_on()

1579   plots.minorticks_on()

1580   

1581   fig.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+'Post_processing '+name+'.png', dpi=400)

1582   #plt.show()

1583   plt.close()

1584   

1585   beam3_ins_list_alu = []

1586   beam3_ins_list_ste = []

1587   beam1_ins_list_alu =[]

1588   beam1_ins_list_ste =[]

1589   beam3_noins_list_alu = []

1590   beam3_noins_list_ste = []

1591   beam1_noins_list_alu =[]

1592   beam1_noins_list_ste =[]

1593   # list names column_list, beam3_ins_list, beam1_ins_list, beam3_noins_list, 

beam1_noins_list all with 8 items

1594   

1595   for Q, W, E, R in zip(beam3_ins_list, beam3_noins_list, beam1_ins_list,

beam1_noins_list):

1596   if 'Alu' in Q: beam3_ins_list_alu.append(Q)

1597   elif 'Steel' in Q: beam3_ins_list_ste.append(Q)

1598   if 'Alu' in W: beam3_noins_list_alu.append(W)

1599   elif 'Steel' in W: beam3_noins_list_ste.append(W)

1600   if 'Alu' in E: beam1_ins_list_alu.append(E)

1601   elif 'Steel' in E: beam1_ins_list_ste.append(E)

1602   if 'Alu' in R: beam1_noins_list_alu.append(R)

1603   elif 'Steel' in R: beam1_noins_list_ste.append(R)

1604   # list names column_list, beam3_ins_list, beam1_ins_list, beam3_noins_list, 

beam1_noins_list all with 8 items

1605   def checkers(myList, path, image_name):

1606   dictionary=list()

1607   for item in myList:

1608   stress=read_data(901,item,'Stresses', path)

1609   temp = read_data(901, item, 'Temp', path)

1610   LE = read_data(901, item, 'Log_strains', path)

1611   PE = read_data(901, item, 'Plastic_strains', path)

1612   disp = read_data(901,item,'Displacements', path)

1613   try: img = mpimg.imread(r'D:\renee\OneDrive - TU 

Eindhoven\Studie\Afstuderen\Thesis figures\mechanical 

image'+'\\'+copy.deepcopy(item)+image_name+'.png')

1614   except: img=''

1615   dictionary.append([item, stress, temp, LE, PE, disp, img])

1616   name= myList[0] +'_'+ image_name

1617   postprocessing(dictionary, name)

1618   

1619   checkers(column_list, r'E:', '')

1620   # checkers(beam3_ins_list_alu, r'E:\four_point_bending_test',  'Pload') 

1621   # checkers(beam3_ins_list_ste, r'E:\four_point_bending_test',  'Pload' ) 

1622   # checkers(beam3_noins_list, r'E:\four_point_bending_test',  'Pload') 

1623   # checkers(beam1_ins_list_alu, r'E:\four_point_bending_test',  'Pload')

1624   # checkers(beam1_ins_list_ste, r'E:\four_point_bending_test',  'Pload')



1625   # checkers(beam1_noins_list, r'E:\four_point_bending_test',  'Pload' )

1626   

1627   # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\paint\P'

1628   # checkers(column_list, location, 'paintP')

1629   # checkers(beam3_ins_list, location,  'paintP') 

1630   

1631   # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\paint\Q'

1632   # checkers(column_list, location, 'paintQ')

1633   # checkers(beam3_ins_list, location,  'paintQ') 

1634   

1635   # location = r'E:\q_load 12-9-2019'

1636   # checkers(beam3_ins_list_alu, location,  'Qload') 

1637   # checkers(beam3_ins_list_ste, location,  'Qload') 

1638   # checkers(beam3_noins_list, location,  'Qload') 

1639   # checkers(beam1_ins_list_alu, location,  'Qload')

1640   # checkers(beam1_ins_list_ste, location,  'Qload')

1641   # checkers(beam1_noins_list, location,  'Qload')

1642   

1643   # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\Alt\Q'

1644   # checkers(beam3_ins_list, location, 'AltQ')

1645   # checkers(beam1_ins_list, location, 'AltQ')

1646   

1647   # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\Alt\P'

