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Abstract

Raw material to end product allocation can lead to big processing improvements when

executed optimally. In this paper a case study is presented within potato product man-

ufacturing to find optimal allocation of potatoes, end products and manufacturing lines.

The allocation problem is formulated as a linear program which aims to minimize raw

material input. This program requires as input the factory recovery of every combination

of material, product and manufacturing line. Hence, to solve this program, predictions

on factory recovery need to be made. For this purpose a nearest neighbour interpolation

based algorithm and a random forest based algorithm are developed. Those techniques

are applied to a data set of historical production orders. The proposed approach of linear

programming and recovery prediction indicates potential savings in raw material use and

purchasing costs. The approach is generally applicable and could lead to possible savings

in similar types of processing industries as well.

Keywords: raw material allocation, linear programming, data mining, factory recovery,

crop processing

1. Introduction

Although nowadays farmers’ working methods and prediction tools are better de-

veloped than before, uncertainty in harvest during the year will always be there. This
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expresses itself in 1) differences in characteristics and quality of the harvested material

and 2) differences in the size of the harvest. In industry, variability in raw material char-

acteristics must be taken care of to generate the needed amount of end products one way

or another. Differences in characteristics lead to the fact that some material is better

suited for a particular end product than other materials. These differences make alloca-

tion from crops and fruits to product a difficult process, since wrong allocation leads to a

lot of processing losses. Obviously this should be prevented for environmental, financial

and social reasons. According to the FAO, the Food and Agriculture Organization of the

United Nations, approximately 800 million tonnes of root and tubers crops are initially

produced each year [1]. Ten percent of the initial production of root and tuber crops

got wasted during processing. For companies which produce products out of agricultural

raw material the processing steps are schematically displayed in Figure 1. The general

idea is that even when the process is considered as a “black box”, relations between

raw material, product and processing efficiency exist. It is necessary to find out which

characteristics of these three factors lead to particular waste amounts. Variety in raw

material properties is often reflected by differences in sizes and weights and variety of the

material. The manufacturing process can often be performed on multiple manufacturing

lines, making allocation even more complicated. Also the product may be divided into

homogeneous groups of end product based on specific characteristics.

Incoming raw
material:
- Characteristic 1
- Characteristic 2
- ...

Manufacturing process

Waste

End products:
- Product 1
- Product 2
- ...

Figure 1: Simplified visualisation of the manufacturing process for food processing companies.

According to Henningsson et al. [2], for the food and drink industry, waste mini-

mization savings in raw materials by either changes in technology or procedures carry

the greatest potential for financial savings. In particular, the savings achieved through

low-cost procedural changes are remarkable.
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Also from more recent work it appears that there is a call for food waste prevention

initiatives. Papargyropoulou et al. [3] state that prevention, through minimization of

food surplus and avoidable food waste, is the most attractive option as a first step towards

a more sustainable resolution.

In Zhong et al. [4] data-driven intelligent manufacturing models are opted to improve

manufacturing efficiency, but also as a driver of greater agility and deeper integration with

other parties such as logistics and supply-chain management entities. Data-driven models

are able to make full use of historic or real-time data for system diagnosis or prognosis,

based on information or knowledge integration, data mining and data analysis.

In this paper optimal allocation of raw material is opted to improve yield. A case

study at a potato product manufacturer is performed to reallocate their raw material.

The allocation of raw material is based on Factory Recovery. Factory recovery is one

of the variables captured to address losses during the manufacturing process. It is the

percentage that indicates how much of the raw material fed into the manufacturing line

is turned into useful product in terms of weight. When the factory recovery is high, the

amount of losses during the process is low. To illustrate, if 1,000 tonnes of raw material

is used to generate 600 tonnes of product, the factory recovery is 60%. To reallocate

resources and prevent losses, the factory recoveries of every possible combination of

potatoes, products and manufacturing lines needs to be predicted with high accuracy.

For this prediction two data-driven techniques are elaborated, to wit, nearest neighbour

interpolation and random forests for regression.

2. Problem Description

In general, companies generate multiple stock keeping units (SKUs) from varying raw

material (types) on one or multiple manufacturing lines. At the company considered for

this research, raw material consists of potatoes, which distinguish themselves based on

variety, length and underwater weight. These potatoes are processed to end products,

mainly different types of french fries, by executing a production order on one of the nine

available manufacturing lines of this manufacturer. The end products distinguish them-

selves based on cutting style, grading level (e.g. regular, premium) and skin presence.

For the purpose of production an annual recurring process is performed which is based
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on the sales forecast. This process is visualized in Figure 2.

1

2

34

5

Figure 2: The major steps in the annual recurring process cycle of the potato product manufacturer
with 1) contracting, 2) planting, 3) harvesting, 4) allocation and 5) scheduling.

The process starts by contracting suppliers for the new harvest year by means of the

sales forecast combined with suppliers’ historical performance. The contracting phase

takes place in January and February. After that, in March, the planting of the tubers is

executed by the farmers and then the potatoes are harvested in the period from July to

October. From this moment the allocation process starts, since the availability of raw

material and the sales forecasts are known. Scheduling the execution of the allocated

production orders is the final step. The focus of this paper is on the allocation process

of the potato product manufacturer; this process is schematically displayed in Figure 3.

Bintje

Challenger

Innovator

Markies

9x9mm RFA Skin-Off Fries

11x11 mm RLF Skin-Off Fries

6x6mm SPX Skin-On Fries

Potatoes Manufacturing Lines End Products

Figure 3: Allocation process for the potato product manufacturer.
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Allocation is considered to be a wasteful process when it is executed non optimally.

