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Abstract

Model-predictive control and trajectory optimization are powerful numerical tools to generate ref-
erence trajectories and stabilize the motion of complex robot systems, such as robot manipulators,
drones, humanoids, or quadrupeds. At their core, these tools require the computation of the sensi-
tivity of the system’s dynamics with respect to the system’s state and input about an equilibrium
point or a nominal trajectory. This approximation of the dynamics is also known as linearization.
For fixed-base systems such as industrial robot manipulators, several methods exist to compute this
linearization, including finite difference approximation, Lagrangian derivation, automatic differenti-
ation, and recursive analytical derivation. For moving-base systems such as drones, humanoids, or
quadrupeds, existing methods for fixed-base systems can be applied to obtain the linearization but
they then suffer from singularity issues caused by the chosen representation of the orientation of
the moving base. In this thesis, instead, we propose a geometric linearization method for complex
moving-base systems that is mathematically elegant, computationally efficient, and singularity-
free. Computational efficiency is obtained by proposing new recursive algorithms for computing
the derivatives of the inverse dynamics and the inverse of the mass matrix of the robotic system.
Numerical validation of the approach by means of a comparison with the linearization obtained via
geometric finite difference is presented.

Keywords: sensitivity analysis, dynamics linearization, moving-base system, differential geome-
try, singularity-free, analytical derivatives, multibody dynamics, recursive algorithms, forward dy-
namics, inverse dynamics
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Nomenclature

Algorithms

The algorithms used in this report are abbreviated as follows.

ABA Articulated Body Algorithm (for fixed-base systems)

ABAmb Articulated Body Algorithm for moving-base systems

CRBA Composite Rigid Body Algorithm (for fixed-base systems)

CRBAmb Composite Rigid Body Algorithm for moving-base systems

EIDAmb Extended Inverse Dynamics Algorithm for moving-base systems

GBWAmb Generalized Bias Wrench Algorithm for moving-base systems

IMMA Inverse Mass Matrix Algorithm (for fixed-base systems)

IMMAmb Inverse Mass Matrix Algorithm for moving-base systems

RNEA Recursive Newton Euler Algorithm (for fixed-base systems)

RNEAmb Recursive Newton Euler Algorithm for moving-base systems



vi

Mathematical definitions

M , N Smooth manifolds.
x Point on a manifold.
TxM , T ˚xM Tangent and cotangent spaces of M at x.
TM , T ˚M Tangent and cotangent bundles of M at x.
f : M Ñ N (Smooth) mapping for M to N .
D f : TM Ñ TN Tangent map of f .
G Lie group.
g P G Element of Lie group.
e Group identity.
¨G Operation associated to the Lie group G.
g Lie algebra of G.
r¨, ¨sg Lie brackets on g.
Lgx, Rgx Left and right translations of x P G by g P G.
gx , xg Shorthand notation for Lgx, Rgx.
gv , vg Shorthand notation for DLgpxq ¨ v, DRgpxq ¨ v with v P TxG.
Ad Adjoint representation of a Lie group to its algebra.
ad Adjoint representation of a Lie algebra onto itself.
S1 ˆ S2 Cartesian product of sets S1 and S2.
G1 ˆG2 Direct product of the Lie groups G1 and G2.
g1 ‘ g2 Direct sum of the Lie algebras g1 and g2.
exp : gÑ G Exponential map of G.
log : GÑ g Logarithm map (inverse of exp in a neighbourhood of e).
SOp3q Special Orthogonal group of dimension 3.
SEp3q Special Euclidean group of dimension 3.
sop3q Lie algebra of SOp3q.
sep3q Lie algebra of SEp3q.
R3
ˆ Lie algebra given by R3 with the cross product as Lie bracket.

R6
ˆ Lie algebra given by R6 with the 6D cross product as Lie bracket.
^pwedgeq Lie algebra isomorphism from R6

ˆ to sep3q (or from R3
ˆ to sop3q).

_pveeq Lie algebra isomorphism from sep3q to R6
ˆ (or from sop3q to R3

ˆ).
In P Rnˆn Identity matrix of dimension n.
Bx{By Partial derivative of x with respect to scalar or vector y.

B̃x{By Left-trivialized partial derivative of x with respect to Lie group element y.

Multibody dynamics notation

For variables related to multibody dynamics notation, we refer to Section 2.7, where they are ordered
by category.
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Chapter 1

Introduction

1.1 Motivation

Model-predictive control [1, 2, 3] and trajectory optimization [4, 5] are used more and more in the
control of complex robot systems, such as humanoids and quadrupeds. These methods require the
computation of the sensitivity of the control vector field with respect the state and input variables of
the system about an equilibrium or nominal trajectory. This sensitivity is also known as dynamics
linearization.

Sensitivity analysis of the control vector field about an equilibrium or a nominal trajectory
estimates the effect of variations in variables on the associated perturbed solutions [6, Section 3.3].
These variables can be the initial conditions, input or system parameters such as mass or length of
bodies. When working with a system that evolves on a vector space

9xptq “ fpx, u, tq, (1.1)

where xptq P Rn is the system state, uptq P Rm the system input, t P R time, and f : RnˆRmˆRÑ
Rn the control vector field, the sensitivity of the control vector field f with respect to the system
state x and input u about a nominal trajectory ηpxptq, uptqq has taken the form of the linear system

9zptq “ Apη, tqzptq `Bpη, tqwptq, (1.2)

where zptq P Rn is the perturbation vector, wptq P Rm the perturbed input vector, Apη, tq P Rnˆn
the state matrix and Bpη, tq P Rnˆm the input matrix. The state matrix and input matrices are
found by computing the partial derivative of function f with respect to the state x and input u
along a nominal state-input curve pA “ Bf{Bx,B “ Bf{Buq.

For fixed-base systems, such as industrial robot manipulators, whose configuration spaces are
vector spaces, computationally efficient algorithms exist to compute the state and input matrices
of (1.2) [7]. For moving-base systems (also known as floating-base systems [8]) such as drones,
humanoids, and quadrupeds, the configuration space is naturally a Lie group SEp3q ˆ Rn. By
means of local parametrization of the orientation (using, e.g., Euler or Tait-Bryan angles), the
configuration space of a moving-base system can be artificially considered as that of a fixed-base
system. Therefore, algorithms for computing the sensitivity analysis for fixed-based systems can be
applied to moving-based systems, although this gives rise to (parameterization) singularity issues
[9, 10]. In this thesis, we explore how to obtain the sensitivity of a moving-base system treating the
configuration space for what it is, namely, the Lie group SEp3qˆRn, without resorting to any local
parametrization of the rotation part.

An example of a fixed-base robot is the UR10 robot arm1 by Universal Robots. An example of

1Picture retrieved from https://www.universal-robots.com/nl/producten/ur10-robot/

https://www.universal-robots.com/nl/producten/ur10-robot/
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of a moving-base robot is the iCub2, developed by the Istituto Italiano di Tecnologia. Both systems
are depicted in Figure 1.1.

(a) Universal Robot’s UR10. (b) iCub by Istituto Italiano di Tecnologia.

Figure 1.1: A fixed-base (left) and a moving-base (right) robot.

When a system evolves on a Lie group G, computing the sensitivity needs a different approach
[11, 12], as the system state x P G does not evolve on a vector space. In [11], the authors have
provided a definition of sensitivity analysis for systems evolving on a generic Lie group and demon-
strated it numerically on the rotational dynamics of a rigid body on TSOp3q. In this approach, the
linearized system 9z “ Az`Bw evolves on the Lie algebra of the Lie group. This theory can applied
to full rigid body dynamics (both translational and rotational) defined on TSEp3q [13, Chapter 4],
and even to moving-base dynamics defined on T pSEp3q ˆ Rnq [14, 15, 16], making it possible to
compute the singularity-free sensitivity for moving-base multibody dynamics.

Moving-base robots are typically controlled at a frequency of kilohertz, and the amount of
computations increases rapidly as the number of degrees of freedom increases. As theories such as
model-predictive control and trajectory optimization recompute multiple time-steps ahead during
each time-step, the computational time needed to compute the sensitivity is a limiting factor. A
numerically efficient method to compute the sensitivity is required to allow on-line applications.

1.2 Literature review

In this section we present an overview of related literature to our research. We investigate sensitivity
analysis on Lie groups [12] and left-trivialized linearization on Lie groups [11, 17], [18, Section II.G].
After that, recursive algorithms [8, 19, 20] are discussed, as they are the foundation of efficient
methods to compute rigid body dynamics. Lastly, four known methods to compute or approximate
the sensitivity of multibody systems are discussed: finite differences [5], Lagrangian derivation [21],
automatic differentiation [22], and recursive analytical derivation [7].

Sensitivity on Lie groups and left-trivialized linearization. The theory of left-trivialized
linearization is presented in [11, 17]. It allows to compute the sensitivity for control systems on Lie
groups, by using the fact that a Lie algebra can be modelled as a vector space. An infinitesimal
perturbation is imposed on the input and state, so that the sensitivity can either be mathemati-
cally computed or numerically approximated. In [11], the authors apply this method to linearize

2Picture retrieved from https://www.eurekalert.org/multimedia/pub/158868.php?from=380282

https://www.eurekalert.org/multimedia/pub/158868.php?from=380282
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rotational dynamics on TSOp3q, demonstrated in the application of optimal control. The presented
example on TSOp3q needs addition of translational dynamics of the moving base as well as added
dynamics of the joints, before it applies to moving-base multibody dynamics. The resulting lin-
earization is singularity-free. In [18], a compact introduction to Lie groups in robotics is given,
which too shows the concept of left-trivialized linearization in Section II.G. Sensitivity analysis for
multibody systems evolving on Lie groups in general is also discussed in [12], however the authors
do not show explicit application to rotational or full rigid body dynamics.

Recursive algorithms. Recursive algorithms are highly efficient methods to compute robot dy-
namics. The equations of motion of robotic systems often include sparse matrices, induced by their
branch-like structure. Recursive algorithms exploit the branch-induced sparsity in the equations
of motion matrices of robotic systems by omitting unnecessary computations. Three well-known
algorithms for robotic systems are the Recursive Newton Euler Algorithm (RNEA) [19], the Com-
posite Rigid Body Algorithm (CRBA) [20] and the Articulated Body Algorithm [8, Chapter 7].
The RNEA computes the inverse dynamics: the necessary joint torques to achieve desired joint
accelerations. The CRBA computes the mass matrix. The ABA computes the forward dynamics:
the resulting joint accelerations with given joint torque. In [8] an overview of these three algorithms
is presented, as well as how to obtain the equations of motion for multibody systems using these
three algorithms. Furthermore, [8, Chapter 9] presents dedicated algorithms applied to moving-base
systems in a singularity-free way: the Recursive Newton Euler Algorithm for moving-base systems
(RNEAmb), the Composite Rigid Body Algorithm for moving-base systems (CRBAmb), and the
Articulated Body Algorithm for moving-base systems (ABAmb).

Sensitivity analysis using finite differences. Finite differences is a relatively simple method
to approximate the sensitivity. It evaluates the dynamics several times: once unperturbed, and
multiple times with an added perturbation for each degree of freedom and for each input variable.
For systems with a large number of degrees of freedom (e.g. humanoids or quadrupeds), this method
becomes time-consuming. Furthermore, the finite difference method is prone to numerical rounding
errors. Despite the time-consuming computations, there is literature available showing successful
usage of finite differences on real-time applications. In [23], a method to compute the sensitivity of
moving-base systems is presented. The moving-base is modelled in a singularity-free way, although
little details describe how this is done. The authors state that their humanoid robot can track
squatting trajectories up to 1 Hz without recomputing the sensitivity. The computational time of
this method is not shown. In [5], a method is shown to apply model predictive control to humanoids,
using the sensitivity computed by finite differences. The authors claim that in their application,
almost all CPU time is spent computing the sensitivity. Implementation of this strategy required
careful implementation and parallel processing. Moving bases are not mentioned in this paper.

Sensitivity analysis using Lagrangian derivation. Lagrangian derivation is a method to
analytically derive the Lagrangian equation of motion, described in [21]. It computes the sensitivity
directly from the equations of motion. Therefore, it does not utilize the sparsity in the matrices,
resulting in unnecessary computations. The authors mention moving bases, but do not model them
in a singularity-free way.

Sensitivity analysis using automatic differentiation. Automatic differentiation applies the
chain rule to all operations and functions performed by a computer program in an automatic way.
Since the derivatives of basic operations (i.e. addition, subtraction, multiplication) and functions
(sin, cos, exp) are known, the chain rule can compute the partial derivatives of certain functions.
In [22, 24], this method is applied to multibody systems. A tool called RobCoGen is used to
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automatically generate robot-specific rigid body dynamics code. Automatic differentiation is applied
to this code, to compute the the derivatives. Moving bases are mentioned, but not modelled
singularity-free. In [25] the author warns that automatic differentiation may give wrong results
if it is based on pure syntactical analysis and is implemented without knowledge of the problem
structure.

Sensitivity analysis using recursive analytical derivation. Recursive analytical derivation
uses recursive algorithms (i.e. RNEA, ABA) and derives the equations in these algorithms step by
step, by applying the chain rule. This method requires algebraic differentiation of spatial algebra. In
[26] an algorithm which focuses on underactuated systems is presented. This algorithm is a hybrid
algorithm: it computes partly forward dynamics (for passive joints) and partly inverse dynamics
(for active joints). The configuration space is assumed to be a vector space, therefore the moving-
base can not be modelled singularity-free. In [27, Chapter 6] an analytical algorithm computing the
sensitivity of the inverse dynamics is presented. Moving-bases are not discussed. The authors of [7]
present an analytical algorithm that computes the sensitivity of the inverse dynamics, based on the
RNEA. The derivatives of the forward dynamics can be computed by deriving the ABA, although
the authors state that it may also be found by using a relation between the inverse and forward
dynamics, which result in lower computation times. The computation times needed to derive the
sensitivity of both the inverse and forward dynamics are found to be much lower compared to the
finite difference method. In [28] the same authors present an algorithm to directly compute the
inverse of the mass matrix, without first computing the mass matrix itself. As it is the inverse that
is needed, and not the mass matrix itself, this also leads to lower computation times. This method
is also found to have lower computational times than the standard approach of using Cholesky
decomposition.

1.3 Research objectives and contribution

The goal of this project is to develop a numerically efficient and accurate method to compute the
singularity-free geometric linearization of moving-base multibody systems.

Requirements. There are four requirements related to this project:

• (Si-F) Singularity-free modelling of the moving base.

• (Se-MB) Computing the sensitivity of multibody dynamics.

• (Ef) Highly efficient computations so that the sensitivity can be computed on-line. We aim
to eliminate as many unnecessary computations as possible.

• (Ac) Accurate computations. This includes both exact computations (no approximations as
in finite differences) and correct computations (no wrong computations as may happen in
automatic differentiation).

As far as we are concerned, there is no research yet which combines all these requirements, as is
visible in Table 1.1.
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Table 1.1: Overview of related theories.

Theory Sing-Free Sens-MB Ef Ac

Left-trivialized linearization [11, 17, 18] X X
Recursive algorithms [8, 19, 20] X X X
Finite differences [5, 23] X X
Lagrangian derivation [21] X X
Automatic differentiation [22, 24] X X
Analytical derivation [7, 26, 27] X X X

The goal can be divided in three objectives:

1. Derive and present the mathematical formulas for the singularity-free geometric linearization
of moving-base multibody systems.

2. Derive numerically efficient and accurate algorithms to compute the singularity-free geometric
linearization of moving-base multibody systems.

3. Verify the correctness of the derived algorithms.

1.4 Methodology

As discussed in the previous section, we need to combine several algorithms and mathematical tools
in order to obtain an efficient and accurate method to compute the singularity-free geometric lin-
earization of moving-base multibody systems. Out of the four existing methods to compute the
sensitivity for multibody systems, we choose to continue working on recursive analytical deriva-
tion. Finite differences and Lagrangian derivation are simply too slow as proven in [7]. Automatic
differentiation can lead to unnecessary computations as suggested in [25, 29], since it does not ex-
ploit the full knowledge of sparsity, and it is hard to verify whether intermediate steps are correct.
Recursive analytical derivation does offer the desired numerically efficiency and accuracy, and is
therefore our preferred method for computing the derivatives. As [7] states that the sensitivity of
the forward dynamics is computed faster through computing the sensitivity of the inverse dynamics
due to the computational time forward dynamics being higher than that of the inverse dynam-
ics, our methodology is based deriving the same algorithms, but now in a singularity-free manner.
Therefore our approach will be based on combining the work of [7] with the theory of left-trivialized
linearization presented in [11, 17]. Below we discuss the three objectives in which our goal is divided.

1. Derive and present the mathematical formulas for the singularity-free geometric
linearization of moving-base multibody systems.
To derive the mathematical formulas for singularity-free geometric linearization of moving-base
multibody systems, we can combine the theory of left-trivialized linearization [11, 17] with equa-
tions of motion for moving-base systems [30, Chapter 9], [14, 15, 16]. As we aim to write the
sensitivity of the forward dynamics in terms of the inverse dynamics, the relation between both
must be found. For fixed-base systems, it is described in [7]. For (underactuated) moving-base
systems, however, the relation can not be found easily, as there is no proper definition of inverse
dynamics for underactuated systems. By extending the physical systems with virtual inputs, one
can create a virtual fully actuated system [31], so that the relation between the forward and inverse
dynamics can be found.

2. Derive numerically efficient and accurate algorithms to compute the singularity-
free geometric linearization of moving-base multibody systems.
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Once the mathematical formulas for the linearization have been derived, we aim to compute them in
an efficient and accurate way. Therefore, algorithms need to be written to compute the derivatives
of the inverse dynamics and the inverse of the mass matrix. An efficient and accurate algorithm
to compute the sensitivity of the inverse dynamics of fixed-base systems is given in [7]. In [8], an
algorithm to compute the inverse dynamics for moving-base systems is given. By combining both,
and applying left-trivialized linearization, we can write an algorithm that computes the sensitivity
of the inverse dynamics of moving-base systems. An efficient and accurate algorithm to compute the
inverse of the mass matrix for fixed-base systems is given in [28]. In [8], an algorithm to compute
the mass matrix for moving-base systems is given. By combining both, we can write an algorithm
that computes the inverse of the mass matrix for moving-base systems.

3. Verify the correctness of the derived algorithms.
Once an efficient and accurate method to compute the linearization is found, we aim to verify it
to be correct. There are three parts that require verification: the inverse of the mass matrix, the
sensitivity of the inverse dynamics, and the sensitivity of the forward dynamics. Our strategy is to
use other methods (which are less numerically efficient) to compute the same quantities. The inverse
of the mass matrix for moving-base systems can easily be computed in a way that is known to be
correct, by first computed the mass matrix according to the CRBAmb, and then inverting it. Our
algorithm can be verified by comparing both inverted matrices. As finite differences are a simple
method to compute the linearization, we can easily compare the results from our algorithms to the
results of finite differences, taking into account small numerical errors in the finite difference method.
The computational time for the verification is not an objective, therefore the lack of computational
speed of the finite difference method is no problem. The sensitivities of the inverse dynamics can be
found by running the RNEAmb once unperturbed, and once perturbed for each system state. Our
algorithm for the inverse dynamics can be verified by comparing both sensitivities. By perturbing
the ABAmb, our method for the forward dynamics can be verified in a similar manner.

1.5 Report outline

This report is structured as follows. In Chapter 2 we present the preliminaries related to this
thesis. This includes the representations of the pose a moving base, Lie group theory and the Lie
group SEp3q, sensitivity analysis on vector spaces and Lie groups, multibody system definitions and
notation, equations of motion and recursive algorithms.

In Chapter 3 we present the theoretical aspects of left-trivialized linearization of moving-base
multibody systems. Firstly the Lie group on which moving-base systems are defined is discussed.
Secondly the mathematical formulas for left-trivialized linearization of the forward dynamics are
shown. Lastly, we extend the system with (non-physical) inputs to derive the relation between the
left-trivialized derivatives of the forward dynamics and those of the extended inverse dynamics. We
use this relation to express the derivatives of the forward dynamics in terms of the derivatives of
the extended inverse dynamics.

In Chapter 4 we present the algorithmic aspects of left-trivialized linearization of moving-base
multibody systems. Firstly we propose a new algorithm: the Extended Inverse Dynamics Algorithm
for moving-base systems (EIDAmb), which computes the extended inverse dynamics. Secondly four
new algorithms are proposed, which compute the derivatives of the extended inverse dynamics with
respect to the four system state variables. Thirdly we propose a new version of the Inverse Mass
Matrix Algorithm (IMMA), which computes the inverse of the mass matrix for fixed-base systems.
Lastly, we propose a new algorithm: the Inverse Mass Matrix Algorithm for moving-base systems
(IMMAmb), which is an extended version of the IMMA.

In Chapter 5 we present numerical verification methods and results, to prove that the proposed
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algorithms in Chapter 4 provide correct results. Firstly we present a designed moving-base multi-
body test system, which we use to test our algorithms on. Secondly, we define the left-trivialized
finite differences to verify the correctness of our obtained extended inverse dynamics derivatives.
Thirdly we verify our version of the IMMA using the Composite Rigid Body Algorithm for fixed-
base systems (CRBA), and fourthly we verify the correctness of the IMMAmb using the Composite
Rigid Body Algorithm for moving-base systems (CRBAmb). Lastly we verify the correctness of
the derivatives of the forward dynamics obtained through our proposed algorithms in Chapter 4
using the left-trivialized finite differences of the forward dynamics, which we obtain through the
Articulated Body Algorithm for moving-base systems (ABAmb).

In Chapter 6 we discuss the conclusions of this thesis and present recommendations for future
research.
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Chapter 2

Preliminaries

This chapter aims to present an overview of all background information related to efficient geo-
metric sensitivity analysis of moving-base multibody dynamics necessary to understand this thesis,
separated in nine topics.

The first section describes commonly used representations of the pose of a moving base, and
the advantages and disadvantages of those methods. The second section presents a method for
sensitivity analysis of dynamical systems, of which the configuration space is a vector space. The
third section presents a compact overview of the basics of Lie group theory and references to more
information of this topic. The fourth section presents details on the 3D Special Euclidean group,
which is the most important Lie group for this thesis. The fifth section presents a method for
sensitivity analysis of dynamical systems of which the configuration space is a Lie group. The
sixth section presents definitions regarding multibody systems. The seventh section presents the
multibody dynamics notation used in this thesis. The eight section presents the equations of motion
for both fixed-base as well as moving-base systems. The ninth section presents an overview on
efficient recursive algorithms that are widely used in robotics.

2.1 Representations of the pose of a moving base

The physical attitude and position of a moving base can be modelled by multiple mathematical
representations. As a result, its configuration can either be a vector space, or a Lie group.

One example of modelling a moving base is the 3D Special Euclidean group SEp3q, which consists
of the rotation matrix to represent the attitude, and a 3D vector in Cartesian coordinates, which
represents the position. Although the position could be expressed in polar coordinates or spherical
coordinates, this is unusual and Cartesian coordinates are largely used in robotic literature.

The attitude however, knows many variants in literature. Examples are Euler angles, Euler axis
and angle, unit quaternions, and the rotation matrix [32].

Euler angles use three parameters to describe a physical rotation: three sequential rotations
around pre-determined axes. When choosing the right set of pre-determined axes, any physical
representation can be obtained with these three sequential rotations. Commonly these are chosen
to be the axes of a Cartesian coordinate system. Typically, proper Euler angles rotate twice around
one axis (e.g. x-y-x sequence), while Tait-Bryan angles (or roll-pitch-yaw) rotate once around all
three axes (e.g. x-y-z sequence). Both proper Euler angles and Tait-Bryan angles are commonly
considered to be Euler angles. Euler angles suffer from singularity issues, also known as gimbal lock :
the rotation around the second axis can be so that the first and third axis align. In that case, it
is impossible to transform the time derivative of the Euler angles to the angular velocity vector.
Therefore, time-invariant continuous control laws using the three parameters of Euler angles can not
be globally defined. Furthermore, control laws based on Euler angles may suffer from a phenomena
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called unwinding if not carefully designed. As a physical rotation may have multiple mathematical
representations in Euler angles (an increment of 360 degrees in any of the sequential rotations
results in the initial rotation), therefore we say that Euler angles are not a unique representation
of a physical rotation. A closed-loop trajectory may not directly go towards its desired attitude
equilibrium. Even if the desired equilibrium is close to the initial attitude, the rigid body can
make large rotational movements. An example of this is depicted in Figure 2.1, where a planar
rotational system shows the phenomenon of unwinding, due to the non-uniqueness of the chosen
representation. Here θ is the current position and θd is the desired position. The system should
rotate 1{4rrads clockwise, however here it rotates 7{4rrads counterclockwise.

θd = 0[rad]

θ = −7=4[rad]

Figure 2.1: Phenomenon of unwinding on a planar rotational system, due to the non-uniqueness of
the chosen representation.

Euler axis and angle uses four parameters to describe a physical attitude: three represent a unit
vector, and the fourth represents a rotation around that unit vector. The transformation of time
derivative of Euler axis and angle to the angular velocity vector is globally defined, meaning that
the singularity does not exist for this representation. Although globally defined, unwinding may
still occur, as Euler axis and angle are not unique. Again an increment of 360 degrees in the angle
results in the initial angle. Furthermore, by taking the opposite direction of the axis, the same
physical attitude can be achieved.

Unit quaternions are based on the Euler axis and angle and also uses four parameters. These
parameters are scaled by an extension of Euler’s formula. The resulting parameters are again
globally defined, and due to the scaling, the increment of 360 degrees no longer exists. However,
unit quaternions are still not unique, as there are exactly two sets on unit quaternions for each
physical attitude, which origins from the axis being able to face two directions. Therefore, time-
invariant continuous controllers based on unit quaternions may show the phenomena of unwinding
if not carefully designed.

