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Iterative Learning Control for Quadrotor Landing
Manoeuvres

B. Büthker, A.R.P. Andrien, D.J. Antunes
Eindhoven University of Technology

Department of Mechanical Engineering
Control Systems Technology Research Group

Eindhoven, Netherlands, May 24, 2019

Abstract—When a quadrotor is close to the ground, e.g.
during landing, a repeatable disturbance occurs. This so called
ground effect is induced by the downwash, created by the rotors,
that cannot move away freely. The aim of this thesis is to
reduce the position tracking error resulting from the repeatable
ground effect disturbances. We propose the use of a Norm-
Optimal Iterative Learning Control (NO-ILC) framework where
the feedforward signals coming from the NO-ILC controller
are added to the outer-loop of the quadrotor cascaded control
loop. The approach is based on a simplified linear model of
the quadrotor’s dynamic equations. The proposed framework is
verified by simulation and implemented on a quadrotor within
an experimental setup using an overhead motion-capture system.
We show that the NO-ILC controller improves tracking accuracy
each iteration and can compensate for the repeatable ground
effect.

Index Terms—Iterative Learning Control, Norm-Optimal ILC,
quadrotor control, ground effect, trajectory tracking

I. INTRODUCTION

In recent years unmanned aerial vehicles (UAVs), also
known as drones, have been receiving increasingly more atten-
tion. A specific configuration of UAVs are multi rotor vehicles
which can move in the three-dimensional space and have the
ability to precisely hover and vertically take-off and land.
In particular quadrotors, which are multirotor vehicles with
four rotors, have gained much interest from the commercial
market as well as for research purposes. For instance Intel
autonomously flew 2018 UAVs simultaneously as part of their
50th anniversary [1] and quadrotors are used as spraying
mechanisms for plant protection in agriculture [3].

Within the research area of quadrotors it is often the
goal to autonomously accomplish difficult tasks, for example
balancing an inverted pendulum while flying [4] or building
tensile structures with multiple UAVs [5]. In this paper we
focus on the task of landing a quadrotor with high speed and
accuracy. This is challenging mostly due to what is known as
the ground effect, which is caused by the so called downwash
close to the ground [6]. This downwash is created by the rotors
and is necessary during flight to stay airborne. However, when
the quadrotor is close to the ground the downwash is unable
to move away freely and creates significant disturbances [2],
which in general are difficult to model [7], [8] due to turbulent
airflows [3].

Motivated by the modelling difficulties, we propose the
use of a learning technique in order to autonomously land a

quadrotor and reduce the effect of downwash on the position
accuracy. In particular our work builds upon the standing
assumption that the landing procedure is a repeatable task and
the accompanying ground effect disturbance is also repeatable,
making iterative learning control (ILC) a suitable candidate. In
fact, ILC, as proposed in [9], is meant for systems that perform
repeatable tasks. The basic idea is to obtain a control signal
for the current cycle based on the error signal of the previous
cycle so that the output trajectory converges to the desired
reference trajectory [10]. This iterative process can improve
tracking accuracy at each cycle, learning the desired feed-
forward input signal for precise reference tracking and thereby
reducing the effect of disturbances that are similar in each
iteration. One advantage of ILC over standard feedforward and
feedback control techniques is the non-causality of the learning
algorithm. In other words, ILC can anticipate and respond
to repeated disturbances because the full time sequence of
the previous cycle is known and therefore the controller can
anticipate on a disturbance yet to come on the current cycle
[11]. The non-causal learning algorithm can be implemented
in practice due to the repeatability of each cycle.

In [11] different ILC design techniques are presented to-
gether with stability requirements to obtain convergence of the
tracking error to zero. Some of the well-know ILC techniques
are P-type ILC, inverse ILC and Norm-Optimal ILC (NO-ILC)
[12]. Different design trade-offs of NO-ILC are investigated
during simulation and verified with an experimental setup in
[13]. In [14] extended NO-ILC is used to compensate for trial-
invariant disturbances while avoiding the amplification of trial-
varying disturbances.

ILC has also been applied to improve the tracking perfor-
mance of UAVs. With the use of motion tracking systems ILC
has been successfully simulated and applied to quadrotors for
aggressive manoeuvres [15], periodic trajectories [16], [17]
as well as real-time trajectory generation [18]. The use of
ILC on a quadrotor in a 2D environment is computationally
feasible and results in eliminating repeatable disturbances but
has limitations with iteration varying systems [19].

In this paper, we use NO-ILC to compensate for the ground
effect during landing manoeuvres. The choice of the NO-ILC
technique is motivated by the fact that it provides an adequate
framework to penalize, in terms of a cost function, deviations
from the objectives for the quadrotor, i.e., to track a desired
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landing position reference. In particular, the design trade-offs
of this framework are discussed. While the model and control
of the quadrotor typically consist of two sub-problems, the
so-called inner and outer loop control problems, our approach
consists of only using ILC for the outer-loop control problem.
More specifically, the propellers of the quadrotor generate
torques and total thrust which are used to control the thrust
vector and its magnitude, respectively; controlling this thrust
vector is typically referred to as the inner loop control problem.
The thrust vector can be seen as a force, that compensates
gravity (and possibly other forces such as the drag force)
and controls the position of the quadrotor. This is called the
outer loop control problem. For agile quadrotors that have
a high ratio between available torque and inertias the time-
constants of the inner loop are considerably faster than those
of the outer loop. This motivates our approach to view the
outer loop as a simple linear model, a double integrator in the
three dimensional space given by Newton’s law, and therefore
suitable for ILC techniques for linear systems. We demonstrate
the usefulness of ILC for quadrotor manoeuvres, including
landing, both in terms of simulations and experiments using
an overhead motion-capture system. In fact, we show that ILC
can compensate for unmodeled dynamics and aerodynamic
effects both for far and close to ground manoeuvres. At last
we discuss further improvements of the ILC framework.

