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Abstract

Robots that perform manipulation tasks usually slow down when they establish contacts with objects
and their environment. In order to increase their performance, control strategies can be employed that
take into account the effect of impacts, allowing for impact aware manipulation. A challenge in impact
aware manipulation is that, in the presence of perturbations, a system can experience an impact at
a different time than expected. This causes the perturbed system to reside in a different mode than
described by the reference trajectory. In addition, when impacts are expected to occur simultaneously
in multiple contact points, a perturbed system can enter modes that are not specified by the reference
trajectory. Reference spreading provides a possible solution for these challenges, by extending reference
trajectories beyond the intended impact times and using them to define a new tracking error. However,
due to the state-feedback control approach that is used in reference spreading, this control strategy is
not ideal for complex robots, like humanoid robots or dual arm manipulators. A common approach for
the control of such robots is through task-based quadratic programming (QP) control. Therefore, this
project poses the basis for extending reference spreading in the context of task-based robot control,
in particular, by investigating how it could be merged with state-of-the-art task-based QP robot control.

In order to achieve this goal, an approach is proposed for the definition of ante- and post-impact
reference trajectories that are compatible with the robot impact dynamics and suitable for task-based
QP control. For this purpose, the ante-impact reference task trajectories have to implicitly define a
unique joint state trajectory, such that unique impact dynamics are achieved. In this case, post-impact
reference task trajectories can be specified that are compatible with these impact dynamics. Inspired
by reference spreading, the reference task trajectories are extended beyond the intended jump times, in
order to deal with perturbations. A procedure is proposed for the generation of such extended reference
task trajectories for three specific QP tasks, selected for a dual arm dynamic box-lifting application.
Finally, a task-based QP control framework is proposed, based on reference spreading, in order to
achieve tracking of the extended reference task trajectories in the presence of perturbations. By means
of a numerical simulation study it is shown how extended reference task trajectories can be generated
for the dual arm box-lifting application, that are consistent with the impact dynamics.
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Chapter 1

Introduction

1.1 Impact aware robot manipulation

Physical interaction with the environment is essential for manipulation tasks performed by robotic
systems. As an example, in Figure 1.1a, the humanoid robot HRP-5P is shown lifting a drywall. For
this task, the robot has to establish contacts with the drywall, in order to lift it. Furthermore, in
assembly applications, robotic manipulators, like the KUKA LBR iiwa depicted in Figure 1.1b, make
and break contact with objects repeatedly.

(a) HRP-5P by AIST [1] (b) KUKA LBR iiwa [2]

Figure 1.1: Two examples of robots experiencing contact transitions during manipulation tasks.

A common approach for handling the transition from free motion to contact motion is through the
introduction of a transition phase [3]. During this transition phase, the velocity is modulated, such
that the contact is established at almost zero velocity. However, for industrial applications in which
throughput is of importance, such transition phases are not the ideal solution, as the robot has to slow
down and speed up for every contact transition, which severely limits the performance. Motivated
by this limitation, control strategies have been developed that are capable of dealing with dynamic
contact transitions, in which contacts are made at nonzero velocity. Such control strategies take into
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Chapter 1. Introduction

account the effect of the impacts that occur when contacts are made at nonzero velocity and are
therefore referred to as impact aware. Impacts are characterized by short time intervals with high
accelerations and decelerations. Due to the short duration of impacts, the associated velocity change
is often assumed to be instantaneous, resulting in discontinuities in the velocity. The nonsmooth
mechanics framework provides a modeling approach for systems with discontinuities in the velocity
caused by impacts [4]. Well-established control strategies for smooth systems cannot be directly applied
to nonsmooth mechanical systems. Therefore, the analysis and control of such nonsmooth systems has
been an active area in research, recently.
In Section 1.2, existing approaches for the control of nonsmooth mechanical systems that are used for
impact aware manipulation are detailed and classified on the basis of prespecified criteria. Based on this
classification and the limitations of existing control approaches, the goal of this research is formulated
in Section 1.3.

1.2 Existing control approaches for impact aware robot manipulation

Various control approaches exist for performing motion tasks involving intentional impacts using robotic
systems. In this section, the existing approaches are reviewed. First, six criteria are specified, which
are used to classify and compare the existing approaches. These criteria are detailed below.

Guaranteed convergence
First of all, it is important that a control approach is able to guarantee convergence to the reference
signal after impact. When impacts occur, large impact forces are exerted on the robot, which may
result in instability of the system. For example, a humanoid robot can easily tip over as a result of an
impact with its environment. Due to the short duration of impacts, which is typically between 4 and
10 ms for a hard impact between a manipulator robot and a human head at 2 m/s [5], feedback control
cannot be used to counteract the impact forces. Therefore, the control of systems experiencing impacts
is complicated. Thereby, due to the nonsmooth nature of systems experiencing impacts, stability tools
for smooth systems cannot be used to guarantee stability.

Noncoinciding jump times
In order for robots to perform motion tasks involving impacts in an uncertain environment, a control
approach should be robust to perturbations of the initial conditions. These perturbations can cause
impacts to occur at a different time than expected. An example of such a perturbation is the position
of an object being different from the expected position. When a robot tries to grab the object, the
impact and the associated state jump occur earlier or later than expected. This mismatch in jump
times complicates the control of nonsmooth systems, as this causes the reference trajectory and the
system to reside in different modes. For this purpose, the ability of dealing with noncoinciding jump
times is considered for the control approaches.

Simultaneous impacts
In many manipulation tasks, robots are expected to make simultaneous impacts. Simultaneous impacts
are impacts that occur at multiple contact points at the same time. An example of a manipulation task
involving simultaneous impacts is a humanoid robot lifting a box through surface contacts between its
hands and the box. In this case, the hands are expected to make impact with the box simultaneously
in all contact points on both hands. Slight perturbations of the hands or the box cause loss of the
simultaneity of the impacts, resulting in multiple impacts instead of a single simultaneous impact.
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1.2. Existing control approaches for impact aware robot manipulation

Experiencing more impacts than expected complicates the stabilization of the robot after impact.
Therefore, it is investigated how the control approaches deal with simultaneous impacts.

Nonperiodic trajectories
Ideally, a control approach can be used for a large variety of motion tasks. Often, especially in the
field of robotic locomotion, only periodic trajectories are considered, which severely limits the amount
of different tasks the robot is able to perform. The fourth criterion that is considered for the control
approaches is therefore the applicability to tasks involving nonperiodic trajectories.

Complex robots
Robots that are used for motion tasks with contact transitions can be very complex. For example,
humanoid robots, like HRP-5P, which are very complex due to their floating base and many joints, are
used for lifting tasks involving contact transitions, as shown in Figure 1.1a. Therefore, it is explored if
the control approaches have been demonstrated on complex robots, as opposed to academic examples.
In this research, all multibody robots with at least three joints are considered to be complex.

Output control
In many cases, especially for complex robots, it is desired to apply feedback control on a specific output
of a robot, rather than its full state. For example, in order to lift a box using a dual arm manipulator,
the manipulator should move its end effectors towards the box. In this case, it is much easier and
intuitive to perform feedback control on the position of the end effectors, rather than the full state
of the manipulator. For this purpose, the applicability of the control approaches to output feedback
control is investigated, which is often referred to as task-based control in the field of robotics.

In the following subsections, five existing control approaches for motion tasks involving intentional
impacts are reviewed and classified using the specified criteria. Based on the limitations of the existing
control approaches, a new control approach is proposed in Section 1.2.6, which will be explored in this
research. Table 1.1 shows an overview of the existing and proposed control approaches, and the criteria
on which they are classified.

Table 1.1: An overview of the classification of the existing and proposed control approaches for motion
tasks involving impacts, based on six criteria.

Control approach
Guaranteed
convergence

Noncoinc.
jump times

Simult.
impacts

Nonperiodic
trajectories

Complex
robots

Output
control

Hybrid zero
dynamics [6–9]

3 3 3 3

Transition
phase [10–12]

3 3 3 3

Distance
functions [13–15]

3 3 3

Reference
spreading [16–19]

3 3 3 3 3

Task-based
QP control [20,21]

3 3 3 3

Task-based
reference spreading

( 3 ) 3 3 3 3 3
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Chapter 1. Introduction

1.2.1 Hybrid zero dynamics

Using hybrid zero dynamics, an output feedback controller can be designed for dynamic systems per-
forming periodic motion tasks with impacts, based on Poincaré’s stability analysis, as detailed in [6].
For a given hybrid closed loop system, which consists of a robot, its environment and the feedback
controller, it can be determined if asymptotically stable periodic orbits exist. Thereafter, the controller
can be optimized in order to achieve the desired performance. Using this approach, asymptotic stability
can be guaranteed, which means that convergence of the system to the reference trajectory after impact
is guaranteed.
The best known application of systems that show periodic behavior and experience impacts is bipedal
robot locomotion, in which the walking gait of the robot can be treated as a periodic trajectory, but
juggling and hammering tasks can be considered as periodic as well. In [6], the hybrid zero dynamics
are used to achieve asymptotically stable walking for bipedal robots. In [7], method has been experi-
mentally shown to be applicable to complex bipedal robots as well. Also in [8] the hybrid zero dynamics
are used, in combination with human data, in order to find a controller that results in stable robotic
walking. This is validated using experiments on both an underactuated and a fully actuated bipedal
robot.
The considered approaches do not explicitly mention simultaneous impacts. However, in some cases,
simultaneous impacts are avoided by prescribing a sequence for the impacts, as is done for the walking
gait in [9]. Each step consists of subsequently heel impact, toe impact, heel release and toe release.
The main limitation of the hybrid zero dynamics approach is that it is only applicable for periodic
trajectories, which makes it unsuitable for many manipulation tasks.

1.2.2 Transition phase

In [10], an approach is proposed for tracking control of nonsmooth complementarity systems in order
to perform motion tasks with both free and constraint motion phases. In order to achieve a stable
transition from free to constraint motion involving impacts, a transition phase is introduced. During
the transition phase, a specific controller is used, which takes into account Zeno behavior, such that a
stable contact is established. This approach is applicable for nonperiodic trajectories. Also, in [11], a
specific controller is introduced in order to ensure a stable transition between free and constraint motion
phases. The transitions phases are robust to uncertainties in the position of the contact surface, which
can cause impacts to occur earlier or later than expected. Therefore, the transition phases are capable
of dealing with noncoinciding jump times. In [12], it is detailed how the transition phase proposed
in [11] can be utilized to deal with uncertainties in orientation of the contact surface, which can cause
a misalignment of the contact surfaces on a robot and the object it is making contact with. In this
way, this approach can be used to perform motion tasks in which simultaneous impacts are expected
to occur.
The considered control approaches have been validated for simple two-link manipulators, but have not
been applied to more complex robots. Thereby, they have not been used in combination with output
feedback control.
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1.2. Existing control approaches for impact aware robot manipulation

1.2.3 Distance functions

Another common approach for impact aware manipulation is through tracking control for hybrid sys-
tems. In order to deal with noncoinciding jump times, several approaches, based on hybrid trajectory
tracking, have been proposed that introduce distance functions. Distance functions provide a novel
notion of the error between two trajectories, which is unaffected by noincoinciding jump times. Using
Lyapunov-based conditions, global asymptotic stability can be expressed in terms of these distance
functions. This is achieved in [13], using a distance function that explicitly takes into account the hy-
brid nature of the system. Various other distance functions have been used to deal with noncoinciding
jump times as well. In [14], an error notion induced by the quotient metric is used. When a system
experiences an impact, the jump map is applied to the reference trajectory, such that the state of the
system can be compared to a reference trajectory in the same mode. In [15], the minimum of the error
between the current state and the reference trajectory before and after the impact is used as a distance
function.
The considered approaches using distance functions are very recent. So far, none of these have been
shown to be applicable to trajectories with simultaneous impacts. Also, only academic examples have
been used to show the efficacy of the approaches. None of the approaches have been demonstrated on
complex robots or have been used for output control.

1.2.4 Reference spreading

Similar to the approaches discussed in the previous subsection, reference spreading uses a novel error
notion to deal with noncoinciding jump times, as seen in [16]. This error notion is based on extension
of the ante- and post-impact trajectories, such that the state of the system can always be compared to
an extended reference trajectory in the same mode. This error notion is used in a sensitivity analysis,
which constructs a first order approximation of a nearby perturbed trajectory, resulting in a time-
triggered linear system. In [17], it is shown that uniform asymptotic stability of the linearized system
guarantees asymptotic stability of the associated state-triggered system.
Reference spreading is also applicable to trajectories with simultaneous impacts, as shown in [18].
Since, in this case, perturbations can cause the system to enter unspecified modes, the system has a
multi-valued jump gain, which makes it impossible to linearize the system. Instead of the time-triggered
linearization of [16], the positive homogenization is used to approximate the state-triggered trajectories.
Reference spreading is applicable to hybrid systems with discontinuous, time-varying state trajectories
and therefore applicable for nonperiodic trajectories. This control strategy has also shown to be appli-
cable for complex robots. In [19], reference spreading is used for the stabilization of dynamic motion
tasks involving impacts for a iCub humanoid robot. For this purpose, reference spreading makes use of
a state-feedback control approach. So far, reference spreading has not been used in combination with
output control.

1.2.5 Task-based QP control

Motion tasks involving impacts can also be performed using a task-based quadratic programming (QP)
control approach. In task-based QP control, tasks can be specified for specific variables, like the position
of an end effector or the center of mass of a humanoid robot. Therefore, task-based QP control allows
for output feedback control. In [20], a task-based QP control approach is used to perform a Karate-chop
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Chapter 1. Introduction

motion with a humanoid robot, utilizing impacts to break wooden planks. After impact, the stabilizing
controller proposed in [21] is used in order for the humanoid robot to remain balanced. This task-based
QP control approach has been validated using experiments. However, perturbations and simultaneous
impacts have not been considered.

1.2.6 Task-based reference spreading

As seen in Table 1.1, several control approaches exist that guarantee convergence of a system to a
nonperiodic reference signal after impacts have occurred and are capable of dealing with noncoinciding
jump times. From these approaches, reference spreading is the only approach that both has been
shown to be applicable to motion tasks involving simultaneous impacts and has been demonstrated
on a complex robot. However, due to the state-feedback control approach that is used in reference
spreading, it is not ideal for application on complex robotic systems. Task-based QP control is much
better applicable to such systems, due to its output feedback control approach. However, existing
approaches using task-based QP control have not been shown to be robust to perturbations causing
noncoinciding jump times or a mismatch in the number of jumps when simultaneous impacts are
expected to occur. In order to fill the gap, this research aims to pose the basis for a stable, robust
control approach for impact aware manipulation, that is suitable for complex robots, by combining
reference spreading with task-based QP control. As seen in Table 1.1, such a control approach, which
is referred to as task-based reference spreading, meets all the specified criteria. This research does not
provide a proof of guaranteed convergence after impact, which is why the check mark for this criterion
is between parentheses.

1.3 Research goal

As detailed Section 1.2.6, this research aims to develop a control approach for impact aware manipu-
lation, based on reference spreading in combination with task-based QP control. For this purpose, the
current reference spreading control theory will be extended, such that it can be used for task-based QP
control. Therefore, the goal of this research is formulated as:

Extending reference spreading in order to be applicable for task-based QP control.

Towards achieving this goal, four contributions will be made in this research.

� Defining reference trajectories for motion tasks with intentional impacts that are compatible with
the impact dynamics and suitable for task-based QP control.

� Developing a trajectory generation and extension procedure for the reference trajectories associ-
ated with specific QP control tasks.

� Defining a task-based QP control framework, based on reference spreading, with which motion
tasks involving simultaneous impacts can be performed, in the presence of perturbations.

� Demonstrating the extended reference trajectory generation procedure by means of a numerical
simulation example.

6



1.4. Report outline

1.4 Report outline

This report is structured as follows. Chapter 2 provides an overview of the essential background in-
formation for this research. Among other things, reference spreading and task-based QP control are
reviewed in this chapter. Chapter 3 elaborates on the extension of reference spreading to task-based
QP control. This chapter details the definition and generation of the task-based reference trajectories,
as well as the QP control framework that allows to deal with perturbations. In Chapter 4, a numer-
ical simulation study is performed, in which it is shown how task-based reference trajectories can be
generated for a dual arm box-lifting application. Finally, conclusions are drawn on this research and
recommendations are formulated for future research in Chapter 5.
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Chapter 2

Preliminaries

This chapter provides an overview of the preliminary material that is relevant for this research. First
of all, a notation is presented, that is used to describe the dynamics of multibody robotic systems.
Thereafter, an overview is given of the essential background information about reference spreading.
Then, task-based QP robot control is explained and the specific QP control implementation that is
utilized in this work is presented. Furthermore, the dynamical system simulators that are used for the
numerical simulation study are reviewed. Finally, an interpolation algorithm is detailed that can be
used for trajectory generation.

2.1 Multibody dynamics notation

In this section, the multibody dynamics notation proposed in [22] is reviewed, which is used throughout
this work. First, coordinate frames and points are introduced. Thereafter, expressions are formulated to
describe the velocity and acceleration of these coordinate frames. Finally, joint states and Jacobians are
considered, which are used to describe the body frames and the associated velocities and accelerations
of fixed manipulators.

2.1.1 Coordinate frames and points

A coordinate frame is defined by the combination of a point and an orientation frame in the 3D
space. Coordinate frames are indicated by a capital letter. For a given coordinate frame B, the origin
is indicated by oB and the orientation frame by [B], such that B = (oB, [B]). In Figure 2.1, two
coordinate frames W and B are depicted. In this work, W generally denotes a fixed inertial frame and
B a moving body frame. Figure 2.1 also shows a point p. The coordinates of this point with respect
to the inertial frame W are given by the coordinate vector Wp. Mathematically, the coordinate vector
is given by

Wp :=


→
r oW ,p ·

→
xW

→
r oW ,p ·

→
yW

→
r oW ,p ·

→
zW

 ∈ R3, (2.1)
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WRB

W

B p

!

r oW ;p

!

r oB ;p

!

r oW ;oB

Figure 2.1: Visual representation of an inertial frame W , a body frame B and a point p. The dashed
arrows represent the transformations between the point and the coordinate frames.

where · denotes the scalar product between two vectors,
→
r oW ,p denotes the geometric vector which

connects the origin of frame W with point p, and
→
xW ,

→
yW ,

→
zW , denote the unit vectors defining the

orientation of the inertial frame [W ]. The coordinates of the origin of frame B with respect to frame W ,
denoted by WoB, can also be described by (2.1) for p = oB. The orientation of frame B expressed with
respect to frame W is given by WRB ∈ SO(3). This coordinate transformation WRB only describes
the relative orientation between the orientation frames [W ] and [B] and is independent on the positions
of oW and oB.

