
 Eindhoven University of Technology

MASTER

Insulated aluminium sections exposed to fire
Thermal and mechanical finite element modelling of protected aluminium and steel sections
exposed to fire loading, a comparison between columns and beams

van der Wurff, R.M.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5c2d29b5-43a7-4802-9b9f-17427a8f1376

Insulated aluminium sections exposed to fire
GRADUATION THESIS – Structural design TU/e

Thermal and mechanical finite element modelling of protected aluminium and steel sections exposed

to fire loading, a comparison between columns and beams.

Name: Renée van der Wurff

Adres: Lijsterbesstraat 111

 5616 LE Eindhoven

 The Netherlands

Email: rmwurff@gmail.com

Phone: +31 6 104 99 456

Identification: 0811984 – A2019.278

Date: 22/10/2019

Graduation supervision committee:

Prof. dr. ir. J. Maljaars

Eindhoven University of Technology

Dr. Ir. H. Hofmeyer

Eindhoven University of Technology

Ir. F. Pawiroredjo

Bayards B.V.

2

PREFACE
This is the graduation thesis for completion of the master phase of the specialization Structural Design

in the master track Architecture, Building and Planning of Eindhoven University of Technology. The

thesis goes in-depth on the thermal and mechanical behaviour of a protected aluminium beam under

fire load in comparison to that of a similar column as to warrant full scale beam tests as prescribed in

EN13381 to determine the thermal properties of insulating materials when working with aluminium

members. A full overview is achieved through methodical finite element analysis of both aluminium

and steel sections which resulted in a project of more than 9000 lines of code.

SUMMARY
New insulating materials to be used with steel must be tested to determine their thermal properties

according to NEN-EN 13381, which prescribes twelve unloaded columns and two full-scale loaded

beam tests. During tests time and temperatures of gas, surfaces and cavities are measured. In tests with

loaded sections deflection limits describe failure. With the use of Fourier differential equation and the

heat equation, and inputting the test data plus densities and specific heat, the thermal conductivity of

the insulation can be expressed as a function of temperature with additional linear regression analyses.

The necessity of the full-scale loaded beam tests in EN13381 is due to the fact that steel is subject to

larger deformations before failure. Due to this the insulation layer around the cross-section can be

damaged and result in a more rapid heating of the beam. The question is however, if the same can be

said in the case of aluminium cross-section in combination with insulation.

Eurocode 3 and 9 describes simplified equations, assuming the thermal conductivity to be infinite and

thus the temperature constant over the cross-section. The thermal and mechanical material properties at

elevated temperatures in the Eurocode are based on steady state tests, however literature argues that

transient state tests are more appropriate due to creep, overaging and annealing. To describe the stress-

strain relation at elevated temperatures the Ramberg-Osgood equation is commonly used. Creep strains

can be described using the Dorn-Harmathy model or be implicitly incorporated for aluminium by

adjusting the stress-strain relation.

Typically a beam is subject to a three-sided fire, incurring a thermal gradient over the cross-sectional

height between the exposed and ambient sides of the beam. This can affect both thermal and mechanical

properties. The thermal gradient causes a distribution of the strength and stiffness, causing a shift of the

neutral axis. Additionally, lengthwise thermal expansion differs between these sides, causing a thermal

bowing effect. Strain is thus comprised out of elastic part, thermal expansion part and creep part.

To evaluate the behaviour of (protected) steel and aluminium sections, a thermal analysis is followed

by a mechanical analysis is performed within finite element environment Abaqus. Approximately a

hundred scenarios were considered, ranging from a column exposed to elevated temperatures from all

sides, to beam facing a fire from three sides, and an integrated beam with one exposed side. The thermal

analysis also includes an approach to tackling intumescent paints, fibre blanket insulation and an

evaluation of the thermal effects of different floor systems. The mechanical analysis includes both a

look at a simply supported beam under an evenly distributed load and when subject to a four point

bending test.

The results show that as to be expected, the thermal gradient in uninsulated is much lower than for

insulated section. In addition, the same can be said for aluminium section in comparison to steel,

considering the larger thermal conductivity, this fits with conventional understanding. Overall it can be

concluded that insulation has a tremendous effect on the temperature increase over time and the

implementation of insulation and floor system on a beam is determining for the temperature distribution

in the cross-section. For aluminium the effect appears to cause the thermal gradient over the cross-

3

section to become more linear, while steel has an inherently larger gradient than aluminium given the

fact that it has a lower thermal conductivity.

Comparing the strain development between column and loaded beams for steel confirms that steel

loaded beam sections showcase significant sagging before failure. The strain in the case of an insulated

IPE section in combination with a lightweight floor shows clear deviation from 400℃ onwards before

failure at circa 600 degrees. In contrast, for aluminium, the slope of the strain is similar up until failure.

This leads to the conclusion that the deformation of a protected aluminium beam exposed to a fire load

does not differ to any great extent from that of a similar column in such a manner that the protective

insulation layer may be damaged prior to failure, and the heating of the beam would be affected.

Following the results in chapter 7, there is a positive argument for the omission of full scale loaded

beam tests for fire testing with new insulation materials in combination with aluminium. Considering

the limit values in EN 13381 and the temperature from which the strain of the beam deviates from the

column, to omit the beam test an additional safety margin of 25℃ on the critical temperature for

insulated, loaded structures is a recommended. To absolve the need for the loaded aluminium beam test

completely however, additional testing is advised to determine if the model fits with an actual fire test.

4

CONTENT
Preface .. 2

Summary ... 2

Nomenclature .. 7

1. Introduction ... 8

2. Problem description .. 9

2.1 Problem introduction .. 9

2.2 Problem statement ... 9

2.3 Approach ... 10

3. Literature study & theoretical background ... 11

3.1 Normative texts ... 11

3.1.1 Measured parameters .. 11

3.1.2 Fire test setup .. 11

3.1.3 Failure criterion ... 12

3.2 Thermal analysis ... 12

3.2.1 Calculating properties from test data .. 12

3.2.2 Simulated fire .. 13

3.2.3 Member temperature ... 14

3.2.4 Thermal material properties .. 14

3.2.4.1 Insulation ... 14

3.2.4.2 Contact and cavities .. 15

3.2.4.3 Steel ... 15

3.2.4.4 Aluminium .. 15

3.2.4.5 Concrete .. 17

3.2.5 Thermal gradient ... 17

3.2.6 Thermal simulation model .. 17

3.3 Mechanical analysis .. 18

3.3.1 Material strength and Young’s modulus ... 18

3.3.2 Strain ... 19

3.3.2.1 Ramberg-Osgood relation ... 19

3.3.2.2 Thermal expansion .. 20

3.3.2.3 Creep strain ... 20

3.3.3 Loading ... 21

3.3.4 Failure mechanisms... 21

3.3.5 Mechanical simulation model ... 21

3.4 Aluminium section types .. 22

4. Finite element thermal analysis... 24

5

4.1 Model description ... 24

4.2 Thermal analysis ... 24

4.2.1 Column: a four-sided fire simulation .. 26

4.2.1.1 Validation .. 26

4.2.1.2 Thermal gradient ... 29

4.2.1.3 Sensitivity analysis of mesh density ... 31

4.2.1.4 Sensitivity analysis of contact definition .. 32

4.2.2 Beam: a three-sided fire simulation .. 32

4.2.3 Integrated beam: a one-sided fire simulation .. 38

4.2.4 Alternative lightweight floor – sandwich panel .. 43

4.2.5 Intumescent paint .. 46

5. Mechanical analysis .. 51

5.1 Strain relation .. 51

5.1.1 Implicit stress-strain relation ... 51

5.2 Structural model .. 52

5.3 Model limits .. 53

5.4 Validation mechanical model .. 54

5.4.1 Column .. 54

5.4.2 Beam ... 54

6. Results ... 58

6.1 Column .. 58

6.2 Beam: three sided fire ... 60

6.2.1 Evenly distributed load ... 60

6.2.2 Four point bending test ... 63

6.3 Integrated beam ... 67

6.3.1 Evenly distributed load ... 67

6.3.2 Four point bending test ... 70

7. Discussion of results ... 74

8. Conclusion .. 77

9. Future work ... 77

10. References ... 78

11. Appendices .. 81

A: List of figures and tables .. 82

B: Mechanical analysis with intumescent paint .. 89

C: Mechanical analysis with sandwich floor .. 92

D: FEM images of deformed model shapes .. 95

D.1 Columns .. 95

6

D.2 Evenly distributed load. .. 96

D.3 Four point bending test ... 100

E: FEM thermal analysis script ... 103

F: FEM mechanical analysis script ... 104

G: Postprocessing script .. 105

7

NOMENCLATURE
Abbreviations

FEM Finite element method

ULS Ultimate limit state

Symbols

𝑓0,2, 𝑓𝑦 stress at 2‰ strain [N/mm2]

𝑓𝑢 ultimate stress of aluminium [N/mm2]

𝐸𝑚𝑜𝑑 Young’s modulus [N/mm2]

L Span of the specimen [m]

d distance between extreme fibres of

member [mm]

D, 𝛿 deflection [mm]

q or h’ heat flux

k, 𝜆 thermal conductivity

ksh shadow effects

A/V section factor, area over volume

∇ Laplace operator

αc heat transfer coefficient for convection,

in W/m2K

𝜃g, Tg gas temperature from nominal fire

curve, in °C

𝜃m surface temperature of the member

following from the material standard, in

°C

Φ sight-factor, unless otherwise specified

equal to 1.0

εm emission factor of the surface of the

member; unless otherwise specified

equal to 0.8

εf Emission factor of a fire, generally

equal to 1.0

σ Stephan Boltzmann constant (= 5,67 ·

10-8 W/m2K4)

𝜃r effective radiation temperature of the

fire compartment, in °C

𝜂 reduction factor of loading in case of

extreme condition compared to

ultimate limit state

c specific heat

𝜌 density

𝜆𝑟𝑒𝑙 relative slenderness ratio

𝜎, 𝜀 stress and strain

𝛼𝐿 linear expansion coefficient

𝑛 strain hardenings factor

Subscripts

Lim represents a limiting value of the

quantity

𝜃 quantity at elevated temperature

𝑎𝑙 property of aluminium

𝑠𝑡 property of steel

𝑝 property of insulation

𝑚 property of member

c convection parameter

r radiation parameter

net netto value

el elastic

th thermal

cr creep

8

1. INTRODUCTION
The probability of a fire occurring within a dwelling is one in sixty-seven on a yearly bases according

to CBS data on 2016 [1], proving it is one of the most common disasters to occur and thus to guard

structures against. In general structures deteriorate during a fire, the reason why fire safety design is

part of building design and implemented into the Eurocode standards. Within the standard it is presented

as a minimal time period, depending on utility type, over which the element must retain its functionality

as to allow for evacuation. It states that the fire resistance of a structure can either be determined through

physical testing, by following standardized calculation methods or more advanced numerical models

[2].

The calculation methods to describe mechanical behaviour as presented in the Eurocodes, such as the

strength reduction method, are dependent on member temperature. Temperatures are described using

thermodynamic theory, specifically Fourier’s equation. This equation describes the heat flux as the

product of thermal conductivity and the dimensional temperature gradient. To calculate the temperature

of the member [2] the equation could be simplified by making assumptions regarding material

properties and thermal processes. The Eurocode reduces Fourier’s equation to describe the heat flux as

attributed to convection and radiation [2] and for aluminium and steel, assumes a constant temperature

gradient over the cross-section due to the relatively high heat conductivity of the material [3][4]. The

relation between thermal and mechanical behaviour of materials in this context is often presented in the

form of reduction factors. These reductions factors with which the mechanical strength and/or stiffness

value of a material is multiplied at a certain elevated member temperature, is often presented in table

format [4]. The reduction factors for a material are based on experimental data, as found from

mechanical stress tests while the sample is exposed to certain constant elevated temperature [3][4]. This

displays an inherent overlap between theory based and empirical approaches to fire safety design.

Given the fact that metals have a high heat conductivity, heating of a metal section occurs more quickly

compared to concrete and timber. Such sections must be protected when the fire resistance would

otherwise prove insufficient. Elevated temperatures affect the material properties of the metal and cause

a rapid drop of the Young’s modulus and a sustained reduction of the load carrying capacity of the

structure as the proof and ultimate strength limits, 𝑓0,2 and 𝑓𝑢 are diminished [2]. This can lead to large

deformations and eventual collapse. Aluminium elements are more vulnerable in comparison to steel,

showing the onset of deterioration at temperatures as low as 175℃ and an ultimate temperature of

600℃ [5].

To ensure structural elements meet the time requirement as set by the Eurocode, most cases require

additional protective material. There are several factors tying into the behaviour of structural elements

under fire load. Factors as thermal expansion, temperature, exposure to fire load, protective cover,

loading, creep, and connections are expected to be influencing the behaviour of the structure and the

performance of insulating material [6]. New insulating materials must be tested to determine their

material properties such as heat conductivity. EN 13381 prescribes fire testing methods to determine

these properties for use with structural members. The current setup for standard fire tests for aluminium

elements is taken from the prescribed European standard for steel. However, it is unclear if the steel

setup is representative when working with aluminium as a full evaluation has not yet been developed.

This thesis examines the behaviour of insulated steel and aluminium sections exposed to elevated

temperatures. The aim of this study is to gain insight into the deformation of insulated aluminium

members exposed to fire and to determine a possible alternative fire test dedicated to aluminium

members. Therefore, the chapters in this thesis represent the steps taken to achieve this, namely a literary

review and a transient non-linear finite element analysis in Abaqus. The entire simulation comprises of

a transient thermal analysis based on Fourier equation and a non-linear mechanical analysis – with

transient state test material properties for aluminium and steel, IPE and RHS sections in loaded and

unloaded scenario’s.

9

2. PROBLEM DESCRIPTION

2.1 Problem introduction
Even though the materials steel and aluminium are similar superficially – considering slenderness,

thermal conductivity, ductility – there are still significant differences in properties and subsequent

behaviour when exposed to elevated temperatures, such as the magnitude of thermal and creep

deformations. This may imply that the materials require their own tests to acquire representative data

on thermal conductivity and specific heat for different insulation materials. However, there is a

European standard for steel fire test EN1363 and EN 13381 in which setup is described, while there is

no such standard for aluminium to calculate fire resistance properties [7]. Currently the steel test

requires twelve unloaded columns and two full scale loaded beam tests, from which the performance of

the insulation material can be obtained [7]. The need for both column and loaded beam tests lays with

the fact that a steel beam experiences significant sagging or larger deflections, potentially affecting the

insulating material [8]. This can result in damage to the insulation layer or even a complete separation.

Due to this loss of protection against elevated temperature, a steel section can heat more quickly at this

stage. Hence the behaviour of protected sections can differ between that of a column and a beam. Full

scale beam test are relatively expensive and considering the rate of return on investment in a smaller

aluminium market compared to steel, it is of interest to determine if the loaded beam test is necessary

considering the material behaviour. The question thus becomes, if the insulation performance of an

unloaded aluminium column differs from that of a loaded beam as is with steel?

Given the material properties of aluminium, it is to be expected that other failure mechanisms occur

before excessive sagging compromises the protective layer. Herein the effect of creep under elevated

temperatures is of significant interest [9]. This would imply that the protected beam would reach a

critical internal temperature of approximately 200-400℃, depending on the utilization ratio, that is load

divided by resistance, before sagging damages the protective covering. Thereby negatively affecting

the heating rate of the aluminium section. Expectations are that the deflection of the aluminium beam

compared to steel are more favourable in a sense that creep occurs faster, possibly even omitting the

need for the fire beam test altogether.

In addition to creep, aluminium has a higher thermal conductivity than steel. It is to be expected that

the thermal gradient in this case is therefore lower, which carries into the effect of thermal bowing.

Complementary, aluminium also has about a twice as large thermal expansion. All three aspect will

come to light during the thesis.

2.2 Problem statement
The situation gives rise to the question whether the thermal and mechanical behaviour of a protected

aluminium beam under fire load differs to that of a similar column. It is to be judged, if a protective

insulating layer is negatively affected and a change in the gradual heating of the member is observed,

as to warrant full scale beam tests as prescribed in EN13381 to determine the thermal properties of

insulating materials when working with aluminium members.

There is therefore a practical need for a more lucrative alternative to the fire test setup when working

with aluminium, leading to the following research question:

Does the deformation of a protected aluminium beam under fire load differ to that of a similar column,

in such a way that the protective layer is affected and a change in the gradual heating of the beam is

observed?

To tackle this subject, a set of sub questions have been formulated to serve as a starting base. Herein a

distinction can be made between geometric, material and mechanical specific questions.

10

Geometric

a) What are the specifications of the standard steel fire test EN1363 concerning support,

connections, beam size, length, and protective covering?

b) What aluminium profiles are used in practice?

c) What are the geometric specifications of comparable beam segments of steel and aluminium

for FEM analysis?

Material specifics

d) What material properties are subject to change during a fire?

e) What are determining factors for the fire resistance of a protected beam section that are to be

considered or expected to occur, and are these coupled or sequential phenomenon?

Mechanical

f) What are appropriate failure criteria of the protective layer and beam section?

FEM model

g) What effect has a protective layer on the beam section heating over time and what are the

protective layer equivalent properties within the FEM environment?

h) What is the mathematical equivalent for the FEM implementation of the fire load?

i) Is there comparative data available or attainable for verification of the model?

j) What recommendations/observations can be made for a standardized aluminium fire test

proposal?

2.3 Approach
To answer the main problem statement, the thesis is separated into two main parts, first that of a full

literary study, and second a finite element analysis. The literary study is comprised out of evaluation of

the data available in the ISO standards supplemented and evaluated with complementary research

studies. All in all, this will set the basis for the theoretical background regarding the material properties

at room and elevated temperatures for steel, aluminium and insulation materials in addition to the

boundary conditions, available model techniques, failure mechanisms and validation possibilities.

The numerical model will serve to determine if the deformations that occur during a numerical fire, are

significantly larger for a loaded aluminium beam compared to that of an unloaded column, requiring a

standard fire beam test as currently prescribed in EN1363. If the deformation rate is similar between

the two, the need for a beam fire test can be omitted. Thus limiting the standard fire test for aluminium

to 12 unloaded columns to determine the properties of insulating materials.

The thermal and mechanical (creep and thermal expansion) analysis should be doable in sequential

order, wherein the thermal analysis is input for the mechanical analysis. Combining the literary review,

a numerical analysis and the critical review and improvement of the current standard EN1363 for

aluminium, will comprise the complete thesis.

11

3. LITERATURE STUDY & THEORETICAL BACKGROUND

3.1 Normative texts
To test new insulating materials there are several standardized setups available that concern furnace

specifications and the test specimen. The standards EN1363 and EN1365 respectively, describe the

furnace specifications including air pressure, measuring sensors and equipment settings; and element

specifications regarding material and usage typology. EN 13381 describes testing methods to determine

the fire resistance of structural members due to protective measures such as insulation. Part 4 and 8 of

standard EN13381 describe the setup of respectively passive and active fire protective measures with

structural steel members. It is prescribed that for cases with steel structural members, it is necessary to

test twelve unloaded columns and two full-scale loaded beams [7] to ascertain the properties of

insulating materials. The need for two full-scale beam tests is based on the fact that steel beams

experience significant sagging before failure[8], in comparison to columns. This behaviour implies that

due to the deformation, the protective cover can be torn, cracked, fall away or be otherwise damaged

and thus allow for more rapid heating of the section [7].

3.1.1 Measured parameters

Given that fire tests are performed to classify the insulation material, a difference is made between

active and passive systems. An active system would be a reactive foaming coating for instance. What

is known a priori of the insulation is the thickness of the applied layer, which is a parameter used for

calculation at a later stage [8]. NEN-EN 13501-2:2016 Annex B prescribes that individual and mean

temperatures of surfaces – both of member and outside insulation – and cavities are measured during

testing [8]. From the thermal analysis a series of material dependent tables are produced which sets

certain fire resistance periods (of 15, 30, 45, 60, 120, 180, 240 minutes) against critical design

temperatures (for steel ranging between 350 to 750℃ with 50℃ increments) for certain insulated

section factors Ap/V [8]. An example of such a table is table B.2 in the standard NEN-EN13501. Such

a material dependent table can then be cross-referenced with technical datasheets of insulation

fabricators to get the required insulation thickness [10].

The values regarding the geometry of the cross-section, insulation thickness and the transient

temperatures at the surfaces and cavities, as measured during testing, are used as input for the

calculation of the material properties of the insulation [8]. The applied equations are based on Fourier

Equations on thermodynamics. In basic form this would be 𝑞 = −𝑘∇𝜃 , describing the local heat flux

density as the product of the negative thermal conductivity of all materials in the referenced space,

multiplied by the spatial temperature gradient. By combining Fourier’s differential equation with the

heat equation, as further discussed in chapter 3, and inputting the specific heat and density values as

obtained from other tests, the effective thermal conductivity of the insulation is calculated [8]. The

thermal conductivity is deemed effective because its value is expressed in relation to the (steel or

aluminium) member temperature as to fit simplified mathematical models instead of its true absolute

value that would be related to the temperature of the insulation material at that exact location. Adjusting

the thermal conductivity is a necessity because the value of the temperature of the insulation in the test

is not measurable but only established relatively to material surface temperatures which implies circular

(mathematical) dependencies. The standard states that the variation of the thermal conductivity is a

function of temperature, and its values are found using the mentioned equations [6]. Subsequent, the

temperature dependency of the thermal conductivity is found through linear regression analysis [11].

3.1.2 Fire test setup

The size of the test is dependent on the size of the furnace, which is ordinarily no larger than five by

seven metres [12]. Columns are subjected to fire on all sides, while beam tests are setup to simulate a

three-sided fire. When performing a fire test aerated concrete blocks are used to simulate the flooring

in case of beams. These are placed on top of the beams and are highly insulating to simulate three-sided

12

heating. Generally these blocks cover the entire length of the beam and are 600 mm wide and 120 mm

high [13].

The full-scale beam test is mechanically loaded, in contrast to the column tests – represented as a simply

supported four-point static bending test loaded with hydraulic jacks [13]. The load is constant during

the test. Given that a fire is an extreme load situation [14], the load is significantly less in comparison

to the fundamental load combination as expressed in EN 1990. In case of fire, the utilization – applied

load divided by carrying capacity – of the cross-section is suggested to be 0.65 for steel [3]. This value

is based on the reduction of the extreme load due to combination factors under fire conditions.

3.1.3 Failure criterion

Failure of beam elements under fire conditions is expressed in both a deflection and a rate of deflection

limit, equations (1) and (2) respectively [6][13]. These limiting values are based on securing a

representative data range given the type of structural member and an adequate safety level to prevent

damaging the equipment. Sudden and uncontrolled failure of specimens can cause damage to the

furnace and equipment used in the setup. As some irregularity can occur before stable conditions are

reached – such as settling due to initial loading – the rate of deflection limit is not applied until a

deflection equal to L/30 has been reached [7].

Deflection limit 𝐷𝐿𝑖𝑚 =
𝐿2

400𝑑
 𝑚𝑚 (1)

Deflection rate limit
𝑑𝐷

𝑑𝑡𝐿𝑖𝑚
=

𝐿2

9000𝑑
 𝑚𝑚/𝑚𝑖𝑛 (2)

As the column tests are unloaded, deflection is not a failure criterion. Thus, failure of the section

becomes an integrity problem [6]. To measure an integrity failure of a beam or column member, a gap

gauge can be used to measure whether the insulation layer can be penetrated either by a gap of 6mm

running 150mm long, or by a gap of 25mm [6], the length of the specimen is not discussed. Other failure

criteria relate to the critical temperature of the material [6].

In literature for mechanical FEM models as to determine the fire resistance, failure of beams in three or

four point bending tests is defined at one calculation step before material fracture [13]. In case of loaded

columns, failure is defined at flexural buckling [15] as to describe the fire resistance. However, the

columns exposed to fire are unloaded, failure is therefore not due to buckling. The column is subject to

thermal expansion and eventual melting of the material. No models were found as to attain the thermal

properties of insulating materials. When insulation was applied, the properties of the material were

known a-priori and used as input for the model.

To date, a normative setup specified for insulation fire tests with aluminium sections is not available.

3.2 Thermal analysis
As previously discussed, a fire test is performed to obtain data regarding the temperature of all possible

surfaces and cavities of the test member, for which deflection values are determining for failure in case

of beams. The result is then used to evaluate the material properties of the insulating material, that is

the effective thermal conductivity [8]. The effective thermal conductivity is calculated using the

differential equation method [8].

3.2.1 Calculating properties from test data

The calculations involved in finding the thermal conductivity are based on Fourier’s equation on

thermodynamics 𝑞 = −𝑘∇𝜃 [8][16], describing the local heat flux density as the product of the negative

thermal conductivity multiplied by the negative temperature gradient across the surface. This equation

is combined with the heat differential equation 𝜕𝜃 𝜕𝑡⁄ − ∇2𝜃 = 0 given the law of conservation of

energy. ∇ denotes the Laplace operator for a three dimensional problem. The heat transfer is obtained

13

by considering the difference between the gas temperature as generated by the fire, and the surface

temperature of the member, attributed to convection and radiation [2]. The change in heat transfer per

unit volume in the insulation is proportional to the change in member surface temperature multiplied

by the specific heat and density of the insulation Δ𝑄 = 𝑐𝑝𝜌𝑝Δ𝜃 [4]. The temperature gradient is three-

dimensional and within the NEN standard [3][4] is simplified by assuming that the temperature is

constant over the cross-section of the member, reducing it to a one-dimensional problem [3][4],

𝜕𝑞 𝜕𝑡⁄ = −𝑘𝐴𝜕𝑇 𝜕𝑥⁄ . These assumptions and simplifications reduce the formula to (3) [17][16], which

is a partial differential equation with one unknown, dependent on both t (time) and X (one-dimensional

location).

𝜕𝜃𝑔

𝜕𝑡
=

𝑘𝑝

𝑐𝑝𝜌𝑝
(
𝜕2𝜃𝑚

𝜕𝑥𝑝
2) + 𝑄 (3)

Herein it is assumed that the effective thermal conductivity is constant over the thickness of the material

(x) [8][18]. As expressed in paragraph 2.1 the effective thermal conductivity 𝑘𝑝 found by solving this

differential equation for a series of temperatures and then performing a linear regression analysis

dependent on the material temperature [8][11]. The change of gas temperature over time 𝜕𝜃𝑔 𝜕𝑡⁄ , is

known as it is taken from experimental temperature measurements. The rate of change of the

temperature of the material(s) over distrance 𝑥, and/or the spatial partial derivative of 𝜃 over 𝑥 twice,

is approximated by considering the measured surface temperatures. 𝑄 stands for the heat energy added

or lost in the system, also known. Inputting these values, in addition to the values for 𝑐 and 𝜌, into (3)

leaves one unknown, the thermal conductivity of the insulation 𝑘𝑝. Note that 𝑘𝑝 is not a constant, but a

function of the member temperature due to method with which it is established. Inconsistencies between

test-setups such as geometry and the number of fire exposed sides are accounted for by adjusting the

spatial derivative in the equation [3][4][8].

In summary, the fire tests are performed to obtain data regarding the surface temperature of the insulated

member and to then calculate the thermal conductivity of the material. To do the calculations, it is

necessary to collect data regarding the specific heat and density of both the member and insulation, the

gas temperature and member surface temperatures. These values are used as input for (3) to calculate

𝑘𝑝. In the thermal analysis a given k will be used to determine the member temperature (nodal

temperatures within the material) [8], essentially performing the previously described calculation

method in reverse order.

3.2.2 Simulated fire

During a standard fire test, the temperature development within the chamber follows that of the nominal

fire curve [3][4][8]. This curve represents the environmental gas temperature due to a fire as described

in Eurocode EN 1991-1-2, see equation (4) [2]. Herein t stands for the elapsed time in minutes and 𝜃0

is the initial gas temperature. The initial values are described by ambient conditions and at t is zero the

initial temperature is equal to the gas temperature and the member temperature, thus 20℃.

 𝜃𝑔 = 345 log(8𝑡 + 1) + θ0 (4)

The same gas-temperature curve is applied in several studies [13][18]. However, alternatively to this

fire curve, steady state experiments wherein the temperature is set at a constant value are performed to

evaluate post-fire behaviour [19], creep behaviour [15][18] and buckling [5][8][14][19][20] of protected

and unprotected sections. The temperature range of the material itself as used in these studies, is limited

to 200-500℃ given the aluminium melting temperature, which is lower than the temperature that might

occur during a fire . Protection of the aluminium main load bearing structure is certainly required in

these cases.

14

3.2.3 Member temperature

The calculation of the temperature of an uninsulated aluminium or steel member (5) in [3][4] is

straightforward and follows from Fourier’s equation. The change in member temperature Δ𝜃𝑎𝑙(𝑡)

expressed as the multiplication of shadow effects 𝑘𝑠ℎ, inverse of specific heat 𝑐 times density 𝜌, the

section factor
𝐴𝑚

𝑉
, heat flux ℎ𝑛𝑒𝑡

′ and time increment Δ𝑡. In [3][4] the assumption is made that due to

the relatively high thermal conductivity of aluminium the temperature over the cross section is constant,

thus equalling 𝑘𝑚 to infinity. In case not all sides of the member are exposed to the fire, the section

factor is adjusted [3][4] as in the spatial derivative of (3). The heat flux is expressed as the result of both

convection and radiation, taken as the difference between gas and member temperature multiplied by

the convection coefficient and emissivity of the material [4][16]. However, the heat flux can be

substituted with Fourier’s law, as done in (3). Alternatively, the heat flux can be approximated

considering the type of fuel for the fire after one hour of exposure. Cellulosic fuelled fire (q=150kW/m2)

and hydrocarbon fuelled fire (q=200kW/m2) are generally used for testing of structural materials [16].

 Δ𝜃𝑎𝑙(𝑡) = 𝑘𝑠ℎ
1

𝑐𝑎𝑙𝜌𝑎𝑙

𝐴𝑚
𝑉
 ℎ′𝑛𝑒𝑡Δ𝑡 (5)

Besides the thermal conductivity of the insulation, the effect on the temperature of the member due to

the insulating layer is expressed with factor phi [3][4], taking the insulation specific heat and density

over that of the aluminium properties multiplied by the thickness of the layer in comparison to the

section factor [4]. The thermal conductivity of the metal is considered to be infinite and all material

properties are assumed to be constant over the cross-section of the individual materials [4] as similarly

done in (5). Given a parametric fire, heat energy is added to the system, making Q non-zero and

expressed as the change in gas temperature [2]. Equation (3) can then be rewritten to express an

approximation of the surface temperature of the metal integrated over both the one dimensional

geometry of the cross-section and time, as expressed in (6)[3][4]. For insulating materials commercially

available, the thermal properties are expressed to fit with this equation.

The Eurocode approach to approximate the member temperature during a fire is generally reasonably

accurate, though conservative [5][8][19] for insulation materials with low density and high thermal

resistance in comparison to the exact solution found using Laplace transformation [13][18][5]. This is

due to the adjustment of the spatial derivative, delayed thermal response through the exponent and the

presumption that the thermal conductivity is infinite. The application of the exact solution is dependent

on the complexity of the thermal parameters related to the thermal resistance of the materials [18].

3.2.4 Thermal material properties

The material properties that must be defined are the thermal conductivity (Figure 1), specific heat

(Figure 2) and density values of the metal and insulation. These may be dependent on temperature and

geometry.

3.2.4.1 Insulation

To fit the fire resistance requirements for structures, it may be necessary to provide metal members with

insulating material. Generally there are three types of insulation, namely boards, spray mortar and

coatings [23].

Δ𝜃𝑎𝑙(𝑡) =
𝜆𝑝 𝑑𝑝⁄

𝑐𝑎𝑙𝜌𝑎𝑙

𝐴𝑝
𝑉
[

1

1 + Φ 3⁄
] (𝜃𝑔(𝑡) − 𝜃𝑎𝑙(𝑡))Δ𝑡 − (𝑒

𝜙 10⁄ − 1)Δθg(t)

 With Φ =
𝑐𝑝𝜌𝑝

𝑐𝑎𝑙𝜌𝑎𝑙
 𝑡𝑝

𝐴𝑝

𝑉

(6)

15

The fire tests as discussed previously, are used to gauge the material properties of insulating material.

In advance to the test, the data on the material is just an indication or unknown. In practice the result is

often translated to design tables with a relation between A/V, fire resistance time and fire design

temperature [8]. Even though experiments show a dependence of the thermal conductivity on

temperature, the effective value is calculated with the differential equation method using the variation

of the thermal conductivity, specific heat and density of the material [8].

These values can be taken from technical datasheets. An example can also be found in [18] for a ceramic

fibre blanket. Other fibre based materials show comparable thermal properties [24][25][26][27][28].

𝑐𝑝 = 820 𝐽 𝑘𝑔𝐾⁄ ; 𝜌𝑝 = 96𝑘𝑔 𝑚3⁄ ; 𝑘𝑝[𝑊 𝑚𝐾⁄] = {
0.033 − 1.443 ∙ 10−8 ∙ 𝜃𝑝 + 2.875 ∙ 10

−7 ∙ 𝜃𝑝
2

0.12 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

3.2.4.2 Contact and cavities

At the cavity between the metal member and the insulation, some thermal resistance might occur. This

thermal resistance is due to a lack of full contact between the materials. The contact resistance is

determined by the roughness of the surfaces and the contact pressure between them [29]. However, this

contact resistance is often neglected, due to the numerical difficulty of implementing its effect [29].

This would imply that the temperature on the inner surface of the insulation is the same as the

temperature of the structural member, which would be a conservative assumption and is neglected in

calculations for insulation materials [29]. Contact resistance of this nature has been evaluated between

steel and concrete to be 200W/m2K [23][24][32].

3.2.4.3 Steel

EN 1993-1-2 [3] has a well-established base line for the material properties of steel. Even though the

thermal conductivity is assumed to be uniform in thickness direction when calculating the member

temperature, the parameter is temperature dependent.

Density [3] 𝜌𝑠 = 7850𝑘𝑔 𝑚3⁄

Poisons ratio 𝜈 = 0.29 − 0.31 between temperatures of 0-700℃ [33].

Thermal conductivity [3][22]

𝜆𝑠[𝑊/𝑚𝐾] = {

54 𝑖𝑓 𝜃𝑠 < 20℃

54 − 3.33 ∙ 10−2 ∙ 𝜃𝑠 𝑖𝑓
27.3 𝑖𝑓 𝜃𝑠 ≥ 800℃

20℃ ≤ 𝜃𝑠 < 800℃ (7)

Specific heat [3][13]

𝑐𝑠[𝐽 𝑘𝑔𝐾⁄] =

{

425 + 7.73 ∙ 10−1 ∙ 𝜃𝑠 − 1.69 ∙ 10

−3 ∙ 𝜃𝑠
2 + 2.22 ∙ 10−6 ∙ 𝜃𝑠

3 𝑖𝑓 20℃ ≤ 𝜃𝑠 < 600℃

666 +
13002

738 − 𝜃𝑠
 𝑖𝑓 600℃ ≤ 𝜃𝑠 < 735℃

545 +
17820

𝜃𝑠 − 731
 𝑖𝑓 735℃ ≤ 𝜃𝑠 < 900℃

650 𝑖𝑓 900℃ ≤ 𝜃𝑠 < 1200℃

 (8)

Alternatively to [3], [18] proposes for the specific heat a different singular equation. This simplification

is based on the conclusion in [34] where the accuracy of the specific heat has little effect on the steel

temperature calculations. 𝑐𝑠 [𝐽 𝑘𝑔𝐾⁄] = 472 + 3.8 ∙ 10−4 ∙ 𝜃𝑠
2 + 0.2 ∙ 𝜃𝑠

3.2.4.4 Aluminium

Material properties as expressed in [4] are based on steady state tests. For the thermal conductivity and

specific heat properties, the values are often the same between literature [18][13][35] and Eurocode.

Density [4] 𝜌𝑎𝑙 = 2700𝑘𝑔 𝑚3⁄

16

Poisons ratio [9] 𝜈 = {
0.33 − 0.40 𝑓𝑜𝑟 𝑎𝑙𝑙𝑜𝑦 6060 − 𝑇66
0.33 − 0.43 𝑓𝑜𝑟 𝑎𝑙𝑙𝑜𝑦 5083 − 𝐻111

Thermal conductivity [4][16]

𝜆𝑎𝑙[𝑊 𝑚𝐾⁄] = {
0.07 ∙ 𝜃𝑎𝑙 + 190 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑠 < 500℃ 𝑎𝑙𝑙𝑜𝑦 6𝑋𝑋𝑋
0.1 ∙ 𝜃𝑎𝑙 + 140 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑠 < 500℃ 𝑎𝑙𝑙𝑜𝑦 5𝑋𝑋𝑋

 (9)

Specific heat [4][16]

𝑐𝑠[𝐽 𝑘𝑔𝐾⁄] = 0.41 ∙ 𝜃𝑎𝑙 + 903 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑠 < 500℃ (10)

Figure 1 – Thermal conductivity of the materials aluminium, steel and insulation (ceramic fibre blanket) as specified in chapter

3.4. The grey and blue line refer to the right handed axis.

Figure 2 –Specific heat values of aluminium, steel and insulation (ceramic fibre blanket) according to chapter 3.4.

17

3.2.4.5 Concrete

To represent a floor system, the use of a concrete slab is a possibility. For that purpose, the thermal

properties of concrete are taken as expressed in NEN-EN 1992-1-2.

Density

Thermal conductivity

𝜆𝑐[𝑊 𝑚𝐾⁄] = {
2 − 0.2451(𝜃/100) + 0.0107(𝜃/100)2 𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡

1.36 − 0.136(𝜃/100) + 0.0057(𝜃/100)2 𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
 (12)

Specific heat

3.2.5 Thermal gradient

The Eurocode [3][4] makes the assumption that the temperature over the cross-section is uniform,

calculated following (6). This is, however, not the reality [8][29] and might yield conservative results

[5][8][19]. Considering a three-sided fire, the heat input differs between sides and as the thermal

conductivity of the material is not infinite, as seen in equation (7) and (9), a thermal gradient exists over

the cross-section [8][29][37]. In studies, the thermal gradient is most often considered to be linear

[22][38] or quadratic [19] over the height of the cross-section. The resultant thermal gradient is

dependent on the material properties, the heat input and the geometry of the section.

Due to the thermal gradient, both thermal and mechanical material properties of the member differ over

the cross-section. This, in turn, affects the temperature distribution as the thermal conductivity and

specific heat are temperature dependent.

The mechanical implications of the thermal gradient include a difference in 𝐸 and 𝑓0,2 between the

‘cold’ and ‘hot’ side of the member. The former causes a shift of the neutral axis to the colder side due

to the higher stiffness [22]. This would induce an eccentricity and an additional moment [22] dependent

on the axis of the applied load. Furthermore, the thermal gradient can induce a bowing effect by thermal

expansion, given that the hotter flange would extend more causing an internal eccentricity from the

neutral axis opposite to that due to stiffness [22].

Additionally, the effect of the thermal gradient on the critical temperature of the cross-section of a

column can be argued. [39] demonstrated that the critical temperature for a column is higher than with

a uniform temperature distribution, while considering the maximum occurring temperature [22]. When

considering the average temperature of the thermal gradient [22], [34][35] found that the fire resistance

is reduced while [36][37] found it to have a higher resistance. The Eurocode [3] allows for the

consideration of a thermal gradient, but specifies that the E and 𝑓0,2 values for the maximum temperature

are to be used, to counterbalance the shift of the neutral axis [22].

3.2.6 Thermal simulation model

Within a finite element (FE) package such as DIANA or Abaqus it is possible to perform a heat transfer

analysis. In literature, the model is often simulated as eight-node quadratic heat transfer elements

DC3D8 [21][22] or twenty-node quadratic heat transfer bricks DC3D20 [19]. Given the time and

𝜌𝑐[𝑘𝑔/𝑚
3] =

{

𝜌𝑐(20℃) = 2300 𝑓𝑜𝑟 20℃ ≤ 𝜃 ≤ 115℃

𝜌𝑐(20℃) ∙ (1 − 0.02(𝜃 − 115) 85⁄)𝑓𝑜𝑟 115℃ < 𝜃 ≤ 200℃

𝜌𝑐(20℃) ∙ (0.98 − 0.03(𝜃 − 200)/200) 𝑓𝑜𝑟 200℃ < 𝜃 ≤ 400℃

𝜌𝑐(20℃) ∙ (0.95 − 0.07(𝜃 − 400)/800)𝑓𝑜𝑟 400℃ < 𝜃 ≤ 1200℃

 (11)

𝑐𝑐[𝐽/𝑘𝑔𝐾] = {

900 𝑓𝑜𝑟 20℃ ≤ 𝜃 ≤ 100℃
900 + (𝜃 − 100)𝑓𝑜𝑟 100℃ < 𝜃 ≤ 200℃

1000 + (𝜃 − 200)/2 𝑓𝑜𝑟 200℃ < 𝜃 ≤ 400℃
1100 𝑓𝑜𝑟 400℃ < 𝜃 ≤ 1200℃

 (13)

18

temperature dependent material parameters, a transient, material non-linear FE analysis is a requirement

[21][22][19] to obtain the nodal temperatures.

3.3 Mechanical analysis
As expressed in chapter 1, metal structural members show deterioration at elevated temperatures. The

temperature range at which mechanical deterioration occurs is different for both aluminium and steel.

For aluminium, the material properties are defined over the range 0-550℃ [4] and for steel this is 0-

1200℃ [3]. At higher temperatures the material properties go beyond the scope of mechanical

engineering. Within this range, the strength and stiffness of the material is reduced to zero and failure

is definitive [3][4][18][28].

3.3.1 Material strength and Young’s modulus

The Eurocode has formulated the material properties of aluminium based on steady state experiments.

Herein, the specimen is subject to a constant temperature, a fixed strain rate and the stress is measured

[9]. However, [15][18–22] argues that transient state tests are more appropriate in case of fire

conditions. A difference may occur when considering transient state tests opposed to steady state tests,

which are considered more appropriate to fire conditions [18][25][26]. This is attributed to creep,

overaging and annealing [9]. Alternatively to a steady state test, in a transient state test the member is

subject to a changing temperature, a certain stress and the strain is measured [9]. Comparing the result

of the stress-strain relationship shows that for alloy 5083-H111 the proof stress found through steady

state experiments as in [4] is 20 to 85 pct higher than found with transient state tests for a temperature

range of 200-350℃ [9]. Contrarily, the proof stress of alloy 6060-T66 is found to be 5-40 pct lower in

[4] than in transient state tests for the same temperature range [9].

