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Abstract

Intermittent and stochastic behaviour of renewable energy sources (RES) comes with technical challenges in the
energy transition. According to the ‘Klimaatakoord’, 70% of the energy mix must come from RES. Due to the loss
of inertia in the power system provided by traditional power plants, other forms of energy flexibility will be required
to maintain grid stability and balance. Buildings have been proven to have intrinsic properties to provide flexibility
through demand response, where end-uses that may be controlled such as heating, ventilation and air-conditioning
(HVAC) systems, on-site photovoltaic (PV) systems and white good appliances. Furthermore, aggregation of a cluster
of buildings becomes possible through intermediary actors of the electricity market allowing buildings to participate in
spot and ancillary service markets. In this paper, energy flexibility will be explored based on dynamic building energy
simulations, using the thermal mass of a case study office building as the storage component. A parametric study,
where downward set-point regulations, starting times and duration of demand response events (DREs) are varied to
quantify the energy flexibility. An aggregation of energy flexibility of the case study building onto the whole building
compound is implemented to determine the feasibility of electricity market participation solely through heat pumps as
opposed to the need for a larger pool of heat pumps or other systems in the compound. Finally, historical effects are
examined in the same representative week to have an initial understanding of charging and discharging characteristics
of the thermal mass and determining requirements for a prediction model that will allow buildings to bid in the intraday
or day-ahead markets. Results of the parametric study found an upper limit the amount of energy flexibility that may
be provided. Associated net earnings were obtained based on energy costs, however, further research is required to
determine the cost of providing flexibility such as operational or maintenance costs. It was found that historical effects
may reduce the energy flexibility by up to %37 and the earnings by up to %73. The higher drop in earnings are due
to increased energy consumption. Lastly, a ’discharging effect’ of the thermal mass was observed through a steady
decrease in the average floor surface temperature, when historical effects are taken into account. This may explain
the increased energy consumption due to previous DREs discharging the thermal mass. Such uncertainties in the
amount of energy flexibility may be detrimental to grid service providers, since lack of commitment may be penalised
in electricity markets. As a result, model-based controllers may be necessary when performing DREs and bidding into
the electricity market.
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Introduction

1 Introduction

The ‘klimaatakkoord’ (Climate Agreement) of the Nether-
lands, based on the EU 2050 clean energy package, is an
agreement which aims, by 2030, to reduce greenhouse gas
emissions by 49% relative to that of 1990. To achieve this,
70% of all electricity must come from renewable energy
sources (RES), with the primary alternatives being solar
PV and on/offshore wind power [1]. Furthermore, electri-
fication of the demand in the built environment must take
place, including the transition from gas-fired boilers to ther-
mally or electrically powered heaters for building space and
domestic water heating. The ‘klimaatakkoord’ states that,
by 2050, the current building stock consisting of 7.74 mil-
lion homes and 570,000 commercial buildings must become
“gas-free”, meaning the building systems must be either
non-combustible thermal or electric. As a milestone, the
agreement sets a target in which 1.5 million homes must
become “gas-free” by 2030.

The energy transition from centralised, fossil fuel-based
sources to de-centralised, RES comes with new challenges in
the electrical infrastructure of the built environment. Wind
and solar energy have an intermittent and stochastic power
output due to their dependence on weather conditions. The
result is a large variability and peaks in the residual power
load in the low and medium voltage level. Furthermore,
there is an uncertainty factor due to ‘forecasting errors’,
which becomes significant with the expected increase in
wind power capacity until 2050 [1]. These characteristics,
as a result, require the Dutch power system to have power
reserves and sources of flexibility [1, 2].

Power reserves are a responsibility of the power gener-
ating units, however flexibility is an opportunity for pro-
sumers (e.g. building owners with large demands or PV
capacity) to participate in services of the power system.
Such opportunities may be further argued due to the fact
that solar PV and on/offshore wind power are mainly inte-
grated into the medium- and low-voltage network [3]. The
aforementioned services may include trading electricity in
spot markets, congestion management to avoid overloading
of transformers or feeders, and ancillary services such as
local balancing [2].

Balancing electricity supply and demand is necessary to
maintain grid stability. To ensure this balance, a paradigm
shift in the energy network from supply-response to demand-
response is essential. There exist many alternatives to tackle
flexibility and power reserves including grid reinforcement,
distributed or large-scale energy storage and fast-response
generating units. Most or all of the aforementioned alter-
natives may be necessary in the energy transition and the
comparison between them is out of the scope of this paper.
However, it has been shown that demand response (DR) is
a cost-effective measure to accommodate for variable RES
integration. Benefits include lower system operation costs
and reduced grid-reinforcement and generation capacity re-
quirements [4, 5].

Various sources of demand-side flexibility exist, includ-
ing buildings, electric vehicles, electrical or thermal storage
and industrial end-uses. In order for any to be of poten-
tial, large-scale implementation is necessary due to the low
power density of one unit such as an industrial or home
battery system. Currently, natural gas plants provide flexi-
bility, where the levelised cost of energy (LCOE) is around
≈e100/MWh [6]. The cost of other storage technologies
such as NiCd batteries, which can have a mean LCOE of
e421/MWh when used for bulk energy storage and a mean
LCOE e337/MWh if used for transmission and distribution
services [7], show that electrochemical batteries are yet to
constitute a competitive alternative as a source of flexibil-
ity. On the other hand, a building’s existing structural mass
as a ’heat battery’, requires a negligible amount of invest-
ment and, in aggregation, may provide the energy flexibility

necessary through demand response events (DREs), where
heating, ventilation, and air-conditioning (HVAC) systems
or other end-uses are controlled [4, 8].

Previous studies have already shown the potential of
buildings to be sources of flexibility through DREs, includ-
ing valley filling, peak clipping, conservation, flexible load
(load-following), load building or load shifting as shown
in Figure 1 [8–15]. Buildings, however, have an impor-
tant requirement of maintaining occupants’ comfort. This
is due to a strong correlation between occupant comfort
and health and productivity [16].

Demand-side energy flexibility in buildings has been
studied extensively by utilising various end-uses such as
white goods (washing machines, dishwashers, etc.), build-
ing systems (HVAC, domestic water heating, lighting, etc.)
within economic, technological or techno-economic models
[5,17,18]. An important note is that the term ”Energy Flex-
ibility” was not commonly utilised in papers prior to [19].
Examples of terminologies that have been utilised include
demand side management or demand response, where the
same concept is utilised in a same or different context.

Most studies in literature model the system to be grid-
connected and therefore follow demand response (DR) pro-
grams to interact with the grid. Due to the vast domain of
model development to investigate DR potential of different
resources, Boßmann and Eser [17] conducted an extensive
and comprehensive literature review followed by categoris-
ing properties, which are summarised as follows:

• spatial properties: international, national, regional
and local

• temporal properties: ex-post, ex-ante and within each
the time-resolution (hours, minutes, seconds)

• methodological properties: model perspective, model
approach, mathematical method

• technological properties: industrial, residential, ter-
tiary and transport sectors

• practical properties: DR activity type and DR pro-
grammes

The sub-categories within each category are extensive
[17]. Therefore, only relevant sub-categories are addressed
and discussed within this paper.

One of the challenges is to define practical properties in
DR models. The unknown future of the EU electricity mar-
ket structure and policy changes supporting the integration
of distributed energy resources hampers the ability of de-
termining the feasibility without assumptions. Currently
in the Netherlands, zonal pricing is used in the electricity
market and is based on full-hour contracts, where fossil-
fuel powered plants are used for flexibility. This becomes
problematic in an energy transition to RES, when in com-
parison to natural gas plants, energy storage needed for
RES such as electrochemical storage, hydrogen storage or
hydro-storage have very high investment costs [7, 20].

In the US, demand response (DR) (Figure 1) through
aggregations and atypical pricing schemes have been widely
applied such as in the PJM American market. DR sup-
port schemes in the PJM are setup such that end-users
can participate through “Curtailment Service Providers”,
which serve as intermediary agents or in more recent terms,
through ”aggregators” [21]. Most countries, however, utilise
time-of-use (TOU) pricing schemes and therefore consider
buildings to be passive actors in the market [15]. Studies
currently show potential for end-uses to be actively partic-
ipating in the markets such as in balancing and ancillary
services market [22].

Required tasks within balancing markets include, trad-
ing electricity either in the day-ahead or intraday markets
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Figure 1: Demand response methods [23]

to ensure a continuous balance between electricity supply
and demand. The day-ahead and intraday markets are
traded on the spot markets where the platform used in the
Netherlands is the EPEX SPOT exchange. This market is
also shared between multiple EU countries, therefore allow-
ing cross-border trading. The prices are determined based
on production costs of generation units as well as electricity
costs, which is obtained from the supply and demand bids
as legislated by the European Commission [24].