1648   # checkers(beam3_ins_list, location, 'AltP')

1649   # checkers(beam1_ins_list, location, 'AltP')

1650   

1651   # beam3_ins_list_alu 

1652   # beam3_ins_list_ste 

1653   # beam1_ins_list_alu 

1654   # beam1_ins_list_ste

1655   # beam3_noins_list_alu 

1656   # beam3_noins_list_ste 

1657   # beam1_noins_list_alu 

1658   # beam1_noins_list_ste 

1659   column_list_no =list()

1660   column_list_yes = list()

1661   for item in column_list:

1662   if 'yes' in item:

1663   column_list_yes.append(item)

1664   else:

1665   column_list_no.append(item)

1666   # column_list,

1667   # beam3_ins_list, 

1668   # beam1_ins_list, 

1669   # beam3_noins_list, 

1670   # beam1_noins_list 

1671   

1672   def column_beams(dictionary, name):

1673   # figure plotting stresses

1674   fig = plt.figure(figsize=(8,8))

1675   grid = fig.add_gridspec(nrows=2,ncols=2)

1676   fig.subplots_adjust(left=0.08,bottom=0.08,right=0.92,top=0.9, wspace=0.45,

hspace=.5)

1677   plot11 = fig.add_subplot(grid[0])

1678   plot12 = fig.add_subplot(grid[1])

1679   plot21 = fig.add_subplot(grid[2])

1680   plot22 = fig.add_subplot(grid[3])

1681   

1682   for plots in [plot11,plot12,plot21,plot22]:

1683   plots.grid(lw=0.3, which='major', axis='both')

1684   plots.grid(lw=0.1, which='minor', axis='both')

1685   

1686   item_counter = 0

1687   

1688   for item in dictionary:

1689   try:

1690   if item[1] == None: continue #if empty dataset don't run it

1691   else:

1692   print(item[0])

1693   # create a label

1694   if 'Column' in item[0]:

1695   type = 'Columns'



1696   Label = item[0].replace('Mech_Column_', '')

1697   Label = Label.replace('_Concrete','')

1698   length = 1e3

1699   elif 'Beam3' in item[0]:

1700   type='3-sided Beams'

1701   Label = item[0].replace('Mech_Beam3_', '')

1702   length=3e3

1703   elif 'Beam1' in item[0]:

1704   type = 'Integrated Beams'

1705   Label = item[0].replace('Mech_Beam1_', '')

1706   length=3e3

1707   if 'yes' in item[0]: Label=Label.replace('_yes_10', ' insulated')

1708   elif 'no' in item[0]: Label=Label.replace('_no_10',' uninsulated')

1709   if 'shell' in item[0]: Label=Label.replace('_shell', '')

1710   if 'I-section' in item[0]: Label=Label.replace('_I-section', ' IPE')

1711   if 'Beam' in item[0] and 'uninsulated' in Label:

1712   Label=Label.replace(' uninsulated', '')

1713   type = type + ' uninsulated'

1714   

1715   Label = Label.replace('_', ' ')

1716   

1717   if 'Column' in item[0]:

1718   if 'I-section' in item[0] or 'IPE' in item[0]:

1719   loc_middle = 334

1720   loc_top = 2

1721   loc_bottom = 7

1722   else:

1723   loc_middle = 252

1724   loc_top = 386

1725   loc_bottom = 18

1726   else:

1727   if 'I-section' in item[0] or 'IPE' in item[0]:

1728   loc_middle = 6938

1729   loc_top = 163

1730   loc_bottom = 1112

1731   else:

1732   if 'Beam3' in item[0]:

1733   loc_list = [9422,14804,4049,1145,810,176,493]

1734   else: loc_list = [10625,16008,7495,1751,1416,1060,162]

1735   loc_middle, loc_top, loc_bottom, edge_top1, edge_top2,

edge_bottom1, edge_bottom2 = loc_list

1736   

1737   stress_temp = pd.DataFrame()

1738   for T in item[1]:

1739   stress_temp = pd.concat([stress_temp, item[1][T]], axis=1)