The remainder of this thesis is structured as follows. In Sec-
tion II the quadrotor model is introduced as well as the ground
effect. Furthermore, the cascaded control loop approach is
discussed and the problem tackled in the thesis is given.
In Section III ILC, lifted ILC, and NO-ILC are formulated
and different design parameters are presented. Thereafter, the
proposed framework is implemented in simulation in Section
IV and validated with experiments in Section V. Section VI
discusses the experimental results and finally conclusions are
drawn and recommendations are given in Section VII.

II. PROBLEM FORMULATION AND MOTIVATION

In this section, the problem we are interested in is stated by
defining the quadrotor model and introducing the repeatable
ground effect disturbances. Furthermore, the cascaded control
loop framework is described. This section also motivates
that ILC is an appropriate candidate to tackle the reference
tracking problem induced by the ground effect during landing
procedures.

A. Quadrotor Model

The dynamical model of a quadrotor is derived using the
Newton-Euler equations as in [20], [21], and [22]. Let {I}
denote the world fixed inertial frame which is assumed to
follow the north east down (NED) convention and let the body
fixed frame at the quadrotor’s center of mass be denoted by
{B} as shown schematically in Fig. 1. Let p ∈ R3 and v ∈ R3

represent the position and velocity, respectively, of the center
of mass of the quadrotor expressed in frame {I}. Furthermore,
vector e3 of frame {I} and b3 of frame {B} are both
aligned with the gravity vector when the quadrotor is hovering.

e2

e3

e1

b1

b3

fIg
fBg

p b2

T3 T4

T2T1

l

Fig. 1. Schematic representation of the quadrotor with the inertial reference
frame {I} in the north-east-down (NED) convention and body-fixed reference
frame {B}.

Moreover, the rotation matrix of the body-fixed frame {B}
w.r.t. the inertial frame {I} is denoted by R ∈ SO(3) where
SO(3) := {R ∈ R3×3|RTR = RRT = I, det(R) = 1} is the
special orthogonal group of order three.

We assume that there are three forces acting on the rigid
body of the quadrotor expressed in frame {I}, namely the
gravitational force ge3, with g denoting the gravitational
acceleration, the thrust force − T

mRe3, where m ∈ R denotes
the mass of the quadrotor and T ∈ R is the thrust generated
by all four rotors, and a velocity dependent drag force ffr(v)
that is quadratically related to the quadrotor velocity, e.g.
ffr(v) = −cDsgn(v)v2, with cD = diag{cD1 , cD2 , cD3} the
friction coefficient. The resulting quadrotor system dynamics
are given by:

ṗ = v (1a)

v̇ = ge3 −
T

m
Re3 + ffr(v) (1b)

Ṙ = RS(ω) (1c)
ω̇ = J−1(τ − S(ω)Jω) (1d)

with ω = [ω1 ω2 ω3]T ∈ R3 the angular velocity expressed in
the body fixed frame at the vehicle’s center of mass and S(ω)
a skew-symmetric matrix defined as:

S(ω) :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2)

Furthermore, J = diag{J1, J2, J3} is the body inertial matrix
and τ = [τ1 τ2 τ3]T are the torques about axis b1, b2, and b3,
respectively. The relation between the thrust of each propeller,
Ti, and the total thrust T and torque τ is given by:

T
τ1
τ2
τ3

 =


T1 + T2 + T3 + T4
l(T1 − T2 + T3 − T4)
l(−T1 − T2 + T3 + T4)
c(T1 − T2 − T3 + T4)

+


fg1
fg2
fg3
fg4

 (3)

where c is a drag constant, and fg is a disturbance induced
by the ground effect, which is discussed next. Note that we
assume the quadrotor is symmetric.
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Fig. 2. Cascaded control loop framework consisting of an outer-loop and an
inner-loop with control of the position and attitude, respectively.

B. Ground Effect Induced by Downwash

The ground effect of a quadrotor is a hard to model
phenomenon [2], [3] where the downwash created by the four
rotors of the vehicle cannot move away freely when close to
the ground. During landing procedures less thrust is needed
close to the ground to keep the same altitude because of a
pressure increase beneath the vehicle resulting from the ground
effect. This results into repeatable disturbances during landing
procedures. Moreover, the ground effect can be different per
rotor which can induce a change in attitude.

Suppose that each rotor is subject to a thrust disturbance
dge,i i.e., the actual thrust of rotor i is Ti = T̃i + dge,i where
T̃i is the thrust in the absence of ground effect. Inspecting (3)
we conclude that if the change in rotor thrust due to the ground
effect is similar for each rotor, dge,i ≈ dge for i = 1, 2, 3, 4,
the main noticeable difference should occur in the total thrust
T (which is changed by four times dge), whereas such a
disturbance is cancelled for the torques. This implies that for
vertical descend manoeuvres we expect tracking errors mostly
in the vertical direction if the thrust vector is approximately
aligned with the gravitational vector and for levelled ground
profiles, where by symmetry of the quadrotor we expect that
the disturbances applied to each propeller, dge,i, should be
similar. However, (3) also allows to conclude that, if this is
not the case, i.e., if the dge,i differ significantly due to a ground
surface which is not levelled or the quadrotor’s manoeuvre is
such that the thrust vector is not aligned with the gravitational
vector (e.g. oblique descent), then there will be a change in
attitude (see also [8]).