While for ancillary services, frequency containment reg-
ulation (FCR) and restoration reserve (FRR) are assigned
to parties that are qualified and have a minimum capacity
reserve. The services are traded on the intraday market
and are activated in scales between near real-time up to
30 minutes. Due to the constraints of heat pumps’ mini-
mum run- and pause-times and this case study building’s
system size, primary (FCR) and secondary (part of FRR)
control reserves can be neglected, which must must respond
in less than 15 minutes. However, tertiary control reserves
(part of FRR) may still be an opportunity in the event of
aggregations.

The potential electrical energy flexibility using the build-
ing’s thermal mass as heat storage is shown to be one of
many promising solutions to stabilise the grid in renewable
energy-based grid. Swati et al. [13] focused on quantifying
and analysing the energy flexibility in the context of a smart
energy network by implementing demand response events
(DRE) using set-point changes of an ideal heating system.
In this paper, the same objective is set, however, the dif-
ference is the change of heating system to a heat pump.
The retrofit to a heat pump is important considering the
targets set by the Netherlands and the EU to eliminate
the use of natural gas, specifically in the ‘klimaatakkoord’
agreement [25], where a 50% reduction in carbon emissions
is set as a target for 2030 and 100% by 2050 compared to
levels in 1990 [26].

The main research objective is to assess the energy flex-
ibility provided by a heat pump system when utilising the
thermal mass as the heat storage medium. Indicators are
chosen so as grid operators or aggregators can obtain knowl-
edge on the building’s heating system capabilities in a fu-
ture scenario, where buildings will provide services in sta-
bilising the surrounding energy network.

The research question can be specified as follows includ-
ing sub-questions that will aid in the main answer:

• How much energy flexibility can BAM’s office build-
ing offer with a heat pump system through its thermal
mass?

1. How much energy flexibility do climate control
schemes provide during heating season?

2. Is it currently feasible for BAM to use its build-
ing compound to solely participate in the elec-
tricity market?

3. How does thermal mass perform with historical
demand response event effects?

In this paper, a building energy simulation model-based
assessment of the energy flexibility of a case study building
retrofitted with a heat pump is performed. The thermal
mass of the case study building is used as heat storage, and
in the context of the Dutch power system and climate. The
structure of this paper is as follows, this sections outlines
the scope of this paper including the purpose, objectives,
and research questions. Section 2 will be a review of previ-
ous papers in this field, where the focus will be on papers
using DR when investigating energy flexibility in buildings.
Section 3 includes how the model is developed and utilised
to assess energy flexibility in order to answer the research
questions. This is followed by section 4 and 5, with the
results and discussion. Finally, sections 6 and 7 include the
conclusions and any further research needed to improve our
understanding in energy flexibility in the future energy sys-
tem.

2 Literature Review

In literature, demand-side flexibility is studied through
various models, and in the context of electricity markets,
may be categorised according to demand response (DR)
properties as aforementioned. From a spatial properties
perspective, most studies refer to local, regional and na-
tional scale and therefore stay within borders of individual
countries [17]. Within the temporal properties, most stud-
ies analyse system performance on hourly to annual scales
however, the resolution of most models do not exceed one
hour [17]. Recently, studies such as [27–29] are beginning
to implement high time-resolution models, i.e. sub-hourly,
to aid the electricity system and market actors in gaining
knowledge on response capabilities and characteristics of
different end-uses for ancillary or balancing services. This
is an important step in a trend of diminishing system inertia
and non-fossil fuel-powered flexible generators in the power
system. Moreover, current market conditions still deem
large-scale implementation of energy storage technologies
such as electrochemical batteries and hydrogen-based tech-
nologies as costly. As for the technological properties, the
residential sector has a high focus in comparison to the
industrial and commercial sector [15]. More research is
needed in other sectors that can offer significant sources
of flexibility. As can be expected in the methodological
approach, the model perspectives are limited to end-uses
or distributed generators such as PV and battery systems
due to the nature of buildings. However, from the math-
ematical models aspect in the methodological properties,
authors utilised either of two alternatives: rule-based con-
trol (RBC) or model predictive control (MPC) controllers
that manage the building systems [30] to perform energy
flexibility-related strategies. Both types of control have
their advantages, however, it was shown that MPC outper-
forms RBC in accounting for the stochastic profile of wind
and solar power by pre-heating or pre-cooling a building to
exploit power generation peaks, therefore being proactive
versus reactive as compared to RBC.

In general there has been an evolution in research with
respect to utilising and evaluating energy flexibility in build-
ings, which falls under the methodological properties cate-
gory. Initially, authors set an objective of maximising self
consumption with on-site RES [31–42], without giving spe-
cific attention to indicators pertaining to electricity market
services. The main discussion included the performance of
on-site energy matching and system efficiency, while aim-
ing to reduce or eliminate grid interaction. Moreover, costs
were taken into account through peak shaving or load shift-
ing based on TOU or RTP pricing.

On the other hand, more recent papers such as [29] focus
on using DR as the key to participate in aggregations or,
if large enough, solely to participate in electricity markets
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i.e. to provide balancing services to the grid.
The performance indicators differ between the afore-

mentioned approaches due to the different objectives. The
self consumption objective utilises indicators such on-site
energy matching (OEM) and on-site energy fraction (OEF)
[36]. Whereas, studies focussing on DR aim to minimise en-
ergy costs by using TOU or RTP pricing [43–45], or quantify
the potential for supporting the grid in balancing services
using more recent energy flexibility indicators [2, 46]. In
both cases however, CO2 emissions may be accounted for
as an additional indicator.

One note is some of recent papers still utilise self con-
sumption and this could be due to other objectives such as
saving costs for building owners in current scenarios. Some
authors such as [45, 47–50] stood out due to their respec-
tive early publishing dates and use of flexibility indicators
in addition to energy costs.

CO2 emissions, self consumption and energy cost indica-
tors are directly comprehensible, however, energy flexibility
indicators are developing, where the the IEA has created
”Annex 67” in order to improve our understanding in how
much different types of buildings and their end-use systems
may offer flexibility to the future energy system [19]. The
purpose of the annex is to prepare for a smart grid scenario,
where buildings can serve as an actor in the energy system.
Figure 2 depicts the scenario in which heat pumps may aid
a 0.4 kV feeder in avoiding overload by peak shaving and
load shifting.

Hurtado et al. [2] have compiled a group of indicators
that take into account flexibility indicators including ramp
rate, capacity and energy values as shown in Figure 7 in
section 3. Note that thermal comfort was integrated in
order to not sacrifice occupant comfort, health and pro-
ductivity. The importance of such indicators presents it-
self when grid operators and distributed resources owners
such as PV or wind farms or industrial, commercial and
residential end-users are collaborating to instantaneously
balance the electricity supply and demand. The nature
of electricity networks requires accurate prediction in both
supply and demand in order to anticipate imbalances and
reduce or activate supply or demand resources. Further-
more, when specifically focussing on buildings as an actor
in balancing electricity, one must account for stakeholders
including building owners or occupants that have cost and
comfort requirements that serve as constraints or objectives
depending on the perspective it is observed from. Based on
all these requirements are indicators to be established and
utilised as criteria for evaluating any energy flexibility mea-
sure.

In order for buildings to be flexible, a storage compo-
nent is essential that allows for the load to shift or reduce.
In buildings that may come in many forms, however, most
buildings utilise insulated water tanks, thermal inertia of a
building’s structure, or electrochemical batteries. Further-
more, other alternatives to provide demand-side flexibility
exist, such as grid batteries or electric vehicles. The com-
parison to the latter alternatives are out of the scope of this
paper, however, as aforementioned in section 1, large scale
implementation of grid batteries still remains costly due to
the high capital cost required. On the other hand, when
comparing storage tanks to thermal mass, it was shown in
a Danish case study of the detached house building stock
that thermal mass is more cost effective due to higher ini-
tial investment costs of storage tanks in comparison to lower
energy costs savings [19,51,52].

Building energy simulation (BES) models are consid-
ered a white-box approach, which may simulate demand
response events (DREs). They provide the ability to pre-
dict a building’s potential energy flexibility and physical
insights into the energy storage responses such as that of
the structural thermal mass. Such an approach is advan-
tageous when, for example, a building is still in the design

Figure 2: (a) Current scenario with peaks occurring in
evening hours due to cooking appliances. (b) future sce-
nario showing heat pumps and electric vehicles will cause
an overload to the current system. (c) a smart grid solu-
tion where buildings are pre-heated prior to cooking peak,
therefore shifting the load to avoid a peak [19]

stage and the operational aspects need to be investigated.
This may also apply if a building is in a retrofit design
stage.

BES models always include a representative thermody-
namic and heat transfer model of the building including
resistance, capacitance, and all energy gains and losses.
Other components that are part of the building energy sys-
tem such as HVAC or PV systems may or may not be dy-
namically modelled including the approach to which they
are controlled. Building systems control is a significant as-
pect since it defines the capabilities when performing de-
mand response event (DREs). The approaches were pre-
viously mentioned in the methodological properties as ei-
ther model-predictive control (MPC) or rule-based control
(RBC).