To test this assumption and to come up with a way to prevent these losses as much

as possible, a case study is conducted. The goal is to find out whether the production

orders of the potato product manufacturer could have been made from the same stock

using less potatoes. From July 2016 to July 2018 a set of 3,006 executed production

orders is constructed from which it is known how many potatoes were used to produce

a certain amount of product. It will be investigated whether it is possible to rearrange

the resources to obtain the same amount of product with lower potato input. Since 50

potato varieties (N = 50), 183 product types (M = 183) and 9 manufacturing lines

(L = 9) occur in these orders, the factory recovery of 82,350 combinations needs to

be determined. It is necessary to find out which data and techniques are available for

accurate prediction of recovery.

3. Data Preparation

Zhong et al. [4] proposed to use data-driven models to improve manufacturing effi-

ciency. A data-driven approach has also been chosen here. The entire process of data

preparation, data analysis and model creation for this case study is performed follow-

ing the cross-industry standard process for data mining (CRISP-DM). The CRISP-DM

methodology provides a structured approach to planning and executing a data mining

project [5]. The life cycle of a data mining project can be divided into six major phases,

displayed in Figure 4.
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Figure 4: Phases of the CRISP-DM reference model [5].

The initial phase, business understanding, focuses on understanding the project objec-

tives and requirements from a business perspective. As elaborated, the project objective

is to minimize losses during the manufacturing process by means of better raw material

allocation. To do so, it is necessary to be able to predict every combination of potatoes,

products and manufacturing lines and thus make prediction possible. The second phase

is data understanding, which starts with initial data collection. Data preparation con-

sists of constructing the final data set, in other words the data set that will be fed into

the modelling tools. In the modelling phase, various modelling techniques are selected

and applied, and their parameters are calibrated to optimal values. During the evalu-

ation phase it is evaluated whether the model created properly achieves the objective;

is it able to predict every combination with high accuracy? Finally, the results of the

generated model needs to be made practicable during the deployment phase. The knowl-

edge obtained, in this case the factory recoveries, should become accessible and should

be processed for further use, to wit, for reallocation of the potatoes. The data analysis

and data preparation steps are elaborated in the remainder of this section. Modelling
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and evaluation are described in the coming section. Thereafter, the deployment phase is

covered which describes the use of the recoveries for reallocation of the potatoes.

Data mining techniques, applied during the modelling phase, are usually executed

using a set of data typically looking as shown in Table 1. Also for regression, one of the

common tasks within data mining, a set like this is favourable.

Table 1: Typical data set for creation of data mining models.

Case Feature 1 Feature 2 ... Feature n Target value

1 xxx x xx y
2 xxx x xx y
3 xxx x xx y
...

However, in our case the data needs a lot of preprocessing before it looks like the data

set in Table 1. The set, with factory recovery as target value, needs to be constructed

from separated files. Those files and the links between them are displayed in a Data

Structure Diagram in Figure 5. As stated before, this data contains production orders

executed from July 2016 till July 2018 which concerned fries and specialities, excluding

potato wedge products. It contains a lot of parameters, but it may be possible that

not all parameters displayed are necessary for an accurate prediction. Therefore, first

analysis is conducted to identify data quality problems and to discover first insights into

the data.
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Figure 5: Data structure diagram of the available data sheets with possible predictor values.

This analysis led to the insight that a lot of numerical data about potato character-

istics was missing. Besides that, the quality of the numerical data that was available

was questionable due to the batch sampling process. The recording of the length and

underwater weight of incoming potato batches is a rather deficient process and traceabil-

ity is limited. For this reason it was decided to exclude the numerical data from potato

characteristics in this research. Thereafter, outliers have been removed if they differed

more than 1.5 times the standard deviation of the average of the group they were in. A

group consists of orders which have equal categorical values for all parameters. What

remained was a single data set with the characteristics displayed in Table 2. A sample

of this set is displayed in Table 9 in Appendix A.

Table 2: Characteristics of the final data set.

Number of
records

Number of
groups

Average
Factory Recovery

Std. Dev.
Factory Recovery

3006 514 61.4% 7.8%
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In this set 514 unique groups are found, which means that 514 unique combinations

of categorical variables are found. The categorical predictors that are used in this paper

are 1) potato variety, 2) cutting style of the product, 3) skin presence, 4) grade level of

the product and 5) manufacturing line to produce on. Examples of values that these

variables can adopt are displayed in Table 3.

Table 3: Categorical predictors with example values they can adopt.

Predictor variable Classes Example of class values

Potato variety 50 Bintje, Innovator, Markies, Fontane
Cutting style 39 6x6mm, 9x9mm, Twister Fries, 9x18mm
Skin presence 2 Yes, No
Grade level 11 RFA, RFW, SFW, SFY, SPX, SXL
Manufacturing Line 9 0020-1, 0020-2, 0030-1, 0040-1, 0050-1

4. Model

The process of allocation of agricultural raw material to end products to be generated

can be written as a Linear Program (LP). The objective of this LP is minimizing potato

input, while still being able to generate the desired end product amounts. Constraints

should be imposed to make the LP realistic and complete for the described scenario.

The first of these constraints follows from the fact that it is not possible to feed more

potatoes of a specific type into one of the manufacturing lines than there are potatoes of

that type available. Thus, the total fraction of a material type fed into the lines should

be equal to or smaller than one.

The second constraint arises from the fact that certain product amounts should be

generated. The amounts correspond to either expected sales, ordered sales or historical

sales. In this study the demand is based on historical generated product amounts. The

product that will be generated is equal to the amount of potatoes of a type fed into the

manufacturing lines times the recovery of that combination.

In the third place, a constraint with respect to manufacturing line capacity is needed.

Every line can process a certain amount of potatoes. It is chosen to limit capacity based

on a maximal amount of product that can be generated on each of the lines, since this is

how the manufacturer estimates their capacity. If this capacity constraint is not imposed,
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it can be possible that the outcome of the problem is to produce all orders on a particular

line. From one point of view this would be a useful insight; this line can be considered

as the most effective. However, in practice it is impossible to produce all orders on one

manufacturing line and pause the others.