C. Cascaded Control Approach

The control of a quadrotor is often tackled by using a
cascaded control structure consisting of an outer-loop and an
inner-loop (Fig. 2). The outer-loop controls the quadrotor’s
position to track a position reference, r, whereas the inner-
loop controls the thrust and torque to track the acceleration
reference, aref , from the outer-loop and a yaw angle reference
ψ̄. The thrust and torque are the control inputs for the model.
Furthermore, we consider quadrotors with a high thrust to
inertia ratio and assume that a stabilizing inner-loop controller
with a sufficiently high bandwidth is used, so that we may
assume to be able to directly command the attitude of the
quadrotor. Moreover, we assume no drag is present. With these
assumptions the model in (1) can be rewritten into:

ṗ = v (4a)

v̇ =
F

m
+ fd (4b)

Double

integrator

Position

controller
−

+r e

Outer-loop Inner-loop

ILC

Memory

ujej−1; uj−1

Iteration domain

ILC

+

+

uilc

fd
+

ufb

y

Fig. 3. Cascaded control loop framework with ILC in the iteration domain.

where F is the summation of thrust and gravitational force
of (1b) and can be seen as an input signal, and fd is a term
that contains disturbances caused by any remaining inner-loop
dynamics as well as the ground effect.

D. Problem Statement

Since the downwash caused by the quadrotor is a hard to
model phenomenon, but repeatable disturbance we propose
an ILC based controller. This ILC controller aims to reduce
the repeatable disturbances induced by the ground effect and
results in a faster and autonomous landing procedure for the
quadrotor. The problem tackled in this paper can then be stated
as follows: Given a position reference for a landing manoeuvre
r(t), discretized at sampling period τ , i.e. {r(k) = r(kτ), k ∈
{0, 1, . . . }} and a control law with u(k) = ufb(k) + uilc(k),
where ufb(k) = µ(r(k), p(k), v(k)) is a linear feedback
control law and uilc(k) is a feedforward signal either to be
determined or adjusted, find uilc(k) based on previous error
variables r − p by means of an ILC framework.

III. ITERATIVE LEARNING CONTROL

In Section III-A we introduce an ILC framework and in
Section III-B we consider NO-ILC as a special case of ILC,
and in Section III-C we discuss different design trade-offs in
NO-ILC controller design.

The purpose of ILC is to reduce errors resulting from
repetitive disturbances by learning a feedforward signal. This
feedforward signal is learned by using non-causal methods in
the time domain. By adding a feedforward signal uilc into
the framework of Fig. 2, we obtain the representation as in
Fig. 3, where fd is a disturbance term as in (4b), y is the
position output p, and the inner-loop is considered as a double
integrator which is discussed next.

A. ILC Framework

1) Double Integrator Model: The model in (4) can be
written into a linear time invariant (LTI) state space model
as follows

ẋ(t) =

[
0 I
0 0

]
x(t) +

[
0
I

]
(u(t) + fd(t)) (5a)

y(t) =
[
I 0

]
x(t) (5b)

where x = [p, v]T is the state, u = F
m is the input, y is the

output, and t is the time. In order to use the standard ILC
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framework we discretize (5) and obtain a discrete-time, linear
time invariant system

x(k + 1) =

[
I τI
0 I

]
︸ ︷︷ ︸

A

x(k) +

[
τ2

2
τ

]
︸ ︷︷ ︸
B

(u(k) + fd(k)) (6a)

y(k) =
[
I 0

]︸ ︷︷ ︸
C

x(k) (6b)

with k ∈ {0, 1, . . . , N} the discrete time index and τ the
sample period. The disturbance signal fd(k) captures the
repetitive ground effects and possible disturbances resulting
from assuming the double integrator model. Furthermore, the
control input u(k) is given by:

u(k) = −Kx(k) + uilc(k) (7)

with a stabilizing position controller K which results in a
closed loop system given by:

x(k + 1) = Aclx(k) +B(uilc(k) + fd(k)) (8a)
y(k) = Cx(k) (8b)

with Acl = A − BK. In the next Section we introduce the
lifted system representation .

2) Lifted System Representation: To exploit the non-causal
advantages of the ILC framework the dynamics are translated
to the iteration domain, also known as the lifted system
representation [11]. First, the input-output solution of (8) is
given by

yj(k) = C(qI −Acl)−1B(uj(k) + fd(k)) + CAkclx(0)(9a)
= H(q)uj(k) +H(q)fd(k) + CAkclx(0) (9b)
= H(q)uj(k) + d(k) (9c)

with q the time-shift operator qx(k) ≡ x(k+1), j ∈ {1, 2, . . . }
the iteration index, initial condition x(0), and uj(k) the ILC
term. Note that the disturbance term d(k) in (9c) captures the
disturbances induced by the ground effect and disturbances
caused by inner-loop dynamics fd as well as the free response
of the system to initial condition x(0). Secondly we write (9)
in the iteration domain by
yj(1)
yj(2)

...
yj(N)


︸ ︷︷ ︸

yj

=


h1 0 · · · 0
h2 h1 · · · 0
...

...
. . .

...
hN hN−1 · · · h1


︸ ︷︷ ︸

H


uj(0)
uj(1)

...
uj(N − 1)


︸ ︷︷ ︸

uj

+


d(1)
d(2)

...
d(N)


︸ ︷︷ ︸

d

(10)
and 

ej(1)
ej(2)

...
ej(N)


︸ ︷︷ ︸

ej

=


r(1)
r(2)

...
r(N)


︸ ︷︷ ︸

r

−


yj(1)
yj(2)

...
yj(N)


︸ ︷︷ ︸

yj

(11)

where yj is the lifted output, H is the convolution matrix, uj
is the lifted input, r is the desired trajectory, and hk is the
impulse response of the system given by:

hk =

{
CAk−1cl B, k ≥ 1

0, k ≤ 0.
(12)

The lifted system transforms m-input, m-output two-
dimensional (time (k) and iteration (j)) into an Nm-input,
Nm-output, one-dimensional (iteration) system [12]. Note the
output shift in (10) to ignore the inherent delay of the plant.