2.1.2 Velocity vectors

The velocity of coordinate frame B can be expressed in multiple ways. The velocity of frame B with
respect to frame W expressed in frame B, referred to as the left trivialized velocity, is given by

BvW,B :=

[
BvW,B
BωW,B

]
∈ R6, (2.2)

where

BvW,B := WRT
B
W ȯB, (2.3)

Bω∧W,B := WRT
B
W ṘB, (2.4)

with BvW,B and BωW,B ∈ R3 and W ȯB and W ṘB the time derivatives of WoB and WRB, respectively.
The hat operator, denoted by ∧, transforms a vector in R3 to a skew-symmetric matrix in so(3), such

10



2.1. Multibody dynamics notation

that

w∧ =

xy
z

∧ :=

 0 −z y
z 0 −x
−y x 0

 ∈ so(3). (2.5)

The vee operator, denoted by ∨, performs the inverse transformation, from a skew-symmetric matrix
in so(3) to a vector in R3, such that

W∨ =

 0 −z y
z 0 −x
−y x 0

∨ :=

xy
z

 ∈ R3. (2.6)

For the angular velocity holds that ω∧ = Ω ∈ so(3).
The acceleration vector, associated with the left trivialized velocity, is given by

Bv̇W,B :=

[
Bv̇W,B
Bω̇W,B

]
∈ R6. (2.7)

The right trivialized velocity is used to describe the velocity of frame B with respect to frame W ,
expressed in frame W . The right trivialized velocity is given by

WvW,B :=

[
WvW,B
WωW,B

]
∈ R6, (2.8)

where

WvW,B := W ȯB − W ṘB
WRT

B
WoB (2.9)

Wω∧W,B := W ṘB
WRT

B (2.10)

with WvW,B and WωW,B ∈ R3. The associated acceleration vector writes

W v̇W,B :=

[
W v̇W,B
W ω̇W,B

]
∈ R6. (2.11)

Finally, one can describe the velocity of frame B with respect to frame W with respect to a frame with
the origin of frame B and the orientation of frame W , which is denoted by B[W ] := (oB, [W ]). This
velocity, called the mixed velocity, is given by

B[W ]vW,B :=

[
W ȯB

WωW,B

]
∈ R6, (2.12)

where WωW,B is found by (2.10). The associated acceleration vector is given by

B[W ]vW,B :=

[
W öB

W ω̇W,B

]
∈ R6. (2.13)

11
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q1

q2

q3

B

W

Figure 2.2: A three-link manipulator with inertial frame W and end effector body frame B. The joint
positions and velocities are denoted by qi and q̇i, respectively, with i ∈ {1, 2, 3}.

2.1.3 Joint states and Jacobians

For multibody robotic systems, the coordinate frames and the associated velocities and accelerations
of the bodies can be expressed in terms of their joint states and Jacobians. In this work, only fixed
base robot manipulators are considered, which are manipulators with a base that is rigidly attached to
the world, as opposed to floating-base robotic systems, like humanoid or wheeled robots, which have
a moving base. Consider such a fixed manipulator depicted in Figure 2.2. Here frame W denotes the
fixed inertial frame, positioned in the base of the manipulator and B the moving body frame attached
to the end effector. The coordinate frame B can be expressed in terms of the joint positions of the
manipulator, given by q ∈ RnJ , where nJ denotes the number of joints in the manipulator, such that

B = h(q), (2.14)

where h denotes the forward kinematics relating the joint positions to the coordinate frame B. These
forward kinematics are found using homogeneous matrix compositions with respect to a parametrization
convention, such as the Denavit-Hartenberg convention [23].
The velocity of frame B can be expressed with respect to the inertial frame W , using the various
expressions for the velocity detailed in the previous subsection. These velocities can also be expressed
in terms of the joint velocities of the manipulator, denoted by q̇ ∈ RnJ , using the Jacobian. The left
trivialized velocity is computed by

BvW,B = BJW,B(q)q̇, (2.15)

where BJW,B(q) denotes the Jacobian relating the velocity of B with respect to W expressed in B,
which is dependent on the joint positions q. The associated acceleration is found by

Bv̇W,B = BJW,B(q)q̈ + BJ̇W,B(q, q̇)q̇. (2.16)

The right trivialized velocity WvW,B and mixed velocity B[W ]vW,B, and the associated accelerations can
be computed by replacing BJW,B(q) in (2.15) and (2.16) by WJW,B(q) and B[W ]JW,B(q), respectively.
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2.2. Classical reference spreading tracking control

2.2 Classical reference spreading tracking control

This section reviews the state-feedback control strategy for trajectory tracking with impacts, known
as reference spreading [24]. In this work, this state-feedback control strategy is referred to as classical
reference spreading. First, the challenge in trajectory tracking with impacts is highlighted. Thereafter,
reference spreading for single impacts is reviewed, as proposed in [16]. Then, the complementary issue
that occurs when simultaneous impacts are expected to occur is detailed, followed by the solution given
by reference spreading for simultaneous impacts, as proposed in [18].

2.2.1 Trajectory tracking with impacts

For the particular class of tasks that are considered in this work, a mechanical system experiencing
impacts can be represented as a hybrid system. A hybrid system consists of both continuous flows and
discontinuous evolutions [25]. During the continuous flow modes, the state of the system is described
by

ẋ = f(x,u, t), (2.17)

where x ∈ Rn denotes the state, with n the state dimension, which can be different for each mode, u ∈
Rm denotes the input, with m the input dimension and t ∈ [t0, tf ] the time. The system remains in the
continuous mode, as long as a certain constraint is satisfied, given by γ(x, t) ≥ 0, where γ : Rn×R 7→ Rn
denotes the guard function. This guard function could, for example, describe the distance between two
bodies. The guard is activated when γ(x, t) = 0, which, in this case, corresponds to contact between
the two bodies. When the system experiences an impact, due to a contact at nonzero velocity, an
impulsive force is applied to the system, which results in a jump in the state x. This jump is described
by

x+ = g(x−, t), (2.18)

where g : Rn × R→ Rn, (x, t) 7→ g(x−, t) is the jump map and where x− and x+ denote the left and
right limit of the state at the time of the impact.
State-feedback control can be used in order to control such a hybrid system to a time-varying reference
state trajectory α(t) ∈ Rn. This reference trajectory satisfies (2.17), except at the reference event time
τ , where the reference trajectory jumps according to (2.18). Local tracking of the reference trajectory
can be achieved using the state-feedback control law

u(x, t) = µ(t)−K(t)(x−α(t)), (2.19)

where µ(t) ∈ Rm denotes the reference feedforward input andK(t) ∈ Rm×n the feedback gain. However,
using this control law, an issue occurs when perturbations cause the state x to jump at a different time
than α(t). This is illustrated in Figure 2.3. The left plot shows state trajectory x and the reference
state trajectory α(t). The right plot shows the error e(t) = ‖x−α(t)‖. Due to perturbations, the
state jumps at t = t1, where t1 6= τ . The mismatch in jump times causes the perturbed state trajectory
and the reference trajectory to reside in different modes on the time interval t ∈ [t1, τ ]. On this time
interval, the error e(t) = ‖x−α(t)‖ becomes large. This phenomenon, which is called peaking, can
result in poor tracking performance or even destabilization of the system, as the input computed by
the control law (2.19) suddenly becomes large when the error peaks.
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t1 t t1 t

x

α(t)

jjx−α(t)jj

τ τ

Figure 2.3: An illustrative example of peaking in the error as a result of the mismatch in jump times
between a perturbed state trajectory x and the reference state trajectory α(t). The left figure shows x and
α(t), which jump at respectively t = t1 and t = τ . The right figure shows the error e(t) = ‖x−α(t)‖,
which peaks at the interval t ∈ [t1, τ ].

t1 t t1 t

x

ᾱ(t)

jjx− ᾱ(t)jj

τ τ

Figure 2.4: Visual illustration of reference spreading applied to the example of Figure 2.3. The perturbed
state trajectory x is compared to the extended reference state trajectory ᾱ(t), such that the error is
defined as e(t) = ‖x− ᾱ(t)‖. This error, shown in the right figure, shows a single, small jump, at
t = t1, instead of a peak on the interval t ∈ [t1, τ ].

2.2.2 Reference spreading for single impacts

Reference spreading, as introduced in [16], proposes a solution for the peaking in the error by extending
the reference trajectory α(t) and reference feedforward input µ(t) beyond impact time τ and using them
to define a new tracking error. The extended reference trajectory, denoted by ᾱ(t) is defined as

ᾱ(t) =

{
aᾱ(t), t ∈ [t0, τ + δ],
pᾱ(t), t ∈ [τ − δ, tf ],

(2.20)

where aᾱ(t) denotes the extended ante-impact trajectory and pᾱ(t) the extended post-impact trajectory
and where δ is a sufficiently large, task dependent time extension. Similarly, the extended reference
feedforward input µ(t) is given by

µ̄(t) =

{
aµ̄(t), t ∈ [t0, τ + δ],
pµ̄(t), t ∈ [τ − δ, tf ],

(2.21)
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Local tracking of the extended reference trajectory is achieved using the reference spreading control
law

u(x, t) =

{
aµ̄(t)−K(t)(x− aᾱ(t)), t ∈ [t0, t1],
pµ̄(t)−K(t)(x− pᾱ(t)), t ∈ (t1, tf ].

(2.22)

In the left plot of Figure 2.4, the same state trajectory x is shown as in Figure 2.3, with the extended
reference state trajectory ᾱ(t). The right figure shows the error e(t) = ‖x− ᾱ(t)‖, which does not
experience peaking, due to the extension of the reference state trajectory. Consequently, using control
law (2.22), no sudden large changes occur in the input that could result in poor tracking performance
or destabilization of the system.

2.2.3 Reference spreading for simultaneous impacts

In the previous subsection, impacts have been considered that are caused by contact in a single point,
which are referred to as single impacts. However, in many applications contacts are expected to be
established simultaneously between multiple contact points on a surface, which is referred to as a
simultaneous impact. An example of such a situation, which is directly related to this work, is a
dual arm manipulator dynamically lifting a box through surface contacts between the end effectors
and the box. In addition to the peaking phenomenon which is observed for single impacts, there is
another challenge that occurs when the simultaneity of the impacts is lost due to perturbations. This
is illustrated in Figure 2.5 for a planar box making impact with the floor. In blue, the box is shown
tracking the reference state trajectory α(t). At the intended impact time t = τ , the box makes impact
with the floor, through a simultaneous impact of all contact points on the box. The box in red visualizes
a perturbed trajectory x. As a result of the perturbation, the simultaneity of the impact is lost, causing
two impacts to occur, at t = t1 and t = t2.

t < τ t = τ t > τ

t < t1 t = t1 t = t2 t > t2

Figure 2.5: Illustration of the loss of simultaneity as a result of perturbations. The blue box, tracking
reference trajectory α(t), makes a simultaneous impact with the ground at the intended impact time
t = τ . In red, a perturbed box with state trajectory x experiences two jumps at t = t1 and t = t2.

Both trajectories α(t) and x are depicted in Figure 2.6. It can be seen that the perturbed state
trajectory x jumps twice, caused by the impacts at t = t1 and t = t2, whereas the reference state
trajectory α(t) jumps only once at t = τ .
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t1 t

x

α(t)

τ t2

Figure 2.6: Reference state trajectory α(t) and perturbed state trajectory x associated with the motions
illustrated in Figure 2.5. The reference state trajectory α(t) jumps once, at t = τ . The perturbed
trajectory x shows two jumps at t = t1 and t = t2.

Due to this mismatch in the number of jumps between the reference trajectory and the perturbed state
trajectory, the perturbed state trajectory enters an unspecified mode in the time interval t ∈ [t1, t2].
This mode is called the intermediate unspecified mode, as the reference trajectory does not exist for
the mode in which the box is in contact with the floor through only one contact point. In order to deal
with the intermediate unspecified mode, the control law in (2.22) is modified into

u(x, t) =


aµ̄(t)−K(x− aᾱ(t)), t ∈ [t0, t1],
aµ̄(t), t ∈ (t1, tκ],
pµ̄(t)−K(x− pᾱ(t)), t ∈ (tκ, tf ],

(2.23)

where tκ indicates the time at which the last impact is made, which is t2 in case of the planar box.
On the time interval t ∈ [t0, t1], the extended ante-impact reference trajectory aᾱ(t) is tracked, which
prevents peaking of the error in case t1 > τ . While the system is in the unspecified mode for t ∈ (t1, tκ],
the error is not defined, as no reference trajectory exists that prescribes the unspecified mode. For
this reason, no feedback control is used during this mode. However, it is desired that the planned
contact is eventually completed. In order to achieve this, the extended ante-impact feedforward input
trajectory, related to the extended ante-impact reference state trajectory, is used as the input during
the unspecified mode until the desired full contact is completed. Once this full contact is established,
at t = tκ, the extended post-impact trajectories are tracked with feedback control. This prevents the
error from peaking if tκ < τ . Note that this approach is independent of the order in which the contacts
are made, which does therefore not have to be known.

2.3 Single robot task-based QP control

In this section, task-based QP control is explained. First, the general theory of task-based QP control
is detailed. Thereafter, the specific QP control implementation used in this research is reviewed, which
is the multirobot QP controller proposed in [26]. The multirobot QP controller can be used to control
multiple robots, interacting with each other and with unactuated mobile objects in the environment.
This multirobot QP controller is an extension of the QP controller for a single robot, proposed in [27].
This section focuses on the single robot QP control implementation. The multirobot QP control
implementation is detailed in the Section 2.4.
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2.3.1 Task-based QP robot control

Using task-based control, the configuration of a robot body can be controlled in Cartesian space. Tasks
can be specified to control a body to a desired pose. Thereby, tasks can be specified to control only
specific degrees of freedom of a body, such as its Cartesian position or orientation. A task consists of
an error function and a possibly time-varying reference signal. In general, an error function is given by

E = eacc +Kd evel +Kp epose, (2.24)

where epose, evel and eacc denote the error associated with the body pose, velocity and acceleration,
respectively, expressed in task-space, and Kd and Kp denote the derivative and proportional control
gains. In order to control the body to the reference signal, the error function has to be minimized,
which is done using a QP controller. The general formulation of a QP control problem is given by

min
χ

1

2
χTQχ+ cTχ, (2.25a)

s.t.

A1χ = b1, (2.25b)

A2χ ≥ b2, (2.25c)

where χ ∈ Rq denotes the vector of optimization variables, with q the optimization variable state
dimension, Q ∈ Rq×q the symmetric Hessian matrix, c ∈ Rq a vector of constants, A1 ∈ Rr×q and
b1 ∈ Rr define the r equality constraints and A2 ∈ Rs×q and b2 ∈ Rs the s inequality constraints [28].
The goal of the QP controller is to find the values of χ, for which cost function (2.25a) is minimized.
If task error function (2.24) is used as the cost function, the QP controller computes the values of χ
for which the error is minimized. In order to be used in the QP controller, the error function has to be
reformulated in the form of (2.25a). Usually, only the acceleration error eacc is linearly dependent on
the optimization variable χ, which means that (2.24) can also be written as

E = Hχ+ η, (2.26)

where Hχ = eacc and η = Kd evel +Kp epose. In order to fit the form of (2.25a), (2.26) is reformulated
as

E =
1

2
χTQχ+ cTχ+

1

2
ηTη =

1

2
‖Hχ+ η‖2 , (2.27)

with Q = HTH and cT = ηTH. Note that the term 1
2η

Tη is ignored in the QP problem (2.25), as
it does not contain the optimization variables. Equality constraints (2.25b) and inequality constraints
(2.25c) can be used to set constraints and bounds on the optimization variables χ, such as contact
constraints and joint bounds.

2.3.2 Single robot task-based QP control without contacts

In the QP control implementation proposed in [27], a weighted, multi-task cost function is used, in
order to perform multiple tasks simultaneously using a single robot. The multi-task cost function is
formulated as

Esum =
1

2
χTQχ+ cTχ+

1

2
cTc =

nT∑
k=1

wkEk, (2.28)
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where Ek denotes a task of the form (2.27) with corresponding task weight wk and nT the total number
of tasks. Using the task weights wk, priority can be given to specific tasks over other tasks. The QP
control problem for motion tasks without contacts, for a single robot is given by

min
q̈

nT∑
k=1

wkEk, (2.29a)

s.t.

M(q)q̈ + C(q, q̇)q̇ + G(q) = S τ , (2.29b)

The optimization variables are the joint accelerations of the manipulator q̈ ∈ RnJ . The QP problem
is subject to the equation of motion for the robot, where M ∈ RnJ×nJ denotes the mass matrix,
C ∈ RnJ×nJ the Coriolis matrix, G ∈ RnJ the potential force vector and S ∈ RnJ×m the joint selection
matrix, which is equal to the identity matrix in case of a fully actuated manipulator, and τ ∈ Rm the
joint torques. In addition to the equation of motion, the QP problem is subject to other constraints,
such as joint position, velocity and torque bounds. The definition of these constraints is detailed in [29]
and will not be further discussed in this work. Here, only the constraints that are relevant for this work
are elaborated.
Using QP problem (2.29), the joint torques are computed that are necessary for a robot to perform
a desired motion specified by the QP tasks with error function Ek. These joint torques are sent to
the robot at a fixed rate. Therefore, the QP problem has to be solved at every time step, using the
current values of q and q̇ at this time step. The QP controller computes the joint accelerations q̈ for
which the cost function (2.29a) is minimized, while satisfying the equation of motion (2.29b) and other
constraints. The joint torques, that are used as the input for the robot are found using the computed
joint accelerations q̈ and (2.29b).

2.3.3 Single robot QP control with contacts

When a robot is in contact with a fixed environment, the QP problem given by (2.29) is modified. This
extended QP problem is only valid for sticking contacts. The full QP problem for a robot in sticking
contact with a fixed environment is given by

min
q̈,λ

nT∑
k=1

wkEk + ‖λ‖2 , (2.30a)

s.t.