In literature several options are used to base proof stress and Young’s modulus data on. These range

from Eurocode [13][22], Kaufman suggestion [15][9] as used in [44][29], transient state tests [19][18–

20][37][45] or steady state tests [20][37][46][47]. In Figure 3 and Figure 4 the development of the E-

modulus and proof stress respectively, are plotted against an increasing temperature.

Figure 3 – Development of the Young's modulus at elevated temperatures compared to the nominal value at room temperature,

as taken from different references [3][4][15][18].

19

Figure 4 – Development of 0.2% stress at elevated temperatures compared to the nominal value at room temperature, as taken

from different references [3][4][15][5][31][42] for which the EC9 values for aluminium are based on steady state experiments.

3.3.2 Strain

In general static mechanics, Hooke’s Law 𝜀 = 𝜎/𝐸 is fundamental to describe the elastic relation

between strain and stress [49]. or large strain, steel and aluminium show physical non-linear behaviour

[49], as can be observed in Figure 5 as taken from [20].

Figure 5 – Steady state stress-strain curves of (a) alloy 5083-H111 and (b) alloy 6060-T66 at elevated temperatures from [20].

3.3.2.1 Ramberg-Osgood relation

To describe the stress strain relation at elevated temperatures, the Ramberg-Osgood equation (14) is

commonly used in literature [5], [15], [21]. This equation utilizes the corrected strength and stiffness

parameters at elevated temperatures. [5] argues that this equation describes the stress-strain curves

relatively well up to strain values of 𝜀 = 0.01, which would be adequate for structural applications as

these are generally limited to small strains.

 𝜀 =
𝜎

𝐸𝜃
+ 0.002(

𝜎

𝑓0.2;𝜃
)

𝑛

 (14)

Beyond strains of 𝜀 = 0.01 [5] and temperatures larger than half of the melting temperature (circa

150℃) [9][16] however, these stress-strain relations are no longer accurate. This is attributed to creep.

20

Alloys of 6XXX are less susceptible to creep strains than alloys in 5XXX series [35]. In addition to

creep, thermal expansion affects the deflection of an element [16].

Considering these phenomena the total strain is a contingent of elastic strain, creep and that due to

thermal expansion [16], which alludes to equation (15).

 𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝛿𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 + 𝛿𝑐𝑟𝑒𝑒𝑝 𝐼,𝐼𝐼,𝐼𝐼𝐼 (15)

3.3.2.2 Thermal expansion

In case of statically indeterminate structures, thermal expansion due to elevated temperatures causes

additional forces in the specimen [16]. Considering a thermal gradient over the cross-section of the

beam, the amount of thermal expansion differs between the ‘hot’ and ‘cold’ side, causing a thermal

bowing effect [22]. The eccentricity from the neutral axis due to this deformation causes an addition

bending moment [22].

The lengthwise thermal expansion of steel is described as [3][22]

Δ𝑙

𝑙
= {

1.2 ∗ 10−5 ∙ 𝜃𝑠 + 0.4 ∙ 10
−8 ∙ 𝜃𝑠

2 − 2.416 ∙ 10−4 𝑖𝑓 20℃ ≤ 𝜃𝑠 < 750℃

1.1 ∙ 10−2 𝑖𝑓 750℃ ≤ 𝜃𝑠 ≤ 860℃

2 ∙ 10−5 ∙ 𝜃𝑠 − 6.2 ∙ 10
−3 𝑖𝑓 860℃ < 𝜃𝑠 ≤ 1200℃

 (16)

The lengthwise thermal expansion of aluminium is described as [4][16]

Δ𝑙

𝑙
= 0.1 ∙ 10−7 ∙ 𝜃𝑎𝑙

2 + 22.5 ∙ 10−6 ∙ 𝜃𝑎𝑙 − 4.5 ∙ 10
−4 𝑓𝑜𝑟 0℃ ≤ 𝜃𝑎𝑙 < 500℃ (17)

Thermal bowing can occur in both restrained and unrestrained sections, [50] expressed deformation of

this kind for unloaded and unrestrained steel I-sections with a linear thermal gradient (Δ𝑇) over the

cross-section as equation (19).

 𝛿 =
𝛼𝐿2Δ𝑇

8𝑑
 (18)

3.3.2.3 Creep strain

In steady state experiments the effect of creep is typically underestimated. This phenomenon is of

particular interest when temperatures exceed half the melting temperature [16][9][35]. In transient state

tests the effects of creep, overaging and annealing is captured [9][20]. Ref. [9] considered creep

implicitly by adapting the steady state stress-strain curves for alloy 6060-T66. Alloys in the 6XXX

series are less susceptible to creep than those in the 5XXX series [35], and thus this method was

applicable for alloy 6060-T66 [9].

Creep can be described in three stages, the primary stage in which the strain rate decreases, the

secondary stage where the strain rate is constant and the tertiary stage in which the strain rate rapidly

increases. These stages can be recognized in Figure 6 as taken from [16][9]. To take creep strains

explicitly into account, the creep strain of the primary and secondary stage can be described with the

Dorn-Harmathy model (19) [16][9]. Herein, 𝜀𝐶̇ stands for the strain rate of subscript 𝐼 primary stage

strain and 𝐼𝐼 secondary stage creep strain, 𝜀𝐶,𝐼+𝐼𝐼 for primary and secondary stage creep strain and 𝜀𝐶,0

the projection of the secondary creep strain at time is zero. Equation (19) is explained in depth in [16][9].

 𝜀𝐶̇,𝐼+𝐼𝐼(𝑡) = 𝜀𝐶̇,𝐼𝐼 coth
2(
𝜀𝐶,𝐼+𝐼𝐼
𝜀𝐶,0

) (19)

21

Figure 6 – Creep curve showcasing (a) primary, secondary and tertiary creep stage, source [9]. And (b) creep curves at

different temperatures with constant loading of 50 MPa, source [16].

3.3.3 Loading

In structural design, fire design is part of ultimate limit state (ULS) as an accidental load case [51]. This

implies that the loading - both permanent (𝐺𝑘) and variable (𝑄𝑘) loads - can be adjusted in comparison

to the fundamental load case [14]. For consequence class 2 (CC2) the safety factor with which to

multiply permanent loads is 𝛾𝐺 = 1.2 and for variable loads it is 𝛾𝑄 = 1.5 fundamentally[14]. For fire

design, these safety factors (𝛾) are lower in addition to a reducing load combination factor Ψ𝑓𝑖. The

result is a load 𝜂 times smaller than that of the fundamental load case, following equation (20) [4]. Thus,

there is a certain degree of rest capacity, which is of crucial importance as the resistance of the member

reduces under elevated temperatures, as can be observed in Figure 4[37].

 𝜂𝑓𝑖 =
𝐺𝑘 +Ψ𝑓𝑖𝑄𝑘,1

𝛾𝐺𝐺𝑘 + 𝛾𝑄,1𝑄𝑘,1
 (20)

EN 1990 suggests that the load can initially be assumed 65% of the fundamental load case for steel [4].

This value is based on a conservative estimation of the lowered safety factors for fire design.

3.3.4 Failure mechanisms

A distinction can be made in failure type, that would be strength or resistance (R), stability (S) or

integrity (I) failure [8][6]. Failure in literature is often described as the point at which rapid strain occurs

without further adding to the load [15] such as buckling and necking[45]. Aluminium is predominantly

used as slender plate or extruded material [5]. Given a compressive load, an aluminium member is

therefore especially susceptible to out-of-plane buckling [22][14][19][20][39][40]. Under tension,

aluminium primarily shows ductile failure. A ‘neck’ or thinning of the cross-section occurs and after

extensive plastic deformation, fracture. Fracture is the point where the material starts to separate [47].

This mechanism can occur in members subjected to tension and bending. In numerical models, the time

step right before fracture occurs is often formulated as the failure criterion [45][47]. For steel the same

applies [13].

These phenomena can occur both at room temperatures and at elevated temperatures. However, strength

and Young’s modulus of both steel and aluminium drop with increasing temperature, as discussed

previously. Given a certain load in the elastic strain range of aluminium under room temperature

conditions, would normally be no cause for concern. Yet, when exposed to elevated temperatures, the

same load would result in plastic behaviour as the yield and ultimate strength limits are much lower,

see Figure 4 and Figure 5 for reference.

3.3.5 Mechanical simulation model

To simulate the deformation of the beam and column in the mechanical model, the thermal output is

used as input, as discussed in Chapter 1. The nodal temperatures of the thermal heat transfer bricks

22

discussed in 3.2.6 Thermal simulation model determine the local strength and stiffness parameters.

Considering a thermal gradient over the cross-section, 𝐸𝜃 and 𝑓0.2𝜃 variate accordingly [8][29]. As

discussed previously, the fire resistance can be affected both negatively and favourably when comparing

the actual parameters, against that of the average temperature or that of the maximum temperature

[34][35][36][37]. The Eurocode [3] prescribes that 𝐸𝜃 and 𝑓0.2𝜃 should follow from the maximum

temperature, to account for effects as restrained thermal bowing [22].

Within Abaqus, a finite element (FE) package, different element types have to be used given the type

of analysis [21][22] thus heat transfer bricks for thermal analysis. Either analysis may be performed

with a different number of elements and nodes, depending on their ability to describe the behaviour of

the member accurately. Therefore, some interpolation might be necessary to generate the input data for

intermediate nodes [19].

With FE package DIANA, [5] modelled the mechanical elements with eight node shell elements, type

CQ40S and [21][22] also did so with reduced integration. Alternatively, [46][53] used elements of four

node shells S4 in Abaqus. Other examples include [15] which applied linear, quadratic or cubic two

node beam elements based on Timoshenko beam theory, while [19] proposes the use of fully integrated,

solid, quadratic elements C3D20 as these can capture the linear stress gradient over the cross-section

due to pure bending.

3.4 Aluminium section types
Aluminium is a material that can be extruded, such sections in practice are often designed to fit multiple

purposes. An example is an Y-profile for offshore flight decks, which integrates an installation piping

trench in the section, see Figure 8. A more general example is that of a decking element. Herein a

slender aluminium member is designed similar to a truss in width direction with a solid circumference

lengthwise. This setup makes for effective slender decking element Figure 7.

Figure 7 - Aluminium bridge decking [54]

As the beam test is focussed entirely on pure bending, an

interesting section would be an I-section. The material

distribution to the flanges of such a section lends itself well to

bending. Beyond I-profiles and decking elements, there is an

extensive amount of research done into the phenomenon of

local buckling of aluminium sections, a most common

evaluated profile would be that of a rectangular hollow section

composed out of thin sheets for specific research purposes

[22][19][15][5].

Noting that no premature failure of the fire test specimen is

allowed, the section should not be subject to local buckling.

Thus – following the Eurocode – the section class [55][56] of

the both the steel and aluminium specimens should be limited

to that of class 1 to 3, consequently designed slightly more

compact [5]. Class distinction can be made by regarding the

Figure 8 – Photograph Y-profile as made by

Bayards B.V. with an integrated installation

trench.

23

relative slenderness 𝜆𝑟𝑒𝑙 of the plates constituting the section, expressed as the square root between the

plastic resistance 𝑁𝑝𝑙 over the critical resistance of the section 𝑁𝑐𝑟. This can be likened to the square

root of the yield stress 𝑓𝑦 over Youngs modulus 𝐸, as expressed in equation (21). To fit the class criteria

this 𝜆𝑟𝑒𝑙 should not be below the value of 0.4 for aluminium [56].

 𝜆𝑟𝑒𝑙 = √
𝑁𝑝𝑙
𝑁𝑐𝑟

≅ √
𝑓𝑦

𝐸
 (21)

The Eurocode assumes that the section class of any member does not vary from room temperature

conditions [4][5]. However, considering the normalised values of the Young’s modulus and yield stress

of steel, it can be observed that for steel the Young’s modulus degrades faster than the yield stress does

[3]. Following the relation of the relative slenderness as expressed in (21), this would result in a higher

value at elevated temperatures and thus classify the section differently, that is of a higher order.

For aluminium, the normalised values for the Young’s modulus and the 0.2 percent proof stress prove

contrary to the normalised value for 𝐸 and 𝑓𝑦 of steel. Herein the stress value drops more quickly than

the Young’s modulus [4], resulting in more favourable ratio and thus a lower section class with higher

temperatures. This phenomenon showcases that there is no need to design an aluminium member as

that of class 1 to circumvent local buckling mechanisms, as the section becomes less susceptible at

elevated temperatures [5].

24

4. FINITE ELEMENT THERMAL ANALYSIS

4.1 Model description
As discussed in Chapter 3 Literature study & theoretical background the material properties of steel,

aluminium and the insulation is dependent on temperature. Temperature is in this case a transient

variable. The dependency is at first glance assumed a one-way street. This implies that a thermal and

mechanical analysis can be done in sequential order. However, as previously discussed, in experimental

studies a steel beam fire test is a necessity because a steel beam shows significant sagging before failure.

This means that the insulation can be damaged and the temperature of the steel member is affected. To

determine whether this is a concern for aluminium members, it is necessary to perform an extra check.

Should the strain of the loaded beam exceed a limit, coupled thermal-mechanical simulation is

necessary. This limit is dependent on the bond between the metal member and the strain of the insulation

and will be addressed in the mechanical analysis.

The full FEM analysis can be separated into two main parts: (1) thermal analysis and (2) non-linear

mechanical analysis. Consequently, a check is performed to see if the final time step N is reached and

if the strain limit for the insulation is not exceeded. If this limit is exceeded, an alternative analysis (3)

is proposed. These two steps are repeated one after the other for step n, wherein n stands for the iteration

step between 0 and N, until n=N, after which the process is terminated. As the thermal analysis is

transient, the iteration between 0 and N is expressed in time, and n is thus a multitude of the time step.

Figure 9 – FEM model set up, pertaining a thermal and mechanical analysis within the ABAQUS/CAE environment.

4.2 Thermal analysis
Initially it is assumed that the strain limit is not reached. Furthermore, the fire input for the member is

constant over the length, in Z-direction. These assumptions present an opportunity for simplification of

the FEM model. The nodal temperatures in the thermal analysis are found by modelling a two-

dimensional (XY-field) deformable body subject to heat transfer. This is a possibility because the nodal

25

temperature would be constant in Z-direction, only differing in X and Y direction depending on fire

exposure.

Depending on the configuration, the metal member comes into contact with a floor system and the

insulation. It is assumed that due to a lack of full contact between the surfaces, a thermal resistance

between these elements exists. The value of this resistance between elements is set to be either 200

W/m2K as discussed in Chapter 3 Literature study & theoretical background or set at unit value. This

counts for all interactions between elements. Thermal contact can be simulated using surface to surface

contact discretization. As the bodies do not move relative to each other, sliding can be formulated as

being small, which is an approximation of the general contact master-slave algorithm and thus faster

than finite sliding, which is just a formality. The metal member acts as the master surface and the

insulation is the slave. Inaccuracies can occur due to the use of a coarse mesh, this will be further

discussed in paragraph 4.2.1.3 Sensitivity analysis of mesh density.

The material properties of steel, aluminium and the insulating ceramic fibre blanket, namely thermal

conductivity, density and specific heat, are prescribed in chapter 3 Literature study & theoretical

background. Additional constants and conditions are as stated in Table 1 and Table 2. The convection

coefficients are the same as stated in NEN-EN 1991-1-2 for fire loading. The transient temperature of

the member, insulation and flooring is determinant by the temperature dependent properties as

calculated in the thermal analysis. Three different geometries are considered, that would be a square

hollow section, a typical I-section and a decking member as specified in Table 3. These measures are

taken such that the section classes are specified as non-slender, thus < class 4. These geometries are

then analysed in three different situations, that of a column, a beam with a floor on top and an integrated

floor beam. These situations will be discussed more in-depth in the following paragraphs.

Table 1 – Temperature description of FEM model attributes. *in accordance to a surface covered with soot during a fire.

Attribute Fire side Member Insulation Floor Ambient

Initial temperature [℃] 20 20 20 20 20

Transient temperature FEM [℃] Eq. (4) Dependent Dependent Dependent 20

Transient temperature EC [℃] Eq. (4) Eq. (6) N/A N/A 20

Emissivity (𝜀𝑚) 1.0 0.7*[9][13] 0.7[2] 0.9[3] 1.0

Table 2 – FEM model thermal constants.

Attribute Value Unit

Total time (𝑇) 90 Minutes

Step time (𝑡) 6 Seconds

Boltzmann constant 5.67e-11 W/m2K

Convection coefficient ambient (𝛼𝑐,𝑎𝑚𝑏𝑖𝑒𝑛𝑡) 4 W/m2K

Convection coefficient fire side (𝛼𝑐,ℎ𝑜𝑡) 25 W/m2K

Table 3 – Geometric specifications of cross-section, all measures are in mm unless otherwise specified.

 RHS IPE Decking Insulation

 Steel Aluminium Steel Aluminium Aluminium Fibre blanket

H eight 200 200 200 200 60 -

W idth 200 200 100 100 514 -

t hickness 9 6 - - - -

tf flange - - 8.5 9 4.0 -

tw web - - 5.6 5 2.0 -

tp - - - - - 20

26

4.2.1 Column: a four-sided fire simulation

Figure 10 – Geometry of Rectangular Hollow Section and IPE cross-section respectively, measurements as given in Table 3.

Considering that in this four-sided fire simulation, the heat input is constant along the cross-section,

shadow effects are disregarded for simplicity. Due to the constant heating from all sides and the high

thermal conductivity of metals, the temperature distribution in the member is close to constant.

Therefore it is possible to mesh these sections using two-dimensional 8-node heat transfer bricks. This

computational simplification is supported in references [21][22]. An appropriate mesh size is discussed

later.

4.2.1.1 Validation

Abaqus performs a transient heat transfer analysis with temperature dependent material properties

following traditional Fourier’s law differential equation (3). In comparison to the Eurocode this should

yield a more exact solution of the time-temperature curve of the aluminium and steel member. The

Eurocode uses a simplified formula (6) to calculate the member temperature. The material properties of

the insulation in this equation, are all dependent on the member temperature. This is opposite to the

FEM analysis were the temperature in the insulation is calculated locally, dependent on local thermal

properties.

For the FEM simulation, insulation data is based on that of a ceramic fibre blanket [18]. To determine

whether the simulation is representative, the resultant member temperatures are compared to the

outcome found with the simplified equation (6) for several commercial insulation types. These

commercial types have their material properties tied to the temperature of the member, not local values

as would be for a FEM analysis. The ceramic fibre blanket was used for the finite element analysis. The

specifications for the thermal conductivity and specific heat is supplied in Table 4. The density of the

blanket insulation types is 96kg/m3.

27

Table 4 - Thermal conductivity and specific heat for several insulation types with the same density 96 kg/m3

θ

Denka

Blanket[24]

Marine

blanket[25]

Kaowool

blanket[26]

Ceramic fibre

blanket[18]

Fyre

wrap[27] Coating[28]

 EC EC EC FEM EC 350kg/m3

0 0,033 0,05

200 0,05 0,06 0,044 0,06 0,05

260 0,05 0,052 0,05

400 0,1 0,11 0,078 0,09 0,05

538 0,11 0,116 0,05

600 0,15 0,16 0,136 0,14 0,05

800 0,21 0,23 0,216 0,2 0,05

816 0,19 0,223 0,05

1000 0,29 0,32 0,320 0,29 0,05

1093 0,3 0,377 0,05

1371 0,44 0,05

𝑐𝑝 1130 1130 1130 820 1130 1100

Figure 11 – Comparison of FEM simulation temperature results for cross-section with four-sided heating, with that of the

simplified Eurocode equation for several insulation types. FEM temperatures versus EC found temperatures.

As is evident in Figure 11, the deviation between the FEM data and that of EC is significant, more than

20%. The cross-sections in the FEM analysis are heating at a faster rate than calculated according to

the Eurocode. Given the material properties from reference [18] and the similarity in value to that of

the commercial types, the fallacy of the FEM simulation lays with a discrepancy in the thermal

conductivity and its temperature dependency. In specific, the temperature dependency of the thermal

conductivity of the insulation is in relation to the member temperature as used in equation (6), instead

of the true local temperature at that particular FEM calculation node, as it should be.

28

As the deviation in these results do not sufficiently validate the thermal analysis, a literary reference is

modelled and the results compared for additional confirmation. To achieve this, the model geometry is

set to be a IPE of H140x100x6x6 with a 20mm thick spray-on coating, see last column in Table 4. The

steel specimen in [28] was freely set in a furnace, thus heated from all sides, and the furnace temperature

followed that of equation (4). The steel thermal properties follow from NEN-EN 1993-1-2. In Figure

12 the black line represents the temperature data in the current FEM simulation as in Figure 13, which

follows experimental and FEM ANSYS model of [28] quite closely. As the FEM model was setup in

the same manner as previously discussed, and observing that the black line follows a similar trend in

Figure 12, no full validation is achieved, though a certain level of correctness is observed. It is assumed

that the model itself is representative and fault lies with incorrect insulation properties.

Figure 12 – Comparison of literature reference temperature data of an insulated steel IPE to that found in the ABAQUS FEM

simulation. The result is the superimposed black line.

Figure 13 – Temperature - Time curve of thermal FEM analysis following the setup of the literary reference. [28]

After a thorough search, the necessary insulation properties were not found. To obtain more

representative temperature data the temperatures are scaled to fit. This is achieved by dividing the

thermal conductivity dataset by 1.5. In doing so, the temperature data for the IPE sections fits into the

10% deviation marker, see Figure 14. All figures in this chapter, with the exception of this paragraph,

have been computed with the adjusted thermal conductivity.

29

Figure 14 – Comparison of FEM simulation with adjusted thermal conductivity temperature results for cross-section with

four-sided heating, with that of the simplified Eurocode equation for several insulation types. FEM temperatures versus EC

found temperatures.

4.2.1.2 Thermal gradient

As is to be expected, the maximum occurring temperature in the I-section is halfway its height, in the

centre of the web, see Figure 15. Any ‘zigzagging’ in this figure is due to the averaging of the

temperature over the width of the cross-section at height y, which is only a post-processing plotting

issue The minimum is found at the flange. This is the case for both aluminium and steel column sections,

as well as for different contact resistances between insulation and metal in paragraph 4.2.1.4. The

difference in slope of the thermal gradient over the height of the cross-section between aluminium and

steel is due to the thermal properties, namely thermal conductivity and the product of specific heat and

density. These properties are significantly larger for aluminium, reducing the slope, and thus having a

more uniform thermal gradient. Figure 16 shows what the average temperature is over the cross-section

and how the minimum and maximum occurring temperature deviate from the average. Note that the

temperatures in the figure go beyond the melting temperature of the metals, this is because the FEM

program does not consider such limitations during calculation.

30

Figure 15 – Temperature gradient over cross-section when taking the mean over the width at height y for a column at overall

mean cross-section temperature of 300℃, tIPE,alu = 30min, tIPE,steel = 40min, tRHS,alu = 50min, tRHS,steel = 50min.

Figure 16 – Minimum and maximum absolute temperature deviation from transient average temperature in cross-section with

contact resistance at 200W/m2K between metal and insulation. Left the absolute deviation from the average, right are the

errorbars.

31

4.2.1.3 Sensitivity analysis of mesh density

For computational optimization a mesh density refinement study for the insulation is performed on the

RHS section. The element size of the insulation mesh is ranged from 1mm (10%), 2mm (20%),

4mm(40%) to 10 mm(100%). The temperature outcomes are all compared to that found with the finest

mesh (10%) to determine the accuracy with a coarser mesh. The deviation is calculated by dividing the

result found with a coarser mesh by that at 10%-mesh density and examine the percentile difference.

While comparing these values, all other settings are kept constant, such as the mesh density of the

member.

As discussed, the metal member itself is compiled out of 8-node linear heat transfer bricks. The accuracy

of this setup is evaluated by variating the mesh-density of the member between four different settings,

namely 1, 2, 4 and 10 elements over thickness, respectively 5mm, 2.5mm, 1.25mm and 0.2mm. The

resultant temperatures are compared by dividing them with the result found for 1 element over thickness

(1-5mm). While comparing, all model settings are kept constant, such as the mesh density of the

insulation.

Table 5 – Percentile deviation of member temperature from normalised set. For the member mesh compared with values found

with a mesh of 1 element or 5mm thickness (coarsest). For the insulation the values are compared to those found with the

finest mesh, 10% or 1mm.

 Member mesh Insulation mesh

Aluminium 10 4 2 100% 40% 20%

Average [%] 0,157 0,082 0,034 0,245 0,027 0,006

Minimum [%] 0,279 0,026 0,012 0,238 0,026 0,006

Maximum [%] 0,390 0,109 0,026 0,293 0,032 0,007

Steel 10 4 2 100% 40% 20%

Average [%] 0,473 0,228 0,081 2,771 0,083 0,013

Minimum [%] 0,062 0,074 0,020 2,572 0,071 0,011

Maximum [%] 1,410 0,347 0,085 3,570 0,189 0,030

Except for the maximum temperature for a 10-element mesh density over the member and that at 100%

(10mm) insulation mesh, the deviation is below a half percent. Given this result, the mesh density of

the insulation is set at 20%, which would be defined as 4*tp/2t or as 5 elements over the thickness. For

the mesh density of the member a mesh density of one-element is deemed sufficiently accurate in

comparison the aforementioned references. A visual of the insulation mesh sizes can be observed in

Figure 17.

Figure 17 – Rectangular Hollow Section 200x200x9mm. From left to right insulation mesh at 10%, 20%, 40% and 100%.

For the mesh density of the member, an additional consideration must be made. This data has to be

implemented into the mechanical analysis. In this case, the translation is done by superimposing the

nodal temperatures of the cross-sectional contour on the mechanical shell-model and repeating the 2D

temperatures along the length of the shell element for all nodes. Subsequently, Abaqus assigns the

temperature data to the mechanical integration points through linear interpolation with the cross-section.

In this manner a thermal gradient can be obtained over the height of the cross-section and all integration

32

points in the mechanical analysis have a temperature value. To achieve this, the mesh size has to be the

same between thermal and mechanical analysis as the element types differ. This point is addressed in

the next chapter.

4.2.1.4 Sensitivity analysis of contact definition

As discussed before, contact between insulation and member is defined as contact through surface-to-

surface discretization between master and slave surface. At this interface, heat transfer occurs between

the insulation and the member. The thermal property at this interface is not specified in theory or

literature references. Thermal resistance between materials is dependent on surface smoothness and the

pressure between surfaces. This property has been evaluated between concrete and steel and been

approximated at 200W/m2K [23][24][32]. For simplicity sake, the thermal resistance at the interface

can be taken at a unit value of 1. This would be an overestimation of the actual thermal resistance. To

determine the effect of the thermal resistance, the unit value is compared to a situation where the

interface with insulation is set to be 200W/m2K. From this calculation it is evident that the difference

in member temperature, as compared for both heat transfer resistance values, increases with increasing

temperature over a range of 20-700℃. The maximum absolute percentile difference is expressed in

Table 6, defined as the member temperature found with 200W/m2K divided by the member temperature

with unit value multiplied by a 100%. Hence a value closer to 0% means the member temperatures of

the two cases are the same. The difference between the two thermal resistance values does not exceed

1.5%, therefore the thermal resistance is generally set at 200W/m2K.

Table 6 – Maximum percentile difference of member temperature with variating thermal resistance between surfaces.

𝜽%-Deviation between 200W/m2K / unit Minimum [%] Maximum [%] Average [%]

Column RHS Aluminium 1,175 1,181 1,176
IPE Steel 1,426 1,267 1,376
IPE Aluminium 1,281 1,258 1,280

Beam facing RHS Aluminium 0,979 1,045 1,016

3 sides fire IPE Steel 0,861 1,196 1,009
IPE Aluminium 1,048 1,202 1,128

Beam facing RHS Aluminium 0,788 0,830 0,806

1 side fire IPE Steel 0,527 1,204 0,874
IPE Aluminium 0,841 1,119 0,972

4.2.2 Beam: a three-sided fire simulation

In this case, the model is subject to three-sided heating. The geometry of the model is altered, as a

concrete slab is simulated on top of the flange of the metal member and the insulation is adjusted to fit

the remaining circumference, see Figure 18. For the cross-sections the same measures apply as in Table

3. The mesh size is set as in the previous paragraph. The material properties are as described in chapter

3 Literature study & theoretical background. Contact with the concrete parts is modelled with the

aforementioned thermal resistance value of 200W/m2K. For the insulated cases contact resistance

between floor-member-insulation is set at 200W/m2K.

33

Figure 18 – Geometry of beam with a concrete floor slab on the top flange and 3-sided heating.

However, aluminium members are often used because of their light weight and slenderness attributes

and a flooring system often shares these specifications. Such floors are not made of highly insulating

concrete material, but more often consist of metal with a thin layer of concrete or other plate material

to mechanically tie it together and fit comfort criteria [57].

Examples of lightweight flooring would have a density below 350kg/m2 such as Slimline, IDES and

Starframe systems [57]. Such systems are combinations between aired openings, insulating material,

steel or aluminium sheets and beams, and a concrete layer. For simplicity, the properties of such a

system is regarded as a composition of the mean value over the temperature range of the material

property due to the percentile contribution of each material to the system. For the floor this results into

the material properties as expressed in Table 7. Each material’s percentile contribution to the systems

make-up is considered, as to calculate a weighted material property. These values are input for an

alternative to that of the concrete flooring with the same geometrical setup. This is a very simplified

static rendition for a floor, the evident differences in the material properties and thus the resulting

member temperatures are significant enough to relay the effect of a different system.

34

Table 7 – Approximation of the material properties of a lightweight floor system as a combination of the mean value of the

individual material following its percentile makeup.

Mean values Percentile 𝝀 [W/mK] 𝝆 [kg/m3] 𝒄 [J/kgK]

Air 10% 0,025 1,225 1006

Concrete 15% 0,87047 2176 1045

Aluminium 15% 207,325 2700 1005,5

Insulation 60% 0,12 96 820

Total 100% 31,30382 789,1225 900,175

Figure 19 – Comparison of the average temperature of the aluminium member (either an RHS or IPE) with different floor

types, on the X-axis a concrete floor system and on the Y-axis that of the lightweight floor system described in Table 7.

As is depicted in Figure 18, the insulation does not encompass the floor for the insulated cases. For non-

insulated cross-sections it is apparent that heating of the member is practically identical for different

floor systems, see the straight line in Figure 19. The shift however for a lightweight floor system with

an insulated beam indicates, that for a higher value of the thermal conductivity of the floor, the

temperature of the member is influenced. which is the situation for both insulated cases, and due to the

higher thermal conductivity of the lightweight floor in comparison to the concrete floor, the metal

member heats quicker. This effect is also evident when reviewing the minimum and maximum deviation

from the average temperature of the member in the right errorbars of Figure 20 & Figure 21, which has

a much larger range than in Figure 16. This is complemented by the fact that ambient conditions are

applied on the non-heated side. Therefore, due to convection, a larger thermal gradient is possible. This

is especially true for the steel members, which has a smaller
𝑘

𝑐∗𝜌
 factor than aluminium, thus having a

larger difference between minimum and maximum temperatures.

What is most curious however, is that for the insulated cases – where only the member is insulated –

the thermal gradient is thusly affected that the maximum temperature can occur at the top flange.

Apparently in these cases, the floor heats much more quickly than the insulated member, therefore more

heat is transferred through this way instead of from fire to insulation to member. This reveals a reversed

thermal gradient, maximum at the ‘ambient’ side and minimum at the fire side in Figure 22 & Figure

23.

35

Figure 20 – Transient mean temperature curves for the three sided heated beam and the minimum, maximum deviation from

that temperature occurring in the cross-section. Left the absolute deviation from the average, right are the errorbars. From

top to bottom: IPE with concrete floor, RHS with concrete floor.

36

Figure 21 – Transient mean temperature curves for the three sided heated beam and the maximum and minimum temperature

deviation. From top to bottom: IPE with lightweight floor, RHS with lightweight floor.

37

Figure 22 – Temperature gradient over three sided heated IPE beam section with flooring on top for insulated (top) and

uninsulated (bottom) case as in Figure 18. tuninsulated = 7min, tinsulated,concrete = 45min, tinsulated,lightweight = 20-30min.

38

Figure 23 – Temperature gradient over three sided heated RHS beam section with flooring on top for insulated (top) and

uninsulated (bottom) case as in Figure 18. tuninsulated = 7min, tinsulated,concrete = 70min, tinsulated,lightweight = 20-30min.

4.2.3 Integrated beam: a one-sided fire simulation

Given that aluminium sections are often applied in tandem with lightweight floor systems where the

structural height is minimised by having floor and beams in the same layer, an additional model setup

is considered. An alternative model is that of the integrated beam wherein only the bottom part of the

cross-section of both the IPE and RHS would be exposed to elevated temperatures. Contact with other

elements is specified as having a thermal resistance equal to 200W/m2K, same as before.

In this case it is assumed that a floor slab is placed on the bottom flange of the geometry. For an IPE

section this can be achieved in a straightforward fashion. For the RHS, the section is slightly altered as

to have external ledges as bottom flange for the slab to lay on. These ledges are 16mm in length on

either side of the RHS and make the total width 232mm. Such a change on the geometry would be most

peculiar when working with steel but for aluminium, extrusion makes this a feasible adjustment. The

model is specified as visible in Figure 24.

In this design there are several alternatives to consider. In Figure 24 an insulated cross-section with a

concrete floor is visualized (variant 1), however in some cases similar sections would not be insulated

(variant 2), and given that aluminium is a lightweight material a floor with the same attributes such as

described Table 7 would be more appropriate (variant 3).

39

Exploring these variations reveals the effect that the floor system has on the heating of the member.

Evidently a concrete floor is a capable insulator, which explains the relatively low aluminium member

temperatures for the insulated case in comparison to that of the lightweight floor in Figure 25. This

result is further supported by the relationships as sketched in Figure 26 & Figure 27. As expressed

previously, the thermal gradient is in these cases even larger, Figure 28 & Figure 29. This fits with the

amount of heated surface versus that with facing ambient convection and the respective thermal

conductivity of the materials.

Figure 24 – Geometry of model subjected to a one-sided fire load, total width of model with IPE is 800mm for RHS is 1000mm.

Figure 25 – Member temperatures for an integrated beam subject with a floor slab, concrete versus a lightweight floor system.

40

Figure 26 – Transient mean temperature curves for a one sided heated beam and the minimum, maximum deviation from that

temperature occurring in the cross-section. Left the absolute deviation from the average, right are the errorbars. From top to

bottom: IPE with concrete floor, RHS with concrete floor.

41

Figure 27 – Transient mean temperature curves for a one-sided heated beam and the maximum and minimum temperature

deviation. Left the absolute deviation from the average, right are the errorbars. From top to bottom: IPE with lightweight

floor, RHS with lightweight floor.

42

Figure 28 – Temperature gradient over one side heated IPE beam section with flooring for insulated (top) and uninsulated

(bottom) case as in Figure 24. tuninsulated,concrete =20min, tinsulated,concrete =90min, tuninsulated,lightweight =10min, tinsulated,lightweight

=25min.

43

Figure 29 – Temperature gradient over one side heated RHS beam section with flooring for insulated (top) and uninsulated

(bottom) case as in Figure 24. tuninsulated,concrete = 10min, tinsulated,concrete = 90min, tuninsulated,lightweight = 15min, tinsulated,lightweight

=25min.

4.2.4 Alternative lightweight floor – sandwich panel

At first glance, the lightweight floor description is indicative when working with less insulated slabs.

However sandwich panels are comprised of layers of different stacked materials. To evaluate the effect

of such a floor structure, an additional model is made, see Figure 30 with the material properties as

described in Table 8. The resulting temperature shows a slightly reduced heating rate as compared to

the earlier mentioned lightweight floor, as visible in Figure 31 too Figure 36.

Figure 30 – Cross-sectional view of the three-sided beam and the integrated beam setup with alternative layered flooring.

44

Table 8 – Alternative lightweight floor setup.

Material Layer 𝝀 [𝑾/𝒎𝑲] 𝝆 [𝒌𝒈/𝒎𝟑] 𝒄 [𝑱/𝒌𝒈𝑲]

Aluminium 1 207 2700 1005

Air & Aluminium 2 20.7 271 1005

Concrete 3 0.8 2176 1045

Insulation 4 0.12 96 820

Figure 31 – Thermal gradient of an integrated beam with the alternative lightweight flooring. Time at 40 minutes. From top

to bottom an IPE profile and an RHS profile.

45

Figure 32 – Thermal gradient of a beam with an alternative lightweight floor for a beam facing three sided fire. Time at 40

minutes. From top to bottom an IPE profile and an RHS profiles.

Figure 33 – Temperature time curve for an integrated IPE beam with an alternate lightweight floor.

46

Figure 34 – Temperature-time curve for an integrated RHS beam with an alternative lightweight floor.

Figure 35 – Temperature time curve for an IPE heated from three sides with an alternate lightweight floor.

Figure 36 – Temperature time curve for a RHS beam heated from 3 sides with an alternate lightweight floor.

4.2.5 Intumescent paint

Instead of hardboard, blankets or other fibrous materials, metals are increasingly covered with

intumescent paints for fire protection. The difficulty in modelling such a material is that the thickness

of the coating has a thermal response. The material properties are dependent both on the thickness and

temperature of the coating. The most accurate methodology to describe the behaviour would require a

coupled transient heat transfer analyses. After the initial thermal calculation, the geometry must be

adjusted, hence requiring remeshing and interpolation of the nodal temperatures from the previous

47

calculation step. This process must be repeated every increment until the final time step is reached. This

process could be simplified by considering the temperature range at which the foaming occurs and only

performing the coupled analysis for this temperature frame. In [58] this range is expressed as 120-240℃

of the steel beam, for which before and after the thickness could be assumed constant and stable.

Alternatively, which would fit with the previous thermal analysis setup, the thickness of the intumescent

coating can be modelled as constant at maximum expansion but adjusting the thermal properties

The numerical setup in [58] produces data which fits with the experimental results as described in the

paper. The commercial water-based intumescent coating is described with constant values 𝑐𝑝 =

1200 𝐽 𝑘𝑔𝐾⁄ ; 𝜌𝑝 = 200 𝑘𝑔 𝑚3⁄ ; 𝜀𝑚 = 0.95 ; with an initial thickness of 𝑡𝑝 = 1500 𝜇𝑚, and the

thermal conductivity calculated following equation (22).

 𝜆𝑝 = 𝑡𝑝 ∗
𝑉

𝐴𝑝
∗ 𝑐𝑚,𝜃 ∗ 𝜌𝑚 ∗

1

(𝜃𝑓𝑖𝑟𝑒,𝑡 − 𝜃𝑚,𝑡) ∗ Δ𝑡
∗ Δ𝜃𝑚,𝑡 (22)

Using the alternative approach, the thickness of the coating is set at a constant value, which would be

at a maximum expansion of 45mm. Furthermore, the relation between temperature and thermal

conductivity is assumed to be linear. The thermal conductivity can be approximated by considering the

values found in [58] for the thickness of the coating, corresponding to temperature and thermal

conductivity at 5 distinct points – start, coating activation, reaching minimal thermal conductivity,

coating reaches maximum expansion and the end point. Considering the dependencies in equation (22),

the temperature dependent thermal conductivity for the coating in combination with an aluminium

member is approximated following 𝜆𝑝,𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚 = 𝜆𝑝,𝑠𝑡𝑒𝑒𝑙 ∗
(
𝑉

𝐴𝑝
)
𝑠𝑡𝑒𝑒𝑙

(
𝑉

𝐴𝑝
)
𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚

∗
𝑐𝜃,𝑠𝑡𝑒𝑒𝑙

𝑐𝜃,𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚
∗

𝜌𝑠𝑡𝑒𝑒𝑙

𝜌𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚
.

The last term in (22) is neglected, as the difference between steel and aluminium in this regard would

be relatively small in comparison to the aforementioned terms. This conclusion can be drawn from the

earlier found temperature curves as the variables in the last term are either the same or within the same

order of magnitude between the materials. Given all these considerations, the equivalent thermal

conductivity in relation to temperature is as described in Figure 37.

Figure 37 – Equivalent thermal conductivity of intumescent paint with constant thickness for different model descriptions,

namely a section heated from all sides (column), three sides (beam3) or one side (beam1) for both aluminium and steel.

48

Using these values for the insulated cases as discussed before reveals that the thermal response in time

slowed significantly after activation has been reached, see Figure 38 too Figure 42. The thermal gradient

over the cross section reached after 40 minutes is however, very similar to earlier results, see Figure 43

too Figure 46. In these models the floor is as discussed in 4.2.2. The seemingly inconsistent temperature

deviation in the first 150℃ in Figure 43 seems to be due to the rapidly decreasing thermal conductivity

of the insulation in the first stage of the calculation process. The model needs a small amount of time

to reach stable conditions. However the fluctuations are slight (< 5℃) and thus ignored.

Figure 38 – Temperature time curve for an integrated IPE beam insulated with intumescent paint.

Figure 39 – Temperature time curve for an integrated RHS beam insulated with intumescent paint.

Figure 40 – Temperature time curve for a IPE beam insulated with intumescent paint facing a fire from three sides.

49

Figure 41 – Temperature time curve for a RHS beam insulated with intumescent paint facing a fire from three sides.

Figure 42 – Temperature time curve for a column insulated with intumescent paint, fire from all sides..

Figure 43 – Thermal gradient for an integrated IPE beam covered with intumescent paint at t=40 minutes

50

Figure 44 – Thermal gradient of an IPE beam covered with intumescent paint with fire from three sides at t=40min.

Figure 45 – Thermal gradient of a RHS beam covered with intumescent paint with fire from three sides at t=40min.

Figure 46 – Thermal gradient of an integrated RHS beam covered with intumescent paint at t=40min.