The rotation matrix uses a three-by-three matrix to represent a physical attitude, and therefore
involves nine parameters. However, these parameters are under some constraints imposed by the
3D Special Orthogonal group SOp3q. This is a subgroup of the 3D Orthogonal group Op3q, which
has three-by-three matrices as elements and matrix multiplication as group operation. The 3D
Orthogonal group has the properties that the determinant of an element is equal to either plus or
mines one, an element multiplied by its inverse is equal to the identity matrix and an element’s
transpose is equal to its inverse. The elements having determinant plus one belong to the 3D
Special Orthogonal group, and represent physical attitudes. The rotation matrix is both globally
defined and unique. The time rate of change of any element can be mapped into the angular
velocity vector, and each physical attitude has exactly one mathematical representation. Time-
invariant continuous control laws based on the rotation matrix do not suffer from unwinding as the
representation is unique. It does suffer from having multiple equilibrium points, namely four, of
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which three (undesired) equilibrium points are unstable, and only the desired equilibrium is stable.
Due to the unstable equilibrium points, global attitude stabilization is impossible. In Figure 2.2,
this phenomenon is demonstrated. A planar rotational system is depicted, where position A is the
desired (stable) equilibrium, and as a result of a time-invariant continuous control law, there must
be a position B that becomes an undesired (unstable) equilibrium.

A B

Figure 2.2: The impossibility of global attitude stabilization using a time-invariant continuous
control law on a planar rotational system.

Table 2.1 presents an overview of different attitude representations and their properties.

Table 2.1: Summary of attitude representations.

Representation Number of parameters Globally defined Unique

Euler angles 3 No No

Euler axis and angle 4 Yes No

Unit quaternions 4 Yes No

Rotation matrix 9 Yes Yes

2.2 Sensitivity analysis of dynamical systems on vector spaces

Sensitivity analysis is the study of how the outputs of a nonlinear mathematical function depend
on its inputs. For dynamical systems, the mathematical function is the system’s dynamics

9x “ fpx, u, λ, tq, (2.1)

where x is the (system) state vector, u the input vector and λ design parameters (if any). The
state vector is typically a combination of the position and velocity vectors. Sensitivity analysis
of nonlinear dynamical systems studies how the time-derivative of the state vector depends on the
state vector Bf{Bx, input vector Bf{Bu, and design parameters Bf{Bλ. For single-input-single-output
systems, these quantities are scalars, while for multi-input-multi-output systems, these quantities
are matrices, are therefore called the sensitivity matrices.

As presented in the introduction, the linearization of systems independent of design parameters,
9x “ fpx, u, tq, about a nominal trajectory ηpxptq, uptqq is written in state space representation as

9zptq “ Apη, tqzptq `Bpη, tqwptq, (1.2, revisited)

where zptq is the perturbation vector, wptq the perturbed input vector, Apη, tq the state matrix and
Bpη, tq the input matrix. Since xptq and uptq are defined on vector spaces, the perturbation vector
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zptq and perturbed input vector wptq are typically chosen equal to xptq and uptq respectively. The
state and input matrices (also called sensitivity matrices) are given by

Apη, tq “
Bfpx, u, tq

Bx
(2.2)

and

Bpη, tq “
Bfpx, u, tq

Bu
. (2.3)

It should be noted that sensitivity analysis is performed about a certain trajectory which generally
depends on time. Therefore the sensitivity matrices Apη, tq and Bpη, tq generally depend on time and
need to be re-evaluated continuously to ensure that the linearized system offers a good approximation
to the nonlinear system.

For more information on sensitivity analysis, linearization and perturbation theory, we refer to
(respectively) [6, Section 3.3, Section 4.3, and Chapter 10].

2.3 Lie group theory

We aim to describe the pose of a moving base as an element of the Lie group SEp3q. Therefore
good understanding of Lie group theory is necessary. As Lie groups are a sub-class of groups, we
shall first define what a group is. For the interested reader, we suggest the books [33, 34] on general
Lie group theory. For roboticists and mechanical engineers, we also advice the book [35] and the
papers [18, 32, 36], which discuss Lie groups in the context of geometric mechanics and robotics.

2.3.1 Groups and Lie groups

A group consists of two parts: a set and a binary operation. Applying the operation on two
elements of a group results in a third element belonging to the group. Four requirements, called the
group axioms, must hold for any group: closure, associativity, the identity element, and the inverse
element. We define a group G, which has a set S and a group operation ¨, so that the group is
written as G “ pS, ¨q. The group axioms are defined as:

• Closure: for each g1, g2 P S, g1 ¨ g2 “ g3 P S.

• Associativity: for each g1, g2, g3 P S, pg1 ¨ g2q ¨ g3 “ g1 ¨ pg2 ¨ g3q.

• Identity element: there exists an identity element e P S, such that e ¨ g “ g ¨ e “ g for any
element g P S. There exists only one identity element in a group.

• Inverse element: for each g1 P S there exists an inverse element g2 P S, such that g1 ¨ g2 “
g2 ¨ g1 “ e.

A Lie group is smooth (differentiable) manifold, satisfying the conditions of a group, as well as the
additional condition that the group operations are differentiable. The most simple example of a
(Lie) group is the set R, equipped with the operation of addition. We write G “ pR,`q. The four
group axioms hold:

• Closure: for each a, b P R, a` b “ c P R.

• Associativity: for each a, b, c P R, pa` bq ` c “ a` pb` cq.

• Identity element: there exists an identity element 0 P R, such that 0` a “ a` 0 “ a for any
element a P R. There exists only one identity element in G, which is 0.
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• Inverse element: for each a P R there exists an inverse element bp“ ´aq P R, such that
a` b “ b` a “ 0.

Another example of a (Lie) group is the 3D Special Orthogonal group SOp3q, which is the group
describing 3D rotations. This group consists of the set SOp3q, equipped with the operation of matrix
multiplication. For clarity, we first describe the requirements of the set SOp3q:

• The set SOp3q is a set of three-by-three matrices.

• Each element R P SOp3q has a determinant equal to 1.

• For each element R P SOp3q, its transpose is equal to its inverse. Therefore we write RRT “

I3.

The group SOp3q is written as G “ pSOp3q, ¨q, where ¨ represents matrix multiplication. Again the
four group axioms hold:

• Closure: for each R1,R2 P SOp3q, R1 ¨R2 “ R3 P SOp3q.

• Associativity: for each R1,R2,R3 P SOp3q, pR1 ¨R2q ¨R3 “ R1 ¨ pR2 ¨R3q.

• Identity element: there exists an identity element I3 P SOp3q, such that I3 ¨R “ R ¨ I3 “ R
for any element R P SOp3q. There exists only one identity element in SOp3q, which is I3.

• Inverse element: for each R1 P SOp3q there exists an inverse element R2p“ R´1
1 q P SOp3q,

such that R1 ¨R2 “ R2 ¨R1 “ I3.

2.3.2 Tangent spaces, left- and right-translations, and Lie algebra

Every point x on a manifold M that is smooth (note that the manifold of a Lie group is differentiable
by definition) has an associated tangent space TxM . The tangent space TxM is a vector space that
touches the manifold M at point x. Figure 2.31 shows a visualization for the tangent space TxM of
a point x on a sphere M . For the example of the set SOp3q, the tangent space TRSOp3q contains
the element 9R P TRSOp3q, for the specific R P SOp3q.

Figure 2.3: The tangent space TxM of a point x on a sphere M .

All tangent spaces of the manifold M together form the tangent bundle TM . For the example of
the set SOp3q, the tangent bundle TSOp3q contains all elements 9R P TSOp3q, for all R P SOp3q.

1Picture retrieved from https://en.wikipedia.org/wiki/Tangent_space

https://en.wikipedia.org/wiki/Tangent_space


14 Chapter 2. Preliminaries

The left-translation is a mapping Lg : GÑ G defined as

Lgh :“ g ¨ h, (2.4)

where G is a Lie group, g, h P G and ¨ is the group operation. Likewise, the right-translation
Rg : GÑ G is defined as

Rgh :“ h ¨ g. (2.5)

We write Lgh and Rgh in shortened notation as gh and hg respectively. Using left and right

translations, one can map a velocity 9h P ThG to a different tangent space,

ThLg 9h “ g ¨ 9h P TghG (2.6)

and

ThRg 9h “ 9h ¨ g P ThgG, (2.7)

which we write in shortened notation as g 9h and 9hg respectively. The velocity can be mapped to the
tangent space at the identity of the group by using a specific left-translation

TgLg´1 9g “ g´1 9g P Tg´1gG

“ g´1 9g P TeG. (2.8)

This left-translation of an element and its velocity with the inverse of the element is called left-
trivialization. The tangent space at the identity element of the Lie group is called the Lie algebra,
g :“ TeG. Like Lie groups, Lie algebra have a binary operation called the Lie bracket r¨, ¨sg : gˆgÑ
g. Applying the Lie bracket on two elements of the Lie algebra results in a third element belonging
to the Lie algebra. The Lie algebra is a vector space with an operation satisfying the following
axioms, where all x P g:

• Bilinearity: rax1 ` bx2, x3sg “ arx1, x3sg ` brx2, x3sg, where a, b P R are scalars.

• Anticommutativity (also known as skew-symmetry): rx1, x2sg “ ´rx2, x1sg.

• The Jacobi identity: rx1, rx2, x3sgsg ` rx3, rx1, x2sgsg ` rx2, rx3, x1sgsg “ 0.

As a Lie algebra is a vector space, its elements can be identified with vectors in Rm through a
diffeomorphism, where m is the number of degrees of freedom of the group G.

For the example of SOp3q, with an element R P SOp3q and velocity 9R P TRSOp3q, the velocity
is mapped into the Lie algebra by

LR´1 9R “ R´1 9R “ RT 9R “ Ω P sop3q, (2.9)

where

Ω :“

»

—

–

0 ´ω3 ω2

ω3 0 ´ω1

´ω2 ω1 0

fi

ffi

fl

P sop3q. (2.10)

The element Ω of the Lie algebra is mapped into a vector ω in R3, as rotations on SOp3q have three
degrees of freedom, by the vee-operator

ω “ Ω_ “

»

—

–

ω1

ω2

ω3

fi

ffi

fl

. (2.11)
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Likewise, the wedge-operator maps ω P R3 to Ω P sop3q:

Ω “ ω^. (2.12)

This shows that, as a set, R3 is diffeomorphic to sop3q. As a Lie algebra sop3q has Lie brackets
rΩ1,Ω2ssop3q “ Ω1Ω2´Ω2Ω1, which results in an element of the Lie algebra sop3q. This Lie bracket
can be identified by the cross-product as Lie bracket rω1,ω2sR3

ˆ
“ ω1 ˆ ω2 for the set R3. We can

therefore identify sop3q, as a Lie algebra, with R3
ˆ, which is the set R3 with cross-product as Lie

bracket.

2.3.3 Adjoint representations

There exist two adjoint representations: the adjoint representation of a group onto its algebra, Ad,
and the adjoint representation of an algebra onto itself, ad. The adjoint representation of a group
G (with element g P G) onto its algebra g (with element x P g) is Adg : Gˆ gÑ g, defined as

Adg x :“ gxg´1. (2.13)

It is the result of a left-translation by g, and a right-translation by g´1 on x. The adjoint represen-
tation of Lie group SOp3q onto sop3q is AdR : SOp3q ˆ sop3q Ñ sop3q, defined as

AdR Ω :“ RΩR´1, (2.14)

and the adjoint representation of SOp3q onto R3
ˆ is AdR : SOp3q ˆ R3

ˆ Ñ R3
ˆ, defined as

AdRω :“ Rω, (2.15)

therefore we also write AdR “ R, when applied to the Lie algebra R3
ˆ. It should be noted that this

result is specific to the case of SOp3q when the Lie algebra is represented by R3
ˆ and Adg is not

generally equal to g.
The adjoint representation of an algebra g (with elements x1, x2 P g) onto itself is adx : gˆgÑ g,

defined as
adx1 x2 :“ rx1, x2sg “ x1x2 ´ x2x1. (2.16)

It can be found by time-differentiating the Adg function. The adjoint representation of Lie algebra
sop3q onto itself is adΩ : sop3q ˆ sop3q Ñ sop3q, defined as

adΩ1 Ω2 :“ rΩ1,Ω2ssop3q “ Ω1Ω2 ´Ω2Ω1, (2.17)

and the adjoint representation of R3
ˆ onto itself is adω : R3

ˆ ˆ R3
ˆ Ñ R3

ˆ, defined as

adω1 ω2 :“ rω1,ω2sR3
ˆ
“ ω1 ˆ ω2, (2.18)

therefore we also write
adω “ ωˆ “ ω

^. (2.19)

It should be noted that this result is specific to the Lie algebra R3
ˆ and adx is not generally equal

to xˆ. For more details on adjoint representations in the context of geometric robotics, we advice
[35, Sections 4.2-4.3].
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2.3.4 Exponential and logarithmic maps

Each Lie group has an exponential and a logarithmic map. The exponential map converts elements
of the Lie algebra into elements of the Lie group. The logarithmic map is the inverse operation
of the exponential map in a neighbourhood of the identity. For the case of sop3q to SOp3q, the
exponential map is the matrix exponential (not to confuse with exponential of individual entries of
the matrix) expΩ : sop3q Ñ SOp3q defined as

expΩpΩq :“ exppΩq “ R, (2.20)

where expΩ is the exponential map of the Lie group, and exp is the matrix exponential. The
logarithmic map logΩ : SOp3q Ñ sop3q is the inverse of the exponential map, defined as

logΩpRq :“ logpRq “ Ω, (2.21)

where logΩ is the logarithmic map of the Lie group, and log is the matrix logarithm. Since the Lie
algebra R3

ˆ is a more compact way of describing the Lie algebra sop3q, we also define the exponential
map for R3

ˆ to SOp3q is expω : R3
ˆ Ñ SOp3q defined as

expωpωq :“ exppω^q “ R, (2.22)

and the logarithmic map logω : SOp3q Ñ R3
ˆ defined as

logωpRq :“ logpRq_ “ ω. (2.23)

For more details on exponential and logarithmic maps in the context of geometric robotics, we
advice [35, Section 4.4].

2.4 The 3D Special Euclidean group SEp3q

The dynamics of a single rigid body can be defined on the 3D Special Euclidean group, SEp3q. In
Section 2.1, we marked the advantages of using SOp3q to represent rotational dynamics. As SEp3q
is a combination of rotational dynamics on SOp3q and translations dynamics on R3, the 3D Special
Euclidean group is our preferred representation of the moving base. This section presents the details
of the Lie group SEp3q.

2.4.1 The Lie group SEp3q

The translation and rotation of a frame are abstract concepts that can be quantified only when
expressed relative to another frame. In this example, we take the translation and rotation of the
moving-base frame 0, relative to the inertial frame A. The rotation of 0 with respect to A is
AR0 P SOp3q. The translation of the origin of 0 with respect to A is Ao0 P R3. We combine both
in the 4x4 transformation matrix

AH0 :“

«

AR0
Ao0

01ˆ3 1

ff

P SEp3q. (2.24)

The 3D Special Euclidean group is written as G “ pSEp3q, ¨q, which is the set SEp3q combined with
the operation of matrix multiplication. The four group axioms hold:

• Closure: for each H1,H2 P SEp3q, H1 ¨H2 “ H3 P SEp3q.

• Associativity: for each H1,H2,H3 P SEp3q, pH1 ¨H2q ¨H3 “ H1 ¨ pH2 ¨H3q.
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• Identity element: there exists an identity element I4 P SEp3q, such that I4 ¨H “ H ¨ I4 “ H
for any element H P SEp3q. There exists only one identity element in the SEp3q, which is I4.

• Inverse element: for each H1 P SEp3q there exists an inverse element H2p“ H´1
1 q P SEp3q,

such that H1 ¨H2 “ H2 ¨H1 “ I4.

2.4.2 Tangent bundle TSEp3q and Lie algebra’s sep3q and R6
ˆ

The tangent space of Lie group SEp3q at point AH0 is TAH0
SEp3q, which contains the element A 9H0.

All the tangent spaces of SEp3q together form the tangent bundle TSEp3q, containing all elements
9H P TSEp3q, for all H P SEp3q. As shown in Subsection 2.3.2, the tangent space THSEp3q can be

mapped to the Lie algebra sep3q by applying left-trivialization

TAH0
LAH´1

0

A 9H0 “
AH´1

0
A 9H0 “

0v^A,0 P TI4SEp3q “ sep3q, (2.25)

where 0v^A,0 P sep3q is left-trivialized velocity, also called the left-trivialized twist. The subscript
indicates that it is the velocity of frame 0 with respect to frame A, and the superscript indicates
that it is expressed in frame 0. The left-trivialized twist is given by

0v^A,0 “

«

0ω^A,0
0vA,0

01ˆ3 0

ff

P sep3q, (2.26)

where 0ω^A,0 P sop3q is the left-trivialized angular velocity and 0vA,0 P R3 the left-trivialized trans-
lational velocity. The Lie algebra can also be found by applying right-trivialization

TAH0
RAH´1

0

A 9H0 “
A 9H0

AH´1
0 “ Av^A,0 P TISEp3q “ sep3q, (2.27)

where Av^A,0 is the right-trivialized velocity, or right-trivialized twist, given by

Av^A,0 “

«

Aω^A,0
AvA,0

01ˆ3 0

ff

P sep3q, (2.28)

where Aω^A,0 P sop3q is the right-trivialized angular velocity and AvA,0 P R3 the right-trivialized
translational velocity. The superscript indicates that the velocity is expressed in frame A. The
left-trivialized twist is related to the right-trivialized twist as

0v^A,0 “
AH´1

0
Av^A,0

AH0. (2.29)

The Lie algebra sep3q consists of the set sep3q, with the Lie bracket

rv^1 ,v
^
2 ssep3q “ v^1 v^2 ´ v^2 v^1 . (2.30)

The Lie algebra sep3q satisfies all three Lie algebra axioms of Subsection 2.3.2, which is a simple
exercise that we leave to the reader. The Lie algebra can be identified through a diffeomorphism
with the set R6 through the vee operator

p0v^A,0q
_ “ 0vA,0 P R6, (2.31)

where 0vA,0 is the vector representation of the left-trivialized twist, and is given by

0vA,0 “

«

0vA,0
0ωA,0

ff

, (2.32)
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where 0ωA,0 P R3 is the vector representation of the left-trivialized angular velocity. This shows that,
as a set, R6 is diffeomorphic to sep3q. As a Lie algebra, sep3q has the Lie brackets rv^1 ,v

^
2 ssep3q “

v^1 v^2 ´v^2 v^1 . This Lie bracket can be identified by the 6D cross-product as Lie bracket rv1,v2sR6
ˆ
“

v1 ˆ v2 for the set R6, where the 6D cross product is defined as

0vA,0ˆ :“

«

0ω^A,0
0v^A,0

03ˆ3
0ω^A,0

ff

. (2.33)

We can therefore identify sep3q, as a Lie algebra, with R6
ˆ, which is the set R6 with 6D cross-product

as Lie bracket.

2.4.3 Adjoint representations of SEp3q

There exist two adjoint representations: the adjoint representation of a group onto its algebra, Ad,
and the adjoint representation of an algebra onto itself, ad. The adjoint representation of the group
SEp3q onto its algebra sep3q is AdH : SEp3q ˆ sep3q Ñ sep3q, defined as

AdAH0

0v^A,0 :“ AH0
0v^A,0

AH´1
0 . (2.34)

and the adjoint representation of SEp3q onto R6
ˆ is AdH : SEp3q ˆ R6

ˆ Ñ R6
ˆ, defined as

AdAH0

0vA,0 :“ AX0
0vA,0, (2.35)

where AX0 P R6ˆ6 is the velocity transformation matrix, defined as

AX0 :“

«

AR0
Ao^0

AR0

03ˆ3
AR0

ff

. (2.36)

We also write AdAH0
“ AX0. It should be noted that this result is specific to the case of SEp3q

when the Lie algebra is represented by R6ˆ. If the Lie algebra is represented by sep3q, AdH ‰ X.
The adjoint representation of Lie algebra sep3q onto itself is adv^ : sep3qˆsep3q Ñ sep3q, defined

as
adv^1

v^2 :“ rv^1 ,v
^
2 ssep3q “ v^1 v^2 ´ v^2 v^1 , (2.37)

and the adjoint representation of R6
ˆ onto itself is adv : R6

ˆ ˆ R6
ˆ Ñ R6

ˆ, defined as

adv1 v2 :“ rv1,v2sR6
ˆ
“ v1 ˆ v2, (2.38)

therefore we also write adv “ vˆ, where ˆ denotes the 6D cross product defined in (2.33).

2.4.4 Exponential and logarithmic maps of SEp3q

The exponential and logarithmic maps, as presented in Subsection 2.3.4, of the Lie group SEp3q
are defined as the matrix exponential and matrix logarithm respectively. Therefore the exponential
map for the Lie group SEp3q is exp : sep3q Ñ SEp3q, defined as

exppv^q :“ H, (2.39)

and the logarithmic map for the Lie group SEp3q is log : SEp3q Ñ sep3q defined as

logpHq :“ v^. (2.40)
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2.4.5 Wrenches and the dual space

A wrench Bf expressed in frame B is defined as a combination of linear force and angular torque
into a 6D-vector in linear-angular order

Bf :“

«

Bf

Bτ

ff

P R6, (2.41)

where Bf P R3 is a translational force expressed in frame B, and Bτ P R3 the torque expressed
in frame B. A wrench is only expressed in a certain frame, as it is not a quantity that is relative
to another frame. From a perspective of Lie group theory, wrenches are part of the dual space of
sep3q, which is sep3q˚. In this thesis, the dual space is only important for the 6D dual cross-product,
which is defined as

BvA,B ¯̂ ˚ :“

«

Bω^A,B 03ˆ3
Bv^A,B

Bω^A,B

ff

, (2.42)

which is simply the negative of the transpose of (2.33). For more details about wrenches and the
dual space, we refer to [30, Chapter 6] and [36, Section 1.5].
Note: what we call a twist and wrench is what in [8] is called a ‘spatial velocity’ and ‘spatial force’
respectively. Contrary to what we use, both are there defined in angular-linear order.

2.5 Sensitivity analysis of dynamical systems on Lie groups

As shown in the Section 2.3, through left-trivialization a Lie algebra associated to a Lie group G
with n degrees of freedom can be identified with a vector with dimension Rn. This is a fundamental
property for sensitivity analysis of systems evolving on Lie groups, as this allows to map a state
perturbation in G into a perturbation vector in Rn. This is exploited in left-trivialized linearization
of Lie groups, as presented in [11, 17].

Given a Lie group G with element g, a dynamical system evolving on G with m inputs is defined
as

9gptq “ fpg, u, tq, (2.43)

where g P G is the system state, u P Rm the system input and t P R is time. The map f :
G ˆ Rm ˆ R Ñ TG, pg, u, tq ÞÑ fpg, u, tq represents the dynamical system, which maps the state
g, input u, and time t to the tangent space TG of the Lie group G. The tangent space is a vector
space which we want to map into a vector. It is possible to map the dynamical system 9fpg, u, tq to
the Lie algebra g, so that it can be represented by a vector with the same dimension as the number
of degrees of freedom in the Lie group. To do so, left-trivialization is applied. The dynamical
system f can be left-trivialized by applying left-translation with the inverse of the state, g´1. The
resulting left-trivialized vector field λ maps the element g, input u and time t to the Lie algebra.
This left-trivialized vector field λ : Gˆ Rm ˆRÑ g is defined as

λpg, u, tq :“ g´1ptqfpg, u, tq, (2.44)

so that (2.43) can be rewritten to
9gptq “ gptqλpg, u, tq. (2.45)

We want to linearize the system both with respect to the state g, and the input u. As the state
and input are generally dependent on time, we linearize about a nominal trajectory, defined as
ηptq :“ pgptq, uptqq P GˆRm, t ě 0. The left-trivialized linearization of the dynamical system (2.43)
about the nominal trajectory ηptq is given by

9zptq “ Apη, tqzptq `Bpη, tqwptq, (2.46)
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where zptq P g is the perturbation vector, wptq P Rm the perturbed input vector, and where the
state and input matrices are given by

Apη, tq :“ D1 λpg, u, tq ˝DLgpeq ´ adλpg,u,tq (2.47)

and

Bpη, tq :“ D2 λpg, u, tq. (2.48)

Here zptq P g belongs to the vector representation of the Lie algebra, and is a representation of the
system state. As we linearize about a nominal trajectory (and the state and input about which
we linearize are generally not constant), the state matrix Apη, tq and input matrix Bpη, tq are also
generally not constant. In practical applications, this means that re-evaluation of the linearization is
necessary. The input matrix Bpη, tq is computed through a standard derivative of the left-trivialized
vector field λpg, u, tq with respect to the input u. The state matrix Apη, tq is computed in two parts.
The first part D1 λpg, u, tq ˝DLgpeq can be computed in a direction z P g as the limit

D1 λpg, u, tq ˝DLgpeq ¨ z “ lim
εÑ0

1

ε

“

λpg exppεzqq ´ λpgq
‰

, (2.49)

where ε P R is the perturbation scalar. As the exponential maps εz P g from the Lie algebra
to the Lie group G, g exppεzq represents the group operation on two group elements, g P G and
exppεzq P G. The second part adλpg,u,tq is a standard computation of the ad matrix representation
as shown in (2.16). Further details on left-trivialized linearization can be found in [11, 17].

2.6 Multibody system definitions

This section presents definitions used in multibody systems. Definitions of bodies and joints are
given, as well as how to number them. After that, frames are defined and a distinction in types of
wrenches is made.