M(q)q̈ + C(q, q̇)q̇ + G(q) = S τ +
∑
c∈IC

JTc (q) fc, (2.30b)

λ ≥ 0, (2.30c)(
Jc(q)q̈ + J̇c(q, q̇)q̇

)
∆t+ Jc(q)q̇ +

Err

∆t
= 0, (2.30d)

where λ denotes the vector of linearized friction cone base weights, IC the set of closed contacts, fc
the contact forces at the c-th contact point and Jc the geometric Jacobian associated to the frame
that is rigidly attached to this contact point, ∆t the time step of the QP controller and Err an error
function comparing the current pose of a frame to its desired pose. An explanation of cost function
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(2.30a), constraints (2.30b) - (2.30d) and the aforementioned variables is given in the remainder of this
subsection.
First, consider the equation of motion given by (2.30b), which is found by extending (2.29b) with a
term for the contact forces. The contact forces fc in each contact point c ∈ IC can be written as a
linear combination of vectors {→r 1, . . . ,

→
r ν} which construct the linearized friction cone, such that

fc =
ν∑

µ=1

λc,µ
→
r c,µ, (2.31)

where λc,µ is a linearized friction cone base weight. The vector of linearized friction cone base weights
for each contact point is denoted by λc. The vector of linearized friction cone base weights for all
contact points, given by

λ =

 λ1
...
λnC

 , (2.32)

with nC the number of contact points, is used as minimization variable, in addition to the joint accel-
erations q̈. For regularization purposes, λ is added to the QP cost function (2.30a) in quadratic form.
The base weights have to be positive in order for the contacts to be unilateral and inside the friction
cone. For this reason, the QP problem is subject to (2.30c).
The equality constraint given by (2.30d), represents a contact constraint, which serves to maintain
a contact between a robot and its environment. This constraint is explained using the example in
Figure 2.7. Suppose the manipulator is in contact with the fixed environment through a contact of

B

W

A

Figure 2.7: Illustrative example of a manipulator making contact with a fixed environment. Frame B
is the contact frame rigidly attached to the manipulator. Frame A is a fixed frame in the contact point
on the environment.

the origin of frame B, which is rigidly attached to the manipulator in the contact point, and the ori-
gin of frame A, which is the fixed frame attached to the environment. A contact constraint for the
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manipulator can be formulated by constraining the velocity of frame B to zero by

WJW,B(q)q̇ = 0. (2.33)

In order to be compatible with the QP problem, this constraint is differentiated with respect to time,
resulting in

WJW,B(q)q̈ + W J̇W,B(q, q̇)q̇ = 0. (2.34)

However, this formulation of the contact constraint imposes issues when the velocity is not exactly zero
at the moment the contact constraint is applied or when the velocity diverges from zero as a result of
numerical integration. Therefore, the velocity is included in the contact constraint by(

WJW,B(q)q̈ + W J̇W,B(q, q̇)q̇
)

∆t+ WJW,B(q)q̇ = 0, (2.35)

where ∆t denotes the time step of the QP controller. However, this constraint does not yet guarantee
that the contact is maintained, as small perturbations can cause the manipulator pose to diverge from
the desired pose. For this purpose, the constraint is modified into

(
WJW,B(q)q̈ + W J̇W,B(q, q̇)q̇

)
∆t+ WJW,B(q)q̇ +

[
Boref

A − BoA
log(ARref

B
BRA)∨

]
1

∆t
= 0. (2.36)

where Boref
A denotes the desired distance between the origins of frame A and B and ARref

B the desired
rotation between the orientations [A] and [B]. The reference distance and rotation are equal to the
distance and rotation at the moment the contact constraint is initially applied. Since the Jacobian
relating the velocity of frame B with respect to the world frame WJW,B(q) is the same as Jc(q), the
contact constraint can be simplified to the (2.30d), where

Err =

[
Boref

A − BoA
log(ARref

B
BRA)∨

]
. (2.37)

This concludes the definition of the QP problem for a single robot in sticking contact, given by (2.30).

2.4 Multirobot QP control

The multirobot QP controller proposed in [26] allows to control multiple interacting robots, which are
in contact through sticking contacts, using a single centralized controller. The multirobot controller
combines the equations of motion, tasks and interaction constraints of all robots in a single QP problem.
In addition to actuated robots, the controller considers unactuated mobile objects to be robots as well.
In this section, first the combined equation of motion is presented. Thereafter, contact constraints
between interacting robots are detailed. Then, the formulation of the multirobot QP control problem
is given. Finally, an overview is given of the control framework that is used to implement the multirobot
QP controller on a scene of multiple robots and objects.
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2.4.1 Multirobot equation of motion

Each robot, considered in the multirobot QP controller has an equation of motion, given by (2.30b). In
this research, only contacts between robots are considered. In this case, the contact forces fc appearing
in the equation of motion of one robot are applied by another robot. Newton’s third law implies that
the contact forces on one robot appear with an opposite sign in the equation of motion of another
robot. Consider nR interacting robots numbered by i ∈ {1, . . . . , nR}. For robot i, the summation of
contact forces over all contact points in (2.30b) can be rewritten as∑

c∈IC

JTc (q) fc = JTi,1(qi) fi,1 − JTi,2(qi) fi,2, (2.38)

where fi,1 denotes all contact forces applied by robots j ∈ {1, . . . , i − 1} on robot i, with associated
Jacobian Ji,1(qi) and fi,2 the contact forces that are applied by robot i on robots j ∈ {i+ 1, . . . , nR},
with associated Jacobian Ji,2(qi). The equation of motion for each of the robots, given by (2.30b), can
therefore be rewritten as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = Si τ i + JTi,1(qi) fi,1 − JTi,2(qi) fi,2. (2.39)

Let F1 denote the stacked vectors of contact forces fi,1, such that F1 = (f1,1, . . . , fnR,1)
T . As a result

of Newton’s third law, all contact forces fi,2 appear at some position in F1. Therefore, these contact
forces can be written as

fi,2 = φiF1, (2.40)

where φi is a selection matrix reordering the contact forces in F1 to contact forces fi,2. Consequently,
(2.39) can be rewritten to

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = Si τ i + JTi,1(qi) fi,1 − JTi,2(qi) φiF1. (2.41)

The combined equation of motion for all robots is given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = S τ +
(
JT1 (q)− JT2 (q)Φ

)
F1, (2.42)

where

q = (q1, . . . ,qnR)T , (2.43a)

M(q) = diag (M1(q1) , . . . ,MnR(qnR)), (2.43b)

C(q, q̇) = diag (C1(q1, q̇1), . . . ,CnR(qnR , q̇nR)) , (2.43c)

G(q) = (G1(q1), . . . ,GnR(qnR))T , (2.43d)

S = diag (S1, . . . ,SnR) , (2.43e)

τ = (τ 1, . . . , τnR)T , (2.43f)

J1(q) = diag (J1,1(q1), . . . ,JnR,1(qnR)) , (2.43g)

J2(q) = diag (J1,2(q1), . . . ,JnR,2(qnR)) , (2.43h)

Φ = (φ1, . . . ,φnR)T . (2.43i)

The combined equation of motion (2.42) is implemented as an equality constraint in the multirobot QP
controller, which is detailed in Section 2.4.3.
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2.4.2 Multirobot contact constraints

The multirobot QP controller uses contact constraints to maintain the contact between two robots.
As opposed to the contact constraints discussed in Section 2.3.3, the constraint is applied between two
frames that are both allowed to move. This contact constraint is explained using the example of two
manipulator arms lifting a box, depicted in Figure 2.8. Suppose the manipulator arms are in contact

B1

W

B2A1 A2

Figure 2.8: Illustrative example of two manipulators interacting with a box. Frame B1 and B2 are the
contact frames rigidly attached to the manipulators on the left and right, respectively. Frame A1 and
A2 are the contact frames on the left and right side of the box, respectively.

with the box, such that the origins of frames B1 and A1 coincide and the origins of frame B2 and A2

coincide. In order to assure that the origins of the frames remain coincident and to prevent the frames
from rotating with respect to each other, contact constraints can be defined. The contact constraints
are formulated as

WJW,B1(q1)q̇1 − WJW,A1(qbox)q̇box = 0, (2.44)
WJW,B2(q2)q̇2 − WJW,A2(qbox)q̇box = 0, (2.45)

where q1 and q2 denote the joint positions of the left and right manipulator arm respectively and
qbox denotes the generalized coordinates of the box. In order to improve readability, the explicit
dependency of the Jacobian on the joint positions is dropped in the remainder of this section. In order
to be compatible with the QP controller, the contact constraints are differentiated with respect to time,
resulting in

WJW,B1 q̈1 + W J̇W,B1 q̇1 −
(
WJW,A1 q̈box + W J̇W,A1 q̇box

)
= 0, (2.46)

WJW,B2 q̈2 + W J̇W,B2 q̇2 −
(
WJW,A2 q̈box + W J̇W,A2 q̇box

)
= 0. (2.47)
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Similar to the contact constraint in Section 2.3.3, the contact constraints are extended to prevent the
relative velocities of the constrained frames from diverging from zero. This extends the constraint to

(
WJW,B1 q̈1 + W J̇W,B1 q̇1

)
∆t+WJW,B1 q̇1

−
(
WJW,A1 q̈box + W J̇W,A1 q̇box

)
∆t− WJW,A1 q̇box = 0,

(2.48)

(
WJW,B2 q̈2 + W J̇W,B2 q̇2

)
∆t+WJW,B2 q̇2

−
(
WJW,A2 q̈box + W J̇W,A2 q̇box

)
∆t− WJW,A2 q̇box = 0,

(2.49)

with ∆t the time step of the QP controller. Finally, a term is added to prevent the relative position
and orientation of the constraint frames from changing, such that

(
WJW,B1 q̈1 + W J̇W,B1 q̇1

)
∆t+ WJW,B1 q̇1 −

(
WJW,A1 q̈box + W J̇W,A1 q̇box

)
∆t

− WJW,A1 q̇box +

[
B1oref

A1
− B1oA1

log(A1Rref
B1

B1RA1)∨

]
1

∆t
= 0,

(2.50)

(
WJW,B2 q̈2 + W J̇W,B2 q̇2

)
∆t+ WJW,B2 q̇2 −

(
WJW,A2 q̈box + W J̇W,A2 q̇box

)
∆t

− WJW,A2 q̇box +

[
B2oref

A2
− B2oA2

log(A2Rref
B2

B2RA2)∨

]
1

∆t
= 0.

(2.51)

Using the notation of (2.39), a contact constraint between robot i and j can be written as

(
J1,i(qi)q̈i + J̇1,i(qi, q̇i)q̇i

)
∆t+ J1,i(qi)q̇i

−
(
J2,j(qj)q̈j + J̇2,j(qj , q̇j)q̇j

)
∆t− J2,j(qj)q̇j +

Err

∆t
= 0,

(2.52)

where

Err =

[
B1,ioref

B2,j
− B1,ioB2,j

log(B2,jRref
B1,i

B1,iRB2,j )
∨

]
, (2.53)

with B1,i and B2,j the frames rigidly attached to the contact points on robot i and j, respectively.
These contact constraints are added to the QP problem presented in the following subsection.
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2.4.3 Multirobot QP problem

Given the formulation of the combined equation of motion presented in Section 2.4.1 and the contact
constraints between the robots presented in 2.4.2, the multirobot QP controller is given by

min
q̈,λ

nT∑
k=1

wkEk + ‖λ‖2 , (2.54a)

s.t.

M(q)q̈ + C(q, q̇)q̇ + G(q) = S τ +
(
JT1 (q)− JT2 (q)Φ

)
F1, (2.54b)

λ ≥ 0, (2.54c)(
J1,i(qi)q̈i + J̇1,i(qi, q̇i)q̇i

)
∆t+ J1,i(qi)q̇i

− (J2,j(qj)q̈j + J̇2,j(qj , q̇j)q̇j

)
∆t− J2,j(qj)q̇j +

Err

∆t
= 0,

(2.54d)

where the minimization variable λ denotes the stacked vector of linearized friction cone base weights
λi, such that λ = (λ1, . . . ,λnR)T . Note that the tasks with cost functions Ek, can be tasks for any of
the robots i.

2.4.4 Control framework

The implementation of the multirobot QP controller proposed in [26] on a scene with multiple robots and
objects is represented by the block diagram in Figure 2.9. The control framework uses an overarching

Mode

sequencing

controller

Input torques

Multirobot

QP

controller

Tasks

Reference trajectories

Constraints

Robot states

Robot states

Contact monitoring

Robot scene:

• Robots

• Mobile objects

• Fixed environment

Figure 2.9: Schematic overview of the control framework that is used to implement the multirobot QP
controller on multiple physical robots or simulation models.

controller, referred to as the mode sequencing controller, in order to specify the tasks, reference task
trajectories and constraints for the multirobot QP controller. This controller can reside in different
modes, which can differentiate in task and reference specification, or impose different constraints.
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For example, separate modes can be specified for free motion, in which the robots do not interact, and
constrained motion with interaction between the robots. Switching rules can be defined in the controller
to switch between the modes and in this way a mode sequence can be specified. These switching rules
can be based on the robot states, contact forces or other sensor data, which are obtained from the robot
scene.
The robot scene represents the collection of robots and mobile objects that are controlled using the
multirobot QP controller and any additional sensors that are used. The scene can consist of physical
robots and objects or simulated models in a dynamical system simulator. Such a dynamical system
simulator is discussed in the next section.
The multirobot QP controller computes the joint torques for all actuated robots in the robot scene,
as discussed in the previous subsections. For this purpose, the QP controller obtains the robot states
from the robot scene.

2.5 Dynamical systems simulators

In this work, numerical experiments are performed on robot models in a simulation environment. In
this case, the robot scene in Figure 2.9, can be visualized schematically by Figure 2.10. The robot

Physics engine

• Multibody dynamics

• Contact modeling

• Friction modeling

V-REP

• Robot simulation

• Scene creation

• Sensor simulation

• Visualization

QP control

framework

Input torques

Robot states

Contact monitoring

Figure 2.10: Schematic overview of the simulated robot scene consisting of the V-REP robot simulator
and an integrated physics engine. The bulleted lists summarize the main features of each framework.

simulator V-REP, depicted in Figure 2.11, is used to create a virtual experimentation environment,
consisting of controllable robots and unactuated objects [30]. In addition, sensors, like proximity and
force sensors can be included in the simulation scene, which can for example be used to detect contacts
between robots. V-REP provides tools for visualization of the simulation scene as well.
Integrated in V-REP are multiple physics engines. A physics engine is used to simulate the multibody
dynamics of the robots and objects in the simulation environment. In addition, the interaction between
the robots and objects is simulated by the physics engine. For this purpose, the physics engine models
the response to impacts, contacts and friction. In this research, the Vortex Dynamics physics engine is
used [31]. The Vortex Dynamics physics engine focuses on high performance and high precision simu-
lations. In addition, Vortex Dynamics allows to set many physical properties, like material properties,
such that near-to-real physics behavior is achieved.
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Figure 2.11: The V-REP simulation environment used for numerical experiments.

2.6 Interpolation using the De Casteljau algorithm

In this research, the De Casteljau algorithm is used to generate trajectories that are subject to boundary
conditions. The De Casteljau algorithm is a recursive approach for computing a C2 smooth polynomial,
between two end points [32]. The algorithm can be applied on end points in various manifolds, including
R3, SO(3) and S2. Regardless of the considered manifold, the algorithm uses the same procedure to
compute the polynomial. In this section, this procedure is explained for the general case. In Section 3.3,
the manifold-specific aspects of the De Casteljau algorithm are discussed.
The De Casteljau algorithm for computing a polynomial of degree d is defined as follows:

1. Specify d+1 control points, denoted by Ci with i ∈ {1, . . . , d+1}, where the C1 and Cd+1 specify
the end points of the polynomial and the intermediary control points define the shape of the
polynomial.

2. Compute the first order interpolation between all consecutive control points. Let P 1
i (λ) denote

the function moving along the first order interpolation from control point Ci to Ci+1 for increasing
λ ∈ [0, 1], such that P 1

i (0) = Ci and P 1
i (1) = Ci+1.

3. Define new control points C1
i on P 1

i (λ) evaluated at λ.
4. Compute the first order interpolation between the consecutive control points C1

i in order to find
P 2
i (λ).

5. Repeat step 3 and 4 for P ji (λ), resulting in new control points Cji , where j is increased by one
for every repetition. Finally, the function P d1 (λ) defines the interpolation of degree d between C1

and Cd.

As an illustrative example, a polynomial P 2
1 (λ) ∈ R2 of degree 2 is shown in Figure 2.12, which is

computed using the De Casteljau algorithm.
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Figure 2.12: A polynomial P 2
1 (λ) of degree two, computed using the De Casteljau algorithm on R2.

The formulation of the first order interpolation between two consecutive control points P ji (λ) depends
on the considered manifold. These functions are detailed for three different manifolds in Section 3.3.
By choosing the control points Ci in a specific way, the first and second order derivative of the computed
polynomial at the boundaries can be specified. This is useful for the generation of reference trajectories
with boundary conditions on the velocity and acceleration. The generation of such reference trajectories
and the specific choices for the control points Ci are also presented in Section 3.3.

2.7 Summary

In this chapter, the essential background information for this research has been detailed. First, the
multibody dynamics notation, which is used in the remainder of this research, has been presented.
Thereafter, reference spreading and a specific task-based QP control implementation have been re-
viewed, which are combined in Chapter 3 in order to obtain a task-based QP control strategy for
impact aware manipulation. Then, the software that is used for the numerical simulation study in
Chapter 4 has been introduced. Finally, an interpolation procedure called the De Casteljau algorithm
has been detailed, which is used for trajectory generation.

27





Chapter 3

Task-Based Reference Spreading for
Impact Aware Manipulation

In this chapter, reference spreading is combined with task-based QP control, resulting in a QP control
paradigm that allows for impact aware manipulation, called task-based reference spreading. First, it is
shown how task-based reference trajectories have to be defined, in order to be compatible with impact
dynamics. Then, inspired by classical reference spreading, extended reference trajectories are used in
combination with a specific QP control framework, in order to deal with perturbations. The generation
procedure for these extended reference task trajectories and the QP control framework are dependent
on the application and robot that are considered. For this purpose, a dynamic box-lifting application for
a dual arm manipulator is introduced, for which three QP tasks are defined. Thereafter, for each task,
trajectory generation procedures are presented. Finally, the QP control framework for the considered
application is detailed.