The most general first-order iteration invariant ILC update
law in the iteration domain is

uj+1 = Luuj + Leej (13)

where Lu, Le ∈ RNm×Nm and u0 is arbitrary. In order to
obtain the closed-loop iteration domain dynamics we substitute
(11) into (13) to obtain

uj+1 = (Lu − LeH)uj + Lee0 (14)

with e0 = r− d. Therefore, (14) is a bounded input bounded
output system if and only if

|γi(Lu − LeH)| < 1 (15)

for i = 1, 2, . . . , N , where γi(·) is the ith eigenvalue of (·).
Furthermore, (13) is monotonic convergent if

‖(Lu − LeH)‖2 < 1 (16)

with ‖·‖ the Euclidean two-norm [12]. Moreover, if (15) holds
the asymptotic error, e∞ := lim

j→∞
ej , is given by

e∞ = e0 −Hu∞

=
(
I−H(I− Lu + LeH)−1Le

)
e0

(17)

where u∞ is obtained by setting uj+1 = uj and substituting
(17) into (10).

Although we do not explore this in the present thesis, it is
worthwhile mentioning that the update law of (13) can also
be written in time domain. For the sake of simplicity assume
that Lu = I and Le = diag{γ, . . . , γ}, γ ∈ Rr with Lu,Le

of appropriate dimensions. This choice for matrices results in
the P-type ILC update law in time domain [12] given by:

uj+1(k) = uj(k) + γej(k + 1). (18)

Although both the iteration domain update law of (13) and
time-domain update law of (18) are equivalent with this choice
of Lu and Le it depends on the practical implementation and
construction of Lu and Le which update law is more efficient.
The NO-ILC controller introduced next is implemented using
the iteration domain update law of (13).
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B. Norm-Optimal Iterative Learning Control

The NO-ILC algorithm is designed in the lifted system
representation of Section III-A to minimize a quadratic cost
[11],

J (j) = eT
j+1Qej+1 + uT

j+1Suj+1

+ (uj+1 − uj)
TR(uj+1 − uj) (19)

where {Q,S,R} are symmetric positive semi-definite real-
valued weighting matrices and Q and S are such that HTQH+
S is positive definite [12]. Here we focus on the special
case when {Q,S,R} ≡ {qI, sI, rI} with q, s, r real-valued
positive scalars. The goal is to compute arg minuj+1

J (uj+1)
by substituting ej+1 = ej − H(uj+1 − uj), differentiating
J (19) with respect to uj+1, and setting the result to zero
[23]. The resulting NO-ILC controller is given by the iteration
update law (13) and matrices

Lu = (HTQH + S + R)−1(HTQH + R) (20a)
Le = (HTQH + S + R)−1HTQ. (20b)

C. Design Trade-offs

From (16), we note that the ILC error convergence speed is
determined by η := ‖(Lu − LeH)‖2. For NO-ILC η can be
calculated by substituting (20) into (16) which results into:

η = ‖(HTQH + S + R)−1R‖2. (21)

From (21) we observe that the convergence speed of the NO-
ILC algorithm strongly depends on R where R = 0 results
in deadbeat control and with R → ∞ the convergence is
increasing slower since η → 1 By substituting (20) into (17)
we obtain the NO-ILC asymptotic error

e∞ =
(
I−H(HTQH + S)−1HTQ

)
e0. (22)

Thus, if H is non-singular, S = 0 leads to zero asymptotic
error, e∞ = 0. Note that R has no influence on the asymptotic
error and therefore the convergence speed is not a function of
the asymptotic error.

From (19) we can deduct that Q corresponds to the
weighting of the error. Uniform weighting is acquired when
Q = I. Moreover, a higher value S leads to improved
robustness w.r.t. model uncertainty but leads to a non-zero
asymptotic error as in (17). Furthermore, increasing R results
in decreasing asymptotic error fluctuations due to iteration-
varying disturbances.

IV. SIMULATIONS

A. Circular Trajectory

With the NO-ILC defined in Section III-B we implement
the algorithm of (13) and (20) in our cascaded control loop of
Fig. 2 which results in the framework of Fig. 3. Because the
NO-ILC algorithm operates in the iteration domain a memory
block is needed to buffer the error, e, values and unbuffer NO-
ILC input vector uj to output uilc. The system dynamics of
the Avular Curiosity quadrotor [24] are used as in (1) with
a drag force constant CDi = 0.3 for i = 1, 2, 3 and mass
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Fig. 4. Reference trajectory of the quadrotor in x-direction.
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Fig. 5. Quadrotor circular reference trajectory simulation in the x-direction
with 50 iterations. Different design parameter s.

m = 1.034 kg. Note that the NO-ILC algorithm is based
on the double integrator model as described in Section III
but in this simulation the full plant dynamics as presented in
(1) of the quadrotor are used. The inertia parameters of the
Curiosity quadrotor are taken because this quadrotor is used
during experiments in Section V. A PD-position controller is
used as well as an attitude and altitude controller as in [25].
Furthermore, an input disturbance on the x-axis, fd, is added
which consists of a repetitive disturbance of magnitude 3N
for 0.5s at t = 6.1s and a stochastic disturbance where each
entry is drawn from a uniform distribution with support in
the interval (−0.5, 0.5). The closed loop model of Fig. 3 is
discretized and sampled at 100Hz. The reference trajectory
of the quadrotor is a circle in the xy-plane with a constant
z-height of 2m. In Fig. 4 the reference in the x-direction is
shown and for visualisation purposes we now focus on this
direction. The quadrotor is simulated for 50 iterations with
s = [0 0.05 0.1] whereas q = 1 and r = 0.01 are kept equal.
Fig. 5 shows the RMS position error in the x-direction defined
as

RMS =

√√√√ 1

N

N−1∑
k=0

(x(k)ref − x(k))2 (23)

where x(k) is the position along the x-direction at discrete
time k and x(k)ref the reference along the x-direction. Note
that (23) holds for all three xyz-axes. Furthermore, we deduct
from Fig. 5 that for an increasing value of s the asymptotic
error increases, which is equivalent to (17) or (22). Moreover,
e∞ 6= 0 for s = 0 because of the iteration variant stochastic
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Fig. 6. Quadrotor circular reference trajectory simulation in the x-direction
with 50 iterations. Different design parameter r.
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Fig. 7. Quadrotor circular reference trajectory simulation in the x-direction
with seven iterations. ILC input with a periodic disturbance and stochastic
disturbance. q = 1, s = 0.001, and r = 0.01.

disturbance. Fig. 6 shows simulation results for r = [0 0.1 1]
with q = 1 and s = 0.01 where we observe that for an
increasing value of r the convergence speed, η, decreases
which is similar to the conclusion arrived at based on (21).
The non-causal behaviour of the NO-ILC algorithm is clearly
visible in Fig. 7 where the input, u, of the NO-ILC is
shown. Within simulation the NO-ILC algorithm significantly
decreases the RMS position error by anticipating on repeatable
disturbances.