2.6.1 Bodies and joints

A multibody dynamical system is comprised of multiple bodies connected by joints. Bodies form the
rigid parts of a system, such as the arms or torso for humanoid robots, while joints allow (controlled)
movement in a system, such as the elbows for a humanoid robot.
Assumption 2.1: We assume that all bodies are infinitely rigid, meaning that there is no flexibility
or movement possible inside a body. Therefore the only movement in a system is caused by the
moving base or joints.
Assumption 2.2: We assume that all joints, except for the moving base, are conventional joints of
the following types:

• Revolute (hinge joint): a pure rotational joint around one axis (1 DoF)

• Prismatic (sliding joint): a pure translational joint in one direction (1 DoF)

• Helical (screw joint): a combination of a rotation and a translation like a bolt and nut (1
DoF)

• Cylindrical: both a rotation and a translation around/in the same axis (2 DoF)

• Planar: a rotation and two translation on a plane (3 DoF)
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It is possible to model joints with multiple degrees of freedom as multiple 1-DoF joints, which allows
simplification of the recursive algorithms presented in this thesis, as they then only have to deal
with 1-DoF joints. The cylindrical joint can be modelled as a combination of a revolute and a
prismatic joint around/in the same axis. The planar joint can be modelled as a combination of two
prismatic joints and a rotational joint, all in the same plane. Therefore, modelling just the revolute,
prismatic and helical joints suffices. Joint-specific variables related to these three joint types are
defined in Appendix B.2.

There are two types of joints commonly used which may result in singularity problems: the
spherical joint (also known as ball and socket) and the 6-DoF joint (also known as freeflyer or free
motion joint). Since both have three rotational degrees of freedom, modelling them as a vector space
may result in singularity issues. To be singularity-free, they need to be modelled on Lie groups. As
all joints are modelled as vector spaces in general recursive algorithms, we use algorithms dedicated
to moving-base systems, where the moving-base is modelled on SEp3q, separate from the joints, as
opposed to [7]. Using our method, it is possible to model spherical as 1-DoF joints, however the
user should be wary of singularity issues.

2.6.2 Body and joint numbering

Body numbering starts at the base (either fixed or moving), which is defined as body 0. Going
outwards, the body numbers increase up to nB, the total number of bodies, meaning that each
body’s number must be higher than the one of its parent. The parent of arbitrary body i is
its inward connection and is defined as λpiq. A body may have zero, one, or multiple outward
connections which we call the body’s children. These are defined in an array-structure µpiq. An
example of body numbering is depicted in Figure 2.4, where µpiq “ tj, ku. Note that there are
multiple possibilities to number tree-based multibody systems, e.g. here 3 and 4 could be swapped.

body 0

body 1

body 2

body 3

body 4

body λ(i) body i body j

body k

body nB

Figure 2.4: An example of body numbering.

A joint is said to connect from the predecessor (the body closer to the base) to the successor (the
body further from the base). In particular, joint i has predecessor body λpiq and successor body i,
as shown in Figure 2.5.
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body i

body λ(i)

(predecessor)

(successor)

joint i

Figure 2.5: Joint numbering.

2.6.3 Frames

We define a frame as a combination of an origin and an orientation frame. The origin of frame A
is defined as oA and the orientation frame of frame A is defined as rAs. Frame A can be written as
A “ poA, rAsq [30, 37, 38]. Several frames are used through this report, which are defined here for
clarity. Frame i represents the frame attached of the i-th body of a multibody system and frame
λpiq|i is defined as the frame attached to the i-th joint. An example is shown in Figure 2.6, where
three bodies with two joints are shown. The frames are indicated in blue.

joint λ(i)

body λ(i)

joint i

body i

frame λ(i)

frame λ(i)ji

frame i

Figure 2.6: A general example of body and joint frames.

Frames i and i|µpiq are attached to body i, and frames λpiq and λpiq|i are attached to body λpiq.
The transformation matrix from frame λpiq to frame λpiq|i is defined as λpiq|iHλpiq and is a fixed
parameter of body i since both frames are fixed to body i. The transformation matrix from frame
λpiq|i to frame i is defined as iHλpiq|i and is a purely rotational transformation for revolute and
spherical joints. If a joint i is purely rotational, it should be seen as a point having no volume,
and frames λpiq|i and i have the same origin. For purely translational joints, iHλpiq|i is a purely
translational transformation and the frames λpiq|i and i have the same orientation.
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Besides body-fixed frames, this report also contains frames which are not generally connected
to bodies. When dealing with moving-base systems, frame A represents the inertial frame, which is
fixed to the world. Frames C and D represent arbitrary frames. Note: the letters B and E are not
used to avoid confusion with other literature, where B is often the base frame and E the end-effector
frame.

2.6.4 Types of wrenches

In this thesis we distinct four types of wrenches:

• fBi, the sum of all wrenches acting on body i.

• fIi, the sum of all internal wrenches acting on body i.

• fEi, the sum of all external wrenches acting on body i.

• fJ i, the wrench of body λpiq acting on body i, through joint i.

The sum of all wrenches acting on body i expressed in arbitrary frame C is defined as the sum of
all internal and external wrenches acting on body i

CfBi “ CfIi ` CfEi. (2.50)

The sum of all internal wrenches acting on body i, fIi, expressed in arbitrary frame C, is defined
in terms of joint wrenches as

CfIi “ CfJ i ´
ÿ

l Pµpiq

CfJ l, (2.51)

where µpiq is the array containing all the children of body i, as defined in Subsection 2.6.2.

body i

body λ(i)

body j

body k

fJ i

−fJ j

−fJ k

fEi

Figure 2.7: All wrenches acting on body i.

For the example in Figure 2.7 the children of body i are given by µpiq “ tj, ku and the sum of
internal wrenches on body i would be

CfIi “ CfJ i ´ CfJ j ´ CfJ k. (2.52)
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2.7 Multibody dynamics notation

Many symbols used in the Eindhoven-Genoa (EG) notation have been defined in [30], although not
all variables used in this thesis are included. This section presents an overview of all the variables
used in this report in six tables, followed by a shortened notation. The tables show the numbers,
equation of motion variables and the rigid body dynamics variables. Where necessary, explanations
are found below the tables.

An important distinction must be made between two types of variables. Equation of motion
variables are (as the name suggests) used to express the complete equations of motion of multibody
systems. Rigid body dynamics variables are used to compute the dynamics of single bodies and
joints in recursive algorithms. In Section 4.1, relations between both types of variables are shown,
which we use to relate the equations of motion variables to quantities that can be computed by
recursive algorithms.

2.7.1 Numbers in Eindhoven-Genoa notation

The following table shows which variables the EG notation uses to indicate the number of bodies,
joints and degrees of freedom.

Table 2.2: Numbers in the Eindhoven-Genoa notation.

Row EG Dimension Explanation

1 nB N Number of bodies (excluding the moving-base)

2 ni N Number of degrees of freedom of joint i

3 nJ N Number of degrees of freedom in all joints

4 n “ 6` nJ N Number of degrees of freedom (moving-base)

The number of degrees of freedom for a fixed-base system is given by nJ , as the only degrees of
freedom in a fixed-base system are in the joints. Since in this thesis we consider only conventional
joints (see Assumption 2.2) which we model as 1 DoF joints, ni is equal to one for all joints and nJ
is equal to nB. The tables below, however, show the dimensions of variables in terms of ni and nJ ,
which generally holds for all joint types.

2.7.2 Equations of motion variables in the Eindhoven-Genoa notation

The following three tables show which variables the EG notation uses to indicate the equations
of motion of multibody systems. The first table shows general variables, which are valid for both
fixed-base and moving-base systems. The second and third table show the fixed-base and moving-
base system variables respectively, and the fourth table shows the extended moving-base system
variables, which will be used in Section 3.3.

Table 2.3: General equations of motion variables in the Eindhoven-Genoa notation.

Row EG Dimension Explanation

1 s RnJ Generalized position vector or system shape

2 r RnJ Generalized velocity vector

3 τ RnJ Joint torques or generalized forces vector

Explanations
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• The generalized position vector is given by s “ rs1; s2; ...; snJ s, where si relates the generalized
joint position of joint i to the velocity transformation matrix iXλpiq|i. More details on this
relation are found in Appendix B.2. The variables r and τ have the same structure as s.

Table 2.4: Fixed base equations of motion variables in the Eindhoven-Genoa notation.

Row EG Dimension Explanation

1 qfb “ s RnJ System configuration for fixed-base systems

2 Mfb RnJˆnJ Generalized inertia matrix

3 hfb RnJ Generalized bias wrench vector for fixed-base systems

4 Cfb RnJˆnJ Coriolis matrix for fixed-base systems

5 Gfb RnJ Gravitational wrench vector for fixed-base systems

6 CJA,i R6ˆnJ Jacobian of velocity of frame i w.r.t. frame A

Table 2.5: Moving base equations of motion variables in the Eindhoven-Genoa notation.

Row EG Dimension Explanation

1 AH0 SEp3q Transformation matrix from moving-base frame 0 to
inertial frame A

2 q “ pAH0, sq SEp3qˆRnJ System configuration

3 AR0 SOp3q Rotation matrix of moving-base frame 0 with respect
to inertial frame A

4 Ao0 R3 Origin of moving-base frame 0 with respect to inertial
frame A

5 0vA,0 R6 (Left-trivialized) twist of moving-base frame 0 with
respect to inertial frame A expressed in frame 0

6 ν “ p0vA,0, rq R6 ˆ RnJ Left-trivialized system velocity

7 M Rnˆn Mass matrix

8 M11 R6ˆ6 Inertia matrix of the whole system as a composite
rigid body

9 M12 “ 0F R6ˆnJ Wrenches required to support unit acceleration

10 M22 RnJˆnJ Generalized inertia matrix

11 h Rn Generalized bias wrench vector

12 h1 R6 Bias wrench for the whole system as a composite rigid
body

13 h2 RnJ Generalized bias wrench vector of the joints

14 C Rnˆn Coriolis matrix

15 G Rn Gravitational wrench vector

16 S RnˆnJ Selection matrix

17 CJA,i{0 R6ˆn Geometric Jacobian of velocity of frame i w.r.t.
frame A with moving-base frame 0

These variables are explained in more detail in Section 2.8. For the definitions of these variables, we
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refer to [39, Chapters 3] and the references therein, which handle moving-base multibody equations
of motion and its origin extensively.

Table 2.6: Extended moving base equations of motion variables in the Eindhoven-Genoa notation.

Row EG Dimension Explanation

1 τ̄ b R6 Non-physical control input acting on the moving base

2 τ̄ “ rτ̄ b; τ s R6 ˆ RnJ Extended input vector

The definitions of the extended moving-base equations of motion can be found in Section 3.3.

2.7.3 Rigid body dynamics in the Eindhoven-Genoa notation

The following table shows which variables the EG notation uses to indicate rigid body dynamics,
that are used in recursive algorithms. All variables are (where logical) expressed in an arbitrary
frame C.

Table 2.7: Rigid body dynamics in the Eindhoven-Genoa notation.

Row EG Dimension Explanation

1 CMBi
C R6ˆ6 Inertia matrix of body i

2 CM
Bi,A
C R6ˆ6 Articulated-body inertia matrix of body i

3 CM
Bi,a
C R6ˆ6 Apparent articulated-body inertia matrix of body i

4 CM
Bi,c
C R6ˆ6 Composite rigid body inertia matrix of body i

5 CvA,i R6 Twist or spatial velocity of frame i w.r.t frame A

6 C 9vA,i R6 Apparent acceleration of frame i w.r.t frame A

7 CaA,i R6 Intrinsic acceleration of frame i w.r.t frame A

8 Cagrav R6 Intrinsic gravitational acceleration

9 Cari R6 Intrinsic acceleration relative to the moving-base accel-
eration, plus the gravitational acceleration of body i

10 Cavpi R6 Intrinsic acceleration that only accounts for the velocity
product terms of body i

11 CmBi R6 Spatial momentum of body i

12 CΓλpiq,i R6ˆni Joint velocity subspace matrix of joint i

13 C 9Γλpiq,i R6ˆni Joint apparent acceleration subspace matrix of joint i

14 CAλpiq,i R6ˆni Joint intrinsic acceleration subspace matrix of joint i

15 ivλpiq,i R6 Velocity of joint i

16 CfBi R6 Total wrench acting on body i

17 CfJ i R6 Wrench transmitted from body λpiq to body i across
joint i

18 CfIi R6 Sum of all internal wrenches acting on body i

19 CfEi R6 Sum of all external wrenches acting on body i

continued on the next page.
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Row EG Dimension Explanation

20 CbBi R6 Bias wrench acting on body i

21 CbABi R6 Articulated-body bias wrench acting on body i

22 CbaBi R6 Apparent articulated-body bias wrench acting on
body i

23 CbcBi R6 Composite rigid body bias wrench acting on body i

24 CbvpB0 R6 Bias wrench of moving-base with zero joint accelera-
tion

25 CXD R6ˆ6 Velocity transformation from frame D to frame C

26 CXD R6ˆ6 Wrench transformation from frame D to frame C

27 CUBi R6ˆni Subexpression used in ABA

28 DBi Rniˆni Subexpression used in ABA

29 uBi Rni Subexpression used in ABA

30 CFBi R6 Required wrench to support unit acceleration of joint
i

31 Fi R6ˆnJ Wrench set collecting the contributions of the sup-
porting tree rooted at i

32 Pi R6ˆnJ Motion set which contains the contributions of all
parents of joint i

Explanations

• Row 12: the joint velocity subspace matrix is given by Cvλpiq,i “
CΓλpiq,i 9si.

• Row 14: the joint intrinsic acceleration subspace matrix is given by Caλpiq,i “
CAλpiq,i 9si,

where CAλpiq,i “
C 9Γλpiq,i `

CvA,i ˆ
CΓλpiq,i.

• Row 27: the subexpression is given by CUBi “ CM
Bi,A
C

CΓλpiq,i.

• Row 28: the subexpression is given by DBi “
CΓT

λpiq,i CUBi.

• Row 29: the subexpression is given by uBi “ τ i ´
CΓT

λpiq,i CbABi.

2.7.4 Shortened rigid body dynamics notation

Preciseness is one of the advantages of the Eindhoven-Genoa notation, as all aspects to a variable
(e.g. in which frame it is expressed, with respect to which frame it is) are present in the notation.
The preciseness does come with a downside: the notation can become unnecessarily bulky and
overloaded with frames. Therefore we shorten commonly used variables as follows:

vi “
ivA,i fBi “ ifBi

ai “
iaA,i fEi “ ifEi

mBi “ imBi fIi “ ifIi

vJ i “
ivλpiq,i fJ i “ ifJ i

cJ i “
icλpiq,i MBi “ iMBi

i

dJ i “
idλpiq,i bBi “ ibBi

ΓJ i “
iΓλpiq,i UBi “ iUBi
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2.8 Equations of motion for fixed-base and moving-base systems

This section presents the equations of motion of both fixed-base and moving-base systems. All
variables related to the equations of motion can be found in the notation section (Section 2.7) in
Tables 2.3, 2.4 and 2.5.

2.8.1 Fixed-base systems

The configuration of a fixed-base system with nJ 1-DoF joints is parametrized as qfb :“ s, where
s P RnJ is the generalized position vector, also named the system’s shape. The total number of
degrees of freedom is equal to nJ , since the system only has degrees of freedom in the joints. The
time-derivative of the configuration is given by 9qfb “ 9s, from which we define r :“ 9s, where r P RnJ

is the generalized velocity vector. The dynamics of a fixed-base system is written as

Mfb 9r`Cfbr`Gfb “ τ `
ÿ

k P IC

CJTA,i CfEk, (2.53)

where 9r P RnJ the generalized acceleration vector, Mfb P RnJˆnJ the generalized inertia matrix,
Cfb P RnJˆnJ the Coriolis matrix for fixed-base systems, Gfb P RnJ the gravitational wrench vector
for fixed-base systems, τ P RnJ the joint torques or generalized forces vector, IC P R the set of closed
contacts for which i is the body on which closed contact k is acting, CJA,i P R6ˆnJ the Jacobian
of the velocity of frame i w.r.t. frame A expressed in contact frame C, and CfEk P R6 the external
wrench acting on closed contact k expressed in contact frame C. Recursive algorithms combine the
Coriolis, gravitational and external wrenches into a generalized bias wrench. Therefore we rewrite
the dynamics (2.53) where we use the generalized bias wrench for fixed-base systems instead of the
Coriolis matrix, gravitational wrench vector and external forces and add the kinematics to obtain
the equations of motion for fixed-base systems as

9s “ r (2.54)

and

Mfb 9r` hfb “ τ , (2.55)

where hfb is the generalized bias wrench vector for fixed-base systems, defined as

hfb :“ Cfbr`Gfb ´
ÿ

k P IC

CJTA,i CfEk. (2.56)

2.8.2 Moving-base systems

The configuration of a moving-base system with nJ 1-DoF joints is parametrized as q :“ pH, sq,
where H :“ AH0 P SEp3q is the moving-base transformation matrix, where A is the inertial frame
and 0 is the moving-base frame. The total number of degrees of freedom n is given by n “ nJ ` 6,
as there are six degrees of freedom in the moving-base. The time-derivative of the configuration
is given by 9q “ p 9H, 9sq, from which we define ν :“ pv, rq through left-trivialization (see Subsection
2.4.2), where v :“ 0vA,0 P R6 is the moving-base twist. The kinematics of the moving base are given

by 9H “ Hv^ and the kinematics of the joints by 9s “ r. The dynamics of a moving-base system is
written as

M 9ν `Cν `G “ Sτ `
ÿ

kPIC

CJTA,i{0 CfEk, (2.57)



2.9. Recursive rigid body dynamics algorithms 29

where M P Rnˆn is the mass matrix, C P Rnˆn the Coriolis matrix, G P Rn the gravitational
wrench vector, CJTA,i{0 P R6ˆn the geometric Jacobian of the velocity of frame i w.r.t. frame A
expressed in contact frame C with moving-base frame 0, and

S :“ r06ˆnJ ; InJ s P R
nˆnJ (2.58)

the joint selection matrix. Recursive algorithms for moving-base systems also make use of the
generalized bias wrench. Therefore we rewrite the dynamics (2.43) in terms of the generalized bias
wrench and add the kinematics to obtain the equations of motion for moving-base systems as

9H “ Hv^, (2.59)

9s “ r, (2.60)

and

M 9ν ` h “ Sτ , (2.61)

where h is the generalized bias wrench vector, defined as

h :“ Cν `G´
ÿ

kPIC

CJTA,i{0 CfEk. (2.62)

The dynamics (2.61) can be written in matrix form as
«

M11 M12

M21 M22

ff«

9v

9r

ff

`

«

h1

h2

ff

“

«

06ˆ1

τ

ff

, (2.63)

where M11 P R6ˆ6 is the 6D inertia matrix of the whole system in its current shape, M12 “ MT
21 P

R6ˆnJ is a matrix stacking the wrenches required to support unit acceleration [8, Section 9.3],
M22 P RnJˆnJ the generalized inertia matrix, h1 P R6 the bias wrench for the whole system as a
composite rigid body and h2 P RnJ the generalized bias wrench vector of the joints, so that

M “

6 nJ
„ 

M11 M12 6

M21 M22 nJ
(2.64)

and

h “

1
„ 

h1 6

h2 nJ
. (2.65)

Assumption 2.3: In this thesis we assume that there are no external wrenches, so CfEk “ 0 @ k.
Therefore we write the generalized bias wrench vector (2.62) without external wrenches as

h “ Cν `G. (2.66)

2.9 Recursive rigid body dynamics algorithms

Recursive rigid body dynamics algorithms can compute the matrices and vectors of multibody
equations of motion (2.55) and (2.61) in an efficient way by exploiting the sparsity in these matrices.
The concept is simple: there exist multiple ways to compute a vector a of dimension n, defined as

ai :“
i
ÿ

j“1

bj P R, (2.67)
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where b P Rn and bj P R is the j-th element of vector b. One can create a for loop from 1 to i which
adds bj to ai, and does this for every ai. When i gets relatively big, the computation of a will take
many additions. This method has a number of operations of order Opn2q. Another possibility is to
exploit the knowledge about the structure of a and compute

ai “ ai´1 ` bi, (2.68)

which always only consists of a single addition. This method has a number of operations of order
Opnq. The concept of (2.68) forms the basis of recursive algorithms.

Three well-known recursive algorithms are the Recursive Newton Euler Algorithm (RNEA) [19],
the Composite Rigid Body Algorithm (CRBA) [20] and the Articulated Body Algorithm [8, Chapter
7]. There are variants for both fixed-base and moving-base systems. Furthermore we briefly explore
recursive analytical derivatives algorithms, which are based on recursive algorithms. The dynamics
variables used here can be found in the notation section (Section 2.7) in Tables 2.3, 2.4 and 2.5.

Fixed-base recursive algorithms. The inverse dynamics is the necessary joint torques to
achieve certain desired joint accelerations. It is often used in control, trajectory design and op-
timization, and mechanical design applications. The RNEA computes the inverse dynamics of a
fixed-base system (2.55) as

τ ps, r, 9rq “ Mfbpsq 9r` hfbps, rq. (2.69)

The RNEA is also useful for computing the generalized bias wrench vector hfbps, rq. If one chooses
9r “ 0 as input, the result of the RNEA is simply

τ ps, r, 0q “ hfbps, rq. (2.70)

The RNEA can be found in Appendix E.1. The CRBA computes the mass matrix Mfbpsq in a
recursive manner. By combining it with the RNEA to compute hfbps, rq, the entire dynamics can
be found. This is a method to compute the forward dynamics. The CRBA can be found in Appendix
E.3. The forward dynamics is used to compute the joint accelerations with given joint torques. It is
often used in simulations and prediction. The ABA computes the forward dynamics of a fixed-base
systems (2.55) in a recursive manner as

9rps, r, τ q “ M´1
fb psq

`

τ ´ hfbps, rq
˘

. (2.71)

The ABA can be found in Appendix E.5.

Moving-base recursive algorithms. As moving-base systems have n “ nJ ` 6 degrees of free-
dom, but only nJ actuators, they are underactuated. Therefore there is no proper definition of
inverse dynamics for moving-base systems. Even though it is not possible to achieve both a de-
sired moving-base acceleration as well as desired joint accelerations, it is possible to achieve only
desired joint accelerations without specifying the moving-base acceleration. This method is called
the Recursive Newton Euler Algorithm for moving-base systems (RNEAmb). It computes the joint
torques of (2.61) as

Sτ pq,ν, 9νq “ Mpsq 9ν ` hpq,νq. (2.72)

Similar to the RNEA, the RNEAmb can also be used to compute the generalized bias wrench vector
hpq,νq of (2.65) by specifying 9ν “ 0 as input, the result of the RNEAmb is simply

Sτ pq,ν, 0q “ hpq,νq. (2.73)

The RNEAmb can be found in Appendix E.2. The mass matrix for moving-base systems Mpsq of
(2.64) can be computed by the Composite Rigid Body Algorithm for moving-base systems (CR-
BAmb). Again, by combining it with the RNEAmb to compute hpq,νq, the entire dynamics can
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be found. This is a method to compute the forward dynamics. The CRBAmb can be found in
Appendix E.4. The Articulated Body Algorithm for moving-base systems (ABAmb) computes the
joint accelerations with given joint torques. Similar to the RNEAmb, the moving-base acceleration
can not be specified. The ABAmb computes the joint accelerations of (2.61) as

9rpq,ν, τ q “ M´1psq
`

τ ´ hpq,νq
˘

. (2.74)

The ABAmb can be found in Appendix E.6.

Recursive analytical derivatives algorithms. In [7], the authors present a method, which we
call recursive analytical derivatives, to efficiently compute the derivatives of the inverse dynamics of
fixed-base systems. It derives the equations in the RNEA step by step, by applying the chain rule.
This method is limited to systems that have its configuration space modelled as a vector space. The
algorithms that compute the derivatives of the inverse dynamics are presented in Appendix E.8.

2.10 Summary

An overview of all background information related to this thesis has been presented in this chapter.
The representations of the pose of a moving base have been discussed, from which we have concluded
that the rotation matrix is the only representation of a rotation which is both globally defined and a
unique representation. We have presented the fundamentals of three topics: sensitivity analysis on
vector spaces, Lie group theory and the Lie group SEp3q. The theory of left-trivialized linearization,
which is a sensitivity analysis method on Lie groups, has been recalled. After that we have presented
definitions and notation for multibody systems. We have used the definitions and notation to present
the equation of motion for both fixed-base and moving-base systems. Lastly we have elaborated
the concept of recursive rigid body algorithms, and discussed commonly used existing recursive
algorithms for both fixed-base and moving-base systems.
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Chapter 3

Left-Trivialized Linearization:
Theoretical Aspects

In this chapter, we derive the mathematical formulas for the left-trivialized linearization of the
forward dynamics of moving-base multibody systems. To do so, we first present the Lie group
on which moving-base multibody dynamics are defined, including its Lie algebra, left-translation,
left-trivialized tangent map and adjoint representations. Then the state and input matrices of the
forward dynamics of moving-base systems are presented, which are obtained through left-trivialized
linearization. Finally, we extend the system with (non-physical) inputs to derive the relation between
the left-trivialized derivatives of the forward dynamics and those of the extended inverse dynamics.
Using this relation, we express the forward dynamics derivatives in terms of the extended inverse
dynamics derivatives and the inverse of the mass matrix.

3.1 Lie group of moving-base systems

The configuration manifold of a moving-base multibody system composed of a moving base to which
several 1-DoF joints are attached is

Q “ SEp3q ˆ RnJ , (3.1)

where ˆ denotes the Cartesian product of sets. The moving-base pose (translation and rotation) is
represented by H :“ AH0 P SEp3q as defined in (2.24), and the joint displacements are lumped into
the vector s P RnJ . The Cartesian product of these two sets combines them into a single set. We
recall that the configuration was defined in Section 2.8 as q “ pH, sq, which belongs to the manifold
Q.