3.1 Task-based reference spreading

In this section, the approach for combining reference spreading with task-based QP control is presented.
In classical reference spreading, a state-feedback approach is used to track reference state trajectories.
However, in task-based QP control, reference task trajectories are used to prescribe a desired motion.
Therefore, in order to combine reference spreading with task-based QP control, reference spreading
should be applied on reference task trajectories. Whereas reference state trajectories can be used to
prescribe desired motions that involve intentional impacts, this is not possible using reference task
trajectories, in case of task redundancy in the robot. It is shown that using additional tasks, the task
redundancy in the manipulator can be removed. In this case, the reference task trajectories, associated
with these tasks, implicitly define a unique reference state trajectory. This allows to prescribe motions
with intentional impacts using reference task trajectories. Finally, reference spreading is applied to
these reference task trajectories by extending the trajectories beyond the intended impact time.
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3.1.1 Reference state trajectories vs. reference task trajectories

In classical reference spreading, as reviewed in Section 2.2, a state-feedback controller is used to track
reference state trajectories that prescribe motion tasks with intentional impacts. As an illustrative
example of such a motion task, consider the three-link manipulator, depicted in Figure 3.1, making
impact with the wall and moving along the wall after the impact has occurred. The reference state
trajectory for this motion, denoted by α(t), prescribes the reference positions and velocities for each
joint of the manipulator in time, namely

α(t) =

[
qref(t)
q̇ref(t)

]
, (3.1)

where qref(t), q̇ref(t) ∈ RnJ denote the reference joint positions and velocities, respectively, with nJ
the number of joints in the manipulator. The reference state trajectory α(t) is shown in Figure 3.2.

t < τ t = τ t > τ

Figure 3.1: A three-link manipulator performing a motion task involving an impact. Before impact
time, for t < τ , the manipulator end effector moves towards the wall in order to make impact. The
impact occurs at the intended impact time t = τ . After the impact, for t > τ , the manipulator end
effector moves along the wall.

tτ

a
α(t)

p
α(t)

a
α(τ)

p
α(τ) = g(aα(τ))

Figure 3.2: The reference state trajectory α(t) associated with the motion task depicted in Figure 3.1.
At impact time τ , the post-impact reference state pα(τ) is compatible with the state jump associated
with ante-impact state aα(τ).
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3.1. Task-based reference spreading

Reference state trajectory α(t) is divided in the ante-impact trajectory aα(t) and the post-impact
trajectory pα(t), where

α(t) =

{
aα(t), t ∈ [t0, τ ],
pα(t), t ∈ (τ, tf ],

(3.2)

with t0 the initial time, τ the intended impact time and tf the final time. The post-impact reference
state trajectory is compatible with the impact dynamics, in the sense that

pα(τ) = g(aα(τ)), (3.3)

such that the post-impact trajectory at impact time pα(τ) coincides with the state jump with jump
map g from ante-impact state aα(τ).
Task-based QP control, as reviewed in Section 2.3, allows to control a manipulator body to a desired
reference task trajectory, defined in Cartesian space. For example, a reference task trajectory can
be defined for the position and velocity of the end effector. Let ypos(t) denote such a reference task
trajectory, given by

ypos(t) =

[
pref(t)
ṗref(t)

]
, (3.4)

where pref(t) ∈ R2 and ṗref(t) ∈ R2 denote the reference position and velocity of the end effector,
respectively. Using this reference task trajectory, the same end effector positions and velocities can be
prescribed, as defined by the reference state trajectory α(t). In this case, the reference task trajectory
ypos(t) corresponds to

ypos(t) = h(α(t)), (3.5)

where h denotes forward kinematics, transforming the joint state trajectory α(t) into reference task
trajectory ypos(t) for the end effector. The difference between this reference task trajectory ypos(t)
and reference state trajectory α(t) is that ypos(t) does not define the reference positions and velocities
for each joint in the manipulator. Generally, this also means that a reference task trajectory does
not implicitly define a unique reference state trajectory. This is illustrated visually in Figure 3.3, in
which the three-link manipulator is shown, tracking the reference task trajectory ypos(t). Aside from
the solution given by reference state trajectory α(t), shown in solid lines, another solution to ypos(t)
is shown in dashed lines. In fact, infinitely many solutions exist, in terms of joint states, for the
same reference task trajectory. This is known as self-motion, which is caused by task redundancy in
manipulators. This means that the manipulator has more degrees of freedom (DOFs) than required to
perform a given task. The manipulator in Figure 3.3 has three DOFs, as it consists of three revolute
joints. However, the reference task trajectory ypos(t) only requires two DOFs to be performed.
In many cases, task redundancy of the manipulator is desired, like in an environment with obstacles.
In this case, redundancy allows to choose a solution in which the manipulator does not collide with the
obstacles. However, for motion tasks involving impacts, self-motion needs to be carefully taken care
of. In case of self-motion, infinitely many state trajectories exist that correspond to the same reference
position task trajectory. This means that, in addition to aα(t), another ante-impact reference state
trajectory aα̃(t) exists that corresponds to the same ante-impact reference task trajectory aypos(t) in
the sense of (3.5). However, the post-impact reference state pα̃(τ) associated with aα̃(τ), which is
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x

y

p
ref

_p
ref

z

Figure 3.3: A task redundant, three-link manipulator performing a 2DOF position task for the end
effector. In solid lines, the solution is shown corresponding to reference joint state trajectory α(t). The
manipulator in dashed lines shows one of the infinite other solutions to the same position task.

found through (3.3), does generally not correspond to pypos(τ) in the sense of (3.5). This is caused by
the fact that the jump map in (3.3) strictly depends on the joint state of the manipulator. The result is
that infinitely many post-impact task states pypos(τ) can be found, that correspond to a single reference
ante-impact reference task trajectory aypos(t). Therefore, it is not possible to define a unique reference
position task trajectory ypos(t) describing a motion task involving impacts. Generally speaking, it is
not possible to define a unique reference task trajectory for motions with intentional impacts using a
task that requires less DOFs than the manipulator has.

3.1.2 Unique reference task trajectories

In order to define unique reference task trajectories that take jumps caused by intentional impacts into
account, the task redundancy in the manipulator has to be removed. For non-redundant manipulators,
the number of DOFs required to perform a task is equal to the number of DOFs in the manipulator.
This means that the reference task trajectories associated with this task implicitly define a unique
reference state trajectory. As a result, ante-impact reference task trajectories can be defined that
imply a unique ante-impact reference state trajectory aα(t), and through (3.3) a unique post-impact
state pα(τ) as well. This eliminates the problem that infinitely many post-impact states pα(τ) can be
found, that correspond the same ante-impact reference task trajectories, which was seen in the previous
subsection. In this case, post-impact reference task trajectories can be formulated that correspond to
the unique post-impact state pα(τ) at t = τ and therefore account for the state jump caused by the
intentional impact.
As an illustrative example, consider again the three-link manipulator in Figure 3.3. In order to re-
move the task redundancy in this manipulator, a 3DOF task has to be specified. Such a task can
be constructed by combining the 2DOF position task, with reference trajectory ypos(t), and a 1DOF
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3.1. Task-based reference spreading

orientation task, with reference trajectory yori(t). The reference task trajectory yori(t), is given by

yori(t) =

[
θref(t)

θ̇ref(t)

]
, (3.6)

where θref(t) denotes the desired angle of the end effector with respect to the inertial x-axis and θ̇ref(t)
denotes the angular velocity of the end effector. In Figure 3.4, the three-link manipulator is shown
again, tracking both ypos(t) and yori(t). In this case, a unique solution is found that satisfies both
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θ
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p
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_p
ref

_θ
ref

z

Figure 3.4: A three-link manipulator performing a combined position and orientation task. Since the
minimum required amount of DOFs for the combined tasks equals the amount of DOFs in the manipu-
lator, a unique joint state corresponds to this task.

reference task trajectories. This means that reference task trajectories ypos(t) and yori(t) implicitly
define a reference state trajectory α(t). Therefore, a unique ante-impact reference state trajectory
aα(t) is implied by defining ante-impact reference task trajectories aypos(t) and ayori(t). The post-
impact state pα(τ), associated with aα(t) through (3.3), is therefore also uniquely associated with
aypos(t) and ayori(t). This means that post-impact reference task trajectories that correspond to pα(τ)
at t = τ , are consistent with aypos(t) and ayori(t), and the associated impact dynamics. This shows
that it is possible to prescribe a motion with intentional impacts, using reference task trajectories, when
enough tasks are used to remove the task redundancy in the manipulator.

Remark 1: It is not required that the same tasks are used after the impact as before the impact. Any
tasks can be used, as long as the associated reference task trajectories correspond to the post-impact
state pα(τ) at t = τ . Thereby, the post-impact reference task trajectories do not necessarily have to
implicitly define the post-impact reference task trajectories, in case it is not intended to make another
impact. In this case, task redundancy is allowed after impact. However, in the remainder of this work,
the task redundancy is removed after impact as well, such that it is possible to perform another impact,
if desired.

Remark 2: For the sake of clarity, a general reference task trajectory y(t) is introduced, which is used
in the remainder of this work to represent the reference trajectories for all considered tasks combined.
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The general reference task trajectory is given by

y(t) =

[
yref(t)
ẏref(t)

]
, (3.7)

where yref(t) and ẏref(t) denote the time-varying reference task configuration and velocity, respectively.
Note that post-impact reference task trajectory py(t) does not necessarily have to describe the reference
task trajectory for the same tasks as the ante-impact reference task trajectory ay(t).

3.1.3 Reference spreading for task trajectories

Using the method presented in Section 3.1.2, unique reference task trajectories can be defined that
describe motions involving intentional impacts, which can be used in task-based QP control. In order
to use the reference spreading methodology in task-based QP control, the reference task trajectories
have to be extended about their event-times, similarly to classical reference spreading discussed in
Section 2.2. It is desired to apply reference spreading on reference task trajectories, as the tracking
of the reference task trajectories using QP control encounters similar challenges as encountered in
state-feedback control, discussed in Section 2.2.1. Perturbations can cause the system to make impact
before or after the intended impact time. As a result of the mismatch in jump times, the reference
trajectories describe a different mode than the mode that the system is in. The task error, which is
generally defined as (2.27), can therefore not be used. By extending the reference task trajectories
beyond the intended impact time, the system can, at all times, be compared to a reference trajectory
that describes the same mode. This is illustrated visually in Figure 3.5 for an extended reference task
trajectory ȳ(t), depicted in the bottom plot. The extended reference task trajectory implicitly defines

a
ᾱ(t)

p
ᾱ(t)

x

a
ȳ(t)

yǫ

t1 τ

t1 τ

p
ȳ(t)

Figure 3.5: Reference spreading applied on reference task trajectories. The bottom plot shows an ex-
tended reference task trajectory ȳ(t), which implicitly defines ᾱ(t) depicted in the top plot. A perturbed
state trajectory x and perturbed task trajectory yε are depicted in the top and bottom plot respectively.

34



3.2. QP tasks for a dual arm dynamic box-lifting application

the extended reference state trajectory ᾱ(t). A perturbed state trajectory x is depicted in Figure 3.5
as well. Perturbed task state trajectory yε describes the task state corresponding to x, associated with
reference task trajectory ȳ(t). On time interval t ∈ [t1, τ ], task error e = ‖yε − aȳ(t)‖ cannot be used,
as a jump has occurred in yε, but not in aȳ(t), which means that both trajectories are in a different
mode. This is solved by tracking the extended post-impact reference task trajectory pȳ(t) for t > t1,
using task error e = ‖yε − pȳ(t)‖.
In case of simultaneous impacts, the same challenge occurs as detailed in Section 2.2.3. The system can
enter a mode that is not specified by the ante- or post-impact reference task trajectories. Similar to the
control strategy that is used in Section 2.2.3, a controller has to be specified consisting of three modes:
a mode for tracking of the extended ante-impact reference task trajectories, an intermediate mode
to deal with unspecified modes and a mode for tracking of the extended post-impact reference task
trajectories. The exact definition of these modes in a task-based QP control framework depends on the
considered manipulator and application, as different tasks and different constraints are used in the QP
problem for different applications. Similarly, the generation of the reference task trajectories depends
on the considered manipulator and application. Therefore, in the remainder of this work, a specific
manipulator and application are considered, for which task-based reference spreading is demonstrated.
This specific manipulator and application are introduced in Section 3.2.

3.2 QP tasks for a dual arm dynamic box-lifting application

Since a general definition of task-based reference spreading is complicated, due to the dependence on
the manipulator and application, a specific manipulator and application are considered in the remainder
of this work, for which task-based reference spreading is demonstrated. In this section, the considered
manipulator and application are introduced. Thereafter, a set of tasks is specified, with which the
desired motion can be performed and the task redundancy of the manipulator is removed. By evaluation
of the cost function of each task, it is seen how a reference task trajectory can be formulated for this
task. The generation of these reference task trajectories is considered in Section 3.3.

3.2.1 Dynamic box-lifting using a dual arm manipulator

In this research, a dual arm manipulator is considered, consisting of two identical, torque controlled
7DOF KUKA LWR robot arms, attached to a rigid torso anchored to the ground. Dual arm ma-
nipulators are suitable for grabbing larger objects, which cannot be picked using a single gripper. An
example of such an application is grabbing a box from a stockpile. In this research, the specific scenario
is considered in which a box is grabbed from the top of the stockpile and moved to another location. In
Figure 3.6, the considered scenario is illustrated in the V-REP robot simulator environment, presented
in Section 2.5.
The desired motion for this box-lifting application consists of two parts. First, the manipulator has to
establish a no-slip surface contact between the end effectors and the box. Thereafter, the manipulator
has to move the box to a desired location. This application is a typical example of a motion task which
involves simultaneous impacts, as it is desired that contacts are established at nonzero velocity for all
contact points on both end effector surfaces simultaneously.
The end effectors of the manipulator consist of a square shaped body, which is rigidly attached to the
final link of the manipulator arms in order to enlarge the contact surface between the box and the
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Figure 3.6: Visualization of a box-picking application using a dual arm manipulator in V-REP. The
dual arm manipulator is attached to a rigid torso, depicted in red, which is anchored to the ground.
The box is placed on a platform in front of the manipulator and can be moved freely.

manipulator. As a result, the box is less likely to rotate with respect to the end effectors, which would
result in loss of the surface contact.
In order to describe the desired motion for the manipulator arms and the box, three different QP tasks
are used. First of all, a position task is used, which allows to specify a possibly time-varying reference
position, linear velocity and linear acceleration for a point in Cartesian space. For the considered ap-
plication, the position task is used to control a point on the end effector surface to the box surface in
order to establish contact. When the no-slip contact has been established, all DOFs of the end effectors
are constrained by the DOFs of the box. For this reason, a position task for the box is used after the
contact has been established, with which the desired position of the box can be prescribed.
Secondly, an orientation task is used. The orientation task can be used to prescribe a possibly time-
varying desired orientation, angular velocity and angular acceleration for a body frame. This task is
used to align the end effector surfaces with the box surfaces, such that contact is made through simul-
taneous impact. In addition, the orientation task is used to specify the desired orientation of the box,
after the contact has been established.
The position task and orientation task both require three DOFs to be performed. This means that when
only the position and orientation task are applied on the 7DOF manipulator arms, the manipulator is
task redundant. As discussed in Section 3.1.1, it is not possible to prescribe reference task trajectories
with impacts for task redundant manipulators. Conform to the approach discussed in Section 3.1.2, an
additional task is specified to remove the task redundancy. For this purpose, a direction task is used,
which prescribes a possibly time-varying reference direction, velocity and acceleration for a vector on
one of the bodies of the manipulator arms. In this case, the direction task cannot be used on a vector
on the end effector, as the orientation of the end effector body is already prescribed by the orientation
task. Therefore, the direction task is used for a vector on the fourth link of the manipulator arms, both
before and after the contact has been established.
In the following subsections, the cost function of each QP task is specified. By evaluating the cost

36



3.2. QP tasks for a dual arm dynamic box-lifting application

functions, it is shown how the reference task trajectories that are associated with each task have to be
defined.

3.2.2 Position task

The position task is used to control the Cartesian position of a point p, which is rigidly attached to a
body with coordinate frame B. In Figure 3.7, this is illustrated visually for a manipulator arm, where
p is a point on the end effector surface and frame B is the body frame of the end effector. The reference
position is given by pref .

Figure 3.7: Visualization of the position task for a manipulator arm. The goal of the position task is
to control a point p to a reference position pref , where p is rigidly attached to a body with coordinate
frame B.

The cost function for the position task is formulated in quadratic form, such that it fits the QP problem
discussed in Section 2.3. This cost function, denoted by Epos, is given by

Epos =
1

2

∥∥∥W p̈−
(
W p̈ref +Kd(

W ṗref − W ṗ) +Kp(
Wpref − Wp)

)∥∥∥2 , (3.8)

where Wp ∈ R3 denotes the current position of point p expressed in an inertial frame W and Wpref ∈ R3

the reference position for this point, also expressed in the inertial frame. Here, Kp and Kd are positive-
definite diagonal matrices, denoting the proportional and derivative control gains, respectively. The
current position of the point is given by

Wp = WoB + WRB
Bp, (3.9)

where WoB denotes the coordinates of the origin of frame B, expressed in inertial frame W , WRB the
orientation of frame B with respect to the inertial frame and Bp the position of point p expressed in
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body frame B. The time derivative of the position of point p is computed by

W ṗ = W ȯB + W ṘB
Bp,

= W ȯB + WRB

(
BωW,B × Bp

)
,

= WRB

(
BvW,B + BωW,B × Bp

)
. (3.10)

Note that, since the point is rigidly attached to the body, Bṗ = 0. The linear and angular velocity of
the body frame B with respect to the inertial frame, denoted with BvW,B and BωW,B, respectively, can
be found by

BvW,B =

[
BvW,B
BωW,B

]
= BJW,Bq̇, (3.11)

with BJW,B the Jacobian relating the velocity of the body frame with respect to the inertial frame,
expressed in the body frame.
The second order time derivative of Wp can be found by differentiation of (3.10), which results in

W p̈ = W ṘB

(
BvW,B + BωW,B × Bp

)
+ WRB

(
Bv̇W,B + Bω̇W,B × Bp

)
,

= WRB

(
BωW,B ×

(
BvW,B + BωW,B × Bp

))
+ WRB

(
Bv̇W,B + Bω̇W,B × Bp

)
, (3.12)

where

Bv̇W,B =

[
Bv̇W,B
Bω̇W,B

]
= BJW,Bq̈ + BJ̇W,Bq̇. (3.13)

Let ȳpos(t) denote the extended reference task trajectory for the position task, such that

ȳpos(t) =

[
p̄ref(t)
˙̄pref(t)

]
∈ R6, (3.14)

where p̄ref(t) represents the trajectory of reference positions Wpref ∈ R3, and ˙̄pref(t) represents the
trajectory of reference velocities W ṗref ∈ R3, both expressed with respect to the inertial frame W .
In addition, a reference acceleration trajectory ¨̄pref(t) can be defined, which prescribes the reference
acceleration W p̈ref ∈ R3 at each point in time. The acceleration trajectory represents the feedforward.

3.2.3 Orientation task

The orientation task is used to control the orientation of frame B, denoted by [B], to a possibly time-
varying desired orientation frame [D]. In Figure 3.8, this is illustrated for a manipulator arm, where [B]
denotes the orientation of the end effector body frame. The quadratic cost function for the orientation
task is denoted by Eori. The derivation of this cost function, based on the PD controller on SO(3)
proposed in [33], can be found in Appendix A. Here, only the cost function itself is given, which is
formulated as

Eori =
1

2

∣∣∣∣W ω̇W,B − (W ω̇W,D − WωW,B ×
(
WωW,D − WωW,B

)
+ kd

(
WωW,D − WωW,B

)
+ kp

WRB(log(BRD))∨
)∣∣∣∣2, (3.15)
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Figure 3.8: Visualization of the orientation task for a manipulator arm. The goal of the orientation
task is to control the body frame orientation [B] to reference orientation given by [D]. Note that the
orientation task is independent of the position origin of frames B and D, as only the orientation is
controlled.

where WωW,B ∈ R3 and WωW,D ∈ R3 denote the angular velocity of respectively frame B and D with
respect to inertial frame W , expressed in the inertial frame. In this case, kp, kd ∈ R denote scalar
proportional and derivative gains. The angular velocity and its time derivative are computed with

WωW,B = W (Jω)W,B(q) q̇, (3.16)
W ω̇W,B = W (J̇ω)W,B(q, q̇) q̇ + W (Jω)W,B(q) q̈, (3.17)

where W (Jω)W,B represents the angular part of the Jacobian, relating the angular velocity of the
body frame with respect to the inertial frame, expressed in the inertial frame. The error between the
orientations of frame B and D is defined as the matrix logarithm of the orientation of frame D with
respect to frame B, as discussed in [33]. This orientation, denoted by BRD, is found by

BRD = WRT
B
WRD. (3.18)

Let ȳori(t) denote the extended reference task trajectory for the orientation task, which is defined as

ȳori(t) =
(
R̄ref(t), ω̄ref(t)

)
∈
(
SO(3),R3

)
, (3.19)

where R̄ref(t) is the time-varying orientation of the desired frame with respect to the inertial frame
WRD ∈ SO(3) and ω̄ref(t) the reference angular velocity of the desired frame WωW,D ∈ R3. The
angular acceleration reference trajectory ˙̄ωref(t) is given in terms of W ω̇W,D ∈ R3.
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3.2.4 Direction task

Using the direction task, a time-varying reference direction can be prescribed for a vector u ∈ S2, with
S2 the unit sphere, which is rigidly attached to a body. For the considered application, the direction
task is applied on a vector on the fourth link of the manipulator arms. In Figure 3.9 the direction task
is visualized for a vector u on this link, with the desired direction given by uref ∈ S2.