51

5. MECHANICAL ANALYSIS
As expressed in the previous chapter, there are three different scenarios to evaluate, that of a 1metre

long column, and a 3metre beam facing a three-sided fire (Figure 18) and facing a one-sided fire

(integrated beam Figure 24). Given the different loading conditions, thermal gradients and other not yet

considered mechanisms, the model consists of a full 3D model. As the thermal gradient in thickness

direction of flanges and web is practically nil, it is possible to work with shell elements. In the FEM

environment this means that the 3D cross-section can be comprised out of homogenous shell planes,

specified at the middle nodes with a set thickness, see Table 3.

In the thermal analysis it was possible to model 2D as the heat input over the length of the section is

constant. Due to this fact, the temperature data has to be imposed over the length – z-axis – of the cross-

section. To achieve this correctly, Abaqus has two options, namely direct interpolation between nodes

when working with similar element types but a different mesh – for example a coarse and fine mesh –

or midside node capability. As the elements between the two analysis differ – 2D solids versus 3D shells

– only the midside node capability is an option, which requires the element size of the mesh between

the two models to be identical. The temperatures of these central nodes in the mechanical shell elements,

which is modelled following the central lines of the cross-section, are based on the temperatures from

the corner nodes of the heat transfer elements. Using the temperatures of the corner nodes of the

elements of the thermal analysis, Abaqus interpolates the midside node temperatures so that all nodes

have temperature values assigned, using first order interpolation.

It is assumed that the thermal and mechanical analysis can be performed sequentially, see Figure 9. The

mechanical analysis iterates over the temperature frames. Within one temperature frame, a non-linear

mechanical analysis can be performed. After convergence, the analysis is restarted for the next

temperature frame, building on the strain, stresses and displacements of the previous step. As the

thermal analysis is of transient nature, the mechanical analysis comprises a transient non-linear analysis

due to the temperature depenedent material properties and possible large deflections. The output of the

mechanical analysis consists of (true von Mises) stress and (true logarithmic and plastic) strain values

at integration points, and coordinates, rotations, displacements at nodes, all in XYZ-plane.

5.1 Strain relation
Stress-strain relations at elevated temperatures are best presented through transient state experiments

instead of steady state test. For steel, the data in EC3 is based on transient tests for which a determining

bi-linear relation is observed, therefore the stress-strain relations can be straightforwardly modelled.

Aluminium however, has a distinct non-linear stress-strain relation. This is also attributed to the early

onset of creep. Creep strain can be accounted for implicitly by altering the stress-strain relation, as is

done in [20][5] for alloy 6060-T66. Or explicitly by accounting for primary, secondary (and tertiary)

creep as proposed in the Dorn-Harmathy method [16][9].

5.1.1 Implicit stress-strain relation

In [5] the stress-strain relation is modelled taking creep implicitly into account, for which the

temperature rate and stress is assumed constant. However, these assumptions are not principally valid.

As can be observed in the figures Figure 16, Figure 20, Figure 21, Figure 26 and Figure 27, the

temperature does not increase in a linear fashion necessarily. In addition, restrained movement of the

specimen – for example boundary conditions restraining thermal expansion – can induce additional

stresses to the mechanical loading. In Figure 47, the stress and strain relations at elevated temperatures

taking creep implicitly into account following the Ramberg-Osgood equation is plotted.

52

Figure 47 – The altered stress-strain curves for left steel grade Fe E24 [59] (similar to S235) and right aluminium alloy 6060-

T66 with creep implicitly incorporated.

5.2 Structural model
In EN 13381 the fire test for column specimens is fairly straightforward. Therefore, the structural model

for both IPE and RHS section can be specified as unloaded, 1 metre in length and fully restrained at one

edge. For beams however, the setup is quite different considering loading, boundary conditions and

lateral support.

The lateral support for both the RHS and IPE at bottom and top edge is specified to prevent out-of-

plane displacement and focus on pure bending behaviour. Generally the beam is setup as a simply

supported beam 3 metres in length, one edge supported with a roller and the other end a hinge. There

are three different edge faces at which the support can be specified, that would be the (1) end face (all

flanges and web), (2) top flange or the (3) bottom flange.

For loading, there is a difference in weight between the lightweight and concrete floor. In addition, the

load face between the 3-sided beam and the integrated beam is different. As the 3-sided beam has the

floor on the top edge, this is also where the load is transferred. However, for the integrated beam the

load is introduced at both the bottom flange as the top flange. The loads are as described in Table 9. For

the 3-sided beam this is situated at the top flange of the beam, while for the integrated beam the load is

imposed by ¾ on the bottom flange and ¼ on the top edge, see Figure 48.

Table 9 – Total load on the cross-section in the FEM model, equally distributed on the contact surface at T=0min.

Floor types Load [kN] Utilization steel [-] Utilization aluminium [-]

Concrete 49.5 0.43 0.48

Lightweight 36 0.31 0.35

53

Figure 48 – Structural model for beam models, for both integrated (bottom) and beam facing three-sided heating in case of

an evenly distributed load.

In conjunction, for the four point bending test a separate loading scenario is described as in Figure 49.

The distribution over top and bottom flanges is as described before, in case of the integrated beam the

bottom flange supports ¾ of the load.

Figure 49 – Structural model for beam facing 3 sided heating (top) and integrated/1-sided heating (bottom) in case of a four

point bending test setup.

5.3 Model limits
To get a full overview of the mechanical model to judge and validate, the output includes stress and

strain values at integration points of the shell, and rotations and displacements at mesh nodes. This is

done at every time step n for in total 90 simulated minutes to ensure sufficiently high enough

temperature values (>300℃) are reached despite the insulation. After the initial thermal analysis, the 90

minute mark could be assessed to fit with the failure temperature as expressed in Chapter 3.

Alternatively or in tandem to the critical temperature, failure of the metal can be defined following the

deflection limits in Chapter 3 results in a limiting strain of 3.75‰ and a strain rate below 1.7 𝑑𝜀/𝑑𝑡.
Additionally, to determine whether the insulation is not damaged before the aforementioned limits, a

second limiting strain value is proposed. For intumescent paint used on a steel structure, the strain at

which the paint layer is damaged has been observed to be 1.3‰ [58] additional strain after the coating

has fully expanded, that would be strain at 250 à 300℃.

54

5.4 Validation mechanical model

5.4.1 Column

Given that the column models are unloaded, the only strain phenomenon to which the model is subjected

would be thermal expansion. Contrary to the beam models, the displacement must be viewed in

lengthwise direction of the geometry, Z-direction. Considering the relation for the thermal expansion

as described in paragraph 3.3.2.2 it is possible to validate the numerically found displacement with that

theoretically found using equations (16) and (17). For Abaqus, the thermal expansion coefficient is

expressed by dividing the thermal strain with the temperature minus the reference temperature 𝛼𝐿,𝑖 =

𝜀𝑡ℎ,𝑖 /(𝜃𝑖 − 𝜃0). The reference temperature is used to correct the value because it is assumed that at

initial conditions the expansion is zero, that would be at 𝜃0 = 20℃. The difference between the thermal

expansion coefficient in FEM and theory is because the theoretical value was calculated assuming a

linear increase in temperature instead of the true value. The resultant coefficient can be observed in

Figure 50, in addition to the displacement calculated by hand for comparison and the Abaqus result.

The maximum temperature in the cross-section is used for calculation. As is evident, the displacement

between the models is practically identical and therefore sufficiently validated. Though note that

Abaqus expresses true stresses and strains.

Figure 50 – Thermal expansion coefficient and corresponding theoretical displacement in comparison to the lengthening of

the columns found with Abaqus with maximum temperature.

5.4.2 Beam

The beams are loaded in bending – both the integrated beam and the 3-sided beam – and have a thermal

gradient over the cross-sectional height due to the non-uniform heating conditions. Therefore the beam

exhibits elasto-plastic behaviour in addition to creep and thermal strain, see equation (15). Thermal

strain is a combination of thermal elongation and thermal bowing which act in orthogonal directions.

Creep strains have been taken implicitly into account by adjusting the stress-strain curves. Presumably,

the determining strain and displacement occurs at midspan in the hottest flange. To ascertain this the

values at the centroid and at the centres of both flanges is inspected.

The total strain in length direction – identified as Z-axis or S11 in Abaqus for this model – following

from equation (15), the total strain can be approximated with equation (23) and the displacement at

midspan as equation (24). Note that the temperature difference in this case is taken over the height of

the cross-section. The strain hardening factor 𝑛 is determined by dividing the proof stress by 10 [15].

Given the orientation of the model, the maximum strain occurs in length direction (Z-axis) and the

maximum displacement happens orthogonally in the Y-direction at midspan.

55

𝜀𝑡𝑜𝑡𝑎𝑙 = (
𝜎

𝐸𝜃
+ 0.002(

𝜎

𝑓0.2;𝜃
)

𝑛

)
𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

+ (𝛼𝐿,𝜃
1
4⁄ Δ𝑇 + 𝛼𝐿,𝜃)

𝑡ℎ𝑒𝑟𝑚𝑎𝑙
 (23)

𝐷𝑚𝑖𝑑𝑠𝑝𝑎𝑛 = (
5

384

𝑞𝐿4

𝐸𝜃𝐼
)
𝑒𝑙𝑎𝑠𝑡𝑖𝑐

+ (
𝛼𝐿,𝜃Δ𝑇𝐿

2

8ℎ
)
𝑡ℎ𝑒𝑟𝑚𝑎𝑙

+ 𝐷𝑝𝑙𝑎𝑠𝑡𝑖𝑐 (24)

The variables in (23)&(24) are as in Figure 47 and Figure 50, which are dependent on the constant

cross-sectional temperature as calculated in (6). The thermal gradient Δ𝑇 follows from the previous

thermal analysis, Figure 20. The load for validation is 20N/mm for steel and for aluminium. Given the

different geometry, the loading factor with this load is approximately
𝜎

𝑓0.2,𝜃
=

1

2
 at 𝑇 = 20℃ for both.

To determine whether both mechanical and thermal effects for strain and displacement are implemented

correctly three simulations were run, (1) that with only thermal expansion and no loading, (2) only

loaded with no thermal expansion and with (3) both active. The results of all three is evaluated at

midspan at 3 locations, middle of the web, at the centre of the top flange which is facing the ambient

side, and the centre of the bottom flange which is heated. Note that all deflection downward, as in

towards the fire side, is taken positive while toward the ambient side is negative.

Figure 51 – Thermal expansion at midspan for an uninsulated IPE cross-section for both steel and aluminium, considering

different cross-sectional locations: centre bottom flange, middle of web, centre of top (ambient) flange. Note that the result for

middle and top coincide.

With the thermal gradient as in Figure 22 the result of the model with only thermal expansion results in

Figure 51. The irregularity for steel at circa 700℃ is due to the fact that the thermal expansion is

constant for a range. The fact that the relation is representative of a concave parabola follows form the

fact that the thermal gradient over the cross-section reduces with higher temperatures. Thermal

expansion can continue until the melting temperature has been reached. Even though the thermal

gradient in aluminium is lower – as expected given its higher thermal conductivity – the thermal

expansion is higher, given that the thermal expansion is roughly twice as large. It is evident that the

trend in the data is similar between FEM and theory, even if the percentile difference between the values

can amount to 25%. The difference is attributed to the effect of the thermal gradient, which in the

theoretical model is straightforwardly taken as the minimum and maximum temperature occurring in

the cross-section. However in the FEM analysis, it is clear that the thermal gradient is not linear over

the cross-section and the results plotted are the actual deflection at midspan with the corresponding

local temperature. With this explanation, the implementation of the thermal expansion is assumed to be

correct.

56

Figure 52 – Deflection for uninsulated IPE section with thermal expansion (1), for insulated IPE with no thermal expansion

only loading (2), and deflection for an insulated IPE section with both thermal expansion and loading (3).

In Figure 52 the deflection for all three scenario’s is plotted. The green line represents the full analysis,

yellow that with only loading and blue with only expansion as in Figure 51. As the theoretical

expression of the deflection due to elasto-plastic behaviour is only expressed for elastic behaviour, the

vertical dash-dotted lines represent the asymptotes at which the stress values in the FEM model exceed

the proofstress and ultimate stress. The fact that elastic deflection does not start at zero is due to the

initial deflection at load introduction. In the initial elastic range, the FEM and theoretical results overlap.

For steel it is evident that beyond the 205℃ the model starts experiencing plastic deformation which

results in approaching the asymptote as expected. Note that these values are evaluated with the

temperature at the centre of the bottom node, which exhibits the most extreme results. Except for the

thermal bowing, the theoretical results are calculated following the temperature development as in EN

1993-1-2 and EN 1999-1-2. The main difference therefore is that the temperature over the cross-section

is assumed constant while this is not the case in the FEM analysis. The result of an underestimation of

the deflection before failure fits with earlier found results in literature [5][8][19].

Figure 53 – Thermal strain for an uninsulated IPE section exposed to fire at three sides for both steel and aluminium,

considering different cross-sectional locations: centre bottom flange, middle of web, centre of top (ambient) flange at midspan.

57

The thermal strain and its variation over the height of the beam causes thermal elongation and thermal

bowing. For thermal strain, the same thermal gradient issue exists as with deflection. The temperature

is not linearly distributed over the cross-sectional. Hence the difference between the different evaluation

points at top, bottom and middle of the cross-section in Figure 53. The difference in theoretical value

and that at top and middle nodes is due to that of the thermal gradient, which in the theory is taken as

the minimum and maximum temperature occurring in the cross-section. While the temperature against

which the values for top and middle are plotted are their actual local temperatures. The relation between

temperature and thermal strain seems relatively linear, fitting with the thermal expansion coefficient.

Figure 54 - Mechanical strain of an insulated IPE cross-section exposed to fire at three sides for both steel and aluminium,

considering different cross-sectional locations: centre bottom flange, middle of web, centre of top (ambient) flange.

For the mechanical strain the Ramberg-Osgood equation is used. Given that the load is constant, only

the thermal dependent variables of Young’s modulus and proofstress are determining factors. The result

of the theoretical value follows the asymptote of the ultimate stress. Given the cut-off of the red-line in

Figure 54, it is evident that yield happens sooner in the centre of bottom flange. The apparent asymptotes

that reached in Figure 54 agree with the ultimate yield criteria as in Figure 53. The difference between

the theory and the FEM is due to the temperature, as the theoretical results are calculated following the

temperature development in EN 1993-1-2 and EN 1999-1-2, see 3.2.3. In addition to this correction,

the theoretical strain for aluminium showcases an earlier more gradual curve because of the smooth

approximation of the proofstress at elevated temperatures as in Figure 47.

In the FEM analysis Abaqus does not explicitly consider the effect of melting as these limits are not

provided and approximates any necessary material properties through linear extrapolation when beyond

the given scope. Note that simply taking the maximum values for strain and deflection which occur in

the beam does not work, as locally the yield criteria can be met due to local plasticity elsewhere to

midspan. This is especially a concern for steel as the Young’s modulus degrades faster than the yield

stress does [3]. Area’s which are susceptible to this include At elevated temperatures it is therefore more

susceptible to local yielding. The opposite is true for aluminium.

Given the aforementioned observations, the result of the thermal expansion and mechanical part

separately and combined show relatively accurate results for deflection, coinciding with theory in such

a way that it can be initially assumed that the model is accurate. However, in further research, the

preference for validation lies with an additional simulation model following an actual fire test and

comparing the results, and perhaps, simulating a copy of a benchmarked literature reference.

58

6. RESULTS
While considering the results in the coming figures, the deformed shapes have been plotted against their

original shape (red outline) with a scale factor of 3 at the last converged step. For the columns, thermal

elongation is taken as positive while shrinkage is negative value. Beyond this, for beams deflection

towards the fire side is deemed positive, and toward the ambient side is negative.

6.1 Column
The uninsulated sections were relatively straightforward to develop. However as can be observed from

the amount of steps completed with the insulated section, see Table 10, modelling insulation proved

much more troublesome. As of yet, it is unclear why these problems were unable to converge.

Evaluation of exaggerated results within the 16 steps reveal no clear cause or effect, as the results are

consequently equal to zero and the temperature change does not move past ~5.0 ∗ 10−4 ℃.

Convergence is not achieved either when incurring a minimal pressure load to the column head, or when

describing a maximum deflection, or under different support conditions. The model that did succeed

however, follows the same trends as where described in the validation 5.4.1 and forms a bases to

proceed with to at least form a preliminary judgement for this thesis.

Both steel insulated models were unable to run. However, given that similar experiments and models

have been thoroughly tested and previously established, the temperature relation to strain for the

insulated case can be extrapolated from the uninsulated case for comparison to the beam models. This

approach can only be taken because the result of similar analysis has been well established in the past

and the conclusion that beams exhibit significant sagging before failure in comparison to columns is a

confirmed phenomenon and the reason for the fire test setup as previously discussed with both column

and beam tests.

The FEM model for columns is an unloaded situation with one end fully clamped. Therefore only

thermal expansion in the lengthwise direction is subject of discussion in this case. Due to the fact that

one end is fully clamped, peak stresses can occur at this support, as seen in Figure 55. However, due to

the setup these can be neglected. Table 10 accompanies Figure 55.

The overall temperature development in the cross-section, the second plot in Figure 55, shows a

consistent temperature development with a minimal deviation. This is as expected given that the section

is heated evenly from all sides. Within the 90 minute timeframe, the whole aluminium section achieves

melting temperature, therefore the data is capped at a temperature of 500℃ which is at approximately

45 minutes for the insulated section and less than 10 minutes for the uninsulated sections. The dip in

the temperature development of steel at ~20 minutes is due to a shift in the thermal parameters as the

specific heat reaches an asymptote as it is a rational function (1/x type) at this temperature and the

thermal conductivity switches from a linear description to constant.

Given that the column models are unloaded, the strain result follows directly from the approximation

of thermal elongation as established in the validation of section 5.4. As a result of the temperature

dependency of the Young’s modulus and proofstress, the strain and deflection curves strongly resemble

the shape of the temperature curve. A direct effect of there being no thermal gradient.

Modelling up until the melting temperature of aluminium reveals that the FEM deflection result directly

matches with the deflection and deflection rate limit as prescribed in EN 1363 [6][13].

59

Table 10 – Legend overview for Figure 55 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Minutes Legend Model Minutes Legend

Aluminium IPE uninsulated 90 Pink Steel IPE uninsulated 90 Green

Aluminium IPE insulated 90 Grey Steel IPE insulated 1.6 Red

Aluminium RHS uninsulated 90 Brown Steel RHS uninsulated 90 Blue

Aluminium RHS insulated 1.6 Purple Steel RHS insulated 1.6 Yellow

Figure 55 – Results for the full analysis of column sections, showcasing stress, strain, deflection, temperature and the deformed

shape, see D.1 Columns for larger images of the deformed shapes.

60

6.2 Beam: three sided fire

6.2.1 Evenly distributed load

Figure 57 shows some unexpected results considering the stress and deflection of the sections with the

lightweight floor element. The reduction in the deflection of the RHS with the lightweight floor seems

to coincide with that of a significant reduction, or convergence of the temperature values, reducing the

thermal gradient. For this case, the combination with the lightweight floor, which has a higher thermal

conductivity than concrete, causes the insulated cross-section to heat more quickly through contact with

the floor opposed to directly from the fire through the insulation. The thermal gradient is therefore

inverted, having the highest temperature at the top instead of the bottom which faces the fire, see.

Subsequently thermal bowing causes an upward deflection before elastic deflection becomes dominant.

Apparently, thermal bowing at this stage is determining for the deflection of this scenario. There is

therefore a shift from ‘negative upward bending’ to positive bending toward the fire.

Figure 56 – Beam facing fire from three sides with a lightweight floor, steel IPE section, having an inverted temperature

gradient, top images show thermal gradient in which hottest temperature is red and blue is colder. Left is the situation at 30

minutes and right at end 60 minutes. Bottom two images are the magnitude of the deflection in Y direction on the deformed

shape, maximum deflection at midspan.

The steel RHS section with the concrete floor seems to not fail within the given time limit and would

require a revaluation. However, given the data in the figure, there are no unexpected deviations for this

case. The deflection can be observed to steadily increase as would be expected. For the green line, the

steel IPE section with a concrete floor, the stress, strain and deflection values all fit with within the

expected range. Deflection steadily increases until failure is achieved and a rapid increase is observed.

In all cases it appears that at temperatures exceeding 400℃, the behaviour of steel seems to change

most, which fits with the fact that the yield stress starts to decrease at this point. The proportional stress

at this stage would be at approximately a fourth of its original value, which would be about equal to the

imposed stress on the sections. Therefore, plastic behaviour occurs from this point on.

61

Table 11 – Legend overview for Figure 57 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Minutes Legend Model Minutes Legend

Steel IPE insulated

concrete floor

79 Green Steel RHS insulated

concrete floor

90 Blue

Steel IPE insulated

lightweight floor

59 Red Steel RHS insulated

lightweight floor

90 Yellow

Figure 57 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, steel insulated sections, showcasing

stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of

the deformed shapes.

As is to be expected with uninsulated section, the thermal gradient is lower and the critical values are

achieved within a short time period. Within 10 to 15 minutes the deflection of the beams already reaches

limit values. This corresponds with the peaks found in the stress curve which shows a quick cutoff or

drop after reaching yield. The dib before this point seems to be due to a redistribution of the stress

within the cross-section when the beam roller support appears to yield, a by-product of local peak

stresses at the support.

62

Table 12 – Legend overview for Figure 58 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE concrete floor 41 Pink Steel IPE concrete floor 96 Green

Aluminium IPE lightweight floor 66 Grey Steel IPE lightweight 111 Red

Aluminium RHS lightweight floor 111 Brown Steel RHS concrete 151 Blue

Aluminium RHS concrete floor 111 Purple Steel RHS lightweight 176 Yellow

Figure 58 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, uninsulated sections, showcasing

stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of

the deformed shapes.

The cut-off temperature for aluminium is 500℃ after which the material properties are no longer of

any mechanical magnitude. Apparently the case of an RHS with a concrete floor does not reach

critical state. The other scenario’s however do. For both the IPE sections, the point at which failure

occurs is quite evident, clear as the sharp point/dip in the stress value where the proofstress is

exceeded. The sharp turn of the strain for the IPE with the lightweight floor at t=20 minutes seems to

be a sharp switch from reaching the proofstress to reaching the ultimate stress of the section. In

comparison to the steel results, the thermal gradient is much lower. This is as expected given the

larger thermal conductivity of aluminium.

As with the previous Steel IPE lightweight cross-section, the thermal gradient is inverted for the

aluminium RHS cross-section with the lightweight floor. Having the highest temperature at the top

63

instead of the bottom which faces the fire. Subsequently thermal bowing causes an upward deflection

before elastic deflection becomes dominant. Apparently, thermal bowing at this stage 17-35minutes is

determining for the deflection of this scenario.

Table 13 – Legend overview for Figure 59 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE concrete

insulated

416 Green Aluminium RHS concrete

insulated

901 Blue

Aluminium IPE lightweight

insulated

336 Red Aluminium RHS lightweight

insulated

546 Yellow

Figure 59 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, aluminium insulated sections,

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images

of the deformed shape.

6.2.2 Four point bending test

A recurring issue with the four point bending test is that local plasticity around the introduction of the

load and support occurs, which can cause the analysis to ‘fail’ prematurely. This problem was initially

addressed with the introduction of a rigid area at the partition at which the load is applied. Apparently,

64

this was not a severe enough action to achieve the intended result. With the data that was acquired

however, it can be observed that heating happens much more quickly as opposed to an insulated section.

The endpoints of the stress also fit with that of the proportionality stress and then ultimate stress, and

the proofstress for respectively steel and aluminium. The stress, strain and deflection results also line

up, finding their extreme when expected. What is also clear is the difference between steel and

aluminium. The thermal gradient for aluminium is smaller, and the aluminium IPE with lightweight

floor fails much earlier than the other scenario’s.

The most stress inconsistencies seem to occur with a RHS section. Such section do show a higher

moment of inertia than the prescribed IPE sections. Therefore it does fit that the stress with these

sections is lower in comparison. Failure is thus at a later time.

Table 14 – Legend overview for Figure 58 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE lightweight 36 Pink Steel IPE concrete 41 Green

Aluminium RHS concrete 11 Brown Steel IPE lightweight 91 Red

Aluminium RHS lightweight 111 Purple Steel RHS concrete 111 Blue

 Steel RHS lightweight 136 Yellow

Figure 60 – Results for the full analysis of 3-sided beam in a four point bending test, uninsulated sections, showcasing stress,

strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of the

deformed shapes.

65

The effect of the lightweight floor in this case is quite clear, Figure 61. Given the that the lightweight

floor was oversimplified and therefore has a higher thermal conductivity. The aluminium cross-section

can therefore absorb a lot more heat through this floor system than it would with concrete. Therefore

both the RHS and IPE section with the lightweight floor reach the proofstress about twice to thrice as

fast as that with a concrete floor. The same behaviour can be observed in Figure 62 for steel in

combination with a lightweight floor. Even though the yield stress seems to have been exceeded in these

sections, the deformed shape does not seem to support this. Displaying similar thermal expansion

reminiscent of the original columns. The strain and deflection values seem to incorporate mechanical

and thermal behaviour until proofstress has been reached, and then switch to only thermal expansion.

Presumably an effect of the sudden drop of the stress to practically zero while the analysis continues.

In this case, the result beyond the forty minute mark is therefore deemed unlikely.

Table 15 – Legend overview for Figure 61 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE concrete

insulated

901 Green Aluminium RHS concrete

insulated

776 Blue

Aluminium IPE lightweight

insulated

901 Red Aluminium RHS lightweight

insulated

511 Yellow

Figure 61 – Results for the full analysis of 3-sided beam in a four point bending test, aluminium insulated sections, showcasing

stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending test for larger images of the

deformed shape.

66

Table 16 – Legend overview for Figure 62 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Steel IPE concrete insulated 901 Green Steel RHS concrete insulated 901 Blue

Steel IPE lightweight

insulated

901 Red Steel RHS lightweight

insulated

816 Yellow

Figure 62 – Results for the full analysis of 3-sided beam with a four point bending test, steel insulated sections, showcasing

stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending testD.2 Evenly

distributed load. for larger images of the deformed shapes.

67

6.3 Integrated beam

6.3.1 Evenly distributed load

Due to the fact that with an integrated beam, there is a minimum surface area exposed to the fire load

directly. The section can however, gain heat indirectly through the floor which encompasses it. Note

that the other side of the cross-section is subject to ambient conditions through which heat can also be

lost. This makes it possible to result in larger thermal gradients. This is especially the case for the

uninsulated sections in Figure 65 in which the thermal gradient for RHS cross-sections in combination

with concrete floors show an unexpectedly large thermal difference. The difference seems exorbitant

and unrealistic compared to the gradients found before, also considering the thermal conductivity of the

metals themselves.

Given that the insulated cross-sections seem to be even better protected against heat gain, there is a

larger number of models which do not reach failure within the time frame, as is with the concrete floor

combinations. The same cannot be said for section in combination with the lightweight floors. In Figure

63 the IPE section with the lightweight floor showcases a clear combination of mechanical loading and

the effect of thermal bowing. In Figure 64, the same section but with steel does not reach failure, albeit

a significant deflection can be observed. This result concurs with the expectation that loaded steel beams

showcase larger deformations before failure. In such cases it would therefore be most interesting to

proceed with a coupled thermal-mechanical analysis to describe the effect on the heating of the section

due to damage to the insulation. The same observation can be made for the uninsulated steel sections in

Figure 65.

68

Table 17 – Legend overview for Figure 63 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE concrete

insulated

901 Red Aluminium RHS concrete

insulated

901 Blue

Aluminium IPE lightweight

insulated

466 Green Aluminium RHS lightweight

insulated

461 Yellow

Figure 63 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, aluminium insulated sections,

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger

images of the deformed shapes.

69

Table 18 – Legend overview for Figure 64 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Steel IPE lightweight

insulated

901 Green Steel RHS lightweight

insulated

246 Blue

Steel IPE concrete insulated 901 Red Steel RHS concrete insulated 711 Yellow

Figure 64 – Results for the full analysis an integrated beam with an evenly distributed Q-load, steel insulated sections,

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger

images of the deformed shapes.

70

Table 19 – Legend overview for Figure 65 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE lightweight 161 Green Steel IPE lightweight 296 Pink

Aluminium IPE concrete 166 Red Steel IPE concrete 351 Grey

Aluminium RHS concrete 206 Blue Steel RHS lightweight 396 Purple

Aluminium RHS lightweight 186 Yellow Steel RHS concrete 301 Brown

Figure 65 – Results for the full analysis of an integrated beam with an evenly distributed Q-load, uninsulated sections,

showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger

images of the deformed shapes.

6.3.2 Four point bending test

Some of the same observations can be done for the four point bending scenario as with an evenly

distributed load. There is a larger number of models which do not reach failure within the time frame.

In the case of aluminium, the results in Figure 66 seem have a more gradual effect on the strain

development, especially in combination with a concrete floor. In Figure 67, the steel RHS section show

very curious stress results. There seems to be an instance of redistribution of the stress through the

section. The combination with a concrete floor and steel does not reach failure or any significant

deflection. For the lightweight floor though, the statement that loaded steel beams showcase larger

deformations before failure. For these cases a coupled thermal-mechanical analysis to describe the

effect on the heating of the section due to damage to the insulation would be of interest. As with the

evenly distributed load, the same can be said for the steel sections in Figure 68.

71

Table 20 – Legend overview for Figure 66 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium RHS lightweight

insulated

271 Blue Aluminium IPE concrete

insulated

751 Yellow

Figure 66 – Results for the full analysis of an integrated beam in a four point bending test, aluminium insulated sections,

showcasing stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending test for larger

images of the deformed shape.

72

Table 21 – Legend overview for Figure 67 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Steel IPE lightweight

insulated

531 Green Steel RHS lightweight

insulated

516 Blue

Steel IPE concrete insulated 901 Red Steel RHS concrete insulated 901 Yellow

Figure 67 – Results for the full analysis of an integrated beam with a four point bending configuration, steel insulated sections,

showcasing stress, strain, deflection, temperature and the deformed shape, see D.3 Four point bending test for larger

images of the deformed shapes.

73

Table 22 – Legend overview for Figure 68 with the number of steps completed in the FEM model. 900 steps confers with 90

minutes which is the full time period over which the separate thermal analysis is run.

Model Steps Legend Model Steps Legend

Aluminium IPE concrete 56 Red Steel IPE lightweight 216 Pink

Aluminium IPE lightweight 101 Green Steel IPE concrete 191 Grey

Aluminium RHS concrete 96 Blue Steel RHS lightweight 221 Purple

Aluminium RHS lightweight 151 Yellow Steel RHS concrete 186 Brown

Figure 68 – Results for the full analysis of an integrated beam in a four point bending test, uninsulated sections, showcasing

stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly distributed load. for larger images of

the deformed shapes.

74

7. DISCUSSION OF RESULTS
Overall it can be concluded that insulation has a tremendous effect on the temperature increase over

time and the implementation of insulation and floor on a beam is determining for the temperature

distribution in the cross-section. For aluminium the effect appears to cause the thermal gradient over

the cross-section to become more linear, while steel has an inherently larger gradient than aluminium

given the fact that it has a lower thermal conductivity.

In particularly concerning the floors, if the floor has a high thermal conductivity and is not insulated

while the section is, the heating of the section could be accelerated and the thermal gradient might be

inverse to generally expected.

Figure 69 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for

integrated beams subject to a four point bending test.

Plotting the strain results versus temperature of the analysis of the column next to that of the beams

should reveal whether there is a distinction to be made between the two. Doing so leads to Figure 69,

Figure 70, and Figure 72. In Figure 69 on the right hand side, the results of the steel cross-sections

clearly support the fact that steel loaded beam sections show significant sagging before failure. The

strain in the case of an insulated IPE section in combination with a lightweight floor shows clear

deviation from 400℃ onwards before failure at circa 600 degrees. In contrast, for aluminium, even

though the IPE section with a concrete floor (the red line) has a higher starting value that that of the

columns, the slope of strain is similar up until rapid failure, further supported by that of an insulated

RHS section with a lightweight floor and the uninsulated sections.

75

A difference in strain magnitude between beams and columns is only of significance when considering

the situation in which the insulation is applied. When the insulation is applied in situ, on location when

the load is already applied to the section than the magnitude is of little significance. This is due to the

fact that the strain at t=0 minutes for a loaded beam may be 0.25‰, the insulation is applied at this point

and thus has a strain of zero. However, if the insulation is applied before loading, the strain at start for

a loaded beam and insulation is the same and non-zero.

In Figure 72 the established fact that steel shows significant sagging before failure seems not to be

supported for an insulated section. However, this is an effect of the data range which has been taken too

small to support the theorem in this case. For aluminium though, the strain-temperature curves further

support the assessment that the strain difference between column and beam before failure is of much

smaller magnitude.

Note in the figures below that for six cases the thermal gradient between temperatures of 50℃ to 350℃

is inverted. Therefore in Figure 70 aluminium RHS with lightweight floor shows a shift in the strain

value before failure at 400℃ when the negative thermal bowing deflection is dominated by mechanical

failure, as is for aluminium IPE lightweight in Figure 71 uninsulated and in Figure 72 insulated.

Figure 70 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for a

3-sided beam subject to a four point bending loading model.

Figure 71 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for a

3-sided beam subject to an evenly distributed load Q for uninsulated sections.

76

Figure 72 – Comparison of strain-temperature curves for corresponding column types to beam scenario’s, in this case for a

3-sided beam subject to an evenly distributed load Q of insulated sections.

This leads to the conclusion that the deformation of a protected aluminium beam exposed to a fire load

does not differ to any great extent from that of a similar column in such a manner that the protective

insulation layer may be damaged prior to failure, and the heating of the beam would be affected. It

appears that failure in the case of aluminium happens swiftly when the limiting criteria have been met

within a 25℃ range, therefor not implicating the insulation before the critical situation has already been

met or is otherwise imminently present.

There are several aspects still subject of debate. This includes the execution of the models itself within

the available hardware and software. There was a repetitive occurring error which seemed overly trivial

as it had nothing to do with the analysis itself and the results. Apparently the large load on the computer

processor caused some Abaqus lock-files to stay active even after finishing an iteration. These lock-

files are temporary files to let Abaqus know that a certain analysis is running and while it is, no

additional editing can be done. These restrictive files should automatically be deleted after completion

of a step and continuing with the restart. However, this seems not to always be the case. This caused an

error where the restart for the next iteration could not be achieved. There however, was no indication

when this error might occur and a regular purge of cache and outdated model files did not seem to

circumvent this issue as a whole and the problem remained present at random intervals. This might have

caused some models to be prematurely quit, even though failure or time limits were not exceeded.

During this thesis, more than a hundred varieties were attempted to achieve a full scope of the behaviour.

This includes a combination of thermal and mechanical analysis. In some cases the focus might have

started to deviate to quantity instead of ensuring quality for each model. The result is a database of more

than 1TB of files, which would benefit from a fine tuning to the scenario and specific criteria. In general

the time period for the analysis was set constant at 90 minutes while some insulated cases might not

have reached failure within this time range.

In addition to these considerations, the validation of the mechanical analysis still leaves questions

regarding the exact accuracy of the model specification and why some analysis are unable to run

properly. As of yet, this question remains unanswered.

Another undiscussed topic is that of local plasticity. Especially the four point bending models are

subject to this effect because the introduction of the load is on a slight area, causing high stresses locally.

As can be seen when examining the deformed shapes closely, the places where the loads are introduced

are often most heavily distorted. This problem was partially tackled by modelling the area around the

introduction point of the load as rigid. However, this did not completely absolve the issue and local

failure still occurred in some of the model scenario’s. The same behaviour can sometimes be observed

77

in the evenly loaded models, when looking at the supports. Especially in the range of the roller support,

the top flange of the IPE section can sometimes be observed to have deflected.

8. CONCLUSION
Returning to questions asked in chapter 2, it is now possible to broker an answer to the question whether

the deformation of a protected aluminium beam under fire load differs to that of a similar column, in

such a manner that the protective layer is affected and a change in the gradual heating of the beam can

be expected. Following the results in chapter 7, there is a positive argument for the omission of full

scale loaded beam tests for fire testing with new insulation materials in combination with aluminium.

Considering the limit values in EN 13381 and the temperature from which the strain of the beam

deviates from the column, to omit the beam test an additional safety margin of 25℃ on the critical

temperature for insulated, loaded structures is a recommended. To absolve the need for the loaded

aluminium beam test completely however, additional testing is advised to determine if the model fits

with an actual fire test, as has been proposed earlier and in chapter 9.

9. FUTURE WORK
There are several angles still left unexplored which would benefit this study further. First and foremost

would be the execution of a fire test with aluminium following the recommendations from this report.

Given the limited available data, having a more in depth understanding of the material properties from

transient state tests could improve the accuracy of the FEM model. In conjunction, the stress-strain

relation of aluminium can be improved by considering creep explicitly. In this study, creep has only

been implicitly incorporated with adjusted stress-strain curves. However, especially when working with

more creep sensitive alloys as the 5000 series would require such an adjustment for primary, secondary

and tertiary stage creep as proposed by Dorn-Harmathy [6][14].

Beyond the properties of aluminium, the input values of the insulation in this case have been

approximated as true values were unavailable. In addition, it would be of interest to observe (early

onset) damage and its effect on the thermal response of the metal specimen. Strain limits have been

used to determine when the insulation may incur critical damage. However, due to sensitive corners,

damage or other imperfections, the effectiveness of the layer may be compromised. This possibility has

been ignored. This is a concern for both paints and other insulation types.

The FEM model itself can be elaborated by considering different loading scenario’s, support conditions,

geometries such as decking and the definition of contact between surfaces (beam – insulation –

flooring). In addition, it is of interest whether a coupled thermal-mechanical analysis may improve the

accuracy, especially in case of early onset damage to the insulation. Lastly, the fire conditions can be

adjusted to represent a real fire instead of the standard fire curve as to observe a more realistic situation.

78

10. REFERENCES
[1] Vebon NOVB, “Feiten en Cijfers Branden - VEBON-NOVB,” 2018. [Online]. Available:

http://vebon-novb.nl/nl/handige-informatie/feiten-en-cijfers/feiten-en-cijfers-branden.

[Accessed: 23-Apr-2018].

[2] CEN, NEN-EN 1991-1-2:2002+C1:2009+NB:2011 Belasting bij brand. 2002.

[3] CEN, NEN-EN 1993-1-2:2005+C2:2009+NB:2015 Eurocode 3: Ontwerp en berekening van

staalconstructies bij brand. NEN, 2005.

[4] CEN, NEN-EN 1999-1-2:2007/NB:2011 Nationale bijlage bij NEN-EN 1999-1-2 Eurocode 9:

Ontwerp en berekening van aluminiumconstructies bij brand. NEN, 2007.

[5] J. Maljaars, L. Twilt, and F. Soetens, “Flexural buckling of fire exposed aluminium columns,”

Fire Saf. J., vol. 44, no. 5, pp. 711–717, 2009.

[6] CEN, NEN-EN 1363-1:2012 en Bepaling van de brandwerendheid - Deel 1: Algemene eisen.

NEN, 2012.

[7] CEN, NEN-EN 13381-4:2013 Beproevingsmethoden voor de bepaling van de bijdrage aan de

brandwerendheid van constructie-onderdelen - Deel 4: Passieve bescherming aangebracht op

stalen constructiedelen. NEN, 2013.

[8] CEN, NEN-EN 13501-2:2016 Brandclassificatie van bouwproducten en bouwdelen, 3rd ed.

NEN, 2016.

[9] J. Maljaars, F. Soetens, and L. Katgerman, “Constitutive model for aluminum alloys exposed to

fire conditions,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 39 A, no. 4, pp. 778–

789, 2008.

[10] Morgan Thermal Ceramics UK Ltd., “Fire Protection for Process Equipment hydrocarbon

& jet fire protection,” 2017.

[11] Z. Pásztory, T. Horváth, S. V. Glass, and S. Zelinka, “Experimental investigation of the

influence of temperature on thermal conductivity of multilayer reflective thermal insulation,”

Energy Build., vol. 174, pp. 26–30, Sep. 2018.

[12] Efectis Nederland, “brandwerendheid-testen-in-een-oven-44656 @ www.brandveilig.com,”

Brandveilig.com, 2016. [Online]. Available:

https://www.brandveilig.com/onderwerpen/brandvertraging/brandwerendheid-testen-in-een-

oven-44656. [Accessed: 03-Apr-2018].

[13] M. Łukomski, P. Turkowski, P. Roszkowski, and B. Papis, “Fire Resistance of Unprotected

Steel Beams-Comparison between Fire Tests and Calculation Models,” Procedia Eng., vol. 172,

pp. 665–672, 2017.

[14] Technische Commissie CEN/TC 250, NEN-EN 1991-1-1:2002+C1:2009+NB:2011 Eurocode

1: Belastingen op constructies, no. December 2011. 2002.

[15] S. Jiang, Z. Xiong, X. Guo, and Z. He, “Buckling behaviour of aluminium alloy columns under

fire conditions,” Thin-Walled Struct., vol. 124, no. 1239, pp. 523–537, 2018.

[16] E. Kandare, S. Feih, A. Kootsookos, Z. Mathys, B. Y. Lattimer, and A. P. Mouritz, “Creep-

based life prediction modelling of aluminium in fire,” Mater. Sci. Eng. A, vol. 527, no. 4–5, pp.

1185–1193, 2010.

[17] J. R. Cannon, The One-Dimensional Heat Equation - Encyclopedia of Mathematics and its

applications, 1st ed. Menlo Park, California: Addison-Wesley Publishing company/Camrbidge

University Press, 1984.

[18] M. B. Wong and J. I. Ghojel, “Sensitivity analysis of heat transfer formulations for insulated

structural steel components,” Fire Saf. J., vol. 38, no. 2, pp. 187–201, Mar. 2003.

[19] C. Rippe, S. Case, and B. Lattimer, “Modeling post-fire behavior of aluminum structural

components using a maximum temperature approach,” Fire Saf. J., vol. 91, no. February, pp.

561–567, 2017.

[20] J. Maljaars, F. Soetens, and H. H. Snijder, “Local buckling of aluminium structures exposed to

fire. Part 1: Tests,” Thin-Walled Struct., vol. 47, no. 11, pp. 1404–1417, 2009.