The state manifold of the moving-base system is

TQ “ T
`

SEp3q ˆ RnJ
˘

“ TSEp3q ˆ TRnJ , (3.2)

which is the tangent bundle of the configuration manifold Q. The moving-base state is represented
by pH, 9Hq P TSEp3q, which represents the pose of the base and its time-derivative. The joint state
is represented by ps, 9sq P TRnJ , which represents the displacements of the joints and their time-
derivative. Applying left-trivialization to 9H in pH, 9Hq P TSEp3q results in pH,v^q P SEp3q ˆ sep3q,
which can be further identified with pH,vq P SEp3q ˆ R6 by applying the vee operation on v^, as
in (2.31). This shows that, as a set, SEp3q ˆ R6 is diffeomorphic to TSEp3q. The manifold TRnJ

can be identified with RnJ ˆ RnJ , as they are also diffeomorphic. Therefore, we have the following
identification

TQ – SEp3q ˆ RnJ ˆ R6 ˆ RnJ , (3.3)
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where – denotes a diffeomorphism. An element of the state manifold TQ is pH, s,v, rq P TQ, which
is used in writing the moving-base dynamics (2.59), (2.60), and (2.61).

The state manifold defined above is not yet a Lie group, as a Lie group is defined by a set and
an operation and we have not defined an operation yet. Taking two elements of the set SEp3q ˆ
RnJ ˆ R6 ˆ RnJ , pH1, s1,v1, r1q and pH2, s2,v2, r2q, we define the group operation as

pH1, s1,v1, r1q ¨ pH2, s2,v2, r2q “ pH1H2, s1 ` s2,v1 ` v2, r1 ` r2q. (3.4)

There exist alternative group operations which may be chosen. An example for TQ “ TSEp3qˆTRnJ

would be

pH1, s1, BH1, r1q ¨ pH2, s2, BH2, r2q “ pH1H2, s1 ` s2,H1BH2 ` BH1H2, r1 ` r2q, (3.5)

which, together with manifold TQ forms the tangent group of SEp3q ˆ RnJ . In [11], the authors
have shown that for the case of SOp3q the group operation similar to (3.4) is much more simple in
terms of complexity of the expressions obtained than (3.5).

To express a Lie group as a combination of multiple Lie groups, the group direct product ˆ
[35, Chapter 2.4] is used, which is similar to the how Cartesian product combines sets. Using the
set (3.3), the operation (3.4) and the group direct product, the Lie group on which moving-base
multibody systems are defined is

G “ SEp3q ˆ RnJ ˆ R6 ˆ RnJ . (3.6)

In this way G is the group direct product of the Lie groups SEp3q, RnJ , R6 and RnJ .
The Lie algebra of G in (3.6) is

g “ sep3q ‘ RnJ ‘ R6 ‘ RnJ , (3.7)

where ‘ denotes the direct sum of two Lie algebras [35, Chapter 7.2]. The direct sum combines two
Lie algebra’s into a single Lie algebra, similar to the group direct product and Cartesian product.
Therefore g is the direct sum of the Lie algebras sep3q, RnJ , R6 and RnJ . The sub-algebra sep3q can
be identified with R6

ˆ, as shown in Subsection 2.4.2, where R6
ˆ is the vector space R6 with the Lie

bracket given by the 6D cross product which is defined in (2.33). We identify the Lie algebra with

g – R6
ˆ ‘ RnJ ‘ R6 ‘ RnJ , (3.8)

which, with a slight abuse of terminology, we call the Lie algebra of Lie group G. The left-translation
on the Lie group G is

LpH1,s1,v1,r1qpH2, s2,v2, r2q “ pH1H2, s1 ` s2,v1 ` v2, r1 ` r2q P G, (3.9)

which has the tangent map

DLpH1,s1,v1,r1qpδH2, δs2, δv2, δr2q “ pH1δH2, δs2, δv2, δr2q P T pSEp3q ˆ RnJ ˆ R6 ˆ RnJ q, (3.10)

which we call the left-translated tangent map of Lie group G. Using an element of the Lie algebra,
pzH , zs, zv, zrq P g, the adjoint representation (defined in Subsection 2.3.3) of Lie group G into its
Lie algebra g is

AdpH,s,v,rqpzH , zs, zv, zrq “ pXzH , zs, zv, zrq, (3.11)

where X is the velocity transformation matrix, defined in (2.36). The adjoint representation (defined
in Subsection 2.3.3) of the Lie algebra g onto itself is

adpzH1,zs1,zv1,zr1qpzH2, zs2, zv2, zr2q “ pzH1 ˆ zH2, 0, 0, 0q, (3.12)
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where ˆ denotes the 6D cross product as defined in (2.33). The matrix representation of the adjoint
action of the Lie algebra g onto itself is

adpzH ,zs,zv,zrq “

6 nJ 6 nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

zHˆ 0 0 0 6

0 0 0 0 nJ

0 0 0 0 6

0 0 0 0 nJ

. (3.13)

The state gptq and input uptq of the moving-base system (2.43) are given by

gptq “ pHptq, sptq,vptq, rptqq P G, (3.14)

and

uptq “ τ ptq P RnJ , (3.15)

so that the nominal trajectory about which we linearize is given by

t ÞÑ ηptq “
`

gptq, uptq
˘

“

´

`

Hptq, sptq,vptq, rptq
˘

, τ ptq
¯

P Gˆ RnJ . (3.16)

3.2 State and input linearization matrices for moving-base
systems

We first need to properly define the forward dynamics before we can derive the left-trivialized
linearization of the forward dynamics. By reordering the moving-base systems dynamics (2.61), the
forward dynamics function FD : Gˆ RnJ Ñ Rn is defined as

FDpH, s,v, r, τ q :“ 9νpH, s,v, r, τ q “ M´1psq
“

´ hpH, s,v, rq ` Sτ
‰

, (3.17)

where H “ AH0, s,v “ 0vA,0, r, τ ,ν,M,h and S are as defined in Subsection 2.8.2 and can be
found in the notation section (Section 2.7) in Tables 2.3 and 2.5. The forward dynamics (3.17) can
be further split up as FD “ rFDb;FDjs where

FDbpH, s,v, r, τ q :“ 9vpH, s,v, r, τ q (3.18)

and

FDjpH, s,v, r, τ q :“ 9rpH, s,v, r, τ q, (3.19)

with FDb : G ˆ RnJ Ñ R6 the forward dynamics of the moving base and FDj : G ˆ RnJ Ñ RnJ

the forward dynamics of the joints.
Proposition 3.1: The left-trivialized linearization of the moving-base kinematics 9H “ Hv and 9s “ r
(as in (2.59) and (2.60)) and the forward dynamics (3.17) about the trajectory ηptq “ pgptq, uptqq (as
in (3.16)) is given by 9zptq “ Apη, tqzptq ` Bpη, tqwptq (as in (2.46)), where the perturbation vector
is represented by z “ rzH ; zs; zv; zrs P g, the perturbed input vector as w “ τ P RnJ and the state
matrix A and input matrix B are given by

Apη, tq “

6 nJ 6 nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

´vˆ 0 I 0 6

0 0 0 I nJ

D1 FDb ˝DLHpIq D2 FDb D3 FDb D4 FDb 6

D1 FDj ˝DLHpIq D2 FDj D3 FDj D4 FDj nJ

, (3.20)
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and

Bpη, tq “

nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

0 6

0 nJ

D5 FDb 6

D5 FDj nJ

, (3.21)

where FDb and FDj are the forward dynamics of the moving base and of the joints as in (3.18)
and (3.19), and their derivatives are evaluated at FDbpH, s,v, r, τ q and FDjpH, s,v, r, τ q. �
Proof: Using g “ pH, s,v, rq and u “ τ as defined in (3.14) and (3.15), the left-trivialized vector
field λpg, u, tq of (2.44) for the dynamics of (2.59), (2.60) and (3.17) is

λpg, u, tq “ pH´1,´s,´v,´rqp 9H, 9s, 9v, 9rq,

“ pH´1 9H, 9s, 9v, 9rq,

“ pv, r, 9v, 9rq, (3.22)

where 9s “ r and v “ pH´1 9Hq_ as defined in Section 2.8. For the Lie group G “ SEp3q ˆ RnJ ˆ

R6 ˆ RnJ of (3.6), the state matrix A (2.47) and input matrix B (2.48) become

Apη, tq :“ D1 λpg, u, tq ˝DLpH,s,v,rqpI, 0, 0, 0q ´ adλpg,u,tq (3.23)

and

Bpη, tq :“ D2 λpg, u, tq. (3.24)

The matrix form of the adjoint representation in (2.16) of the Lie algebra λpg, u, tq onto itself,
adλpg,u,tq, is given by

adλpg,u,tq “

6 nJ 6 nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

vˆ 0 0 0 6

0 0 0 0 nJ

0 0 0 0 6

0 0 0 0 nJ

. (3.25)

The left-translated tangent map DLpH,s,v,rqpI, 0, 0, 0q in the direction z “ pzH , zs, zv, zrq is given by

DLpH,s,v,rqpI, 0, 0, 0q ¨ z “ pDLHpIq ¨ zH , zs, zv, zrq. (3.26)

The left-trivialized tangent map D1 λpg, u, tq ˝ DLpH,s,v,rqpI, 0, 0, 0q is found by combining the for-
ward dynamics of the base and joints given by (3.18) and (3.19), the left-trivialized vector field
λpg, u, tq given by (3.22) and the left-translated tangent map given by (3.26) as

D1 λpg, u, tq ˝DLpH,s,v,rqpI, 0, 0, 0q “

6 nJ 6 nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

0 0 I 0 6

0 0 0 I nJ

D1 FDb ˝DLHpIq D2 FDb D3 FDb D4 FDb 6

D1 FDj ˝DLHpIq D2 FDj D3 FDj D4 FDj nJ

,

(3.27)
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which makes it clear that the left-translated tangent maps of FDb and FDj with respect to s,v and
r are nothing more than ordinary tangent vector maps. This corresponds to the expected result,
since s,v and r are elements of vector spaces.

Combining the definition of the state matrix (2.47), the matrix form of the adjoint representation
(3.25) and the left-trivialized tangent map (3.27), the state matrix Apη, tq is found as (3.20). The
input matrix Bpη, tq is found as in (3.21), since

D2 λpg, u, tq “

nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

0 6

0 nJ

D5 FDb 6

D5 FDj nJ

. (3.28)

l

The following proposition presents an expression for the computation of the input matrix in (3.21).
Proposition 3.2 The input matrix Bpη, tq in (3.21) can be computed as

Bpη, tq “

nJ
„ 

0 n

M´1S n
, (3.29)

where M and S are the mass matrix and selection matrix, as defined in Section 2.8.2. �
Proof: The input matrix of (3.21) is the same as (2.48), namely

Bpη, tq “

nJ
„ 

0 n

D5 FD n
. (3.30)

Finally,

D5 FD “
B 9ν

Bτ
“ M´1S, (3.31)

where FDpH, s,v, r, τ q was defined in (3.17). l

3.3 Obtaining the forward dynamics linearization by using
inverse dynamics

We first need to properly define the inverse dynamics before we can express the state matrix of
the forward dynamics linearization in (3.20) in terms of the inverse dynamics. However, for under-
actuated systems, such as moving-base systems, the amount of inputs is less than the amount of
degrees of freedom, meaning that there are generally not enough actuators to achieve a desired set of
accelerations in all degrees of freedom. As we can not generally achieve a desired set of acceleration,
it is impossible to define the inverse dynamics. We can, however, provide underactuated systems
with non-physical control inputs to obtain a (non-physical) fully actuated system [31], which we
call the extended system. We define the non-physical control input τ̄ b P R6, which can be seen as
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a virtual wrench applied to the base which controls all degrees of freedom of the base, making the
base and thus the whole system fully actuated. The extended input vector τ̄ P Rn is defined as

τ̄ “

«

τ̄ b

τ

ff

. (3.32)

With the extended input vector, we can define the extended dynamics as

M 9ν ` h “ τ̄ , (3.33)

where M, ν and h are defined as in Subsection 2.8.2 and can be found in the notation section (Section
2.7) in Tables 2.3 and 2.5. Highlighting the base and joint dynamics, the extended dynamics can
be written as

«

M11 M12

M21 M22

ff«

9v

9r

ff

`

«

h1

h2

ff

“

«

τ̄ b

τ

ff

, (3.34)

where M11, M12, M21, M22, v, r, h1 and h2 are as defined in Subsection 2.8.2. More abstractly,
we write the extended dynamical system of (2.43) as

9gptq “ f̄pg, ū, tq, (3.35)

where gptq “ pHptq, sptq,vptq, rptqq as in (3.14), f̄ : G ˆ Rn ˆ R Ñ TG, pg, ū, tq ÞÑ f̄pg, ū, tq and
ū “ τ̄ P Rn. We define the extended forward dynamics FD : Gˆ R6 ˆ RnJ Ñ Rn of the extended
system (3.33) as

FDpH, s,v, r, τ̄ b, τ q :“ 9νpH, s,v, r, τ̄ b, τ q “ M´1psq
“

´ hpH, s,v, rq ` τ̄ pτ̄ b, τ q
‰

, (3.36)

which can be further split up as FD “ rFDb;FDjs with

FDbpH, s,v, r, τ̄ b, τ q :“ 9vpH, s,v, r, τ̄ b, τ q (3.37)

and

FDjpH, s,v, r, τ̄ b, τ q :“ 9rpH, s,v, r, τ̄ b, τ q, (3.38)

with FDb : G ˆ R6 ˆ RnJ Ñ R6 the extended forward dynamics of the moving base and FDj :
GˆR6ˆRnJ Ñ RnJ the extended forward dynamics of the joints. Since the extended system (3.33)
is fully actuated, we can define its inverse dynamics ID : Gˆ R6 ˆ RnJ Ñ Rn as

IDpH, s,v, r, 9v, 9rq :“ τ̄ pH, s,v, r, 9v, 9rq “ Mpsq 9νp 9v, 9rq ` hpH, s,v, rq, (3.39)

which can be further split up as ID “ rIDb; IDjs with

IDbpH, s,v, r, 9v, 9rq :“ τ̄ bpH, s,v, r, 9v, 9rq “ M11psq 9v `M12psq 9r` h1pH, s,v, rq (3.40)

and

IDjpH, s,v, r, 9v, 9rq :“ τ pH, s,v, r, 9v, 9rq “ M21psq 9v `M22psq 9r` h2pH, s,v, rq. (3.41)

Here IDb : G ˆ R6 ˆ RnJˆ Ñ R6 is the extended inverse dynamics of the moving base and
IDj : Gˆ R6 ˆ RnJ Ñ RnJ the extended inverse dynamics of the joints.

The following proposition shows that the state matrix of the forward dynamics linearization in
(3.20) (reported below for convenience of the reader) can be expressed in terms of the extended
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inverse dynamics derivatives and the inverse of the mass matrix. We recall that the state matrix
was given by

Apη, tq “

6 nJ 6 nJ
»

—

—

—

–

fi

ffi

ffi

ffi

fl

´vˆ 0 I 0 6

0 0 0 I nJ

D1 FDb ˝DLHpIq D2 FDb D3 FDb D4 FDb 6

D1 FDj ˝DLHpIq D2 FDj D3 FDj D4 FDj nJ

. (3.20 revisited)

Proposition 3.3: The state matrix Apη, tq of (3.20) can be written in terms of the derivatives of the
extended inverse dynamics (3.39) and the inverse of the mass matrix as

Apη, tq “

6 nJ 6 nJ
»

–

fi

fl

´vˆ 0 I 0 6

0 0 0 I nJ

´M´1 D1 ID ˝DLHpIq ´M´1 D2 ID ´M´1 D3 ID ´M´1 D4 ID 6` nJ

,

(3.42)
where ID is the extended inverse dynamics as in (3.39), and its derivatives are evaluated at
IDpH, s,v, r, 9v, 9rq. Here, M,H, s,v and r are as defined in Subsection 2.8.2. �
Proof: The extended forward and extended inverse dynamics are related to each other through

ID ˝ FD “ id. (3.43)

Note that this relation only holds for fully actuated systems, as there is no definition of inverse
dynamics for underactuated systems as explained in the introduction of this subsection. Evaluated
at an arbitrary extended joint torques vector τ̄ P Rn, (3.43) reads

ID
`

H, s,v, r, FDbpH, s,v, r, τ̄ b, τ q, FDjpH, s,v, r, τ̄ b, τ q
˘

“ τ̄ , (3.44)

which in matrix form reads
«

IDb

`

H, s,v, r, FDbpH, s,v, r, τ̄ b, τ q, FDjpH, s,v, r, τ̄ b, τ q
˘

IDj

`

H, s,v, r, FDbpH, s,v, r, τ̄ b, τ q, FDjpH, s,v, r, τ̄ b, τ q
˘

ff

“

«

τ̄ b

τ

ff

. (3.45)

For the sake of readability, we define

9v :“ FDbpH, s,v, r, τ̄ b, τ q (3.46)

and

9r :“ FDjpH, s,v, r, τ̄ b, τ q. (3.47)

Differentiating (3.45) with respect to H, s,v and r, and applying the chain rule formula on the
result, we obtain

«

Di IDb

Di IDj

ff

`

«

D5 IDb D6 IDb

D5 IDj D6 IDj

ff«

Di FDb

Di FDj

ff

“ 0, (3.48)

with i P t1, 2, 3, 4u, as Di ID represents the left-trivialized partial derivative of the extended inverse
dynamics with respect to the four system state variables. Appendix A.2 explains how (3.48) is found.
In (3.48) the arguments of the inverse and forward dynamics functions are IDbpH, s,v, r, 9v, 9rq,
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IDjpH, s,v, r, 9v, 9rq, FDbpH, s,v, r, τ̄ b, τ q and FDjpH, s,v, r, τ̄ b, τ q, which have been left out for
the sake of readability. From (3.40) and (3.41), it follows that

«

D5 IDb D6 IDb

D5 IDj D6 IDj

ff

“

«

M11 M12

M21 M22

ff

“ M (3.49)

Substituting (3.49) into (3.48) and pre-multiplying with M´1 gives

«

Di FDbpH, s,v, r, τ̄ b, τ q

Di FDjpH, s,v, r, τ̄ b, τ q

ff

“ ´M´1

«

Di IDbpH, s,v, r, 9v, 9rq

Di IDjpH, s,v, r, 9v, 9rq

ff

. (3.50)

The relation (3.50) can be applied to the ‘real’ underactuated dynamics (2.61) where, due to the
definitions in (3.17) and (3.36), τ̄ b “ 06ˆ1 so that

FDbpH, s,v, r, τ q “ FDbpH, s,v, r, 06ˆ1, τ q (3.51)

and

FDjpH, s,v, r, τ q “ FDjpH, s,v, r, 06ˆ1, τ q. (3.52)

Substituting (3.51) and (3.52) on the left-hand side in (3.50) results in the relation between the
forward dynamics of the ‘real’ moving-base system and extended inverse dynamics

«

Di FDbpH, s,v, r, τ q

Di FDjpH, s,v, r, τ q

ff

“ ´M´1

«

Di IDbpH, s,v, r, 9v, 9rq

Di IDjpH, s,v, r, 9v, 9rq

ff

“ ´M´1 Di IDpH, s,v, r, 9v, 9rq (3.53)

Combining the original expression for Apη, tq given by (3.20) with the relationship (3.53) relating
the derivatives of the forward dynamics with those of the extended inverse dynamics, we obtain
(3.42). Again note that the left-translated tangent maps of IDb and IDj with respect to s,v and
r are nothing else than ordinary tangent derivatives, similar to the left-translated tangent maps of
FDb and FDj in (3.27). l

Note that, given arbitrary inputs H, s,v, r, 9v and 9r, it is likely that the extended inverse dynamics
function ID given by (3.39) will return a non-zero base torque τ̄ b. Therefore ID does not generally
return Sτ (equivalently IDb and IDj given by (3.40)-(3.41) do not generally return 06ˆ1 and τ
respectively). Only if the extended inverse dynamics ID return Sτ , its inputs are called consistent.
This is formalized in the following definition.

Definition 3.1: The inputs H, s,v, r, 9v and 9r of the extended inverse dynamics function given
by (3.39) are called consistent only if the extended inverse dynamics function returns a value in the
form Sτ . �
Therefore only if the inputs are consistent, the following holds for the extended inverse dynamics
functions given by (3.39)-(3.41):

IDpH, s,v, r, 9v, 9rq “ Sτ , (3.54)

IDbpH, s,v, r, 9v, 9rq “ 06ˆ1, (3.55)

IDjpH, s,v, r, 9v, 9rq “ τ , (3.56)

where H, s,v, r and S are defined as in Section 2.8.2.
When the inputs represent a physical system (i.e. the sensors obtain data from a physical

system or the inputs are numerically obtained through simulations), the inputs H, s,v, r, 9v and 9r
of the extended inverse dynamics (3.39)-(3.41) are consistent (neglecting sensor noise or rounding
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errors). For this reason, commonly used moving-base algorithms such as the RNEAmb and ABAmb
assume the inputs to be consists, as they are applied to physical systems. However, in our case we
apply a mathematical perturbation to a physical system, and the perturbed inputs are generally
not consistent. Therefore the derivatives Di IDbpH, s,v, r, 9v, 9rq with i P t1, 2, 3, 4u are generally
non-zero.

Remark. The relation between the forward dynamics and inverse dynamics of (3.48) does not
hold for the derivatives with respect to the joint torques vector τ . This is not necessary, since the
expression for the input matrix Bpη, tq is already given by (3.29).

3.4 Summary

In this chapter we have presented and explored the Lie group and its details in Section 3.1. Based on
this Lie group, the mathematical formulas of the forward dynamics linearization have been presented
in Proposition 3.1. We have shown an expression for the computation of the input matrix Bpη, tq in
Proposition 3.2, and we have expressed the state matrix Apη, tq of the linearization of the forward
dynamics in terms of the extended inverse dynamics derivatives and the inverse of the mass matrix in
Proposition 3.3. This concludes the first objective: Derive and present the mathematical formulas
for the singularity-free geometric linearization of moving-base multibody systems, as described in
Section 1.3.

The following chapter presents numerically efficient algorithms that compute the quantities
in the state and input matrices Apη, tq given by (3.42) and Bpη, tq given by (3.29), namely the
derivatives of the extended inverse dynamics and the inverse of the mass matrix.
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Chapter 4

Left-Trivialized Linearization:
Algorithmic Aspects

In the previous chapter we have shown the mathematical formulas of the left-trivialized linearization
of moving-base dynamics in (3.42) and (3.29). However, we did not yet show how to compute the
linearization in an efficient way. This chapter provides the details on efficient computation of the
left-trivialized linearization through recursive analytical derivation. To compute the derivatives
of the extended inverse dynamics given by (3.39), we first need to compute the extended inverse
dynamics themselves. To do so, we propose a new algorithm: the Extended Inverse Dynamics
Algorithm for moving-base systems (EIDAmb). We compute the derivatives of the extended inverse
dynamics by using the method of recursive analytical derivation, as discussed in Section 1.2. Using
this method, we propose four new algorithms that derive the EIDAmb step by step, by applying
the chain rule. Each algorithm derives the EIDAmb with respect to one of the four state variables,
as shown in Section 3.1. Furthermore we need to compute the inverse of the mass matrix. To do so,
we could use the Composite Rigid Body Algorithm for moving-base systems (CRBAmb) and invert
the obtained mass matrix. However, for fixed-base systems, the authors of [28] have shown that
the inverse of the mass matrix can be computed more efficiently through their own algorithm: the
Inverse Mass Matrix Algorithm for fixed-base systems (IMMA), which is based on the Articulated
Body Algorithm for fixed-base systems (ABA). As we found that their algorithm contains some
mistakes, we first propose a corrected version of their algorithm. By extending it, we propose a new
algorithm: the Inverse Mass Matrix Algorithm for moving-base systems, based on the IMMA and
the Articulated Body Algorithm for moving-base systems (ABAmb).