In general, authors focus on the economic aspect for
building owners or energy service companies (ESCOs) when
performing demand response [31,50], particularly if authors
choose MPC as a control strategy [52]. For example, Liu
and Heiselberg [53] focus on shifting heating and cooling
loads of an office building in Denmark using RBC. The con-
trol strategy depends on price levels, which are categorised
into low, medium and high values. The RBC aims to avoid

3
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consumption in high price levels and shifting such loads to
medium or low price level periods. Even though economic
incentives were set as the main objective, other indicators
were reported such as power decrease for grid operators to
have insights required for ancillary and balancing services.
It was found that the energy consumption increases com-
pared to a reference comfort-based control strategy. How-
ever, there was a distinct difference between the different
RBC strategies, where a simple strategy of shifting loads
from high to low price levels increased energy consumption
by around 41% and after adding a weather-predictive con-
troller, the increase was limited to 4%. The BES model
included a convective heating and cooling system supplied
by a heat pump and chiller respectively and historical elec-
tricity market prices from 2015.

Authors that use MPC have shown the improved capa-
bilities in minimising energy costs due to improved schedul-
ing of heating or cooling system operation to time periods
with lower energy prices. In summary, MPC provides opti-
mal performance, whereas RBC yields sub-optimal results
due to a lack in capability from the latter in anticipating fu-
ture states and conditions [30]. However, MPC comes with
challenges such as increased computational times, complex-
ity and therefore increased costs and risk of modelling or
prediction errors [52].

There is a lack of a detailed overview on expectations of
energy flexibility provided by the thermal mass. Similarly
to this case study, most office buildings comprise of concrete
structures that are considered heavyweight in terms of ther-
mal mass [54]. The International Energy Agency (IEA)
Annex 67 characterises a building’s thermal mass energy
flexibility with the exclusion of historical effects, weather
and occupancy changes. The latter two have a stochastic
nature, which provides uncertainty in the amount of avail-
able energy flexibility due to the thermal mass’s charging
and discharging characteristics. For example, a sunny day
will charge the thermal mass and may be used the follow-
ing day when it is overcast. Similarly, a day where occu-
pants have the windows open may cool the building caus-
ing the thermal mass to dissipate it’s heat to the outside,
thereby temporarily reducing its energy flexibility capacity
until recharged.

Historical demand response events must be taken into
account in building energy simulations when assessing the
current energy flexibility that may be provided. Most pa-
pers address this using MPC, where heuristic or analytical
optimisations are performed to determine the schedule for
end-uses such as HVAC systems and appliances [46]. When
using HVAC systems, the medium through which flexibility
is provided may be either passive using the thermal mass
or active through storage tanks. Due to the autonomous
nature of model-predictive controllers, the analysis of his-
torical effects are often neglected in such studies. Therefore,
there is a lack of reporting in order to build reliability and
close the gap between research and grid operators to utilise
building thermal mass a heat storage or ‘power-to-heat’.

Most of literature perform seasonal or annual analy-
ses by setting thermal comfort constraints to ensure ap-
plicability. An analogy of this, could be with the state
of charge of electrochemical batteries. Grid operators or
building owners have an indicator of the current ability
to perform a demand response event. However, unless a
building has a model-based controller, estimating the in-
stantaneous amount of flexibility due to thermal mass may
bring a level of uncertainty. Such uncertainties may impose
penalties on aggregators or building owners if they fail to
meet the bid/contract agreed with the electricity market.

3 Methodology

The approach taken in this study is utilising a compu-
tational building performance simulation model to simulate
demand response (DR) programs. The energy and comfort
performance, due to changes in indoor air temperature set-
points, are investigated. As a result, a theoretical upper
limit of the energy flexibility potential is determined. The
most important factors in the model are therefore the build-
ing and the heating and ventilation system, which govern
the amount of flexibility a building can provide.

Future outcomes are uncertain for electricity market
prices, therefore the focus in this paper relies on dynamic
building energy simulations to quantify energy flexibility
using current real-time pricing (RTP) of ancillary and bal-
ancing markets. Using RTP, either through aggregators or
directly with the electricity market, buildings may offer bal-
ancing services. The markets in which this paper assumes
the case study building and compound to participate in,
are the balancing markets, which have a 24-hour cycle with
a 15-minute time step as shown in Figure 3.

Figure 3: Real-time (imbalance) electricity prices in the
Netherlands for each representative day chosen

To address the first and second part of the research
question in quantifying the energy flexibility that may be
provided by the heating system, demand response events
(DREs) are simulated using the building energy model.
DREs were limited to downward regulations, i.e. reduc-
ing the set-points. Findings from the previous study of the
same case study building [13] showed that upward regula-
tion of the set-point increased overall energy consumption
in relation to the total energy shifted, leading to a loss for
the building owner or aggregator. A parametric study is
conducted to simulate DREs as will be discussed in section
3.4.

Previous research has already shown that frequency of
charging and discharging thermal mass with heat may con-
flict in more than 24-hour periods. Therefore, this impacts
the participation in demand response (DR) due to ther-
mal comfort constraints and as a result an understanding
of the historical effects of demand response events (DREs)
is needed. This aids the electricity market actor respon-
sible for bids to predict the extent of flexibility the build-
ing is able to provide. To understand such dynamics and
address the third part of the research question, the differ-
ence in behaviour between two cases, one including- and
the other excluding historical DRE effects, gives an indica-
tion on the degree of impact and dependency between two
or more DREs.

Multiple stakeholders are involved in this study such
as occupants of the building in which their comfort must
not be compromised, building owners or energy service con-
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tracting organisations (ESCOs) in which maximising profits
is important to protect their business value stream, electric-
ity system operators (SOs) in which must maintain the the
system’s adequacy and security to all consumers. Therefore
a feasible solution is one which satisfies all requirements
from different stakeholders. The key performance indica-
tors (KPIs) were chosen to reflect these requirements, where
the objective is to maximise energy flexibility to the grid
and maximise net earnings to the building owners, ESCOs
or aggregators.

In summary, the parametric analysis is evaluated based
on whether it is feasible from a comfort perspective fol-
lowed by choosing the DRE with highest energy flexibil-
ity for each representative day. Subsequently, the aggre-
gated energy flexibility of the building compound may be
obtained, where it can be known whether it is feasible, us-
ing heat pumps, to solely participate in electricity markets.
The main requirement is the 1 MW minimum reserve, as
aforementioned in section 1, to be able to provide balancing
services. Otherwise, an ’aggregator’ would be required to
gather a larger pool to trade on behalf of BAM.

3.1 Case Study Building and Retrofit Design

The case study, referred to as building ”D”, is an office
building located in the city of Bunnik, Netherlands, which
will be investigated for the potential electrical energy flex-
ibility using the building’s thermal mass as heat storage.
Currently, the building is heated using three central gas-
fired boilers. In response to a need for an alternative heat-
ing source, a heat pump is added as a retrofit to the build-
ing in place of the current gas-fired boilers. The choice of a
heat pump is due to its capabilities of responding promptly
to control signals (≈15min) and higher energy efficiency
compared to gas boilers. The building characteristics are
summarised in Table 1.

Table 1: Case study building D characteristics

Elements Amount Unit Remarks
Area 3 Floors 1284 m2

Age 2002 Year -
Occupancy 74 People -
Ventilation 4 ACH Balanced

Heating 3x65 kW Gas Boilers

Built in 2002, the building (Figure 4a) is part of a larger
building compound consisting of eight office buildings as
shown in Figure 4b. The total floor area of the compound
is approximately 17000 m2. Each building in the com-
pound is nearly identical to one another from a typolog-
ical, structural and architectural perspective. Therefore, it
was assumed the case study building may be a representa-
tive building of the compound. It should be noted however,
building orientations vary therefore heating demand profiles
may vary between each individual building due to different
solar gain profiles.

In total there are three storeys in the building, each hav-
ing mostly an open-plan layout. The orientation as seen in
Figure 4b is East-west in the longitudinal direction, there-
fore the larger areas of the façade are facing North and
South.

3.1.1 Building Enclosure

The system used for most of the external components
including walls, floors and roofs is precast concrete insu-
lated sandwich panels. The fenestration system consists of
double-glazed windows with aluminum frames. A summary
of the thermal characteristics and window-to-wall ratios are
presented in a previous study [13].

(a) Southeast view of building D

(b) Building Compound of Case Study

Figure 4: Case study building shown in top from a South-
east perspective. The bottom figure shows BAM’s building
compound comprising of 8 buildings.

3.1.2 Heating and Ventilation System

As aforementioned, the building uses three natural gas
boilers as the heat source. As a medium, hot water is dis-
tributed for space heating, whereas domestic hot water is
provided using separate electric resistance boilers.

The hydronic distribution is split between a radiator
terminal system and heating coils of an air handling unit
system as shown in Figure 9.