Figure 3.9: Visualization of the direction task. The goal of the direction task is to control a vector u to
a reference direction vector uref .

The quadratic cost function for the direction task Evec is formulated as

Evec =
1

2

∥∥∥W ü−
(
W üref + kd(

W u̇ref − W u̇) + kp(
Wuref − Wu)

)∥∥∥2 , (3.20)

where Wu denotes the vector to be controlled, expressed in the world frame. This vector is given by

Wu = WRB
Bu, (3.21)

with Bu the vector expressed in body frame B, which, in this case, represents the body frame of the
fourth link. Assuming that Bu̇ = 0, the first and second order derivatives of Bu are found by

W u̇ = WRB

(
BωW,B × Bu

)
, (3.22)

W ü = WRB

(
BωW,B ×

(
BωW,B × Bu

)
+ Bω̇W,B × Bu

)
, (3.23)

where the angular velocities and accelerations are found by (3.11) and (3.13), respectively.
Let the extended reference task trajectory of the direction task be denoted by ȳvec(t), such that

ȳvec(t) =

[
ūref(t)
˙̄uref(t)

]
∈ R6, (3.24)
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where ūref(t) denotes the trajectory of direction vectors Wuref ∈ S2 and ˙̄uref(t) denotes the trajectory of
reference velocities W u̇ref ∈ R3, both expressed with respect to the inertial frame. Note that reference
velocity ˙̄uref(t) has to be orthogonal to the reference direction vector ūref(t). In addition, the reference
acceleration trajectory ¨̄uref(t) is defined in terms of W üref ∈ R3, which has to be orthogonal to ūref(t)
as well.

3.3 Task trajectory generation

In the previous section, it is shown how reference trajectories are defined for the position, orientation,
and direction task, which are used to describe the desired motion for the dual arm dynamic box-
lifting application. In this section, an approach is proposed for the generation of the extended reference
trajectories for each of these tasks. Using this approach, conditions can be specified that the trajectories
have to satisfy, which allows to generate trajectories that are compatible with the impact dynamics,
as discussed in Section 3.1.2. The specific conditions that are chosen for the reference task trajectories
and their extensions are similar for all considered tasks. Therefore, these are listed and explained
for a general reference task trajectory, first. Thereafter, the De Casteljau interpolation algorithm,
as reviewed in Section 2.6, is used to compute extended reference task trajectories for the position,
orientation, and direction task that satisfy the specified conditions. The implementation of the De
Casteljau algorithm depends on the considered task and is therefore discussed separately for each task.
In Chapter 4, the trajectory generation procedures are demonstrated in a numerical simulation study
on the dual arm dynamic box-lifting application.

3.3.1 Conditions on extended reference task trajectories

It is chosen to generate the extended task trajectories on the basis of three conditions on both the
extended ante- and post-impact reference task trajectory. In Figure 3.10, these conditions are depicted
for general extended task trajectory ȳ(t).

t

aȳ(t)

pȳ(t)

aȳ(0) = ay0
aȳ(τ) = ayτ

τ

aȳ(atf) =
ayf

pȳ(ptf) =
pyf

pȳ(τ) = h(g(aα(τ)))
pȳ(pt0) =

py0

Figure 3.10: The conditions on the reference task trajectory, shown for the general extended reference
task trajectory ȳ(t).

The conditions on the extended ante- and post-impact reference task trajectories are formulated as:

�
aȳ(0) = ay0, which allows to specify the initial conditions of the ante-impact reference task
trajectory. Here, ay0 denotes the desired initial task state of the manipulator.
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�
aȳ(τ) = ayτ , which sets conditions on the ante-impact reference task trajectories at the intended
impact time, where ayτ is the desired task state at t = τ . This allows to specify how the impact
should be made. For example, the orientation of the end effectors can be specified, which is
required in order to achieve a simultaneous impact.

�
aȳ(atf ) = ayf , which is used to extend the ante-impact reference task trajectories beyond the
intended impact time. Here, ayf denotes an arbitrary final task state and atf the final time of the
ante-impact reference trajectories. The final time should be chosen sufficiently large, in order for
the extended ante-impact reference task trajectories to be able to account for all perturbations.

�
pȳ(pt0) = py0, which is used to specify the backward extension of the reference task trajectories
before t = τ , with py0 the arbitrary initial conditions on the extended post-impact reference task
trajectories. The initial time pt0 should be chosen sufficiently small, such that all perturbations
are accounted for by the extended post-impact reference task trajectories.

�
pȳ(τ) = h(g(aα(τ))), which implies that the post-impact reference task trajectories have to be
compatible with the ante-impact reference task trajectories and the associated impact dynamics,
as discussed in Section 3.1.2. Here, aα(t) denotes the ante-impact reference state trajectory
associated with aȳ(t), g the jump map and h the forward kinematics transforming the reference
state trajectory α(t) into reference task trajectory ȳ(t).

�
pȳ(ptf ) = pyf , which allows to set desired final conditions on the reference task trajectories. Here,
pyf and ptf denote the desired final task state and time of the post-impact trajectory, respectively.

In the following subsections, the task-specific trajectory generation procedures are presented, which are
used to generate extended reference task trajectories that satisfy these conditions.

3.3.2 Position task trajectory generation

As detailed in Section 3.2.1, a position task is used to describe the desired motion of the manipulator end
effectors before impact. For this purpose, an extended ante-impact reference task trajectory aȳpos(t)
has to be generated for both manipulator arms. After impact, the position task is used to prescribe
the desired motion of the box, for which an extended post-impact reference task trajectory pȳpos(t)
has to be generated. Both the ante- and post-impact reference position task trajectories are subject to
conditions on the reference position and velocity at the initial time, at impact time and at the final time
of the trajectory, as explained in Section 3.3.1. The ante- and post-impact reference task trajectories
can therefore be generated using the same procedure. Consider a general reference position trajectory
pref(t) ∈ R3, which could represent either the extended ante- or post-impact position task trajectory.
The conditions on pref(t) are given by

pref(t0) = p0, (3.25)

pref(τ) = pτ , (3.26)

pref(tf ) = pf , (3.27)

where p0, pτ and pf , denote the conditions on the position at initial time, impact time and final time,
respectively. Similarly, conditions are specified on the velocity reference trajectory ṗref(t) ∈ R3, given
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by

ṗref(t0) = ṗ0, (3.28)

ṗref(τ) = ṗτ , (3.29)

ṗref(tf ) = ṗf , (3.30)

where ṗ0, ṗτ and ṗf denote the conditions on the velocity at initial time, impact time and final time,
respectively.
Using the De Casteljau algorithm on R3, C2 smooth trajectories can be generated, which take into
account boundary conditions at both ends of the trajectory. Since, in this case, trajectory has to
satisfy conditions at three time instances, the De Casteljau algorithm is used to compute two segments
of the trajectory. One segment is computed for the time interval t ∈ [t0, τ ], which satisfies the conditions
at t = t0 and t = τ and one segment is computed for t ∈ [τ, tf ], which satisfies the conditions at t = τ
and t = tf . Both segments are combined to obtain the full trajectory. In order for the full trajectory to
remain C2 smooth over the entire interval t ∈ [t0, tf ], the acceleration at impact time should be equal
for both segments. Therefore, an additional condition is formulated, given by

p̈ref(τ) = p̈τ , (3.31)

with p̈τ the desired acceleration at impact time. In order to satisfy all conditions, a minimum of five
control points has to be used in the De Casteljau algorithm, for each segment. The conditions are taken
into account by choosing the control points in a specific way. The derivation of the choices for these
control points can be found in Appendix B. Here, only the control points themselves are given. The
control points for the first segment, ranging in t ∈ [t0, τ ], are denoted by Ci ∈ R3 and for the second
segment, ranging in t ∈ [τ, tf ], by C∗i ∈ R3 for i ∈ {1, 2, . . . , 5}.
Using the first and last control point, the initial and final position of the trajectory can be specified, in
order to satisfy (3.25) - (3.27). For the first segment, these are therefore chosen as

C1 = p0, (3.32)

C5 = pτ , (3.33)

and for the second segment as

C∗1 = pτ , (3.34)

C∗5 = pf . (3.35)

The initial and final velocity of each segment, given by (3.28) - (3.30), can be specified by choosing the
second and fourth control point respectively, such that

C2 = C1 +
1

4
ṗ0(τ − t0), (3.36)

C4 = C5 −
1

4
ṗτ (τ − t0), (3.37)

for the first segment and

C∗2 = C∗1 +
1

4
ṗτ (tf − τ), (3.38)

C∗4 = C∗5 −
1

4
ṗf (tf − τ), (3.39)
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for the second segment. In order to satisfy (3.31), the final acceleration of the first segment can be set
by choosing the third control point equal to

C3 =
1

12
(τ − t0)2p̈τ − C5 + 2C4. (3.40)

The initial acceleration of the second segment, is specified by choosing the third control point equal to

C∗3 =
1

12
(tf − τ)2p̈τ − C∗1 + 2C∗2 . (3.41)

Using these control points and the procedure presented in Section 2.6, a position reference trajectory
pref(t) can be computed. In order to compute the interpolation between consecutive control points, the
De Casteljau algorithm on R3 uses the function given by

Pi(λ) = Ci + (Ci+1 − Ci)λ. (3.42)

The first and second order time derivative of reference trajectory pref(t) are used as the reference veloc-
ity trajectory ṗref(t) and acceleration trajectory p̈ref(t). As detailed in Section 3.2.2, pref(t), ṗref(t) and
p̈ref(t) have to be defined in terms of Wpref , W ṗref and W p̈ref , respectively. Therefore, the conditions
(3.25) - (3.31) have to be specified in the same way.
As an illustrative example, in Figure 3.11, a reference position trajectory is shown for arbitrary bound-
ary conditions. In blue, the control points are shown that prescribe the positions at the boundaries, as
given by (3.32) - (3.35). It can be seen that the trajectory crosses these control points. The red control
points, which correspond to (3.36) - (3.41), prescribe the velocities and accelerations at the boundaries.
The trajectory is C2 smooth at the boundary position given by C5 and C∗1 due to the constraint on the
velocity imposed by C4 and C∗2 and the constraint on the acceleration imposed by C3 and C∗3 .

Figure 3.11: An example position trajectory, consisting of two segments computed using the De Casteljau
algorithm on R3. The blue control points define the position at the boundaries of the segments. Using
the red control points, the velocities and accelerations at the boundaries are specified.
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3.3.3 Orientation task trajectory generation

The orientation task is used to prescribe the desired orientation of the manipulator end effectors be-
fore impact and the desired orientation of the box after impact, as explained in Section 3.2.1. For
this purpose, an extended ante-impact reference task trajectory aȳori(t) has to be generated for both
manipulator arms and an extended post-impact reference task trajectory pȳori(t) has to be generated
for the box. A similar approach as for the position task trajectory is used for generating the ante- and
post-impact orientation task trajectories. Consider the reference orientation trajectory Rref(t) ∈ SO(3)
representing either an extended ante- or post-impact trajectory. The conditions on this trajectory are
given by

Rref(t0) = R0, (3.43)

Rref(τ) = Rτ , (3.44)

Rref(tf ) = Rf , (3.45)

where R0, Rτ and Rf denote the conditions on the orientation at the initial, impact and final time.
The conditions on the angular velocity reference trajectory ωref(t) ∈ R3 are given by

ωref(t0) = ω0, (3.46)

ωref(τ) = ωτ , (3.47)

ωref(tf ) = ωf , (3.48)

with ω0, ωτ and ωf the conditions on the angular velocity at the initial, impact and final time.
Similar to the position task trajectory, the orientation task trajectory is obtained by combining two
segments, ranging from t ∈ [t0, tτ ] and t ∈ [tτ , tf ]. Both segments are computed using the De Casteljau
algorithm on SO(3), as proposed in [34]. An additional condition is introduced on the angular acceler-
ation at impact time, in order for the trajectory to be C2 smooth on the entire time interval t ∈ [t0, tf ].
The De Casteljau algorithm on SO(3) only allows to set the angular acceleration equal to zero, so the
condition is formulated as

ω̇ref(τ) = 0. (3.49)

Five control points are used to compute a trajectory that satisfies all conditions. The control points
are denoted by Ci ∈ SO(3) and C∗i ∈ SO(3) for i ∈ {1, 2, . . . , 5}, for the first and second segment
respectively. For the derivation of the choices of these control points, the reader is referred to [34]. The
first and last control point of each segment are chosen equal to the desired initial and final orientation
of this segment, in order to satisfy (3.43) - (3.45). For the first segment this results in

C1 = R0, (3.50)

C5 = Rτ , (3.51)

and for the second segment in

C∗1 = Rτ , (3.52)

C∗5 = Rf . (3.53)
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The initial and final angular velocities of the segments, given by (3.46) - (3.48), are specified using the
second and fourth control point. These are set equal to

C2 = exp

(
1

4
(τ − t0)ω∧0

)
C1, (3.54)

C4 = exp

(
−1

4
(τ − t0)ω∧τ

)
C5, (3.55)

for the first segment, where exp denotes the matrix exponential. For the second segment, the control
points are

C∗2 = exp

(
1

4
(tf − τ)ω∧τ

)
C∗1 , (3.56)

C∗4 = exp

(
−1

4
(tf − τ)ω∧f

)
C∗5 . (3.57)

The angular acceleration of zero at impact time, as imposed by (3.49), is achieved by setting

C3 = exp

(
−1

4
(τ − t0)ω∧τ

)
C4, (3.58)

for the first segment and

C∗3 = exp

(
1

4
(tf − τ)ω∧τ

)
C∗2 , (3.59)

for the second segment.
These control points are used to compute the reference orientation trajectory Rref(t) using the procedure
presented in Section 2.6. In the De Casteljau algorithm on SO(3), the interpolation between two
consecutive control points is computed by

Pi(λ) = Ci exp(λ log(CTi Ci+1)). (3.60)

As seen in Section 3.2.3, the reference trajectory Rref(t) should be given in terms of the orientation of
the desired frame with respect to the inertial frame WRD. Boundary conditions (3.43) - (3.45), should
therefore be specified in the same way. The reference velocity conditions, given by (3.46) - (3.48), should
be given in terms of the angular velocity of the desired frame with respect to the world frame, expressed
in the world frame WωW,D. The angular velocity reference trajectory ωref(t) can be computed using
the orientation trajectory Rref(t), according to

Wω∧W,D = W ṘD
WRT

D. (3.61)

The angular acceleration reference trajectory ω̇ref(t) is found by differentiation of the reference velocity
trajectory with respect to time.
As an illustrative example, in Figure 3.12, an orientation task trajectory, computed using the De
Casteljau algorithm on SO(3) for arbitrary boundary conditions, is visualized using a block. The
orientations of the blue blocks correspond to the boundary conditions imposed by (3.50) - (3.53). The
red blocks have the orientations specified by the control points that define the angular velocities and
accelerations of the block, given by (3.54) - (3.59). The gray blocks show the sequence of orientations
computed with the De Casteljau algorithm, representing a reference trajectory Rref(t).
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C1 C2 C3 C4 C5=C
∗

1
C∗

2
C∗

3
C∗

4
C∗

5

Figure 3.12: An example of an orientation trajectory, consisting of two segments computed using the De
Casteljau algorithm on SO(3). The blocks show a sequence of orientations. The blue blocks represent
the orientations at the boundaries of the segments. The red blocks show the orientations given by the
control points that define the angular velocities and accelerations of the block. The orientations of the
gray blocks are computed by the algorithm.

3.3.4 Direction task trajectory generation

The direction task is used to prescribe the direction of a body vector on the fourth link of both
manipulator arms, both before and after the impact, as detailed in Section 3.2.1. For this purpose,
extended ante- and post-impact reference task trajectories aȳvec(t) and pȳvec(t) have to be generated.
The approach for the generation of the direction task trajectories is very similar to the other tasks.
Consider a general reference direction trajectory uref(t) ∈ S2, which represents either the extended
ante- or post-impact reference direction trajectory. The trajectory is subject to

uref(t0) = u0, (3.62)

uref(τ) = uτ , (3.63)

uref(tf ) = uf , (3.64)

with u0, uτ and uf the conditions at the initial, impact and final time, respectively. The conditions on
reference velocity trajectory u̇ref(t) ∈ R3 are given by

u̇ref(t0) = u̇0, (3.65)

u̇ref(τ) = u̇τ , (3.66)

u̇ref(tf ) = u̇f , (3.67)

where u̇0, u̇τ and u̇f denote the conditions on the velocity at initial, impact and final time, respectively.
Two segments, for t ∈ [t0, τ ] and t ∈ [τ, tf ], are computed using the De Casteljau algorithm for S2

spheres, as proposed in [34]. In order to achieve C2 smoothness of the trajectory on the entire interval
t ∈ [t0, tf ], a condition on the acceleration of the direction vector at impact time üref(τ) is set. The
De Casteljau algorithm on S2 only allows to specify an acceleration that corresponds to an angular
acceleration of the vector that is equal to zero.
Control points Ci ∈ S2 and C∗i ∈ S2 for i ∈ {1, 2, . . . , 5} are used for the first and second segment
respectively, in order to satisfy all conditions. The derivation of the choices for the control points is
detailed in [34]. The first and last control point are chosen equal to the initial and final direction vector
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of the segments, given by (3.62) - (3.64), such that

C1 = u0, (3.68)

C5 = uτ , (3.69)

and

C∗1 = uτ , (3.70)

C∗5 = uf . (3.71)

In order to achieve the desired initial velocity and final velocity, given by (3.65) - (3.67), C2 and C4 are
chosen as

C2 = exp

(
1

4
(τ − t0)(C1 × u̇0)

∧
)
C1, (3.72)

C4 = exp

(
−1

4
(τ − t0)(C5 × u̇τ )∧

)
C5. (3.73)

and C∗2 and C∗4 as

C∗2 = exp

(
1

4
(tf − τ)(C∗1 × u̇τ )∧

)
C∗1 , (3.74)

C∗4 = exp

(
−1

4
(tf − τ)(C∗5 × u̇f )∧

)
C∗5 . (3.75)

Finally, control point C3 and C∗3 are chosen such that the angular acceleration of the direction vector
is equal to zero at impact time, such that

C3 = exp

(
−1

4
(τ − t0)(C5 × u̇τ )∧

)
C4, (3.76)

and

C∗3 = exp

(
1

4
(tf − τ)(C∗1 × u̇τ )∧

)
C∗2 . (3.77)

Using these control points and the procedure presented in Section 2.6, the reference direction task tra-
jectory uref(t) is computed. In the De Casteljau algorithm on S2, the interpolation between consecutive
control points is given by

Pi(λ) =

{
exp

(
λ cos−1 (Ci · Ci+1)

(
Ci×Ci+1

‖Ci×Ci+1‖

))
Ci, if ‖Ci × Ci+1‖ 6= 0,

Ci, if ‖Ci × Ci+1‖ = 0.
(3.78)

The first and second order time derivative of uref(t) are used as the reference velocity trajectory u̇ref(t)
and acceleration trajectory üref(t). Since uref(t), u̇ref(t) and üref(t) have to be defined in terms of Wuref ,
W u̇ref and W üref , respectively, as detailed in Section 3.2.4, the boundary conditions (3.62) - (3.67) have
to be specified in the same way.
In Figure 3.13, an example of a reference direction task trajectory is shown for arbitrary boundary
conditions. It can be seen that the trajectory prescribes a path on the unit sphere. The control points
in blue, given by (3.68) - (3.71), define the direction vector at the boundaries and therefore lie on the
computed trajectory. Using the red control points, which correspond to (3.72) - (3.77), the velocities
and accelerations at the boundaries are specified. The conditions on the velocity imposed by control
points C4 and C∗2 and the condition on the acceleration imposed by C3 and C∗3 cause the trajectory to
be C2 smooth at the control point given by C5 and C∗1 .
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Figure 3.13: An example trajectory for the direction task, consisting of two segments computed using
the De Casteljau algorithm on S2. The blue control points define the direction vector at the boundaries.
Using the red control points the velocities and accelerations at the boundaries are specified.