4.1 Extended Inverse Dynamics Algorithm

We aim to derive an algorithm that computes the extended inverse dynamics ID given by (3.39),
which is repeated below for convenience of the reader. We recall that the extended inverse dynamics
functions were given by

IDpH, s,v, r, 9v, 9rq :“ τ̄ pH, s,v, r, 9v, 9rq “ Mpsq 9νp 9v, 9rq ` hpH, s,v, rq, (3.39 revisited)

IDbpH, s,v, r, 9v, 9rq :“ τ̄ bpH, s,v, r, 9v, 9rq “ M11psq 9v `M12psq 9r` h1pH, s,v, rq (3.40 revisited)

and

IDjpH, s,v, r, 9v, 9rq :“ τ pH, s,v, r, 9v, 9rq “ M21psq 9v `M22psq 9r` h2pH, s,v, rq. (3.41 revisited)

To compute the extended inverse dynamics of the joints IDj given by (3.41), we can make use of
the Recursive Newton Euler Algorithm for moving-base systems (RNEAmb, presented in Appendix
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E.2). The RNEAmb is a hybrid algorithm: it computes a combination of forward and inverse
dynamics. It uses H, s,v, r and 9r as inputs to compute the moving-base acceleration 9v and then the
joint torques τ . Instead of requiring 9v as an input, the RNEAmb computes it under the assumption
τ̄ b “ 0, guaranteeing that the the variables H, s,v, r, 9v, 9r are consistent (see Definition 3.1 for what
we mean with consistency). The algorithm computes IDj (3.41) but not IDb (3.40), since IDb is zero
if its inputs are consistent. For our purpose of computing the left-trivialized linearization of both
IDb and IDj , which are both generally non-zero, we have designed the Extended Inverse Dynamics
Algorithms for moving-base systems (EIDAmb), presented in Table 4.1 below. The EIDAmb consists
of parts from three algorithms presented in [8]: the RNEAmb (which can be found in Appendix E.2,
the Generalized Bias Wrench Algorithm for moving-base systems (GBWAmb, which can be found
in Appendix E.7), and the Composite Rigid Body Algorithm for moving-base systems (CRBAmb,
which can be found in Appendix E.4). The parts that origin from the GBWAmb are indicated with
* and the parts that origin from the CRBAmb are indicated with ** in the EIDAmb in Table 4.1,

As discussed above, we need to obtain the extended inverse dynamics of the moving-base, which
is defined in (3.40) as IDb :“ τ̄ b “ M11 9v ` M12 9r ` h1. The moving-base dynamics variables
M11,M12, 9v and h1 (detailed in Subsection 2.8.2 and found in the notation section (Section 2.7) in
Tables 2.3 and 2.5) can be translated to rigid body dynamics variables used in recursive algorithms,
found in the notation section in Table 2.7, as

M11 “Mc
B0, (4.1)

9v “ a0, (4.2)

M12 “ 0F (4.3)

and

h1 “ bvpB0, (4.4)

where for (4.2), we made use of the relation between intrinsic and apparent acceleration, as defined
in Appendix A.1. In terms of the EIDAmb variables, the extended inverse dynamics of the moving-
base (3.40) can be written as

IDbpH, s,v, r, 9v, 9rq “ τ̄ bpH, s,v, r, 9v, 9rq “Mc
B0psqa0p 9vq ` 0Fpsq 9r` bvpB0pH, s,v, r, 9v, 9rq, (4.5)

where bvpB0 P R
6 is the bias wrench of body 0 with zero joint acceleration and

0F “ r0FB1 0FB2 ... 0FBnJ
s P R6ˆnJ the required wrenches to support unit accelerations, where

0FBi is defined as

iFBi :“Mc
BiΓJ i P R6, (4.6)

0FBi “0X
i
iFBi. (4.7)

In the EIDAmb, ari is defined as
ari :“ ia0,i `

iagrav, (4.8)

where ari is the acceleration of body i relative to the moving-base frame 0, plus the gravitational ac-
celeration. It is the used to compute the bias wrench, which is later used to compute the acceleration
of body i with respect to the inertial frame A, aA,i.

The table below presents the EIDAmb on the left, and for comparison it also presents the
RNEAmb on the right. The two functions appearing in the these algorithms, ‘get gravity(model)’
and ‘jcalc(jtype(i),si)’, are explained in Appendices B.1 and B.2 respectively. We use rx, ys to
indicate submatrix extraction, where e.g. Xr1:2, 3s means we substract the elements in the first two
rows and the third column of matrix X.
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Table 4.1: EIDAmb (left) and for comparison RNEAmb (right).

Inputs model, s, r, 9r,AH0,
AvA,0,

0aA,0 model, s, r, 9r,AH0,
AvA,0

Line EIDAmb RNEAmb

1 Aagrav “ get gravity(model) Aagrav “ get gravity(model)

2 0HA “
AH´1

0
0HA “

AH´1
0

3 0RA “
0HAr1:3, 1:3s 0RA “

0HAr1:3, 1:3s

4 0oA “
0HAr1:3, 4s 0oA “

0HAr1:3, 4s

5 0XA “

«

0RA
0o^A

0RA

03ˆ3
0RA

ff

0XA “

«

0RA
0o^A

0RA

03ˆ3
0RA

ff

6 v0 “
0XA

AvA,0 v0 “
0XA

AvA,0

7 ar0 “
0XA

Aagrav ar0 “
0XA

Aagrav

8* avp0 “ ar0 -

9 Mc
B0 “MB0 Mc

B0 “MB0

10 mB0 “MB0v0 mB0 “MB0v0

11 bcB0 “MB0a
r
0 ` v0 ¯̂ ˚mB0 bcB0 “MB0a

r
0 ` v0 ¯̂ ˚mB0

12* bvpB0 “ bcB0 -

13 for i “ 1 to nB do for i “ 1 to nB do

14 riXλpiq|i,ΓJ is “ jcalc(jtype(i), si) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

15 vJ i “ ΓJ iri vJ i “ ΓJ iri

16 iXλpiq “
iXλpiq|i

λpiq|iXλpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

17 vi “
iXλpiqvλpiq ` vJ i vi “

iXλpiqvλpiq ` vJ i

18 ari “
iXλpiqa

r
λpiq ` ΓJ i 9ri ` vi ˆ vJ i ari “

iXλpiqa
r
λpiq ` ΓJ i 9ri ` vi ˆ vJ i

19* avpi “ iXλpiqa
vp
λpiq ` vi ˆ vJ i -

20 Mc
Bi “MBi Mc

Bi “MBi

21 mBi “MBivi mBi “MBivi

22 bcBi “MBia
r
i ` vi ¯̂

˚mBi bcBi “MBia
r
i ` vi ¯̂

˚mBi

23* bvpBi “MBia
vp
i ` vi ¯̂

˚mBi -

24 end end

25 for i “ nB to 1 do for i “ nB to 1 do

26 Mc
Bλpiq “Mc

Bλpiq ` λpiqX
i Mc

Bi
iXλpiq Mc

Bλpiq “Mc
Bλpiq ` λpiqX

i Mc
Bi
iXλpiq

27 bcBλpiq “ bcBλpiq ` λpiqX
i bcBi bcBλpiq “ bcBλpiq ` λpiqX

i bcBi

28* bvpBλpiq “ bvpBλpiq ` λpiqX
i bvpBi -

29 end end

continued on the next page.
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- - a0 “ ´pMc
B0q

´1bcB0
30 for i “ 1 to nB do for i “ 1 to nB do

31 iaA,0 “
iXλpiq

λpiqaA,0
iaA,0 “

iXλpiq
λpiqaA,0

32 τ i “ ΓTJ ipMc
Bi
iaA,0 ` bcBiq τ i “ ΓTJ ipMc

Bi
iaA,0 ` bcBiq

33** iFBi “Mc
BiΓJ i -

34** j “ i -

35** while λpjq ą 0 -

36** λpjqFBi “ λpjqX
j
jFBi -

37** j “ λpjq -

38** end -

39** 0FBi “ 0X
j
jFBi -

40 end end

41*** IDb “Mc
B0

0aA,0 ` 0F 9r` bvpB0 -

- - AaA,0 “
0XAa0

Outputs IDjp“ τ q, IDbp“ τ̄ bq τ ,AaA,0

Remarks:

• Lines marked with * origin from the GBWAmb, lines marked with ** origin from the CR-
BAmb, and unmarked lines origin from the RNEAmb.

• The line marked with *** computes the extended inverse dynamics of the moving base in
(4.5).

• Arbitrary inputs are generally not consistent (see Definition 3.1). If one wants the inputs of
the extended inverse dynamics function (3.39) to be consistent, one can add the computation
a0 “ ´pMc

B0q
´1bcB0 between line 29 and 30 instead of using it as an input to the algorithm.

This guarantees the inputs of the extended inverse dynamics function to be consistent, at the
cost of losing the freedom to choose a0.

• External wrenches are neglected in the algorithms presented above, as assumed in Assumption
2.3.

• The velocity of the moving base as input of the EIDAmb, AvA,0 is chosen to be expressed in
frame A, as it is often measured in that frame. The acceleration of the moving base as input
of the EIDAmb, 0aA,0, is chosen to be expressed in frame 0, as it is often computed through
the RNEAmb in frame 0. If one desired to express either of both quantities in a different
frame, the algorithm can be easily modified.

4.2 Computing the derivatives of the extended inverse dynamics

In the previous section we have presented the EIDAmb, which computes the extended inverse
dynamics given by (3.39). This section proposes four new recursive algorithms that compute the
left-trivialized derivatives of the extended inverse dynamics (3.39) with respect to H, s,v and r,
which are necessary to compute the state matrix (3.42). The algorithms that compute the left-
trivialized derivatives become bulky and unclear when fully written out for each variable. To improve
readability, we define a shortened notation for these derivatives. The left-trivialized derivative of
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an arbitrary function xpH, s,v, rq with respect to H is written in shortened notation as

B̃x

BH
:“ D1 xpH, s,v, rq ˝DLHpIq, (4.9)

so that B̃x{By is defined as the left-trivialized derivative of x with respect to Lie group element y.
Likewise, the partial derivatives (on vector spaces) of an arbitrary function xpH, s,v, rq with respect
to s,v and r are written in shortened notation as

Bx

Bs
:“D2 xpH, s,v, rq, (4.10)

Bx

Bv
:“D3 xpH, s,v, rq (4.11)

and
Bx

Br
:“D4 xpH, s,v, rq, (4.12)

so that Bx{By is defined as the partial derivative of x with respect to scalar or vector y.
In the left-trivialized derivatives algorithms we compute the (left-trivialized) derivatives of

scalars, vectors, and matrices. The derivatives of scalars and vectors result in 1D or 2D tensors to
which the standard definition of matrix multiplication can be applied. However the derivatives of
matrices result in 3D tensors, for which there is no standard definition of multiplication. In the
EIDAmb, there are three matrices of which we need to compute their derivatives: iXλpiq|i,FBi and
Mc

Bλpiq. All three matrices depend only on the generalized position vector s. Instead of expressing
the derivatives with respect to s as 3D tensors, we choose to express the derivatives with respect to
the scalars sk for k P RnB , resulting in 2D tensors to which standard definition of matrix multipli-
cation can be applied. The matrix iXλpiq|i is only dependent on the i-th entry of s. Therefore we
only compute BiXλpiq|i{Bsi, which saves computational time.

The extended inverse dynamics of the joints IDj of (3.41) is equal to the joint torques τ , as
defined in (3.41), meaning that the left-trivialized tangent maps of IDj with respect to H, s,v and
r are computed as

D1 IDjpH, s,v, r, 9v, 9rq ˝DLHpIq “
B̃τ

BH
, (4.13)

D2 IDjpH, s,v, r, 9v, 9rq “
Bτ

Bs
, (4.14)

D3 IDjpH, s,v, r, 9v, 9rq “
Bτ

Bv
(4.15)

and

D4 IDjpH, s,v, r, 9v, 9rq “
Bτ

Br
. (4.16)

The extended inverse dynamics of the moving base IDb of (4.5) is given by IDb “ τ̄ b “ Mc
B0a0 `

0F 9r`bvpB0, meaning that the left-trivialized tangent maps of the extended inverse dynamics of IDb

with respect to H, s,v and r are computed as

D1 IDbpH, s,v, r, 9v, 9rq ˝DLHpIq “
B̃bvpB0
BH

, (4.17)

D2 IDbpH, s,v, r, 9v, 9rq “
BMc

B0
Bs

a0 `
B0F

Bs
9r`

BbvpB0
Bs

, (4.18)

D3 IDbpH, s,v, r, 9v, 9rq “
BbvpB0
Bv

(4.19)
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and

D4 IDbpH, s,v, r, 9v, 9rq “
BbvpB0
Br

. (4.20)

Here we used B 9v{Bx “ 0 and B 9r{Bx “ 0 for x P tH, s,v, ru as 9v and 9r are input variables for the
extended inverse dynamics, and BiFBi{Bs “ BMc

Bi{Bs ΓJ i where iFBi is defined in (4.6) and i P nB
is the body number. Here we use the fact that ΓJ i is independent of s for conventional types of
joints (see Assumption 2.2 for what we mean with conventional and Appendix B.2 for the values of
ΓJ i for each joint type).

4.2.1 Computing the derivatives of the extended inverse dynamics w.r.t. the
transformation matrix

The derivative of the extended inverse dynamics of (3.39) with respect to the transformation matrix
H is the only left-trivialized derivative, which makes this algorithm the most complicated of all four.
This section first shows the left-trivialized derivative of the velocity transformation matrix 0XA

combined with a velocity or acceleration vector. After that, we present a mathematical proposition
which allows us to increase numerical efficiency by skipping unnecessary computations. Finally,
the algorithm that computes the left-trivialized derivative of the EIDAmb with respect to H is
presented.

The left-trivialized derivative of 0XA with respect to the transformation matrix is the most
complicated part of the algorithm that computes the left-trivialized derivatives of the extended
inverse dynamics with respect to the transformation matrix AH0. We choose to compute the
quantities 0XA

AvA,0 and 0XA
Aagrav as a whole, as this allows us to compute the derivative of a

vector instead of the derivative of a matrix. This is explained in the following proposition.
Proposition 4.1: The left-trivialized derivatives of 0XA

AvA,0 and 0XA
Aagrav with respect to the

transformation matrix AH0 are given by

B̃p0XA
AvA,0q

BAH0
“

«

0RA
Aω^A,0

0RA
0RA

Av^A,0
0RT

A ` p
0o^A

0RA
AωA,0q

^

03ˆ3
0RA

Aω^A,0
0RT

A

ff

(4.21)

and

B̃p0XA
Aagravq

BAH0
“

«

0RA
Aα^grav

0RA
0RA

Aa^grav
0RT

A ` p
0o^A

0RA
Aαgravq

^

03ˆ3
0RA

Aα^grav
0RT

A

ff

, (4.22)

where AvA,0 “ r
AvA,0;

AωA,0s and Aagrav “ r
Aagrav;

Aαgravs. Here v P R3 represents translational
velocity, ω P R3 rotational velocity, a P R3 translational acceleration and α P R3 rotational accel-
eration. Note that AvA,0 and Aagrav are independent of AH0, as they are inputs to the algorithm.

�
Proof: We only prove (4.21) here, (4.22) can be proved in a similar manner. Let us first define
H :“ AH0, R :“ AR0 and o :“ Ao0. We can write 0XA

AvA,0 as

0XA
AvA,0 “

«

0RA
0o^A

0RA

03ˆ3
0RA

ff«

AvA,0
AωA.0

ff

“

«

ART
0 ´ART

0
Ao^0

03ˆ3
ART

0

ff«

AvA,0
AωA.0

ff

“

«

RT ´RTo^

03ˆ3 RT

ff«

AvA,0
AωA.0

ff

“

«

RTAvA,0 ´RTo^AωA.0

RTAωA.0,

ff

(4.23)
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where we use the equality
0o^A “ ´

0RA
Ao^0

AR0. (4.24)

We define the vector valued functions f1 : R3 ˆ SOp3q Ñ R3 and f2 : SOp3q Ñ R3 as

f1po,Rq :“ RTAvA,0 ´RTo^AωA,0 (4.25)

and

f2pRq :“ RTAωA,0, (4.26)

so that

0XA
AvA,0 “

«

f1po,Rq

f2pRq

ff

. (4.27)

Using the expression (4.27), we compute the left-trivialized derivative of 0XA
AvA,0 given by (4.23)

with respect to H as

B̃p0XA
AvA,0q

BH
“

„

Bp0XA
AvA,0q

BRo

B̃p0XA
AvA,0q

BR



, (4.28)

where the left-hand side is a normal partial derivative which accounts for the translation, and the
right-hand side is a left-trivialized partial derivative which accounts for the rotation. The left-hand
side derivative is taken with respect to Ro P R3, which may seem surprising as one could expect it
to be taken with respect to o P R3. If we had modelled the moving-base on R3 ˆ SOp3q, then we
would indeed need to take the derivative with respect to o. This is due to the group operation of
R3 ˆ SOp3q, which is

po1,R1q ¨ po2R2q “ po1 ` o2,R1R2q, (4.29)

where po1,R1q, po2,R2q P R3 ˆ SOp3q. However, we model the moving-base on SEp3q, which has
the group operation

H1 ¨H2 “ H1H2, (4.30)

which can also be written as
«

R1 o1

01ˆ3 1

ff

¨

«

R2 o2

01ˆ3 1

ff

“

«

R1R2 R1o2 ` o1

01ˆ3 1

ff

, (4.31)

where H1,H2 P SEp3q. It is visible that the group operation of SEp3q does not simply add two
translations o1 and o2, but o2 is pre-multiplied with R1. For this reason we need to take the

derivative with respect to Ro in (4.28). The left elements of (4.28),
Bp0XA

AvA,0q

BRo
, are split us as

Bp0XA
AvA,0q

BRo
“

»

—

—

–

Bf1po,Rq

BRo

Bf2pRq

BRo

fi

ffi

ffi

fl

. (4.32)

As f2pRq is independent of o, its derivatives with respect to Ro is equal to zero. The derivative of
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f1 with respect to Ro is computed as the normal partial derivative

Bf1po,Rq

BRo
“
BRTAvA,0 ´RTo^AωA.0

BRo

“
B ´RTo^AωA,0

BRo

“
BRTAω^A,0o

BRo

“
BRTAω^A,0R

TRo

BRo

“ RTAω^A,0R
T

“ 0RA
Aω^A,0

0RA, (4.33)

where we use the equality
a^b “ ´b^a, (4.34)

with a, b P R3. The right elements of (4.28),
B̃p0XA

AvA,0q

BR
, can be split up as

B̃p0XA
AvA,0q

BR
“

«

D2 f1po,Rq ˝DLRpIq

D f2pRq ˝DLRpIq

ff

. (4.35)

The upper elements of (4.35), D2 f1po,Rq ˝ DLRpIq are computed in a direction z P R3 as a left
trivialized derivative

D2 f1po,Rq ˝DLRpIq ¨ z “ lim
εÑ0

1

ε

“

f1po,R exppεz^qq ´ f1po,Rq
‰

“ lim
εÑ0

1

ε

“

f1po,R` εRz^ ` opε2qq ´ f1po,Rq
‰

“ lim
εÑ0

1

ε

“`

R` εRz^ ` opε2q
˘TAvA,0 ´

`

R` εRz^ ` opε2q
˘T

o^AωA,0

´
`

RTAvA,0 ´RTo^AωA,0
˘‰

“ lim
εÑ0

1

ε

“`

RT ´ εz^RT ` opε2q
˘

AvA,0 ´
`

RT ´ εz^RT ` opε2q
˘

o^AωA,0

´
`

RTAvA,0 ´RTo^AωA,0
˘‰

“ lim
εÑ0

1

ε

“

´ εz^RTAvA,0 ` εz
^RTo^AωA,0 ` opε

2q
‰

“ ´z^RTAvA,0 ` z
^RTo^AωA,0

“ pRTAvA,0q
^z ´ pRTo^AωA,0q

^z

“ RTAv^A,0Rz ´ p
0RA

Ao^0
AωA,0q

^z

“ 0RA
Av^A,0

0RT
Az ` p

0RA
AR0

0o^A
0RA

AωA,0q
^z

“ 0RA
Av^A,0

0RT
Az ` p

0o^A
0RA

AωA,0q
^z, (4.36)

where we used the exponential map of SEp3q of (2.39) and the equalities (4.24), (4.34) and

pRωq^ “ Rω^RT . (4.37)

We write (4.36) as

D2 f1po,Rq ˝DLRpIq “
0RA

Av^A,0
0RT

A ` p
0o^A

0RA
AωA,0q

^. (4.38)
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The lower elements of (4.35), D f2pRq ˝ DLRpIq are computed in a direction z P R3 as a left-
trivialized derivative

D f2pRq ˝DLRpIq ¨ z “ lim
εÑ0

1

ε

“

f2pR exppεz^qq ´ f2pRq
‰

“ lim
εÑ0

1

ε

“

f2pR` εRz^ ` opε2qq ´ f2pRq
‰

“ lim
εÑ0

1

ε

“`

R` εRz^ ` opε2q
˘TAωA,0 ´RTAωA,0

‰

“ lim
εÑ0

1

ε

“

RTAωA,0 ´ εz
^RTAωA,0 ` opε

2q ´RTAωA,0
‰

“ lim
εÑ0

1

ε

“

´ εz^RTAωA,0 ` opε
2q
‰

“ ´z^RTAωA,0

“ pRTAωA,0q
^ z

“ RTAω^A,0R z

“ 0RA
Aω^A,0

0RT
A z, (4.39)

where we used the exponential map of SEp3q of (2.39) and the equalities (4.24) and (4.34) and
(4.37). We write (4.39) as

D f2pRq ˝DLRpIq “
0RA

Aω^A,0
0RT

A. (4.40)

We obtain the left-trivialized derivative of 0XA
AvA,0 with respect to H as (4.21) by splitting it up

in four submatrices, of which one is equal to zero and the others are presented in (4.33), (4.38) and
(4.40). l

The following proposition shows how the left-trivialized derivative of the extended inverse dynamics
of (3.39) with respect to the transformation matrix H can be rewritten to reduce the required
amount of numerical computations.
Proposition 4.2: We can rewrite (4.17) to

D1 IDbpH, s,v, r, 9v, 9rq ˝DLHpIq “
B̃bcB0
BH

. (4.41)

�
Proof: In lines 7 and 8* of the EIDAmb algorithm (Table 4.1), ar0 and avp0 are defined equal to each
other. The left-trivialized derivatives of ari and avpi with respect to H are equal to each other, as
they are both given by

B̃ari
BH

“ iXλpiq

B̃arλpiq

BH
`
B̃pΓJ i 9riq

BH
`
B̃vi
BH

ˆ vJ i (4.42)

and

B̃avpi
BH

“ iXλpiq

B̃avpλpiq

BH
`
B̃vi
BH

ˆ vJ i. (4.43)

The difference lies in B̃pΓJ i 9riq{BH, which is equal to zero as both ΓJ i and 9ri are independent of H.
Furthermore the left-trivialized tangent spaces are independent of the terms ari and avpi (which are
not equal to each other). Therefore all differences between both definitions are in this particular
case equal to zero. Writing out the equation of the algorithm below step by step by applying the
chain rule confirms that the left-trivialized derivatives of bcB0 and bvpB0 with respect to H are equal
to each other. l
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The following table presents the algorithm that computes the left-trivialized derivative of the ex-
tended inverse dynamics given by (3.39) with respect to the transformation matrix H.

Table 4.2: Left-trivialized derivatives of the extended inverse dynamics w.r.t. the transformation
matrix H.

Inputs All outputs and intermediate variables of EIDAmb

Line Algorithm Line in

EIDAmb

1
B̃v0

BH
“

«

0RA
Aω^A,0

0RA
0RA

Av^A,0
0RT

A ` p
0o^A

0RA
AωA,0q

^

03ˆ3
0RA

Aω^A,0
0RT

A

ff

6

2
B̃ar0
BH

“

«

0RA
Aα^grav

0RA
0RA

Aa^grav
0RT

A ` p
0o^A

0RA
Aαgravq

^

03ˆ3
0RA

Aα^grav
0RT

A

ff

7

3
B̃mB0
BH

“MB0
B̃v0

BH
10

4
B̃bcB0
BH

“MB0
B̃ar0
BH

`
B̃v0

BH
¯̂ ˚mB0 ` v0 ¯̂ ˚

B̃mB0
BH

11

5 for i “ 1 to nB do 13

6
B̃vi
BH

“ iXλpiq

B̃vλpiq

BH
17

7
B̃ari
BH

“ iXλpiq

B̃arλpiq

BH
`
B̃vi
BH

ˆ vJ i 18

8
B̃mBi
BH

“MBi
B̃vi
BH

21

9
B̃bcBi
BH

“MBi
B̃ari
BH

`
B̃vi
BH

¯̂ ˚mBi ` vi ¯̂
˚ B̃mBi
BH

22

10 end 24

11 for i “ nB to 1 do 25

12
B̃bcBλpiq

BH
“
B̃bcBλpiq

BH
` λpiqX

i B̃b
c
Bi

BH
27

13 end 29

14 for i “ 1 to nB do 30

15
B̃τ i
BH

“ ΓTJ i
B̃bcBi
BH

32

16 end 40

17 D1 IDb ˝DLHpIq “
B̃bcB0
BH

41***

Outputs D1 IDj ˝DLHpIqp“ B̃τ {BHq,D1 IDb ˝DLHpIqp“ B̃τ̄ b{BHq

Remarks:

• Line 1 computes the left trivialized derivative B̃p0XA
AvA,0q{B

AH0 in (4.21).

• Line 2 computes the left trivialized derivative B̃p0XA
Aagravq{B

AH0 in (4.22).
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• Line 17 computes the derivative of the extended inverse dynamics of the moving-base with
respect to the transformation matrix H in (4.41).

4.2.2 Computing the derivative of the extended inverse dynamics w.r.t. the
generalized position vector

The table below presents the algorithm that efficiently computes the derivatives of the extended
inverse dynamics (3.39) with respect to the generalized position vector s. The right column shows
which line in the EIDAmb each equation origins from. The function ‘jcalcderiv(jtype(i),si)’ com-
putes the derivative of the velocity transformation matrix iXλpi|i with respect to the generalized
position si. Its inputs are the joint type, and the joint position si. The function ‘jcalcderiv’ is
detailed in Appendix B.3.
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Table 4.3: Derivatives of the extended inverse dynamics w.r.t. the generalized position vector s.