The air handling unit (AHU) contains a sensible heat
recovery wheel with a 75% effectiveness ratio. As a result,
the heating demand of the AHU is significantly reduced,
leaving the majority of the heating demand with the radi-
ator system, where the heating coil requirements may be
considered negligible.

3.1.3 Heating system retrofit and design

The heat pump system serves as a retrofit to the case
study building by replacing the current central gas-fired
boilers. Based on this system architecture, the heat pump(s)
were sized to meet the full heating demand requirements of
the building.

Sub-hourly building energy simulations were utilised based
on a validated building model [13]. A load duration curve
of the annual heating demand (Figure 5) was predicted us-
ing TRNSYS. The load duration curve and thermal comfort
constraints, based on Dutch indoor climate standards, were
utilised for sizing the heat pumps. An air-source heat pump
was chosen as the retrofitted system type based on a dis-
counted payback analysis, where the results may be seen
in Figure 6. Results for the HVAC sizing may be found in
Appendix B.
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Figure 5: Predicted load duration curve of annual heating
demand of building D simulated in TRNSYS

3.2 Energy flexibility using thermal mass

The total energy consumed by the HVAC system in-
cluding the heat pumps, circulation pumps and air handling
unit fans are utilised when calculating the energy flexibility-
related indicators.

3.2.1 Key performance indicators

As aforementioned, key performance indicators (KPIs)
were chosen carefully to account for relevant stakeholders
including building owners, ESCOs, aggregators and grid
operators.

Hurtado et al. [2] developed a graphical representation
highlighting the main performance indicators when con-
ducting a demand response event (DRE) as shown in Figure
7. Grid operators pay attention to the energy side such as
peak clipping (π+/−), load shifting or conservation (ε+/−)
and duration of time of each (t). Whereas, building owners
and ESCOs focus on costs incurred on the building includ-
ing energy costs and thermal comfort. Equation 1 and 2
show how these indicators are calculated.

π+/− = Pflexible(t) − Preference(t) (1)

ε+/− =

∫ tDREEnd

tDREStart

π
+/−
flexible(t) − π

+/−
reference(t)dt (2)

where Pflexible(t) is the total energy consumed by the
HVAC system including the heat pumps, circulation pumps,
and air handling unit fans when a DRE is performed in
kW, Preference(t) is the same as Pflexible(t) but without
any DRE performed, tDRE Start is the starting time of the
DRE event and tDREEnd is the ending time of the DRE
event.

To quantify the energy flexibility on an aggregated level
of BAM’s building compound and address the second part
of the research question, the ’energy flexibility intensity’,
formulated in Equation 3 is used to calculate the total en-
ergy flexibility that can be provided by the compound.

E− or Π− =
ε− or π−

Acasestudy
×Acompound (3)

where, E− is the energy capacity shifted or partially
conserved of the whole compound in kWh, Π− is the power
capacity clipped in kW, Acasestudy is the floor area of the
case study building in m2 and Acompound is the floor area
of all buildings aggregated in the compound in m2.

Thermal comfort may be characterised using indoor op-
erative temperature, where the range must be bound within
the upper and lower limits. Linden et al. [55] investigated
the adoption of adaptive comfort limits in the Netherlands.
It was stated that during heating season, where mean out-
door temperatures are below 11-12◦C, type ’Beta’ opera-
tive indoor temperature limits apply. To take the best-case
scenario in providing flexibility to the grid, the 65% accept-
ability limits were taken into account that ranges between
18 and 19◦C for lower limits, depending on outdoor tem-
peratures.

As for the economic indicators, the service of provid-
ing flexibility is assumed to be incentivised in the elec-
tricity market context through demand response (DR), in
line with the ambitions of the EU including the Nether-
lands [25]. Furthermore, to ensure a current best-case sce-
nario, the maximum imbalance market price excluding any
outliers is taken into account for each representative day
as shown in Table 2. The market data set also includes
ancillary services. Depending on the capacity of the en-
ergy flexibility, buildings may take part in either directly-
or scheduled-activated frequency restoration reserve (mFR-
Rda or mFRRsa). An aggregated amount of 20 MW is re-
quired by the former (mFRRda), whereas the latter is not
specified therefore a minimum of 1 MW is assumed (as per
market regulations) [56].

It should be noted however, that the economic analy-
sis uses the flexibility service costs as a revenue due to the
building owner (BAM) perspective, whereas the energy im-
ported from the grid is taken as a cost. Therefore, the cost
KPI is formulated as in Equation 6.

R = ε− Cmax(t0) (4)

∆Cimports =

t7∑
t0

Cflexible(t) −
t7∑
t0

Creference (5)

P = R− ∆Cimports (6)

where, P are the net earnings in e, R is the revenue gen-
erated from performing a demand response event (DRE) in
e, ∆Cimports is the difference between the total electricity
importing costs of the reference case (Creference(t)) with
no DRE and the electricity import costs of the flexible case
(Cflexible(t)) with DRE, in e, t0 is the representative day,
and t7 is the day, one week subsequent to the representa-
tive day. By taking into account the energy consumption
one week subsequent to the DRE, the ”rebound effect” is
included, in case the overall energy consumption may in-
crease, remain the same or decrease.

3.2.2 Scenarios

To provide a clear context in which this research is inves-
tigated in and due to the shear amount of possible scenar-
ios that exist, assumptions are made with the objective of
using the best-case scenario in order to determine whether
buildings’ thermal masses are a feasible source of flexibility.

Electricity market prices were based on a single year’s
profile of the EU-NL wholesale market. This data is openly
available and provided by Tennet through its ENTSO-e
transparency platform. The year chosen was 2018 as it
is the most up-to-date complete annual data set. However,
to simplify and choose a best-case scenario, the maximum
price of each day is used excluding any outliers as sum-
marised in Table 2.

Based on preliminary simulations, it was found that
February provided the highest energy flexibility due to the
highest heating demand and lowest COP. Therefore, Febru-
ary was chosen as a representative month for a best-case
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Capital Cost* (€) Discount rate (%) Lifespan (yrs) Salvage (%) Natural Gas (€/GJ) Electricity (€/kWh)

8050 (ASHP) / 24100 (GSHP) 3 15 0 21.4 0.1
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Figure 6: Discounted payback period for two retrofitting alternatives based on building performance simulations, air-
source heat pump (ASHP) and ground-source heat pump (GSHP), compared to a ”Do-Nothing” case.

Figure 7: Energy flexibility key performance indicators [2]

scenario. Within February, the minimum, mean and maxi-
mum outdoor temperature days were chosen to simulate all
DREs as summarised in Table 2.

3.3 Building Energy Model

3.3.1 Building

Due to the open-plan layout of the office building and
exclusion of a cooling system, each floor was simplified as
one heating zone as shown in Figure 8. Nair et al. [13]
validated the building model based on utility bills. All rel-
evant window and building characteristics are presented in
Appendix B and may be found in [13].

Figure 8: Geometrical model of case study in TRNSYS

3.3.2 Heating and Ventilation

Based on the object-oriented modelling methodology,
the model was developed using various components from
the TRNSYS and TESS libraries. Figure 9 depicts the
architecture of the HVAC system modelled. In total two
air-source heat pumps were sized and modelled based on
load duration curves, to minimise on-off cycles (partial load
conditions). It must be noted however, that a heat storage
buffer tank was excluded in order to isolate the thermal
mass and indoor air as the only sources of flexibility, provid-
ing a better understanding of how thermal mass performs.

The circulation pumps and fans are modelled as variable
speed, where the performance curves were derived from the
manufacturers’ documentation due to the existing distribu-
tion system of the building and may be found in Appendix
B.

As for the controls, a simple real-time three-stage on/off
thermostat was utilised for each floor, where if one floor re-
quires heat, the heat pumps are switched on with a 15-min
time delay per stage. It must be noted however, that the
circulation pump works on partial load if not all floors re-
quire heating. The first two stages are for both heat pumps
and the third stage is for an auxiliary heater if the outdoor
ambient temperature are below design conditions.

3.4 Simulation setup

The setup of the model allows to run simulations through-
out the entire heating season, which provides an estimate
on how much the case study building can offer to help bal-
ancing the electricity supply and demand in a renewable-
energy based grid. Parametric runs are utilised in deter-
mining daily sub-optimal demand response events, with the
objective of maximising energy flexibility (ε+/−) and deter-
mining the associated net earnings, while satisfying thermal
comfort constraints. Table 3 summarises the input param-
eters used and the list of possible values.

As a result, a total of 120 control strategies per rep-
resentative day (Table 2) are simulated, where the energy
flexibility is calculated. It must be noted that an annual
simulation without any demand response event (DRE) is
used as a reference case when calculating the energy and
cost KPIs.