B. Landing with Ground Effect

The rotors of a quadrotor are usually closer to the ground
than rotors of conventional helicopters, i.e. z > −0.5R with
R the rotor radius, and z the quadrotor height. Furthermore, it
has been claimed in the literature that quadrotors experience
a strong ground effect up to z = −5R [8]. With a radius
of R = 0.13m similar to that of the Curiosity quadrotor
simulations are conducted. Within the simulation an increasing
ground effect disturbance, fg = −10R − 2z, is applied for
z ∈ [−5R, 0] where white Gaussian noise is added to fg with
a signal to noise ratio of 20dB. A vertical trajectory is provided
to the quadrotor, i.e., a trajectory where x(t), y(t), are constant
for every t. Fig. 8 shows the z-position reference from −3m
until 0m, the z-position error, the z-velocity reference and the
ILC input for seven iterations. We observe that the NO-ILC
significantly decreases the error induced by the ground effect
simulation by almost a factor 100 as can be seen in Fig. 9.
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Fig. 8. Quadrotor landing reference trajectory simulation with seven iterations
including ground effect fg = −10R− 2z, z ∈ [−5R, 0]. A white Gaussian
Noise with a signal to noise ratio of 20 is added to the signal. NO-ILC
parameters: q = 1, s = 0.001, and r = 0.01.
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Fig. 9. Normalized RMS error of quadrotor landing reference trajectory
simulation with 25 iterations.

V. EXPERIMENTS

To validate our assumptions made in Section II-C, and
simulations with ground effect in the previous Section IV-B,
experiments with the Avular Curiosity [24] quadrotor were
conducted. In this section we describe the experimental setup
and highlight four experiments:

• Horizontal trajectory, one axis (Section V-B)
• Vertical trajectory, one axis (Section V-C1)
• Vertical trajectory, two axes (Section V-C2)
• Vertical trajectory, constant height (Section V-C3)
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Fig. 10. Avular Curiosity quadrotor including shroud, 12 Optitrack markers,
and a 2.4 GHz dongle.
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Fig. 11. High-level stateflow representation of the quadrotor with three
inputs; the manual controller switch C ∈ {−1, 0, 1}, the boolean value
trajectory, and the boolean value bounds.

A. Experimental Setup

The experiments are conducted at the Robotics Soccer Field
at the TU/e with the use of the Optitrack Motion Capture
System [26]. The system consists of eight Flex 13 cameras and
two Opti-hubs to connect the cameras to a computer. Motive
software on the computer gives position and attitude of a rigid
body created with individual markers. When properly marked
the Optitrack systems gives milimeter position precision and
degree attitude precision via quaternions on 120Hz. In Fig.
10 the Avular Curiosity quadrotor [24] is shown with 12
markers attached to its shroud. The 2.4 Ghz dongle connects
the Raspberry Pi on the quadrotor with the network on which
the Motive computer is streaming data. A full schematic rep-
resentation, software architecture, and more information about
the Optitrack Motion Capture System is given in Appendix A.

To conduct the experiments a stateflow diagram, as shown
in Fig. 11, is created to make sure that the initial conditions
on each iteration are within certain conditions. The stateflow
consists of four states (altitude hold, position hold, waiting,
and trajectory) and three inputs (the manual controller switch
C ∈ {−1, 0, 1}, the boolean value trajectory, and the
boolean value bounds). After the take-off procedure the

TABLE I
FEEDBACK CONTROLLER GAINS

x y z

P 0.25 0.3 3
I - - -1
D 0.18 0.18 -4

quadrotor is in altitude hold where a constant altitude is
maintained. In position hold the position of the quadrotor
is fixed in xyz space. Furthermore, when the quadrotor is
switched to waiting state from position hold an initial xyz
position (p0) is defined from the current position. Thereafter,
the quadrotor waits until predefined conditions on position,
translation velocity, and attitude are met:

|p0 − p| < 0.1 m, (24a)
|v| < 0.1 m/s, (24b)

|φ|, |θ|, |ψ| < 0.0873 rad (5 deg), (24c)

where φ, θ, ψ are the roll, pitch, and yaw angles that define the
quadrotors attitude representation in xyz Euler notation. Note
that the quadrotor’s translation velocity is an estimated value
from a Kalmann filter based on Optitrack position and acceler-
ation data from the IMU on the quadrotor. These conditions are
introduced to ensure that at each iteration the initial conditions
are almost identical. When the conditions of (24) are met,
the two boolean values bounds and trajectory are set
to true and the quadrotors starts his trajectory. At the final
reference point of the trajectory the value of trajectory is
set to false, the feedforward values for the next iteration are
calculated, and the quadrotor flies back to his waiting position
to potentially start another iteration.

In all experiments the yaw reference heading is set to zero
and the inner-loop attitude control is done with PID feedback
controllers from the Avular flightstack running on the low-
level with a sample frequency of 500Hz. The outer-loop (xyz-
direction) control is done with PD feedback controllers in the
xy-direction, and PID feedback control in the z-direction and
feedforward based on NO-ILC on which the experiments are
emphasized. The P(I)D controller gains are shown in Table
I. Note that the PD feedback controllers fit the model of the
controller considered in Section III, but the PID controller does
not, if the integral action is non-zero. This will be discussed
further in Section VI.