Inputs All outputs and intermediate variables of EIDAmb

Line Algorithm Line in

EIDAmb

1 for i “ 1 to nB do 13

2
BiXλpiq|i

Bsi
“ jcalcderiv(jtype(i), si) 14

3
BiXλpiq

Bsi
“
BiXλpiq|i

Bsi
λpiq|iXλpiq 16

4
Bvi
Bs

“ iXλpiq

Bvλpiq

Bs
17

5
Bvi
Bsi

“
Bvi
Bsi

`
BiXλpiq

Bsi
vλpiq 17

6
Bari
Bs

“ iXλpiq

Barλpiq

Bs
`
Bvi
Bs
ˆ vJ i 18

7
Bari
Bsi

“
Bari
Bsi

`
BiXλpiq

Bsi
arλpiq 18

8
Bavpi
Bs

“ iXλpiq

Bavpλpiq

Bs
`
Bvi
Bs
ˆ vJ i 19*

9
Bavpi
Bsi

“
Bavpi
Bsi

`
BiXλpiq

Bsi
avpλpiq 19*

10
BmBi
Bs

“MBi
Bvi
Bs

21

11
BbcBi
Bs

“MBi
Bari
Bs

`
Bvi
Bs

¯̂ ˚mBi ` vi ¯̂
˚ BmBi
Bs

22

12
BbvpBi
Bs

“MBi
Bavpi
Bs

`
Bvi
Bs

¯̂ ˚mBi ` vi ¯̂
˚ BmBi
Bs

23*

13 end 24

14 for i “ nB to 1 do 25

15 for k “ 1 to nB do 26

16
BMc

Bλpiq

Bsk
“
BMc

Bλpiq

Bsk
` λpiqX

i BM
c
Bi

Bsk
iXλpiq 26

17 end 26

18
BMc

Bλpiq

Bsi
“
BMc

Bλpiq

Bsi
`
BλpiqX

i

Bsi
Mc

Bi
iXλpiq ` λpiqX

i Mc
Bi
BiXλpiq

Bsi
26

19
BbcBλpiq

Bs
“
BbcBλpiq

Bs
` λpiqX

i Bb
c
Bi
Bs

27

20
BbcBλpiq

Bsi
“
BbcBλpiq

Bsi
`
BλpiqX

i

Bsi
bcBi 27

21
BbvpBλpiq

Bs
“
BbvpBλpiq

Bs
` λpiqX

i Bb
vp
Bi
Bs

28*

continued on the next page.
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22
BbvpBλpiq

Bsi
“
BbvpBλpiq

Bsi
`
BλpiqX

i

Bsi
bvpBi 28*

23 end 29

24 for k “ 1 to nB do -

25
BMc

B0a0

Bsk
“
BMc

B0
Bsk

a0 -

26 end -

27 for i “ 1 to nB do 30

28
BiaA,0
Bs

“ iXλpiq
BλpiqaA,0
Bs

31

29
BiaA,0
Bsi

“
BiaA,0
Bsi

`
BiXλpiq

Bsi
λpiqaA,0 31

30 for k “ 1 to nB do -

31
BMc

Bi
iaA,0

Bsk
“
BMc

Bi
Bsk

iaA,0 -

32
BiFBi
Bsk

“
BMc

Bi
Bsk

ΓJ i 33**

33 end -

34
Bτ i
Bs

“ ΓTJ i

´

BMc
Bi

Bs
iaA,0 `Mc

Bi
BiaA,0
Bs

`
BbcBi
Bs

¯

33

35 j “ i 34**

36 while λpjq ą 0 35**

37 for k “ 1 to nB do 36**

38
BλpjqFBi

Bsk
“ λpjqX

j BjFBi
Bsk

36**

39 end 36**

40
BλpjqFBi

Bsj
“
BλpjqFBi

Bsj
`
BλpjqX

j

Bsj
jFBi 36**

41 j “ λpjq 37**

42 end 38**

43 for k “ 1 to nB do 39**

44
B0FBi
Bsk

“ 0X
j BjFBi
Bsk

39**

45 end 39**

46
B0FBi
Bsj

“
B0FBi
Bsj

`
B0X

j

Bsj
jFBi 39**

47
B0F 9r

Bs
“
B0F 9r

Bs
`
B0FBi
Bs

9r -

48 end 40

49 D2 IDb “
BMc

B0a0

Bs
`
B0F 9r

Bs
`
BbvpB0
Bs

41***

Outputs D2 IDjp“ Bτ {Bsq,D2 IDbp“ Bτ̄ b{Bsq
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Remarks:

• Note that Proposition 4.2 does not hold for the left-trivialized derivatives of bcB0 and bvpB0 with
respect to s, as lines 7 and 9 add the terms arλpiq and avpλpiq respectively, which are generally

not equal to each other.

• In the rightmost column, lines marked with * origin from the GBWAmb, lines marked with
** origin from the CRBAmb,and unmarked lines origin from the RNEAmb.

• Line 49 computes the derivative of the extended inverse dynamics of the moving-base with
respect to the generalized position vector s in (4.18), where we use

BMc
B0a0

Bs
“
BMc

B0
Bs

a0 (4.44)

and
B0F 9r

Bs
“
B0F

Bs
9r, (4.45)

since Ba0{Bs “ 0 and B 9r{Bs “ 0.

4.2.3 Computing the derivatives of the extended inverse dynamics w.r.t. the
moving-base velocity

The table below presents the algorithm that efficiently computes the derivatives of the extended
inverse dynamics (3.39) the moving-base velocity v. The right column shows which line in the
EIDAmb each equation origins from. Similar to Proposition 4.2, we can rewrite (4.19) to

D3 IDbpH, s,v, r, 9v, 9rq “
BbcB0
Bv

, (4.46)

as the same holds for the left-trivialized derivatives of bcB0 and bvpB0 with respect to v.
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Table 4.4: Derivatives of the extended inverse dynamics w.r.t. the moving-base velocity v.

Inputs All outputs and intermediate variables of EIDAmb

Line Algorithm Line in

EIDAmb

1
Bv0

Bv
“ I6 6

2
BmB0
Bv

“MB0 10

3
BbcB0
Bv

“
Bv0

Bv
¯̂ ˚mB0 ` v0 ¯̂ ˚

BmB0
Bv

11

4 for i “ 1 to nB do 13

5
Bvi
Bv

“ iXλpiq

Bvλpiq

Bv
17

6
Bari
Bv

“ iXλpiq

Barλpiq

Bv
`
Bvi
Bv

ˆ vJ i 18

7
BmBi
Bv

“MBi
Bvi
Bv

21

8
BbcBi
Bv

“MBi
Bari
Bv

`
Bvi
Bv

¯̂ ˚mBi ` vi ¯̂
˚ BmBi
Bv

22

9 end 24

10 for i “ nB to 1 do 25

11
BbcBλpiq

Bv
“
BbcBλpiq

Bv
` λpiqX

i Bb
c
Bi
Bv

27

12 end 29

13 for i “ 1 to nB do 30

14
Bτ i
Bv

“ ΓTJ i
BbcBi
Bv

32

15 end 40

16 D3 IDb “
BbcB0
Bv

41***

Outputs D3 IDjp“ Bτ {Bvq,D3 IDbp“ Bτ̄ b{Bvq

Remark: Line 16 computes the derivative of the extended inverse dynamics of the moving-base with
respect to the moving-base velocity v in (4.46)

4.2.4 Computing the derivatives of the extended inverse dynamics w.r.t. the
generalized velocity vector

The table below presents the algorithm that efficiently computes the derivatives of the extended
inverse dynamics (3.39) the generalized velocity vector r. The right column shows which line in the
EIDAmb each equation origins from. Similar to Proposition 4.2, we can rewrite (4.20) to

D4 IDbpH, s,v, r, 9v, 9rq “
BbcB0
Br

, (4.47)

as the same holds for the left-trivialized derivatives of bcB0 and bvpB0 with respect to r.
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Table 4.5: Derivatives of the extended inverse dynamics w.r.t. the generalized velocity vector r.

Inputs All outputs and intermediate variables of EIDAmb

Line Algorithm Line in

EIDAmb

1 for i “ 1 to nB do 13

2
BvJ i
Bri

“ ΓJ i 15

3
Bvi
Br

“ iXλpiq

Bvλpiq

Br
17

4
Bvi
Bri

“
Bvi
Bri

`
BvJ i
Bri

17

5
Bari
Br

“ iXλpiq

Barλpiq

Br
`
Bvi
Br
ˆ vJ i 18

6
Bari
Bri

“
Bari
Bri

` vi ˆ
BvJ i
Bri

18

7
BmBi
Br

“MBi
Bvi
Br

21

8
BbcBi
Br

“MBi
Bari
Br

`
Bvi
Br

¯̂ ˚mBi ` vi ¯̂
˚ BmBi
Br

22

9 end 24

10 for i “ nB to 1 do 25

11
BbcBλpiq

Br
“
BbcBλpiq

Br
` λpiqX

i Bb
c
Bi
Br

27

12 end 29

13 for i “ 1 to nB do 30

14
Bτ i
Br

“ ΓTJ i
BbcBi
Br

32

15 end 40

16 D4 IDb “
BbcB0
Br

41***

Outputs D4 IDjp“ Bτ {Brq,D4 IDbp“ Bτ̄ b{Brq

Remark: Line 16 computes the derivative of the extended inverse dynamics of the moving-base with
respect to the generalized velocity vector r in (4.47)

4.3 Inverse Mass Matrix Algorithm for fixed-base systems

In [28], the author presents an algorithm to compute the inverse of the mass matrix in an efficient
way. We call this algorithm the Inverse Mass Matrix Algorithm (IMMA). Instead of using the
Composite Rigid Body algorithm (CRBA, presented in Appendix E.3) to compute the mass matrix,
and then inverting it, the IMMA is based on the Articulated Body Algorithm (ABA, which can be
found in Appendix E.5) to compute the inverse of the mass matrix directly, without first computing
the mass matrix itself. We recall that the ABA computes the forward dynamics of fixed-base systems
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FDfb : RnJ ˆ RnJ ˆ RnJ Ñ RnJ as

FDfbps, r, τ q :“ 9r “ M´1
fb pτ ´ hfbq, (4.48)

which is obtained from the dynamics of fixed-base systems (2.55). By defining hfb equal to zero
and computing B 9r{Bτ , the inverse of the mass matrix M´1

fb is found. The bias wrench for fixed-base
systems hfb is equal to zero if the Coriolis, gravitational and external wrenches are equal to zero.
The table below presents the IMMA for fixed-base systems, which computes the inverse of the mass
matrix for fixed-base systems Minv

fb “ M´1
fb , without needing to first compute the mass matrix Mfb

itself.

Remark. We have discovered that the original version of the IMMA presented in [28] is incorrect.
This is reported and further elaborated in Appendix C. The table below presents a corrected version
of the IMMA.
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Table 4.6: Inverse Mass Matrix Algorithm for fixed-base systems.

Inputs model, s

Line IMMA

1 for i “ 1 to nB do

2 riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

3 iXλpiq “
iXλpiq|i

λpiq|iXλpiq

4 Mc
Bi “MBi

5 end

6 for i “ NB to 1 do

7 UBi “MA
BiΓJ i

8 DBi “ ΓTJ iUBi

9 Minv
fb ri, is “ D´1

Bi
10 Minv

fb ri, subtreepiqs “ Minv
fb ri, subtreepiqs ´D´1

Bi Γ
T
J iFir:, subtreepiqs

11 if λpiq ‰ 0 then

12 Fλpiqr:, subtreepiqs “ Fλpiqr:, subtreepiqs ` λpiqX
i
`

Fir:, subtreepiqs
`UBiM

inv
fb ri, subtreepiqs

˘

13 Ma
Bi “MA

Bi ´UBiD
´1
Bi U

T
Bi

14 MA
Bλpiq “MA

Bλpiq ` λpiqX
iMa

Bi
iXλpiq

15 end

16 end

17 for i “ 1 to nB do

18 if λpiq ‰ 0 then

19 Minv
fb ri, :s “ Minv

fb ri, :s ´D´1
Bi U

T
Bi
iXλpiqPλpiq

20 end

21 Pi “ ΓJ iM
inv
fb ri, :s

22 if λpiq ‰ 0 then

23 Pi “ Pi ` iXλpiqPλpiq
24 end

25 end

26 for i “ 1 to nB do

27 for j “ i to nB do

28 Minv
fb rj, is “ Minv

fb ri, js

29 end

30 end

Outputs Minv
fb

4.4 Inverse Mass Matrix Algorithm for moving-base systems

The IMMA (Table 4.6) can be extended to moving-base systems by using the same approach,
based on the Articulated Body Algorithm for moving-base systems (ABAmb, which can be found in
Appendix E.6). We call the resulting algorithm the Inverse Mass Matrix Algorithm for moving-base
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systems (IMMAmb). We rewrite the forward dynamics given in (3.17) for moving-base systems to

FDpH, s,v, r, τ q :“

«

9v

9r

ff

“

«

M11 M12

M21 M22

ff´1 «

h1

τ ´ h2

ff

. (4.49)

The IMMAmb defines h2 equal to zero, so that the inverse of the mass matrix can be found as

«

M11 M12

M21 M22

ff´1

“ B

«

9v

9r

ff

{B

«

h1

τ

ff

. (4.50)

The table below presents the IMMAmb, which computes the inverse of the mass matrix Minv “

M´1, without needing to first compute the mass matrix M itself.

Table 4.7: Inverse Mass Matrix Algorithm for moving-base systems.

Inputs model, s

Line IMMAmb

1 for i “ 1 to nB do

2 riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

3 iXλpiq “
iXλpiq|i

λpiq|iXλpiq

4 Mc
Bi “MBi

5 end

6 for i “ NB to 1 do

7 UBi “MA
BiΓJ i

8 DBi “ ΓTJ iUBi

9 Minvri, is “ D´1
Bi

10 Minvri, subtreepiqs “ Minvri, subtreepiqs ´D´1
Bi Γ

T
J iFir:, subtreepiqs

11 Fλpiqr:, subtreepiqs “ Fλpiqr:, subtreepiqs ` λpiqX
i
`

Fir:, subtreepiqs
`UBiM

invri, subtreepiqs
˘

12 Ma
Bi “MA

Bi ´UBiD
´1
Bi U

T
Bi

13 MA
Bλpiq “MA

Bλpiq ` λpiqX
iMa

Bi
iXλpiq

14 end

15 P0 “ ´pMA
B0q

´1F0

16 for i “ 1 to nB do

17 Minvri, :s “ Minvri, :s ´D´1
Bi U

T
Bi
iXλpiqPλpiq

18 Pi “ ΓJ iM
invri, :s ` iXλpiqPλpiq

19 end

20 for i “ 1 to nB do

21 for j “ i to nB do

22 Minvrj, is “ Minvri, js

23 end

24 end

25 Minvr1:6, 1:6s “ pMA
B0q

´1

Outputs Minv
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4.5 Summary

In this chapter we have presented a numerically efficient way to compute the left-trivialized lin-
earization of the forward dynamics of moving-base multibody systems, making use of the relation
between the left-trivialized derivatives of the forward dynamics and the left-trivialized derivatives
of the extended inverse dynamics, detailed in Section 3.3. We have derived the Extended Inverse
Dynamics Algorithm for moving-base systems (EIDAmb) which efficiently computes the extended
inverse dynamics, presented in Table 4.1. By applying recursive analytical derivatives to the EI-
DAmb, we have derived four algorithms that efficiently compute the left-trivialized derivatives of
the extended inverse dynamics with respect to the four system state variables in Tables 4.2-4.5.
We have presented a corrected version of the Inverse Mass Matrix Algorithm for fixed-base systems
(IMMA) in Table 4.6 which computes the inverse mass matrix for fixed-base systems. Finally we
have extended the IMMA to compute the inverse mass matrix of moving-base systems, which we
call the Inverse Mass Matrix Algorithm for moving-base systems (IMMAmb) in Table 4.7. This
concludes the second objective: Derive numerically efficient and accurate algorithms to compute the
singularity-free geometric linearization of moving-base multibody systems, as described in Section
1.3.

The following chapter verifies that our newly presented algorithms computing the singularity-
free linearization of the forward dynamics provide correct results, by comparing the results to the
singularity-free linearization obtained by the (numerically less efficient) method of finite differences.
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Chapter 5

Numerical Verification

The previous chapter presented recursive algorithms to compute the left-trivialized linearization
matrices (3.42) and (3.29) of the forward dynamics (3.17) in a numerically efficient way. In total,
six algorithms are required to compute this linearization: one to compute the extended inverse
dynamics (3.39) in Table 4.1, four for the derivatives of the extended inverse dynamics with respect
to the state parameters H, s,v and r in Tables 4.2-4.5, and one to compute the inverse of the mass
matrix Minv in Table 4.7. The correctness of these algorithms can be verified, since there exist
other (numerically less efficient) methods to compute the same quantities. This chapter presents
the used verification methods, as well as the numerical results.

5.1 Designed moving-base multibody test system

To verify the algorithms, an example of a moving-base multibody system has been designed on
which the algorithms are tested. The algorithms must provide correct results for all moving-base
multibody systems following the assumptions that all bodies are rigid (Assumption 2.1) and all joints
are conventional and modelled as 1-DoF joints (Assumption 2.2). Three criteria for the designed
system have been selected:

• The designed system must contain at least one of each type of joint defined in Appendix B.2
in each direction (x, y, z).

• The designed system must contain at least one branch, since the algorithms contain several
lines of code that only apply to branched systems.

• The designed system must contain at least one branch directly at the base (so body 0 must
have multiple children), since the algorithms contains a few lines of code that only apply to
branches at the base.

The designed test system has therefore been chosen to have nine joints, as there are three joint types
with each three directions, a branch at the base, and a branch that is not at the base. The body
numbering is depicted in Figure 5.1. The joint types are given in Appendix D.1. A 3D visualization
that resembles our designed model is depicted in Figure 5.2, where the yellow ball is the moving
base, the red bodies have a prismatic joint, the green bodies have a revolute joint, and the blue
bodies have a helical joint (for joint types, see Appendix B.2). The left image shows the system in
a state where all joints positions are equal to 0, and the right image shows the system in a state
where all joint positions are equal to 0.3, to visualize the movement of the joints.
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body 0 (base)

body 1

body 2
body 3

body 4

body 5

body 6

body 7
body 8

body 9

Figure 5.1: The body numbering of the designed test system.

(a) State where all joint position are equal to 0. (b) State where all joint position are equal to 0.3.

Figure 5.2: Two different states of our designed model.

To verify the correctness of our newly presented algorithms, we performed a randomized test using
the design test model. This test is ran 100 times, where the inputs AH0, s,

AvA,0, r, 9r are randomly
selected, and the input 0 9vA,0 is computed through the RNEAmb (see Appendix E.2). Furthermore,
the following model parameters are also randomly selected: the velocity transformation matrices
λpiq|iXλpiq (which are body fixed constants), and the rigid body inertia’s MBi.

Besides the randomized test, we selected one set of inputs and model parameters in order to
present the resulting left-trivialized derivatives and inverse mass matrices. The selected velocity
transformation matrices λpiq|iXλpiq and the rigid body inertia’s MBi are given in Appendix D.1 for
all i P nB. The selected set of inputs are shown below.

• AH0 “

«

AR0
Ap0

01ˆ3 1

ff

as in (2.24), with

– AR0 “ Rzpθ1qRypθ2qRxpθ3q, where Rx,Ry and Rz are as defined in (B.2)-(B.4), θ1 “

1, θ2 “ 2, θ3 “ 3, so that AR0 «

»

—

–

´0.2248 0.9024 ´0.3676

´0.3502 ´0.4269 ´0.8337

´0.9093 ´0.0587 0.4120

fi

ffi

fl

.
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– Ap0 “ r4; 5; 6s.

• s “ r13; 14; 15; 16; 17; 18; 19; 20; 21s.

• AvA,0 “ r7; 8; 9; 10; 11; 12s.

• r “ r21; 22; 23; 24; 25; 26; 27; 28; 29s.

• 9r “ r30; 31; 32; 33; 34; 35; 36; 37; 38s.

• 0 9vA,0 is found by the RNEAmb (Appendix E.2) with the above inputs, so that
0 9vA,0 « r5657.9;´4306.7;´3855.9; 77.6085; 301.2763;´26.6843s.

The following sections first present the results of the single test with the inputs and model param-
eters selected as above, to give insights in the resulting left-trivialized derivatives and inverse mass
matrices. Afterwards, errors using the randomized test are presented.

5.2 Left-trivialized derivatives of the extended inverse dynamics
algorithms

The left-trivialized derivatives algorithms presented in Section 4.2 compute the left-trivialized
derivatives of the extended inverse dynamics of 3.39 in a numerically efficient way. These derivatives
can also be approximated through a less numerically efficient method using finite differences. With
finite differences, the extended inverse dynamics are evaluated once with unperturbed system states,
and n times with one system state (where n is the number of degrees of freedom). We define the
perturbation scalar δ P R as a small perturbation (e.g. δ “ 10´9). The system is perturbed once
for each degree of freedom through perturbation vectors. We distinguish two perturbation vectors:
∆b
i P R6 for the moving base and ∆j

k P R
nJ for the joints, where i P t1...6u and k P t1...nJu. These

perturbation vectors are defined as zero-vectors, except the i-th or k-th index, which is equal to the
perturbation scalar δ P R. E.g. ∆b

2 :“ r0; δ; 0; 0; 0; 0s.
The perturbed extended inverse dynamics of (3.39) in the directions s,v and r are given by

IDpH, s`∆j
k,v, r, 9v, 9rq, (5.1)

IDpH, s,v `∆b
i , r, 9v, 9rq, (5.2)

IDpH, s,v, r`∆j
k, 9v, 9rq. (5.3)

To obtain the perturbed extended inverse dynamics of (3.39) in the direction H, we need to morph
the perturbation ∆b

i P R6 into the set sep3q by the wedge operator: p∆b
iq
^ P sep3q. The exponential

map exp : sep3q Ñ SEp3q can bring the perturbation to the set SEp3q: exppp∆b
iq
^q P SEp3q.

Using the group operation of the Lie group SEp3q on H and exppp∆b
iq
^q results in the perturbed

transformation matrix. We write the perturbed extended inverse dynamics of (3.39) in the direction
H as

IDpH exppp∆b
iq
^q, s,v, r, 9v, 9rq (5.4)
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The resulting left-trivialized derivatives are

rD1 IDpH, s,v, r, 9v, 9rq ˝DLHpIqsi “
IDpH exppp∆b

iq
^q, s,v, r, 9v, 9rq ´ IDpH, s,v, r, 9v, 9rq

δ
, (5.5)

rD2 IDpH, s,v, r, 9v, 9rqsk “
IDpH, s`∆j

k,v, r, 9v, 9rq ´ IDpH, s,v, r, 9v, 9rq

δ
, (5.6)

rD3 IDpH, s,v, r, 9v, 9rqsi “
IDpH, s,v `∆b

i , r, 9v, 9rq ´ IDpH, s,v, r, 9v, 9rq

δ
, (5.7)

rD4 IDpH, s,v, r, 9v, 9rqsk “
IDpH, s,v, r`∆j

k, 9v, 9rq ´ IDpH, s,v, r, 9v, 9rq

δ
, (5.8)

where i P t1...6u and k P t1...nJu and rXsi is the i-th column of matrix X. These left-trivialized
derivatives can be approximated by simply evaluating the EIDAmb once unperturbed, and once for
each perturbation.

The following subsections present the numerical results for both the derivatives obtained through
our algorithms presented in Section 4.2 as well as the derivatives obtained through finite differences,
where we use the designed test system and the selected input variables presented in Section 5.1.
We choose δ “ 10´6, which may have effect on the errors presented in this chapter, but not on the
drawn conclusions that our newly presented algorithms return correct values.

5.2.1 Derivatives of extended inverse dynamics w.r.t. transformation matrix

The left-trivialized derivative of the extended inverse dynamics of (3.39) with respect to the transfor-
mation matrix H obtained through the finite differences method using the selected inputs is found as

D1 ID
FinDiff

«

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´4.88E5 ´4.01E4 1.03E6 7.58E6 8.37E6 ´1.1E7

´4.85E5 ´1.58E6 3.2E5 ´8.59E6 1.01E7 2.18E7

3.54E5 3.89E4 ´7.43E5 ´7.9E6 ´1.59E7 8.68E6

5.03E4 ´2.26E5 ´2.12E5 ´3.12E8 ´3.37E8 5.17E8

8.47E6 ´2.64E6 ´1.94E7 ´2.56E8 ´2.58E9 ´6.65E8

2.24E6 2.45E7 6.41E6 1.01E9 5.94E8 ´1.85E9

´3.04E5 ´2.05E5 5.61E5 ´2.63E6 ´2.29E7 ´4.27E6

1.25E7 2.47E7 ´1.55E7 ´3.59E8 1.88E7 7.87E8

´1.79E6 ´3.71E6 2.15E6 6.55E7 ´3.54E7 ´1.58E8

´1.51E5 7.34E5 6.6E5 3.91E7 1.74E7 ´7.43E7

´5.5E5 ´5.63E5 9.26E5 ´5.77E5 9.32E7 4.47E7

´3.51E4 ´7.28E4 4.22E4 ´2.35E6 4.77E6 7.23E6

´4.91E6 ´9.57E6 6.18E6 2.65E7 1.39E8 5.06E6

1.9E5 1.11E5 ´3.58E5 ´4.14E6 ´1.81E6 7.67E6

2.84E5 1.95E5 ´5.23E5 2.22E6 6.95E6 ´2.15E6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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and the same derivative obtained through the algorithm in Table 4.2 is found as

D1 ID
Alg
«

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´4.88E5 ´4.01E4 1.03E6 7.58E6 8.37E6 ´1.1E7

´4.85E5 ´1.58E6 3.2E5 ´8.59E6 1.01E7 2.18E7

3.54E5 3.89E4 ´7.43E5 ´7.9E6 ´1.59E7 8.68E6

5.03E4 ´2.26E5 ´2.12E5 ´3.12E8 ´3.37E8 5.17E8

8.47E6 ´2.64E6 ´1.94E7 ´2.56E8 ´2.58E9 ´6.65E8

2.24E6 2.45E7 6.41E6 1.01E9 5.94E8 ´1.85E9

´3.04E5 ´2.05E5 5.61E5 ´2.63E6 ´2.29E7 ´4.27E6

1.25E7 2.47E7 ´1.55E7 ´3.59E8 1.88E7 7.87E8

´1.79E6 ´3.71E6 2.15E6 6.55E7 ´3.54E7 ´1.58E8

´1.51E5 7.34E5 6.6E5 3.91E7 1.74E7 ´7.43E7

´5.5E5 ´5.63E5 9.26E5 ´5.76E5 9.32E7 4.47E7

´3.51E4 ´7.28E4 4.22E4 ´2.35E6 4.77E6 7.23E6

´4.91E6 ´9.57E6 6.18E6 2.65E7 1.39E8 5.06E6

1.9E5 1.11E5 ´3.58E5 ´4.14E6 ´1.81E6 7.67E6

2.84E5 1.95E5 ´5.23E5 2.22E6 6.95E6 ´2.15E6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We define a maximum error and an average error between both derivatives and compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

D1 ID
Alg
´D1 ID

FinDiff

avg|D1 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 6.4985E´6 (5.9)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

D1 ID
Alg
´D1 ID

FinDiff

avg|D1 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 4.9484E´7. (5.10)

We choose to use the absolute value of the difference between the algorithmic derivative and the
finite difference derivative, which ensures that negative differences are taken into account properly.
The division by the average of the algorithmic derivative is preferred over element-wise division,
as some element may be equal to zero, although finite differences compute them as non-zero (e.g.
10´10) which would result in an infinitely large error. To be more precise, we use the average of
the absolute value of the algorithmic derivative, to ensure that positive and negative values in the
derivative do not cancel out.