Then, some products can be made out of specific varieties only, mainly due to cus-

tomer demands or product characteristics. This implies that varieties, other than allowed

according to the contracts or suited for production, should not be used.

Besides that, some manufacturing lines are not suited for the production of particular

products. Necessary machines may not be present in the line or certain settings, e.g.

cutting accuracy, can not be met.

Finally, a non-negativity constraint is needed since material input can not be negative.

All constraints above lead to an LP which reads as follows;

minimize

N∑
i=1

M∑
j=1

L∑
k=1

Sixi,j,k (1)

subject to

M∑
j=1

L∑
k=1

xi,j,k ≤ 1, i = 1, 2, ..., N (2)

N∑
i=1

L∑
k=1

SiRi,j,kxi,j,k ≥ Dj , j = 1, 2, ...,M (3)

N∑
i=1

M∑
j=1

SiRi,j,kxi,j,k ≤ Ck, k = 1, 2, ..., L (4)

N∑
i∈Ij

L∑
k=1

xi,j,k = 0, j = 1, 2, ...,M (5)

L∑
k∈Kj

N∑
i=1

xi,j,k = 0, j = 1, 2, ...,M. (6)

xi,j,k ≥ 0, for all i, j, k. (7)

The goal is to find decision variables xi,j,k, the fraction of material i used for the

production of product j on manufacturing line k, which minimize potato input and do

not violate the constraints (1). In this formulation Si is the available amount of potatoes

per variety. The constraint on potato input is denoted in (2). The amount of product
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that needs to be generated is denoted by Dj . This is based on the raw material input

and the factory recovery Ri,j,k (3). Every manufacturing line has a certain capacity

Ck, which is set in the form of a maximal amount of product that can be made in a

time period (4). Then, the constraint on allowed potato type per product is introduced.

The set Ij contains the varieties that are not allowed per product type j. The sum

of these fractions should be zero (5), which implies, together with the non-negativity

constraint (7), that the corresponding fractions should be zero. In a similar manner

the manufacturing lines that are not allowed to produce on are suppressed. The set Kj

contains the manufacturing lines on which product j can not be produced (6).

For the case study, the program above will be solved using the historical amount of

potatoes that was used for production as Si and the amounts of products generated will

be used as Dj . To date, factory recovery is not known for all combinations of material,

product and manufacturing line and although it is known for some combinations variation

occurs. Therefore accurate predictions should be made and used for solving the program.

5. Recovery Prediction

As stated in the previous paragraph, the factory recovery for each combination of

potatoes, product and manufacturing line needs to be approximated with an accuracy as

high as possible. If combinations are executed before, an indication of the recovery can

be traced relatively simple. To predict the factory recovery of combinations that were not

made before several data mining techniques are available [6, 7, 8]. Those techniques rely

on sufficient historical data, which contains predictor variables and target values (factory

recovery). At all times it should be found out which variables are necessary and available

for good prediction of recovery. For this research nearest neighbour interpolation and

random forests for regression are used. The predictions obtained using nearest neighbour

interpolation provide a lot of transparency, since they are based on production orders

executed in the past. Besides that, it has proved to be a suitable method for prediction in

the research of Jerez et al. [9]. Random forests can handle a lot of different feature types,

like binary, categorical and numerical features. Besides that, they are known for their

good performance in combination with relatively simple development, which is supported

by De’ath & Fabricius [10].
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To compare different models and their accuracy, several performance measures are

introduced. The first performance indicator is the Mean Absolute Error (MAE), which

finds the average difference between the predicted value xi and the “true” value yi. MAE

is calculated as follows

MAE =

∑n
i=1 |xi − yi|

n
(8)

with n the number of points to be predicted. The second indicator is the Root Means-

Square Error (RMSE), which is comparable to the MAE in a way that it also compares

the predicted value xi and the “true” value yi. RMSE is calculated using

RMSE =

√∑n
i=1(xi − yi)2

n
. (9)

The third performance measure used to compare the models is based on the standard

deviation of the factory recovery in groups with identical predictor variables. It appears

that even if all the input variables of orders are equal, they may not have equal factory

recoveries. This can be dedicated to natural variation in the manufacturing process. To

illustrate this, an example is used; three historical orders with the same input variables,

thus forming a group, had recoveries of 60%, 61% and 63%. If a created model predicts

62% for this combination of input variables, it is not exactly correct for all three orders.

However, it can be stated that the prediction is rather accurate and is located within

the natural variation. To capture this phenomenon, a third performance measure is

introduced. This is the percentage of the total predictions that lie within 1.5 times the

standard deviation σ of the average of the recoveries of the group. Thus, for each group a

lower and upper bound can be determined and it can be checked whether the predictions

are located within these bounds. For the example group the average is 61.3% and the

standard deviation σ is 1.53%. The lower bound is then 61.3 − 1.5 ∗ 1.53 = 59.0% and

the upper bound is 61.3 + 1.5 ∗ 1.53 = 63.6%. The predicted recovery of 62% lies within

these bounds and is therefore considered to be accurate enough. This measure has one

disadvantage: a group consisting of one order, so a unique production order in the data,

has a standard deviation equal to zero. This implies that the actual recovery does not

have an upper and lower bound and thus the predicted recovery will never lie within
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1.5σ of the average. For this reason the final performance measure is introduced. It is

the percentage of predictions that lie within 1.5σ of the average of the actual recoveries,

which is the same as the third one, but it excludes groups of size one.

5.1. Nearest Neighbour Interpolation

The proposed nearest neighbour interpolation (kNN) algorithm compares a produc-

tion order from which the factory recovery needs to be predicted with historical orders

from the constructed data set. This comparison is based on the five categorical predictor

variables (C = 5) which should be known for the historical orders as well for the order

to be predicted. The extent to which the historical order X = (X1, ..., XC) matches the

order to be predicted Y = (Y1, ..., YC) can be expressed in a distance measure. This

distance measure is based on overlap in categorical predictors, which is expressed as

follows

D(X,Y ) =

C∑
k=1

γkd(Xk, Yk) (10)

where

d(Xk, Yk) =

1, if Xk 6= Yk

0, if Xk = Yk.