[21] J. Maljaars, F. Soetens, and H. H. Snijder, “Local buckling of aluminium structures exposed to

fire. Part 2: Finite element models,” Thin-Walled Struct., vol. 47, no. 11, pp. 1418–1428, 2009.

[22] O. Delgado Ojeda, J. Maljaars, and R. Abspoel, “Fire exposed steel columns with a thermal

gradient over the cross-section,” Thin-Walled Struct., vol. 98, pp. 103–110, 2016.

79

[23] I. T. G. Van Der Waart Van Gulik, “BOUWEN MET STAAL TECHNISCHE COMMISSIE 3

FSE SEMINAR-16 APRIL 2015 (TRONET) BRANDWERENDE COATING,” 2015.

[24] Morgan Thermal Ceramics UK Ltd., “Denka ® Alcen ® Blankets,” 2016.

[25] Morgan Thermal Ceramics UK Ltd., “Data sheet FireMaster ® Marine Plus blanket,” 2018.

[26] Morgan Thermal Ceramics UK Ltd., “KaowoolTM Blanket S/KaowoolTM Blanket SZr.”

[27] Insulcon, “Technical Datasheet Fyrewrap LT blanket,” vol. 49, no. 0, pp. 31–33.

[28] W.-Y. Wang and G.-Q. Li, “Behavior of steel columns in a fire with partial damage to fire

protection,” J. Constr. Steel Res., vol. 65, no. 6, pp. 1392–1400, Jun. 2009.

[29] W. Chen, J. Ye, and X. Li, “Thermal behavior of gypsum-sheathed cold-formed steel composite

assemblies under fire conditions,” J. Constr. Steel Res., vol. 149, pp. 165–179, Oct. 2018.

[30] J. Ding and Y. C. Wang, “Realistic modelling of thermal and structural behaviour of unprotected

concrete filled tubular columns in fire,” J. Constr. Steel Res., vol. 64, no. 10, pp. 1086–1102,

2008.

[31] A. Espinos, M. L. Romero, and A. Hospitaler, “Advanced model for predicting the fire response

of concrete filled tubular columns,” J. Constr. Steel Res., vol. 66, no. 8–9, pp. 1030–1046, Aug.

2010.

[32] K. Xiang, G.-H. Wang, and Y.-C. Pan, “Thermal Properties and Heat Transfer in Concrete Filled

Steel Tube Reinforced Concrete Columns Exposed to Fire,” in 2014 7th International

Conference on Intelligent Computation Technology and Automation, 2014, pp. 869–874.

[33] W. E. Luecke, McColskey, C. N. McCowan, and F. W. Gayle, Mechanical Properties of

Structural Steels. USA: National Institute of Standards and Technology, 2005.

[34] B. Barthelemy, “Heating Calculation of Structural Steel Members,” J. Struct. Div., vol. 102, no.

8, pp. 1549–1558, 1976.

[35] J. G. Kaufman, Parametric Analyses of High Temperature Data for Aluminum Alloys, 1st ed.

Metals Park, OH: ASM International, 2008.

[36] P. Martin, “Thermoelectric Materials and Applications,” Battelle Pacific Northwest Lab. new

bullitin, no. summer, pp. 30–31, 2005.

[37] S. Fan, B. He, X. Xia, H. Gui, and M. Liu, “Fire resistance of stainless steel beams with

rectangular hollow section: Experimental investigation,” Fire Saf. J., vol. 81, pp. 17–31, 2016.

[38] I. W. Burgess, J. El Rimawi, and R. J. Plank, “Studies of the Behaviour of Steel Beams in Fire,”

J. Constr. Res., vol. 19, pp. 285–312, 1991.

[39] A. J. P. Moura Correia, J. P. C. Rodrigues, and P. V. Real, “Thermal bowing on steel columns

embedded on walls under fire conditions,” Fire Saf. J., vol. 67, pp. 53–69, Jul. 2014.

[40] M. M. S. Dwaikat, V. K. R. Kodur, S. E. Quiel, and M. E. M. Garlock, “Experimental behavior

of steel beam–columns subjected to fire-induced thermal gradients,” J. Constr. Steel Res., vol.

67, no. 1, pp. 30–38, Jan. 2011.

[41] A. Agarwal, L. Choe, and A. H. Varma, “Fire design of steel columns: Effects of thermal

gradients,” J. Constr. Steel Res., vol. 93, pp. 107–118, Feb. 2014.

[42] J. Cai and J. Feng, “Thermal buckling of rotationally restrained steel columns,” J. Constr. Steel

Res., vol. 66, no. 6, pp. 835–841, Jun. 2010.

[43] J. Cai, J. Feng, and J. Zhang, “Thermoelastic buckling of steel columns with load-dependent

supports,” Int. J. Non. Linear. Mech., vol. 47, no. 4, pp. 8–15, May 2012.

[44] J. G. Kaufman, Properties of Aluminium Alloys—Tensile, Creep, and Fatigue Data at High and

Low Temperatures, 1st ed. Metals park, OH: ASM International, 1999.

[45] P. T. Summers, S. W. Case, and B. Y. Lattimer, “Residual mechanical properties of aluminum

alloys AA5083-H116 and AA6061-T651 after fire,” Eng. Struct., vol. 76, pp. 49–61, 2014.

[46] S. Selamet and M. E. Garlock, “Predicting the maximum compressive beam axial force during

fire considering local buckling,” J. Constr. Steel Res., vol. 71, pp. 189–201, 2012.

[47] Z. Chen, J. Lu, H. Liu, and X. Liao, “Experimental investigation on the post-fire mechanical

properties of structural aluminum alloys 6061-T6 and 7075-T73,” Thin-Walled Struct., vol. 106,

pp. 187–200, 2016.

[48] W. Y. Wang and G. Q. Li, “Fire-resistance study of restrained steel columns with partial damage

to fire protection,” Fire Saf. J., vol. 44, no. 8, pp. 1088–1094, 2009.

[49] M. S. (Mohammed S. . El Naschie, Stress, stability, and chaos in structural engineering : an

energy approach. McGraw-Hill, 1990.

80

[50] Cooke G., “The structural response of steel I-section members subjected to elevated temperature

gradients across the section,” City University London, 1987.

[51] Technische Commissie CEN/TC 250, “NEN-EN 1990 Grondslagen van het constructief

ontwerp,” 2014.

[52] M. Liu, L. Zhang, P. Wang, and Y. Chang, “Buckling behaviors of section aluminum alloy

columns under axial compression,” Eng. Struct., vol. 95, pp. 127–137, 2015.

[53] E. C.-Y. To and B. Young, “Performance of cold-formed stainless steel tubular columns at

elevated temperatures,” Eng. Struct., vol. 30, no. 7, pp. 2012–2021, Jul. 2008.

[54] csengineer, “02-03-AlumaBridge-Deck.jpg (365×212),” 2014. [Online]. Available:

https://csengineermag.com/archived_assets/cdn/2014/06/CS_Prod-SoftwareGuide/02-03-

AlumaBridge-Deck.jpg. [Accessed: 06-Aug-2019].

[55] CEN, NEN-EN 1993-1-1:2006+A1:2014+NB:2016 Staal - Algemene regels. NEN, 2016.

[56] CEN, NEN-EN 1999-1-1:2007+A2:2014+NB:2011 Eurocode 9: Ontwerp en berekening van

aluminiumconstructies. NEN, 2007.

[57] S. F. A. J. G. Zegers, Lightweight floor system for vibration comfort. Eindhoven: Technische

Universiteit Eindhoven, 2011.

[58] D. de Silva, A. Bilotta, and E. Nigro, “Experimental investigation on steel elements protected

with intumescent coating,” Constr. Build. Mater., vol. 205, pp. 232–244, Apr. 2019.

[59] J. Witteveen and L. Twilt, “Behaviour of steel columns under fire action,” IABSE, vol. 23, 1975.

81

11. APPENDICES
A: List of figures and tables

B: Mechanical analysis with intumescent paint

C: Mechanical analysis with sandwich floor

D: FEM images of deformed model shapes

E: FEM thermal analysis script

F: FEM mechanical analysis script

G: Postprocessing script

82

A: LIST OF FIGURES AND TABLES
Table 1 – Temperature description of FEM model attributes. *in accordance to a surface covered with

soot during a fire. .. 25

Table 2 – FEM model thermal constants. ... 25

Table 3 – Geometric specifications of cross-section, all measures are in mm unless otherwise specified.

 .. 25

Table 4 - Thermal conductivity and specific heat for several insulation types with the same density 96

kg/m3 .. 27

Table 5 – Percentile deviation of member temperature from normalised set. For the member mesh

compared with values found with a mesh of 1 element or 5mm thickness (coarsest). For the insulation

the values are compared to those found with the finest mesh, 10% or 1mm. 31

Table 6 – Maximum percentile difference of member temperature with variating thermal resistance

between surfaces. .. 32

Table 7 – Approximation of the material properties of a lightweight floor system as a combination of

the mean value of the individual material following its percentile makeup. .. 34

Table 8 – Alternative lightweight floor setup. .. 44

Table 9 – Total load on the cross-section in the FEM model, equally distributed on the contact surface

at T=0min. ... 52

Table 10 – Legend overview for Figure 55 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 59

Table 11 – Legend overview for Figure 56 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 61

Table 12 – Legend overview for Figure 57 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 62

Table 13 – Legend overview for Figure 58 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 63

Table 14 – Legend overview for Figure 57 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 64

Table 15 – Legend overview for Figure 60 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 65

Table 16 – Legend overview for Figure 61 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 66

Table 17 – Legend overview for Figure 62 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 68

Table 18 – Legend overview for Figure 63 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 69

Table 19 – Legend overview for Figure 64 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 70

83

Table 20 – Legend overview for Figure 65 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 71

Table 21 – Legend overview for Figure 66 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 72

Table 22 – Legend overview for Figure 67 with the number of steps completed in the FEM model. 900

steps confers with 90 minutes which is the full time period over which the separate thermal analysis is

run. .. 73

Figure 1 – Thermal conductivity of the materials aluminium, steel and insulation (ceramic fibre blanket)

as specified in chapter 3.4. The grey and blue line refer to the right handed axis. 16

Figure 2 –Specific heat values of aluminium, steel and insulation (ceramic fibre blanket) according to

chapter 3.4. .. 16

Figure 3 – Development of the Young's modulus at elevated temperatures compared to the nominal

value at room temperature, as taken from different references [3][4][15][18]. 18

Figure 4 – Development of 0.2% stress at elevated temperatures compared to the nominal value at room

temperature, as taken from different references [3][4][15][5][31][42] for which the EC9 values for

aluminium are based on steady state experiments. ... 19

Figure 5 – Steady state stress-strain curves of (a) alloy 5083-H111 and (b) alloy 6060-T66 at elevated

temperatures from [20]. .. 19

Figure 6 – Creep curve showcasing (a) primary, secondary and tertiary creep stage, source [9]. And (b)

creep curves at different temperatures with constant loading of 50 MPa, source [16]. 21

Figure 7 - Aluminium bridge decking [54] ... 22

Figure 8 – Photograph Y-profile as made by Bayards B.V. with an integrated installation trench. 22

Figure 9 – FEM model set up, pertaining a thermal and mechanical analysis within the ABAQUS/CAE

environment. ... 24

Figure 10 – Geometry of Rectangular Hollow Section and IPE cross-section respectively, measurements

as given in Table 3. ... 26

Figure 11 – Comparison of FEM simulation temperature results for cross-section with four-sided

heating, with that of the simplified Eurocode equation for several insulation types. FEM temperatures

versus EC found temperatures. ... 27

Figure 12 – Comparison of literature reference temperature data of an insulated steel IPE to that found

in the ABAQUS FEM simulation. The result is the superimposed black line. 28

Figure 13 – Temperature - Time curve of thermal FEM analysis following the setup of the literary

reference. [28] ... 28

Figure 14 – Comparison of FEM simulation with adjusted thermal conductivity temperature results for

cross-section with four-sided heating, with that of the simplified Eurocode equation for several

insulation types. FEM temperatures versus EC found temperatures. ... 29

Figure 15 – Temperature gradient over cross-section when taking the mean over the width at height y

for a column at overall mean cross-section temperature of 300℃, tIPE,alu = 30min, tIPE,steel = 40min, tRHS,alu

= 50min, tRHS,steel = 50min. .. 30

Figure 16 – Minimum and maximum absolute temperature deviation from transient average temperature

in cross-section with contact resistance at 200W/m2K between metal and insulation. Left the absolute

deviation from the average, right are the errorbars. .. 30

Figure 17 – Rectangular Hollow Section 200x200x9mm. From left to right insulation mesh at 10%,

20%, 40% and 100%. .. 31

Figure 18 – Geometry of beam with a concrete floor slab on the top flange and 3-sided heating. 33

https://tuenl-my.sharepoint.com/personal/r_m_v_d_wurff_student_tue_nl/Documents/Thesis%20setup%20nochanges.docx#_Toc22498072

84

Figure 19 – Comparison of the average temperature of the aluminium member (either an RHS or IPE)

with different floor types, on the X-axis a concrete floor system and on the Y-axis that of the lightweight

floor system described in Table 7. .. 34

Figure 20 – Transient mean temperature curves for the three sided heated beam and the minimum,

maximum deviation from that temperature occurring in the cross-section. Left the absolute deviation

from the average, right are the errorbars. From top to bottom: IPE with concrete floor, RHS with

concrete floor. ... 35

Figure 21 – Transient mean temperature curves for the three sided heated beam and the maximum and

minimum temperature deviation. From top to bottom: IPE with lightweight floor, RHS with lightweight

floor. .. 36

Figure 22 – Temperature gradient over three sided heated IPE beam section with flooring on top for

insulated (top) and uninsulated (bottom) case as in Figure 18. tuninsulated = 7min, tinsulated,concrete = 45min,

tinsulated,lightweight = 20-30min. ... 37

Figure 23 – Temperature gradient over three sided heated RHS beam section with flooring on top for

insulated (top) and uninsulated (bottom) case as in Figure 18. tuninsulated = 7min, tinsulated,concrete = 70min,

tinsulated,lightweight = 20-30min. ... 38

Figure 24 – Geometry of model subjected to a one-sided fire load, total width of model with IPE is

800mm for RHS is 1000mm. .. 39

Figure 25 – Member temperatures for an integrated beam subject with a floor slab, concrete versus a

lightweight floor system. .. 39

Figure 26 – Transient mean temperature curves for a one sided heated beam and the minimum,

maximum deviation from that temperature occurring in the cross-section. Left the absolute deviation

from the average, right are the errorbars. From top to bottom: IPE with concrete floor, RHS with

concrete floor. ... 40

Figure 27 – Transient mean temperature curves for a one-sided heated beam and the maximum and

minimum temperature deviation. Left the absolute deviation from the average, right are the errorbars.

From top to bottom: IPE with lightweight floor, RHS with lightweight floor...................................... 41

Figure 28 – Temperature gradient over one side heated IPE beam section with flooring for insulated

(top) and uninsulated (bottom) case as in Figure 24. tuninsulated,concrete =20min, tinsulated,concrete =90min,

tuninsulated,lightweight =10min, tinsulated,lightweight =25min. ... 42

Figure 29 – Temperature gradient over one side heated RHS beam section with flooring for insulated

(top) and uninsulated (bottom) case as in Figure 24. tuninsulated,concrete = 10min, tinsulated,concrete = 90min,

tuninsulated,lightweight = 15min, tinsulated,lightweight =25min. .. 43

Figure 30 – Cross-sectional view of the three-sided beam and the integrated beam setup with alternative

layered flooring. .. 43

Figure 31 – Thermal gradient of an integrated beam with the alternative lightweight flooring. Time at

40 minutes. From top to bottom an IPE profile and an RHS profile. ... 44

Figure 32 – Thermal gradient of a beam with an alternative lightweight floor for a beam facing three

sided fire. Time at 40 minutes. From top to bottom an IPE profile and an RHS profiles. 45

Figure 33 – Temperature time curve for an integrated IPE beam with an alternate lightweight floor. 45

Figure 34 – Temperature-time curve for an integrated RHS beam with an alternative lightweight floor.

 .. 46

Figure 35 – Temperature time curve for an IPE heated from three sides with an alternate lightweight

floor. .. 46

Figure 36 – Temperature time curve for a RHS beam heated from 3 sides with an alternate lightweight

floor. .. 46

Figure 37 – Equivalent thermal conductivity of intumescent paint with constant thickness for different

model descriptions, namely a section heated from all sides (column), three sides (beam3) or one side

(beam1) for both aluminium and steel. ... 47

Figure 38 – Temperature time curve for an integrated IPE beam insulated with intumescent paint. ... 48

Figure 39 – Temperature time curve for an integrated RHS beam insulated with intumescent paint. . 48

85

Figure 40 – Temperature time curve for a IPE beam insulated with intumescent paint facing a fire from

three sides.. 48

Figure 41 – Temperature time curve for a RHS beam insulated with intumescent paint facing a fire from

three sides.. 49

Figure 42 – Temperature time curve for a column insulated with intumescent paint, fire from all sides..

 .. 49

Figure 43 – Thermal gradient for an integrated IPE beam covered with intumescent paint at t=40

minutes .. 49

Figure 44 – Thermal gradient of an IPE beam covered with intumescent paint with fire from three sides

at t=40min. .. 50

Figure 45 – Thermal gradient of a RHS beam covered with intumescent paint with fire from three sides

at t=40min. .. 50

Figure 46 – Thermal gradient of an integrated RHS beam covered with intumescent paint at t=40min.

 .. 50

Figure 47 – The altered stress-strain curves for left steel grade Fe E24 [59] (similar to S235) and right

aluminium alloy 6060-T66 with creep implicitly incorporated. ... 52

Figure 48 – Structural model for beam models, for both integrated (bottom) and beam facing three-

sided heating in case of an evenly distributed load. .. 53

Figure 49 – Structural model for beam facing 3 sided heating (top) and integrated/1-sided heating

(bottom) in case of a four point bending test setup. .. 53

Figure 50 – Thermal expansion coefficient and corresponding theoretical displacement in comparison

to the lengthening of the columns found with Abaqus with maximum temperature. 54

Figure 51 – Thermal expansion at midspan for an uninsulated IPE cross-section for both steel and

aluminium, considering different cross-sectional locations: centre bottom flange, middle of web, centre

of top (ambient) flange. Note that the result for middle and top coincide. ... 55

Figure 52 – Deflection for uninsulated IPE section with thermal expansion (1), for insulated IPE with

no thermal expansion only loading (2), and deflection for an insulated IPE section with both thermal

expansion and loading (3). .. 56

Figure 53 – Thermal strain for an uninsulated IPE section exposed to fire at three sides for both steel

and aluminium, considering different cross-sectional locations: centre bottom flange, middle of web,

centre of top (ambient) flange at midspan. ... 56

Figure 54 - Mechanical strain of an insulated IPE cross-section exposed to fire at three sides for both

steel and aluminium, considering different cross-sectional locations: centre bottom flange, middle of

web, centre of top (ambient) flange. ... 57

Figure 55 – Results for the full analysis of column sections, showcasing stress, strain, deflection,

temperature and the deformed shape, see D.1 Columns for larger images of the deformed shapes.

 .. 59

Figure 56 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, steel

insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2

Evenly distributed load. for larger images of the deformed shapes.

 .. 61

Figure 57 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, uninsulated

sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly

distributed load. for larger images of the deformed shapes. ... 62

Figure 58 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, aluminium

insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2

Evenly distributed load. for larger images of the deformed shape.. 63

Figure 59 – Results for the full analysis of 3-sided beam in a four point bending test, uninsulated

sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly

distributed load. for larger images of the deformed shapes. ... 64

86

Figure 60 – Results for the full analysis of 3-sided beam in a four point bending test, aluminium

insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.3

Four point bending test for larger images of the deformed shape.

 .. 65

Figure 61 – Results for the full analysis of 3-sided beam with a four point bending test, steel insulated

sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.3Four point

bending testD.2 Evenly distributed load. for larger images of the deformed shapes. 66

Figure 62 – Results for the full analysis of 3-sided beam with an evenly distributed Q-load, aluminium

insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2

Evenly distributed load. for larger images of the deformed shapes.

 .. 68

Figure 63 – Results for the full analysis an integrated beam with an evenly distributed Q-load, steel

insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2

Evenly distributed load. for larger images of the deformed shapes.

 .. 69

Figure 64 – Results for the full analysis of an integrated beam with an evenly distributed Q-load,

uninsulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2

Evenly distributed load. for larger images of the deformed shapes.

 .. 70

Figure 65 – Results for the full analysis of an integrated beam in a four point bending test, aluminium

insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.3

Four point bending test for larger images of the deformed shape.

 .. 71

Figure 66 – Results for the full analysis of an integrated beam with a four point bending configuration,

steel insulated sections, showcasing stress, strain, deflection, temperature and the deformed shape, see

D.3Four point bending test for larger images of the deformed shapes.

 .. 72

Figure 67 – Results for the full analysis of an integrated beam in a four point bending test, uninsulated

sections, showcasing stress, strain, deflection, temperature and the deformed shape, see D.2 Evenly

distributed load. for larger images of the deformed shapes. ... 73

Figure 68 – Comparison of strain-temperature curves for corresponding column types to beam

scenario’s, in this case for integrated beams subject to a four point bending test. 74

Figure 69 – Comparison of strain-temperature curves for corresponding column types to beam

scenario’s, in this case for a 3-sided beam subject to a four point bending loading model. 75

Figure 70 – Comparison of strain-temperature curves for corresponding column types to beam

scenario’s, in this case for a 3-sided beam subject to an evenly distributed load Q for uninsulated

sections. ... 75

Figure 71 – Comparison of strain-temperature curves for corresponding column types to beam

scenario’s, in this case for a 3-sided beam subject to an evenly distributed load Q of insulated sections.

 .. 76

Figure 72 - Aluminium column insulated with intumescent paint. ... 89

Figure 73 – Column covered with a layer of intumescent paint. .. 89

Figure 74 - Steel column with intumescent paint ... 90

Figure 75 - 3-sided beam with an intumescent paint layer in a four point bending test. 90

Figure 76 – 3-sided beam with intumescent paint layer with an evenly distributed load. 91

Figure 77 - Steel 3-sided beam with evenly distributed load, insulated. .. 92

Figure 78 - Steel 3-sided beam with four sided beam insulated, right aluminium 3-sided beam with four

sided load. ... 92

Figure 79 - Aluminium 3-sided beam with lightweight floor with evenly distributed load, insulated. 92

87

Figure 80 – 3-sided beam with an alternative lightweight floor system, representative of a sandwich

system and its effect on the temperature distribution. Load configuration as a four point bending test.

 .. 93

Figure 81 – 3-sided beam with an evenly distributed load with an alternative lightweight floor system,

namely that of a sandwich panel. .. 94

Figure 82 - Aluminium Column IPE uninsulated left, insulated right .. 95

Figure 83 - Aluminium column RHS uninsulated left, insulated right ... 95

Figure 84 - Steel column IPE section uninsulated left, insulated right ... 95

Figure 85 - Steel column RHS section uninsulated left, insulated right ... 95

Figure 86 – Steel 3-sided RHS beam with a concrete floor left uninsulated, right insulated with a

distributed load Q .. 96

Figure 87 – Steel 3-sided beam RHS with a lightweight floor, left uninsulated, right insulated with a

distributed load Q .. 96

Figure 88 – Steel 3-sided IPE beam with a lightweight floor with an evenly distributed load Q, right

uninsulated, left insulated. .. 96

Figure 89 – Steel 3-sided IPE beam with a concrete floor with an evenly distributed load Q, right

uninsulated, left insulated. .. 96

Figure 90 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated with

distributed load.. 97

Figure 91 - Aluminium 3-sided beam with concrete floor and evenly distributed load Q, left uninsulated,

right insulated.. 97

Figure 92 - Aluminium 3-sided beam with lightweight floor, evenly distributed load, left uninsulated,

right insulated.. 97

Figure 93 - Aluminium 3-sided beam with concrete floor, evenly distributed load, left uninsulated, right

insulated. ... 97

Figure 94 - Steel integrated beam lightweight floor evenly distributed load, left uninsulated, right

insulated. ... 98

Figure 95 - Steel integrated beam with concrete floor and evenly distributed load, left uninsulated and

right insulated.. 98

Figure 96 - Steel integrated beam with lightweight floor and evenly distributed load, left uninsulated,

right insulated.. 98

Figure 97 - Steel integrated beam with concrete floor and evenly distributed load, left uninsulated and

right insulated.. 98

Figure 98 - Aluminium integrated beam with lightweight floor and evenly distributed load, uninsulated

left, insulated right. ... 99

Figure 99 - Aluminium integrated beam with concrete floor and evenly distributed load, left uninsulated,

right insulated.. 99

Figure 100 - Aluminium integrated beam with lightweight floor and evenly distributed load, left

uninsulated and right insulated. .. 99

Figure 101 - Aluminium integrated beam with concrete floor and evenly distributed load left

uninsulated, right insulated. .. 99

Figure 102 - Aluminium integrated beam concrete floor four point bending test, left uninsulated, right

insulated. ... 100

Figure 103 - Aluminium integrated beam uninsulated, lightweight floor on the left, concrete floor on

the right. .. 100

Figure 104 - Aluminium integrated beam with lightweight floor four point bending test, left uninsulated,

right insulated.. 100

Figure 105 - Steel integrated beam with concrete floor, left uninsulated, right insulated. 100

Figure 106 - Steel integrated beam lightweight floor, left uninsulated, right insulated. 100

Figure 107 - Steel integrated beam with concrete floor left uninsulated, right insulated. 101

Figure 108 - Steel integrated beam with lightweight floor, left uninsulated, right insulated. 101

88

Figure 109 - Aluminium 3-sided beam with concrete floor left uninsulated, right insulated. 101

Figure 110 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated. 101

Figure 111 - Aluminium 3-sided beam with concrete floor insulated .. 101

Figure 112 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated. 102

Figure 113 - Steel 3-sided beam with concrete floor, left uninsulated right insulated. 102

Figure 114 - Steel 3-sided beam with lightweight floor, left uninsulated, right insulated. 102

Figure 115 - Steel 3-sided beam with concrete floor, left uninsulated, right insulated. 102

Figure 116 - Steel 3-sided beam with lightweight floor and left uninsulated and right insulated. 102

89

B: MECHANICAL ANALYSIS WITH INTUMESCENT PAINT

Figure 73 - Aluminium column insulated with intumescent paint.

Figure 74 – Column covered with a layer of intumescent paint.

As expressed earlier, this model also faced running issues. However that for an aluminium IPE insulated

section was successful. In comparison with the columns as discussed in 6.1 Column, the failure time is

slightly increased. The strain and deflection fit with earlier found relations. The same can be said for

90

the results found with 3-sided beams in both load situations. Especially for those in combination with a

lightweight floor, for which the thermal gradient may be inverted as is with the insulated IPE section.

Figure 75 - Steel column with intumescent paint

Figure 76 - 3-sided beam with an intumescent paint layer in a four point bending test.

91

Figure 77 – 3-sided beam with intumescent paint layer with an evenly distributed load.

92

C: MECHANICAL ANALYSIS WITH SANDWICH FLOOR

Figure 78 - Steel 3-sided beam with evenly distributed load, insulated.

Figure 79 - Steel 3-sided beam with four sided beam insulated, right aluminium 3-sided beam with four sided load.

Figure 80 - Aluminium 3-sided beam with lightweight floor with evenly distributed load, insulated.

93

Figure 81 – 3-sided beam with an alternative lightweight floor system, representative of a sandwich system and its effect on

the temperature distribution. Load configuration as a four point bending test.

As discussed in an earlier chapter, the lightweight floor has a direct effect on the thermal gradient in the

section. Assuming that the sandwich panel is better insulated due too its layered built, the exposed side

of the beam is better protected and thus heating of the section is slowed. As a result to less exposure the

thermal gradient is also found to be considerable less. The effect on the temperature development is

observed in both load cases, that of an evenly distributed load and an four point bending test. The

behaviour of the strain and deflection fit with aforementioned patterns.

94

Figure 82 – 3-sided beam with an evenly distributed load with an alternative lightweight floor system, namely that of a

sandwich panel.

95

D: FEM IMAGES OF DEFORMED MODEL SHAPES
Original shape is outlined in red. The green shape is the deformed shape with a scalefactor of 3.

D.1 Columns

Figure 83 - Aluminium Column IPE uninsulated left, insulated right

Figure 84 - Aluminium column RHS uninsulated left, insulated right

Figure 85 - Steel column IPE section uninsulated left, insulated right

Figure 86 - Steel column RHS section uninsulated left, insulated right

96

D.2 Evenly distributed load.

Figure 87 – Steel 3-sided RHS beam with a concrete floor left uninsulated, right insulated with a distributed load Q

Figure 88 – Steel 3-sided beam RHS with a lightweight floor, left uninsulated, right insulated with a distributed load Q

Figure 89 – Steel 3-sided IPE beam with a lightweight floor with an evenly distributed load Q, right uninsulated, left insulated.

Figure 90 – Steel 3-sided IPE beam with a concrete floor with an evenly distributed load Q, right uninsulated, left insulated.

97

Figure 91 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated with distributed load.

Figure 92 - Aluminium 3-sided beam with concrete floor and evenly distributed load Q, left uninsulated, right insulated.

Figure 93 - Aluminium 3-sided beam with lightweight floor, evenly distributed load, left uninsulated, right insulated.

Figure 94 - Aluminium 3-sided beam with concrete floor, evenly distributed load, left uninsulated, right insulated.

98

Figure 95 - Steel integrated beam lightweight floor evenly distributed load, left uninsulated, right insulated.

Figure 96 - Steel integrated beam with concrete floor and evenly distributed load, left uninsulated and right insulated.

Figure 97 - Steel integrated beam with lightweight floor and evenly distributed load, left uninsulated, right insulated.

Figure 98 - Steel integrated beam with concrete floor and evenly distributed load, left uninsulated and right insulated.

99

Figure 99 - Aluminium integrated beam with lightweight floor and evenly distributed load, uninsulated left, insulated right.

Figure 100 - Aluminium integrated beam with concrete floor and evenly distributed load, left uninsulated, right insulated.

Figure 101 - Aluminium integrated beam with lightweight floor and evenly distributed load, left uninsulated and right

insulated.

Figure 102 - Aluminium integrated beam with concrete floor and evenly distributed load left uninsulated, right insulated.

100

D.3 Four point bending test

Figure 103 - Aluminium integrated beam concrete floor four point bending test, left uninsulated, right insulated.

Figure 104 - Aluminium integrated beam uninsulated, lightweight floor on the left, concrete floor on the right.

Figure 105 - Aluminium integrated beam with lightweight floor four point bending test, left uninsulated, right insulated.

Figure 106 - Steel integrated beam with concrete floor, left uninsulated, right insulated.

Figure 107 - Steel integrated beam lightweight floor, left uninsulated, right insulated.

101

Figure 108 - Steel integrated beam with concrete floor left uninsulated, right insulated.

Figure 109 - Steel integrated beam with lightweight floor, left uninsulated, right insulated.

Figure 110 - Aluminium 3-sided beam with concrete floor left uninsulated, right insulated.

Figure 111 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated.

Figure 112 - Aluminium 3-sided beam with concrete floor insulated

102

Figure 113 - Aluminium 3-sided beam with lightweight floor, left uninsulated, right insulated.

Figure 114 - Steel 3-sided beam with concrete floor, left uninsulated right insulated.

Figure 115 - Steel 3-sided beam with lightweight floor, left uninsulated, right insulated.

Figure 116 - Steel 3-sided beam with concrete floor, left uninsulated, right insulated.

Figure 117 - Steel 3-sided beam with lightweight floor and left uninsulated and right insulated.

103

E: FEM THERMAL ANALYSIS SCRIPT

1 #R.M. van der Wurff

2 #Date

3

4 # -*- coding: mbcs -*-

5 # Abaqus works in true strains and stresses, absolute temperatures in Celsius

6

7 #import extensions

8 from abaqus import *

9 from part import *

10 from material import *

11 from section import *

12 from assembly import *

13 from step import *

14 from interaction import *

15 from load import *

16 from mesh import *

17 from optimization import *

18 from job import *

19 from sketch import *

20 from visualization import *

21 from connectorBehavior import *

22 from datetime import *

23 from odbAccess import *

24

25 import os

26 import csv

27 # sys.path.append(r"D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Scripts")

28 import input_variables

29 import csv_writer_thermal_analysis

30 import executable_time

31

32 def main(material, insulated, interface, floor, mesh_size):

33 #

--

34 ## model Parameters ##

35 analysis =

"Thermal_Analysis_Beam3_IPE_"+material+"_"+floor+'_'+insulated+'_alt'

36 cwd = os.getcwd()

37 filelocation = str(cwd)+"\\"+str(date.today())+"_"+analysis+"\\"

38 name_model = analysis

39

40

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDIN

ATE)

41 Path_Data_Files = r"D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS"+'\\'+analysis

42

43 #error check on file location

44 if not os.path.exists(Path_Data_Files):

45 try:

46 os.makedirs(Path_Data_Files)

47 except OSError as exc:

48 if exc.errno != errno.EEXIST:

49 raise

50 os.chdir(Path_Data_Files)

51 Scratch = Path_Data_Files

52 myModel_1 = mdb.Model(name = name_model)

53 if "Model-1" in mdb.models:

54 del mdb.models["Model-1"]

55 #

--

56 #Popening input variables

57 section= 'I-section'

58 Fire_Load = 'Standard_Fire'

59 model_values, geometry, Emissivity, Poisons_Alu, contactResistance =

input_variables.main(myModel_1, section, material, Fire_Load, insulated,

interface)

60 T, Step_time, Conv_hot, Conv_ambient = model_values

61 H,W,tf,tw,tp, Ws, Hs = geometry

62 Emissivity_metal, Emissivity_Ins, Emissivity_Floor = Emissivity

63

64 #

--

65 ## Sketch + Part ##

66 # geometry values are inputted in mm

67 # Part 1 - Rectangular hollow section #

68 mySketch_1 = myModel_1.ConstrainedSketch(name=section, sheetSize=0.2)

69 xyCoords = ((-(0.5*W), -tf), (-(0.5*W), 0), (0.5*W, 0), (0.5*W, -tf),

70 ((0.5*tw), -tf), ((0.5*tw), -(H-tf)), (0.5*W, -(H-tf)), (0.5*W, -H),

71 (-(0.5*W), -H), (-(0.5*W), -(H-tf)), (-(0.5*tw), -(H-tf)), (-(0.5*tw), -

72 tf), (-(0.5*W), -tf))

73 # Please note: Coordinates have to be such order that section can be drawn

fluently

74 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords [i],point2 =

xyCoords [i+1])

75 myPart_1 = myModel_1.Part(name = section, dimensionality = TWO_D_PLANAR,

type=DEFORMABLE_BODY)

76 myPart_1.BaseShell(sketch = mySketch_1)

77 del mySketch_1

78

79 #Floor slab

80 if floor =='Concrete':

81 XYcoords =

((-0.5*Ws,Hs),(0.5*Ws,Hs),(0.5*Ws,0),(0.5*W+tp,0),(0.5*W,0),(-0.5*W,0),

82 (-0.5*W-tp,0),(-0.5*Ws,0),(-0.5*Ws,Hs))

83 mySketch_3 = myModel_1.ConstrainedSketch(name="Slab", sheetSize=0.2)

84 for i in range(len(XYcoords)-1): mySketch_3.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

85 myPart_3 = myModel_1.Part(name='Slab',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

86 myPart_3.BaseShell(sketch=mySketch_3)

87

88 elif floor =='Lightweight':

89 mySketch_3 = myModel_1.ConstrainedSketch(name='Floor_top', sheetSize=0.2)

90 XYcoords =

((-0.5*Ws,Hs),(0.5*Ws,Hs),(0.5*Ws,Hs-10),(-0.5*Ws,Hs-10),(-0.5*Ws,Hs))

91 for i in range(len(XYcoords)-1): mySketch_3.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

92 myPart_3 = myModel_1.Part(name='Floor_top',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

93 myPart_3.BaseShell(sketch=mySketch_3)

94

95 mySketch_4 = myModel_1.ConstrainedSketch(name='Floor_middle', sheetSize=0.2)

96 XYcoords =

((-0.5*Ws,Hs-10),(0.5*Ws,Hs-10),(0.5*Ws,1./2*Hs),(-0.5*Ws,1./2*Hs),(-0.5*Ws,Hs

-10))

97 for i in range(len(XYcoords)-1): mySketch_4.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

98 myPart_4 = myModel_1.Part(name='Floor_middle',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

99 myPart_4.BaseShell(sketch=mySketch_4)

100

101 mySketch_5 = myModel_1.ConstrainedSketch(name='Floor_concrete', sheetSize=0.2)

102 XYcoords =

((-0.5*Ws,1./2*Hs),(0.5*Ws,1./2*Hs),(0.5*Ws,1./4*Hs),(-0.5*Ws,1./4*Hs),(-0.5*W

s,1./2*Hs))

103 for i in range(len(XYcoords)-1): mySketch_5.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

104 myPart_5 = myModel_1.Part(name='Floor_concrete',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

105 myPart_5.BaseShell(sketch=mySketch_5)

106

107 mySketch_6 = myModel_1.ConstrainedSketch(name='Floor_ins',

sheetSize=0.2)

108 XYcoords =

((-0.5*Ws,1./4*Hs),(0.5*Ws,1./4*Hs),(0.5*Ws,0),(0.5*W+tp,0),(0.5*W,0),(-0.5*W,

0),(-0.5*W-tp,0),(-0.5*Ws,0),(-0.5*Ws,1./4*Hs))

109 for i in range(len(XYcoords)-1): mySketch_6.Line(point1=XYcoords[i],

point2=XYcoords[i+1])

110 myPart_6 = myModel_1.Part(name='Floor_ins',

dimensionality=TWO_D_PLANAR,type=DEFORMABLE_BODY)

111 myPart_6.BaseShell(sketch=mySketch_6)

112

113 # Part 2 - Insulation #

114 if insulated=='yes':

115 mySketch_2 = myModel_1.ConstrainedSketch(name='Insulation', sheetSize = 0.2)

116 xyCoords_out_Ins = ((-(0.5*W+tp), 0), (-(0.5*W),

0),((-0.5*W,-tf)),(-0.5*tw,-tf),(-0.5*tw,-(H-tf)),(-0.5*W,-H+tf),

117

(-0.5*W,-H),(0.5*W,-H),(0.5*W,-H+tf),(0.5*tw,-H+tf),(0.5*tw,-tf),(0.5*W,-t

f),(0.5*W,0),(0.5*W+tp,0),

118 ((0.5*W+tp), -tf-tp), ((0.5*tw+tp), -tf-tp),((0.5*tw+tp), -H+tf+tp),

((0.5*W+tp), (-H+tp+tf)), (0.5*W+tp, (-H-tp)), (-(0.5*W+tp), -H-tp),

119 (-(0.5*W+tp), -H+tf+tp), (-(0.5*tw+tp), -H+tf+tp), (-(0.5*tw+tp),

-(tf+tp)), (-(0.5*W+tp), -tf-tp), (-(0.5*W+tp), 0))

120 # Please note: Coordinates have to be such order that section can be drawn

fluently

121 for i in range (len(xyCoords_out_Ins)-1): mySketch_2.Line(point1 =

xyCoords_out_Ins [i],point2 = xyCoords_out_Ins [i+1])

122 myPart_2 = myModel_1.Part(name='insulation', dimensionality = TWO_D_PLANAR,

type=DEFORMABLE_BODY)

123 myPart_2.BaseShell(sketch = mySketch_2)

124 del mySketch_2

125

126 #

--

127 ## Sets ##

128 #all sets based on geometry are copied into assembly

129 Outer_edge_IPE = myPart_1.edges.findAt(((-(0.5*W), -tf*0.5,0),), ((0.5*W,

-0.5*tf,0),), ((tw, -tf,0),),

130 (((0.5*tw), -0.5*H,0),), (((tw), -(H-tf),0),), ((0.5*W, -(H-0.5*tf),0),),

((0, -H,0),),

131 ((-(0.5*W), -H+0.5*tw,0),), ((-(tw), -(H-tf),0),), ((-(0.5*tw),

-(0.5*H),0),), ((-(tw), -tf,0),),)

132 IPE_Floor_edge = myPart_1.edges.findAt(((0,0,0),))

133 Surface_IPE = myPart_1.faces.findAt(((0,-0.5*tf,0),))

134

135 mySet_11 = myPart_1.Set(edges=Outer_edge_IPE, name='Outside_IPE') #contact edge

136 mySet_13 = myPart_1.Set(name='IPE',faces = Surface_IPE)

137 mySurface_11 = myPart_1.Surface(name='Outside_IPE', side1Edges =Outer_edge_IPE)

#contact surface

138 mySurface_12 = myPart_1.Surface(name='IPE_Floor', side1Edges=IPE_Floor_edge)

139

140 Floor_fire = myPart_6.edges.findAt(((-0.5*Ws+1,0,0),),((0.5*Ws-1,0,0),),)

141 Floor_top = myPart_3.edges.findAt(((0,Hs,0),),)

142 Floor_ins = myPart_6.edges.findAt(((-0.5*W-tp+1,0,0),),((0.5*W+1,0,0),),)

143 Floor_IPE = myPart_6.edges.findAt(((0,0,0),),)

144 mySet_31 = myPart_3.Set(name='Floor_top', edges = Floor_top)

145 mySet_32 = myPart_6.Set(name='Floor_fire', edges = Floor_fire)

146 mySurface_31 = myPart_6.Surface(name='Floor_fire', side1Edges=Floor_fire)

147 mySurface_32 = myPart_6.Surface(name='Floor_ins', side1Edges=Floor_ins)

148 mySurface_33 = myPart_6.Surface(name='Floor_IPE', side1Edges=Floor_IPE)

149 mySurface_34 = myPart_3.Surface(name='Floor_top', side1Edges=Floor_top)