3.4 Task-based reference spreading QP controller

In this section, the QP control framework for task-based reference spreading, proposed in Section 3.1.3,
is detailed for the considered dual arm dynamic box-lifting application. This framework allows to
track the extended reference task trajectories, such that the system is always compared to a reference
trajectory that describes the same mode, even in the presence of perturbations. Thereby, it provides
a control strategy during intermediate unspecified modes, which occur when the simultaneity of the
impact between the end effectors of the manipulator and the box is lost. For this purpose, an overarching
controller, called the task-based reference spreading controller, is specified, which operates in three
sequential modes, being the ante-impact mode, the intermediate mode and the post-impact mode.
First, the different modes are explained. Thereafter, the QP control strategy during each of the modes
is detailed.

3.4.1 Controller modes

The controller starts in the ante-impact mode, in which the extended ante-impact reference task tra-
jectories are tracked. As explained in Section 3.2.1, the reference trajectories are defined such that
contact between the end effector surfaces and the box is established through simultaneous impacts.
Therefore, the reference task trajectory ȳ(t), which represents the combined reference task trajectory
for all tasks, jumps once at t = τ , as seen in Figure 3.14. However, in the presence of perturbations,
the simultaneity of the impact is generally lost. Since the end effector surfaces of the manipulator are
square, it is possible that, instead of a surface contact, the end effectors first make a point contact,
then a line contact and finally a surface contact, which is illustrated in Figure 3.15. Therefore, the end
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Ante-impact Interm. Post-impact

τt1 t3

yǫ

a
ȳ(t)

p
ȳ(t)

t2

Figure 3.14: Visual illustration of the three sequential modes of the reference spreading controller. In
blue, the extended reference task trajectory ȳ(t) is shown. In red, the perturbed task state trajectory yε
is shown. As a result of a perturbation, the task state trajectory jumps three times, at t = t1, t = t2
and t = t3, as opposed to the reference task trajectory, which only jumps at t = τ . The bar in the top
of the figure shows the current mode of the controller.

t = t1 t = t2 t = t3

Figure 3.15: Visual representation of the loss of simultaneity for an impact between a square end effector
and a box surface. It is seen that the end effector establishes a point contact, followed by a line contact
and eventually a surface contact. Therefore, a perturbed task state trajectory yε jumps three times, at
t = t1, t = t2 and t = t3. Note that, for the sake of clarity, a very large perturbation is considered in
this figure. Typically, perturbations are much smaller.

effectors can experience three impacts, at t = t1, t = t2 and t = t3. This is seen for the perturbed task
trajectory yε in Figure 3.14, which jumps three times. On the time interval t ∈ [t1, t3], the manipulator
is in an intermediate unspecified mode, as the reference trajectory is not specified for the mode in
which the end effectors are in contact with the box through point or line contacts. Therefore, normal
feedback control cannot be used during the unspecified mode. However, it is important that the full
surface contact is eventually established, in order to perform the motion prescribed by the post-impact
reference task trajectories. For this purpose, the intermediate mode is used. The intermediate mode
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ideally lasts from the moment the first impact is made between the manipulator and the box until the
moment the last impact has been completed, which is in this case from t = t1 until t = t3. After the
intermediate mode, the controller switches to the post-impact mode. In the post-impact mode, the
manipulator and the box perform a constrained motion, described by the post-impact reference task
trajectories. During the manipulation of the box, the manipulator end effectors have to maintain the
surface contact with the box.
In Figure 3.14, the current mode of the controller for the perturbed trajectory is shown in the bar at
the top of the figure. The QP control strategy in each mode is explained in the following subsections.

3.4.2 Ante-impact mode

During the ante-impact mode, the standard multirobot QP controller is used, as reviewed in Section 2.4,
without contact constraints. Position, orientation, and direction tasks are used for both manipulator
arms, as specified in Section 3.2.1. Therefore, the QP cost function is formulated as

min
q̈

wpos,1Epos,1 + wori,1Eori,1 + wvec,1Evec,1 + wpos,2Epos,2 + wori,2Eori,2 + wvec,2Evec,2, (3.79)

where Epos,i, Eori,i and Evec,i denote the cost functions for the position, orientation, and direction task,
respectively, as defined in Section 3.2, for manipulator arm i with i ∈ {1, 2} and wpos,i, wori,i and wvec,i

denote the associated task weights.
In Figure 3.16, a block diagram is shown of the QP control framework during the ante-impact mode.
The extended ante-impact reference task trajectories are specified in the task-based reference spreading

q; _qa
ȳ

Task-based

reference

spreading

controller

τ

Multirobot

QP

controller

q; _q

a _̄y

Manipulator

+

box

Figure 3.16: Block diagram of the control framework during the ante-impact mode.

controller and sent to the QP controller. The QP controller computes the torques that are necessary
to track the reference trajectories, using the actual joint positions and velocities of the manipulator.
The task-based reference spreading controller switches to the intermediate mode when an impact is
detected. The first impact, which triggers the intermediate mode, can be detected using an impact
detection method based on the joint states, like the method proposed in [24, Ch. 7]. For this purpose,
the current joint states of the manipulator are sent to the task-based reference spreading controller.
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3.4.3 Intermediate mode

During the intermediate mode, closed loop control, like in the ante-impact mode, cannot be used, as
the reference task trajectories are not specified for the mode in which the end effectors are in contact
with the box through point or line contacts. However, it is desired that surface contacts between the
end effector surfaces and the box surfaces are established, in order to perform the motion described by
the post-impact reference task trajectories. In classical reference spreading, it is proposed to switch off
the feedback during the intermediate unspecified mode, as explained in Section 2.2.3. However, this is
not straightforward to implement in task-based QP control. To illustrate why this is the case, consider
the position task cost function in (3.8). Removing the feedback terms simplifies the cost function to

Epos =
1

2

∥∥∥W p̈− W p̈ref
∥∥∥2 . (3.80)

The problem is that for the computation of W p̈, the current joint velocities of the manipulator q̇ are
used, as seen in (3.12). However, these joint velocities are likely unreliable as state jumps occur when
impact is made. Therefore, removing the feedback may not result in the desired behavior. In order
to solve this, the QP control framework should operate in open loop during the intermediate mode.
This means that the QP controller computes the joint torques for the robot using the reference joint
positions qref and velocities q̇ref , found in the previous time step, instead of the actual joint positions
q and velocities q̇ that are measured on the robot. Using the extended ante-impact reference task
trajectories as the reference signal, the QP controller computes the joint torques that would result in
tracking of these trajectories if the impact would not have occurred. The computed joint torques are
used as the input for the robot in order to complete the surface contact. The open loop QP control
framework for the intermediate mode is shown in Figure 3.17. The extended ante-impact reference task

q̈ref

qref

Task-based

reference

spreading

controller

τ

Z
Multirobot

QP

controller

q; _q; f

_qref

a
ȳ

a _̄y

Manipulator

+

box

Z

Figure 3.17: Block diagram of the open loop control framework during the intermediate mode.

trajectories are sent to the QP controller by the task-based reference spreading controller, as is also
done in the ante-impact mode. The QP controller computes the joint torques for the robot based on
the same model and cost function as the ante-impact mode, but using the reference joint positions and
velocities. These reference joint positions and velocities are obtained by integration of the reference
joint accelerations that are computed by the QP controller. The controller remains in the intermediate
mode until all contact points of the end effector surfaces are in contact with the surface of the box.
For this purpose, an impact detection method has to be used that is able to detect the last impact.
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However, the impact detection method used in the ante-impact mode is not suitable for this. Therefore,
an alternative impact detection method has to be used, for example using force sensors in the contact
points. In simulation, the impact detection can be done by measuring the force in the contact points.
For this purpose, the contact forces are sent to the task-based reference spreading controller. The
impact detection method on a real robot is beyond the scope of this research.
In addition to the open loop control approach, a second control approach can be explored for the
intermediate mode. Since the actual joint positions of the robot are not affected by the impact, these
are still reliable after the impact has occurred. Therefore, another option for the intermediate mode is
to use the actual joint positions in the QP controller, in combination with the reference joint velocities.
This has the advantage that closed loop control is possible on the body pose of the end effectors, which
may result in faster completion of the desired surface contact. However, since this approach imposes
an incoherency in the robot model between the used joint positions q and joint velocities q̇ref , this
approach has to be carefully investigated. The QP control framework associated with this approach is
shown in Figure 3.18. This framework is identical to the framework shown in Figure 3.18, except for
the joint positions and velocities that are used by the QP controller.

q̈ref
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controller

τ

Z
Multirobot

QP

controller

q; _q; f

_qref

a
ȳ

a _̄y
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+
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Figure 3.18: Block diagram of the partially open loop control framework during the intermediate mode.

3.4.4 Post-impact mode

During the post-impact mode, the standard multirobot QP controller with contact constraints is used,
as discussed in Section 2.4. The manipulator end effector surfaces and the box surfaces are constrained
to each other, using contact constraints, as discussed in Section 2.4.2. Position and orientation tasks
are used for the box, as well as direction tasks for both manipulator arms, as detailed in Section 3.2.1.
In addition to these tasks, a force task is used in order to control the contact forces between the end
effectors and the box, such that contact is maintained. The exact implementation of the force task is
presented in [35]. The cost function of the force task is formulated as

Eforce =
1

2

∥∥∥f − f ref
∥∥∥2 , (3.81)

where f denotes the vector of contact forces and f ref denotes the vector of desired contact forces.
Eventually, the constrained set of robots is controlled using a single QP problem, which is formulated
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as (2.54), with cost function

min
q̈,λ

wvec,1Evec,1 + wvec,2Evec,2 + wpos,boxEpos,box + wori,boxEori,box + wforceEforce, (3.82)

where Epos,box and Eori,box denote the cost functions for the position and orientation task for the box,
respectively, as defined in Section 3.2, wpos,box and wori,box denote the associated task weights, and
wforce the weight of the force task given by (3.81).
An overview of the control framework during the post-impact mode is shown in Figure 3.19. The
extended post-impact reference task trajectories and the desired contact forces are specified in the
task-based reference spreading controller and sent to the multirobot QP controller. In addition, the
task-based reference spreading controller imposes contact constraints on the multirobot QP controller.
The QP controller computes the joint torques for the manipulator based on the current state of the
box and the manipulator.
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Figure 3.19: Block diagram of the control framework during the post-impact mode.

3.5 Summary

In this chapter, a task-based QP control approach for impact aware manipulation has been presented,
based on reference spreading. In order to apply reference spreading on task-based QP control, ante-
and post-impact reference trajectories have been defined that are compatible with the robot impact
dynamics and suitable for task-based QP control. For this purpose, the ante-impact reference task
trajectories have to define a unique state trajectory implicitly, such that unique impact dynamics are
implied as well. This has been achieved by removing the task redundancy in the robot. Post-impact
reference task trajectories have been specified such that they are compatible with the impact dynamics
corresponding to the ante-impact reference task trajectories. Inspired by reference spreading, the
reference task trajectories have been extended beyond the intended jump times, in order to deal with
perturbations. The generation of such extended reference task trajectories and the implementation of
task-based reference spreading in a QP control framework are dependent on the considered application
and robot. For this purpose, a dynamic box-lifting application for a dual arm manipulator has been
introduced. Three QP tasks have been defined, which are used to specify the desired motion of the
manipulator for this application. A trajectory generation procedure has been proposed, which can be
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used to generate extended task trajectories for each of the defined tasks, that are compatible with
the impact dynamics. A QP control framework for task-based reference spreading has been proposed
for the dual arm dynamic box-lifting application. For this purpose, an overarching controller has
been presented, consisting of three sequential modes. The ante- and post-impact mode are used to
track the extended ante- and post-impact reference task trajectories, allowing the system to deal with
noncoinciding jump times. An intermediate mode has been introduced in order to deal with the
intermediate unspecified mode, that occurs when the simultaneity of the impact is lost.
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Chapter 4

Numerical Simulation Study

In this chapter, the first step is taken towards numerically validating the task-based QP control ap-
proach for impact aware manipulation, proposed in Chapter 3. For this purpose, the trajectory gener-
ation procedure for task-based reference spreading, presented in Section 3.3, is demonstrated by means
of a numerical simulation study on the dual arm dynamic box-lifting application, presented in Sec-
tion 3.2.1, in the robot simulator V-REP, introduced in Section 2.5.
First, extended ante-impact reference trajectories are generated for the position, orientation, and di-
rection tasks for the manipulator arms, resulting in the desired simultaneous impacts between the
manipulator end effectors and the box. Thereafter, simulations are performed, in order to determine
the post-impact task states, which result from the simultaneous impacts that occur when the extended
ante-impact reference task trajectories are tracked. These post-impact task states are then used to
generate extended post-impact reference trajectories for the position and orientation task of the box,
and the direction tasks for both manipulator arms, which are compatible with the ante-impact reference
task trajectories and the associated impact dynamics.

4.1 Ante-impact reference task trajectories

In this section, extended ante-impact reference task trajectories are generated for the position, orienta-
tion, and direction task for the manipulator arms, such that the desired simultaneous impacts between
the end effectors of the manipulator and the box are established. Thereafter, the control gains and
weights for each task are tuned, in order to achieve accurate tracking of these trajectories.

4.1.1 Trajectory generation

The extended ante-impact reference task trajectories for the position, orientation, and direction task for
the manipulator arms are computed such that the desired motion depicted in Figure 4.1 is achieved. The
left figure shows the manipulator in its initial state, at t0 = 0 s. The desired state of the manipulator
at impact time τ = 1 s is shown in the middle figure. After impact time, the ante-impact trajectories
are extended to the state shown in the right figure, at tf = 1.33 s, which is the final time of the
extended ante-impact reference task trajectories. Note that the box is not shown in the final state, as
the extension of the ante-impact trajectories represents a motion through the box.
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t = 0 s t = 1 s t = 1.33 s

Figure 4.1: Visual illustration of the desired motion described by the extended ante-impact reference
task trajectories. On the left, the desired initial state of the manipulator at t = 0 is shown. The middle
figure shows the desired state at impact time t = 1 s. The right figure shows the final state of the
manipulator after extension of the ante-impact reference task trajectories, at t = 1.33 s. The box is not
shown in the latter figure, as the extensions prescribe a motion through the box.

First of all, extended reference task trajectories are generated for the position task for both manipulator
arms, such that the impacts between the end effectors and the box occur at the desired position and
with the desired velocity and acceleration. A reference position trajectory ap̄ref(t), velocity trajectory
a ˙̄pref(t) and acceleration trajectory a ¨̄pref(t) are defined as stated in Section 3.2.2, for points p1 and p2,
which denote points on the end effector surfaces of KUKA 1 and KUKA 2, respectively. The left arm of
the manipulator, which is the arm shown right in the snapshots in Figure 4.1, is denoted as KUKA 1,
and the right arm, shown left, is denoted as KUKA 2. The points p1 and p2 are illustrated in Figure 4.2
on a schematic representation of the manipulator end effectors in the configuration shown in Figure 4.1
at t = 1 s. The points are specified on the center of the square end effector surfaces. Figure 4.2 also
shows the orientation of inertial frame W , which is positioned in the center of the ground plane of the
blue platform shown in Figure 4.1.

B2 B1

p1p2

x

z

y

x

y

z

x

y

z

[W ]

Figure 4.2: Schematic representation of the end effectors illustrating points p1 and p2 on the center of
the end effector surfaces, controlled by the position task and body frames B1 and B2 controlled by the
orientation task. The orientation of the inertial frame is given by [W ].
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Table 4.1: Conditions on the ante-impact reference position task trajectories for both KUKA arms. All
conditions are expressed with respect to the inertial frame W .

ap̄ref(0) ap̄ref(1.00) ap̄ref(1.33) a ˙̄pref(0) a ˙̄pref(1.00) a ˙̄pref(1.33) a ¨̄pref(1.00)

KUKA 1
x 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 0.37 0.15 0.04 0.00 -0.33 -0.33 0.00
z 0.63 0.80 0.90 0.00 0.30 0.30 0.00

KUKA 2
x 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y -0.37 -0.15 -0.04 0.00 0.33 0.33 0.00
z 0.63 0.80 0.90 0.00 0.30 0.30 0.00

In Table 4.1, all conditions on the reference position task trajectories are summarized. Taking into
account these conditions, the position task trajectories are computed for both arms, using the approach
discussed in Section 3.3.2. The generated trajectories for both arms are shown in Figure 4.3.

Figure 4.3: The extended ante-impact reference position task trajectory for both manipulator arms.
Subscripts x, y and z denote the x-, y- and z-components of the position vector.

For the orientation task, extended ante-impact reference orientation trajectories aR̄ref(t) are generated,
which prescribe the desired orientation of frames B1 and B2, which are shown in Figure 4.2, with
respect to the inertial frame W , as defined in Section 3.2.3. The desired orientations are chosen to
be constant, such that the end effector surfaces are aligned with the box surfaces at all times. The
reference orientation trajectory for the end effector of KUKA 1 is therefore given by

aR̄ref(t) =

1.0 0.0 0.0
0.0 0.0 −1.0
0.0 1.0 0.0

 , (4.1)
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and by

aR̄ref(t) =

−1.0 0.0 0.0
0.0 0.0 1.0
0.0 1.0 0.0

 , (4.2)

for the end effector of KUKA 2. The angular velocity and acceleration reference trajectories, denoted
by aω̄ref(t) and a ˙̄ωref(t), respectively, are equal to zero for the entire extended ante-impact trajectory.
For the direction task for each manipulator arm, extended ante-impact reference direction task trajec-
tory aūref(t) and its derivatives a ˙̄uref(t) and a ¨̄uref(t), are defined as specified in Section 3.2.4. These
trajectories are used to describe the desired direction, velocity and acceleration of body vectors u1 and
u2, depicted in Figure 4.4. The reference task trajectories are generated using the algorithm presented
in Section 3.3.4, using the conditions summarized in Table 4.2. The generated extended trajectories
for both arms are shown in Figure 4.5.