(11)

Xk is the categorical value of predictor k for the order to be predicted and Yk is the

categorical value of predictor k for the historical order. In (10), γk is an importance

factor. There are five input variables and they can differ drastically in terms of their

impact on the response. For this reason the introduction of importance factors is proposed

by Joseph & Kang [11]. By parameter tuning and cross-validation on the data set, the

optimal importance factors are found to be γ = [2.28, 3.87, 2.81, 2.11, 3.23] for 1)

potato variety, 2) cutting style, 3) skin presence, 4) grade level and 5) manufacturing

line respectively. Usage of those importance factors minimizes all performance measures.

The distance with respect to the order to be predicted can be measured for all historical

orders. In particular, we can search for all orders that match the order to be predicted

on all variables, i.e. the ones with distance equal to zero. The k-nearest neighbour

interpolation is schematically displayed in Figure 6.
13
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Ri,j,k = [54%]

(a) Equal orders ≥ k

Ri,j,k = [60%, 61%, 63%]

4

3

3
1

2

14

Ri,j,k = [52%]

(b) Equal orders < k

Figure 6: Visualization of the nearest neighbour based algorithm. The order to be predicted is located
in the center of the circle. The numbers in the small circles represent group size. For some groups the
factory recoveries Ri,j,k are indicated.

The algorithm is based on comparison to the k nearest orders, with the possibility

of varying k. The number of nearest neighbours in this research is set to k = 10. If the

number of exactly matching orders is greater than or equal to k, all recoveries of those

matching historical orders are used for prediction. The recoveries of all orders within

the group are averaged. This is shown in Figure 6(a) where the number of equal orders

is 26. However, if this number of matching orders is lower than k or even zero, the k

closest neighbours are sought including the ones exactly matching. This is schematically

displayed in Figure 6(b). In this case, instead of averaging the recoveries of those orders,

a distance weighted average of the k recoveries is determined combining the nearest

neighbour method with inverse distance weighting. If there are a few (< k) orders with

distance zero, those orders are set to a distance of 0.01 to prevent dividing by zero in the

following equation

Predicted Recovery =

∑k
i=1Ri/Di∑k
i=1 1/Di

, (12)

Using (12), in Figure 6(b), the recoveries of the four orders closer to the order to

be predicted will contribute more than the orders in both groups of three. Notice that,

if the importance factors of all predictor variables are equal, an order at distance 0.01

contributes a hundred times more than an order that differs on only one variable. The

described process is translated into the following algorithm:
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Algorithm 1 Calculating the predicted recovery for an order

1: procedure kNN-interpolation
2: NoO← Number of historical orders
3: kNN ← Number of nearest neighbours taken into account for prediction
4: NoCA← Number of categorical attributes
5: γ ← Array of weighting factors for categorical attributes with length NoCA
6: for i = 1 : NoO do
7: for j = 1 : NoCA do
8: Distance(i, j) = γ(j) ∗ (Order(j) 6= Data(i, j))
9: CatDistance(i) = CatDistance(i) +Distance(i, j)

10: if CatDistance(i) = 0 then
11: NoEO + 1
12: CatDistance(i) = CatDistance(i) + 0.01

13: if NoEO >= kNN then
14: kNN ← NoEO
15: [MinDist, Idx]← mink(CatDistance, kNN)
16: Recoveries← RecoveryData(Idx)

17: PredictedRec←
∑

(1/MinDist∗Recoveries)∑
(1/MinDist)

The performance measures of the best model obtained, after tuning the importance

factors by means of cross-validation, are displayed in Table 4.

Table 4: Performance measures of the IDW-model.

Number of
records

Mean Absolute
Error

Root Mean
Square Error

Within
variation

Within variation
w/o singles

3006 2.5628% 3.3640% 94.48% 99.93%

The algorithm can be extended to include numerical values. To do so, the distance

measure D should be split in a numerical and categorical distance. If the traceability of

the batch data is improved, it can be investigated whether numerical data leads to even

more precise predictions.

To investigate whether the results above are obtained by means of the proper working

of the model instead of over-fitting on the historical 3,006 orders, the model is cross-

validated with different compositions of training and test groups. The training group

in this case will constitute the basis of the model, in other words the orders used for

building the predictions. The test group will not be used to build the model, only to

validate the functioning. The performance measures applied on the test group for differ-
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ent compositions are displayed in Table 5. The compositions represent the percentages

of orders used in both groups. For every composition, a random test and training group

is generated ten times. Then, the performance measures are calculated ten times and

the outcomes are averaged. As can be seen, even with a large test group that is not

used to generate the model, the accuracy is reasonable. The accuracy increases when the

number of orders that serve as the basis of the model becomes larger. Since the working

of the model is now ratified, all 3,006 orders can be used as the basis of the model for

prediction of the possible 82,350 combinations. These predictions can then be used to

reallocate the raw material in Eqs. (1)−(7).

Table 5: Performance measures for different training and test groups calculated for the test group.

Training:
Test ratio

Training
gr. size

Test
gr. size

MAE RMSE
Within
1.5σ

Within 1.5σ
w/o singles

60 : 40 1804 1202 3.3779% 4.5175% 93.01% 97.56%
70 : 30 2104 902 3.2716% 4.3119% 93.57% 98.60%
80 : 20 2405 601 3.3074% 4.4220% 94.01% 99.16%
90 : 10 2705 301 3.1618% 4.3363% 95.28% 99.31%
95 : 5 2856 150 3.0043% 3.9840% 95.33% 99.28%

5.2. Random Forest for Regression

Another suitable technique for prediction is the use of regression trees. A regression

tree is a piecewise constant or piecewise linear estimate of a regression function, con-

structed by recursively partitioning the data and sample space [7]. It splits the data

points based on the predictor values with the goal of minimizing the total error until

a certain stopping criterion is reached. The predictor values are the same categorical

predictors as used in the previous section. The ends of the tree, the leaves, contain the

prediction values based on the weighted average of the data points in the leaf. This tree

can then be used to predict the output of “new” combinations of input variables. Those

combinations can be passed through the tree from top to bottom till they end up in a

specific leaf.