150

151 Floor_body_top = myPart_3.faces.findAt(((0,Hs-1,0),),)

152 Floor_body_middle = myPart_4.faces.findAt(((0,1./2*Hs+1,0),) ,)

153 Floor_body_concrete = myPart_5.faces.findAt(((0,1./4*Hs+1,0),),)

154 Floor_body_ins = myPart_6.faces.findAt(((0,1,0),),)

155 mySet_33a = myPart_3.Set(name='Floor_body_top', faces = Floor_body_top)

156 mySet_33b = myPart_4.Set(name='Floor_body_middle', faces = Floor_body_middle)

157 mySet_33c = myPart_5.Set(name='Floor_body_concrete', faces = Floor_body_concrete)

158 mySet_33d = myPart_6.Set(name='Floor_body_ins', faces = Floor_body_ins)

159

160 if floor =='Lightweight':

161 Floor_top = myPart_3.faces.findAt(((0,Hs-1,0),),)

162 Floor_ins = myPart_6.faces.findAt(((0,1,0),),)

163 Floor_middle = myPart_4.faces.findAt(((0,1./2*Hs+1,0),),)

164 Floor_concrete = myPart_5.faces.findAt(((0,1./4*Hs+1,0),),)

165 Floor1a = myPart_3.edges.findAt(((-0.5*Ws,Hs-10,0),),)

166 Floor2a = myPart_4.edges.findAt(((-0.5*Ws,1./2*Hs,0),),)

167 Floor3a = myPart_5.edges.findAt(((-0.5*Ws,1./4*Hs,0),),)

168 Floor1b = myPart_4.edges.findAt(((-0.5*Ws,Hs-10,0),),)

169 Floor2b = myPart_5.edges.findAt(((-0.5*Ws,1./2*Hs,0),),)

170 Floor3b = myPart_6.edges.findAt(((-0.5*Ws,1./4*Hs,0),),)

171

172 myFloor_top = myPart_3.Set(name='Floor_top', faces=Floor_top)

173 myFloor_ins = myPart_6.Set(name='Floor_ins', faces = Floor_ins)

174 myFloor_middle = myPart_4.Set(name='Floor_middle', faces = Floor_middle)

175 myFloor_concrete = myPart_5.Set(name='Floor_concrete', faces = Floor_concrete)

176 mySurface_Floor_1a = myPart_3.Surface(name='Floor1a', side1Edges=Floor1a)

177 mySurface_Floor_2a = myPart_4.Surface(name='Floor2a', side1Edges=Floor2a)

178 mySurface_Floor_3a = myPart_5.Surface(name='Floor3a', side1Edges=Floor3a)

179 mySurface_Floor_1b = myPart_4.Surface(name='Floor1b', side1Edges=Floor1b)

180 mySurface_Floor_2b = myPart_5.Surface(name='Floor2b', side1Edges=Floor2b)

181 mySurface_Floor_3b = myPart_6.Surface(name='Floor3b', side1Edges=Floor3b)

182

183 if insulated=='yes':

184 Fire_Ins = myPart_2.edges.findAt((((0.5*W+tp), -tp,0),), (((tw+tp),

-tf-tp,0),), (((0.5*tw+tp), -0.5*H,0),),

185 (((tw+tp), -H+tf+tp,0),), (((0.5*W+tp), (-H),0),), ((0, (-H-tp),0),),

((-(0.5*W+tp), -H,0),),

186 ((-(tw+tp), -H+tf+tp,0),), ((-(0.5*tw+tp), -0.5*H,0),), ((-(tw+tp),

-(tf+tp),0),), ((-(0.5*W+tp), -tp,0),),)

187 IPE_Ins = myPart_2.edges.findAt(((-(0.5*W), -tf*0.5,0),), ((0.5*W,

-0.5*tf,0),), ((tw, -tf,0),),

188 (((0.5*tw), -0.5*H,0),), (((tw), -(H-tf),0),), ((0.5*W, -(H-0.5*tf),0),),

((0, -H,0),),

189 ((-(0.5*W), -H+0.5*tw,0),), ((-(tw), -(H-tf),0),), ((-(0.5*tw),

-(0.5*H),0),), ((-(tw), -tf,0),),)

190 Surface_Ins = myPart_2.faces.findAt(((-0.5*W-tp+1,-1,0),),)

191 Ins_Floor = myPart_2.edges.findAt(((-0.5*W-tp+1,0,0),),((0.5*W+1,0,0),),)

192

193 mySet_21 = myPart_2.Set(name='Outside_Ins', edges=Fire_Ins)

194 mySet_22 = myPart_2.Set(name='Inside_Ins', edges=IPE_Ins) #contact edge

195 mySet_23 = myPart_2.Set(name='Blanket_1', faces=Surface_Ins)

196 mySurface_21 = myPart_2.Surface(name='Outside_Ins', side1Edges=Fire_Ins)

#fire side

197 mySurface_22 = myPart_2.Surface(name='Inside_Ins', side1Edges=IPE_Ins)

#contact surface

198 mySurface_23 = myPart_2.Surface(name='Ins_Floor', side1Edges=Ins_Floor)

199

200 #

--

201 ## Section ##

202 myModel_1.HomogeneousSolidSection(material=material, name='IPE',thickness= None)

203 myModel_1.HomogeneousSolidSection(material='Insulation',

name='Blanket',thickness=None)

204 myModel_1.HomogeneousSolidSection(material=floor, name='Slab', thickness=None)

205 myModel_1.HomogeneousSolidSection(material='air-alu', name='air-alu',

thickness=None)

206 #

--

207 ## Section Assignment ##

208 myPart_1.SectionAssignment(offset = 0.0, offsetField = " ", offsetType =

MIDDLE_SURFACE,

209 region = myPart_1.sets['IPE'], sectionName = "IPE", thicknessAssignment =

FROM_SECTION)

210 if insulated=='yes':

211 myPart_2.SectionAssignment(offset = 0.0, offsetField = " ", offsetType =

MIDDLE_SURFACE,

212 region = myPart_2.sets['Blanket_1'], sectionName = "Blanket",

thicknessAssignment = FROM_SECTION)

213 if floor =='Concrete':

214 myPart_3.SectionAssignment(offset = 0.0, offsetField = " ", offsetType =

MIDDLE_SURFACE,

215 region = myPart_3.sets['Floor_body'], sectionName = "Slab",

thicknessAssignment= FROM_SECTION)

216 elif floor=='Lightweight':

217 myPart_3.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

218 region = myPart_3.sets['Floor_top'], sectionName='IPE',

thicknessAssignment=FROM_SECTION)

219 myPart_4.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

220 region = myPart_4.sets['Floor_middle'], sectionName='air-alu',

thicknessAssignment=FROM_SECTION)

221 myPart_6.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

222 region = myPart_6.sets['Floor_ins'], sectionName='Blanket',

thicknessAssignment=FROM_SECTION)

223 myPart_5.SectionAssignment(offset=0.0, offsetField="",

offsetType=MIDDLE_SURFACE,

224 region = myPart_5.sets['Floor_concrete'], sectionName='Slab',

thicknessAssignment=FROM_SECTION)

225

226 #

--

227 ## Step ##

228 myModel_1.HeatTransferStep (timePeriod = T, deltmx = 50, initialInc = 5, maxInc

= T,

229 maxNumInc = 10000, minInc = 0.001, name = "Heat Transfer", previous =

"Initial", response = TRANSIENT)

230

231 #

--

232 ## Mesh ##

233 # Mesh IPE #

234 myPart_1.setMeshControls(algorithm=MEDIAL_AXIS, minTransition =ON,

235 technique = FREE, regions = Surface_IPE)

236 myPart_1.setElementType (regions = mySet_13, elemTypes = (ElemType(elemCode =

237 DC2D4,elemLibrary = STANDARD),)) #2D linear heat transfer blocks, 4 nodes

per element

238 myPart_1.seedPart (deviationFactor = 1, minSizeFactor = 1, size = mesh_size)

239 myPart_1.generateMesh()

240

241 if insulated=='yes':

242 # Mesh Insulation #

243 myPart_2.setMeshControls(algorithm=MEDIAL_AXIS, minTransition =ON,

244 technique = FREE, regions = Surface_Ins)

245 myPart_2.setElementType (regions = mySet_23, elemTypes = (ElemType(elemCode

=DC2D8,

246 elemLibrary = STANDARD),)) #2D quadratic heat transfer blocks, 8 nodes

per element

247 myPart_2.seedPart (deviationFactor = 1, minSizeFactor = 1, size = tp/4)

248 myPart_2.generateMesh()

249

250 #Mesh Slab

251 myPart_3.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

252 technique = FREE, regions = Floor_body_top)

253 myPart_3.setElementType(regions = mySet_33a, elemTypes=(ElemType(elemCode =

254 DC2D8, elemLibrary = STANDARD),))

255 myPart_3.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

256 myPart_3.generateMesh()

257 myPart_4.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

258 technique = FREE, regions = Floor_body_middle)

259 myPart_4.setElementType(regions = mySet_33b, elemTypes=(ElemType(elemCode =

260 DC2D8, elemLibrary = STANDARD),))

261 myPart_4.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

262 myPart_4.generateMesh()

263 myPart_5.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

264 technique = FREE, regions = Floor_body_concrete)

265 myPart_5.setElementType(regions = mySet_33c, elemTypes=(ElemType(elemCode =

266 DC2D8, elemLibrary = STANDARD),))

267 myPart_5.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

268 myPart_5.generateMesh()

269 myPart_6.setMeshControls(algorithm = MEDIAL_AXIS, minTransition=ON,

270 technique = FREE, regions = Floor_body_ins)

271 myPart_6.setElementType(regions = mySet_33d, elemTypes=(ElemType(elemCode =

272 DC2D8, elemLibrary = STANDARD),))

273 myPart_6.seedPart (deviationFactor=1, minSizeFactor =1 , size = tp/4)

274 myPart_6.generateMesh()

275 #

--

276 ## Assembly ##

277 myAssembly = myModel_1.rootAssembly

278 myAssembly.DatumCsysByDefault (CARTESIAN)

279 myAssembly.Instance(dependent = ON, part = myPart_1, name = "IPE-1")

280 myAssembly.Instance(dependent = ON, part = myPart_3, name = "Slab_top")

281 myAssembly.Instance(dependent = ON, part = myPart_4, name = "Slab_middle")

282 myAssembly.Instance(dependent = ON, part = myPart_5, name = "Slab_concrete")

283 myAssembly.Instance(dependent = ON, part = myPart_6, name = "Slab_ins")

284 if insulated=='yes':

285 myAssembly.Instance(dependent = ON, part = myPart_2, name = "Blanket_1")

286 #all previously made sets are copied into assembly, only applicable to geometry

dependent sets

287

288 #

--

289 ## Fire Loads ##

290 if insulated=='yes':

291 region = myAssembly.instances['Blanket_1'].surfaces['Outside_Ins']

292 Emissivity = Emissivity_Ins

293 else:

294 region = myAssembly.instances['IPE-1'].surfaces['Outside_IPE']

295 Emissivity = Emissivity_metal

296

297 if Fire_Load == 'Standard_Fire':

298 # Convection Fire Side #

299 myModel_1.FilmCondition(createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

300 filmCoeff = Conv_hot, name = 'Convection_Fire_Side',

sinkDistributionType = UNIFORM,

301 sinkTemperature = 1, sinkAmplitude = "Standard Fire", surface = region)

302 myModel_1.FilmCondition(createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

303 filmCoeff = Conv_hot, name = 'Convection_Fire_Side_Floor',

sinkDistributionType = UNIFORM,

304 sinkTemperature = 1, sinkAmplitude = "Standard Fire", surface =

myAssembly.instances['Slab_ins'].surfaces['Floor_fire'])

305

306 # Radiation Fire Side #

307 myModel_1.RadiationToAmbient (ambientTemperature = 1, ambientTemperatureAmp

= 'Standard Fire',

308 createStepName = 'Heat Transfer', emissivity = Emissivity_Ins, name =

'Radiation_Fire_Side',

309 distributionType = UNIFORM, surface=region)

310 myModel_1.RadiationToAmbient (ambientTemperature =1, ambientTemperatureAmp =

'Standard Fire',

311 createStepName = 'Heat Transfer', emissivity = Emissivity_Floor, name =

'Radiation_Fire_Side_Floor',

312 distributionType = UNIFORM, surface =

myAssembly.instances['Slab_ins'].surfaces['Floor_fire'])

313

314 # Ambient side

315 myModel_1.FilmCondition (createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

316 filmCoeff = Conv_ambient, name = 'Convection_Ambient_Side',

sinkDistributionType = UNIFORM,

317 sinkTemperature = 20, surface =

myAssembly.instances['Slab_top'].surfaces['Floor_top'])

318 myModel_1.RadiationToAmbient (ambientTemperature = 20, createStepName =

'Heat Transfer',

319 emissivity = Emissivity_Floor, name = 'Radiation_Ambient_Side',

320 distributionType = UNIFORM,surface =

myAssembly.instances['Slab_top'].surfaces['Floor_top'])

321

322 if Fire_Load == 'Hydrocarbon':

323 myModel_1.EdgeHeatFlux(name = 'heatflux on insulation', createStepName =

324 'Heat Transfer', region = region, magnitude =

myModel_1.TabularAmplitude['Hydrocarbon'])

325 myModel_1.EdgeHeatFlux(name = 'heatflux on Floor', createStepName = 'Heat

Transfer',

326 region = myAssembly.instances['Slab_ins'].surfaces['Floor_fire'],

327 magnitude = myModel_1.TabularAmplitude['Hydrocarbon'])

328

329 if insulated=='yes':

330 # Contact Resistance insulation - RHS #

331 myModel_1.ContactProperty ('Contact_Resistance_IPE_ins')

332

myModel_1.interactionProperties['Contact_Resistance_IPE_ins'].ThermalConductan

ce(

333 clearanceDepTable =((contactResistance, 0), (0, 1)), clearanceDependency

= ON, definition = TABULAR)

334 myModel_1.SurfaceToSurfaceContactStd (name = 'Contact_Resistance', master

=myAssembly.instances['IPE-1'].surfaces['Outside_IPE'],

335 slave = myAssembly.instances['Blanket_1'].surfaces['Inside_Ins'],

createStepName = 'Heat Transfer', interactionProperty

='Contact_Resistance_IPE_ins',

336 sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

337 # Contact Resistance insulation - Floor #

338 myModel_1.ContactProperty ('Contact_Resistance_Slab_Ins')

339

myModel_1.interactionProperties['Contact_Resistance_Slab_Ins'].ThermalConducta

nce(

340 clearanceDepTable =((contactResistance, 0), (0, 1)), clearanceDependency

= ON, definition = TABULAR)

341 myModel_1.SurfaceToSurfaceContactStd (name = 'Contact_Resistance_Ins_Floor',

master =myAssembly.instances['Slab_ins'].surfaces['Floor_ins'],

342 slave = myAssembly.instances['Blanket_1'].surfaces['Ins_Floor'],

createStepName = 'Heat Transfer', interactionProperty

='Contact_Resistance_Slab_Ins',

343 sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

344

345 # Contact Floor - RHS #

346 myModel_1.ContactProperty ('Contact_Resistance_Floor_IPE')

347

myModel_1.interactionProperties['Contact_Resistance_Floor_IPE'].ThermalConductance

(

348 clearanceDepTable =((200e-3, 0), (0, 1)), clearanceDependency = ON,

definition = TABULAR)

349 myModel_1.SurfaceToSurfaceContactStd (name = 'Contact_Resistance_Floor_IPE',

master =myAssembly.instances['IPE-1'].surfaces['IPE_Floor'],

350 slave = myAssembly.instances['Slab_ins'].surfaces['Floor_IPE'],

createStepName = 'Heat Transfer', interactionProperty

='Contact_Resistance_Floor_IPE',

351 sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

352

353 # Contact in floor

354 myModel_1.ContactProperty('Contact_Floor_top')

355 myModel_1.interactionProperties['Contact_Floor_top'].ThermalConductance(

356 clearanceDepTable=((0,0),(0,1)), clearanceDependency=ON, definition=TABULAR)

357 myModel_1.SurfaceToSurfaceContactStd(name='Contact_Floor_top', master =

myAssembly.instances['Slab_top'].surfaces['Floor1a'],

358 slave=myAssembly.instances['Slab_middle'].surfaces['Floor1b'],

createStepName='Heat Transfer', interactionProperty= 'Contact_Floor_top',

359 sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

360 myModel_1.ContactProperty('Contact_Floor_middle')

361 myModel_1.interactionProperties['Contact_Floor_middle'].ThermalConductance(

362 clearanceDepTable=((0,0),(0,1)), clearanceDependency=ON, definition=TABULAR)

363 myModel_1.SurfaceToSurfaceContactStd(name='Contact_Floor_middle', master =

myAssembly.instances['Slab_middle'].surfaces['Floor2a'],

364 slave=myAssembly.instances['Slab_concrete'].surfaces['Floor2b'],

createStepName='Heat Transfer', interactionProperty= 'Contact_Floor_middle',

365 sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

366 myModel_1.ContactProperty('Contact_Floor_bottom')

367 myModel_1.interactionProperties['Contact_Floor_bottom'].ThermalConductance(

368 clearanceDepTable=((0,0),(0,1)), clearanceDependency=ON, definition=TABULAR)

369 myModel_1.SurfaceToSurfaceContactStd(name='Contact_Floor_bottom', master =

myAssembly.instances['Slab_concrete'].surfaces['Floor3a'],

370 slave=myAssembly.instances['Slab_ins'].surfaces['Floor3b'],

createStepName='Heat Transfer', interactionProperty= 'Contact_Floor_bottom',

371 sliding=FINITE, surfaceSmoothing=NONE, thickness=ON)

372

373 # fire if not insulated

374 if insulated!='yes':

375 myModel_1.FilmCondition(createStepName = 'Heat Transfer', definition =

EMBEDDED_COEFF,

376 filmCoeff = Conv_hot, name = 'Convection_Fire_Floor',

sinkDistributionType = UNIFORM,

377 sinkTemperature = 1, sinkAmplitude = "Standard Fire", surface =

myAssembly.instances['Slab_ins'].surfaces['Floor_ins'])

378 myModel_1.RadiationToAmbient (ambientTemperature = 1, ambientTemperatureAmp

= 'Standard Fire',

379 createStepName = 'Heat Transfer', emissivity = Emissivity_Floor, name =

'Radiation_Fire_Floor',

380 distributionType = UNIFORM,

surface=myAssembly.instances['Slab_ins'].surfaces['Floor_ins'])

381

382 #

--

383 ## BCs ##

384 # Predifined field - constant initial temperature of 20 C #

385 myModel_1.Temperature (createStepName = "Initial", crossSectionDistribution =

386 CONSTANT_THROUGH_THICKNESS, distributionType = UNIFORM, magnitudes =(20,),

name = "Initial TemperatureIPE",

387 region = myAssembly.instances["IPE-1"].sets["IPE"])

388 myModel_1.Temperature (createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

389 distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature

Floor1",

390 region = myAssembly.instances["Slab_top"].sets['Floor_body_top'])

391 myModel_1.Temperature (createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

392 distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature

Floor2",

393 region = myAssembly.instances["Slab_middle"].sets['Floor_body_middle'])

394 myModel_1.Temperature (createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

395 distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature

Floor3",

396 region = myAssembly.instances["Slab_concrete"].sets['Floor_body_concrete'])

397 myModel_1.Temperature (createStepName="Initial",

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,

398 distributionType = UNIFORM, magnitudes=(20,), name = "Initial Temperature

Floor4",

399 region = myAssembly.instances["Slab_ins"].sets['Floor_body_ins'])

400 if insulated=='yes':

401 myModel_1.Temperature (createStepName = "Initial", crossSectionDistribution =

402 CONSTANT_THROUGH_THICKNESS,

403 distributionType = UNIFORM, magnitudes =(20,), name = "Initial

Temperature insulation",

404 region = myAssembly.instances["Blanket_1"].sets["Blanket_1"])

405

406 #

--

407 ## Output Request ##

408 myModel_1.fieldOutputRequests['F-Output-1'].setValues(variables = ('NT','COORD'),

409 frequency = 1, region = myAssembly.instances['IPE-1'].sets['IPE'])

410 myModel_1.FieldOutputRequest (name = 'Temperature_XY_Output_Surface',

createStepName =

411 'Heat Transfer', timeInterval = Step_time, variables = ('COORD', 'NT'),

region =

412 myAssembly.instances['IPE-1'].sets['IPE'])

413

414 #

--

415 ## Job ##

416 myJob_1 = mdb.Job(name = name_model, model = myModel_1, type = ANALYSIS,scratch

= Scratch)

417 myJob_1.submit(consistencyChecking=OFF)

418 myJob_1.waitForCompletion()

419

420 odb = session.openOdb(name = name_model+'.odb')

421 frames = odb.steps['Heat Transfer'].frames

422 numFrames = int(len(frames))

423 # mySurface_odb = odb.rootAssembly.instances['IPE-1'].nodeSets['OUTSIDE_IPE']

424 csv_writer_thermal_analysis.csv_coordinates(odb, name_model)

425 csv_writer_thermal_analysis.csv_temperatures(odb, name_model, numFrames)

426 csv_writer_thermal_analysis.csv_thermal_result(name_model)

427 #odb.close()

428 executable_time.ExecTime(name_model)

429 return numFrames

104

F: FEM MECHANICAL ANALYSIS SCRIPT

1 #Mechanical test for abaqus run

2

3 #import extensions

4 from abaqus import *

5 from part import *

6 from material import *

7 from section import *

8 from assembly import *

9 from step import *

10 from interaction import *

11 from load import *

12 from mesh import *

13 from optimization import *

14 from job import *

15 from sketch import *

16 from visualization import *

17 from connectorBehavior import *

18 from datetime import *

19 from odbAccess import *

20

21 import os

22 import csv

23 sys.path.append(r"D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Scripts")

24 import input_variables, csv_writer_thermal_analysis

25

26 def main(type, material, elements, section, floor, insulated, interface, numFrames,

mesh_size):

27 analysis = 'Mech_' + type + '_' + material + '_' + elements + '_' +

section + '_' + floor + '_' + insulated + '_'+str(mesh_size)

28 cwd = os.getcwd()

29 filelocation = str(cwd)+"\\"+str(date.today())+"_"+analysis+"\\"

30 myModel_1 = mdb.Model(name=analysis)

31

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDIN

ATE)

32 Path_Data_Files = r"D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS"+'\\'+analysis

33

34 #error check on file location

35 if not os.path.exists(Path_Data_Files):

36 try:

37 os.makedirs(Path_Data_Files)

38 except OSError as exc:

39 if exc.errno != errno.EEXIST:

40 raise

41 os.chdir(Path_Data_Files)

42 Scratch = Path_Data_Files

43 myModel_1 = mdb.Model(name = analysis)

44 if "Model-1" in mdb.models:

45 del mdb.models["Model-1"]

46

#---

47 ## First model setup ##

48

#---

49 ## getting input variables - material properties, general model data ##

50 Fire_Load = 'Standard_Fire'

51 # input variables has to be editted to include mechanical properties!!!!

52 if section=='IPE': section='I-section'

53 else: pass

54 model_values, geometry, Emissivity, Poisons_Alu, contactResistance =

input_variables.main(myModel_1, section, material, Fire_Load, insulated,

interface)

55 T, Step_time, Conv_hot, Conv_ambient = model_values

56 Emissivity_metal, Emissivity_Ins, Emissivity_Concrete = Emissivity

57 if type=='Column': L=1000 #mm

58 else: L=3000 #mm

59 if floor=='Concrete': load=36000 #Newton

60 elif floor=='Lightweight': load=20000

61

62 if section=='I-section':

63 section='IPE'

64 H,W,tf,tw,tp,Ws,Hs = geometry

65 elif section=='RHS':

66 H,W,t,tp,Ws,Hs = geometry

67

#---

68 ## Sketch + Part ##

69 if elements=='volume':

70 if section=='RHS':

71 if type!='Beam1':

72 e=0

73 else: #integrated RHS beam

74 e=16

75 # RHS part

76 mySketch_1 = myModel_1.ConstrainedSketch(name='RHS', sheetSize=0.2)

77 xyCoords =

((W,H),(W,Hs),(W,t),(W+e,t),(W+e,0),(-e,0),(-e,t),(0,t),(0,Hs),(0,H),(W,H)

)

78 for i in range (len(xyCoords)-1): mySketch_1.Line(point1=xyCoords[i],

point2=xyCoords[i+1])

79 mySketch_1.rectangle(point1=(t,t), point2=(W-t,H-t))

80 myPart_1 = myModel_1.Part(name = 'RHS', dimensionality = THREE_D,

type=DEFORMABLE_BODY)

81 myPart_1.BaseShellExtrude(depth=L ,sketch = mySketch_1)

82 elif section=='Decking':

83 # Part 1 - Decking #

84 mySketch_1 = myModel_1.ConstrainedSketch(name=section, sheetSize=0.2)

85 side = c*tw

86 xyCoords_outer = ((0,0), (W+10*side,0), (W+10*side, -tf-side),

((0.9*W+11*side-c*tf), -H),

87 ((0.1*W+c*tf-side), -H), (0, -tf-side), (0,0))

88 # Please note: Coordinates have to be such order that section can be

drawn fluently

89 for i in range (len(xyCoords_outer)-1): mySketch_1.Line(point1 =

xyCoords_outer [i],point2 = xyCoords_outer [i+1])

90 #first cut out

91 xyCoords = ((2*side,-tf),(0.2*W,-tf),(0.1*W+side,-H+tf),(2*side,-tf))

92 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

93 #second cut out

94 xyCoords =

((0.2*W+2*side,-tf),(0.3*W+side,-H+tf),(0.1*W+3*side,-H+tf),(0.2*W+2*side,

-tf))

95 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

96 #third cutout

97 xyCoords =

((0.2*W+4*side,-tf),(0.4*W+2*side,-tf),(0.3*W+3*side,-H+tf),(0.2*W+4*side,

-tf))

98 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

99 #fourth cutout

100 xyCoords =

((0.4*W+4*side,-tf),(0.5*W+3*side,-H+tf),(0.3*W+5*side,-H+tf),

(0.4*W+4*side,-tf))

101 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

102 #fifth cutout

103 xyCoords = ((0.4*W+6*side,-tf), (0.5*W+5*side,-H+tf),

(0.6*W+4*side,-tf),(0.4*W+6*side,-tf))

104 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

105 #sixth cutout

106 xyCoords =

((0.6*W+6*side,-tf),(0.5*W+7*side,-H+tf),(0.7*W+5*side,-H+tf),(0.6*W+6*sid

e,-tf))

107 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

108 #seventh cutout

109 xyCoords =

((0.6*W+8*side,-tf),(0.8*W+6*side,-tf),(0.7*W+7*side,-H+tf),(0.6*W+8*side,

-tf))

110 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

111 #eighth cutout

112 xyCoords =

((0.8*W+8*side,-tf),(0.7*W+9*side,-H+tf),(0.9*W+7*side,-H+tf),

(0.8*W+8*side,-tf))

113 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

114 #ninth cutout

115 xyCoords = ((0.8*W+10*side,-tf),(1*W+8*side,-tf),(0.9*W+9*side,-H+tf),

(0.8*W+10*side,-tf))

116 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

117 myPart_1 = myModel_1.Part(name = section, dimensionality = THREE_D,

type=DEFORMABLE_BODY)

118 myPart_1.BaseShellExtrude(depth= L, sketch = mySketch_1)

119 elif section=='IPE':

120 mySketch_1 = myModel_1.ConstrainedSketch(name=section, sheetSize=0.2)

121 xyCoords = ((-(0.5*W), -tf), (-(0.5*W), 0), (0.5*W, 0), (0.5*W, -tf),

122 ((0.5*tw), -tf), ((0.5*tw), -H+tf+Hs),(0.5*tw,-H+tf), (0.5*W,

-(H-tf)), (0.5*W, -H),

123 (-(0.5*W), -H), (-(0.5*W), -(H-tf)), (-(0.5*tw), -(H-tf)),

(-0.5*tw,-H+Hs+tf),

124 (-(0.5*tw), -tf), (-(0.5*W), -tf))

125 # Please note: Coordinates have to be such order that section can be

drawn fluently

126 for i in range (len(xyCoords)-1): mySketch_1.Line(point1 = xyCoords

[i],point2 = xyCoords [i+1])

127 myPart_1 = myModel_1.Part(name = section, dimensionality = THREE_D,

type=DEFORMABLE_BODY)

128 myPart_1.BaseShellExtrude(depth=L, sketch = mySketch_1)

129

130 elif elements=='shell':

131 if section=='RHS':

132 e=-0.5*t #mm

133 if type=='Beam1':

134 e=16 #mm

135 # RHS member section

136 mySketch_1 = myModel_1.ConstrainedSketch(name='RHS', sheetSize=0.2)

137 mySketch_1.Line(point1=(-e,0.5*t),point2=(W+e,0.5*t))

138 mySketch_1.Line(point1=(0.5*t,0.5*t),point2=(0.5*t,H-0.5*t))

139 mySketch_1.Line(point1=(0.5*t,H-0.5*t), point2=(W-0.5*t,H-0.5*t))

140 mySketch_1.Line(point1=(W-0.5*t,H-0.5*t), point2=(W-0.5*t,0.5*t))

141 myPart_1 = myModel_1.Part(dimensionality=THREE_D, name='RHS', type =

DEFORMABLE_BODY)

142 myPart_1.BaseShellExtrude(depth=L,sketch=mySketch_1)

143 elif section=='IPE':

144 # member section IPE

145 mySketch_1 = myModel_1.ConstrainedSketch(name='IPE', sheetSize =0.2)

146 mySketch_1.Line(point1=(-0.5*W,-0.5*tf), point2=(0.5*W,-0.5*tf))

147 mySketch_1.Line(point1=(0,-0.5*tf), point2=(0,-(H-(0.5*tf))))

148 mySketch_1.Line(point1=(-0.5*W,-(H-(0.5*tf))),

point2=(0.5*W,-(H-(0.5*tf))))

149 myPart_1 = myModel_1.Part(dimensionality=THREE_D, name='IPE',

type=DEFORMABLE_BODY)

150 myPart_1.BaseShellExtrude(depth=L, sketch=mySketch_1)

151

152 elif section=='Decking':

153 pass

154 #

--

155 ## Section ##

156 # integration points over thickness can be inputted here, default at 5IP's

157 if elements =='shell':

158 if section=='IPE':

159 Flanges = myPart_1.faces.findAt(

160 ((-(0.2*W),-(0.5*tf),(0.1*L)),),((0.2*W,

-0.5*tf,0.1*L),),((-0.2*W,-(H-(0.5*tf)),0.1*L),),((0.2*W,-(H-(0.5*tf))

,0.1*L),),

161 ((-(0.2*W),-(0.5*tf),(0.5*L)),),((0.2*W,

-0.5*tf,0.5*L),),((-0.2*W,-(H-(0.5*tf)),0.5*L),),((0.2*W,-(H-(0.5*tf))

,0.5*L),),

162 ((-(0.2*W),-(0.5*tf),(0.8*L)),),((0.2*W,

-0.5*tf,0.8*L),),((-0.2*W,-(H-(0.5*tf)),0.8*L),),((0.2*W,-(H-(0.5*tf))

,0.8*L),),)

163 Set_11 = myPart_1.Set(name='Flanges', faces = (Flanges,))

164 myModel_1.HomogeneousShellSection(material=material, name ='Flanges',

thickness=tf)

165 myModel_1.parts['IPE'].SectionAssignment(offset=0.0, offsetType =

MIDDLE_SURFACE,

166 region = myModel_1.parts['IPE'].sets['Flanges'], sectionName =

'Flanges',

167 thicknessAssignment = FROM_SECTION)

168

169 Web = myPart_1.faces.findAt(((0,-0.5*H,0.5*L),),)

170 Set_12 = myPart_1.Set(name='Web', faces = (Web,))

171 myModel_1.HomogeneousShellSection(material=material, name='Web',

thickness = tw)

172 myModel_1.parts['IPE'].SectionAssignment(offset=0.0,

offsetType=MIDDLE_SURFACE,

173 region = myModel_1.parts['IPE'].sets['Web'], sectionName='Web',

174 thicknessAssignment = FROM_SECTION)

175 ## partitions for loading

176 myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=1./3*L)

177 myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=2./3*L)

178 myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[4], faces =

179 myPart_1.faces.findAt(

((-0.2*W,-0.5*tf,0.5*L),),((0.2*W,-0.5*tf,0.5*L),),

180 ((-0.2*W,-H+0.5*tf,0.5*L),),((0.2*W,-H+0.5*tf,0.5*L),),))

181 myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[5], faces =

182 myPart_1.faces.findAt(

((-0.2*W,-0.5*tf,0.5*L),),((0.2*W,-0.5*tf,0.5*L),),

183 ((-0.2*W,-H+0.5*tf,0.5*L),),((0.2*W,-H+0.5*tf,0.5*L),),))

184 myPart_1.Set(name='Load_top1', vertices = myPart_1.vertices.findAt(

185 ((0,-0.5*tf,

1./3*L),),((-0.5*W,-0.5*tf,1./3*L),),((0.5*W,-0.5*tf,1./3*L),),))

186 myPart_1.Set(name='Load_top2', vertices = myPart_1.vertices.findAt(

187 ((0,-0.5*tf,

2./3*L),),((-0.5*W,-0.5*tf,2./3*L),),((0.5*W,-0.5*tf,2./3*L),),))

188 myPart_1.Set(name='Load_bottom1', vertices = myPart_1.vertices.findAt(

189 ((0,-H+0.5*tf,

1./3*L),),((-0.5*W,-H+0.5*tf,1./3*L),),((0.5*W,-H+0.5*tf,1./3*L),),))

190 myPart_1.Set(name='Load_bottom2', vertices = myPart_1.vertices.findAt(

191 ((0,-H+0.5*tf,

2./3*L),),((-0.5*W,-H+0.5*tf,2./3*L),),((0.5*W,-H+0.5*tf,2./3*L),),))

192

193 elif section=='RHS' :

194 if type=='Beam1':

195 Sides = myPart_1.faces.findAt(

(((W-0.5*t),0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

196

((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.5*L),),((-0.5*e,0.5*t,0.1*L

),),((W+0.5*e,0.5*t,0.1*L),),

197 (((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L),),

198

((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),((-0.5*e,0.5*t,0.5*L

),),((W+0.5*e,0.5*t,0.5*L),),

199 (((W-0.5*t),0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

200

((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),((-0.5*e,0.5*t,0.8*L

),),((W+0.5*e,0.5*t,0.8*L),),)

201 else:

202 Sides = myPart_1.faces.findAt(

203 ((W-0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),

204 ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

205 ((W-0.5*t,0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

206 ((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.1*L),),

207 ((W-0.5*t,0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

208 ((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),)

209 Set_11 = myPart_1.Set(name='Flanges', faces = (Sides,))

210 myModel_1.HomogeneousShellSection(material=material, name ='Flanges',

thickness=t)

211 myModel_1.parts['RHS'].SectionAssignment(offset=0.0,

offsetType=MIDDLE_SURFACE,

212 region = myModel_1.parts['RHS'].sets['Flanges'],

sectionName='Flanges',

213 thicknessAssignment = FROM_SECTION)

214 ## partitions for loading

215 myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=1./3*L)

216 myPart_1.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=2./3*L)

217 myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[3], faces =

218

myPart_1.faces.findAt((((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5

*L),),

219 ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

220 ((-0.5*e,0.5*t,0.5*L),),((W+0.5*e,0.5*t,0.5*L),),))

221 myPart_1.PartitionFaceByDatumPlane(datumPlane=myPart_1.datums[4], faces =

222

myPart_1.faces.findAt(((W-0.5*t,0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L

),),

223 ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

224 ((-0.5*e,0.5*t,0.5*L),),((W+0.5*e,0.5*t,0.5*L),),))

225 myPart_1.Set(name='Load_top1', vertices = myPart_1.vertices.findAt(

226 ((0.5*t,H-0.5*t, 1./3*L),),((W-0.5*t,H-0.5*t,1./3*L),),))

227 myPart_1.Set(name='Load_top2', vertices = myPart_1.vertices.findAt(

228 ((0.5*t,H-0.5*t, 2./3*L),),((W-0.5*t,H-0.5*t,2./3*L),),))

229 myPart_1.Set(name='Load_bottom1', vertices = myPart_1.vertices.findAt(

230 ((-e,0.5*t, 1./3*L),),((W+e,0.5*t,1./3*L),),

231 ((0.5*t,0.5*t, 1./3*L),),((W-0.5*t,0.5*t,1./3*L),),))

232 myPart_1.Set(name='Load_bottom2', vertices = myPart_1.vertices.findAt(

233 ((-e,0.5*t, 2./3*L),),((W+e,0.5*t,2./3*L),),

234 ((0.5*t,0.5*t, 2./3*L),),((W-0.5*t,0.5*t,2./3*L),),))

235 elif section=='Decking':

236 pass

237

238 # section if volume elements

239 elif elements =='volume':

240 pass

241 #

--

242 ## Assembly ##

243 myAssembly = myModel_1.rootAssembly

244 myAssembly.DatumCsysByDefault (CARTESIAN)

245 myAssembly.Instance(dependent = ON, part = myPart_1, name = (section+'-1'))

246 #

--

247 ## Mesh ##

248 if elements=='shell':

249 if section=='IPE':

250 mySet_19 = myAssembly.Set(name='IPE', faces =

myAssembly.instances['IPE-1'].faces.findAt(

251

((0.1*W,-0.5*tf,0.1*L),),((-0.1*W,-0.5*tf,0.1*L),),((0.1*W,-H+0.5*tf,0

.1*L),),((-0.1*W,-H+0.5*tf,0.1*L),),

252

((0.1*W,-0.5*tf,0.5*L),),((-0.1*W,-0.5*tf,0.5*L),),((0.1*W,-H+0.5*tf,0

.5*L),),((-0.1*W,-H+0.5*tf,0.5*L),),

253

((0.1*W,-0.5*tf,0.8*L),),((-0.1*W,-0.5*tf,0.8*L),),((0.1*W,-H+0.5*tf,0

.8*L),),((-0.1*W,-H+0.5*tf,0.8*L),),

254 ((0,-0.5*H,0.1*L),),))

255 elif section=='RHS':

256 if type=='Beam1':

257 mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

258

((-0.5*e,0.5*t,0.1*L),),((0.5*W,0.5*t,0.1*L),),((W+0.5*e,0.5*t,0.1

*L),),

259

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*H,0.

1*L),),

260

((-0.5*e,0.5*t,0.5*L),),((0.5*W,0.5*t,0.5*L),),((W+0.5*e,0.5*t,0.5

*L),),

261

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*H,0.

5*L),),

262

((-0.5*e,0.5*t,0.8*L),),((0.5*W,0.5*t,0.8*L),),((W+0.5*e,0.5*t,0.8

*L),),

263

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*H,0.

8*L),),))

264 else:

265 mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

266

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*H,0.

1*L),),((0.5*W,0.5*t,0.1*L),),

267

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*H,0.

5*L),),((0.5*W,0.5*t,0.5*L),),

268

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*H,0.