B. Horizontal Line Trajectory

In this experiment the effectiveness of the NO-ILC con-
troller is shown. The goal is to track a position reference in
the x-direction whereas references along y-, and z-direction
remain constant. The x-reference the quadrotor has to track is
as follows: 2.5m in the positive x-direction and back 2.5m in
the negative x-direction in 7s. The initial, halfway, and end
velocities are zero and a maximum of 1 m/s is taken. The
position and velocity reference is shown in Fig. 12 (dotted
red). This experiment is conducted for 15 iterations without
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(a) Feedback PD-controller.
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(b) Feedback PD-controller and NO-ILC controller with param-
eters: q = 0.05, s = 2, and r = 1. NO-ILC feedforward values
are shown in Appendix C, Fig. 23.

Fig. 12. Experimental results of Section V-B on a back and forth reference in the x-direction with 2.5m in the positive x-direction and back 2.5m in the
negative x-direction in 7s. The initial, halfway, and end velocities are zero and a maximum of 1 m/s is taken. From top to bottom: x-position reference and
x-position, x-velocity, and x-position error. Iterations are shown from light grey to black for a total of 15 iterations in Fig. 12a and a total of 23 iterations
in Fig. 12b.

NO-ILC and only feedback controllers as is shown in Fig.
12a. Hereafter, the experiment is repeated for 23 iterations
with a NO-ILC controller added. The parameters of the NO-
ILC controller are as follows: q = 0.05, s = 2, and r = 1.
Results from the experiment are shown in Fig. 12b where it is
clearly visible that the position error decreases after a number
of iterations. Furthermore, in comparison with the experiment
without the NO-ILC controller, we observe the effectiveness
of the non-causality of the NO-ILC because the overshoot
and delay decrease significantly. In Fig. 13 the RMS position
error, as defined in (23), is shown for the experiment with,
and without NO-ILC controller. We can deduct from Fig. 13
that the quadrotor’s position error is decreasing over iterations
with NO-ILC whereas with only feedback controllers the
asymptotic position error stays around 0.3m. In fact, the
position RMS error including NO-ILC reduces by about a
factor of 3 illustrating the effectiveness of the proposed ILC
strategy for this manoeuvre.

C. Vertical Trajectories

The remaining three experiments are conducted to validate
the effectiveness of the proposed NO-ILC algorithm to com-
pensate for the induced ground effect disturbance.

1) One Axis: Within this experiment the x-, and y-position
reference are taken to be constant and only the z-position
reference is changed. The z-reference consists of a cosine

5 10 15 20

Iteration [-]

0.1

0.2

0.3

R
M

S
 e

rr
o
r 

[m
]

PD controller

PD controller + NO-ILC

Fig. 13. RMS position error of reference in the x-direction as shown in Fig.
12a and Fig. 12b.

starting at z = −1.75m with an amplitude of 0.5m and a
period of 8s as can be seen in Fig. 14. At t = 4s the position
reference of the quadrotor is at z = −0.25m. Note that, due
to the definition in the Optitrack system of the geometry of
quadrotor, z = −0.15m when standing on the ground. In Fig.
14 the experimental results are shown for eight iterations with
NO-ILC controller parameters: q = 1, s = 0.1, and r = 0.05.
Furthermore, the z-position and NO-ILC feedforward values
of the total experiment are shown in Appendix C, Fig. 24 and
the RMS position error is depicted in Fig. 15. As highlighted
in Section IV-B [8], a strong ground effect should take place
at z = −5R. With a radius of R = 0.13m of the Curiosity
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Fig. 14. Experimental results of Section V-C1. Shown are the z-position
reference, z-position, and z-position error. Iterations are shown from light
grey to black for a total of 8 iterations. Feedback PD-controller and NO-ILC
controller with parameters: q = 1, s = 0.1, and r = 0.05. RMS error plot
is shown in Fig. 15 and NO-ILC feedforward values are shown in Appendix
C, Fig. 24.
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Fig. 15. RMS z-position error of experiment shown in Fig. 14.

quadrotor this indicates that disturbances induced from the
ground effect should occur from z = −0.65m. However, from
the tracking errors plots it is not possible to disclose any
consequences of the ground effect in −0.65 < z < −0.15
yet, and the reason for this will be discussed in the next
subsections. Moreover, we remark that the convergence speed
in the RMS position error is lower, as well as the asymptotic
RMS position error is higher, than the horizontal experiment
in Section V-B, Fig. 13.

2) Two Axes: 1 Because there was no observable ground
effect disturbance visible in the previous experiment we now
conduct the experiment of Section V-C1 once again but with
a reference that spans two axes. In other words, the x-position
reference is the same as the z-position reference and the
y-position reference is constant. Furthermore, the NO-ILC
controller parameters are changed to q = 2, s = 0.05, and

1A video of the experiment can be found at: http://tiny.cc/Quad-ILC or
https://youtu.be/CEiIBUeQkiw.

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

P
o

si
ti

o
n

 z
 [

m
]

Reference

0 1 2 3 4 5 6 7 8

Time [s]

-0.4

-0.2

0

0.2

E
rr

o
r 

z
 [

m
]

Fig. 16. Experimental results of Section V-C2. Shown are the z-position
reference, z-position, and z-position error. Iterations are shown from light
grey to black for a total of 31 iterations. Feedback PD-controller and NO-ILC
controller in z-direction with parameters: q = 2, s = 0.05, and r = 0.01.
RMS error plot is shown in Fig. 17 and NO-ILC feedforward values are shown
in Appendix C, Fig. 25.
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Fig. 17. RMS z-position error of experiment shown in Fig. 16.

r = 0.01 to increase the position error convergence speed
and decrease the asymptotic position error. Fig. 16 shows the
z-position reference, z-position, and z-position error for 32
iterations. Moreover, the z-position and NO-ILC feedforward
values of the total experiment are shown in Appendix C, Fig.
25 and the RMS position error is depicted in Fig. 17. Once
again there is no external ground effect visible in Fig. 16 in the
region −0.65m < z−0.15m. However, in Fig. 17 we observe
that the asymptotic position error is decreased and the position
error convergence is decreasing faster in comparison to Fig.
15 due to the decreased s and r, respectively.