However, a single regression tree has the tendency to be inaccurate because it predicts

too general or because it is over-fitting on the available data. To decrease the mean

squared error of the prediction, multiple trees can be generated and combined into a
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so-called random forest. The creation of a random forest is described in Algorithm 2.

Algorithm 2 The creation of a random forest

1: NoT ← Number of trees
2: C ← Number of categorical predictors
3: for i = 1 : NoT do
4: Create a bootstrapped dataset using random sampling with replacement
5: while splitting criterion not violated do
6: Determine residuals ri = yi − ȳ of the node to be split, with ȳ

the average of the node
7: Assign the observations to a nominal bin variable zt according to the sign

of the corresponding residuals
8: Select F = int(log2(C + 1)) random predictors
9: Conduct curvature tests between each predictor in F and the

nominal bin variable zt
10: if All p-values ≥ 0.05 then do not split node t

11: if Minimal p-value < 0.05 then split node t based on
the corresponding predictor

12: Set optimal cut point that yields the largest MSE reduction

The number of trees needs to be big enough for convergence of the mean squared

error. For each tree in the regression forest a bootstrapped dataset is used to train the

model. This implies that a set with the same size as the original set is generated by

randomly picking samples from the original data set; it is allowed to pick a sample from

the original data set multiple times. This results in unique regression trees, since the

training data differs for every training process. The stopping criteria prevent splitting a

node if either the node size is too small or the leaf size after splitting will be too small.

Before every potential split a set of two predictors is randomly taken. The curvature test,

a type of χ2-test, is applied to determine the best predictor in the set to split a node.

In that case, the best split predictor variable is the one that minimizes the significant

p-values (those less than 0.05) of curvature tests between each random predictor and the

records in the node. The categorical variable that is used for splitting the node is called

the splitting predictor. This is based on the variable selection method proposed by Loh

[7]. Such a selection is robust to the number of levels in individual predictors. When

the best splitting predictor is found, the node is split at the cut point that provides the

largest reduction in mean squared error. To predict the output of “new” combinations of

input variables, like using a single regression tree, the combinations are passed through
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all the trees in the forest. Finally, all the outcomes are averaged; this value represents the

predicted factory recovery for the input combination. The process as a whole is based

on the work of Breiman [6] and an example of the execution of the process is elaborated

in Appendix B. The emergence of predictions using a random forest for regression is

displayed in Figure 7.

Production Order

60% 62% 58%

60%

Figure 7: Visualization of prediction using a random forest for regression.

The technique described is applied on the 3,006 orders with the number of trees in

the forest set to 500 to make sure the error converges to a minimal value. The created

forest is then tested to predict the recoveries of the 3,006 orders. For this prediction,

only the trees in the forest that were not based on the order to be predicted are used

and their predictions are averaged. For the creation of a single tree not all orders are

used due to the use of a bootstrapped data set. Those orders are called the Out-of-Bag

orders and using them for prediction is a validation method to demonstrate the working

of the model and to show that the results are not based on an over-fitted model. The

calculated performance measures are displayed in Table 6. For prediction of the possible

82,350 combinations all trees in the generated forest can be used since the working has

been validated.

Table 6: Characteristics random forest with categorical predictors only.

Number of
records

Mean Absolute
Error

Root Mean
Square Error

Within
variation

Within variation
w/o singles

3006 3.1596% 4.1838% 91.72% 97.01%
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Besides using the predictions of both techniques to solve the LP they can also be

directly used by an end user. When the predictions are captured in an organized tool,

the end user can determine how much his/her proposed production order is going to yield

by selecting a combination of product, potato type and manufacturing line.

6. Results

Now, since it is possible to predict factory recovery using both techniques, the de-

ployment phase can take place. The predicted recoveries can be used to reallocate the

potatoes to product for the 3,006 orders to minimize potato input. When the linear

program from Eqs. (1)−(7) is solved for those 3,006 orders, it is possible to find out the

possible potato savings that could have been made. As stated before, 50 potato types,

183 product types and 9 manufacturing lines occur in those orders; N = 50, M = 183

and L = 9. The amount of available potatoes per type is determined by adding up

the potatoes used for the historical orders per variety. In the same way the amounts of

product to be generated are determined. The LP is solved using Gurobi Optimization

software in Matlab in 0.9 seconds. The decision variables are the fractions which min-

imize potato use, yet satisfy all constraints. These fractions can be seen as the part of

the total amount of a potato type available used for the production of a specific product

on a specific line. To do so, all variable values are translated into numerics. So, x9,63,2

is the fraction of potato type 9 used for the production of product 63 on manufacturing

line 2, which corresponds to producing 9x9mm SPX Skin-Off Fries out of Bintje Field

Ware on manufacturing line 2. Using the recoveries predicted with nearest neighbour

interpolation the determined optimal fractions lead to a minimized potato use of 1.76

million tonnes. The amount of potatoes initially used to produce the orders is equal to

1.85 million tonnes, so a saving of 90 thousand tonnes (4.9%) is obtained. Using the

recoveries predicted with the random forest technique a minimized potato use of 1.80

million tonnes is found; a saving of 50 thousand tonnes (2.7%). Figure 8 shows the use

of material per variety expressed in the percentage of the total historical supply. This is

calculated using

xi =

∑M
j=1

∑L
k=1 Sixi,j,k∑N
i=1 Si

, i = 1, 2, ..., N. (13)
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The reallocated schemes use mainly the same potato varieties as the allocation scheme

executed by the manufacturer. However, the allocation scheme using kNN-interpolation

mainly saves potatoes of type Innovator Field Ware and Premiere Field Ware with respect

to the historical allocation. The optimal scheme is based on 228 active fractions, from

which the factory recoveries of 150 combinations were not known before. The RF-based

scheme on the other hand mainly saves on the use of Ramos Field Ware. In this case the

scheme is based on 223 active fractions, from which 118 combinations were not executed

before.
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Figure 8: Use of the historical potato stock per variety for a) historical allocation, b) allocation using
nearest neighbour interpolation and c) allocation using random forests.