8*L),),((0.5*W,0.5*t,0.8*L),),))

269 elif section=='Decking':

270 pass

271 elif elements=='volume':

272 pass

273 myAssembly.setElementType (elemTypes= (ElemType(elemCode = S4R, elemLibrary =

274 STANDARD),), regions = mySet_19)

275 myModel_1.parts[section].seedPart(deviationFactor=0.1, minSizeFactor = 0.1,

size=mesh_size)

276 myModel_1.parts[section].generateMesh()

277

278

#---

279 ## Start incrementation ##

280 increment = 0

281 while increment<=numFrames:

282 print('Start incrementation '+ analysis+': '+str(increment))

283 model_Name_2 = str(increment) +'_'+ analysis

284 myModel_2 = mdb.Model(name=model_Name_2)

285 myModel_2.setValues(absoluteZero = -273.15, stefanBoltzmann = 5.67e-11)

286 # Load part / material / Section #

287 myPart_21 = myModel_2.Part(section, myModel_1.parts[section])

288 myModel_2.Material(material, myModel_1.materials[material])

289 myModel_2.Section('Flanges', myModel_1.sections['Flanges'])

290 if section=='IPE':

291 myModel_2.Section('Web', myModel_1.sections['Web'])

292 myModel_2.Instance(section+'-1', myAssembly.instances[section+'-1'])

293

294 if increment>1: step = 5

295 else: step = 1

296 NewJob = '3D_Model_GA_new'+str(increment)

297 PrevJob = '3D_Model_GA_new'+str(increment-step)

298 NewStep = 'General_Analysis_'+str(increment)

299 PrevStep = 'General_Analysis_'+str(increment-step)

300 # Loading Restart File #

301 if increment>0:

302 myModel_2.setValues(restartJob = PrevJob, restartStep = PrevStep,

303 restartIncrement = STEP_END)

304

305

#---

306 ## Assembly ##

307 #print('Start assembly')

308 myAssembly = myModel_2.rootAssembly

309 #

--

310 ## Surfaces ##

311 #print('Start surfaces')

312 if elements=='shell':

313 if section=='RHS':

314 mySurface_11 = myAssembly.Surface(name='Top Beam', side2Faces=

315 myAssembly.instances['RHS-1'].faces.findAt(((t, H-0.5*t,0.1*L),),

316 ((t, H-0.5*t,0.5*L),),((t, H-0.5*t,0.8*L),),))

317 if type=='Beam1':

318 mySurface_13 = myAssembly.Surface(name='Side face1 RHS',

side1Edges =

319 myAssembly.instances['RHS-1'].edges.findAt(

320 ((0.5*t,

0.5*H,0),),((0.1*W,H-0.5*t,0),),((W-0.5*t,0.5*H,0),),

321

((0.1*W,0.5*t,0),),((-0.5*e,0.5*t,0),),((W+0.5*e,0.5*t,0),

),))

322 mySurface_12 = myAssembly.Surface(name='Bottom flange',

side2Faces=

323 myAssembly.instances['RHS-1'].faces.findAt(

324 ((-0.25*e,0.5*t,0.1*L),),((W+0.25*e,0.5*t,0.1*L),),

325 ((-0.25*e,0.5*t,0.5*L),),((W+0.25*e,0.5*t,0.5*L),),

326 ((-0.25*e,0.5*t,0.8*L),),((W+0.25*e,0.5*t,0.8*L),),))

327 else:

328 mySurface_13 = myAssembly.Surface(name='Side face1 RHS',

side1Edges =

329 myAssembly.instances['RHS-1'].edges.findAt(

330 ((0.5*t, 0.5*H,0),),((0.1*W,H-0.5*t,0),),

331 ((W-0.5*t,0.5*H,0),),((0.1*W,0.5*t,0),),))

332 elif section=='IPE':

333 mySurface_11 = myAssembly.Surface(name='Top beam', side2Faces =

334 myAssembly.instances['IPE-1'].faces.findAt(

335 ((0.1*W,-0.5*tf,0.1*L),),((-0.1*W,-0.5*tf,0.1*L),),

336 ((0.1*W,-0.5*tf,0.5*L),),((-0.1*W,-0.5*tf,0.5*L),),

337 ((0.1*W,-0.5*tf,0.8*L),),((-0.1*W,-0.5*tf,0.8*L),),))

338 mySurface_13 = myAssembly.Surface(name='Side face1 IPE', side1Edges =

339 myAssembly.instances['IPE-1'].edges.findAt(

340 ((0.1*W,-0.5*tf,0),),((0.1*W,-H+0.5*tf,0),),((0,-0.5*H,0),),

341 ((-0.1*W,-0.5*tf,0),),((-0.1*W,-H+0.5*tf,0),),))

342 if type=='Beam1':

343 mySurface_12 = myAssembly.Surface(name='Bottom Flange beam',

side2Faces=

344 myAssembly.instances['IPE-1'].faces.findAt(

345 ((-0.2*W,-H+0.5*tf,0.1*L),),((0.2*W,-H+0.5*tf,0.1*L),),

346 ((-0.2*W,-H+0.5*tf,0.5*L),),((0.2*W,-H+0.5*tf,0.5*L),),

347 ((-0.2*W,-H+0.5*tf,0.8*L),),((0.2*W,-H+0.5*tf,0.8*L),)))

348 elif section=='Decking':

349 pass

350 elif elements=='volume':

351 pass

352 #

--

353 ## Sets ##

354 #print('Start sets')

355 if elements=='shell':

356 if section=='IPE':

357 # in part instance

358 Flanges = myPart_21.faces.findAt(

359 ((-(0.2*W),-(0.5*tf),(0.1*L)),),((0.2*W,

-0.5*tf,0.1*L),),((-0.2*W,-(H-(0.5*tf)),0.1*L),),((0.2*W,-(H-(0.5*

tf)),0.1*L),),

360 ((-(0.2*W),-(0.5*tf),(0.5*L)),),((0.2*W,

-0.5*tf,0.5*L),),((-0.2*W,-(H-(0.5*tf)),0.5*L),),((0.2*W,-(H-(0.5*

tf)),0.5*L),),

361 ((-(0.2*W),-(0.5*tf),(0.8*L)),),((0.2*W,

-0.5*tf,0.8*L),),((-0.2*W,-(H-(0.5*tf)),0.8*L),),((0.2*W,-(H-(0.5*

tf)),0.8*L),),)

362 Set_11 = myPart_21.Set(name='Flanges', faces = (Flanges,))

363 Web = myPart_21.faces.findAt(((0,-0.5*H,0.5*L),),)

364 Set_12 = myPart_21.Set(name='Web', faces = (Web,))

365 # in assembly

366 mySet_11 = myAssembly.Set(name='Top Flange edge1', edges =

myAssembly.instances['IPE-1'].edges.findAt(

367 ((0.1*W,-0.5*tf,0),),((-0.1*W,-0.5*tf,0),),))

368 mySet_12 = myAssembly.Set(name='Top Flange edge2', edges =

myAssembly.instances['IPE-1'].edges.findAt(

369 ((0.1*W,-0.5*tf,L),),((-0.1*W,-0.5*tf,L),),))

370 mySet_13 = myAssembly.Set(name='Bottom Flange edge1', edges =

myAssembly.instances['IPE-1'].edges.findAt(

371 ((0.1*W,-H+0.5*tf,0),),((-0.1*W,-H+0.5*tf,0),),))

372 mySet_14 = myAssembly.Set(name='Bottom Flange edge2', edges =

myAssembly.instances['IPE-1'].edges.findAt(

373 ((0.1*W,-H+0.5*tf,L),),((-0.1*W,-H+0.5*tf,L),),))

374 mySet_15 = myAssembly.Set(name='Side face1 IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

375

((0.1*W,-0.5*tf,0),),((0.1*W,-H+0.5*tf,0),),((0,-0.5*H,0),),((-0.1

*W,-0.5*tf,0),),((-0.1*W,-H+0.5*tf,0),),))

376 mySet_16 = myAssembly.Set(name='Side face2 IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

377

((0.1*W,-0.5*tf,L),),((0.1*W,-H+0.5*tf,L),),((0,-0.5*H,L),),((-0.1

*W,-0.5*tf,L),),((-0.1*W,-H+0.5*tf,L),),))

378 # Edges of flange on one side, left followed by right side

379 mySet_17 = myAssembly.Set(name='Side edge IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

380 ((-0.5*W,-0.5*tf,0.1*L),),((-0.5*W,-H+0.5*tf,0.1*L),),

381 ((-0.5*W,-0.5*tf,0.5*L),),((-0.5*W,-H+0.5*tf,0.5*L),),

382 ((-0.5*W,-0.5*tf,0.8*L),),((-0.5*W,-H+0.5*tf,0.8*L),),))

383 mySet_18 = myAssembly.Set(name='Side edge2 IPE', edges =

myAssembly.instances['IPE-1'].edges.findAt(

384 ((0.5*W,-0.5*tf, 0.1*L),),((0.5*W,-H+0.5*tf,0.1*L),),

385 ((0.5*W,-0.5*tf, 0.5*L),),((0.5*W,-H+0.5*tf,0.5*L),),

386 ((0.5*W,-0.5*tf, 0.8*L),),((0.5*W,-H+0.5*tf,0.8*L),),))

387 # full beam

388 mySet_19 = myAssembly.Set(name='IPE', faces =

myAssembly.instances['IPE-1'].faces.findAt(

389

((0.1*W,-0.5*tf,0.1*L),),((-0.1*W,-0.5*tf,0.1*L),),((0.1*W,-H+0.5*

tf,0.1*L),),((-0.1*W,-H+0.5*tf,0.1*L),),

390

((0.1*W,-0.5*tf,0.5*L),),((-0.1*W,-0.5*tf,0.5*L),),((0.1*W,-H+0.5*

tf,0.5*L),),((-0.1*W,-H+0.5*tf,0.5*L),),

391

((0.1*W,-0.5*tf,0.8*L),),((-0.1*W,-0.5*tf,0.8*L),),((0.1*W,-H+0.5*

tf,0.8*L),),((-0.1*W,-H+0.5*tf,0.8*L),),

392 ((0,-0.5*H,0.1*L),),))

393

394 elif section=='RHS':

395 mySet_11 = myAssembly.Set(name='Top edge1', edges =

myAssembly.instances['RHS-1'].edges.findAt(

396 ((0.1*W,H-0.5*t,0),),))

397 mySet_12 = myAssembly.Set(name='Top edge2', edges =

myAssembly.instances['RHS-1'].edges.findAt(

398 ((0.1*W,H-0.5*t,L),),))

399 mySet_13 = myAssembly.Set(name='Bottom edge1', edges =

myAssembly.instances['RHS-1'].edges.findAt(

400 ((0.1*W,0.5*t,0),),((-0.5*e,0.5*t,0),),((W+0.5*e,0.5*t,0),),))

401 mySet_14 = myAssembly.Set(name ='Bottom edge2', edges =

myAssembly.instances['RHS-1'].edges.findAt(

402 ((0.1*W,0.5*t,L),),((-0.5*e,0.5*t,L),),((W+0.5*e,0.5*t,L),),))

403

404 if type=='Beam1':

405 # part instance

406 Sides = myPart_21.faces.findAt(

(((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L),),

407

((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),((-0.5*e,0.5*t,0

.5*L),),((W+0.5*e,0.5*t,0.5*L),),

408 (((W-0.5*t),0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

409

((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.1*L),),((-0.5*e,0.5*t,0

.1*L),),((W+0.5*e,0.5*t,0.1*L),),

410 (((W-0.5*t),0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

411

((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),((-0.5*e,0.5*t,0

.8*L),),((W+0.5*e,0.5*t,0.8*L),),)

412 Set_11 = myPart_1.Set(name='Flanges', faces = (Sides,))

413 mySet_15 = myAssembly.Set(name='Side face1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

414 ((0.5*t,

0.5*H,0),),((0.1*W,H-0.5*t,0),),((W-0.5*t,0.5*H,0),),((0.1*W,0

.5*t,0),),

415 ((-0.5*e,0.5*t,0),),((W+0.5*e,0.5*t,0),),))

416 mySet_16 = myAssembly.Set(name='Side face2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

417 ((0.5*t,

0.5*H,L),),((0.1*W,H-0.5*t,L),),((W-0.5*t,0.5*H,L),),((0.1*W,0

.5*t,L),),

418 ((-0.5*e,0.5*t,L),),((W+0.5*e,0.5*t,L),),))

419 mySet_17 = myAssembly.Set(name='Side edge1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

420 ((-e,0.5*t,0.1*L),),((0.5*t,H-0.5*t,0.1*L),),

421 ((-e,0.5*t,0.5*L),),((0.5*t,H-0.5*t,0.5*L),),

422 ((-e,0.5*t,0.8*L),),((0.5*t,H-0.5*t,0.8*L),),))

423 mySet_18 = myAssembly.Set(name='Side edge2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

424 ((W+e,0.5*t,0.1*L),),((W-0.5*t,H-0.5*t,0.1*L),),

425 ((W+e,0.5*t,0.5*L),),((W-0.5*t,H-0.5*t,0.5*L),),

426 ((W+e,0.5*t,0.8*L),),((W-0.5*t,H-0.5*t,0.8*L),),))

427 mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

428

((-0.5*e,0.5*t,0.1*L),),((0.5*W,0.5*t,0.1*L),),((W+0.5*e,0.5*t

,0.1*L),),

429

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*

H,0.1*L),),

430

((-0.5*e,0.5*t,0.5*L),),((0.5*W,0.5*t,0.5*L),),((W+0.5*e,0.5*t

,0.5*L),),

431

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*

H,0.5*L),),

432

((-0.5*e,0.5*t,0.8*L),),((0.5*W,0.5*t,0.8*L),),((W+0.5*e,0.5*t

,0.8*L),),

433

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*

H,0.8*L),),))

434

435 else:

436 Sides = myPart_1.faces.findAt(

(((W-0.5*t),0.5*H,0.5*L),),((0.5*W,(H-0.5*t),0.5*L),),

437 ((0.5*t,0.5*H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

438 (((W-0.5*t),0.5*H,0.1*L),),((0.5*W,(H-0.5*t),0.1*L),),

439 ((0.5*t,0.5*H,0.1*L),),((0.5*W,0.5*t,0.1*L),),

440 (((W-0.5*t),0.5*H,0.8*L),),((0.5*W,(H-0.5*t),0.8*L),),

441 ((0.5*t,0.5*H,0.8*L),),((0.5*W,0.5*t,0.8*L),),)

442 Set_11 = myPart_1.Set(name='Flanges', faces = (Sides,))

443 mySet_15 = myAssembly.Set(name='Side face1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

444 ((0.5*t,

0.5*H,0),),((0.1*W,H-0.5*t,0),),((W-0.5*t,0.5*H,0),),((0.1*W,0

.5*t,0),),

445))

446 mySet_16 = myAssembly.Set(name='Side face2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

447 ((0.5*t,

0.5*H,L),),((0.1*W,H-0.5*t,L),),((W-0.5*t,0.5*H,L),),((0.1*W,0

.5*t,L),),

448))

449 mySet_17 = myAssembly.Set(name='Side edge1 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

450 ((0.5*t,0.5*t,0.1*L),),((0.5*t,H-0.5*t,0.1*L),),

451 ((0.5*t,0.5*t,0.5*L),),((0.5*t,H-0.5*t,0.5*L),),

452 ((0.5*t,0.5*t,0.8*L),),((0.5*t,H-0.5*t,0.8*L),),))

453 mySet_18 = myAssembly.Set(name='Side edge2 RHS', edges =

myAssembly.instances['RHS-1'].edges.findAt(

454 ((W-0.5*t,0.5*t,0.1*L),),((W-0.5*t,H-0.5*t,0.1*L),),

455 ((W-0.5*t,0.5*t,0.5*L),),((W-0.5*t,H-0.5*t,0.5*L),),

456 ((W-0.5*t,0.5*t,0.8*L),),((W-0.5*t,H-0.5*t,0.8*L),),))

457 mySet_19 = myAssembly.Set(name='RHS', faces =

myAssembly.instances['RHS-1'].faces.findAt(

458

((0.5*t,0.5*H,0.1*L),),((0.5*W,H-0.5*t,0.1*L),),((W-0.5*t,0.5*

H,0.1*L),),((0.5*W,0.5*t,0.1*L),),

459

((0.5*t,0.5*H,0.5*L),),((0.5*W,H-0.5*t,0.5*L),),((W-0.5*t,0.5*

H,0.5*L),),((0.5*W,0.5*t,0.5*L),),

460

((0.5*t,0.5*H,0.8*L),),((0.5*W,H-0.5*t,0.8*L),),((W-0.5*t,0.5*

H,0.8*L),),((0.5*W,0.5*t,0.8*L),),))

461 elif section=='Decking':

462 pass

463

464 elif elements=='volume':

465 pass

466 #

--

467 # Local coordinate system #

468 #print('start local coordinate')

469 if section=='IPE':

470 myLocCoor_1 = myAssembly.DatumCsysByThreePoints(coordSysType = CARTESIAN,

471 name='Local Coordinates 1',

472

origin=myAssembly.instances[section+'-1'].vertices.findAt((0,-0.5*tf,0

),),

473

point1=myAssembly.instances[section+'-1'].vertices.findAt((0.5*W,-0.5*

tf,0),),

474

point2=myAssembly.instances[section+'-1'].vertices.findAt((0,-H+0.5*tf

,0),),)

475 LC_1 = myLocCoor_1.id

476 myModel_2.parts[section].DatumCsysByThreePoints(coordSysType = CARTESIAN,

477 name='Datum csys-1',

478 origin=myModel_2.parts[section].vertices.findAt((0,-0.5*tf,0),),

479 point1=myModel_2.parts[section].vertices.findAt((0.5*W,-0.5*tf,0),),

480 point2=myModel_2.parts[section].vertices.findAt((0.5*W,-H+0.5*tf,0),))

481

myModel_2.parts[section].MaterialOrientation(additionalRotationType=ROTATI

ON_NONE,

482 axis=AXIS_2, angle=0.0, localCsys =

myModel_2.parts[section].datums[15],

483 orientationType=SYSTEM, region=Set_11)

484

myModel_2.parts[section].MaterialOrientation(additionalRotationType=ROTATI

ON_NONE,

485 axis=AXIS_2, angle=0, localCsys=myModel_2.parts[section].datums[15],

486 orientationType=SYSTEM, region=Set_12)

487 elif section=='RHS':

488 if increment==0: count=12

489 else: count+=1

490 myLocCoor_1 = myAssembly.DatumCsysByThreePoints(coordSysType = CARTESIAN,

491 name='Local Coordinates 1',

492

origin=myAssembly.instances[section+'-1'].vertices.findAt((0.5*t,0.5*t

,0),),

493

point1=myAssembly.instances[section+'-1'].vertices.findAt((0.5*t,H-0.5

*t,0),),

494

point2=myAssembly.instances[section+'-1'].vertices.findAt((W-0.5*t,H-0

.5*t,0),))

495 LC_1 = myLocCoor_1.id

496 myModel_2.parts[section].DatumCsysByThreePoints(coordSysType = CARTESIAN,

497 name='Datum csys-1',

498 origin=myModel_2.parts[section].vertices.findAt((0.5*t,0.5*t,0),),

499 point1=myModel_2.parts[section].vertices.findAt((0.5*t,H-0.5*t,0),),

500 point2=myModel_2.parts[section].vertices.findAt((W-0.5*t,H-0.5*t,0),))

501

myModel_2.parts[section].MaterialOrientation(additionalRotationType=ROTATI

ON_NONE,

502 axis=AXIS_2, angle=0, localCsys =

myModel_2.parts[section].datums[count],

503 orientationType=SYSTEM, region=Set_11)

504

505 # Reference Points #

506 if section=='IPE':

507 myReferencePoint_1 = myAssembly.ReferencePoint(point=(0,-H+0.5*tf,0))

508 elif section=='RHS':

509 myReferencePoint_1 = myAssembly.ReferencePoint(point=(0.5*t,0.5*t,0))

510 elif section=='Decking':

511 pass

512 RP_1 = myReferencePoint_1.id

513 mySet_RP1 = myAssembly.Set(name='Reference Point 1',

referencePoints=(myAssembly.referencePoints[RP_1],))

514

515 if section == 'IPE':

516 myReferencePoint_2 = myAssembly.ReferencePoint(point=(0,-0.5*tf,1./3*L))

517 myReferencePoint_3 = myAssembly.ReferencePoint(point=(0,-H+0.5*tf,1./3*L))

518 myReferencePoint_4 = myAssembly.ReferencePoint(point=(0,-0.5*tf,2./3*L))

519 myReferencePoint_5 = myAssembly.ReferencePoint(point=(0,-H+0.5*tf,2./3*L))

520 elif section=='RHS':

521 myReferencePoint_2 = myAssembly.ReferencePoint(point=(-e,0.5*t,1./3*L))

522 myReferencePoint_3 = myAssembly.ReferencePoint(point=(W, 0.5*t, 1./3*L))

523 myReferencePoint_4 = myAssembly.ReferencePoint(point=(-e,0.5*t,2./3*L))

524 myReferencePoint_5 = myAssembly.ReferencePoint(point=(W, 0.5*t, 2./3*L))

525 RP2 = myReferencePoint_2.id

526 RP3 = myReferencePoint_3.id

527 RP4 = myReferencePoint_4.id

528 RP5 = myReferencePoint_5.id

529 mySet_RP2 = myAssembly.Set(name='RP2',

referencePoints=(myAssembly.referencePoints[RP2],))

530 mySet_RP3 = myAssembly.Set(name='RP3',

referencePoints=(myAssembly.referencePoints[RP3],))

531 mySet_RP4 = myAssembly.Set(name='RP4',

referencePoints=(myAssembly.referencePoints[RP4],))

532 mySet_RP5 = myAssembly.Set(name='RP5',

referencePoints=(myAssembly.referencePoints[RP5],))

533

534 # thermal expansion coefficient #

535 path_Properties = r'D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\properties'

536 if material=='Aluminium':

537 with open(path_Properties+'\\'+'ThermalExpAlu EC9.csv','r') as f:

538 reader=(csv.reader(f, delimiter=';'))

539 Expansion = ()

540 for row, column in enumerate(reader):

541 v=[]

542 for value in column:

543 v=v+[float(value),]

544 Expansion = Expansion + (v,)

545 f.close()

546 elif material=='Steel':

547 with open(path_Properties+'\\'+'ThermalExpSteel EC3.csv', 'r') as f:

548 reader=(csv.reader(f, delimiter=';'))

549 Expansion=()

550 for row, column in enumerate(reader):

551 v=[]

552 for value in column:

553 v=v+[float(value),]

554 Expansion = Expansion + (v,)

555 f.close()

556 myModel_2.materials[material].Expansion(type=ORTHOTROPIC,

temperatureDependency=ON, zero=20,

557 table=Expansion)

558 del Expansion, v

559

560 #

--

561 ## Step ##

562 #print('start step')

563 if increment== 0:

564 myModel_2.StaticStep(name='General_Analysis_0', nlgeom = ON,

previous='Initial',

565 maxNumInc=1000, initialInc=1, minInc=1e-9)

566 # creating restart file

567 myModel_2.steps['General_Analysis_0'].Restart(frequency=1,

numberIntervals=0,

568 overlay=ON, timeMarks=OFF)

569 elif increment==1:

570 myModel_2.StaticStep(name='General_Analysis_0', nlgeom=ON,

previous='Initial',

571 maxNumInc=1000, initialInc=1, minInc=1e-9)

572 myModel_2.StaticStep(name=NewStep, nlgeom=ON,

previous='General_Analysis_0',

573 maxNumInc=1000, initialInc=1, minInc=1e-9)

574 # creating restart file

575 myModel_2.steps[NewStep].Restart(frequency = 1, numberIntervals=0,

576 overlay=ON, timeMarks=OFF)

577 elif increment>1:

578 myModel_2.StaticStep(name=PrevStep, nlgeom = ON, previous='Initial',

579 maxNumInc=1000, initialInc=1, minInc=1e-9)

580 myModel_2.StaticStep(name=NewStep, nlgeom=ON, previous=PrevStep,

581 maxNumInc=1000, initialInc=1, minInc=1e-9)

582 # creating restart file

583 myModel_2.steps[NewStep].Restart(frequency = 1, numberIntervals=0,

584 overlay=ON, timeMarks=OFF)

585 #

--

586 ## Ties ##

587 #print('start ties')

588 myModel_2.Coupling(controlPoint=mySet_RP1, couplingType = KINEMATIC,

589 influenceRadius = WHOLE_SURFACE, name = 'CP-1', surface=mySurface_13,

590 u1=ON,u2=ON, u3=ON,ur1=ON,ur2=ON,ur3=ON)

591 if section=='IPE':

592 mySurface_4a = myAssembly.Set(name='Top flange', faces =

myAssembly.instances['IPE-1'].faces.findAt(

593

((-0.1*W,-0.5*tf,1/4.*L),),((-0.1*W,-0.5*tf,1/2.*L),),((-0.1*W,-0.5*tf

,3/4.*L),),

594

((0.1*W,-0.5*tf,1/4.*L),),((0.1*W,-0.5*tf,1/2.*L),),((0.1*W,-0.5*tf,3/

4.*L),),))

595 mySurface_4b = myAssembly.Set(name='Bottom flange', faces =

myAssembly.instances['IPE-1'].faces.findAt(

596

((-0.1*W,-H+0.5*tf,1/4.*L),),((-0.1*W,-H+0.5*tf,1/2.*L),),((-0.1*W,-H+

0.5*tf,3/4.*L),),

597

((0.1*W,-H+0.5*tf,1/4.*L),),((0.1*W,-H+0.5*tf,1/2.*L),),((0.1*W,-H+0.5

*tf,3/4.*L),),))

598 elif section =='RHS':

599 mySurface_4a = myAssembly.Set(name='Top flange', faces =

myAssembly.instances['RHS-1'].faces.findAt(

600

((0.5*W,H-0.5*t,1/4.*L),),((0.5*W,H-0.5*t,1/2.*L),),((0.5*W,H-0.5*t,3/

4.*L),),))

601 if type=='Beam3':

602 mySurface_4b = myAssembly.Set(name='Bottom flange', faces =

myAssembly.instances['RHS-1'].faces.findAt(

603

((0.5*W,0.5*t,1/4.*L),),((0.5*W,0.5*t,1/2.*L),),((0.5*W,0.5*t,3/4.

*L),),))

604 elif type=='Beam1':

605 mySurface_4b = myAssembly.Set(name='Bottom flange', faces =

myAssembly.instances['RHS-1'].faces.findAt(

606

((-0.5*e,0.5*t,1/4.*L),),((0.5*W,0.5*t,1/4.*L),),((W+0.5*e,0.5*t,1

/4.*L),),

607

((-0.5*e,0.5*t,1/2.*L),),((0.5*W,0.5*t,1/2.*L),),((W+0.5*e,0.5*t,1

/2.*L),),

608

((-0.5*e,0.5*t,3/4.*L),),((0.5*W,0.5*t,3/4.*L),),((W+0.5*e,0.5*t,3

/4.*L),),))

609

610 all_nodes = myAssembly.instances[section+'-1'].nodes

611 left_nodes_top = []

612 length_left = []

613 length_right = []

614 right_nodes_top = []

615 left_nodes_bottom = []

616 right_nodes_bottom = []

617 for Length in list(range(-5,6,1)):

618 length_left.append(L/3.+Length*mesh_size)

619 length_right.append(2*L/3.+Length*mesh_size)

620

621 for n in all_nodes:

622 ycoord = n.coordinates[1]

623 zcoord = n.coordinates[2]

624 if section =='IPE':

625 if ycoord == -0.5*tf:

626 if zcoord in length_left: left_nodes_top.append(n)

627 elif zcoord in length_right: right_nodes_top.append(n)

628 elif ycoord==-H+0.5*tf:

629 if zcoord in length_left: left_nodes_bottom.append(n)

630 elif zcoord in length_right: right_nodes_bottom.append(n)

631 else:

632 if ycoord== H-0.5*t:

633 if zcoord in length_left: left_nodes_top.append(n)

634 elif zcoord in length_right: right_nodes_top.append(n)

635 elif ycoord == 0.5*t:

636 if zcoord in length_left: left_nodes_bottom.append(n)

637 elif zcoord in length_right: right_nodes_bottom.append(n)

638

639 left_top = myAssembly.Set(nodes=MeshNodeArray(left_nodes_top),

name='left_top')

640 left_bottom = myAssembly.Set(nodes=MeshNodeArray(left_nodes_bottom),

name='left_bottom')

641 right_top = myAssembly.Set(nodes=MeshNodeArray(right_nodes_top),

name='right_top')

642 right_bottom = myAssembly.Set(nodes=MeshNodeArray(right_nodes_bottom),

name='right_bottom')

643

644 myModel_1.RigidBody(name='left_top', refPointRegion=mySet_RP2,

645 tieRegion=left_top, refPointAtCOM=ON)

646 myModel_1.RigidBody(name='left_bottom', refPointRegion=mySet_RP3,

647 tieRegion=left_bottom, refPointAtCOM=ON)

648 myModel_1.RigidBody(name='right_top', refPointRegion=mySet_RP4,

649 tieRegion=right_top, refPointAtCOM=ON)

650 myModel_1.RigidBody(name='right_bottom', refPointRegion=mySet_RP5,

651 tieRegion=right_bottom, refPointAtCOM=ON)

652

653 ## Boundary conditions ##

654 # these can differ between top edge, bottom edge or end face

655 if type=='Column':

656 myModel_2.DisplacementBC (createStepName='Initial', name= 'Bottom',

657 u1=0,u2=0,u3=0,ur1=0, ur2=0, ur3=0, region= mySet_RP1)

658

659 else:

660 myModel_2.DisplacementBC (createStepName='Initial', name = 'Hinge',

661 u1=UNSET, u2=0, u3=0, ur1=UNSET, ur2=UNSET, ur3=UNSET, region=

mySet_RP1)

662 myModel_2.DisplacementBC (createStepName='Initial', name = 'Roller',

663 u1=UNSET,u2=0,u3=UNSET,ur1=UNSET,ur2=UNSET,ur3=UNSET, region=

mySet_12)

664 myModel_2.DisplacementBC (createStepName= 'Initial', name='Lateral',

665 u1=0,u2=UNSET,u3=UNSET,ur1=UNSET,ur2=UNSET,ur3=UNSET, region=

mySet_17)

666

667 #

--

668 ## Loads ##

669 if section == 'RHS': divide = 2

670 elif section =='RHS' and type=='Beam1': divide=4

671 else: divide = 3

672 if type=="Beam3":

673 myModel_2.ConcentratedForce(name='Load1', createStepName = NewStep,

674 region = myAssembly.instances[section+'-1'].sets['Load_top1'],

675 cf2 = -load/divide, distributionType=UNIFORM, field='',

localCsys=None)

676 myModel_2.ConcentratedForce(name='Load2', createStepName = NewStep,

677 region = myAssembly.instances[section+'-1'].sets['Load_top2'],

678 cf2 = -load/divide, distributionType=UNIFORM, field='',

localCsys=None)

679 elif type=='Beam1':

680 myModel_2.ConcentratedForce(name='Load1', createStepName = NewStep,

681 region = myAssembly.instances[section+'-1'].sets['Load_top1'],

682 cf2 = -0.25*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

683 myModel_2.ConcentratedForce(name='Load2', createStepName = NewStep,

684 region = myAssembly.instances[section+'-1'].sets['Load_top2'],

685 cf2 = -0.25*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

686 myModel_2.ConcentratedForce(name='Load3', createStepName = NewStep,

687 region = myAssembly.instances[section+'-1'].sets['Load_bottom1'],

688 cf2 = -0.75*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

689 myModel_2.ConcentratedForce(name='Load4', createStepName = NewStep,

690 region = myAssembly.instances[section+'-1'].sets['Load_bottom2'],

691 cf2 = -0.75*load/divide, distributionType=UNIFORM, field='',

localCsys=None)

692

693 #

--

694 ## Predifined field ##

695 ## Initial ##

696 #print('Start predefined field: '+str(increment))

697 if increment==0:

698 myModel_2.Temperature (createStepName = 'Initial',

crossSectionDistribution =

699 CONSTANT_THROUGH_THICKNESS, distributionType=UNIFORM,

magnitudes=(20.0,),

700 name = 'Initial Temperature', region = mySet_19)

701 if increment>0:

702 myModel_2.InitialState(createStepName='Initial', endIncrement=STEP_END,

endStep=LAST_STEP,

703 fileName=PrevJob, instances=(myAssembly.instances[section+'-1'],),

704 name='Initial Temperature', updateReferenceConfiguration=OFF)

705 if type!='Column':

706 Thermal =

'Thermal_Analysis_'+type+'_'+section+'_'+material+'_Ins_'+insulated+'_

'+floor

707 elif type=='Column':

708 Thermal =

'Thermal_Analysis_'+type+'_'+section+'_'+material+'_Ins_'+insulated

709 path = r"D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS"+"\\"+Thermal

710 myList = input_variables.Temperature_field(path,L, Thermal, increment,

mesh_size)

711

712 myModel_2.MappedField(description = 'midside', fieldDataType = SCALAR,

localCsys = None,

713 name = 'Coord_Temp_field', partLevelData = False, pointDataFormat =

XYZ,

714 regionType = POINT, xyzPointData = myList)

715 myModel_2.Temperature(createStepName=NewStep, crossSectionDistribution=

716 CONSTANT_THROUGH_THICKNESS, distributionType=FIELD, field =

'Coord_Temp_field',

717 interpolate=MIDSIDE_ONLY, magnitudes=(1.0,), name = 'Temperature',

region = mySet_19)

718 del myList

719

720 #

--

721 ## Output request ##

722 Variables = ('COORD','TEMP','S', 'U','LE','PE','E')

723 myModel_2.fieldOutputRequests['F-Output-1'].setValues(variables = Variables,

frequency = Step_time)

724 #

--

725 print('Start job of increment '+analysis+': '+str(increment))

726 ## Job ##

727 try:

728 try:

729 if increment==0:

730 myModel_2.keywordBlock.synchVersions(storeNodesAndElements=False)

731 myJob = mdb.Job(name = NewJob, model = myModel_2, type =

ANALYSIS, scratch = Scratch)

732 else:

733 myJob = mdb.Job(name = NewJob, model = myModel_2, type =

RESTART, scratch = Scratch)

734 myJob.submit(consistencyChecking=OFF)

735 myJob.waitForCompletion()

736

737 # result writing to csv

738 if increment==0: step_name='General_Analysis_0'

739 else: step_name = NewStep

740 odb = session.openOdb(name = NewJob +'.odb')

741 csv_writer_thermal_analysis.CSV_writer_mechanical(odb, NewJob,

step_name)

742 odb.close()

743

744 if myJob.status != ABORTED:

745 if increment == 0: increment+=1

746 else: increment+=5

747 else:

748 odb = session.openOdb(name = NewJob + '.odb', readOnly=False)

749 odb.save()

750 break

751 except:

752 odb = session.openOdb(name = NewJob + '.odb', readOnly=False)

753 odb.save()

754 break

755 except OdbError, error:

756 print(error)

757 break

758

105

G: POSTPROCESSING SCRIPT

1 ## figure plotting ##

2 import matplotlib.pyplot as plt

3 import matplotlib.image as mpimg

4 import matplotlib.ticker as ticker

5 import matplotlib.gridspec as gridspec

6 import matplotlib.patches as patches

7 from matplotlib.lines import Line2D

8 from matplotlib.ticker import AutoMinorLocator

9 from mpl_toolkits.axisartist.axislines import SubplotZero

10 import scipy

11 from scipy import ndimage

12 from scipy import interpolate

13 from scipy.signal import savgol_filter

14 from statsmodels.nonparametric.smoothers_lowess import lowess

15 import matplotlib.transforms as mtransforms

16 import pandas as pd

17 import numpy as np

18 import copy

19 import sys

20 import csv

21 import cowsay

22 sys.path.append(r"D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\Scripts\Intumescent paint")

23

24 # Mechanische analyse

25 def read_data(numframes, model, variable, location): #variable of type ['Coord',

'Temp','Stresses','Displacements','Rotations','Log_strains','Plastic_strains']

26 try:

27 if location=='': location==r'D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS'

28 path = location+'\\'+str(model)+'\\3D_Model_GA_new'

29 if variable == 'Temp':

30 name=['']

31 dict1 = pd.read_csv(path+str(0)+'_'+variable+'.txt', header=None,

names=name)

32 elif variable == 'Coord' or variable == 'Displacements' or variable

=='Rotations':

33 name=['X', 'Y', 'Z']

34 dict1 = pd.read_csv(path+str(0)+'_'+variable+'.txt', delimiter=',',

header=None, names=name)

35 else: #Stresses, Log Strains and Plastic strains

36 name=['S11','S12', 'S13', 'S22']

37 dict1 = pd.read_csv(path+str(0)+'_'+variable+'.txt', delimiter=',',

header=None, names=name)

38 #data = pd.DataFrame(dict1.items(), columns=[0], copy=True)

39 data = {0: dict1}

40 for frame in range(1,902,5):

41 try:

42 dict1 = pd.read_csv(path+str(frame)+'_'+variable+'.txt',

header=None, names=name)

43 data[frame] = dict1

44 except IOError:

45 break

46 return data

47 except FileNotFoundError: return None

48

49 def find_paint_strain(item):

50 # find first occurance where temperature value is above a certain value

51 try:

52 LE = pd.DataFrame()

53 PE = pd.DataFrame()

54 stress_temp = pd.DataFrame()

55 for L, P, T in zip(item[3], item[4], item[2]):

56 LE = pd.concat([LE, item[3][L]], axis=1)

57 PE = pd.concat([PE, item[4][P]], axis=1)

58 stress_temp = pd.concat([stress_temp, item[2][T]], axis=1)

59 location = (stress_temp.min().values > 250).argmax()

60 paint_strain = ((LE['S11'].max()).iloc[location] +

(PE['S11'].max()).iloc[location])*100+1.3

61 return paint_strain

62 except: []

63

64 def Temp_time(dictionary):

65 plt.figure()

66 plt.figsize=(6.27,3.5)

67 plt.subplots_adjust(left=0.14,bottom=0.14,right=0.96,top=0.92,hspace=0)

68 plt.ylabel('T$_{FEM}$ [Celsius]')

69 plt.xlabel('Time [min]')

70 plt.grid(lw=0.3, which='major', axis='both')

71 plt.grid(lw=0.1, which='minor', axis='both')

72 plt.xlim(right=90, left =0)

73 errorticks = [i for i,item in zip(range(30,100,5), range(40)) if

item<(len(dictionary[0][1])/2)] # get list of differing tick spaces so lines

don't overlap

74 plt.ylim(bottom=0,top=800)

75 counter=0

76 for item in dictionary:

77 try:

78 if item[1] == None: continue

79 else:

80 if 'Column' in item[0]:

81 type = 'Columns'

82 item[0] = item[0].replace('Mech_Column_', '')

83 item[0] = item[0].replace('_Concrete','')

84 elif 'Beam3' in item[0]:

85 type='3-sided Beams'

86 item[0] = item[0].replace('Mech_Beam3_', '')

87 elif 'Beam1' in item[0]:

88 type = 'Integrated Beams'

89 item[0] = item[0].replace('Mech_Beam1_', '')

90 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

91 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

92 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

93 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

94 item[0] = item[0].replace('_', ' ')

95

96 Label = item[0]

97 data = pd.DataFrame()

98 for j in item[1]:

99 data = pd.concat([data,item[1][j]],axis=1)

100 y = data.mean()

101 x = list(range(0,len(y), 1))

102 x = [item / 2 for item in x]

103 lowerlim = y - data.min()

104 upperlim = data.max() - y

105 limits=[lowerlim, upperlim]

106 plt.errorbar(x,y,yerr=limits, label = Label, lw=0.8,

107 elinewidth=0.4, errorevery=errorticks[counter])

108 counter+=1

109 except TypeError: continue

110

111 plt.title('Temperature - Time curve '+type)

112 plt.minorticks_on()

113 plt.legend(loc='lower right', fontsize=9, frameon=True, shadow=False,

framealpha=0.5)

114 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'temp.png', dpi=400)

115 plt.show()

116 plt.close()

117

118 def Strain_time(dictionary):

119 fig = plt.figure(figsize=(8,6))

120 grid = fig.add_gridspec(nrows=2,ncols=2)

121 fig.subplots_adjust(left=0.1,bottom=0.14,right=0.9,top=0.9, wspace=0.3, hspace=.5)

122 strain = fig.add_subplot(grid[0])

123 deflect = fig.add_subplot(grid[1])

124 stress = fig.add_subplot(grid[2])

125

126 strain.grid(lw=0.3, which='major', axis='both')

127 strain.grid(lw=0.1, which='minor', axis='both')

128 deflect.grid(lw=0.3, which='major', axis='both')

129 deflect.grid(lw=0.1, which='minor', axis='both')

130 stress.grid(lw=0.3, which='major', axis='both')

131 stress.grid(lw=0.1, which='minor', axis='both')

132

133 for item in dictionary:

134 try:

135 if item[1] == None: continue

136 else:

137 if 'Column' in item[0]:

138 type = 'Columns'

139 item[0] = item[0].replace('Mech_Column_', '')

140 item[0] = item[0].replace('_Concrete','')

141 elif 'Beam3' in item[0]:

142 type='3-sided Beams'

143 item[0] = item[0].replace('Mech_Beam3_', '')

144 elif 'Beam1' in item[0]:

145 type = 'Integrated Beams'

146 item[0] = item[0].replace('Mech_Beam1_', '')

147 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

148 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

149 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

150 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

151 item[0] = item[0].replace('_', ' ')

152

153 Label= item[0]

154 LE = pd.DataFrame()

155 PE = pd.DataFrame()

156 disp = pd.DataFrame()

157 Strs = pd.DataFrame()

158 for L, P, D, S in zip(item[1], item[2],item[3], item[4]):

159 LE= pd.concat([LE,item[1][L]], axis=1)

160 PE= pd.concat([PE,item[2][P]], axis=1)

161 disp = pd.concat([disp, item[3][D]], axis=1)

162 Strs = pd.concat([Strs, item[4][S]], axis=1)

163

164 y1 = LE['S11'].max()+PE['S11'].max()

165 y2 = disp['Y'].max()

166 y3 = Strs['S11'].max()

167 x= list(range(0,len(y1),1))

168 x= [i / 2 for i in x]

169 strain.plot(x,y1, label=Label, lw=0.8)

170 deflect.plot(x,y2, label=Label, lw=0.8)

171 stress.plot(x,y3, label=Label, lw=0.8)

172 except TypeError: continue

173

174 strain.set(ylabel=r'ϵ_{FEM} ', xlabel='Time [min]',

175 title='Strain - Time curve '+type, xlim=(0,90))

176 deflect.set(ylabel='u$_{FEM}$ [mm]', xlabel='Time [min]',

177 title='Deflection - Time curve '+type, xlim=(0,90))

178 stress.set(ylabel= r'σ_{FEM} [MPa]', xlabel='Time [min]',

179 title='Stress - Time curve '+type, xlim=(0,90))

180 deflect.minorticks_on()

181 strain.minorticks_on()

182 stress.minorticks_on()

183

184 handles,labels = stress.get_legend_handles_labels()

185 legend = fig.add_subplot(grid[3])

186 legend.axis('off')

187 legend.legend(handles,labels, loc='center left', fontsize=9, frameon=True,

shadow=False,

188 framealpha =0.5)

189

190 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'stress-disp-strain.png', dpi=400)

191 plt.show()

192 plt.close()

193

194 def stress_strain(dictionary):

195 fig = plt.figure(figsize=(6.27,3.5))

196 fig.subplots_adjust(left=0.10,bottom=0.14,right=0.94,top=0.9, wspace=0)

197 strain = fig.add_subplot()

198 strain.grid(lw=0.3, which='major', axis='both')

199 strain.grid(lw=0.1, which='minor', axis='both')

200

201 for item in dictionary:

202 try:

203 if item[1] == None: continue

204 else:

205 if 'Column' in item[0]:

206 type = 'Columns'

207 item[0] = item[0].replace('Mech_Column_', '')

208 item[0] = item[0].replace('_Concrete','')

209 elif 'Beam3' in item[0]:

210 type='3-sided Beams'

211 item[0] = item[0].replace('Mech_Beam3_', '')

212 elif 'Beam1' in item[0]:

213 type = 'Integrated Beams'

214 item[0] = item[0].replace('Mech_Beam1_', '')

215 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

216 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

217 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

218 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

219 item[0] = item[0].replace('_', ' ')

220

221 Label= item[0]

222 LE = pd.DataFrame()

223 PE = pd.DataFrame()

224 Strs = pd.DataFrame()

225 Temp = pd.DataFrame()

226 proof_stress = list()

227 for L, P, S, T in zip(item[1], item[2],item[3], item[4]):

228 LE= pd.concat([LE,item[1][L]], axis=1)

229 PE= pd.concat([PE,item[2][P]], axis=1)

230 Strs = pd.concat([Strs, item[3][S]], axis=1)

231 Temp = pd.concat([Temp, item[4][T]], axis=1)

232 for T in Temp.max():

233 if 'Alu' in Label:

234 if T<175: proof_stress.append(((120-205)/(175-20))*T+205)

235 elif T<200: proof_stress.append(((110-120)/25)*T+(120+70))

236 elif T<225: proof_stress.append(((100-110)/25)*T+(110+80))