3) Decreasing Constant Height: The previous two experi-
ments do not allow to disclose ground effect disturbance that
can be compensated with ILC. Therefore, the next experiment
is conducted where the quadrotor hovers at a constant height.
By hovering (v̇ = 0, v = 0) the force F in (4b) should be
equal to zero if there is no additional fd term which includes
the ground effect. Furthermore, if fd = 0, then T = mg,
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Fig. 18. From top to bottom: z-position reference and z-position, thrust
command, and integrator action of the PID position controller in the z-
direction.

i.e. if there is no ground effect the thrust signal T should be
equal at all heights while hovering. However, if there is ground
effect the thrust force T should be less when the quadrotor is
hovering close to the ground, as explained in Section II-B.

Within the experiment we start at a constant height of
z = −1.3m and descend ≈ 0.1m every ≈ 5s. After reaching
z = −0.2m we ascend again to z = −1.3m. In Fig. 18 the
z-position reference and z-position are shown as well as the
thrust command, and integrator action of the PID controller
in the z-direction. Between 200s < t < 235s a decrease
in thrust signal is shown which indicates the ground effect.
The thrust decrease validates our hypotheses of a lesser thrust
signal while the quadrotor is hovering close to the ground.
This drop in thrust signal mainly originates from the integral
action of the PID position controller. Furthermore, in Fig. 19
the thrust command and integrator action are shown vs. the
z-position of the quadrotor where it is clearly visible that
between −0.5m < z < 0m the thrust command, and the
integrator action decrease while descending and increase while
ascending.

VI. DISCUSSION OF THE EXPERIMENTAL RESULTS

The results of Section V-C1 and V-C2 do not highlight the
ground effect, which is clearly present as highlighted in the
results of Section V-C3. The key to understand this is the
integral action: the integral term, which was not modelled in
Section III is already a learning mechanism, which adjusts the
control input to compensate for the ground effect. Due to time
constraints, it was not possible to tune the parameters of the
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Fig. 19. Top: thrust command. Below: integrator action of the PID position
controller in the z-direction. Both vs. the z-position of the quadrotor.

feedback controllers to set this integral action to zero. In fact
the integral action plays a crucial role for stabilisation since
some parameters such as the motor PWM values that should
be given to the quadrotor to compensate for the gravitational
force are unknown and are not given by the low level controller
used.

The fact that in the z-axis the unmodelled integral action
is present, makes it difficult to conclude the effectiveness of
ILC for landing manoeuvres from the experimental results. In
fact two learning mechanisms are tangled and from Fig. 18 we
deduct that the integral action mechanism is actually crucial
to compensate for the ground effect. This leads to the fact that
the ILC mechanism is unnecessary and only plays a small role.
We hypothesise that if either the integral action is not present
or for aggressive manoeuvres the ILC algorithm would play
an important role.

In turn for the trajectory about the x-axis, where there is no
integral action present and the ILC framework in Section III
is representative of the dynamics and controller of the system,
we do see a factor three improvement in the RMS position
error, which we believe is an indication that ILC can be an
important tool to compensate for unmodelled dynamics and
repeatable disturbances in the context of quadrotors.

As a final note, we mention that to properly take into ac-
count the integral action one additional state can be considered
in the closed loop equations. In fact, if we write the PID
controller as

u(k) = −Kx(k) + uilc(k) + xI(k) (25a)
xI(k) = xI(k − 1) + α(Cx(k)− r(k) (25b)

instead of (6), we can still write the closed loop system as (8)
by defining a state

x̄ =

[
x
xi

]
(26)
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which results into:

x̄(k + 1) = Aclx̄(k) +Bcl(uilc(k) + fd(k)) (27a)
+Fclr(k) (27b)

y(k) = Cclx̄(k) (27c)

with

Acl=

[
A−BK B
αC I

]
, Bcl =

[
B
0

]
,

Ccl=
[
C 0

]
, Fcl =

[
0
α

]
. (28)

This could be an approach to take into account the integral
action in the ILC computation. However, we suspect that this
would not change the conclusions, since the integral action
would still be active and even with different matrices, the ILC
method would have small influence.

VII. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

In this thesis we propose to use NO-ILC to compensate
for repeatable disturbances induced by the ground effect. This
NO-ILC controller is based on a double integrator model and
adds the ‘learned’ feedforward signals to the outer-loop (Fig.
3) of the quadrotor cascaded control loop. The effectiveness of
the proposed framework where the tunable NO-ILC reduces
the ground effect disturbances significantly is verified by sim-
ulation. Moreover, an extensive experimental setup is created
with an overhead motion-capture system where we apply the
proposed NO-ILC framework on a quadrotor. We successfully
show that NO-ILC indeed improves tracking accuracy each
iteration but is unnecessary to compensate for the observed
ground effect disturbances due to a sufficiently fast integral
action in the PID feedback z-position controller. However,
even without extensive tuning of the NO-ILC parameters a
position error reduction of at least a factor two in the z-
direction and a factor three in the x-direction is obtained.

B. Recommendations

In future research several improvements can be made to
track larger trajectories and reduce the computational load
of the ILC algorithm, e.g. as in [27], ( [28] Chapter 10).
Furthermore, the trajectory reference and offline calculated
NO-ILC parameters are now flashed onto the high-level cortex
on the quadrotor which are relatively large in terms of memory.
To solve this problem one could use the RPi as data storage
and send the signals via serial communication. However,
timing issues could arise from this implementation. Moreover
one could further adapt the NO-ILC parameters (q, r, s) to
improve asymptotic error and/or the rate of position error
convergence. Moreover, the proposed closed loop model of
(27) including I action could be implemented and compared
to the current PD based framework.