The second part of the simulations involves a parametric
study to investigate the historical effects of DREs. In this
case only one input parameter was chosen, DRE starting
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Table 2: Days chosen in representative month of February

Description Statistic Day Tambient−average [◦C] Electricity Pricemax [e/MWh]
Tout−min Minimum Feb 14 2.3 57.2
Tout−mean Mean Feb 07 7.6 46.9
Tout−max Maximum Feb 22 10.9 60.5
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Figure 9: Heating and ventilation system model in TRNSYS

Table 3: List of input parameters in parametric study

Parameters Possible Values
Set-point changes[◦C] -1. . . -4

DRE starting hour[24-Hour] 06:00. . . 17:00
DRE duration [hours] 2. . . 6

hour, and the other two parameters were set as constants.
A set-point change of -3◦C and a DRE duration of 4 hours
were chosen.

Excluding historical effects Using the model of the
building and HVAC system, a parametric analysis of vari-
ous DREs will be performed for each day of the week start-
ing on February 7 and ending on February 14. One input
parameter was chosen as aforementioned. For each day,
the result with the highest energy flexibility is chosen. The
following day, the same process takes place assuming no
previous DRE was performed. As a result, a benchmark as
an upper limit of the available energy flexibility, is provided
for each day of the whole week chosen.

Including historical effects and sub-optimal strat-
egy In reality, DREs might take place on a daily basis,
which means historical effects will impact the subsequent
DRE depending on the ’state of charge’ of the thermal
mass, the DRE specifications (duration, start time, or set-
point), the climate and occupant behaviour. In this case,
the same DREs as in the case of excluding historical effects
will be simulated for a chosen sequence of days, however,
for each subsequent day, any previous DRE(s) is(are) in-
cluded, therefore accounting for potential historical effects.
It should be noted that the results chosen still satisfy the
highest energy flexibility criteria. Therefore, the input pa-
rameter providing the result may differ compared to the

case without historical effects.

4 Results

Regarding the first and second part of the research ques-
tion, the aim is to determine the maximum energy flexibility
that can be provided given various control strategies (Ta-
ble 3). The input parameters result in a combination of 120
strategies for each representative day. The three represen-
tative days chosen provide the ’best-case scenario’, resulting
in a total of 360 simulations. The days were chosen based
on a preliminary seasonal analysis to determine the month
with the highest power (π−) and energy flexibility ε−.

Figure 10 provides four distributions of the energy (ε−

and E−) and power (π− and Π−) capacity categorised by
the duration of the DRE for both building D and the whole
building compound, i.e. all 8 buildings. The distributions
are a result of the parametric analysis including all repre-
sentative days and set-point change magnitudes. Based on
these results, it can be deduced that heat pumps solely are
insufficient to participate in electricity markets due to the
minimum 1 MW requirement previously mentioned. Fur-
thermore, the down regulation does not continuously keep
the heat pump off, due to the thermostat maintaining the
minimum indoor air temperature as shown in Figure 11.
This may be improved by implementing pre-heating strate-
gies with a predictive controller as opposed to the real-
time, rule-based control (RBC) controller used in this case.
However, other equipment and systems in the building com-
pound aggregate to an amount higher than 1 MW. Hence,
allowing BAM to have a role in the electricity market such
as a trader or balance service provider.

The power capacity is mostly negative as expected due
to the downward set-point regulations during the DREs,
while the top 25th percentile, which is positive, represents
the heat pumps maintaining the minimum indoor air set-
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Figure 10: Load shift/conservation (ε− and E−) and peak
clipping (π− and Π−) potential of all demand response
events categorised into demand response duration

points. Both indicators are normally distributed for 4- and
6-hour DREs, while the 2-hour DRE is skewed more to
the lower power, i.e. higher flexibility. Such behaviour is
due to the 2-hour DREs having a lower impact on thermal
comfort constraints compared to DREs with longer dura-
tion. The same behaviour is observed for energy capacity
(ε−). However, the power capacity (π− and Π−) have ap-
proximately the same median, regardless of duration. The
minimum and maximum values differ due to the longer du-
ration, which results in higher heating demand to maintain
or restore indoor air temperature set-points. On the other
hand, there is an increasing trend in energy capacity as the
duration increases, which is expected. This trend is more
apparent in Figures 12a and 13a, where the energy flexibil-
ity increases with respect to the magnitude of duration and
set-point change.

Figure 12a and 13a show the energy capacity (ε−) that
is provided by the heating system categorised by DRE dura-
tion for both the case study building and the whole building
compound. It must be noted that each bar is the maximum
energy flexibility for each representative day (Tout) and as-
sociated set-point change magnitude (∆Tset−point). More-
over, each bar represents one parametric run, meaning no
previous or subsequent DRE were performed. Based on a
simple visual inspection, it can be deduced that the energy
capacity is proportional to duration (time) and set-point
change magnitude, however, the trend is not the same for
net earnings. The reason for this is, net earnings include
not only the revenue due to the provided flexibility, but also
the increased or decreased energy import costs (∆Cimports)
that is a consequence of the downward set-point regula-
tions. Furthermore, the dynamic pricing of the electricity
market varies between the different representative days (Ta-
ble 2).

Based on the parametric analysis, Figure 12b and 13b
show that one DRE per day will potentially result in a pos-
itive net earning to the building owner, considering only
energy costs. Results may differ depending on other oper-
ational costs including labour, maintenance and other ad-
ministrative costs.

It is expected, in the future, that the imbalance market
will have a more prominent role due to the stochasticity
of wind and solar energy sources. Therefore, Figure 14
shows the results of future imbalance market price scenar-
ios, where the first bar represents the current and worst-case
scenario and the two subsequent bars represent a 50% and
100% increase in the price amplitude per time step of the
negative imbalance market. It is worth noting that increas-
ing the price by a factor of two does not necessarily increase
the net earnings by the same factor due to the fixed price

Figure 11: Maximum flexibility of 4-Hour demand response
events (DREs) for 4 different climate control strategies
(∆Tset−point = −1...− 4◦C)

of energy imports. In all three days, the increase between
the ’Base’ and ’50%’ case is 26% and 20% between ’50%’
and ’100%’. This shows that the cost of energy imports are
an important factor in the economic analysis.

Albeit Figure 12a and 13a give a theoretical maximum
on how much flexibility can be provided, a whole year anal-
ysis is necessary to understand the seasonality and cyclic
nature of this ’heat battery’. There are many degrees of
freedom when determining the ’state of charge’ of a ther-
mal mass including occupancy, weather and HVAC system
performance. Determining the full potential of a building’s
thermal mass is out of the scope of this paper, however,
determining the requirements for an approach is what the
third research question addresses.

Figure 15a and 15b shows the difference in energy ca-
pacity and net earnings between cases of including- and ex-
cluding historical DREs, when attempting to quantify the
energy flexibility that may be provided. In this case, only
one DRE per day is simulated, where a drop of up to 37%
in energy capacity may occur. This may increase if more
than one DRE is conducted per day. As an indicator of the
thermal mass’s state, surface temperatures are presented,
where it can be seen that there is a steady drop in the case
when historical effects are included. Such results show the
limitations of rule-based control (RBC) if the objective is
to determine a seasonal or annual potential of energy flex-
ibility. Despite the flexibility is reduced, the earnings are
still positive meaning a profit for the owner.

In a preliminary analysis, the downward regulation in
most cases was shown to reduce overall energy consump-
tion as shown in Figures 17a and 17b, meaning there is no
significant ”rebound effect”. This may be explained by the
application of one DRE per day per simulation, which does
not significantly influence the surface temperatures. Only
indoor air temperature is significantly influenced as shown
in Figure 11 due to air’s low specific heat capacity. Accord-
ing to Figure 1, this may be classified as load conservation.
It must be noted however, in some cases, control strategies
including set-point magnitude, duration and starting time
do increase the import of costs, such as when the end of
a DRE coincides with a drop in internal gains during oc-
cupied hours. On the contrary, it was found that when a
sequence of DREs are performed over multiple days, there is
a slight increase in energy consumption as shown in Figure
17b when compared to the case excluding historical effects
in Figure 17a.
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(a) Load shift or conservation per representative day (b) Net earnings per representative day

Figure 12: Maximum load shifted or conserved (ε−) and net earnings (P ) of all three representative days categorised
into demand response duration and indoor set-point magnitude change

(a) Load shift or conservation per representative day (b) Net earnings per representative day

Figure 13: Maximum aggregated load shifted or conserved (E−) and net earnings (P ) of all three representative days
categorised into demand response duration and indoor set-point magnitude change

Figure 14: Net earnings of a 4-Hour demand response event
(DRE) with a ∆Tset−point = −3◦C, for each representative
day. The ’Base’ scenario represents current prices, where
’50%’and ”100%’ represent future scenarios.

5 Discussion

Hurtado et al. [2] found a down regulation power capac-
ity (π−) potential of around 35 kW for Dutch office build-

ings with an average area of approximately 4000 m2, which
equates to an intensity of around 8.6 W/m2. In this case
study, the results are in the same order of magnitude with
an intensity of around 8.0 W/m2 derived from the results
shown in Figure 10. The similarity in the results can be
attributed to the similarity in the heat source used, i.e. an
air-source heat pump. However, the heat emission systems
are different, where Hurtado et al. [2] use a direct-expansion
(DX) coil with a constant volume (CV) fan, while a radi-
ator system and a variable speed fan with a heat recovery
wheel is used in this paper.