Figure 4.4: Illustration of the body vectors u1 and u2 on the fourth link of the manipulator arms, which
are controlled by the direction task.

Table 4.2: Conditions on the ante-impact reference direction task trajectories.

aūref(0) aūref(1.00) aūref(1.33) a ˙̄uref(0) a ˙̄uref(1.00) a ˙̄uref(1.33)

KUKA 1
x -0.49 -0.34 -0.18 0.00 0.47 0.47
y 0.79 0.93 0.98 0.00 0.23 0.23
z 0.37 0.15 0.02 0.00 -0.37 0.37

KUKA 2
x 0.49 0.34 0.18 0.00 -0.47 -0.47
y 0.79 0.93 0.98 0.00 0.23 0.23
z -0.37 -0.15 -0.02 0.00 0.37 0.37
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Figure 4.5: The extended ante-impact reference direction task trajectory for both manipulator arms.
Subscripts x, y and z denote the x-, y- and z-components of the direction vector.

4.1.2 Tracking performance

In order to achieve accurate tracking of the generated ante-impact reference task trajectories, the
proportional and derivative control gains for each task, presented in Section 3.2, have to be tuned, as
well as the task weights. The control gains are chosen to be scalar for all tasks, as no distinction is
made in the control action for different directions. In the remainder of this chapter, the control gains
are therefore denoted by lowercase letters for all tasks. The derivative gain kd is chosen such that
kd = 2

√
kp, as this results in critical damping of the task errors.

In order to find the control gains and task weights, various perturbed initial configurations of the
manipulator are considered, which are obtained by perturbing the initial joint positions. The considered
initial configurations are summarized in Appendix C. The control gains and task weights are tuned such
that the manipulator achieves accurate tracking of all reference task trajectories, before impact time,
for all considered perturbed initial configurations. This ensures that the impacts occur at the desired
position, with the desired velocity and orientation. Thereby, if the manipulator tracks all reference
task trajectories, this implies that the joint states of the manipulator track the joint state reference
trajectory that is implicitly defined by the reference task trajectories, as explained in Section 3.1.1.
The task weights have to be chosen such that all reference task trajectories are tracked accurately, as
choosing the weight of one of the tasks relatively high with respect to the other tasks causes lower
tracking performance of the other tasks. An overview of the gains and weights used in this simulation
is given in Table 4.3. Figures 4.6 - 4.8 show the tracking behavior of the manipulator in simulation
for each task, using these control gains and weights, for the perturbed initial configurations given
in Appendix C. For all tasks, it can be seen that the manipulator achieves accurate tracking of the
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Table 4.3: Control gains and task weights for all tasks.

Position task Orientation task Direction task

kp kd w kp kd w kp kd w

200 28.3 5000 200 28.3 5000 200 28.3 200

reference trajectory within the first second, before impact occurs. Since all reference task trajectories
are tracked, the implicitly defined reference joint state trajectories are tracked as well. In Appendix D,
it is shown that for all perturbed systems, the joint states converge to the same state trajectory. It is
also shown that the joint states do not converge to the same trajectory if the direction task is not used.

Remark 3: The control gains and task weights are tuned manually and do therefore not result in
optimal tracking behavior. However, the goal of this research is not to achieve optimal tracking, but
to demonstrate task-based reference spreading control. For this purpose, it is sufficient, for now, if the
perturbed systems achieve accurate tracking of the reference task trajectories before impact occurs.

Figure 4.6: Tracking of the ante-impact reference position trajectory by the manipulator with an un-
perturbed and various perturbed initial configurations. Accurate tracking of the reference trajectory is
achieved within the first second, before impact occurs, for all trajectories. Subscripts x, y and z denote
the x-, y- and z-components of the position vector.
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Figure 4.7: Tracking of the ante-impact reference orientation trajectory by the manipulator with an
unperturbed and various perturbed initial configurations. Accurate tracking of the reference trajectory
is achieved within the first second, before impact occurs, for all trajectories. Note that, for visualization
purposes, the orientation is plotted in terms of roll, pitch and yaw angles ψ, θ and φ, which define
rotation matrices Rx, Ry and Rz describing the rotation about the x-, y- and z-axes respectively.

Figure 4.8: Tracking of the ante-impact reference direction task trajectory by the manipulator with an
unperturbed and various perturbed initial configurations. Accurate tracking of the reference trajectory is
achieved within the first second, before impact occurs, for all trajectories. Subscripts x, y and z denote
the x-, y- and z-components of the direction vector.
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4.2 Determining impact dynamics

Given the ante-impact reference task trajectories generated in Section 4.1.1, post-impact reference
task trajectories have to be generated that are compatible with the ante-impact trajectories and the
associated impact dynamics. In other words, at the intended impact time τ , the post-impact task
trajectories have to be consistent with joint state

pᾱ(τ) = g(aᾱ(τ)), (4.3)

where aᾱ(t) is the ante-impact reference state trajectory implied by the ante-impact reference task
trajectories given in Section 4.1.1. The reference post-impact task states at impact time, corresponding
to pᾱ(τ), are determined using simulations.
Ideally, one would be able to access a physics engine directly, in order to find the post-impact states
that correspond to a specific ante-impact state, but this is not possible in V-REP. Thereby, V-REP
does not allow to initialize robot models with a velocity other than zero. Therefore, in order to find
the post-impact task states that correspond to a specific ante-impact state, simulations have to be per-
formed in which the manipulator is controlled to this ante-impact state. For this purpose, the extended
ante-impact reference task trajectories are tracked by the manipulator, starting from the unperturbed
initial configuration. Since the control gains and task weights have been tuned such that the reference
trajectories are all tracked accurately, the implicitly defined reference state trajectory aᾱ(t) is tracked
as well. In simulation, the manipulator will therefore make impact with the box with an ante-impact
joint state equal to aᾱ(τ). The post-impact task states, associated with the post-impact joint states
given by (4.3), can therefore be found by evaluating the task states right after the impact has occurred.
In these simulations, unless specified otherwise, the box has a mass of 1.5 kg with uniform density
distribution and the end effectors have sides of 20 cm.
In this section, first the feasibility of the post-impact states, obtained through simulations, is consid-
ered. Thereafter, the post-impact task states are obtained, which are used for post-impact trajectory
generation in Section 4.3.

4.2.1 Feasibility of the impact dynamics

In the simulations that are used to determine the post-impact task states, the Vortex physics engine
is used, which is reviewed in Section 2.5. Since this physics engine can be used for a large variety
of applications, many properties can be set to the preference of the user. For the determination of
the post-impact task states, it is especially important that the material properties of the box and the
end effector are chosen correctly, such that feasible impact dynamics are found. In this research, only
inelastic impacts are considered. However, by default, the physics engine assumes objects to have a
so-called skin thickness [36]. This skin thickness defines a small volume below the surface of an object,
in which the object is softer. This is used in simulation in order to make it easier for robots to grasp
the object. However, due to this skin thickness, the end effector surfaces and the box can rotate with
respect to each other while in contact, which is not feasible. Therefore, infeasible post-impact task
states are found, when simulations are performed using a box with a skin thickness. This is shown in
Figure 4.9 for a simulation in which smaller end effector shapes have been used, with sides of 10 cm,
in order for the effect of the skin thickness to be more apparent. It can be seen that, as a result of
the impact, which occurs at 1.00 s, the angular velocities of the end effectors and the box are different,
which is infeasible for an inelastic impact without restitution. The end effectors have an angular
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Figure 4.9: The angular velocity of the end effector frame for both KUKA arms and the box around
impact time, where the box has a skin thickness of 2 mm in Vortex. End effector shapes are used with
sides of 10 cm. After the impact, the end effectors have an angular velocity in opposite direction, which
is not equal to the angular velocity of the box.

Figure 4.10: The angular velocity of the end effector frame for both KUKA arms and the box around
impact time, where the box has no skin thickness in Vortex. End effector shapes are used with sides of
10 cm. Shortly after the impact, the angular velocities of the end effector and the box are the same.
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velocity in opposite direction about the inertial x- and z-axes, which means that the surfaces cannot
both be aligned with the box surfaces after impact. However, this is required, in order to apply contact
constraints between the end effectors and the box. In order to achieve feasible post-impact velocities
and for the end effector surfaces to be aligned with the box surfaces after impact, the skin thickness has
to be removed. In Figure 4.10, it can be seen that, in this case, the angular velocities are equal after
the impact has occurred, apart from a small time window, in which the velocities are slightly different.
This can be caused by the impact not being perfectly simultaneous or by numerical instabilities. Since
the post-impact states are feasible after t = 1.015 s, these task states can be used for the generation of
the post-impact reference task trajectories and allow contact constraints to be applied.

4.2.2 Determining the post-impact task states

Simulations are performed, in which the manipulator tracks the extended ante-impact reference task
trajectories, in order to find the corresponding post-impact task states. In Figures 4.11 - 4.13, the
velocities that are associated with the position, orientation, and direction task are plotted around
impact time. In Figure 4.12, it can be seen that the angular velocities become feasible at t = 1.01 s,
as the angular velocities of the end effectors and the box are the same after this time. At this time,
also the impulsive change in the linear velocities of the end effectors and the box, and the velocity of
the direction vector has stopped, which indicates that impact has been completed. For these reasons,
it has been decided to determine the post-impact task states at t = 1.01 s. In Figures 4.11 - 4.13 this
time instance has been indicated with a dashed line. The determined post-impact states are used for
the generation of the extended post-impact reference task trajectories, in Section 4.3.

Figure 4.11: The linear velocity of the point on the end effector both KUKA arms around impact time.
End effector shapes are used with sides of 20 cm. The velocities jump as a result of the impact with the
box.
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Figure 4.12: The angular velocity of the end effector frame for both KUKA arms and the box around
impact time. End effector shapes are used with sides of 20 cm. The velocities show small jumps as a
result of the impact with the box.

Figure 4.13: The velocity of the body vectors for both KUKA arms around impact time. The velocities
jump as a result of the impact with the box.
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4.3 Post-impact trajectory generation

Using the post-impact task states determined in Section 4.2.2, extended post-impact reference task
trajectories can be generated that are compatible with the ante-impact reference task trajectories
generated in Section 4.1.1 and the associated impact dynamics. The desired motion that has to be
described by the extended post-impact reference task trajectories is illustrated visually in Figure 4.14.
The left figure shows the configuration of the manipulator and the box at t = 0 s, which is the start
of the extended post-impact reference task trajectories. In this configuration, the box is inside the
platform, which is not shown for this reason, as the initial configuration represents the backwards
extension of the post-impact reference task trajectories. The middle figure shows the configuration at
t = 1.01 s, which corresponds to the post-impact task states found in Section 4.2.2. The desired final
state at t = 2.00 s, in which the box has been lifted by the manipulator, is shown in the right figure.

t = 0 s t = 1.01 s t = 2.00 s

Figure 4.14: Visual illustration of the desired motion described by the extended post-impact reference
task trajectories. The left figure shows the initial configuration of the manipulator and the box at
t = 0 s, which represents the backwards extension of the post-impact reference task trajectories. The
middle figure shows the configuration right after impact time at t = 1.01 s. In the right figure, the
desired final configuration at t = 2.00 s is shown.

As detailed in Section 3.2.1, a position and orientation task for the box, and a direction task for both
manipulator arms are used to describe this desired motion. The extended reference trajectories for these
tasks are generated in the same way as the ante-impact reference task trajectories, in Section 4.1.1.
For the position task for the box, an extended post-impact reference position trajectory pp̄ref(t), velocity
trajectory p ˙̄pref(t) and acceleration trajectory p ¨̄pref(t) are defined. The conditions for these reference
trajectories are summarized in Table 4.4. The position trajectory, computed using the procedure

Table 4.4: Conditions on the post-impact reference position task trajectories for the box.

pp̄ref(0) p̄ref(1.01) pp̄ref(2.00) p ˙̄pref(0) p ˙̄pref(1.01) p ˙̄pref(2.00) p ¨̄pref(1.01)

x 0.00 0.00 0.00 0.00 0.13 0.00 0.00

y 0.00 0.00 0.00 0.00 0.00 0.00 0.00

z 0.70 0.80 1.00 0.00 0.18 0.00 0.00
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presented in Section 3.3.2, is shown in Figure 4.15. In Figure 4.16, it is shown that, at t = 1.01 s, the
extended post-impact reference velocity trajectory p ˙̄pref(t) coincides with the post-impact velocities
found in Section 4.2.2. This shows that the post-impact reference position task is compatible with
the impact dynamics that are associated with the extended ante-impact reference task trajectories
generated in Section 4.1.1.
In a similar fashion, the extended post-impact reference orientation task trajectory pR̄ref(t) for the box
is generated. At t = 1.01 s, this trajectory has to satisfy

pR̄ref(1.01) =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 . (4.4)

The initial and final orientation are chosen to be the same as the orientation at impact time. The
conditions on the reference angular velocity trajectory pω̄ref(t) are given in Table 4.5. The generated

Table 4.5: Conditions on the post-impact reference angular velocity trajectory for the box.

pω̄ref(0) pω̄ref(1.01) pω̄ref(2.00)

x 0.00 0.00 0.00

y 0.00 0.01 0.00

z 0.00 0.00 0.00

trajectory is shown in Figure 4.17. Note that, for visualization purposes, the desired orientation of the
box is expressed in roll, pitch and yaw angles, expressing the desired orientation in the inertial frame.
In Figure 4.18, it can be seen that at t = 1.01 s, the extended post-impact reference trajectory for the
angular velocity coincides with the angular velocity of the box right after impact has occurred, found
in the simulation presented in Section 4.2.2.
The conditions on the post-impact reference direction task trajectory pūref(t) and its derivative p ˙̄uref(t)
for both KUKA arms are shown in Table 4.6. The generated extended post-impact direction trajectory
is shown in Figure 4.19. Figure 4.20 shows that the associated extended post-impact reference velocity
trajectory for the direction task coincides with the velocity of the direction vector at t = 1.01 s in the
simulation detailed in Section 4.2.2.

Table 4.6: Conditions on the post-impact reference direction task trajectories.

pūref(0) ūref(1.01) pūref(2.00) p ˙̄uref(0) p ˙̄uref(1.01) p ˙̄uref(2.00)

Kuka 1
x -0.11 -0.34 -0.34 0.00 0.04 0.00
y 0.98 0.93 0.93 0.00 0.02 0.00
z 0.18 0.15 0.15 0.00 -0.04 0.00

Kuka 2
x 0.11 0.34 0.34 0.00 -0.04 0.00
y 0.98 0.93 0.93 0.00 0.02 0.00
z -0.18 -0.15 -0.15 0.00 0.04 0.00
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Figure 4.15: The extended post-impact reference position trajectory for the box in x-, y- and z-direction.

Figure 4.16: The extended post-impact reference velocity trajectory for the position task in x-, y- and
z-direction, depicted in red. At t = 1.01 s, the reference trajectory coincides with the velocity of the box
obtained from the Vortex simulation, which is plotted in black.
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Figure 4.17: The extended post-impact reference orientation trajectory for the box, in roll, pitch and
yaw angles ψ, θ and φ, which define rotation matrices Rx, Ry and Rz, expressing the orientation of
the desired frame with respect to the inertial frame in terms of the rotation about the x-, y- and z-axes.

Figure 4.18: The extended post-impact reference trajectories for the angular velocities about the inertial
x-, y- and z-axis, depicted in red. At t = 1.01 s, the reference trajectory coincides with the angular
velocity of the box obtained from the Vortex simulation, which is plotted in black.
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Figure 4.19: The extended post-impact reference direction trajectory for both manipulator arms. The
trajectories define the x-, y- and z-component of the direction vector.

Figure 4.20: The extended post-impact reference trajectories for the direction vector velocities, depicted
in red and dark blue for KUKA 1 and KUKA 2, respectively. At t = 1.01 s, the reference trajectories
coincide with the actual velocities of the direction vectors, which are plotted in black and cyan for
KUKA 1 and KUKA 2, respectively.
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4.4 Summary

In this chapter, extended ante- and post-impact reference task trajectories have been generated for
a dual arm dynamic box-lifting application, which are compatible with the robot impact dynamics.
For this purpose, extended ante-impact reference task trajectories have been generated that result in
simultaneous impacts between the end effectors of the dual arm manipulator and the box. The control
gains and task weights have been tuned, such that accurate tracking of all ante-impact reference task
trajectories is achieved. It has been shown that the ante-impact reference task trajectories implicitly
define a unique state trajectory. Thereafter, simulations have been performed using the Vortex physics
engine, in which the extended ante-impact reference task trajectories are tracked, in order to determine
the post-impact task states that result from the simultaneous impact between the end effectors and
the box. It is found that the settings of the Vortex physics engine have to be carefully chosen, as
choosing the wrong settings can cause the impact dynamics to become infeasible. The post-impact task
states that are found in the simulations have been used to generate extended post-impact reference task
trajectories. It has been shown that these trajectories are compatible with the generated ante-impact
reference task trajectories and the associated impact dynamics.
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Performing motion tasks with intentional impacts is complicated due to the velocity jumps that occur
when contact is established at nonzero velocity. In the presence of perturbations, it cannot be assumed
that the velocity jumps occur at the intended time. As a result of the mismatch in jump times, the
system can reside in a different mode than the reference trajectory. Comparing the state of the system
to a reference state in a different mode, in feedback control, can result in poor tracking performance
or destabilization of the system. Thereby, when it is expected to perform simultaneous impacts, a
perturbed system can experience more jumps than the reference trajectory, which causes intermediate
unspecified modes to occur. Reference spreading provides a possible solution for the mismatch in jump
times and the number of jumps, by extending the ante-impact reference trajectory beyond the intended
impact time and the post-impact reference trajectory before the intended impact time, and using these
trajectories to define a new tracking error. So far, reference spreading has made use of reference state
trajectories, which are tracked using a state-feedback controller. However, an output feedback control
approach is much better suitable for the control of complex robots, such as dual arm manipulators, as
specific variables of interest can be controlled, like end effector positions. A control approach that is
commonly used for such complex robots, is task-based quadratic programming (QP) control. Therefore,
this research has aimed to extend reference spreading such that it can be used in task-based QP control,
creating a robust QP control approach for impact aware manipulation that is suitable for the control
of complex robots. Formally, the goal of this research was formulated as:

Extending reference spreading in order to be applicable for task-based QP control.

The following section concludes on the contributions that have been made in order to achieve this goal.
Thereafter, recommendations for future research are formulated, based on the findings in this work.