Finally, the proposed NO-ILC framework requires full state
information, most importantly the absolute quadrotor position
in space. This absolute position is now given by an overhead

motion-capture system. If there is no such system the absolute
position depends on the accuracy of the state estimation
from the on-board sensors. To implement NO-ILC in an
experimental setup without an external motion-capture system
the state estimation accuracy needs to be approved.
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APPENDIX A
OPTITRACK MOTION CAPTURE SYSTEM

As mentioned in Section V-A the Optitrack Motion Capture
Systems [26] consists of eight Flex 13 cameras (Fig. 21: A).
These cameras are connected with USB cables to two Opti-
hubs (Fig. 21: B). These hubs are connected together with a

Curiosity quadcopter

RPi Compute module 3ST Cortex-M4: low-level ST Cortex-M4: high-level

Python NatNetClient
Position and attitude

control

Remote controller

2.4GHz RC

Avular flightstack

XBee

Visualization

UART

UART

Optitrack cameras
USBUSB

ILC

Trajectory

Opti hub

WiFi

2.4 GHz dongle

Motive computer

Router

Ethernet cable

Logging

UART

Fig. 20. Schematic representation of the experimental setup with the Optitrack
system and the Curiosity quadrotor

synchronization cable and are both individual connected to the
computer running Motive software. A schematic representation
of the setup is shown in Fig. 20. When the cameras and
hubs are connected one can start with the calibration of the
system. This calibration is done with the calibration wand
including three Optitrack markers on a predefined position
(Fig. 21: C). By moving the wand trough the capture vol-
ume inside the camera range, Motive software will collect
samples per camera. When enough samples are collected the
software will triangulate the date and calibrate the system.
After the calibration one needs to define the initial location
and orientation of the xyz-origin. This is done by setting
the ground plane (Fig. 21: D) on the ground and in the
center of the capture volume. Motive software will define
the x-axis on the short side, the z-axis on the long side,
and the y-axis up by definition of the right-handed frame,
respectively. The setup is now completed and one can define
a rigid body by selecting individual Optitrack markers. The
Curiosity quadrotor is defined by twelve markers (Fig. 10).
After the rigid body definition Motive software streams xyz
position and quaternion attitude on a maximum of 120Hz to
the local host or a specific IP-adress. To use the position
and attitude data obtained from the Optitrack system on the
quadrotor a WiFi network is created with a router. The router
is connected to the computer running motive with an Ethernet
cable. A Raspberry Pi Compute module 3 (RPi) within the
quadrotor is connected with the WiFi network via a 2.4 GHz
WiFi dongle (see Fig. 10 and Fig. 20). On the RPi a Python
script (NatNetClient) is ran which creates a socket to read the
data stream from Motive and unpacks rigid body data packets.
When rigid body data is obtained it is sent to the high-level
M4 Cortex via serial (UART) communication with the use of
custom defined MAVlink messages. See the work of [21] for
more information. The high-level (together with the low-level)
does the position and attitude control and sends commands to
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Fig. 21. A: Flex 13 Camera. B: Opti-Hub. C: Calibration Wand on small
space setting (= 250 mm). D: Ground Plane including axes definition.

Fig. 22. PhaseSpace hardware. From left to right: three RF transceivers (LED
controllers), three active LEDs, 12 Megapixel camera, and server computer.

the four individual motors on the quadrotor.

APPENDIX B
PHASESPACE MOTION CAPTURE SYSTEM

The PhaseSpace Impulse X2 Motion Capture System [29]
on the Eindhoven University of Technology is situated in
the IPO building in the Virtu/e Lab and consists of eight
cameras attached to the wall, two LED controllers, multiple
active LEDs and one server computer as shown in Fig. 22.
The PhaseSpace cameras record at 960Hz with sub-millimeter
precision and are daisy chained with ethernet cables to the
server computer. These cameras detect the LED positions and
sends them to the server computer that processes the data
and calculates actual position and pose. There are API/SDKs
available in Python and C++ to process the data on your
own client system. The LEDs are connected to the battery
powered LED controller/driver unit with strings. Each LED
controller supports six strings with a total of 72 LEDs. The
LED controller receives 2.4GHz RF timing signals from the
server computer and uses this signal to create a modulated
pattern of pulses for each active LED marker, which is
used to uniquely identify each LED by the cameras. To use
the PhaseSpace system with the Avular Curiosity quadrotor
[24] a S-Function in MATLAB is written. With this MEX
file and the corresponding library file a MATLAB Simulink
block is created which outputs position and pose of a rigid
body on a specific sample time. The system is tested on a
sample frequency of 200Hz and acquires millimeter precision.
However, due to the faculty move of the Human Technology
Interaction group to a new building and the acquiring of the

Optitrack System (see Appendix A) it was decided to terminate
the usage of the PhasesSpace system.

APPENDIX C
EXPERIMENTAL RESULTS: FIGURES

Fig. 23, Fig. 24, and Fig. 25 are shown on the next page(s).
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Fig. 23. Experimental results of Section V-B. The x-position and x NO-ILC feedforward values of the first seven iterations from Fig. 12b are shown. The
grey lines represent the position and ILC values during the waiting state.
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Fig. 24. Experimental results of Section V-C1. The z-position and z NO-ILC feedforward values of the first seven iterations from Fig. 14 are shown. The
grey lines represent the position and ILC values during the waiting state.
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Fig. 25. Experimental results of Section V-C2. The z-position and z NO-ILC feedforward values of the first seven iterations from Fig. 16 are shown. The
grey lines represent the position and ILC values during the waiting state.
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