Longer duration DREs may have higher load shifting or
load conservation potential, however, this may have a ’dis-
charging’ effect similar to what is seen in batteries, where
the effect is evident in the trend of surface temperatures as
shown in Figure 15b. This further strengthens the need for
a model-based predictive controller, which translates the
state of a building to the controller before implementing
any control strategy.

Limitations in this study include the lack of whole-
year analysis, where weather, occupancy and energy prices
vary. Furthermore, some cases when implementing a con-
trol strategy of ∆Tset−point − 4◦C exceeded adaptive ther-
mal comfort limits, therefore caution needs to be taken
in determining the feasibility. The use of current imbal-
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(a) Net Earnings with- and without- historical effects (b) Energy flexibility (ε−) with- and without- historical effects

Figure 15: Sub-optimal control strategies found for days between February 8 and 14. Figure 15a shows net earnings (P )
and Figure 15b shows the load shifted (ε−). In the case without historical effects, each day was a separate simulation,
as opposed to the cases with historical effects, where each subsequent day included demand response events starting on
February 8

ance market prices does not reflect a renewable-energy pow-
ered grid scenario due to the existing low-cost gas power
plants, which provide flexibility. The use of a real-time
controller, where pre-heating strategies were excluded, may
result in higher peaks for heating power, thereby increas-
ing the power capacity π− computed in some cases. How-
ever, the energy capacity (ε−) may also be increased if pre-
heating strategies are implemented due to prolonged heat
pump off-time. Furthermore, the COP of ’Heat Pump 1’
is lower when working in tandem with ’Heat Pump 2’ as
shown in the lower curve in Figure 18, thereby increas-
ing the provided flexibility. The reason for the lower COP
is caused by the lower flow rate, which leads to a lower
heat output. Another factor includes the control system,
where traditional on/off thermostats with step functions
were used as opposed to a P- or PI-controller with a vari-
able speed heat pump. The latter type of control system
may result in an increase in efficiency by 6-18% [57], thereby
reducing the available flexibility.

It is important to note the variance in the COP be-
tween the representative days, where the median COP for
Tout−min, Tout−mean, Tout−max are approximately 1.6, 2.3
and 3.1 respectively. Therefore, the power capacity clipped
and energy capacity shifted/conserved are impacted due to
the increased energy consumption. Albeit the total load
during colder days being higher, the available flexibility is
theoretically lower due to the higher conductive and con-
vective losses to the outside. As may be seen in Figure 12a
and 13a, the amount of flexibility provided in the days of
Tout−min and Tout−mean have similar values despite a dif-
ference in 0.7 in the median of COP. Such behavior may be
explained due to this difference in COP, where the magni-
tude of power is higher over a shorter period of time.

When it comes to air temperature, the controller per-
forms well in maintaining the set-point to avoid sacrific-
ing thermal comfort as shown in Figure 16. However, this
comes at the expense of higher duty cycling of the heat
pump. As aforementioned, pre-heating control strategies
may solve this problem in pro-longing the off-time of the
heat pump.

The reduced energy flexibility due to historical effects
adds a degree of complexity for electricity market actors
including system operators (SOs) and aggregators to fore-
cast and therefore bid on behalf of the building. The risk is
also higher due to the rules of the electricity market, where
if a specific amount is promised, the market will penalise
a seller’s lack of commitment. Currently, quantification

methods of energy flexibility using thermal mass is limited
to control strategies that provide higher flexibility, where
apart from model-based methods and as to the authors’
knowledge, no holistic control strategy takes into account
a thermal mass’ state of charge in addition to other fac-
tors such as electricity prices, comfort constraints, weather
and system efficiency. Further research is required in order
to establish the possibility of an approach in quantifying
energy flexibility given the state of the building when no
model-based control system exists.

Reynders et al. [46] reviewed quantification methodolo-
gies in thermal storage applications. Most methodologies
implement a predictive aspect for each time step to re-
evaluate the availability of flexibility based on the current
state of the building and/or systems. However, one of the
five reviewed assumes consecutive DREs to be independent
thereby an uncertainty in the results will occur similar to
what is shown in Figure 15b. Hurtado et al. [2] quanti-
fies flexibility, by simulating different DREs throughout the
year, however, there was no indication of uncertainty in the
availability of flexibility due to historical effects. Therefore,
care should be taken into reporting potentials without in-
dicating the possible under- or over-estimating of energy or
power capacity.

From an economic perspective, there is a distinct dis-
crepancy between the historical and non-historical effect
inclusion in calculating the net earnings for each DRE.
The energy consumption without historical effects seemed
mostly to be lower than the reference case, while the en-
ergy consumption with historical effects was in more cases
were higher as shown in Figure 17b. The reason for such
behavior may be attributed to the thermal mass discharge
(Figure 15b), where the surface temperature is decreasing
over time in comparison to the case without historical ef-
fects. The advantage of excluding the buffer tank is the
ramping down of the average surface temperature over two
weeks for each subsequent day. This can be used an indica-
tion of an overall discharge in the thermal mass over time
regardless of weather and DRE starting times.

There exists a risk of an increase in total energy con-
sumption that may outweigh the financial incentives brought
by supporting the grid. Figure 14 shows that even if the
imbalance prices were to increase by 50 or 100%, the to-
tal increase is approximately half of that at 20 and 26%
respectively. Therefore, if buildings were to participate in
electricity markets, predictions of DREs need to be inclu-
sive of historical effects or the current state of buildings.
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Figure 16: Multi-day comfort response to one DRE per day for 8 consecutive days (Feb 07-14). Limited to a 4-hour
DRE with a set-point change magnitude of -3◦C

(a) Without Historical Effects

(b) With Historical Effects

Figure 17: Comparison of total HVAC Energy consumption
categorised into DRE starting time. Example from a 4-hour
DRE with a set-point change magnitude of -3◦C

Figure 18: COP of both heat pumps in relation to outdoor
ambient temperatures

6 Conclusions and Recommendations

In this paper, a theoretical upper limit of energy flexi-
bility provided by an air-source heat pump through a case
study’s thermal mass was calculated. Furthermore, a pre-
liminary analysis on the behavior of thermal mass’ charg-
ing and discharging characteristics was performed by com-
paring two cases, one including and one excluding histori-
cal DRE effects. The latter provides an important aspect,
which needs to be considered before extrapolating the quan-
tification to multi-day or annual scale. The quantification
aside from the temporal aspect also is far from simple in the
climatic aspect as not only is the building heating demand
varies, the COP of the heat pump also varies.

However, based on the results, it can be concluded that
exploiting thermal mass may be rewarding both for the
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owner and system operators. Questions still remain as to
who will manage the HVAC system operations and monitor
the availability of flexibility. This may be an added cost if
buildings are to participate in electricity markets. Regard-
less of whomever takes such responsibility, quantification
methods should begin with the current state of a building
for each time step in order to adequately obtain the pos-
sible load shifting/conservation or peak clipping potential
when bidding to the electricity market.

7 Further Research

The potential of implementing control strategies in build-
ing systems for the purpose of providing flexibility as grid
services or self-consumption provide benefits, such as re-
duced electricity bills and overall security of electricity sys-
tem operation. However, building owners or facility man-
agers have an obligation to maintain building systems in-
cluding bearing investment, operation and maintenance costs
in providing comfort to the occupants. The following are
possible further research topics that can be investigated:

• Using model predictive control (MPC) to investigate
the thermal mass characteristics on annual scale

• Impact of short cycling on maintenance costs and
lifespan of equipment

• Influence of solar gains including shading control

• Influence of on-site energy generation

• Simultaneously or independently regulating ventila-
tion fans as demand response

• Increasing temporal granularity of DREs including
frequency and imbalance price

Thermal comfort was based on 65% acceptability limits
in order to evaluate the ’best-case’ scenario. Further in-
vestigation may be necessary to assess the impact on the
occupants’ comfort perception such as through surveys. As
a result, some of the proposed control strategies may be
eliminated, thereby affecting the available energy flexibility
that may be provided.
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Building Energy Model Details

Table 4: Building characteristics of ground floor

Surface Surface Construction Area Category Orientation
ID Type Type (m2) (cardinal directions azimuth inclination)
1 Wall StoneOnConcrete 97.2 External N 180 90
2 Ceiling BAMFloor 453.6 Adjacent -
3 Floor BAMFloor 453.6 Boundary -
4 Wall StoneOnConcrete 34.02 External W 90 90
5 Wall PanelWall 34.02 External E 270 90
6 Wall PanelWall 97.2 External S 0 90

Table 5: Window characteristics of ground floor

Surface Associated Surface Construction Area Category U-value g-value
ID Surface Type Type (m2) (W/m2·K) (%/100)
7 4 Window BAMWindow 4.864 External 1.51 0.37
8 5 Window BAMWindow 12.802 External 1.51 0.37
9 6 Window BAMWindow 35.444 External 1.51 0.37

A Modelling Methodology

A.1 Modelling technique

In order to capture the dynamic performance of a building HVAC system in predicting the flexibility a building may
provide, a white-box approach was chosen where each system was modelled and coupled using TRNSYS as the tool that
provides such flexibility. Modelling a mechanical system in TRNSYS comes with high flexibility due to the ability to
choose from a wide range of components made up of a system of equations that can be connected only through input
and output to any compatible component. For example, connecting a heat pump to a radiator or a radiator back to a
heat pump forming a closed-loop system. The connections may be physical such as mass or energy flows or electrical
signals for controls. However, there are disadvantages, including the time and level of uncertainty that come as a model
becomes more complex. Therefore, care was taken in minimising details that are not fit-for-purpose such as the control
system complexity, where a rule-based control (RBC) strategy was chosen. The objective of the model was not to have
an annual or seasonal overview of actual flexibility but only to provide a theoretical upper limit and understand the
behavior of thermal mass’s heat storage characteristics on a multi-day scale.