237 elif T<250: proof_stress.append(((88-100)/25)*T+(100+108))

238 elif T<275: proof_stress.append(((75-88)/25)*T+(88+130))

239 elif T<300: proof_stress.append(((60-75)/25)*T+(75+165))

240 elif T<325: proof_stress.append(((46-60)/25)*T+(60+168))

241 elif T<350: proof_stress.append(((34-46)/25)*T+(46+156))

242 elif T<450: proof_stress.append(((1-34)/100)*T+(34+462))

243 else: proof_stress.append(0)

244 else:

245 if T<200: proof_stress.append(((203.9-800)/180)*T+800)

246 elif T<300:

proof_stress.append(((137.6-203.9)/100)*T+(203.9+132.6))

247 elif T<400:

proof_stress.append(((112.5-137.6)/100)*T+(137.6+75.3))

248 elif T<500:

proof_stress.append(((89.3-112.5)/100)*T+(112.5+92.8))

249 elif T<600:

proof_stress.append(((47.5-89.3)/100)*T+(89.3+209))

250 elif T<800:

proof_stress.append(((0.1-47.5)/200)*T+(47.5+142.2))

251 else: proof_stress.append(0)

252 y=list()

253 #print(proof_stress)

254 #print(Strs['S11'].max())

255 #print(len(proof_stress),len(Strs['S11'].max()), len(Temp.max()))

256 for s1, s2 in zip(Strs['S11'].max(), proof_stress):

257 try: y.append(s1/s2)

258 except : y.append(0)

259 x = LE['S11'].max() + PE['S11'].max()

260 strain.plot(x,y, label=Label, lw=0.8)

261 except TypeError: continue

262

263 strain.set(ylabel=r'$\sigma_{0.2\theta}$ / σ_{FEM} ',

xlabel=r'ϵ_{FEM}',

264 title='Stress - Strain curve '+type,)

265 strain.minorticks_on()

266 strain.legend(loc='upper right', fontsize=9, frameon=True, shadow=False,

framealpha=0.5)

267

268 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'stress-strain.png', dpi=400)

269 plt.show()

270 plt.close()

271

272 def strain_and_rate(dictionary):

273 fig = plt.figure(figsize=(6.27,3.5))

274 grid = fig.add_gridspec(nrows=1,ncols=2)

275 fig.subplots_adjust(left=0.1,bottom=0.14,right=0.98,top=0.9, wspace=0.3,

hspace=.5)

276 strain = fig.add_subplot(grid[0])

277 strain_rate = fig.add_subplot(grid[1])

278

279 strain.grid(lw=0.3, which='major', axis='both')

280 strain.grid(lw=0.1, which='minor', axis='both')

281 strain_rate.grid(lw=0.3, which='major', axis='both')

282 strain_rate.grid(lw=0.1, which='minor', axis='both')

283

284 # if 'paint' in dictionary[0][0]:

285 # strain.plot([0,90],[1.3,1.3], 'k-.', label='Paint strain limit', lw=0.6) #

need to add strain at 120 degrees celsius

286 strain.plot([0,90],[3.75,3.75], 'k-.', label='Limit value', lw=0.6)

287 strain_rate.plot([0,90],[1.7,1.7], 'k-.', lw=0.6)

288 linenumber = 1

289 for item in dictionary:

290 try:

291 if item[1] == None: continue

292 else:

293 if 'Column' in item[0]:

294 type = 'Columns'

295 item[0] = item[0].replace('Mech_Column_', '')

296 item[0] = item[0].replace('_Concrete','')

297 elif 'Beam3' in item[0]:

298 type='3-sided Beams'

299 item[0] = item[0].replace('Mech_Beam3_', '')

300 elif 'Beam1' in item[0]:

301 type = 'Integrated Beams'

302 item[0] = item[0].replace('Mech_Beam1_', '')

303 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

304 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

305 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

306 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

307 item[0] = item[0].replace('_', ' ')

308

309 Label= item[0]

310 LE = pd.DataFrame()

311 PE = pd.DataFrame()

312 for L, P, in zip(item[1], item[2]):

313 LE= pd.concat([LE,item[1][L]], axis=1)

314 PE= pd.concat([PE,item[2][P]], axis=1)

315

316 y1 = LE['S11'].max()+PE['S11'].max() #logarithmic true strains

317 x= list(range(0,len(y1),1))

318 x= [i / 2 for i in x]

319 #y2 = LE['S11'].max()) # LE strains and plastic strains

320 y3 = np.zeros(y1.shape, np.float)

321 y3[0:-1] = np.diff(y1)/np.diff(x)# derivative of a fitted polyline

to y2

322 y3[-1] = (y1[-1] - y1[-2]) / (x[-1] * x[-2])

323 strain.plot(x,y1*100, label=Label, lw=0.8)

324 Color = strain.get_lines()[linenumber].get_color()

325 #strain.plot(x,y2, '--', color = Color, lw=0.8)

326 del x[-1]

327 strain_rate.plot(x,y3*100, color = Color, label=Label, lw=0.8)

328 linenumber+=1

329 except TypeError: continue

330

331 if 'type' in locals():

332 strain.set(ylabel=r'ϵ_{FEM} $\u2030$ ', xlabel='Time [min]',

333 xlim=(0,90))

334 strain_rate.set(ylabel=r'$\delta\epsilon_{FEM}$/δt', xlabel='Time

[min]',

335 xlim=(0,90))

336 strain_rate.set_title('Strain rate '+type, fontsize=9)

337 strain.set_title('True Strain '+type, fontsize=9)

338 if type=='3-sided Beams':

339 strain.set_ylim(0,5)

340 strain_rate.set_ylim(0,2)

341 else: Label=''

342

343 strain.minorticks_on()

344 strain_rate.minorticks_on()

345 strain_rate.plot([],[],'k--', lw=0.6, label='True Logarithmic strain')

346 strain_rate.legend(loc='best', fontsize=6, frameon=True, shadow=False,

347 framealpha =0.5)

348

349 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'strain_rate.png', dpi=400)

350 plt.show()

351 plt.close()

352

353 def stress_strain_normalised(dictionary):

354 fig = plt.figure(figsize=(6.27,3.5))

355 fig.subplots_adjust(left=0.10,bottom=0.14,right=0.94,top=0.9, wspace=0.3)

356 grid = fig.add_gridspec(nrows=1, ncols=2)

357 strain_stress = fig.add_subplot(grid[0])

358 strain_normalised = fig.add_subplot(grid[1])

359

360 strain_stress.grid(lw=0.3, which='major', axis='both')

361 strain_stress.grid(lw=0.1, which='minor', axis='both')

362 strain_normalised.grid(lw=0.3, which='major', axis='both')

363 strain_normalised.grid(lw=0.1, which='minor', axis='both')

364

365 # if 'paint' in dictionary[0][0]:

366 # strain.plot([1.3,1.3],[0,3], 'k-.', label='Paint strain limit', lw=0.6) #

need to add strain at 120 degrees celsius

367 #strain_stress.plot([3.75,3.75],[0,3], 'k-.', label='Strain limit', lw=0.6)

368 #strain_normalised.plot([3.75,3.75],[0,1], 'k-.', label='Strain limit', lw=0.6)

369 for item in dictionary:

370 try:

371 if item[1] == None: continue

372 else:

373 if 'Column' in item[0]:

374 type = 'Columns'

375 item[0] = item[0].replace('Mech_Column_', '')

376 item[0] = item[0].replace('_Concrete','')

377 elif 'Beam3' in item[0]:

378 type='3-sided Beams'

379 item[0] = item[0].replace('Mech_Beam3_', '')

380 elif 'Beam1' in item[0]:

381 type = 'Integrated Beams'

382 item[0] = item[0].replace('Mech_Beam1_', '')

383 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

384 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

385 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

386 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

387 item[0] = item[0].replace('_', ' ')

388

389 Label= item[0]

390 LE = pd.DataFrame()

391 PE = pd.DataFrame()

392 Strs = pd.DataFrame()

393 Temp = pd.DataFrame()

394 proof_stress = list()

395 for L, P, S, T in zip(item[1], item[2],item[3], item[4]):

396 LE= pd.concat([LE,item[1][L]], axis=1)

397 PE= pd.concat([PE,item[2][P]], axis=1)

398 Strs = pd.concat([Strs, item[3][S]], axis=1)

399 Temp = pd.concat([Temp, item[4][T]], axis=1)

400 for T in Temp.max():

401 if 'Alu' in Label:

402 if T<175: proof_stress.append(((120-205)/(175-20))*T+205)

403 elif T<200: proof_stress.append(((110-120)/25)*T+(120+70))

404 elif T<225: proof_stress.append(((100-110)/25)*T+(110+80))

405 elif T<250: proof_stress.append(((88-100)/25)*T+(100+108))

406 elif T<275: proof_stress.append(((75-88)/25)*T+(88+130))

407 elif T<300: proof_stress.append(((60-75)/25)*T+(75+165))

408 elif T<325: proof_stress.append(((46-60)/25)*T+(60+168))

409 elif T<350: proof_stress.append(((34-46)/25)*T+(46+156))

410 elif T<450: proof_stress.append(((1-34)/100)*T+(34+462))

411 else: proof_stress.append(0)

412 else:

413 if T<200: proof_stress.append(((203.9-800)/180)*T+800)

414 elif T<300:

proof_stress.append(((137.6-203.9)/100)*T+(203.9+132.6))

415 elif T<400:

proof_stress.append(((112.5-137.6)/100)*T+(137.6+75.3))

416 elif T<500:

proof_stress.append(((89.3-112.5)/100)*T+(112.5+92.8))

417 elif T<600:

proof_stress.append(((47.5-89.3)/100)*T+(89.3+209))

418 elif T<800:

proof_stress.append(((0.1-47.5)/200)*T+(47.5+142.2))

419 else: proof_stress.append(0)

420 y = Strs['S11'].max()

421 x = LE['S11'].max() + PE['S11'].max()

422 strain_stress.plot(x*100,y, label=Label,lw=0.8)

423 y = list()

424 for s1, s2 in zip(Strs['S11'].max(), proof_stress):

425 try: y.append(s1/s2)

426 except : y.append(0)

427

428 strain_normalised.plot(x*100,y, label=Label, lw=0.8)

429 except TypeError: continue

430

431 if 'type' in locals():

432 strain_normalised.set(ylabel=r'σ_{FEM} / $\sigma_{0.2\Theta}$',

xlabel=r'ϵ_{FEM} $\u2030$',)

433 strain_normalised.set_title('Normalised stress - strain curve

'+type,fontsize=9)

434 strain_stress.set(ylabel=r'$\sigma_{True,FEM}$ [MPa]',

xlabel=r'ϵ_{FEM} $\u2030$')

435 strain_stress.set_title('True stress - strain curve '+type, fontsize=9)

436 else: Label=''

437 strain_normalised.minorticks_on()

438 strain_stress.minorticks_on()

439 strain_normalised.legend(loc='best', fontsize=6, frameon=True, shadow=False,

framealpha=0.5)

440

441 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'stress-strain-normalised.png', dpi=400)

442 plt.show()

443 plt.close()

444

445 def Stress_deflect(dictionary):

446 fig = plt.figure(figsize=(6.27,3.5))

447 grid = fig.add_gridspec(nrows=1,ncols=2)

448 fig.subplots_adjust(left=0.14,bottom=0.14,right=0.98,top=0.9, wspace=0.3,

hspace=.5)

449 stress = fig.add_subplot(grid[1])

450 deflect = fig.add_subplot(grid[0])

451

452 stress.grid(lw=0.3, which='major', axis='both')

453 stress.grid(lw=0.1, which='minor', axis='both')

454 deflect.grid(lw=0.3, which='major', axis='both')

455 deflect.grid(lw=0.1, which='minor', axis='both')

456

457 path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

458 Stress_Alu = pd.read_csv(path_Properties+'\\proof stress6060-T66 20-TRUE.csv',

delimiter=';', header=None, names=['Stress', 'Strain', 'Temperature'],

dtype=np.float64)

459 Stress_Steel = pd.read_csv(path_Properties+'\\proof stressSteel EC3.csv',

delimiter=';', header=None, names=['Stress', 'Strain', 'Temperature'],

dtype=np.float64)

460

461 stress_alu = Stress_Alu.sort_values(by=['Strain', 'Stress'], ascending =False)

462 stress_alu = stress_alu.reset_index(drop=True)

463 stress_alu.loc[90]=[1,0,450]

464 stress.plot(stress_alu['Temperature'][81:91], stress_alu['Stress'][81:91],'k--',

label = r'$\sigma_{0.2}$ Aluminium', lw=0.8)

465 stress_steel = Stress_Steel.sort_values(by=['Strain','Temperature'])

466 stress_steel = stress_steel.reset_index(drop=True)

467 stress.plot(stress_steel['Temperature'][0:7], stress_steel['Stress'][0:7],

'k-.', label = r'$\sigma_{0.2}$ Steel', lw=0.8)

468

469 for item in dictionary:

470 try:

471 if item[1] == None: continue

472 else:

473 if 'Column' in item[0]:

474 type = 'Columns'

475 item[0] = item[0].replace('Mech_Column_', '')

476 item[0] = item[0].replace('_Concrete','')

477 elif 'Beam3' in item[0]:

478 type='3-sided Beams'

479 item[0] = item[0].replace('Mech_Beam3_', '')

480 elif 'Beam1' in item[0]:

481 type = 'Integrated Beams'

482 item[0] = item[0].replace('Mech_Beam1_', '')

483 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

484 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

485 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

486 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

487 item[0] = item[0].replace('_', ' ')

488

489 Label= item[0]

490 disp = pd.DataFrame()

491 Strs = pd.DataFrame()

492 Temp = pd.DataFrame()

493 for D, S, T in zip(item[1], item[2], item[3]):

494 disp = pd.concat([disp, item[1][D]], axis=1)

495 Strs = pd.concat([Strs, item[2][S]], axis=1)

496 Temp = pd.concat([Temp, item[3][T]], axis=1)

497 if type=='Columns': y1=disp['Z'].max()

498 else: y1 = disp['Y'].max()

499 y2 = Strs['S11'].max()

500 x = list(range(0,len(y1),1))

501 x = [i / 2 for i in x]

502 x2 = Temp.max()

503 deflect.plot(x,y1, label=Label, lw=0.8)

504 stress.plot(x2,y2, label=Label, lw=0.8)

505 except TypeError: continue

506

507 deflect.set(ylabel='u$_{FEM}$ [mm]', xlabel='Time [min]',

508 xlim=(0,90))

509 stress.set(ylabel= r'True σ_{FEM} [MPa]', xlabel='T$_{member}$ [Celsius]',

510 xlim=(0,700), ylim=(0,300))

511 if 'type' in locals():

512 deflect.set_title('Deflection - Time curve '+type, fontsize=9)

513 stress.set_title('Stress - Time curve '+type, fontsize=9)

514 else: Label=''

515 deflect.minorticks_on()

516 stress.minorticks_on()

517 stress.legend(loc='best', fontsize=6, frameon=True, shadow=False,

518 framealpha =0.5)

519

520 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'stress-disp.png', dpi=400)

521 plt.show()

522 plt.close()

523

524 # create list with all model names and corresponding data

525 # possible variables ['Coord',

'Temp','Stresses','Displacements','Rotations','Log_strains','Plastic_strains']

526 column_list = ['Mech_Column_Steel_shell_RHS_Concrete_no_10',

527 'Mech_Column_Steel_shell_RHS_Concrete_yes_10',

528 'Mech_Column_Steel_shell_I-section_Concrete_no_10',

529 'Mech_Column_Steel_shell_I-section_Concrete_yes_10',

530 'Mech_Column_Aluminium_shell_RHS_Concrete_no_10',

531 'Mech_Column_Aluminium_shell_RHS_Concrete_yes_10',

532 'Mech_Column_Aluminium_shell_I-section_Concrete_no_10',

533 'Mech_Column_Aluminium_shell_I-section_Concrete_yes_10',

534]

535 beam3_ins_list = ['Mech_Beam3_Steel_shell_RHS_Concrete_yes_10',

536 'Mech_Beam3_Steel_shell_RHS_Lightweight_yes_10',

537 'Mech_Beam3_Steel_shell_I-section_Concrete_yes_10',

538 'Mech_Beam3_Steel_shell_I-section_Lightweight_yes_10',

539 'Mech_Beam3_Aluminium_shell_RHS_Concrete_yes_10',

540 'Mech_Beam3_Aluminium_shell_RHS_Lightweight_yes_10',

541 'Mech_Beam3_Aluminium_shell_I-section_Concrete_yes_10',

542 'Mech_Beam3_Aluminium_shell_I-section_Lightweight_yes_10',

543]

544 beam1_ins_list = ['Mech_Beam1_Aluminium_shell_RHS_Concrete_yes_10',

545 'Mech_Beam1_Aluminium_shell_RHS_Lightweight_yes_10',

546 'Mech_Beam1_Aluminium_shell_I-section_Lightweight_yes_10',

547 'Mech_Beam1_Aluminium_shell_I-section_concrete_yes_10',

548 'Mech_Beam1_Steel_shell_RHS_Lightweight_yes_10',

549 'Mech_Beam1_Steel_shell_RHS_Concrete_yes_10',

550 'Mech_Beam1_Steel_shell_I-section_Lightweight_yes_10',

551 'Mech_Beam1_Steel_shell_I-section_Concrete_yes_10',

552]

553

554 beam3_noins_list = list()

555 beam1_noins_list = list()

556 for K, Z in zip(beam3_ins_list, beam1_ins_list):

557 beam3_noins_list.append(K.replace('yes', 'no'))

558 beam1_noins_list.append(Z.replace('yes', 'no'))

559

560 def temps(myList, numframes):

561 dictionary_Temp=list()

562 for model in myList:

563 Temp = read_data(numframes,model,'Temp', '')

564 dictionary_Temp.append([model,Temp])

565 Temp_time(dictionary_Temp)

566 def stresses(myList, numframes):

567 dictionary_stress = list()

568 for model in myList:

569 LE = read_data(numframes,model,'Log_strains', '')

570 PE = read_data(numframes,model,'Plastic_strains','')

571 stress = read_data(numframes, model, 'Stresses','')

572 Temp = read_data(numframes,model,'Temp','')

573 dictionary_stress.append([model,LE,PE,stress,Temp])

574 stress_strain(dictionary_stress)

575 def strains(myList, numframes):

576 dictionary_strain =list()

577 for model in myList:

578 LE = read_data(numframes,model,'Log_strains','')

579 PE = read_data(numframes,model,'Plastic_strains','')

580 disp = read_data(numframes,model,'Displacements','')

581 stress = read_data(numframes, model, 'Stresses','')

582 dictionary_strain.append([model,LE,PE,disp,stress])

583 Strain_time(dictionary_strain)

584

585 def strains2(myList, numframes):

586 dictionary = list()

587 for model in myList:

588 LE = LE = read_data(numframes,model,'Log_strains','')

589 PE = read_data(numframes,model,'Plastic_strains','')

590 if 'four_point' in model: model = model[24:]

591 dictionary.append([model,LE,PE])

592 strain_and_rate(dictionary)

593 del LE, PE

594 dictionary.clear()

595 for model in myList:

596 LE = read_data(numframes,model,'Log_strains','')

597 PE = read_data(numframes,model,'Plastic_strains','')

598 stress = read_data(numframes, model, 'Stresses','')

599 Temp = read_data(numframes,model,'Temp','')

600 if 'four_point' in model: model = model[24:]

601 dictionary.append([model,LE,PE,stress,Temp])

602 stress_strain_normalised(dictionary)

603 del LE, PE, stress, Temp

604 dictionary.clear()

605 for model in myList:

606 disp = read_data(numframes,model,'Displacements','')

607 stress = read_data(numframes, model, 'Stresses','')

608 Temp = read_data(numframes,model,'Temp','')

609 if 'four_point' in model: model = model[24:]

610 dictionary.append([model,disp,stress, Temp])

611 Stress_deflect(dictionary)

612

613 # Plot_Emod()

614 # Plot_conductivity()

615 # Plot_specific_heat()

616 # Plot_proofStress()

617

618 def mechanical_plotting_columns():

619 strains(column_list, 901)

620 stresses(column_list,901)

621 #temps(column_list, 901)

622 def mechanical_plotting_beam3():

623 strains(beam3_ins_list, 901)

624 stresses(beam3_ins_list,901)

625 #temps(beam3_ins_list, 901)

626 def mechanical_plotting_beam1():

627 strains(beam1_ins_list, 901)

628 stresses(beam1_ins_list,901)

629 #temps(beam1_ins_list, 901)

630

631 def four_point_bending():

632 #mechanical_plotting_columns()

633 #mechanical_plotting_beam3()

634 #mechanical_plotting_beam1()

635 strains2(column_list, 901)

636 counter=0

637 for item in beam3_ins_list:

638 beam3_ins_list[counter] = 'four_point_bending_test\\'+item

639 counter+=1

640 strains2(beam3_ins_list, 901)

641 counter =0

642 for item in beam1_ins_list:

643 beam1_ins_list[counter] = 'four_point_bending_test\\'+item

644 counter+=1

645 strains2(beam1_ins_list, 901)

646 #four_point_bending()

647 def distributed_load():

648 for item in column_list: item = 'Combined odb\\'+item

649 for item in column_list: item = 'Combined odb\\'+item

650 for item in column_list: item = 'Combined odb\\'+item

651 mechanical_plotting_columns()

652 mechanical_plotting_beam3()

653 mechanical_plotting_beam1()

654 # distributed_load()

655

656 def thermal_expansion(dictionary):

657 x_steel = list(range(20,1205,5))

658 y_steel = list()

659 y_aluminium =list()

660 x_aluminium = list(range(20,505,5))

661 for item in x_steel:

662 if item-x_steel[0]==0: y_steel.append(0)

663 else:

664 if item<750:

y_steel.append((1.2e-5*item+0.4e-8*item*item-2.416e-4)/(item-x_steel[0]))

665 elif item<861: y_steel.append(1.1e-2/(item-x_steel[0]))

666 else: y_steel.append((2e-5*item-6.2e-3)/(item-x_steel[0]))

667 for item in x_aluminium:

668 if item-x_aluminium[0]==0: y_aluminium.append(0)

669 else:

y_aluminium.append((0.1e-7*item*item+22.5e-6*item-4.5e-4)/(item-x_aluminium[0]

))

670 if 'Column' in dictionary[0][0]: L=1e3

671 else: L=3e3

672

673 fig = plt.figure(figsize=(8,4))

674 grid = fig.add_gridspec(nrows=1,ncols=2)

675 fig.subplots_adjust(left=0.1,bottom=0.14,right=0.9,top=0.9, wspace=0.5, hspace=.5)

676 expand = fig.add_subplot(grid[0])

677 displace = expand.twinx() #fig.add_subplot(grid[1], sharex=expand)

678 left = fig.add_subplot(grid[1])

679 left2 = left.twinx()

680

681 expand.grid(lw=0.3, which='major', axis='both')

682 expand.grid(lw=0.1, which='minor', axis='both')

683 left.grid(lw=0.3, which='major', axis='both')

684 left.grid(lw=0.1, which='minor', axis='both')

685

686 expand.plot(x_steel,y_steel, 'k--', label=r'α_{L}', lw=0.6)

687 left.plot(x_aluminium, y_aluminium,'k--', label=r'α_{L}', lw=0.6)

688

689 # thermal expansion coefficient #

690 path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

691 with open(path_Properties+'\\'+'ThermalExpAlu EC9.csv','r') as f:

692 reader=(csv.reader(f, delimiter=';'))

693 Expansion_alu = ()

694 x_alu = list()

695 y_alu = list()

696 for row, column in enumerate(reader):

697 v=[]

698 for value in column:

699 v=v+[float(value),]

700 Expansion_alu = Expansion_alu + (v,)

701 f.close()

702 for item in Expansion_alu:

703 x_alu.append(item[3])

704 y_alu.append(item[0])

705 with open(path_Properties+'\\'+'ThermalExpSteel EC3.csv', 'r') as f:

706 reader=(csv.reader(f, delimiter=';'))

707 Expansion_steel=()

708 x_ste = list()

709 y_ste = list()

710 for row, column in enumerate(reader):

711 v=[]

712 for value in column:

713 v=v+[float(value),]

714 Expansion_steel = Expansion_steel + (v,)

715 f.close()

716 for item in Expansion_steel:

717 x_ste.append(item[3])

718 y_ste.append(item[0])

719 disp_steel = list()

720 disp_alu = list()

721 for item, temp in zip(y_ste,x_ste):

722 if temp-x_ste[0]>0: disp_steel.append(item*(temp-x_ste[0]) * L)

723 else: disp_steel.append(0)

724 for item, temp in zip(y_alu, x_alu):

725 if temp-x_alu[0]>0: disp_alu.append(item*(temp-x_alu[0])*L)

726 else: disp_alu.append(0)

727 left.plot(x_alu,y_alu,'r--', lw=0.6, label=r'$\alpha_{L,FEM}$')

728 expand.plot(x_ste,y_ste,'r--', lw=0.6, label=r'$\alpha_{L,FEM}$')

729 displace.plot(x_ste, disp_steel, label='Theoretical', lw=2)

730 left2.plot(x_alu, disp_alu, label='Theoretical', lw=2)

731

732 for item in dictionary:

733 try:

734 if item[1] == None: continue

735 else:

736 if 'Column' in item[0]:

737 type = 'Columns'

738 item[0] = item[0].replace('Mech_Column_', '')

739 item[0] = item[0].replace('_Concrete','')

740 elif 'Beam3' in item[0]:

741 type='3-sided Beams'

742 item[0] = item[0].replace('Mech_Beam3_', '')

743 elif 'Beam1' in item[0]:

744 type = 'Integrated Beams'

745 item[0] = item[0].replace('Mech_Beam1_', '')

746 if 'yes' in item[0]: item[0]=item[0].replace('_yes_10', ' insulated')

747 elif 'no' in item[0]: item[0]=item[0].replace('_no_10',' uninsulated')

748 if 'shell' in item[0]: item[0]=item[0].replace('_shell', '')

749 if 'I-section' in item[0]: item[0]=item[0].replace('_I-section', '

IPE')

750 item[0] = item[0].replace('_', ' ')

751

752 Label= item[0]

753 disp = pd.DataFrame()

754 Temp = pd.DataFrame()

755 for D, T in zip(item[1], item[2]):

756 disp = pd.concat([disp, item[1][D]], axis=1)

757 Temp = pd.concat([Temp, item[2][T]], axis=1)

758

759 y = disp['Z'].max()

760 x = Temp.max()

761 if 'Steel' in Label:

762 Label = Label.replace('Steel ', '')

763 displace.plot(x,y, label=Label,lw=0.8)

764 else:

765 Label = Label.replace('Aluminium ','')

766 left2.plot(x,y, label=Label, lw=0.8)

767

768 except TypeError: continue

769

770 fig.suptitle('Thermal expansion '+type)

771 expand.set(title='Steel', ylabel=r'α_{L} [K$^{-1}$]',ylim=(0,1.6e-5),

xlabel='T$_{MAX}$ [Celsius]',xlim=(0,1000))

772 displace.set(ylabel= 'Displacement [mm]',ylim=(0,16))

773 left2.set(ylabel= 'Displacement [mm]',ylim=(0,16))

774 left.set(title='Aluminium', ylabel=r'α_{L} [K$^{-1}$]',

ylim=(0,3e-5),xlabel='T$_{MAX}$ [Celsius]',xlim=(0,500))

775

776 start1, end1 = expand.get_ylim()

777 expand.yaxis.set_ticks(np.arange(start1,end1,end1/5))

778 left.yaxis.set_ticks(np.arange(start1,3e-5,(3e-5)/5))

779 #expand.yaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f')) # set

major ticks

780 expand.ticklabel_format(axis='y', style='sci', scilimits=(-5,-5))

781 left.ticklabel_format(axis='y', style='sci', scilimits=(-5,-5))

782

783 start2, end2 = displace.get_ylim()

784 displace.yaxis.set_ticks(np.arange(start2,end2,end2/5))

785 left2.yaxis.set_ticks(np.arange(start2,end2,end2/5))

786 displace.minorticks_on()

787 expand.minorticks_on()

788 left.minorticks_on()

789 left2.minorticks_on()

790

791 handles1,labels1 = expand.get_legend_handles_labels()

792 handles2,labels2 = displace.get_legend_handles_labels()

793 for item in handles2: handles1.append(item)

794 for item in labels2: labels1.append(item)

795 expand.legend(handles1,labels1,loc='best', fontsize=7, frameon=True, shadow=False,

796 framealpha =0.5)

797 left.legend(handles1,labels1,loc='best', fontsize=7, frameon=True, shadow=False,

798 framealpha =0.5)

799

800 plt.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+Label+'thermal_expand.png', dpi=400)

801 plt.show()

802 plt.close()

803

804 # dictionary=list()

805 # for model in column_list:

806 # disp = read_data(901,model,'Displacements')

807 # Temp = read_data(901,model,'Temp')

808 # if 'four_point' in model: model = model[24:]

809 # dictionary.append([model,disp, Temp])

810 # thermal_expansion(dictionary)

811

812 def beams_validation(dictionary,loading):

813 q_load_steel = 0.2*100 #N/mm 100 is width of I-section

814 q_load_aluminium = 0.2*100

815 P_concrete = 49.5e6

816 P_lightweight = 36e6

817 P_alternate = 20e6

818

819 # material properties

820 path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

821 Emod_Alu = pd.read_csv(path_Properties+'\\EmodAlu 6060-T66 18.csv',

delimiter=';', header=None, names=['fraction', 'Temperature', 'Emod'],

dtype=np.float64, decimal=',')

822 stress_alu = pd.read_csv(path_Properties+'\\proofstressAlu.csv', delimiter=';',

header=None, names=['Temperature', '0.2', 'yield'], dtype=np.float64, decimal=',')

823 Emod_Steel = pd.read_csv(path_Properties+'\\EmodSteel.csv', delimiter=';',

header=None, names=['Temperature','Emod'], dtype=np.float64, decimal=',')

824 stress_steel = pd.read_csv(path_Properties+'\\proofstressSteel.csv',

delimiter=';', header=None, names=['Temperature','yield', '0.2', 'hi'],

dtype=np.float64, decimal=',')

825 Expansion_Alu = pd.read_csv(path_Properties+'\\ThermalExpAlu EC9.csv',

delimiter=';', header=None, names=['Alpha', 'beta', 'c', 'Temperature'],

dtype=np.float64)

826 Expansion_Ste = pd.read_csv(path_Properties+'\\ThermalExpSteel EC3.csv',

delimiter=';', header=None, names=['Alpha', 'beta', 'c','Temperature'],

dtype=np.float64)

827

828 # figure plotting stresses

829 fig = plt.figure(figsize=(8,4))

830 grid = fig.add_gridspec(nrows=1,ncols=2)

831 fig.subplots_adjust(left=0.1,bottom=0.14,right=0.96,top=0.87, wspace=0.22,

hspace=.5)

832 steel = fig.add_subplot(grid[0])

833 aluminium = fig.add_subplot(grid[1])

834

835 steel.grid(lw=0.3, which='major', axis='both')

836 steel.grid(lw=0.1, which='minor', axis='both')

837 aluminium.grid(lw=0.3, which='major', axis='both')

838 aluminium.grid(lw=0.1, which='minor', axis='both')

839

840 #second image strains

841 fig2 = plt.figure(figsize=(8,4))

842 grid2 = fig2.add_gridspec(nrows=1, ncols=2)

843 fig2.subplots_adjust(left=0.1,bottom=0.14,right=0.96,top=0.87,

wspace=0.22,hspace=0.5)

844 steel2 = fig2.add_subplot(grid2[0])

845 aluminium2 = fig2.add_subplot(grid2[1])

846

847 steel2.grid(lw=0.3, which='major', axis='both')

848 steel2.grid(lw=0.1, which='minor', axis='both')

849 aluminium2.grid(lw=0.3, which='major', axis='both')

850 aluminium2.grid(lw=0.1, which='minor', axis='both')

851

852 #fourth image displacement

853 fig4 = plt.figure(figsize=(8,4))

854 grid4 = fig4.add_gridspec(nrows=1,ncols=2)

855 fig4.subplots_adjust(left=0.1,bottom=0.14,right=0.96,top=0.87,

wspace=0.22,hspace=0.5)

856 steel4 = fig4.add_subplot(grid4[0])

857 aluminium4 = fig4.add_subplot(grid4[1])

858

859 steel4.grid(lw=0.3, which='major', axis='both')

860 steel4.grid(lw=0.1, which='minor', axis='both')

861 aluminium4.grid(lw=0.3, which='major', axis='both')

862 aluminium4.grid(lw=0.1, which='minor', axis='both')

863

864 # plot stress-temp curve

865 steel.plot(stress_steel['Temperature'], stress_steel['yield'], 'k--',

label='Yield Stress', lw=0.8)

866 aluminium.plot(stress_alu['Temperature'], stress_alu['yield'], 'k--',

label='Yield Stress', lw=0.8)

867 steel.plot(stress_steel['Temperature'], stress_steel['0.2'], 'k-.',

label='Proportional Stress', lw=0.8)

868 aluminium.plot(stress_alu['Temperature'], stress_alu['0.2'], 'k-.', label='Proof

Stress', lw=0.8)

869

870 # plot strain limits

871 steel2.plot([0,1000],[3.75,3.75], 'k--', label = 'Ultimate strain limit', lw=0.8)

872 aluminium2.plot([0,1000],[3.75,3.75], 'k--', label= 'Ultimate strain limit',

lw=0.8)

873 steel2.plot([0,1000],[2.,2.], 'k-.', label = 'Yield limit', lw=0.8)

874 #aluminium2.plot([0,1000],[2.,2.], 'k-.', label='Yield limit', lw=0.8)

875 # plot deflection limit

876 if 'Column' in dictionary[0][0]: deflect = 1000**2 / (400 * 200)

877 else: deflect = 3000**2 / (400*200)

878 steel4.plot([0,1000],[deflect,deflect],'k--', label = 'Deflection limit', lw=0.8)

879 aluminium4.plot([0,1000],[deflect,deflect],'k--', label = 'Deflection limit',

lw=0.8)

880

881 for item in dictionary:

882 try:

883 # theoretical stress

884 if loading=='q_load':

885 if 'Steel' in item[0]: M=q_load_steel

886 else: M=q_load_aluminium

887 elif loading =='Lowered':

888 if 'oncrete' in item[0]: M=P_lightweight

889 else: M=P_alternate

890 else:

891 if 'oncrete' in item[0]: M=P_concrete

892 else: M=P_lightweight

893 if 'Steel' in item[0]:

894 Emod = Emod_Steel['Emod']

895 Temp = Emod_Steel['Temperature']

896 t,tf,tw,b,h = [6.0,8.5,5.6,100.,200.]

897 elif 'Aluminium' in item[0]:

898 Emod = Emod_Alu['Emod']

899 Temp = Emod_Alu['Temperature']

900 t,tf,tw,b,h = [9.0,9.0,5.,100.,200.]

901 if 'RHS' in item[0]: I= 1/12*(b*2)*h**3 - 1/12*((b*2)-2*t)*(h-2*t)**3#mm4

902 elif 'I-section' in item[0] or 'IPE' in item[0]: I= 1/12*b*(tf**3) +

b*tf*(1/2*h-1/2*tf)**2 + 1/12*tw*((h-2*tf)**3) + 1/12*b*(tf**3) +

b*tf*(1/2*h-1/2*tf)**2 #mm4

903 stress=list()

904 stress_temp = list()

905 z=1/2*h #mm

906 counter = 0

907 if 'Column' in item[0]: L=1e3

908 else: L=3e3

909 if loading =='q_load': M = 1/8*M*L**2

910 else: M = M*1/2*L - M*1/6*L

911 for E in Emod:

912 stress.append(M*z/I)

913 stress_temp.append(Temp[counter])

914 counter+=1

915 if item[1] == None: continue

916 else:

917 if 'Column' in item[0]:

918 type = 'Columns'

919 Label = item[0].replace('Mech_Column_', '')

920 Label = Label.replace('_Concrete','')

921 elif 'Beam3' in item[0]:

922 type='3-sided Beams'

923 Label = item[0].replace('Mech_Beam3_', '')

924 elif 'Beam1' in item[0]:

925 type = 'Integrated Beams'

926 Label = item[0].replace('Mech_Beam1_', '')

927 if 'yes' in item[0]: Label=Label.replace('_yes_10', ' insulated')

928 elif 'no' in item[0]: Label=Label.replace('_no_10',' uninsulated')

929 if 'shell' in item[0]: Label=Label.replace('_shell', '')

930 if 'I-section' in item[0]: Label=Label.replace('_I-section', ' IPE')

931 Label = Label.replace('_', ' ')

932 if 'Steel' in Label:

933 Label = Label.replace('Steel ', '')

934 steel.plot(stress_temp,stress, '--', label='Theoretical',lw=0.8)

#plot theoretical stress

935 Label = Label.replace(' ', 'Steel')

936 Color = steel.get_lines()[-1].get_color()

937

938 else:

939 Label = Label.replace('Aluminium ','')

940 aluminium.plot(stress_temp, stress, '--', label='Theoretical',

lw=0.8) #plot theoretical stress

941 Label = Label.replace(' ','Aluminium')

942 Color = aluminium.get_lines()[-1].get_color()

943

944 # plot abaqus stress-temp curve (has 3 directions)

945 print('stress')

946 stress = pd.DataFrame()

947 stress_temp = pd.DataFrame()

948 for S, T in zip(item[1], item[2]):

949 stress = pd.concat([stress, item[1][S]], axis=1)

950 stress_temp = pd.concat([stress_temp, item[2][T]], axis=1)

951

952 if 'Column' in item[0]:

953 loc_middle = 334

954 loc_top = 2

955 loc_bottom = 7

956 else:

957 loc_middle = 6938

958 loc_top = 163

959 loc_bottom = 1112

960 middle_node = abs(stress['S11'].loc[loc_middle])

961 top_node = abs(stress['S11'].loc[loc_top])

962 bottom_node = abs(stress['S11'].loc[loc_bottom])

963 print(middle_node,top_node,bottom_node)

964

965 x_top = stress_temp.loc[loc_middle]

966 x_bottom = stress_temp.loc[loc_bottom]

967 x_middle = stress_temp.loc[loc_middle]

968

969 if 'Steel' in Label:

970 Label = Label.replace('Steel', ' ')

971 #steel.plot(x_middle,middle_node, label=Label+ ' centroid',

lw=0.8, alpha=0.5)#color = Color,

972 #steel.plot(x_top,top_node, label=Label+ ' top centre', lw=0.8,

alpha=0.5)#color = Color,

973 steel.plot(x_bottom,bottom_node, color = Color, label=Label+ '

bottom centre', lw=0.8, alpha=0.5)#color = Color,

974

975 else:

976 Label = Label.replace('Aluminium',' ')

977 #aluminium.plot(x_middle,middle_node, label=Label+ ' centroid',

lw=0.8, alpha=0.5)#color = Color,

978 #aluminium.plot(x_top,top_node, label=Label+ ' top centre',

lw=0.8, alpha=0.5)#color = Color,

979 aluminium.plot(x_bottom,bottom_node, color=Color, label=Label+

' bottom centre', lw=0.8, alpha=0.5)#color = Color,

980

981 # strain plotting

982 print('strain plotting')

983 # try: paint_strain = find_paint_strain(item)

984 # except:pass

985

986 if 'Steel' in item[0]:

987 input_stress = stress_steel

988 input_emod = Emod_Steel

989 else:

990 input_stress = stress_alu

991 input_emod = Emod_Alu

992

993 input_stress.sort_values(['Temperature'], ascending=True,

inplace=True)

994 input_stress =

input_stress.loc[input_stress['Temperature'].isin(input_emod['Temperat

ure'])].reset_index(drop=True)

995 input_emod =

input_emod.loc[input_emod['Temperature'].isin(input_stress['Temperatur

e'])]

996

997 temp = input_stress['Temperature']

998 if 'Steel' in item[0]: proofstress = input_stress['yield']

999 else: proofstress = input_stress['0.2']

1000 emod = input_emod['Emod'].reset_index(drop=True)

1001 disp_proof = np.argwhere((M*z/I) > input_stress['0.2'])

1002 disp_yield = np.argwhere((M*z/I) > input_stress['yield'])

1003

1004 if 'Steel' in item[0]: expansion = Expansion_Ste

1005 else: expansion = Expansion_Alu

1006 alpha =

copy.deepcopy(expansion['Alpha'].loc[expansion['Temperature'].isin(tem

p)].reset_index(drop=True))

1007 temp =

copy.deepcopy(temp.loc[temp.isin(expansion['Temperature'])].reset_inde

x(drop=True))

1008

1009 strain_total = list()

1010 deltaT = []

1011 deflect_total = list()

1012 elastic_strain_all = list()

1013 for item2 in temp:

1014 location = np.argwhere(stress_temp.mean() >item2)

1015 deltaT.append(0)

1016 if len(location) == 0:

1017 try: deltaT[-1] = (stress_temp.max().iloc[-1] -

stress_temp.min().iloc[-1])

1018 except: pass

1019 else: deltaT[-1] = (stress_temp.max().iloc[location[0]] -

stress_temp.min().iloc[location[0]])

1020

1021 for i in range(0,len(temp),1):

1022 n = proofstress[i] / 10 # reference 13

1023 if type!='Columns': L = 3e3

1024 else: L=1e3

1025 try: temp_diff = deltaT[i]

1026 except: temp_diff=0

1027 if item[6]=='expansion':

1028 elastic_strain =0

1029 elastic_disp = 0

1030 bowing_strain = alpha[i]*(temp[i]-temp[0]) + alpha[i] *

temp_diff / 4

1031 bowing_disp = ((alpha[i] * temp_diff * (L**2)) / (8*h))

1032 Label2 = 'Theoretical Thermal bowing'

1033 elif item[6]=='elastic':

1034 elastic_strain = (M*z/I) / emod[i] + 2e-3 * ((M*z/I) /

proofstress[i])**n

1035 elastic_disp = (5/384) * ((M*8/(L**2))*(L**4))/(emod[i]*I)

1036 bowing_strain = 0

1037 bowing_disp = 0

1038

1039 if (M*z/I)>proofstress[i]:

1040 print('proofstress has been exceeded')

1041 Label2 = 'Theoretical Mechanical only'

1042 else:

1043 elastic_strain = (M*z/I) / emod[i] + 2e-3 * ((M*z/I) /

proofstress[i])**n

1044 elastic_disp = (5/384) * ((M*8/(L**2))*(L**4))/(emod[i]*I)

1045 bowing_strain = alpha[i]*(temp[i]-temp[0])+ alpha[i] *

temp_diff / 4

1046 bowing_disp = ((alpha[i] * temp_diff * (L**2)) / (8*h))

1047 if (M*z/I)>proofstress[i]:

1048 print('proofstress has been exceeded')

1049 Label2 = 'Theoretical total'

1050 elastic_strain_all.append(elastic_strain)

1051 strain_total.append((elastic_strain + bowing_strain)*100)

1052 deflect_total.append(elastic_disp + bowing_disp)

1053 if elastic_strain>(4/100): break

1054

1055 if 'Steel' in item[0]:

1056 steel2.plot(temp[0:len(strain_total)],strain_total, '--', label

= Label2, lw=0.8)

1057 Color = steel2.get_lines()[-1].get_color()

1058 steel4.plot(temp[0:len(deflect_total)],deflect_total,

'--',color = Color, label = Label2, lw=0.8)

1059 else:

1060 aluminium2.plot(temp[0:len(strain_total)],strain_total, '--',

label =Label2, lw=0.8)

1061 Color = aluminium2.get_lines()[-1].get_color()

1062 aluminium4.plot(temp[0:len(deflect_total)],deflect_total, '--',

color=Color, label =Label2, lw=0.8)

1063

1064 LE = pd.DataFrame()

1065 PE = pd.DataFrame()

1066 disp = pd.DataFrame()

1067 for L, P, D in zip(item[3], item[4], item[5]):

1068 LE = pd.concat([LE, item[3][L]], axis=1)

1069 PE = pd.concat([PE, item[4][P]], axis=1)

1070 disp = pd.concat([disp, item[5][D]], axis=1)

1071

1072 if 'Column' in item[0]:

1073 loc_middle = 334

1074 loc_top = 2

1075 loc_bottom = 7

1076 else:

1077 loc_middle = 6938

1078 loc_top = 163

1079 loc_bottom = 1112

1080 middle_node = abs(LE['S11'].loc[loc_middle]) +

abs(PE['S11'].loc[loc_middle])

1081 top_node = abs(LE['S11'].loc[loc_top]) + abs(PE['S11'].loc[loc_top])

1082 bottom_node = abs(LE['S11'].loc[loc_bottom]) +

abs(PE['S11'].loc[loc_bottom])

1083

1084 x_top = stress_temp.loc[loc_middle]

1085 x_bottom = stress_temp.loc[loc_bottom]

1086 x_middle = stress_temp.loc[loc_middle]

1087

1088 if 'Steel' in item[0]:

1089 #steel2.plot(x_middle,middle_node*100, label=Label+ ' middle',

lw=0.8, alpha=0.5)

1090 #steel2.plot(x_top,top_node*100, label=Label+ ' top', lw=0.8,

alpha=0.5)

1091 steel2.plot(x_bottom,bottom_node*100, color=Color, label=Label+

' bottom', lw=0.8, alpha=0.5)

1092

1093 else:

1094 #aluminium2.plot(x_middle,middle_node*100, label=Label+ '

middle', lw=0.8, alpha=0.5)

1095 #aluminium2.plot(x_top,top_node*100, label=Label+ ' top',

lw=0.8, alpha=0.5)

1096 aluminium2.plot(x_bottom,bottom_node*100, color=Color,

label=Label+ ' bottom', lw=0.8, alpha=0.5)

1097

1098 # deflection

1099 if 'Column' in item[0]:

1100 loc_middle = 334

1101 loc_top = 2

1102 loc_bottom = 7

1103 disp = disp['Z']

1104 else:

1105 loc_middle = 6938

1106 loc_top = 163

1107 loc_bottom = 1112

1108 disp= disp['Y']

1109

1110 middle_node = abs(disp.loc[loc_middle])

1111 top_node = abs(disp.loc[loc_top])

1112 bottom_node = abs(disp.loc[loc_bottom])

1113 print(middle_node)

1114

1115 x_top = stress_temp.loc[loc_middle]

1116 x_bottom = stress_temp.loc[loc_bottom]

1117 x_middle = stress_temp.loc[loc_middle]

1118

1119 if item[6]=='expansion':

1120 itera = 0

1121 for Q in bottom_node:

1122 if Q>20: break

1123 itera+=1

1124

1125 middle_node = middle_node[0:itera]

1126 top_node = top_node[0:itera]

1127 bottom_node = bottom_node[0:itera]

1128

1129 x_top = x_top[0:len(top_node)]

1130 x_bottom = x_bottom[0:len(bottom_node)]

1131 x_middle = x_middle[0:len(middle_node)]

1132

1133 first_yield = input_stress['Temperature'].loc[disp_proof[0][0]]

1134 ultimate_yield = input_stress['Temperature'].loc[disp_yield[0][0]]

1135 print(first_yield,ultimate_yield)

1136

1137 if 'Steel' in item[0]:

1138 #steel4.plot(x_middle,middle_node, label=Label+ ' middle',

lw=0.8, alpha=0.5)

1139 #steel4.plot(x_top,top_node, label=Label+ ' top', lw=0.8,

alpha=0.5)

1140 steel4.plot(x_bottom,bottom_node, color=Color,label=Label+ '

bottom', lw=0.8, alpha=0.5)

1141

1142 if item[6]!='expansion':

1143 steel4.plot([first_yield,first_yield],[0,200], 'k-.', label

= 'First yield', lw=0.8)

1144 steel4.plot([ultimate_yield,ultimate_yield],[0,200], 'k-.',

label = 'Ultimate yield', lw=0.8)

1145

1146 else:

1147 #aluminium4.plot(x_middle,middle_node, label=Label+ ' middle',

lw=0.8, alpha=0.5)

1148 #aluminium4.plot(x_top,top_node, label=Label+ ' top', lw=0.8,

alpha=0.5)

1149 aluminium4.plot(x_bottom,bottom_node, color=Color, label=Label+

' bottom', lw=0.8, alpha=0.5)

1150

1151 if item[6]!='expansion':

1152 aluminium4.plot([220,220],[0,200], 'k-.', label = 'First

yield', lw=0.8)

1153 aluminium4.plot([280,280],[0,200], 'k-.', label = 'Ultimate

yield', lw=0.8)

1154

1155 except TypeError: continue

1156 if 'type' in locals(): pass

1157 else: type =''

1158

1159 fig.suptitle('Stress - Temperature curves '+type)

1160 steel.set(title='Steel', ylabel='\u03C3 [MPa]', xlabel='Temperature

[Celsius]',xlim=(0,800),ylim=(0,300))

1161 aluminium.set(title='Aluminium', ylabel='\u03C3 [MPa]', xlabel='Temperature

[Celsius]',xlim=(0,550),ylim=(0,300))

1162

1163 steel.minorticks_on()

1164 aluminium.minorticks_on()

1165 steel.legend(loc='best', fontsize=7, frameon=True, shadow=False,framealpha =0.5)

1166 aluminium.legend(loc='best', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1167

1168 fig2.suptitle('Strain - Temperature curves '+type)

1169 steel2.set(title='Steel', ylabel= 'ϵ [\u2030]', xlabel='Temperature

[Celsius]',xlim=(0,800), ylim=(0,4))

1170 aluminium2.set(title='Aluminium', ylabel= 'ϵ [\u2030]',

xlabel='Temperature [Celsius]',xlim=(0,550), ylim=(0,4))

1171 steel2.minorticks_on()

1172 aluminium2.minorticks_on()

1173 steel2.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha=0.5)

1174 aluminium2.legend(loc='best', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1175

1176 fig4.suptitle('Displacement - Temperature curves '+type)

1177 steel4.set(title='Steel', ylabel='Deflection [mm]', xlabel='Temperature

[Celsius]',xlim=(0,800),ylim=(0,120))

1178 aluminium4.set(title='Aluminium', ylabel='Delfection [mm]', xlabel='Temperature

[Celsius]',xlim=(0,550),ylim=(0,120))

1179 steel4.minorticks_on()

1180 aluminium4.minorticks_on()

1181 steel4.legend(loc='upper left', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1182 aluminium4.legend(loc='upper left', fontsize=7, frameon=True, shadow=False,

framealpha=0.5)

1183

1184 fig.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+'Stress - Temperature curves Elastic '+type+'.png', dpi=400)

1185 fig2.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+'Strain - Temperature curves Elastic '+type+'.png', dpi=400)

1186 fig4.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+'Deflect = Temperature curves Elastic '+type+'.png', dpi=400)

1187

1188 plt.show()

1189 plt.close()

1190

1191 def checker():

1192 myList =

['Mech_Beam3_Aluminium_shell_I-section_Concrete_no_10','Mech_Beam3_Steel_shell_I-s

ection_Concrete_no_10']

1193 dictionary=list()

1194 for item in myList:

1195 print(item)

1196 check = 'expansion'

1197 path = r'D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS\Validation\noloading'

1198 item1 = item

1199 stress=read_data(901,item1,'Stresses',path)

1200 temp = read_data(901, item1, 'Temp',path)

1201 LE = read_data(901, item1, 'Log_strains',path)

1202 PE = read_data(901, item1, 'Plastic_strains',path)

1203 disp = read_data(901,item1,'Displacements',path)

1204 dictionary.append([item1, stress, temp, LE, PE, disp,check])

1205 #beams_validation(dictionary,'q_load')

1206 myList =

['Mech_Beam3_Aluminium_shell_I-section_Concrete_yes_10','Mech_Beam3_Steel_shell_I-

section_Concrete_yes_10']

1207

1208 for item in myList:

1209 print(item)

1210 item1=item

1211 path= r'D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS\Validation\noexp'

1212 check= 'elastic'

1213 stress=read_data(901,item1,'Stresses',path)

1214 temp = read_data(901, item1, 'Temp',path)

1215 LE = read_data(901, item1, 'Log_strains',path)

1216 PE = read_data(901, item1, 'Plastic_strains',path)

1217 disp = read_data(901,item1,'Displacements',path)

1218 dictionary.append([item1,stress,temp,LE,PE,disp,check])

1219 #beams_validation(dictionary,'q_load')

1220 for item in myList:

1221 print(item)

1222 item1 =item

1223 path= r'D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\ABAQUS\Validation\norm'

1224 check = ''

1225 stress=read_data(901,item1,'Stresses',path)

1226 temp = read_data(901, item1, 'Temp',path)

1227 LE = read_data(901, item1, 'Log_strains',path)

1228 PE = read_data(901, item1, 'Plastic_strains',path)

1229 disp = read_data(901,item1,'Displacements',path)

1230 dictionary.append([item1,stress,temp,LE,PE,disp,check])

1231 loading = 'q_load'

1232 beams_validation(dictionary, loading)

1233

1234 #checker()

1235

1236 def postprocessing(dictionary, name):

1237 # material properties

1238 path_Properties = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\properties'

1239 stress_alu = pd.read_csv(path_Properties+'\\proofstressAlu.csv', delimiter=';',

header=None, names=['Temperature', '0.2', 'yield'], dtype=np.float64, decimal=',')

1240 stress_steel = pd.read_csv(path_Properties+'\\proofstressSteel.csv',

delimiter=';', header=None, names=['Temperature','yield', '0.2', 'hi'],

dtype=np.float64, decimal=',')

1241

1242 # figure plotting stresses

1243 fig = plt.figure(figsize=(8,8))

1244 grid = fig.add_gridspec(nrows=3,ncols=2)

1245 fig.subplots_adjust(left=0.08,bottom=0.08,right=0.92,top=0.9, wspace=0.45,

hspace=.5)

1246 plot11 = fig.add_subplot(grid[0]) #stress-time

1247 plot111 = plot11.twinx() #utilization-time

1248 plot12 = fig.add_subplot(grid[1]) #temp-time

1249 plot21 = fig.add_subplot(grid[2]) #strain-time

1250 plot31 = fig.add_subplot(grid[4]) #deflect-time

1251 plot311 = plot31.twinx() #deflection rate - time

1252

1253 # image print

1254 item_counter = 0

1255 for item in dictionary:

1256 if item[1]==None: continue

1257 else: item_counter+=1

1258

1259 if item_counter==0:

1260 plot22 = fig.add_subplot(grid[3]) #legend

1261 plot32 = fig.add_subplot(grid[5])

1262 elif item_counter>0 and item_counter<5:

1263 #plot22 = fig.add_subplot(grid[3]) #legend

1264 grid2 = grid[1:,-1].subgridspec(item_counter+1,1)

1265 elif item_counter>4 and item_counter<7:

1266 #plot22 = fig.add_subplot(grid[3]) #legend

1267 grid2 = grid[1:,-1].subgridspec(item_counter/2+1,2)

1268 elif item_counter>6:

1269 grid2 = grid[1:,-1].subgridspec(5,2)

1270

1271 for plots in [plot11,plot111,plot12,plot21,plot31,plot311]:

1272 plots.grid(lw=0.3, which='major', axis='both')

1273 plots.grid(lw=0.1, which='minor', axis='both')

1274

1275 # plot strain limits

1276 plot21.plot([0,800],[3.75,3.75], 'k--', label = 'Ultimate strain limit', lw=0.5)

1277 if 'no' in dictionary[1][0]:

1278 plot21.text(12,3.5, '$\epsilon_{ultimate,limit}$', fontsize=9)

1279 else:

1280 plot21.text(60,3.5, '$\epsilon_{ultimate,limit}$', fontsize=9)

1281 # plot deflection limit

1282 if 'Column' in dictionary[0][0]: deflect = 1000**2 / (400 * 200)

1283 else: deflect = 3000**2 / (400*200)

1284 plot31.plot([0,800],[deflect,deflect],'k--', label = 'Deflection limit', lw=0.5)

1285 if 'no' in dictionary[1][0]:

1286 plot31.text(12,deflect, 'Deflection limit', fontsize=7)

1287 else: plot31.text(60,deflect, 'Deflection limit', fontsize=7)

1288 # Deflection rate limit

1289 if 'Column' in dictionary[0][0]: deflect_rate = 1000**2 / (9000*200)

1290 else: deflect_rate = 3000**2 / (9000*200)

1291 plot311.plot([0,800], [deflect_rate,deflect_rate], 'k-.', label='Deflection rate

limit', lw=0.5)

1292 if 'no' in dictionary[1][0]:

1293 plot311.text(12,deflect_rate, 'Deflection rate limit', fontsize=7)

1294 else: plot311.text(55,deflect_rate, 'Deflection rate limit', fontsize=7)

1295

1296 item_counter = 0

1297 for item in dictionary:

1298 try:

1299 if item[1] == None: continue #if empty dataset don't run it

1300 else:

1301 print(item[0])

1302 # create a label

1303 if 'Column' in item[0]:

1304 type = 'Columns'

1305 Label = item[0].replace('Mech_Column_', '')

1306 Label = Label.replace('_Concrete','')

1307 length = 1e3

1308 elif 'Beam3' in item[0]:

1309 type='3-sided Beams'

1310 Label = item[0].replace('Mech_Beam3_', '')

1311 length=3e3

1312 elif 'Beam1' in item[0]:

1313 type = 'Integrated Beams'

1314 Label = item[0].replace('Mech_Beam1_', '')

1315 length=3e3

1316 if 'yes' in item[0]: Label=Label.replace('_yes_10', ' insulated')

1317 elif 'no' in item[0]: Label=Label.replace('_no_10',' uninsulated')

1318 if 'shell' in item[0]: Label=Label.replace('_shell', '')

1319 if 'I-section' in item[0]: Label=Label.replace('_I-section', ' IPE')

1320 if 'Beam' in item[0] and 'uninsulated' in Label:

1321 Label=Label.replace(' uninsulated', '')

1322 type = type + ' uninsulated'

1323

1324 Label = str(item_counter+1)+' '+Label.replace('_', ' ')

1325

1326 #plot temperature - time curve

1327 print('Temperature plotting')

1328 stress_temp = pd.DataFrame()

1329 for T in item[2]:

1330 stress_temp = pd.concat([stress_temp, item[2][T]], axis=1)

1331

1332 y = stress_temp.mean()

1333 lowerlim = stress_temp.min()

1334 upperlim = stress_temp.max()

1335

1336 if 'Aluminium' in item[0]:

1337 itera = 0

1338 for Q in y:

1339 if Q>500:break

1340 itera+=1

1341 elif 'Steel' in item[0]:

1342 itera=0

1343 for Q in y:

1344 if Q>1200: break

1345 itera+=1

1346

1347 y= y[0:itera]

1348 lowerlim = lowerlim[0:itera]

1349 upperlim = upperlim[0:itera]

1350 x= [i / 2. for i in list(range(0,len(y),1))]

1351

1352 plot12.plot(x,y, label=Label, lw=0.8)

1353 Color = plot12.get_lines()[-1].get_color()

1354 plot12.plot(x, lowerlim, color=Color,lw=0.6, alpha=0.5)

1355 plot12.plot(x,upperlim, color=Color, lw=0.6, alpha=0.5)

1356 plot12.fill_between(x,upperlim,lowerlim, color=Color, alpha=0.05)

1357

1358 # plot abaqus stress-temp curve (has 3 directions) S11 is in the

length direction

1359 print('Stress plotting')

1360 stress = pd.DataFrame()

1361 for S in item[1]:

1362 stress = pd.concat([stress, item[1][S]], axis=1)

1363

1364 if 'Column' in item[0]:

1365 if 'I-section' in item[0] or 'IPE' in item[0]:

1366 loc_middle = 334

1367 loc_top = 2

1368 loc_bottom = 7

1369 else:

1370 loc_middle = 252

1371 loc_top = 386

1372 loc_bottom = 18

1373 else:

1374 if 'I-section' in item[0] or 'IPE' in item[0]:

1375 loc_middle = 6938

1376 loc_top = 163

1377 loc_bottom = 1112

1378 else:

1379 if 'Beam3' in item[0]:

1380 loc_list = [9422,14804,4049,1145,810,176,493]

1381 else: loc_list = [10625,16008,7495,1751,1416,1060,162]

1382 loc_middle, loc_top, loc_bottom, edge_top1, edge_top2,

edge_bottom1, edge_bottom2 = loc_list

1383

1384 middle_node = abs(stress['S11'].loc[loc_middle])

1385 top_node = abs(stress['S11'].loc[loc_top])

1386 bottom_node = abs(stress['S11'].loc[loc_bottom])

1387 temp_bottom = abs(stress_temp.loc[loc_bottom])

1388

1389 bottom_node = bottom_node[0:itera]

1390 temp_bottom = temp_bottom[0:itera]

1391

1392 y1 = bottom_node

1393

1394 # if 'Column' in item[0]: y1=stress['S11'].max()

1395 # else:

1396 # datarange = len(stress['S11'])/300

1397 # start = 0.5*(len(stress['S11'])-datarange)

1398 # end = 0.5*(len(stress['S11'])+datarange)

1399 # y1 = stress['S11'].loc[start:end].max() #stress at midspan

1400

1401 plot11.plot(x,y1, color=Color, label=Label, lw=0.8, alpha =0.5)

1402

1403 # utilization

1404 print('utilization')

1405 if 'Steel' in item[0]:

1406 input_stress = stress_steel

1407 else:

1408 input_stress = stress_alu

1409

1410 input_stress.sort_values(['Temperature'], ascending=True,

inplace=True)

1411 temp = input_stress['Temperature'].reset_index(drop=True)

1412 if 'Steel' in item[0]:

1413 proofstress = input_stress['yield'].reset_index(drop=True)

1414 else: proofstress = input_stress['0.2'].reset_index(drop=True)

1415

1416 utilization = []

1417 time = []

1418 counter = 0

1419 for T in temp:

1420 try:

1421 location = np.argwhere(temp_bottom>T)

1422 loc = location[0]

1423 time.append(x[loc[0]])

1424 utilization.append(y1.iloc[loc[0]]/proofstress.iloc[counter])

1425 counter+=1

1426 except: continue

1427

1428 plot111.plot(time,utilization, '--', color = Color, label=Label,

lw=0.8, alpha=0.5)

1429

1430 # strain plotting

1431 print('strain plotting')

1432 #try:

1433 # paint_strain = find_paint_strain(item)

1434 # plot21.plot([0,800],[paint_strain, paint_strain], '-.', label

='Paint limit', alpha=0.3,lw=0.8)

1435 #except:pass

1436

1437 LE = pd.DataFrame()

1438 PE = pd.DataFrame()

1439 for L, P in zip(item[3], item[4]):

1440 LE = pd.concat([LE, item[3][L]], axis=1)

1441 PE = pd.concat([PE, item[4][P]], axis=1)

1442

1443 middle_node = abs(LE['S11'].loc[loc_middle] +

PE['S11'].loc[loc_middle])

1444 top_node = abs(LE['S11'].loc[loc_top] + PE['S11'].loc[loc_top])

1445 bottom_node = abs(LE['S11'].loc[loc_bottom] +

PE['S11'].loc[loc_bottom])

1446

1447 bottom_node = bottom_node[0:itera]

1448 y=bottom_node

1449

1450 # if 'Column' in item[0]:

1451 # y = LE['S11'].max()+PE['S11'].max()

1452 # else:

1453 # datarange = len(LE['S11'])/300

1454 # start = 0.5*(len(LE['S11'])-datarange)

1455 # end = 0.5*(len(LE['S11'])+datarange)

1456 # LE1 = copy.deepcopy(LE['S11'].loc[start:end])

1457 # PE1 = copy.deepcopy(PE['S11'].loc[start:end])

1458 # y1 = LE1.max()+PE1.max()

1459 # y = abs(LE1.mean()+PE1.mean())

1460

1461 if len(x)>len(y): del x[-1]

1462 if len(y)>len(x): del y[-1]

1463

1464 plot21.plot(x,y*100, color=Color, label=Label, lw=0.8, alpha=0.5)

1465

1466 # deflection

1467 print('deflection plotting')

1468 disp = pd.DataFrame()

1469 for D in item[5]:

1470 disp = pd.concat([disp, item[5][D]], axis=1)

1471

1472 if 'Column' in item[0]:

1473 disp = disp['Z']

1474 else:

1475 disp = disp['Y']

1476

1477 middle_node = abs(disp.loc[loc_middle])

1478 top_node = abs(disp.loc[loc_top])

1479 bottom_node = abs(disp.loc[loc_bottom])

1480

1481 bottom_node = bottom_node[0:itera]

1482 y=bottom_node

1483

1484 plot31.plot(x,y, label=Label, color=Color, lw=0.8, alpha=0.5)

1485

1486 # deflection rate

1487 print('deflection rate')

1488 deflect_rate = []

1489 datarange = np.argwhere(y> (length/30))

1490 print(datarange)

1491 if len(datarange)==0: datarange=[[0]]

1492 for i in range(datarange[0][0],len(y),1):

1493 deflect_rate.append((y.iloc[i]-y.iloc[i-1]) / (x[i]-x[i-1]))

1494 deflect_x = x[datarange[0][0]:]

1495 plot311.plot(deflect_x,deflect_rate, '--', color=Color, label=Label,

lw=0.8, alpha=0.5)

1496

1497 # image print

1498 print('image print')

1499 img = item[6]

1500 counter = 0

1501 for item2 in grid2:

1502 counter+=1

1503 print(counter)

1504

1505 if 'plot32' in locals():

1506 plot32.imshow(img)

1507 else:

1508 if counter>5:

1509 row = int(item_counter/2+1)

1510 column = item_counter % 2

1511 print(row,column, item_counter)

1512 imager = fig.add_subplot(grid2[item_counter+2])

1513 else:

1514 imager = fig.add_subplot(grid2[item_counter+1])

1515 imager.imshow(img)

1516 imager.axis('off')

1517 imager.text(0.9, 0.1,str(item_counter+1), ha='center',

va='center', transform=imager.transAxes, fontsize=7)

1518

1519 item_counter+=1

1520

1521 except TypeError: continue

1522 if 'type' in locals(): pass

1523 else: type =''

1524

1525 # manual legend entries

1526 lstyle = ['-', '--']

1527 lines = [Line2D([0],[0], color='k', lw=0.6, ls=style) for style in lstyle]

1528 labels = ['Stress', 'Utilization']

1529 plot11.legend(lines,labels, loc='upper right', fontsize=7, frameon=False)

1530 labels = ['Deflection', 'Deflection rate']

1531 plot31.legend(lines,labels, loc='best', fontsize=7, frameon=False)

1532

1533 fig.suptitle(type)

1534 plot11.set(title='Stress - Time curve', ylabel='\u03C3 [MPa]',xlabel='Time

[min]',xlim=(0,90),ylim=(0,250)) #stress-time

1535 plot111.set(ylabel='Utilization', ylim=(0,2.5)) #utilization-time

1536 plot12.set(title='Temperature - Time curve', ylabel='Temperature [Celsius]',

xlabel='Time [min]',xlim=(0,90),ylim=(0,1000)) #stress-time #temp-time

1537

1538 plot21.set(title='Strain - Time curve', ylabel='\u03B5 [\u2030]', xlabel='Time

[min]',xlim=(0,90), ylim=(0,4)) #strain-time

1539 handles,labels = plot11.get_legend_handles_labels()

1540 if 'plot22' in locals():

1541 plot22.axis('off')

1542 plot22.legend(handles,labels, loc='center left', fontsize=7, frameon=True,

shadow=False, framealpha =0.5)

1543 plot32.set_title('Deformed shape vs Initial state')

1544 else:

1545 if item_counter<5:

1546 plot22 = fig.add_subplot(grid2[0,:])

1547 plot22.axis('off')

1548 plot22.legend(handles,labels, loc='upper center', fontsize=7,

frameon=True, shadow=False, framealpha =0.5)

1549 else:

1550 plot22 = fig.add_subplot(grid2[0,:])

1551 plot22.axis('off')

1552 plot22.legend(handles,labels, loc='upper left', fontsize=6,

frameon=True, shadow=False, framealpha =0.5, ncol=2)

1553 if 'Aluminium' in dictionary[0][0]:loc_y=-590

1554 else: loc_y=-990

1555 if 'no' in dictionary[1][0]: loc_x = 2

1556 else: loc_x=5

1557 plot12.text(loc_x,loc_y, 'Deformed shape vs Initial state', fontsize=11)

1558

1559 plot31.set(title='Deflection - Time curve',ylabel='Deflection [mm]',

xlabel='Time [min]', xlim=(0,90), ylim=(0,125)) #deflect-time

1560 plot311.set(ylabel='Deflection rate [mm/min]', ylim=(0,6.25))

#deflection rate - time

1561 if 'no' in dictionary[1][0]:

1562 plot11.set_xlim(0,20)

1563 plot111.set_xlim(0,20)

1564 plot12.set_xlim(0,20)

1565 plot21.set_xlim(0,20)

1566 plot31.set_xlim(0,20)

1567 plot311.set_xlim(0,20)

1568 if 'Aluminium' in dictionary[0][0]:

1569 plot12.set_ylim(0,600)

1570 if 'Column' in dictionary[0][0]:

1571 plot11.set_ylim(0,40)

1572 plot111.set_ylim(0,4)

1573 plot21.set_ylim(0,4)

1574 plot31.set_ylim(0,30)

1575 plot311.set_ylim(0,3)

1576

1577 for plots in [plot11,plot111,plot12,plot21,plot31,plot311]:

1578 plots.minorticks_on()

1579 plots.minorticks_on()

1580

1581 fig.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+'Post_processing '+name+'.png', dpi=400)

1582 #plt.show()

1583 plt.close()

1584

1585 beam3_ins_list_alu = []

1586 beam3_ins_list_ste = []

1587 beam1_ins_list_alu =[]

1588 beam1_ins_list_ste =[]

1589 beam3_noins_list_alu = []

1590 beam3_noins_list_ste = []

1591 beam1_noins_list_alu =[]

1592 beam1_noins_list_ste =[]

1593 # list names column_list, beam3_ins_list, beam1_ins_list, beam3_noins_list,

beam1_noins_list all with 8 items

1594

1595 for Q, W, E, R in zip(beam3_ins_list, beam3_noins_list, beam1_ins_list,

beam1_noins_list):

1596 if 'Alu' in Q: beam3_ins_list_alu.append(Q)

1597 elif 'Steel' in Q: beam3_ins_list_ste.append(Q)

1598 if 'Alu' in W: beam3_noins_list_alu.append(W)

1599 elif 'Steel' in W: beam3_noins_list_ste.append(W)

1600 if 'Alu' in E: beam1_ins_list_alu.append(E)

1601 elif 'Steel' in E: beam1_ins_list_ste.append(E)

1602 if 'Alu' in R: beam1_noins_list_alu.append(R)

1603 elif 'Steel' in R: beam1_noins_list_ste.append(R)

1604 # list names column_list, beam3_ins_list, beam1_ins_list, beam3_noins_list,

beam1_noins_list all with 8 items

1605 def checkers(myList, path, image_name):

1606 dictionary=list()

1607 for item in myList:

1608 stress=read_data(901,item,'Stresses', path)

1609 temp = read_data(901, item, 'Temp', path)

1610 LE = read_data(901, item, 'Log_strains', path)

1611 PE = read_data(901, item, 'Plastic_strains', path)

1612 disp = read_data(901,item,'Displacements', path)

1613 try: img = mpimg.imread(r'D:\renee\OneDrive - TU

Eindhoven\Studie\Afstuderen\Thesis figures\mechanical

image'+'\\'+copy.deepcopy(item)+image_name+'.png')

1614 except: img=''

1615 dictionary.append([item, stress, temp, LE, PE, disp, img])

1616 name= myList[0] +'_'+ image_name

1617 postprocessing(dictionary, name)

1618

1619 checkers(column_list, r'E:', '')

1620 # checkers(beam3_ins_list_alu, r'E:\four_point_bending_test', 'Pload')

1621 # checkers(beam3_ins_list_ste, r'E:\four_point_bending_test', 'Pload')

1622 # checkers(beam3_noins_list, r'E:\four_point_bending_test', 'Pload')

1623 # checkers(beam1_ins_list_alu, r'E:\four_point_bending_test', 'Pload')

1624 # checkers(beam1_ins_list_ste, r'E:\four_point_bending_test', 'Pload')

1625 # checkers(beam1_noins_list, r'E:\four_point_bending_test', 'Pload')

1626

1627 # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\paint\P'

1628 # checkers(column_list, location, 'paintP')

1629 # checkers(beam3_ins_list, location, 'paintP')

1630

1631 # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\paint\Q'

1632 # checkers(column_list, location, 'paintQ')

1633 # checkers(beam3_ins_list, location, 'paintQ')

1634

1635 # location = r'E:\q_load 12-9-2019'

1636 # checkers(beam3_ins_list_alu, location, 'Qload')

1637 # checkers(beam3_ins_list_ste, location, 'Qload')

1638 # checkers(beam3_noins_list, location, 'Qload')

1639 # checkers(beam1_ins_list_alu, location, 'Qload')

1640 # checkers(beam1_ins_list_ste, location, 'Qload')

1641 # checkers(beam1_noins_list, location, 'Qload')

1642

1643 # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\Alt\Q'

1644 # checkers(beam3_ins_list, location, 'AltQ')

1645 # checkers(beam1_ins_list, location, 'AltQ')

1646

1647 # location = r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\ABAQUS\Alt\P'

1648 # checkers(beam3_ins_list, location, 'AltP')

1649 # checkers(beam1_ins_list, location, 'AltP')

1650

1651 # beam3_ins_list_alu

1652 # beam3_ins_list_ste

1653 # beam1_ins_list_alu

1654 # beam1_ins_list_ste

1655 # beam3_noins_list_alu

1656 # beam3_noins_list_ste

1657 # beam1_noins_list_alu

1658 # beam1_noins_list_ste

1659 column_list_no =list()

1660 column_list_yes = list()

1661 for item in column_list:

1662 if 'yes' in item:

1663 column_list_yes.append(item)

1664 else:

1665 column_list_no.append(item)

1666 # column_list,

1667 # beam3_ins_list,

1668 # beam1_ins_list,

1669 # beam3_noins_list,

1670 # beam1_noins_list

1671

1672 def column_beams(dictionary, name):

1673 # figure plotting stresses

1674 fig = plt.figure(figsize=(8,8))

1675 grid = fig.add_gridspec(nrows=2,ncols=2)

1676 fig.subplots_adjust(left=0.08,bottom=0.08,right=0.92,top=0.9, wspace=0.45,

hspace=.5)

1677 plot11 = fig.add_subplot(grid[0])

1678 plot12 = fig.add_subplot(grid[1])

1679 plot21 = fig.add_subplot(grid[2])

1680 plot22 = fig.add_subplot(grid[3])

1681

1682 for plots in [plot11,plot12,plot21,plot22]:

1683 plots.grid(lw=0.3, which='major', axis='both')

1684 plots.grid(lw=0.1, which='minor', axis='both')

1685

1686 item_counter = 0

1687

1688 for item in dictionary:

1689 try:

1690 if item[1] == None: continue #if empty dataset don't run it

1691 else:

1692 print(item[0])

1693 # create a label

1694 if 'Column' in item[0]:

1695 type = 'Columns'

1696 Label = item[0].replace('Mech_Column_', '')

1697 Label = Label.replace('_Concrete','')

1698 length = 1e3

1699 elif 'Beam3' in item[0]:

1700 type='3-sided Beams'

1701 Label = item[0].replace('Mech_Beam3_', '')

1702 length=3e3

1703 elif 'Beam1' in item[0]:

1704 type = 'Integrated Beams'

1705 Label = item[0].replace('Mech_Beam1_', '')

1706 length=3e3

1707 if 'yes' in item[0]: Label=Label.replace('_yes_10', ' insulated')

1708 elif 'no' in item[0]: Label=Label.replace('_no_10',' uninsulated')

1709 if 'shell' in item[0]: Label=Label.replace('_shell', '')

1710 if 'I-section' in item[0]: Label=Label.replace('_I-section', ' IPE')

1711 if 'Beam' in item[0] and 'uninsulated' in Label:

1712 Label=Label.replace(' uninsulated', '')

1713 type = type + ' uninsulated'

1714

1715 Label = Label.replace('_', ' ')

1716

1717 if 'Column' in item[0]:

1718 if 'I-section' in item[0] or 'IPE' in item[0]:

1719 loc_middle = 334

1720 loc_top = 2

1721 loc_bottom = 7

1722 else:

1723 loc_middle = 252

1724 loc_top = 386

1725 loc_bottom = 18

1726 else:

1727 if 'I-section' in item[0] or 'IPE' in item[0]:

1728 loc_middle = 6938

1729 loc_top = 163

1730 loc_bottom = 1112

1731 else:

1732 if 'Beam3' in item[0]:

1733 loc_list = [9422,14804,4049,1145,810,176,493]

1734 else: loc_list = [10625,16008,7495,1751,1416,1060,162]

1735 loc_middle, loc_top, loc_bottom, edge_top1, edge_top2,

edge_bottom1, edge_bottom2 = loc_list

1736

1737 stress_temp = pd.DataFrame()

1738 for T in item[1]:

1739 stress_temp = pd.concat([stress_temp, item[1][T]], axis=1)

1740

1741 LE = pd.DataFrame()

1742 PE = pd.DataFrame()

1743 for L, P in zip(item[2], item[3]):

1744 LE = pd.concat([LE, item[2][L]], axis=1)

1745 PE = pd.concat([PE, item[3][P]], axis=1)

1746

1747 middle_node = abs(LE['S11'].loc[loc_middle] +

PE['S11'].loc[loc_middle])

1748 top_node = abs(LE['S11'].loc[loc_top] + PE['S11'].loc[loc_top])

1749 bottom_node = abs(LE['S11'].loc[loc_bottom] +

PE['S11'].loc[loc_bottom])

1750 bottom_temp = stress_temp.loc[loc_bottom]

1751

1752 if 'Aluminium' in item[0]:

1753 itera = 0

1754 for Q in bottom_temp:

1755 if Q>500:break

1756 itera+=1

1757 elif 'Steel' in item[0]:

1758 itera=0

1759 for Q in bottom_temp:

1760 if Q>1200: break

1761 itera+=1

1762

1763 y = bottom_node[0:itera]

1764 x = bottom_temp[0:itera]

1765

1766 if 'Steel' in item[0] and 'no' in item[0]:

1767 plot11.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1768 elif 'Steel' in item[0] and 'yes' in item[0]:

1769 plot21.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1770 elif 'Aluminium' in item[0] and 'no' in item[0]:

1771 plot12.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1772 elif 'Aluminium' in item[0] and 'yes' in item[0]:

1773 plot22.plot(x,y*100, label=Label, lw=0.8, alpha=0.8)

1774

1775 except TypeError: continue

1776 item_counter+=1

1777

1778 if 'type' in locals(): pass

1779 else: type =''

1780

1781 fig.suptitle(type)

1782 plot11.set(title='Uninsulated Steel', ylabel='\u03B5

[\u2030]',xlabel='Temperature [Celsius]',xlim=(0,800),ylim=(0,2))

1783 plot12.set(title='Uninsulated Aluminium', ylabel='\u03B5

[\u2030]',xlabel='Temperature [Celsius]',xlim=(0,800),ylim=(0,2))

1784 plot21.set(title='Insulated Steel', ylabel='\u03B5 [\u2030]',xlabel='Temperature

[Celsius]',xlim=(0,800),ylim=(0,2))

1785 plot22.set(title='Insulated Aluminium', ylabel='\u03B5

[\u2030]',xlabel='Temperature [Celsius]',xlim=(0,800),ylim=(0,2))

1786

1787 plot11.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1788 plot12.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1789 plot21.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1790 plot22.legend(loc='best', fontsize=7, frameon=True, shadow=False, framealpha =0.5)

1791

1792 for plots in [plot11,plot12,plot21, plot22]:

1793 plots.minorticks_on()

1794 plots.minorticks_on()

1795

1796 fig.savefig(r'D:\renee\OneDrive - TU Eindhoven\Studie\Afstuderen\Thesis

figures'+'\\'+'column_beam_'+name+'.png', dpi=400)

1797 plt.show()

1798 plt.close()

1799

1800 def checkerss(myList, path1, path2, image_name):

1801 dictionary=list()

1802 for item in myList:

1803 if 'Column' in item:

1804 temp = read_data(901, item, 'Temp', path1)

1805 LE = read_data(901, item, 'Log_strains', path1)

1806 PE = read_data(901, item, 'Plastic_strains', path1)

1807 else:

1808 temp = read_data(901, item, 'Temp', path2)

1809 LE = read_data(901, item, 'Log_strains', path2)

1810 PE = read_data(901, item, 'Plastic_strains', path2)

1811 dictionary.append([item, temp, LE, PE])

1812 name = myList[0] +'_'+ image_name

1813 column_beams(dictionary, name)

1814

1815 # newlist3 = column_list + beam3_ins_list + beam3_noins_list

1816 # checkerss(newlist3, r'E:', r'E:\four_point_bending_test', 'Pload')

1817 # newlist1 = column_list + beam1_ins_list + beam1_noins_list

1818 # checkerss(newlist1, r'E:', r'E:\four_point_bending_test', 'Pload')

1819

1820 # location = r'E:\q_load 12-9-2019'

1821 # checkerss(newlist1, r'E:', location, 'Qload')

1822 # checkerss(newlist3, r'E:', location, 'Qload')

1823

	Master Renée van der Wurff
	Preface
	Summary
	Nomenclature
	1. Introduction
	2. Problem description
	2.1 Problem introduction
	2.2 Problem statement
	2.3 Approach

	3. Literature study & theoretical background
	3.1 Normative texts
	3.1.1 Measured parameters
	3.1.2 Fire test setup
	3.1.3 Failure criterion

	3.2 Thermal analysis
	3.2.1 Calculating properties from test data
	3.2.2 Simulated fire
	3.2.3 Member temperature
	3.2.4 Thermal material properties
	3.2.4.1 Insulation
	3.2.4.2 Contact and cavities
	3.2.4.3 Steel
	3.2.4.4 Aluminium
	3.2.4.5 Concrete
	3.2.5 Thermal gradient
	3.2.6 Thermal simulation model

	3.3 Mechanical analysis
	3.3.1 Material strength and Young’s modulus
	3.3.2 Strain
	3.3.2.1 Ramberg-Osgood relation
	3.3.2.2 Thermal expansion
	3.3.2.3 Creep strain
	3.3.3 Loading
	3.3.4 Failure mechanisms
	3.3.5 Mechanical simulation model

	3.4 Aluminium section types

	4. Finite element thermal analysis
	4.1 Model description
	4.2 Thermal analysis
	4.2.1 Column: a four-sided fire simulation
	4.2.1.1 Validation
	4.2.1.2 Thermal gradient
	4.2.1.3 Sensitivity analysis of mesh density
	4.2.1.4 Sensitivity analysis of contact definition
	4.2.2 Beam: a three-sided fire simulation
	4.2.3 Integrated beam: a one-sided fire simulation
	4.2.4 Alternative lightweight floor – sandwich panel
	4.2.5 Intumescent paint

	5. Mechanical analysis
	5.1 Strain relation
	5.1.1 Implicit stress-strain relation

	5.2 Structural model
	5.3 Model limits
	5.4 Validation mechanical model
	5.4.1 Column
	5.4.2 Beam

	6. Results
	6.1 Column
	6.2 Beam: three sided fire
	6.2.1 Evenly distributed load
	6.2.2 Four point bending test

	6.3 Integrated beam
	6.3.1 Evenly distributed load
	6.3.2 Four point bending test

	7. Discussion of results
	8. Conclusion
	9. Future work
	10. References
	11. Appendices
	A: List of figures and tables
	B: Mechanical analysis with intumescent paint
	C: Mechanical analysis with sandwich floor
	D: FEM images of deformed model shapes
	D.1 Columns
	D.2 Evenly distributed load.
	D.3 Four point bending test

	E: FEM thermal analysis script
	F: FEM mechanical analysis script
	G: Postprocessing script

	Thermal_Analysis_Protected_Beam3_IPE_lightweight
	FEM MECHANICAL ANALYSIS SCRIPT
	plots_mechanical2