5.1 Conclusions

Reference task trajectories, as opposed to reference state trajectories, might not prescribe a unique
reference trajectory for each joint in a manipulator. This is the case when a task requires less degrees
of freedom to perform than there are degrees of freedom in the manipulator, which implies that the
manipulator is task redundant. For task redundant manipulators, infinitely many state trajectories can
be found that result in completion of the same reference task trajectory. For motion tasks involving
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intentional impacts this causes problems, as the jump map that is associated with an impact is typically
strictly dependent on the joint state of the manipulator at the moment of impact. This means that
the joint state after impact is dependent on the joint state before impact. Consequently, infinitely
many post-impact task states exist that correspond to the same ante-impact reference task trajectory.
Therefore, it is not possible to define unique post-impact reference task trajectories, that are compatible
with the ante-impact reference task trajectories and the associated impact dynamics. It has been
shown that by using additional tasks, the task redundancy in the manipulator can be removed. The
combination of reference task trajectories, associated with these tasks, implicitly defines a unique joint
state trajectory. In this case, also the impact dynamics corresponding to these reference task trajectories
are unique. This allows to define post-impact reference task trajectories that are compatible with these
impact dynamics. This concludes the first contribution that has been made in this research, which was
formulated as:

Defining reference trajectories for motion tasks with intentional impacts that are compatible with
the impact dynamics and suitable for task-based QP control.

Using the concept of reference spreading, the reference task trajectories can be extended beyond the
intended impact time. In this way, it is possible to prevent the task errors from comparing the system to
a reference trajectory in a different mode, when perturbations cause the system to jump at a different
time than expected. A QP control framework had to be developed, in order to switch between the
extended ante- and post-impact reference task trajectories and in order to deal with the intermediate
unspecified mode, which occurs when the simultaneity of an impact is lost due to perturbations. The
generation of the extended reference task trajectories and the QP control framework are dependent
on the robot and the application that are considered. Therefore, a dynamic box-lifting application for
a specific dual arm manipulator has been introduced. Three tasks and the associated reference task
trajectories have been detailed, in order to specify the desired motion for this application. A position
and orientation task have been used to specify the time-varying desired pose of the end effectors of the
manipulator before impact. After contact has been established, the position and orientation task are
used to specify the time-varying desired pose of the box. In addition, a direction task has been used on
the fourth link of both manipulator arms, in order to remove the task redundancy in the manipulator.
An approach for the generation of extended reference task trajectories, based on the De Casteljau
algorithm, has been proposed for each of the selected tasks. This approach allows to generate ante-
impact reference task trajectories that result in the desired impact and post-impact reference task
trajectories that are compatible with the associated impact dynamics. Thereby, the ante- and post-
impact reference task trajectories can be extended beyond the impact time. This concludes the second
contribution of this research, which was formulated as:

Developing a trajectory generation and extension procedure for the reference trajectories associated
with specific QP control tasks.

A QP control framework has been proposed, based on reference spreading, with which the dynamic box-
lifting application can be performed by the dual arm manipulator, in the presence of perturbations.
For this purpose, a controller has been defined consisting of three sequential modes. In the first
mode, the ante-impact mode, the manipulator tracks the generated extended ante-impact reference
task trajectories, until an impact is detected. In case perturbations cause the simultaneity of the
impact to be lost, the controller switches to the intermediate mode. In the intermediate mode, the
extended ante-impact reference task trajectories are tracked as well, in order to complete the full
contact. However, the joint velocities of the manipulator, which have jumped as a result of the impact,
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are likely not reliable and cannot be used for feedback control in this mode. Therefore, an open loop
control strategy has been proposed, which uses the reference joint positions and velocities for the
computation of the joint torques in the QP controller, instead of the actual joint states measured on
the robot. A second approach has been proposed, in which the actual joint positions are used in the
QP controller, in combination with the reference joint velocities, as the joint positions are not affected
by impacts. However, this option should be carefully investigated, since this approach imposes an
incoherency between the joint positions and velocities in the robot model. Once the surface contact
has been completed, the controller switches to the post-impact mode. In the post-impact mode, the
manipulator arms and the box perform a constrained motion, prescribed by the extended post-impact
reference task trajectories. A force task has been used to specify the desired contact forces between
the end effectors and the box, such that the contact is maintained. The proposed controller provides a
possible control strategy for performing the dual arm dynamic box-lifting application, which concludes
the third contribution:

Defining a task-based QP control framework, based on reference spreading, with which motion tasks
involving simultaneous impacts can be performed, in the presence of perturbations.

To conclude, an extension of reference spreading has been proposed, which can be implemented in a
task-based QP control framework. Herewith, the goal of this research, formulated in Section 1.3 is
achieved.

A numerical simulation study has been performed on the dynamic box-lifting application for a dual
arm manipulator in a robotic simulator environment. It has been shown how extended reference task
trajectories can be generated for this particular application, which are compatible with the robot im-
pact dynamics.
First, extended ante-impact reference task trajectories have been generated, which prescribe the de-
sired motion for the dual arm manipulator. It has been shown that when the manipulator achieves
tracking of the reference task trajectories, its joint states track the implicitly defined state trajectory.
This is required in order to find post-impact reference task trajectories that are compatible with the
ante-impact trajectories and the associated impact dynamics.
Thereafter, simulations have been performed in order to determine the post-impact task states that
correspond to the generated ante-impact trajectories, using the Vortex physics engine. It was seen that
for the determination of the post-impact states, it is important that the correct settings for the physics
engine are used. Using the wrong settings can result in infeasible post-impact states.
Extended post-impact reference task trajectories have been generated, which coincide with the deter-
mined post-impact states, at impact time. This shows that these post-impact trajectories are compatible
with the ante-impact trajectories and the associated impact dynamics. Since the ante- and post-impact
reference task trajectories have been extended beyond the extended impact time, they are suitable to
be used in the proposed QP control framework. This concludes the last contribution, formulated as:

Demonstrating the extended reference trajectory generation procedure by means of a numerical
simulation example.

Due to limited time, the proposed QP control framework has not been fully implemented and validated
in the numerical simulation study. This remains a topic for future research.
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5.2 Recommendations

As detailed in the previous concluding section, the goal of this research has been achieved. However, the
proposed QP control framework for task-based reference spreading has not been fully validated using
numerical simulations. Thereby, several interesting topics for future research can be thought of, based
on the findings in this work. Therefore, recommendations for future research have been formulated,
which are listed below.

Implementation of task-based QP control based on reference spreading
The numerical simulation study performed in this work has shown how extended ante- and post-impact
reference task trajectories, compatible with robot impact dynamics, can be generated by means of
the trajectory generation procedure presented in this work, based on the De Casteljau algorithm.
However, the proposed QP control framework for task-based reference spreading has not been fully
validated with numerical simulations. So far, only the ante-impact mode of the proposed controller
has been fully implemented in the software framework. Therefore, future research should focus on the
theoretical and software related challenges that come with the implementation of the intermediate and
post-impact mode.
First, the post-impact mode has to be implemented, in order to validate that the desired motion
described by the extended post-impact reference task trajectories can be performed by the manipulator.
First steps have been made in the implementation of this mode. However, due to software related issues,
the contact constraints between the end effectors and the box do not result in the desired outcome when
used in combination with a torque controlled manipulator.
Once the post-impact mode has been fully implemented and the manipulator is capable of tracking the
extended post-impact reference task trajectories, the intermediate mode can be implemented. Ideally,
both proposed approaches for the intermediate mode should be implemented, validated, and compared.
Having all modes implemented allows to perform simulations of the full box-lifting application in the
presence of perturbations, which can be used to validate the proposed task-based QP control framework
based on reference spreading.

Numerical simulation study on performance
Once the task-based QP control framework is fully implemented and validated, a numerical simulation
study should be done on the performance of the controller in terms of execution time and robustness to
perturbations. For this purpose, task-based reference spreading should be compared to existing control
strategies for task-based QP control with contact transitions.

Stability proof for task-based reference spreading
Even if the task-based QP control implementation is fully validated using numerical simulations, it
cannot be guaranteed that a robot converges to the post-impact reference task trajectories. For this
purpose, a stability analysis, similar to [17], could be performed for systems with simultaneous impacts,
controlled using task-based QP control.

Task-based reference spreading for different robots
This research has focused specifically on an application for a torque controlled dual arm manipulator.
However, the same conceptual approach of task-based reference spreading could be used for other
robots as well. Interesting robots that can be considered in future research are floating-base robots like
humanoids and robots that are controlled using position or velocity control loops. The main reason why
this research has focused specifically on torque controlled robots, even though the proposed approach is
straightforwardly applicable to position controlled robots as well, is due to the incorrect implementation
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of position control in the V-REP simulator. Therefore, in order to apply task-based reference spreading
on position controlled robots in numerical simulations, the position control implementation of V-REP
has to be changed or another robot simulator has to be used.

Physical experiments
Once task-based reference spreading has been fully validated using numerical simulations, physical
experiments can be performed. Ideally, experiments should be performed on an box-lifting application
using a torque controlled dual arm manipulator, as discussed in this research, in order to validate the
approach proposed in this research. However, if this is not possible, task-based reference spreading
could be applied to other applications and manipulators as well, using a similar approach.

Impact detection method
The impact detection methods that are proposed in this research, in order to detect the start and end
of the intermediate mode, are suitable for numerical simulations, but not directly applicable to physical
experiments. Therefore, future research should focus on developing an impact detection method that
is capable of detecting the beginning and end of the impact phase, in order to switch between the
controller modes.

Physics engine comparison
In this work, the Vortex physics engine is used to simulate the impact dynamics. Apart from Vortex,
multiple other physics engines are available in V-REP and other dynamic system simulators. An
interesting topic for future research is to investigate the differences in impact modeling between the
physics engines and to perform a comparison using numerical simulations.

Simulating impact dynamics
In the simulation environment used in this work, it is not possible to initialize robots or objects with
a velocity different from zero. Therefore, in order to simulate the impact dynamics for an impact at
a desired velocity, first the manipulator has to be controlled to the desired velocity. However, this
approach is very time-consuming when a large variety of velocities is considered. In this case, it would
be desireable to be able to define the initial velocity of the manipulator, such that many different impact
velocities can be quickly evaluated. Ideally, one would even be able to access the physics engine directly
in order to compute the impact dynamics corresponding to an impact with a specific robot state.
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Appendix A

PD Control on SO(3)

The cost function for the orientation task can be derived from the PD controller for the stabilization
of the origin of SO(3), proposed in [33]. This PD controller is given by

Ė = ΩEE (A.1)

ω̇E = −KdωE −Kp(log(E))∨, (A.2)

with E ∈ SO(3), and Ω = ω∧ ∈ R3×3,Ω + ΩT = 0 (Ω is skew symmetric). The rotation error E is
defined as the rotation matrix from the desired frame D to the current body frame B, so

E := BRW
WRD. (A.3)

The angular velocity ΩE denotes the angular velocity of the desired frame with respect to the current
frame, expressed in the current frame, such that

ΩE = BΩB,D. (A.4)

For the sake of clarity, let D := WRD, B := WRB, E := RTD, ΩD := WΩW,D and ΩB := WΩW,B.
From (A.1), it follows that

ḂTD + BT Ḋ = ΩEBTD,

ḂT + BT ḊDT = ΩEBT ,

ḂTB + BT ḊDTB = ΩE ,

−BTΩBB + BTΩDB = ΩE ,

BT (ΩD −ΩB) B = ΩE . (A.5)

This equation can be transformed from skew-symmetric angular velocity matrices to angular velocity
vectors using ω = Ω∨, which results in

ωE = BT (ωD − ωB) . (A.6)
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Then, an expression can be found for ω̇E by taking the derivative of this equation

ω̇E = ḂT (ωD − ωB) + BT (ω̇D − ω̇B) ,

ω̇E =−BTωB × (ωD − ωB) + BT (ω̇D − ω̇B) ,

ω̇E =−BT [ωB × (ωD − ωB) + ω̇D − ω̇B] ,

Bω̇E =− ωB × (ωD − ωB) + ω̇D − ω̇B. (A.7)

This equation can be rewritten into

ω̇D = ω̇B + ωB × (ωD − ωB) + Bω̇E . (A.8)

Implementing the control law (A.2) gives

ω̇D = ω̇B + ωB × (ωD − ωB) + B
(
−KdωE −Kp(log(E))∨

)
, (A.9)

which, by substitution of (A.6), is equal to

ω̇D = ω̇B + ωB × (ωD − ωB)−BKdB
T (ωD − ωB)−BKpB

TB(log(E))∨. (A.10)

If the gains Kd and Kp are scalar, so Kd = kd and Kp = kp then

BKdB
T = kd, (A.11)

BKpB
T = kp, (A.12)

such that (A.10) equals

ω̇D = ω̇B + ωB × (ωD − ωB)− kd (ωD − ωB)− kpB(log(E))∨. (A.13)

This equation can be used as the cost function for the orientation task.
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Appendix B

Position Task Trajectory Control Points

Using the De Casteljau algorithm, polynomials are computed known as Bézier curves. The general
formulation of a Bézier curve on R3 of degree d, denoted by B(λ), is given by

B(λ) =

d∑
i=0

(
d
i

)
(1− λ)d−iλiCi+1, (B.1)

where

(
d
i

)
denotes the binomial coefficient, λ ∈ [0, 1] and Ci+1 ∈ R3 the control points. A polynomial

on the time interval t ∈ [t0, tf ] is found by choosing

λ =
t− t0
tf − t0

. (B.2)

As follows from (B.1), the Bézier polynomial with d = 4 is given by

B(λ) = (1− λ)4C1 + 4λ(1− λ)3C2 + 6λ2(1− λ)2C3 + 4λ3(1− λ)C4 + λ4C5. (B.3)

The first order derivative of this polynomial with respect to t writes

B′(λ) =
4(1− λ)3 (C2 − C1) + 12λ(1− λ)2 (C3 − C2) + 12λ2(1− λ) (C4 − C3) + 4λ3 (C5 − C4)

tf − t0
, (B.4)

and the second order derivative

B′′(λ) =
12(1− λ)2 (C3 − 2C2 + C1) + 24λ(1− λ) (C4 − 2C3 + C2) + 12λ2 (C5 − 2C4 + C3)

(tf − t0)2
. (B.5)

Using these definitions, the choices for control points Ci+1 can be derived, which result in a Bézier curve
that satisfies boundary conditions at t = t0 and t = tf , for which λ = 0 and λ = 1 hold respectively.
Such boundary conditions are given by

B(0) = p0, (B.6a)

B(1) = pf , (B.6b)

B′(0) = ṗ0, (B.6c)

B′(1) = ṗf , (B.6d)

B′′(1) = p̈f , (B.6e)
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for a trajectory with a boundary condition on the acceleration at t = tf . Evaluating (B.3) - (B.5) at
λ = 0 and λ = 1 results in

B(0) = C1, (B.7a)

B(1) = C5, (B.7b)

B′(0) =
4 (C2 − C1)

tf − t0
, (B.7c)

B′(1) =
4 (C5 − C4)

tf − t0
, (B.7d)

B′′(1) =
12 (C5 − 2C4 + C3)

(tf − t0)2
. (B.7e)

Combining (B.6) and (B.7) gives the choices for the control points

C1 = p0, (B.8a)

C2 = C1 +
1

4
ṗ0(τ − t0), (B.8b)

C3 =
1

12
(τ − t0)2p̈f − C5 + 2C4, (B.8c)

C4 = C5 −
1

4
ṗf (τ − t0), (B.8d)

C5 = pf . (B.8e)

By choosing the control points as (B.8), a polynomial is computed using the De Casteljau algorithm
that satisfies the conditions given by (B.6).
In case a trajectory has a boundary condition on the acceleration at t = t0, (B.6e) is replaced by

B′′(0) = p̈0. (B.9)

Evaluation of (B.5) at λ = 0 gives

B′′(0) =
12 (C3 − 2C2 + C1)

(tf − t0)2
, (B.10)

such that the third control point is given by

C3 =
1

12
(tf − t0)2p̈0 − C1 + 2C2. (B.11)
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Appendix C

Perturbed Initial Configurations

In order to achieve accurate tracking of the ante-impact reference task trajectories, the control gains
and weights for each task are tuned on the basis of simulations with perturbed initial configurations for
the dual arm manipulator. The joint positions for the unperturbed and perturbed initial configurations
of both KUKA arms are summarized in Tables C.1 and C.2.

Table C.1: Initial joint positions associated with the unperturbed and perturbed configurations for
KUKA 1.

No perturbation 1 2 3 4 5 6

Joint 0 6.68 20 15 10 3 -2 -7

Joint 1 -52.11 -65 -60 -55 -50 -45 -40

Joint 2 0.12 13 8 3 -3 -8 -13

Joint 3 -74.56 -88 -83 -78 -72 -67 -62

Joint 4 -0.11 -13 -8 -3 3 8 13

Joint 5 -53.36 -66 -61 -56 -50 -45 -40

Joint 6 36.57 50 45 40 33 28 23

Table C.2: Initial joint positions associated with the unperturbed and perturbed configurations for
KUKA 2.

No perturbation 1 2 3 4 5 6

Joint 0 -6.68 -20 -15 -10 -3 2 7

Joint 1 52.11 65 60 55 50 45 40

Joint 2 -0.12 -13 -8 -3 3 8 13

Joint 3 74.56 88 83 78 72 67 62

Joint 4 0.11 13 8 3 -3 -8 -13

Joint 5 53.36 66 61 56 50 45 40

Joint 6 -36.57 -50 -45 -40 -33 -28 -23
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Appendix D

Joint State Trajectory Tracking

Figure D.1 shows that the joints converge to the same joint state trajectory within the first second for
all considered initial configurations, as a result of the position, orientation, and direction task. In case
the direction task is not used, the joints do not converge to the same joint states as seen in Figure D.2.
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Figure D.1: Convergence of the joint positions of all 7 joints in KUKA 1 to a unique state trajectory
as a result of the position, orientation, and direction task.
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Figure D.2: The joint positions of the 7 joints in KUKA 1 do not all converge to a unique state trajectory
when only a position and orientation task are used.

93





 

January 15 2016  
 

Declaration concerning the TU/e Code of Scientific Conduct 
for the Master’s thesis 
 
I have read the TU/e Code of Scientific Conducti. 
 
I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific 
Conduct 
 
Date 
 
…………………………………………………..………….. 
 
Name 
 
…………………………………………………..………….. 
 
ID-number 
 
…………………………………………………..………….. 
 
Signature 
 
 
 
…………………………………………………..………….. 
 
 
 
 
 
 
 
Submit the signed declaration to the student administration of your department. 
 
 
 
 
 
 
 
 
 
 
i See: http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/  
The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also.  
More information about scientific integrity is published on the websites of TU/e and VSNU 

 
 
  


	Abstract
	Acknowledgements
	Nomenclature
	Introduction
	Impact aware robot manipulation
	Existing control approaches for impact aware robot manipulation
	Research goal
	Report outline

	Preliminaries
	Multibody dynamics notation
	Classical reference spreading tracking control
	Single robot task-based QP control
	Multirobot QP control
	Dynamical systems simulators
	Interpolation using the De Casteljau algorithm
	Summary

	Task-Based Reference Spreading for Impact Aware Manipulation
	Task-based reference spreading
	QP tasks for a dual arm dynamic box-lifting application
	Task trajectory generation
	Task-based reference spreading QP controller
	Summary

	Numerical Simulation Study
	Ante-impact reference task trajectories
	Determining impact dynamics
	Post-impact trajectory generation
	Summary

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Bibliography
	PD Control on SO(3)
	Position Task Trajectory Control Points
	Perturbed Initial Configurations
	Joint State Trajectory Tracking