After that, the program is used to determine what would have been an optimal

potato purchase strategy. Therefore, it is assumed that there is an infinite stock of raw

material varieties to determine which varieties are used to produce the 3,006 orders if

they were available. Solving the program with the kNN-interpolation based prediction

and the unlimited supply led to a potato use of 1.73 million tonnes. This is an additional
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saving of 24 thousand tonnes with respect to the determined kNN-interpolation based

optimal policy with historical supply and with respect to the allocation executed by the

manufacturer a saving of 115 thousand tonnes is obtained. Solving the program with

the RF-based predictions and again unlimited supply led to a potato use of 1.78 million

tonnes. This is an additional saving of 24 thousand tonnes with respect to the previous

determined RF-based optimal policy and a saving of 74 thousand tonnes with respect to

the historical scheme. The varieties used to obtain these results are displayed in Figure

9. Again, those are expressed in percentages of the total 1.85 million tonnes used by

the manufacturer to produce the orders using (13). Remarkable is the drop in use of

Innovator Field Ware when unlimited alternatives are available. The nearest neighbour

interpolation based scheme prefers the use of Markies Field Ware to replace Innovator

Field Ware, but the random forest based scheme prefers using Fontane 70+ and Lady

Anna Field Ware. Differences in preferred varieties are due to differences in predicted

factory recoveries which arise from natural variation in the executed orders.
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Figure 9: Percentage used of the historical potato stock with unlimited supply per variety for a) historical
allocation, b) allocation using nearest neighbour interpolation and c) allocation using random forests.
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6.1. Sensitivity Analysis

To demonstrate the importance of correct information when solving the LP several

scenarios tests are performed. By means of the one-factor-at-a-time method several

scenarios are plotted against the historical situation. Every time in the initial reallocated

optimal program one factor is varied. The improvements with respect to the historical

situation are displayed in Figure 10. The first set of bars displays the improvement made

using Eqs. (1)−(7) and the data provided by the manufacturer. The other sets of bars

display the adapted scenarios. Naturally, the program with unlimited supply provides

the biggest improvement. Production with an overall capacity decrease of 30% is still

possible. This is interesting to see if for some reason the provided capacity data is lower

than expected. Also with a small decrease in factory recovery, allocation is still feasible.

Even if the factory recovery of all orders is 0.5% lower than predicted, an improvement

with respect to the historical allocation is obtained. However, if factory recovery is

decreased further, the production amount constraint is violated for particular product

types. Thus, it is impossible to generate the desired product amounts.

Reallocated

Unlim
ited potatoes

30% Capacity decrease

0.5% Recovery decrease
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Figure 10: Percentage improvement with respect to the historical allocation. The tested scenarios are
1) the reallocation using Eqs. (1)−(7), 2) with unlimited potato supply, 3) with an overall decrease in
capacity and 4) with an overall decrease in recovery.
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Differences exist between the results of both techniques. The potential savings with

respect to the historical allocation of the kNN-based schemes are always higher than the

savings of the RF-based schemes. Besides that, in the scenario with unlimited potato

supply for both schemes different potato types are preferred. A possible explanation of

these differences may be the natural variation of the orders on which the predictions

techniques are applied. This natural variation affects the predictions which is also visible

in their averages. The nearest neighbour interpolation based recoveries are 61.9% on

average, whereas the random forest based predictions have an average of 60.6%.

The scenario tests can be supplemented with sensitivity analysis of the optimal LP

solutions. Commercial linear programming systems usually provide sensitivity analysis

results and so does Gurobi. Gurobi provides so-called shadow prices which indicate

the change in the optimal solution if the right hand side of the constraints is slightly

adapted. For example, one additional kilogram of demand D of product type 18 leads

to 1.96 kilogram additional potato use. The magnitude of the shadow prices indicates

which components in the LP have a major influence on the optimal solution, which

are therefore desired to be of high accuracy, and which components are less influential.

Important constraints are defined as the ones which contribute most to the optimal potato

use. In this sensitivity analysis the influences of the potato availability constraints, the

product demand constraints and the line capacity constraints, respectively (2), (3) and

(4) in Eqs. (1)−(7), on the optimal solution are investigated. The shadow prices of these

types of constraints all represent something different. The shadow prices of the potato

availability state how much the optimal potato use could be decreased if there was a

bigger stock of a type available. The shadow prices of the product demand constraints

indicate how much additional potatoes are needed to produce an additional kilogram of

product. The shadow prices of the line capacity show how much the optimal potato use

is decreased if an additional hour on a manufacturing line becomes available. For the

three types of constraints the five constraints that have the most impact on the optimal

solution when changed are displayed in Table 7.
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Table 7: Most important constraints with regard to the optimal solution following from sensitivity
analysis sorted by importance.

Potato Availability Product Demand Line Capacity

# kNN RF kNN RF kNN RF

1. 46 46 112 110 3 2
2. 29 49 18 112 2 3
3. 4 29 75 75 - -
4. 33 48 111 111 - -
5. 30 4 80 108 - -

The results in Table 7 indicate that for example the accuracy of the potato availability

of type 46, Russet Burbank, is rather important. Besides that it states that increasing the

stock of this type leads to the biggest decrease in optimal potato use. Also the product

demand of type 112, 6x6mm RPX Skin-off fries, needs to be determined correctly. An

increase of demand of this type leads to the largest potato use increase, which is not

desired. Notice that for the line capacity constraints only two lines are influential. This

is due to the fact that the other constraints are not active yet; there is still capacity left

for production. Indirectly the things stated above lead to the importance of predicting

recoveries for those varieties, products and lines correctly.