A.2 Level of complexity

Identifying important factors affecting the HVAC performance and thermal mass storage characteristics are the
essential requirements. Both systems encompass the building’s performance when assessing energy flexibility on a day to
multi-day scale. These factors include the electrical consumption of a heat pump system, which is a complex component
of the HVAC system with dynamic behaviour due its dependence on multiple variables including indoor and outdoor
climates. The thermal mass storage potential depends on the climate, occupancy and HVAC system used. Furthermore,
the accumulation or dissipation of heat on a multi-day scale requires a dynamic model to allow for the dependency on a
temporal scale. Furthermore, the terminal system has an important effect since the heat pump performance is influenced
by the inlet and outlet conditions that forms a closed-loop system with a heat pump as shown in the schamtic in Figure
9.

A.3 Model objectives

The model setup must have the ability to respond to grid signals. Such signals can be assumed to simulate demand
response events (DREs). The signal results in a modification of the set-point of all three thermostats of all zones. There
can be other regulating methods such as fan power, however, it was deemed too extensive for this paper and therefore is
not part of the scope of the simulations. The model however, should have the flexibility to have the ability to integrate
such control strategies for future studies. As previously mentioned, the performance of both the building thermal mass
and HVAC system must provide an indication of the available flexibility on a day to multi-day scale. Therefore annual,
mean COPs would be deemed inaccurate when comparing performance between different days.

B Building Energy Model Details

B.1 Architectural characteristics

Architectural elements were modelled as per the case study building specifications and are summarised in Tables 4,
6, 8, 5, 7, 9, 10, and 11.

B.2 Internal heat gains and weather

B.2.1 Lighting

The lighting system comprises of fluorescent and LED lighting in the case study building. The ground and first floor
however are dominated by fluorescent tube lighting, where ASHRAE Fundamentals 2013 Chapter 18, which documents
different luminaire heat gains including fluorescent lighting. On the other hand, the second (top) floor is dominated
by LED luminaires, which is not very well documented therefore, an ongoing project of ASHRAE RP-1681 was used in
which [58,59] have conducted experiments in an office space mock-up investigating LED lighting heat gain split between
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Building Energy Model Details

Table 6: Building characteristics of first floor

Surface Surface Construction Area Category Orientation
ID Type Type (m2) (cardinal directions azimuth inclination)
10 Floor BAMFloor 453.6 Adjacent -
11 Wall PanelWall 97.2 External S 0 90
12 Wall StoneOnConcrete 97.2 External N 180 90
13 Roof Ceiling 1.676 External H 0 0
14 Wall StoneOnConcrete 34.02 External W 90 90
15 Ceiling BAMFloor 386.048 Adjacent -
16 Roof Ceiling 67.552 External H 0 0
17 Wall PanelWall 34.02 External E 270 90

Table 7: Window characteristics of first floor

Surface Associated Surface Construction Area Category U-value g-value
ID Surface Type Type (m2) (W/m2·K) (%/100)
18 11 Window BAMWindow 35.431 External 1.51 0.37
19 12 Window BAMWindow 28.791 External 1.51 0.37
20 14 Window BAMWindow 4.864 External 1.51 0.37
21 17 Window BAMWindow 12.802 External 1.51 0.37

Table 8: Building characteristics of second floor

Surface Surface Construction Area Category Orientation
ID Type Type (m2) (cardinal directions azimuth inclination)
22 Wall StoneOnConcrete 82.724 External S 0 90
23 Floor BAMFloor 386.048 Adjacent -
24 Wall StoneOnConcrete 34.02 External W 90 90
25 Wall StoneOnConcrete 34.02 External E 270 90
26 Roof Ceiling 386.048 External H 0 0
27 Wall StoneOnConcrete 82.725 External N 180 90

Table 9: Window characteristics of second floor

Surface Associated Surface Construction Area Category U-value g-value
ID Surface Type Type (m2) (W/m2·K) (%/100)
28 22 Window BAMWindow 34.108 External 1.51 0.37
29 24 Window BAMWindow 4.864 External 1.51 0.37
30 25 Window BAMWindow 16.8 External 1.51 0.37

Table 10: Thermal characteristics of architectural elements

Construction Type No. Layer Thickness (m) Type
BAMFloor 0.197 0.385 W/m2·K

1 Wool 0.005 Massive
2 Plaster 0.002 Massive
3 Concrete 0.1 Massive
4 Insul 0.09 Massive

Ceiling 0.15 0.371 W/m2·K
1 Concrete 0.05 Massive
2 Insul 0.1 Massive

PanelWall 0.247 0.382 W/m2·K
1 Plaster 0.001 Massive
2 Concrete 0.15 Massive
3 Insul 0.095 Massive
4 Tile 0.001 Massive

StoneOnConcrete 0.255 0.388 W/m2·K
1 Plaster 0.001 Massive
2 Concrete 0.07 Massive
3 Insul 0.093 Massive
4 Concrete 0.07 Massive
5 Cement Mor 0.001 Massive
6 Stone 0.02 Massive

Table 11: Thermal characteristics of windows

Window ID No. U-value g-value Maximum irradiance Minimum irradiance Solar Emissivity
Type (W/m2·K) (%/100) close blinds(kJ/hr·m2) open blinds (kJ/hr·m2) absorptance
DOUBLE 201 1.1 0.62 648 576 0.6 0.9
BAMWindow 11405 1.51 0.37 648 576 0.6 0.9
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Building Energy Model Details

Table 12: Internal gains - lighting

Building Floor Total Gain Intensity (W/m2) Radiative Fractions (-) Convective Fractions (-)
Ground and First Floor 6.97 0.73 0.27

Second Floor 3.98 0.41 0.59

Table 13: Internal gains - occupants

Occupant (W/occupant) Floor (W/floor) Intensity (W/m2)
71.8 1795 3.96

Radiative Convective
60% 40%

conductive and radiative as well as between conditioned and plenum space. Table 12 summarises the internal gains due
to the lighting system per floor.

B.2.2 Occupancy

Based on ASHRAE Handbook of Fundamentals Chapter 18, Table 13 below summarises the heat gains categorised
according to radiative and convective fractions. The total occupancy count of the case study building is 74 therefore, it
was assumed 25 are present per floor.

B.2.3 Process and Plug Loads

Similarly to occupancy gains, process and plug loads (PPL) heat gains were derived from ASHRAE Handbook of
Fundamentals, Chapter 18. The classification of office building in terms of PPL are according to type of end-uses utilised.
In the case study building, all occupants correspond to one laptop and two screens. Based on this information a PPL
internal gain intensity of 3.55 W/m2 was used with a a 30% radiative and 70% convective fraction as summarised in
Table 14.

B.3 Heating source

Type 941 from the TESS library was used to model the air-source heat pump. A performance map obtained from
a manufacturer is required, which is based on the outdoor ambient temperature, inlet and outlet water conditions,
and inlet and outlet water conditions. Each heat pump used the same performance map due to the normalisation of
the performance map. The rated heating power (kWelectrical) and capacity (kWthermal) of each heat pump, in design
conditions, were derived from the manufacturer’s specifications. Moreover, the heat pump models were validated using
the manufacturer’s COP at the design conditions.

B.4 Heating distribution and terminal

Since each floor was modelled as one zone, one radiator per floor was modelled and sized based on the heating demand.
The radiator was sized per zone, where Type 1231 was used obtained from the TESS library. a radiative fraction of 60%
and convective fraction of 40% were used to define the sensible heat output of the radiators to each zone.