Using the randomized test, where we compute the derivative for the randomized inputs and
system parameters 100 times, we obtain the highest maximum error and the highest average error
as

emaxrand « 8.0093E´6 and eavgrand « 7.1026E´7. (5.11)

These results verify that (apart from approximation errors in the finite differences) the algorithm
presented in Table 4.2 provides correct results.

5.2.2 Derivatives of extended inverse dynamics w.r.t. generalized position
vector

The derivative of the extended inverse dynamics of (3.39) with respect to the generalized position
vector s obtained through the finite differences method using the selected inputs is found as
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D2 ID
FinDiff

«
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

6.74E4 1.71E7 ´1.57E7 4.65E5 ´1.17E6 2633.0 1.92E6 ´4799.0 6.83E5

3.42E5 2.72E7 ´8.89E6 3.61E6 ´1.79E6 1.86E4 ´7.86E5 1.89E5 ´7.43E5

2.94E5 ´4.2E6 ´1.52E6 ´2.5E6 1.83E6 ´1.31E4 3.13E6 1.55E5 2.76E5

´4.65E6 ´8.91E8 5.22E8 ´1.54E7 ´2.86E7 ´2.04E6 1.17E7 6.65E6 ´1.87E7

´1.78E6 9.74E8 ´7.63E8 ´2.51E8 1.81E8 ´5.1E5 1.16E7 ´2.26E6 ´5.23E6

´1.64E6 ´3.05E8 ´4.27E7 ´2.97E8 1.47E8 ´2.2E6 2.46E7 ´2.69E6 3.88E7

6.74E4 1.71E7 ´1.57E7 0 0 0 0 0 0

´6.93E6 ´1.54E9 9.58E8 0 0 0 0 0 0

1.41E6 2.53E8 ´1.98E8 0 0 0 0 0 0

0 0 0 ´3.84E7 ´2.19E7 ´2.15E6 0 0 0

0 0 0 5.93E6 8.74E5 0 0 0 0

0 0 0 3.89E6 0 2.02E4 0 0 0

0 0 0 0 0 0 2.27E7 6.74E6 ´1.64E7

0 0 0 0 0 0 ´1.01E6 1.25E5 3.85E5

0 0 0 0 0 0 2.99E5 ´3.14E5 1.05E7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and the same derivative obtained through the algorithm in Table 4.3 is found as

D2 ID
Alg
«

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

6.74E4 1.71E7 ´1.57E7 4.65E5 ´1.17E6 2633.0 1.92E6 ´4799.0 6.83E5

3.42E5 2.72E7 ´8.89E6 3.61E6 ´1.79E6 1.86E4 ´7.86E5 1.89E5 ´7.43E5

2.94E5 ´4.2E6 ´1.52E6 ´2.5E6 1.83E6 ´1.31E4 3.13E6 1.55E5 2.76E5

´4.65E6 ´8.91E8 5.22E8 ´1.54E7 ´2.86E7 ´2.04E6 1.17E7 6.65E6 ´1.87E7

´1.78E6 9.74E8 ´7.63E8 ´2.51E8 1.81E8 ´5.1E5 1.16E7 ´2.26E6 ´5.23E6

´1.64E6 ´3.05E8 ´4.27E7 ´2.97E8 1.47E8 ´2.2E6 2.46E7 ´2.69E6 3.88E7

6.74E4 1.71E7 ´1.57E7 0 0 0 0 0 0

´6.93E6 ´1.54E9 9.58E8 0 0 0 0 0 0

1.41E6 2.53E8 ´1.98E8 0 0 0 0 0 0

0 0 0 ´3.84E7 ´2.19E7 ´2.15E6 0 0 0

0 0 0 5.93E6 8.74E5 0 0 0 0

0 0 0 3.89E6 0 2.02E4 0 0 0

0 0 0 0 0 0 2.27E7 6.74E6 ´1.64E7

0 0 0 0 0 0 ´1.01E6 1.25E5 3.85E5

0 0 0 0 0 0 2.99E5 ´3.14E5 1.05E7

˛
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‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

D2 ID
Alg
´D2 ID

FinDiff

avg|D2 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 1.2275E´5 (5.12)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

D2 ID
Alg
´D2 ID

FinDiff

avg|D2 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 6.6522E´7. (5.13)

Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 5.6673E´5 and eavgrand « 1.7340E´6. (5.14)

These results verify that (apart from approximation errors in the finite differences) the algorithm
presented in Table 4.3 provides correct results.
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5.2.3 Derivatives of extended inverse dynamics w.r.t. moving-base velocity

The derivative of the extended inverse dynamics of (3.39) with respect to the moving-base velocity
v obtained through the finite differences method using the selected inputs is found as

D3 ID
FinDiff

«

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´13400.0 63544.0 ´3867.0 ´40822.0 ´6.841E5 ´5.033E5

´10099.0 20966.0 88077.0 ´1.104E6 1.503E6 ´1.183E6

´11366.0 ´41299.0 ´7559.0 ´5.342E5 6.695E5 6.932E5

´1.25E5 14188.0 ´44799.0 1.993E7 2.623E7 2.914E7

´1.438E6 ´8.37E5 ´5.129E5 1.632E7 ´4.077E7 1.603E8

5.312E5 2.635E5 ´1.194E6 1.004E7 ´1.117E8 ´2.933E7

´5732.0 34200.0 9380.0 ´2.898E5 ´2.153E5 1.208E6

3.316E5 ´9.822E5 ´1.297E6 4.014E7 3.835E7 1.859E7

´91866.0 1.462E5 1.757E5 ´4.78E6 ´8.357E6 ´2.723E5

56011.0 26900.0 ´17122.0 ´2.672E6 ´3.865E6 ´2.262E6

´13600.0 57344.0 26777.0 87433.0 2.568E6 ´5.46E6

´76.38 2496.0 4246.0 ´8692.0 4.243E5 ´2.879E5

´33699.0 3.704E5 5.468E5 ´9.119E6 1.92E6 ´1.289E7

´5896.0 ´19800.0 ´9245.0 6.628E5 3.319E5 4.236E5

´10466.0 ´28511.0 ´16300.0 4.026E5 ´1.789E5 ´2.037E5

˛
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and the same derivative obtained through the algorithm in Table 4.4 is found as

D3 ID
Alg
«
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˝

´13400.0 63544.0 ´3867.0 ´40822.0 ´6.841E5 ´5.033E5

´10099.0 20966.0 88077.0 ´1.104E6 1.503E6 ´1.183E6

´11366.0 ´41299.0 ´7559.0 ´5.342E5 6.695E5 6.932E5

´1.25E5 14188.0 ´44799.0 1.993E7 2.623E7 2.914E7

´1.438E6 ´8.37E5 ´5.129E5 1.632E7 ´4.077E7 1.603E8

5.312E5 2.635E5 ´1.194E6 1.004E7 ´1.117E8 ´2.933E7

´5732.0 34200.0 9380.0 ´2.898E5 ´2.153E5 1.208E6

3.316E5 ´9.822E5 ´1.297E6 4.014E7 3.835E7 1.859E7

´91866.0 1.462E5 1.757E5 ´4.78E6 ´8.357E6 ´2.723E5

56011.0 26900.0 ´17122.0 ´2.672E6 ´3.865E6 ´2.262E6

´13600.0 57344.0 26777.0 87433.0 2.568E6 ´5.46E6

´76.38 2496.0 4246.0 ´8692.0 4.243E5 ´2.879E5

´33699.0 3.704E5 5.468E5 ´9.119E6 1.92E6 ´1.289E7

´5896.0 ´19800.0 ´9245.0 6.628E5 3.319E5 4.236E5

´10466.0 ´28511.0 ´16300.0 4.026E5 ´1.789E5 ´2.037E5

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

D3 ID
Alg
´D3 ID

FinDiff

avg|D3 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 2.6282E´7 (5.15)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

D3 ID
Alg
´D3 ID

FinDiff

avg|D3 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 2.0523E´8. (5.16)
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Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 8.7923E´6 and eavgrand « 5.9019E´7. (5.17)

These results verify that (apart from approximation errors in the finite differences) the algorithm
presented in Table 4.4 provides correct results.

5.2.4 Derivatives of extended inverse dynamics w.r.t. generalized velocity
vector

The derivative of the extended inverse dynamics of (3.39) with respect to the generalized velocity
vector r obtained through the finite differences method using the selected inputs is found as

D4 ID
FinDiff

«
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´2744.0 ´1.99E6 1.98E5 ´7.66E4 1.36E4 1588.0 2.02E5 6466.0 2100.0

´2.24E4 ´1.56E4 ´1.85E5 1.56E5 ´5.73E4 394.0 2.4E5 ´1.97E4 3.6E4

´7100.0 ´1.77E5 ´1.85E5 ´5.82E4 ´2.66E4 2966.0 5.2E5 ´2866.0 2.14E4

´2.27E4 ´2.35E7 9.35E6 1.33E6 ´8.71E4 ´1.03E5 ´4.25E6 ´4.81E5 ´4.98E5

´1.01E6 ´6.85E7 1.17E7 ´3.7E6 ´2.55E6 2.6E5 2.61E6 ´2.76E5 5.41E5

2.22E5 1.29E7 ´1.39E5 ´1.63E7 5.46E6 1.04E5 ´3.33E6 4.55E5 ´6.5E5

´2744.0 ´1.99E6 1.98E5 0 0 0 0 0 0

6.2E5 1.02E7 4.73E6 0 0 0 0 0 0

´9.77E4 ´2.67E6 ´0.0149 0 0 0 0 0 0

0 0 0 ´1.42E5 3.82E5 ´9.82E4 0 0 0

0 0 0 ´3.86E5 0.00373 0 0 0 0

0 0 0 9.6E4 0 0 0 0 0

0 0 0 0 0 0 ´3.17E6 ´4.5E5 ´5.06E5

0 0 0 0 0 0 4.82E5 133.0 1.58E4

0 0 0 0 0 0 4.61E5 ´1.47E4 ´0.00559

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and the same derivative obtained through the algorithm in Table 4.3 is found as

D4 ID
Alg
«

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´2744.0 ´1.99E6 1.98E5 ´7.66E4 1.36E4 1588.0 2.02E5 6466.0 2100.0

´2.24E4 ´1.56E4 ´1.85E5 1.56E5 ´5.73E4 394.0 2.4E5 ´1.97E4 3.6E4

´7100.0 ´1.77E5 ´1.85E5 ´5.82E4 ´2.66E4 2966.0 5.2E5 ´2866.0 2.14E4

´2.27E4 ´2.35E7 9.35E6 1.33E6 ´8.71E4 ´1.03E5 ´4.25E6 ´4.81E5 ´4.98E5

´1.01E6 ´6.85E7 1.17E7 ´3.7E6 ´2.55E6 2.6E5 2.61E6 ´2.76E5 5.41E5

2.22E5 1.29E7 ´1.39E5 ´1.63E7 5.46E6 1.04E5 ´3.33E6 4.55E5 ´6.5E5

´2744.0 ´1.99E6 1.98E5 0 0 0 0 0 0

6.2E5 1.02E7 4.73E6 0 0 0 0 0 0

´9.77E4 ´2.67E6 ´2.91E´11 0 0 0 0 0 0

0 0 0 ´1.42E5 3.82E5 ´9.82E4 0 0 0

0 0 0 ´3.86E5 0 0 0 0 0

0 0 0 9.6E4 0 0 0 0 0

0 0 0 0 0 0 ´3.17E6 ´4.5E5 ´5.06E5

0 0 0 0 0 0 4.82E5 133.0 1.58E4

0 0 0 0 0 0 4.61E5 ´1.47E4 ´1.46E´11

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

D4 ID
Alg
´D4 ID

FinDiff

avg|D4 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 4.2731E´7 (5.18)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

D4 ID
Alg
´D4 ID

FinDiff

avg|D4 ID
Alg
|

ˇ

ˇ

ˇ

ˇ

ˇ

« 3.2837E´8. (5.19)

Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 2.1186E´5 and eavgrand « 6.5810E´7. (5.20)

These results verify that (apart from approximation errors in the finite differences) the algorithm
presented in Table 4.5 provides correct results.

5.3 Inverse Mass Matrix Algorithm for fixed-base systems

For fixed-base systems, the IMMA presented in Section 4.3 computes the inverse of the mass matrix
Mfb in a numerically efficient way. The correctness of its results can be verified simply by computing
the mass matrix through the CRBA (Appendix E.3) and inverting it. Both inverted mass matrices
should be identical (apart from numerical rounding errors). As an example to apply these test
methods on, we have chosen the designed test system and input variables presented in Section 5.1,
where body 0 is now the fixed base instead of the moving base. As we claimed that the algorithm
presented in [28] is incorrect, we compare both his version and our version to the inverted mass
matrix found from the CRBA.

The inverse of the mass matrix M´1
fb is found through the CRBA as

CRBAM´1
fb «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

8.67E´4 ´1.48E´5 ´4.07E´4 0 0 0 0 0 0

´1.48E´5 1.8E´6 4.19E´5 0 0 0 0 0 0

´4.07E´4 4.19E´5 0.0012 0 0 0 0 0 0

0 0 0 7.11E´6 1.5E´4 3.13E´5 0 0 0

0 0 0 1.5E´4 1.0 6.58E´4 0 0 0

0 0 0 3.13E´5 6.58E´4 0.00449 0 0 0

0 0 0 0 0 0 1.62E´6 1.85E´5 ´7.36E´5

0 0 0 0 0 0 1.85E´5 0.00114 ´2.12E´4

0 0 0 0 0 0 ´7.36E´5 ´2.12E´4 0.00818

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The inverse of the mass matrix is found through the incorrect algorithm of [28] as

incorrectM´1
fb «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

8.67E´4 ´1.48E´5 ´3.33E´4 0 0 0 0 0 0

´1.48E´5 1.8E´6 4.07E´5 0 0 0 0 0 0

´3.33E´4 4.07E´5 0.00117 0 0 0 0 0 0

0 0 0 7.11E´6 1.5E´4 3.13E´5 0 0 0

0 0 0 1.5E´4 1.0 0 0 0 0

0 0 0 3.13E´5 0 0.00449 0 0 0

0 0 0 0 0 0 1.62E´6 1.85E´5 1.26E´5

0 0 0 0 0 0 1.85E´5 0.00114 7.75E´4

0 0 0 0 0 0 1.26E´5 7.75E´4 0.00426

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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We define the maximum and average errors between the inverses of the mass matrix computed
through the CRBA and the incorrect version of the IMMA similar to (5.9) and (5.10) and compute
them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

CRBAM´1
fb ´

incorrectM´1
fb

avg|CRBAM´1
fb |

ˇ

ˇ

ˇ

ˇ

ˇ

« 0.3109 (5.21)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

CRBAM´1
fb ´

incorrectM´1
fb

avg|CRBAM´1
fb |

ˇ

ˇ

ˇ

ˇ

ˇ

« 0.0074. (5.22)

The inverse of the mass matrix is found through the correct algorithm of Table 4.6 as

correctM´1
fb «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

8.67E´4 ´1.48E´5 ´4.07E´4 0 0 0 0 0 0

´1.48E´5 1.8E´6 4.19E´5 0 0 0 0 0 0

´4.07E´4 4.19E´5 0.0012 0 0 0 0 0 0

0 0 0 7.11E´6 1.5E´4 3.13E´5 0 0 0

0 0 0 1.5E´4 1.0 6.58E´4 0 0 0

0 0 0 3.13E´5 6.58E´4 0.00449 0 0 0

0 0 0 0 0 0 1.62E´6 1.85E´5 ´7.36E´5

0 0 0 0 0 0 1.85E´5 0.00114 ´2.12E´4

0 0 0 0 0 0 ´7.36E´5 ´2.12E´4 0.00818

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We define the maximum and average errors between the inverses of the mass matrix computed
through the CRBA and our newly presented version of the IMMA similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

CRBAM´1
fb ´

correctM´1
fb

avg|CRBAM´1
fb |

ˇ

ˇ

ˇ

ˇ

ˇ

« 1.7594E´14 (5.23)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

CRBAM´1
fb ´

correctM´1
fb

avg|CRBAM´1
fb |

ˇ

ˇ

ˇ

ˇ

ˇ

« 2.2347E´16. (5.24)

Using the randomized test, where we compute the inverse of the mass matrix for the randomized
inputs and system parameters 100 times, we obtain the highest maximum error and the highest
average error as

emaxrand « 1.2826E´12 and eavgrand « 3.0318E´14. (5.25)

These results verify that the algorithm presented in [28] is indeed incorrect and that (apart from
numerical rounding errors) our newly presented version of the IMMA presented in Table 4.6 provides
correct results.

5.4 Inverse Mass Matrix Algorithm for moving-base systems

The IMMAmb presented in Section 4.4 can be verified using a method similar to the method
used to verify the IMMA. The correctness of the results of the IMMAmb can be verified simply
by computing the mass matrix through the CRBAmb (Appendix E.4) and inverting it. Both
inverted mass matrices should be identical (apart from numerical rounding errors). As an example
to apply these test methods on, we have chosen the designed test system and input variables
presented in Section 5.1. Due to their sizes, the inverse of the mass matrices M´1 found through
the CRBAmb and through the algorithm presented in Table 4.7 are presented in Appendix D.2. We
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define the maximum and average errors between the inverses of the mass matrix computed through
the CRBAmb and our newly presented version of the IMMAmb similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

ˇ

M´1
CRBAmb ´M´1

IMMAmb

avg|M´1
CRBAmb|

ˇ

ˇ

ˇ

ˇ

ˇ

« 3.0712E´14 (5.26)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

ˇ

M´1
CRBAmb ´M´1

IMMAmb

avg|M´1
CRBAmb|

ˇ

ˇ

ˇ

ˇ

ˇ

« 7.4086E´16. (5.27)

Using the randomized test, where we compute the inverse of the mass matrix for the randomized
inputs and system parameters 100 times, we obtain the highest maximum error and the highest
average error as

emaxrand « 6.5914E´12 and eavgrand « 9.0604E´13. (5.28)

These results verify that (apart from numerical rounding errors) our newly presented version of the
IMMAmb presented in Table 4.7 provides correct results.

5.5 Left-trivialized derivatives of the forward dynamics

In Section 5.2 we verified that the algorithms presented in Section 4.2 result in correct deriva-
tives of the extended inverse dynamics. However, we state in Proposition 3.3 that the deriva-
tives of the forward dynamics of (3.17) can be expressed in terms of the derivatives of the ex-
tended inverse dynamics of (3.39) and the inverse of the mass matrix as Di FDpH, s,v, r, τ q “
´M´1 Di IDpH, s,v, r, 9v, 9rq where i P t1, 2, 3, 4u. This relation can be verified by computing the
derivatives of the forward dynamics through finite differences. We use the same perturbations as
defined in Section 5.2, but now applied to the forward dynamics function of (3.17) to obtain the
derivatives

rD1 FDpH, s,v, r, τ q ˝DLHpIqsi “
FDpH exppp∆b

iq
^q, s,v, r, τ q ´ FDpH, s,v, r, τ q

δ
, (5.29)

rD2 FDpH, s,v, r, τ qsk “
FDpH, s`∆j

k,v, r, τ q ´ FDpH, s,v, r, τ q

δ
, (5.30)

rD3 FDpH, s,v, r, τ qsi “
FDpH, s,v `∆b

i , r, τ q ´ FDpH, s,v, r, τ q

δ
, (5.31)

rD4 FDpH, s,v, r, τ qsk “
FDpH, s,v, r`∆j

k, τ q ´ FDpH, s,v, r, τ q

δ
. (5.32)

where i P t1...6u and k P t1...nJu and rXsi is the i-th column of tensor X. Since the ABAmb (Ap-
pendix E.6) computes the forward dynamics, these left-trivialized derivatives can be approximated
by simply evaluating the ABAmb once unperturbed, and once for each perturbation.

The following subsections present the numerical results for both the derivatives obtained through
our algorithms presented in Section 4.2 as well as the derivatives obtained through finite differences,
where we use the designed test system and input variables presented in Section 5.1. As the forward
dynamics of (3.17) require the joint torques τ as an input, we compute τ to be corresponding to
our selected inputs through the RNEAmb (see Appendix E.2) as

τ « 108 ¨ r´0.0951; 1.4390; 0.0297;´0.6413; 0.2144; 0.0062; 0.8426;´0.0026; 0.0317s.

Again we choose δ “ 10´6, which may have effect on the errors presented in this chapter, but not
on the drawn conclusions that our newly presented algorithms return correct values.
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5.5.1 Derivatives of forward dynamics w.r.t. transformation matrix

The derivative of the forward dynamics of (3.17) with respect to the transformation matrix H ob-
tained through the finite differences method using the selected inputs is found as

D1 FD
FinDiff «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

9444.0 1.02 104 ´1.56 104 ´2.14 104 ´1.4 106 ´6.07 105

´644.0 293.0 1522.0 ´2.36 104 1.48 105 1.21 105

2533.0 4000.0 ´3622.0 ´4.82 104 ´1.34 105 4.18 104

´157.0 ´258.0 219.0 3400.0 1.27 104 ´1500.0

´87.8 ´110.0 138.0 732.0 1.06 104 3388.0

´270.0 ´287.0 450.0 ´135.0 4.28 104 2.02 104

´9266.0 ´9833.0 1.54 104 1.39 104 1.48 106 6.6 105

289.0 520.0 ´384.0 ´7700.0 ´1.69 104 8888.0

8077.0 1.29 104 ´1.14 104 ´1.62 105 ´6.05 105 6.98 104

60.3 129.0 ´70.9 ´1944.0 ´2599.0 3033.0

7.66 105 7.96 105 ´1.28 106 5.86 105 ´1.27 108 ´6.06 107

´2.23 104 ´2.38 104 3.71 104 ´4000.0 3.59 106 1.68 106

260.0 346.0 ´401.0 ´3100.0 ´2.41 104 ´4588.0

2300.0 1400.0 ´4322.0 3.8 104 ´5.66 105 ´3.46 105

´8411.0 ´7700.0 1.46 104 ´1.57 104 8.11 105 4.18 105

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The same derivative obtained through D1 FD “ ´M´1 D1 ID of (3.53), where M´1 and D1 ID are
found through the IMMAmb of Table 4.7 and the derivative algorithm of Table 4.2 respectively, is
found as

D1 FD
Alg «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

9444.0 1.02 104 ´1.56 104 ´2.14 104 ´1.4 106 ´6.07 105

´644.0 293.0 1522.0 ´2.36 104 1.48 105 1.21 105

2533.0 4000.0 ´3622.0 ´4.82 104 ´1.34 105 4.18 104

´157.0 ´258.0 219.0 3400.0 1.27 104 ´1500.0

´87.8 ´110.0 138.0 732.0 1.06 104 3388.0

´270.0 ´287.0 450.0 ´135.0 4.28 104 2.02 104

´9266.0 ´9833.0 1.54 104 1.39 104 1.48 106 6.6 105

289.0 520.0 ´384.0 ´7700.0 ´1.69 104 8888.0

8077.0 1.29 104 ´1.14 104 ´1.62 105 ´6.05 105 6.98 104

60.3 129.0 ´70.9 ´1944.0 ´2599.0 3033.0

7.66 105 7.96 105 ´1.28 106 5.85 105 ´1.27 108 ´6.06 107

´2.23 104 ´2.38 104 3.71 104 ´4000.0 3.59 106 1.68 106

260.0 346.0 ´401.0 ´3100.0 ´2.41 104 ´4588.0

2300.0 1400.0 ´4322.0 3.8 104 ´5.66 105 ´3.46 105

´8411.0 ´7700.0 1.46 104 ´1.57 104 8.11 105 4.18 105

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

D1 FD
Alg ´D1 FD

FinDiff

avg|D1 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 3.8931E´5 (5.33)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

D1 FD
Alg ´D1 FD

FinDiff

avg|D1 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 1.2438E´6. (5.34)
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Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 4.1023E´5 and eavgrand « 2.3560E´6. (5.35)

These results verify that (apart from approximation errors in the finite differences) the relation
D1 FD “ ´M´1 D1 ID of (3.53) is indeed correct, and the derivatives of the forward dynamics of
(3.17) with respect to the transformation matrix H can be numerically efficiently computed through
the derivatives of the extended inverse dynamics of Table 4.2 and the IMMAmb of Table 4.7.