The shadow prices found using Gurobi can also be used to express sensitivity in the

left hand side of the LP, the constraint matrix. For infinitesimal small adaptations to the

constraints, an approximation of the shadow prices of the left hand side components is

found by multiplying the shadow prices of the right hand side with the optimal solution

[12]. The LP solution is rather sensitive with respect to the predictions for factory

recovery. This is shown in the fourth set of bars in Figure 10, but also in the difference

between the results of the kNN-based and RF-based schemes. By means of the sensitivity

analysis for the left hand side, it is found which recoveries are important to be predicted

correctly. Those recoveries are displayed in Table 8.
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Table 8: Most influential factory recoveries with regard to the optimal solution following from sensitivity
analysis sorted by importance.

Factory Recovery Factory Recovery

# kNN RF # kNN RF

1. R27,159,5 R27,159,4 6. R28,115,9 R14,1,1

2. R21,36,4 R27,113,1 7. R28,109,9 R28,115,9

3. R27,113,3 R21,51,6 8. R14,155,1 R28,109,9

4. R27,150,3 R27,151,4 9. R27,114,8 R38,155,4

5. R38,1,1 R27,150,3 10. R38,158,4 R27,114,8

The recoveries Ri,j,k represent the recovery belonging to the production of product

j out of potato type i on manufacturing line k. Notice that a lot of those recoveries are

regarding potato type 27, Innovator Field Ware. Since this potato type is the one with the

biggest stock, according to historical data, accurate prediction of recovery for this type

is very important. Besides that, there are several matching combinations, even though

different techniques are used, that are important for the optimal solution. The presence

of similar important constraints using both techniques supports the presumption of the

correctness.

7. Extensions

The program in Eqs. (1)−(7) can be extended to incorporate costs. Since the objec-

tive is to reduce mass waste, the optimal solution can use more expensive potatoes over

cheaper ones, as long as the mass used is minimal. To overcome this, the objective needs

to be adapted to minimize costs instead of mass use. This leads to the introduction of

purchase expenses Ei, dependent on the type of potatoes expressed in price per kilo. The
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following program is drafted:

minimize

N∑
i=1

M∑
j=1

L∑
k=1

EiSixi,j,k

subject to

M∑
j=1

L∑
k=1

xi,j,k ≤ 1, i = 1, 2, ..., N

N∑
i=1

L∑
k=1

SiRi,j,kxi,j,k ≥ Dj , j = 1, 2, ...,M

N∑
i=1

M∑
j=1

SiRi,j,kxi,j,k ≤ Ck, k = 1, 2, ..., L

N∑
i∈Ij

L∑
k=1

xi,j,k = 0, j = 1, 2, ...,M

L∑
k∈Kj

N∑
i=1

xi,j,k = 0, j = 1, 2, ...,M

xi,j,k ≥ 0, for all i, j, k

(14)

Now the extended LP in (14) can be solved, minimizing costs of potatoes instead of

minimizing the amount of potatoes used. Therefore, the expenses on potato purchase

should be added. Those are added as the purchase costs per kilo of a potato type

Ei. Solving this system, again using Gurobi Optimization software in Matlab, took

0.3 seconds. The purchase of potatoes used to produce the 3,006 orders costed e220M.

Solving the extended program using the nearest neighbour interpolation based predictions

leads to purchasing costs of e209M, which is a saving of e11M (5.14%). Solving the

program using the random forest based predictions leads to purchasing costs of e214M,

which is a saving of e6M (2.81%).

To complete the allocation process, also transportation costs should be considered.

Since production on a particular line can be beneficial, it may be rewarding to transport

the available potatoes from one place to another. However, if the benefits with respect to

recovery are minimal and transport is an expensive operation, production without trans-

port should be considered. Besides that, the storage location of the finished product

could also lead to additional transportation costs. If customers are close to the storage

location, transportation costs will be considerably lower. Thus, if the product is gener-
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ated on a line far from the storage location additional transportation costs occur. To find

out whether production benefits outweigh transportation costs, the costs are included in

the form of TCT , transportation costs from potato storage to the manufacturing line and

TCF , transportation costs from the manufacturing line to the product storage location.

This adapted system is given in (15).

min

N∑
i=1

M∑
j=1

L∑
k=1

P∑
a=1

Q∑
b=1

(EiSi + TCTa,k + TCFk,b)x
a,b
i,j,k

s.t.

M∑
j=1

L∑
k=1

P∑
a=1

Q∑
b=1

xa,bi,j,k ≤ 1, i = 1, 2, ..., N

N∑
i=1

L∑
k=1

P∑
a=1

Q∑
b=1

SiRi,j,kx
a,b
i,j,k ≥ Dj , j = 1, 2, ...,M

N∑
i=1

M∑
j=1

P∑
a=1

Q∑
b=1

SiRi,j,kx
a,b
i,j,k ≤ Ck, k = 1, 2, ..., L

N∑
i∈Ij

L∑
k=1

P∑
a=1

Q∑
b=1

xa,bi,j,k = 0, j = 1, 2, ...,M

L∑
k∈Kj

N∑
i=1

P∑
a=1

Q∑
b=1

xa,bi,j,k = 0, j = 1, 2, ...,M

xa,bi,j,k ≥ 0, for all i, j, k, a, b

(15)

The fraction xi,j,k as in Eqs. (1)−(7) and (14) is extended too to xa,bi,j,k to indicate

where the potatoes were stored (a) and where the product has to be stored (b). Since

data on potato and product storage location is missing in the current data, this program

can not be solved immediately. It leaves an interesting problem, since not only transport

within the current network can be considered, but there also could be thought of adapting

the network. For example, one can think about the number of storage locations and where

to position them.
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8. Conclusions