B.5 Ventilation Fans and Circulation Pumps

An air handling unit was modelled using two components, including one variable speed fan which has the capacity
of both supply and exhaust fans combined to simplify the mass and energy balance. Type 147 was chosen, which
calculates the partial load efficiency based on manufacturer-provided coefficients. The only assumption in this case,
is the synchronised upward and downward regulation of the fan speeds of the supply and exhaust fans. The other
component is the sensible energy recovery wheel (ERW), which has a 75% effectiveness. Type 760 was chosen to model
the ERW.

The partial load efficiency of the fan was modelled using the manufacturer’s supplied performance curves. The
only assumption in this case is the pressure loss being static. The disadvantage is the fan efficiencies may be over- or
under-estimated.

B.6 Controls

A rule-based control (RBC) strategy was utilised where, the rules are based on comfort constraints, i.e. signals from
the thermostat in case any of the three zones require heating. Forcing functions were used to send binary signals to
modify schedules of the thermostats that allows the change of set-points for specific duration of time. This served as a
supervisory control, where lower level controls were maintained including, staged operation of the heat pumps, variable
speed of the circulation pump, diversions to zones that only require heating, and bypass loops to maintain lower return
temperatures to the heat pump. Furthermore, a basic shading control strategy was used, where a differential controller

Table 14: Internal gains - process and plug loads

Total Gain Intensity (W/m2) Radiative Fractions (-) Convective Fractions (-)
3.55 0.3 0.7
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Reference case for chosen days of each month

Table 15: Modelled heat pump specifications

System
Rated Capacity
(kW)

Rated power
(kW)

Auxiliary power
(kW)

Air flow rate
(L/s)

Heat Pump 1 25 8.3 2.8 3700
Heat Pump 2 42 41.7 13.9 3700

Table 16: Modelled radiator specifications

Floor
Rated capacity
(kW)

Design surface
temperature (◦C)

Design air
temperature (◦C)

Design ∆T
exponent

Ground 52.1 50 21 1.4
First 33.3 50 21 1.4
Second 62.5 50 21 1.4

with an upper dead-band total surface irradiance differential of 250 W/m2 and lower dead-band total surface irradiance
differential of 120 W/m2.

B.7 Thermal comfort

Based on the Dutch regulations for indoor climate comfort, the heating system was sized, based on the 100-hour limit
25◦C. However, based on hourly simulations, the total number of unmet hours were 144 hours, of which 31 hours were
due to overheating and 113 hours due insufficient heating. Furthermore, the indoor operative temperature was used to
calculate the unmet hours.

C Energy flexibility in other months of heating season

Similar to the method used for determining an upper limit of the energy flexibility for February, the analysis was
extended to the starting and ending months of the heating season, i.e. October and April respectively. Tables 18 and
19 depict the average daily ambient temperature and the maximum imbalance market price (excluding any outliers) for
each day.

Figures 19a, 19b, 20a, and 20b depict the results for the month of October. Due to the warmer ambient temperatures
of, the heating demand in October is lower than that of February. Albeit the longer duration in which indoor air
temperature can be maintained in October, the energy capacity (ε− and E−) is lower. Therefore, the heating demand,
in most cases, is a major factor in the amount of energy capacity (ε−). While, energy capacity may be higher, the net
earnings is not as straightforward. The lower heating demand in October also implies lower costs of energy imports.
Furthermore, it was previously mentioned that the energy import costs have a significant influence on the net earnings
(P ). For example, a 2-hour DRE on October 22 (Tout−mean) has an imbalance price 38% than that of February 07
(Tout−mean), however, the resulting net earning (P ) is %212 higher in the case of ∆Tset−point = −1◦C. This may be
explained by the energy import costs (∆Cimports), where in both cases the DRE resulted in a load conservation as
opposed to a load shift. However, in October, the load conservation was higher due to the warmer ambient temperature.

Figures 22a, 22b, 23a, and 23b depict results for the month of April. Similar to October, warmer ambient temperatures
result mostly in lower energy flexibility compared to February. On the other hand, the net earnings (P ) are significantly
lower than in both October and April. This may be attributed to the low imbalance market prices shown in Table 19.
Using the same example of a 2-hour DRE with a ∆Tset−point = −1◦C on the mean outdoor temperature day (April
23), the net earnings (P ) are negative, or in other words, a financial loss for the building owner. Albeit the imbalance
market price being 16% higher and 16% lower in comparison to the days of February 07 and October 22 respectively,
the lower energy capacity (ε−) nevertheless results in having the lowest revenue (R). Furthermore, the energy import
cost difference (∆Cimports) is higher in April compared to February and October, which is caused by a rebound effect
exceeding the energy capacity (ε−) provided during the DRE. The rebound effect may be explained by the starting time
of the DRE, i.e. 06:00 in the morning, where the surface temperatures are lowest as can be seen in Figure 38 and the
ambient temperature still decreasing (Figure 40), resulting in a lower surface temperature subsequent to the DRE, i.e.
08:00 a.m. Therefore, the heat pumps will have to operate for a longer duration in order to restore the set-point.

Finally, Figure 25 shows the results taking into account all three months, providing an annual range, which represents
the upper limit of energy flexibility provided by building D and the building compound.

D Reference case for chosen days of each month

Figures 26 to 52 are results of building performance simulation of building D without any DRE, which represents
the reference case used to calculate the energy flexibility and economic indicators. In total, nine days of the year were
used to assess the energy flexibility distributed equally into the months of February, April and October as summarised
in Tables 2, 19 and 18 respectively.

Table 17: Modelled ventilation pumps and circulation pump specifications

Product Brand Mark
Rated flow
rate (kg/hr)

Rated power
(W)

Centrifugal fan Comefri THLZ450 19394 9000*

Circulation Pump Grundfos
MAGNA
32-120 F 4000 400
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Reference case for chosen days of each month

Table 18: Days chosen in month of October

Description Statistic Day Tambient−average [◦C] Electricity Pricemax [e/MWh]
Tout−min Minimum Oct 26 5.4 55.0
Tout−mean Mean Oct 22 10.6 65.1
Tout−max Maximum Oct 11 16.1 60.6

Table 19: Days chosen in month of April

Description Statistic Day Tambient−average [◦C] Electricity Pricemax [e/MWh]
Tout−min Minimum Apr 03 2.2 44.0
Tout−mean Mean Apr 23 7.9 54.5
Tout−max Maximum Apr 11 14.7 42.2

(a) epsilonOctober (b) earningsOctober

Figure 19: Maximum ε− in parametric analysis categorised into minimum, mean and maximum outdoor temperature
days and indoor set-point magnitude change for October

(a) epsilonOctober (b) earningsOctober

Figure 20: Maximum aggregated ε− in parametric analysis categorised into minimum, mean and maximum outdoor
temperature days and indoor set-point magnitude change for October
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Reference case for chosen days of each month

Figure 21: ε−, E−, π−, and Π− of All demand response events categorised into demand response duration for October

(a) epsilonApril (b) earningsApril

Figure 22: Maximum ε− and associated earnings, P in parametric analysis categorised into minimum, mean and maxi-
mum outdoor temperature days and indoor set-point magnitude change for April

(a) epsilonApril (b) earningsApril

Figure 23: Maximum aggregated ε− and associated earnings, P in parametric analysis categorised into minimum, mean
and maximum outdoor temperature days and indoor set-point magnitude change for April
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Reference case for chosen days of each month

Figure 24: ε−, E−, π−, and Π− of All demand response events categorised into demand response duration for April

Figure 25: ε−, E−, π−, and Π− of All demand response events categorised into demand response duration for February,
April and October
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Reference case for chosen days of each month

Figure 26: Surface temperature per floor for February 14

Figure 27: COP on February 14

Figure 28: Overview of building performance simulation model for February 14
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Reference case for chosen days of each month

Figure 29: Surface temperature per floor for February 07

Figure 30: COP on February 7

Figure 31: Overview of building performance simulation model for February 7
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Reference case for chosen days of each month

Figure 32: Surface temperature per floor for February 22

Figure 33: COP on February 22

Figure 34: Overview of building performance simulation model for February 22
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Reference case for chosen days of each month

Figure 35: Surface temperature per floor for April 3

Figure 36: COP on April 3

Figure 37: Overview of building performance simulation model for April 03

26



Reference case for chosen days of each month

Figure 38: Surface temperature per floor for April 23

Figure 39: COP on April 23

Figure 40: Overview of building performance simulation model for April 23
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Reference case for chosen days of each month

Figure 41: Surface temperature per floor for April 11

Figure 42: COP on April 11

Figure 43: Overview of building performance simulation model for April 11
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Reference case for chosen days of each month

Figure 44: Surface temperature per floor for October 26

Figure 45: COP on October 26

Figure 46: Overview of building performance simulation model for October 26
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Reference case for chosen days of each month

Figure 47: Surface temperature per floor for October 22

Figure 48: COP on October 22

Figure 49: Overview of building performance simulation model for October 22

30



Reference case for chosen days of each month

Figure 50: Surface temperature per floor for October 11

Figure 51: COP on October 11

Figure 52: Overview of building performance simulation model for October 11
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