1740   

1741   LE = pd.DataFrame()

1742   PE = pd.DataFrame()

1743   for L, P in zip(item[2], item[3]):

1744   LE = pd.concat([LE, item[2][L]], axis=1)

1745   PE = pd.concat([PE, item[3][P]], axis=1)

1746   

1747   middle_node = abs(LE['S11'].loc[loc_middle] +

PE['S11'].loc[loc_middle])

1748   top_node = abs(LE['S11'].loc[loc_top] + PE['S11'].loc[loc_top])

1749   bottom_node = abs(LE['S11'].loc[loc_bottom] +

PE['S11'].loc[loc_bottom])

1750   bottom_temp = stress_temp.loc[loc_bottom]

1751   

1752   if 'Aluminium' in item[0]:

1753   itera = 0

1754   for Q in bottom_temp:

1755   if Q>500:break

1756   itera+=1

1757   elif 'Steel' in item[0]:

1758   itera=0

1759   for Q in bottom_temp:

1760   if Q>1200: break

1761   itera+=1

1762   

1763   y = bottom_node[0:itera]

1764   x = bottom_temp[0:itera]



1765   

1766   if 'Steel' in item[0] and 'no' in item[0]:

1767   plot11.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1768   elif 'Steel' in item[0] and 'yes' in item[0]:

1769   plot21.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1770   elif 'Aluminium' in item[0] and 'no' in item[0]:

1771   plot12.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1772   elif 'Aluminium' in item[0] and 'yes' in item[0]:

1773   plot22.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1774   

1775   except TypeError: continue

1776   item_counter+=1

1777   

1778   if 'type' in locals(): pass

1779   else: type =''

1780   

1781   fig.suptitle(type)

1782   plot11.set(title='Uninsulated Steel', ylabel='\u03B5 

[\u2030]',xlabel='Temperature [Celsius]',xlim=(0,800),ylim=(0,2))

1783   plot12.set(title='Uninsulated Aluminium', ylabel='\u03B5 

[\u2030]',xlabel='Temperature [Celsius]',xlim=(0,800),ylim=(0,2))

1784   plot21.set(title='Insulated Steel', ylabel='\u03B5 [\u2030]',xlabel='Temperature 

[Celsius]',xlim=(0,800),ylim=(0,2))

1785   plot22.set(title='Insulated Aluminium', ylabel='\u03B5 

[\u2030]',xlabel='Temperature [Celsius]',xlim=(0,800),ylim=(0,2))

1786   

1787   plot11.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1788   plot12.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1789   plot21.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1790   plot22.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1791   

1792   for plots in [plot11,plot12,plot21, plot22]:

1793   plots.minorticks_on()

1794   plots.minorticks_on()

1795   

1796   fig.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis 

figures'+'\\'+'column_beam_'+name+'.png', dpi=400)

1797   plt.show()

1798   plt.close()

1799   

1800   def checkerss(myList, path1, path2, image_name):

1801   dictionary=list()

1802   for item in myList:

1803   if 'Column' in item:

1804   temp = read_data(901, item, 'Temp', path1)

1805   LE = read_data(901, item, 'Log_strains', path1)

1806   PE = read_data(901, item, 'Plastic_strains', path1)

1807   else:

1808   temp = read_data(901, item, 'Temp', path2)

1809   LE = read_data(901, item, 'Log_strains', path2)

1810   PE = read_data(901, item, 'Plastic_strains', path2)

1811   dictionary.append([item, temp, LE, PE])

1812   name = myList[0] +'_'+ image_name

1813   column_beams(dictionary, name)

1814   

1815   # newlist3 = column_list + beam3_ins_list + beam3_noins_list

1816   # checkerss(newlist3, r'E:',  r'E:\four_point_bending_test',  'Pload') 

1817   # newlist1 = column_list + beam1_ins_list + beam1_noins_list

1818   # checkerss(newlist1, r'E:',  r'E:\four_point_bending_test',  'Pload') 

1819   

1820   # location = r'E:\q_load 12-9-2019'

1821   # checkerss(newlist1, r'E:', location, 'Qload') 

1822   # checkerss(newlist3, r'E:', location, 'Qload') 

1823   
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