A raw material saving approach for a potato product manufacturer is provided which

requires few radical measures with respect to the manufacturing process. By means of

collected data it is possible to improve the allocation of potatoes to end product and

manufacturing lines to minimize raw material use. The raw material used for 3,006

considered production orders from July 2016 till July 2018 is reallocated in a way that

equal amount of product is produced, but less potatoes are used. The allocation is based

on factory recovery and user-specified constraints. The application of nearest neighbour

interpolation and random forests for regression on historical production orders led to

accurate prediction of factory recoveries of all combinations of material, product and line

that can occur at the manufacturer. It is showed that on average the approach would

have saved 3.8% with respect to potato mass input and 4.0% with respect to purchasing

costs over the stated period. Besides that, in combination with sales forecasts of end

product recommendations can be made on how to distribute the available material or

even ideal purchasing policies can be opted for the time to come.

From sensitivity analysis, it follows that allocation is highly dependent on the accu-

racy of the factory recovery prediction. Using the nearest neighbour interpolation model

the predictions had a mean absolute error of 2.6%. Those predictions were based on 1)

potato variety, 2) cutting style of the product, 3) skin presence, 4) grade level of the

product and 5) manufacturing line to produce on; categorical variables that are known

before production starts. Using a random forest model and the same five categorical

predictors a mean absolute error of 3.2% is obtained.

Allocation is a process that occurs within other manufacturing companies too, so the

proposed approach could be used here as well. To do so, the availability of raw material

(types), the desired amount of product or expected sales and the capacity of the lines

should be known. All those variables should be determined for the same time period,

otherwise allocation would not be adequate. The constraints on the program can be

extended if necessary for the considered process, for example if a product needs to be

made out of multiple materials which can have different varieties (e.g. beer).
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9. Further Research

When a real sustainable impact is desired, with or without considering financial costs,

the proposed framework should be used to minimize energy footprint or a similar measure.

The purchase network can be optimized leading to better targeted contracting to obtain

higher yield from the raw material and to prevent unnecessary production and transport

emissions. A measure should be introduced to determine the ecological impact from the

moment the crops are planted till the product is delivered to the customer. Therefore,

traceability is very important, which is often a bottleneck in data mining projects like

these.

If traceability is improved, numerical variables like potato length and underwater

weight can be used for prediction. These predictors could lead to improved prediction

accuracy, leading to more reliable allocation results. As showed by means of the sen-

sitivity analysis, factory recovery has a noticeable influence on the optimal allocation

schemes.

Besides that, if the processing part is not longer considered as a black box, better

targeted recommendations can be made with respect to the manufacturing lines of the

company. In the current setting it is unclear to see where losses occur and if they could

have been prevented. Besides that, it is also not possible to track down the efficient

operations.

Another step can be made in scheduling the production orders. The allocation frame-

work only considers a fixed time period and assumes that potatoes are available and

remain available at all times during that period. However, degradation of the mate-

rial occurs leading to deterioration in potato quality and some potato varieties become

available only later in the harvesting process. Therefore, a time-dependent scheduling

approach should be introduced taking the optimized allocation into account for optimal

yield.
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B. Appendix: Random Forests for Regression

To give a better impression of the generation of a random forest for regression an

example is elaborated. A small data set is shown in Table 10. Usually a much bigger

data set is used for creation of regression forests. The number of predictors C in this

case is five and the last column represents the target value.

Table 10: Example data set for the creation of a regression forest.

Potato
variety

Manu.
line

Cutting
size

Potato
skin

Grading
level

Factory
recovery

Innovator 0020-1 9x9mm No RPX 63%
Challenger 0020-1 6x6mm No RPX 52%
Challenger 0030-1 9x9mm No SFW 61%
Bintje 0020-2 6x21mm Yes SLF 72%

Now, to create the first regression tree in the forest, a bootstrapped dataset is taken.

This implies that a set with the same size as the original set is generated picking samples

from the original data set. It is allowed to pick a sample from the original data set multiple

times. The bootstrapped dataset for the example is displayed in Table 11. Notice that

the second sample from the original sample ended up twice in the bootstrapped dataset.

Table 11: Bootstrapped dataset for the creation of the first regression tree.

Potato
variety

Manu.
line

Cutting
size

Potato
skin

Grading
level

Factory
recovery

Innovator 0020-1 9x9mm No RPX 63%
Challenger 0020-1 6x6mm No RPX 52%
Challenger 0030-1 9x9mm No SFW 61%
Challenger 0020-1 6x6mm No RPX 52%

Now, a regression tree needs to be generated based on this bootstrapped dataset.

However, instead of splitting based on all five predictors, at every split the first integer

less than log2(C + 1) of predictor values is taken to split upon. In the example C = 5,

so log2(C + 1) ≈ 2.59, so the first integer smaller than this is two. For the first split

the two random variables to possibly split upon are “Potato Variety” and “Potato Skin”.

Curvature tests needs to be conducted to determine the optimal split variable. Curvature

tests are χ2-like tests to test the hypothesis that there is no relation between the predictor
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and the records in the node. The predictor with the lowest p-value for this test is used

to split the node. A very small chi square test statistic (p-value) means that there is a

strong relationship between the predictor and the points in the node. Suppose the first

split is made based on “Potato Variety” for this example, which means the orders in the

node are divided based on potato variety. Then two predictor values are taken again

to make the second split. This continues until the splitting criteria are violated. The

regression values are the averages of the factory recovery of the samples in an end node

called a leaf. The first tree is now created.

After that, a new bootstrapped dataset is taken and a second tree is generated;

this process is typically repeated 100 times. To predict the factory recovery of a new

combination of variables, this combination could be ran through the multiple regression

trees. It ends up in 100 different end nodes, from which the average value can be taken

as the final response value.
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