5.5.2 Derivatives of forward dynamics w.r.t. generalized position vector

The derivative of the forward dynamics of (3.17) with respect to the generalized position vector s
obtained through the finite differences method using the selected inputs is found as

D2 FD
FinDiff «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´796.9 ´1.129E5 88399.0 ´90000.0 ´8811.0 ´67.1 ´4673.0 ´677.1 10144.0

´541.9 ´75666.0 56999.0 9787.0 1073.0 ´1.957 1175.0 355.6 ´10400.0

´1577.0 ´1.946E5 1.666E5 ´10399.0 ´1181.0 32.54 ´6414.0 ´316.2 5474.0

82.56 13177.0 ´10500.0 799.9 116.5 ´2.14 69.81 ´14.15 380.8

21.26 2618.0 ´2229.0 745.1 39.71 2.917 27.29 9.866 ´176.2

10.02 1743.0 ´1294.0 2728.0 293.1 0.114 38.74 7.965 ´178.5

342.2 56144.0 ´39844.0 94611.0 8650.0 126.9 1690.0 710.0 ´11200.0

´184.7 ´28222.0 22999.0 ´1221.0 ´118.9 ´0.7848 ´116.0 12.55 ´477.7

´4045.0 ´6.051E5 4.976E5 ´43600.0 ´3713.0 ´59.59 ´4334.0 ´202.6 752.0

´54.34 ´9490.0 7444.0 199.1 ´65.55 29.53 ´154.7 43.24 ´840.5

´9895.0 ´1.548E6 1.137E6 ´8.104E6 ´1.097E6 ´426.9 ´18577.0 ´5717.0 99866.0

728.3 1.164E5 ´82200.0 2.158E5 23600.0 134.7 ´1335.0 605.0 ´11922.0

´78.69 ´12577.0 10122.0 ´1587.0 ´174.7 0.0846 ´145.8 ´41.95 831.5

1067.0 1.362E5 ´1.172E5 ´36200.0 ´2400.0 ´137.8 4758.0 ´593.5 6480.0

126.5 14922.0 ´16800.0 56766.0 4738.0 104.7 2404.0 3971.0 ´1.056E5
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‹

‹

‹

‚

.

The same derivative obtained through D2 FD “ ´M´1 D2 ID of (3.53), where M´1 and D2 ID are
found through the IMMAmb of Table 4.7 and the derivative algorithm of Table 4.3 respectively, is
found as

D2 FD
Alg «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´796.9 ´1.129E5 88399.0 ´90000.0 ´8811.0 ´67.1 ´4673.0 ´677.1 10144.0

´541.9 ´75666.0 56999.0 9788.0 1073.0 ´1.957 1175.0 355.6 ´10400.0

´1577.0 ´1.946E5 1.666E5 ´10399.0 ´1181.0 32.54 ´6414.0 ´316.2 5474.0

82.56 13177.0 ´10500.0 799.9 116.5 ´2.14 69.81 ´14.15 380.8

21.26 2618.0 ´2229.0 745.1 39.72 2.917 27.29 9.866 ´176.2

10.02 1743.0 ´1294.0 2728.0 293.1 0.114 38.74 7.965 ´178.5

342.2 56144.0 ´39844.0 94611.0 8650.0 126.9 1690.0 710.0 ´11200.0

´184.7 ´28222.0 22999.0 ´1221.0 ´118.9 ´0.7848 ´116.0 12.55 ´477.7

´4045.0 ´6.051E5 4.976E5 ´43600.0 ´3713.0 ´59.59 ´4334.0 ´202.6 752.0

´54.34 ´9490.0 7444.0 199.1 ´65.55 29.53 ´154.7 43.24 ´840.5

´9895.0 ´1.548E6 1.137E6 ´8.104E6 ´1.097E6 ´426.9 ´18577.0 ´5717.0 99866.0

728.3 1.164E5 ´82200.0 2.158E5 23600.0 134.7 ´1335.0 605.0 ´11911.0

´78.69 ´12577.0 10122.0 ´1587.0 ´174.7 0.0846 ´145.8 ´41.95 831.5

1067.0 1.362E5 ´1.172E5 ´36200.0 ´2400.0 ´137.8 4758.0 ´593.5 6480.0

126.5 14922.0 ´16800.0 56766.0 4738.0 104.7 2404.0 3971.0 ´1.056E5

˛
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We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

D2 FD
Alg ´D2 FD

FinDiff

avg|D2 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 4.8305E´4 (5.36)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

D2 FD
Alg ´D2 FD

FinDiff

avg|D2 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 7.4819E´6. (5.37)

Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 4.6853E´3 and eavgrand « 1.3604E´4. (5.38)

These results verify that (apart from approximation errors in the finite differences) the relation
D2 FD “ ´M´1 D2 ID of (3.53) is indeed correct, and the derivatives of the forward dynamics
of (3.17) with respect to the generalized position vector s can be numerically efficiently computed
through the derivatives of the extended inverse dynamics of Table 4.3 and the IMMAmb of Table
4.7.

5.5.3 Derivatives of forward dynamics w.r.t. moving-base velocity

The derivative of the forward dynamics of (3.17) with respect to the moving-base velocity v ob-
tained through the finite differences method using the selected inputs is found as

D3 FD
FinDiff «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

257.5 ´974.8 ´479.6 942.1 ´35211.0 83100.0

8.659 87.56 ´13.19 947.6 6832.0 ´8240.0

97.81 ´233.8 ´189.4 5433.0 1438.0 10522.0

´6.518 14.24 12.16 ´238.2 ´45.45 ´864.1

´2.243 8.614 5.43 ´58.29 204.4 ´655.3

´7.045 27.98 13.61 ´2.501 1170.0 ´2525.0

´246.5 957.6 463.5 1014.0 37899.0 ´86833.0

12.98 ´25.36 ´24.53 515.1 424.7 1252.0

316.6 ´738.8 ´613.9 11700.0 2036.0 41466.0

4.455 ´5.114 ´5.493 208.7 135.1 252.5

19277.0 ´79566.0 ´37833.0 ´87333.0 ´3.487E6 7.474E6

´571.1 2302.0 1136.0 1139.0 96966.0 ´2.113E5

7.328 ´25.16 ´16.95 262.2 ´307.3 1552.0

29.92 ´260.0 ´68.49 ´5044.0 ´19077.0 30999.0

´43.97 865.4 432.3 ´4104.0 24711.0 ´49966.0

˛
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.

The same derivative obtained through D3 FD “ ´M´1 D3 ID of (3.53), where M´1 and D3 ID are
found through the IMMAmb of Table 4.7 and the derivative algorithm of Table 4.4 respectively, is
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found as

D3 FD
Alg «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

257.5 ´974.8 ´479.6 942.1 ´35211.0 83100.0

8.659 87.56 ´13.19 947.6 6832.0 ´8240.0

97.81 ´233.8 ´189.4 5433.0 1438.0 10522.0

´6.518 14.24 12.16 ´238.2 ´45.45 ´864.1

´2.243 8.614 5.43 ´58.29 204.4 ´655.3

´7.045 27.98 13.61 ´2.501 1170.0 ´2525.0

´246.5 957.6 463.5 1014.0 37899.0 ´86833.0

12.98 ´25.36 ´24.53 515.1 424.7 1252.0

316.6 ´738.8 ´613.9 11700.0 2036.0 41466.0

4.455 ´5.114 ´5.493 208.7 135.1 252.5

19277.0 ´79566.0 ´37833.0 ´87333.0 ´3.487E6 7.474E6

´571.1 2302.0 1136.0 1139.0 96966.0 ´2.113E5

7.328 ´25.16 ´16.95 262.2 ´307.3 1552.0

29.92 ´260.0 ´68.49 ´5044.0 ´19077.0 30999.0

´43.97 865.4 432.3 ´4104.0 24711.0 ´49966.0

˛
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We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

D3 FD
Alg ´D3 FD

FinDiff

avg|D3 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 3.1249E´6 (5.39)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

D3 FD
Alg ´D3 FD

FinDiff

avg|D3 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 6.7316E´8. (5.40)

Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 1.8230E´5 and eavgrand « 1.3021E´6. (5.41)

These results verify that (apart from approximation errors in the finite differences) the relation
D3 FD “ ´M´1 D3 ID of (3.53) is indeed correct, and the derivatives of the forward dynamics of
(3.17) with respect to the moving-base velocity v can be numerically efficiently computed through
the derivatives of the extended inverse dynamics of Table 4.4 and the IMMAmb of Table 4.7.

5.5.4 Derivatives of forward dynamics w.r.t. generalized velocity vector

The derivative of the forward dynamics of (3.17) with respect to the generalized velocity vector r
obtained through the finite differences method using the selected inputs is found as
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D4 FD
FinDiff «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

40.38 1239.0 111.0 5645.0 67.53 ´4.481 ´409.7 ´8.586 ´19.56

25.5 ´14.01 106.0 ´642.7 ´9.524 ´2.401 ´663.7 18.0 ´37.02

76.43 2954.0 165.7 712.1 11.33 0.09531 36.97 ´8.202 3.667

´3.547 ´80.06 ´14.36 ´55.07 ´1.419 0.06651 28.34 ´0.8655 1.819

´0.9339 ´11.49 ´3.378 ´42.56 0.1696 0.01848 ´3.946 0.3208 ´0.2986

´0.5251 ´20.11 ´1.596 ´174.8 ´2.767 ´0.0687 ´1.618 0.1158 0.08181

´28.27 1155.0 ´107.8 ´5839.0 ´58.09 4.431 285.2 11.89 11.48

9.051 182.8 17.84 76.46 0.8701 ´0.1653 ´44.21 1.022 ´2.608

210.5 4719.0 292.4 2679.0 20.69 ´2.028 ´411.0 1.811 ´23.02

2.585 139.8 6.713 22.0 0.6916 0.8499 ´31.22 1.737 ´2.387

516.0 10700.0 1762.0 5.242E5 1950.0 41.0 ´2957.0 ´27.55 ´269.9

´36.99 93.54 ´170.9 ´15033.0 ´211.4 ´1.784 ´18.61 8.52 10.85

3.34 86.15 13.32 102.1 1.516 ´0.1113 14.11 ´0.1589 ´0.4607

´51.86 ´2481.0 ´95.39 2084.0 1.527 ´2.615 ´413.5 ´1.326 ´6.585

´4.687 ´466.3 ´4.996 ´3463.0 ´22.92 1.066 ´4436.0 116.0 ´68.13
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‚

.

The same derivative obtained through D4 FD “ ´M´1 D4 ID of (3.53), where M´1 and D4 ID are
found through the IMMAmb of Table 4.7 and the derivative algorithm of Table 4.5 respectively, is
found as

D4 FD
Alg «

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

40.38 1239.0 111.0 5645.0 67.53 ´4.481 ´409.7 ´8.586 ´19.56

25.5 ´14.01 106.0 ´642.7 ´9.524 ´2.401 ´663.7 18.0 ´37.02

76.43 2954.0 165.7 712.1 11.33 0.09532 36.97 ´8.202 3.667

´3.547 ´80.06 ´14.36 ´55.07 ´1.419 0.06651 28.34 ´0.8655 1.819

´0.9339 ´11.49 ´3.378 ´42.56 0.1696 0.01848 ´3.946 0.3208 ´0.2986

´0.5251 ´20.11 ´1.596 ´174.8 ´2.767 ´0.0687 ´1.618 0.1158 0.08181

´28.27 1155.0 ´107.8 ´5839.0 ´58.09 4.431 285.2 11.89 11.48

9.051 182.8 17.84 76.46 0.8701 ´0.1653 ´44.21 1.022 ´2.608

210.5 4719.0 292.4 2679.0 20.69 ´2.028 ´411.0 1.811 ´23.02

2.585 139.8 6.713 22.0 0.6916 0.8499 ´31.22 1.737 ´2.387

516.0 10700.0 1762.0 5.242E5 1950.0 41.0 ´2957.0 ´27.55 ´269.9

´36.99 93.54 ´170.9 ´15033.0 ´211.4 ´1.784 ´18.61 8.52 10.85

3.34 86.15 13.32 102.1 1.516 ´0.1113 14.11 ´0.1589 ´0.4607

´51.86 ´2481.0 ´95.39 2084.0 1.527 ´2.615 ´413.5 ´1.326 ´6.585

´4.687 ´466.3 ´4.996 ´3463.0 ´22.92 1.066 ´4436.0 116.0 ´68.13

˛
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.

We define the maximum and average errors between both derivatives similar to (5.9) and (5.10) and
compute them as

emax :“ max

ˇ

ˇ

ˇ

ˇ

D4 FD
Alg ´D4 FD

FinDiff

avg|D4 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 1.9549E´6 (5.42)

and

eavg :“ avg

ˇ

ˇ

ˇ

ˇ

D4 FD
Alg ´D4 FD

FinDiff

avg|D4 FDAlg|

ˇ

ˇ

ˇ

ˇ

« 2.5640E´8. (5.43)
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Using the randomized test, where we compute the derivative for the randomized inputs and system
parameters 100 times, we obtain the highest maximum error and the highest average error as

emaxrand « 1.5693E´4 and eavgrand « 1.3766E´6. (5.44)

These results verify that (apart from approximation errors in the finite differences) the relation
D4 FD “ ´M´1 D4 ID of (3.53) is indeed correct, and the derivatives of the forward dynamics
of (3.17) with respect to the generalized velocity vector r can be numerically efficiently computed
through the derivatives of the extended inverse dynamics of Table 4.5 and the IMMAmb of Table
4.7.

5.6 Summary

In this chapter we have presented the numerical verification of our newly presented algorithms that
compute singularity-free linearization of the forward dynamics. We have presented and detailed a
moving-base multibody test system in Section 5.1 to verify our newly presented algorithms on. To
verify that we compute the left-trivialized derivatives of the extended inverse dynamics correctly, we
have compared our obtained results to the same derivatives obtained through left-trivialized finite
differences. To verify that we compute the inverse mass matrix for both fixed-base and moving-base
systems correctly, we have compared our obtained results through the IMMA and IMMAmb with
the inverse of the mass matrix obtained through the Composite Rigid Body Algorithm for fixed-base
and moving-base systems (CRBA and CRBAmb). To verify that our presented relation between
the derivatives of the forward dynamics and the derivatives of the extended inverse dynamics is
correct, we have compared the derivatives of the forward dynamics obtained through our derivatives
algorithms and IMMAmb with the derivatives of the forward dynamics obtained through the left-
trivialized finite differences of the Articulated Body Algorithm for moving-base systems (ABAmb).
The numerical results of these tests verify that we correctly compute the geometric linearization
of the forward dynamics. This concludes the third objective: Verify the correctness of the derived
algorithms, and with that the goal of this thesis: Develop a numerically efficient and accurate
method to compute the singularity-free geometric linearization of moving-base multibody systems, as
described in Section 1.3.

The following chapter presents the conclusions of this thesis and discusses recommendations for
further research.
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Chapter 6

Conclusions and Recommendations

This chapter presents the conclusions from this thesis, followed by recommendations for future
research. As stated in Section 1.3, the research goal is to develop a numerically efficient and
accurate method to compute the singularity-free geometric linearization of moving-base multibody
systems. This research goal has been divided in three objectives:

• Derive mathematical formulas for the singularity-free geometric linearization of moving-base
multibody systems.

• Derive numerically efficient and accurate algorithms to compute the singularity-free geometric
linearization of moving-base multibody systems.

• Verify the correctness of the derived algorithms.

Section 6.1 presents the conclusions that are drawn and the contribution of this thesis is sum-
marized. Section 6.2 presents suggested areas for further research related to this thesis.

6.1 Conclusions

In this thesis we have derived and verified a numerically efficient and accurate singularity-free geo-
metric linearization for moving-base multibody dynamics on SEp3q ˆ RnJ . Below we explain steps
taken to achieve this goal.

Method for computing the linearization. In Section 1.2 we have presented a literary review
on all aspects of this research. Multiple methods to compute the sensitivity of multibody dynamics
have been explored, which each have up- and downsides, as shown in Table 1.1. We have chosen the
method of recursive analytical derivation, which uses recursive algorithms to compute the sensitivity
using mathematical knowledge about the system. In current literature, recursive analytical deriva-
tion only exists applied to dynamics on vector spaces, which bring singularity issues to moving-base
dynamics. Also the underactuated moving-base system is treated as fully actuated by modelling the
non-actuated moving base as six separate actuated one-DoF joints. Therefore we have chosen to
apply the theory of left-trivialized linearization to analytically derive singularity-free moving-base
multibody dynamics.

Mathematical formulas for the linearization. In Chapter 3 we have shown the Lie group on
which moving-base multibody dynamics can be modelled in a singularity-free manner. The choice
of the set on which the dynamics are modelled was simple, however the choice of the group opera-
tion is important to achieve simple computations as is shown in [11]. Using left-trivialization, the
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time-derivatives of the state manifold have been morphed into a vector space, which allowed us to
present a system state vector used in the linearized system. The state matrix has been found in
terms of the left-trivialized derivatives of the forward dynamics. The input matrix has been found
as the inverse of the mass matrix times the selection matrix. As [7] states that the derivatives of the
forward dynamics can be found in a numerically more efficient manner through the derivatives of
the inverse dynamics, we aimed to do the same. However, as we deal with underactuated systems,
the inverse dynamics are not defined. Therefore we have made use of the theory in [31], which
expands underactuated systems to non-physical fully actuated systems, allowing us to obtain the
extended inverse dynamics. With use of the fully actuated non-physical system, the state matrix
has been expressed in terms of the inverse of the mass matrix and the derivatives of the extended
inverse dynamics. Chapter 3 concludes the first objective: Derive and present the mathematical
formulas for the singularity-free geometric linearization of moving-base multibody systems.

Numerically efficient and accurate algorithms to compute the linearization. In Chapter
4 we have presented the Extended Inverse Dynamics Algorithm for moving-base systems (EIDAmb),
which numerically efficiently computes the extended inverse dynamics as a recursive algorithm. The
EIDAmb is based on the Recursive Newton Euler Algorithm for moving-base systems (RNEAmb)
combined with the Generalized Bias Wrench Algorithm for moving-base systems (GBWAmb) and
the Composite Rigid Body Algorithm for moving-base systems (CRBAmb). Using the EIDAmb,
we have presented four recursive algorithms that compute the left-trivialized derivatives of the ex-
tended inverse dynamics with respect to the system states. The presented algorithms make use of
the chain rule to compute the left-trivialized derivatives of each step in the EIDAmb. By using
the mathematical knowledge of each step in the EIDAmb, we have left out unnecessary computa-
tions, increasing the numerical efficiency. Inspired on the Inverse Mass Matrix Algorithm (IMMA)
presented in [28] that computes the inverse of the mass matrix without first computing the mass ma-
trix, we aimed to derive an algorithm that computes the inverse of the mass matrix for moving-base
systems. However, we have found that the algorithm in its current form is incorrect. By redoing
the work of [28], we have found the correct version of the algorithm, which we have expanded to
the Inverse Mass Matrix Algorithm for moving-base systems (IMMAmb). Chapter 4 concludes the
second objective: Derive numerically efficient and accurate algorithms to compute the singularity-
free geometric linearization of moving-base multibody systems.

Numerical verification of the presented algorithms. In Chapter 5 we have shown a moving-
base multibody test system which has been used to verify the algorithms presented in Chapter 4.
We have verified the correctness of the four algorithms that compute the left-trivialized derivatives
of the extended inverse dynamics with respect to the state variables by comparing the results to
the same derivatives computed through left-trivialized finite differences. We have also shown that
the version of the IMMA presented in [28] is incorrect, and verified that our version of the IMMA is
correct by comparing it to the fixed-base inverted mass matrix found through the Composite Rigid
Body Algorithm (CRBA). Likewise, we have verified the correctness of the IMMAmb by comparing
the results to the inverted mass matrix found through the Composite Rigid Body Algorithm for
moving-base systems (CRBAmb). Finally the resulting left-trivialized derivatives of the forward
dynamics expressed in terms of the left-trivialized derivatives of the extended inverse dynamics have
been verified to be correct by comparing them to the same derivatives obtained through the left-
trivialized finite differences of the forward dynamics, for which we have made use of the Articulated
Body Algorithm for moving-base systems (ABAmb). Using this comparison, we have verified that
the algorithms presented in Chapter 4 can indeed compute the left-trivialized derivatives of the
forward dynamics. Chapter 5 concludes the third objective: Verify the correctness of the derived
algorithms, and with that the goal of this thesis: Develop a numerically efficient and accurate
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method to compute the singularity-free geometric linearization of moving-base multibody systems.

6.2 Recommendations for future work

We see numerically efficient and accurate singularity-free geometric linearization of moving-base
multibody dynamics as a stepping stone to create more efficient numerical tools such as model-
predictive control and trajectory optimization. If the computational speed of the linearization
method increases, more steps can be predicted ahead, a higher computational frequency can be
achieved, or less CPU power is required. Having singularity-free linearization ensures that singu-
larity issues, which can be disastrous in physical applications, are eliminated. This section presents
options for future work: partly further investigation of our presented algorithms, and partly steps
to get closer to real applications.

Implement algorithms in existing robot dynamics library. With this thesis we present the
derived algorithms in pseudo-code and in MATLAB. However, direct execution of MATLAB code
is not as computationally efficient as other languages such as C++. Implementing the algorithms
in an already existing library brings our theory closer to real applications. We plan to implement
the found algorithms in the iDynTree library [40] from IIT.

Compare computational time of our singularity-free algorithms and existing recursive
analytical derivatives on vector spaces. The recursive analytical algorithms presented in [7]
are also capable of computing the derivatives of the forward dynamics of moving-base multibody
systems. However, those algorithms suffer from singularity issues in the moving-base due to its
parametrization, and do not treat the moving base as a non-actuated part of the system. Using
our algorithms, these singularity issues are eliminated and the system is treated as it is: underac-
tuated. As numerical efficiency is still highly valued, we desire to compare both strategies in terms
of numerical efficiency.

Test linearized system with automatic gain tuning. In [41], a method is presented to auto-
matically tune the gains of a high-DoF robotic system. Automatic gain tuning requires the desired
stiffness and damping matrices as inputs, and automatically tunes the controller gains such that
the desired stiffness and damping matrices are achieved. As the stiffness and damping factors are
presented in matrices, a linearized system is required to tune the controller gains such that these
matrices are achieved. We can test our algorithms by using them in a simulation where the control
gains are automatically tuned. If our algorithms indeed provide correct results, the system should
evolve with the specified stiffness and damping.

Add holonomic constraint: foot rigidly attached to ground. A holonomic constraint speci-
fies a position of a system. The case of a foot of a moving-base robot that is modelled to be rigidly
attached to the ground is therefore a holonomic constraint, as it fixates the position of the foot.
A foot is not generally fixated to the floor (e.g. walking, jumping), however this is a valid model
for balancing on one foot, where one can be sure that the foot will not separate from the floor
due to gravity. The algorithms presented in this thesis assume that there are no external forces
acting on the system, therefore also no constraints act on the system. The Jacobian and external
forces in (2.62) are state-dependent once constraints are forced, and therefore need to be taken into
account in the linearization of a constrained moving-base multibody system. Adding this holonomic
constraint is a step closer to real application.

Add inequality constraint: foot in contact with on ground. An inequality constraint
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specifies a position or velocity that has a limited range. Inequality constraints are often used
to model contact and impact: the constraint prevents penetration, but allows separation. For
example a foot that is in contact with the ground, which may lose contact. The position of the
foot is constrained to the ground or higher. Inequality constraints allow modelling of e.g. walking
and jumping. By combining unconstrained systems (e.g. flying, floating), holonomic constrained
systems (e.g. balancing), and inequality constrained systems (e.g. walking, jumping), all practical
uses of humanoids and quadrupeds can be modelled. Once these models are available, advanced
control techniques such as model-predictive control and trajectory optimization can be applied to
a variety of realistic situations.



85

Appendix A

Mathematical Derivations

In this appendix we discuss two mathematical derivations. The first section presents the relation
between the intrinsic and the apparent acceleration, which is used in the relation (4.2). The second
section presents the chain rule for multivariable functions, which is applied in the identity relation
(3.45).

A.1 Apparent and intrinsic acceleration

In this appendix we discuss two definitions of 6D acceleration: apparent and intrinsic acceleration.
We apply the relation between both types of acceleration in the relation (4.2) in Section 4.1. We
recall the definitions as in [30, Section 5.4].

The apparent acceleration of a frame B with respect to a frame A expressed in a frame C is
defined as the time-derivative of the corresponding velocity CvA,B,

C 9vA,B :“
d

dt

`

CvA,B
˘

. (A.1)

Note that the velocity transformation matrix does not translate an acceleration into a different frame.
Expressing an apparent acceleration into a different frame involves an extra 6D cross product term.
We also define the intrinsic acceleration of a frame B with respect to a frame A expressed in a
frame C as

CaA,B :“ CXA
A 9vA,B “

CXB
B 9vA,B. (A.2)

In the relation (4.2) we look specifically at

9v :“ 0 9vA,0 “
0aA,0 “: a0, (A.3)

which is correct according to the definition of the intrinsic acceleration given by (A.2), as

AaA,0 “
AXA

A 9vA,0. (A.4)

For the interested reader, we advice to read [30, Section 5.4], which talks about both types of
acceleration in more detail using the Eindhoven-Genoa notation, and [42], which defines both types
of acceleration in a different notation. Note that in the last citation, intrinsic acceleration is called
absolute acceleration.
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A.2 Chain rule for multivariable functions

In this appendix we present the chain rule for multivariable functions, and specifically apply it to
identity relation in (3.45) in Section 3.3.

The chain rule is a method to compute the derivative of function compositions. Given two
functions fpxq and gpxq evaluated at a given x, we write the derivative of their composition as

Bpf ˝ gq

Bx
“ p
Bf

Bx
˝ gq ¨

Bg

Bx
. (A.5)

The chain rule can be used on multivariable functions as well. For example, given hpx, yq and
y “ kpxq evaluated at a given x and y, we write the partial derivatives of their composition hpx, kpxqq
as

Bhpx, kpxqq

Bx
“
Bhpx, yq

Bx
`
Bhpx, yq

By

Bkpxq

Bx
. (A.6)

Using the derivative notation, we write

Bhpx, kpxqq

Bx
“ D1 hpx, yq `D2 hpx, yqD1 kpxq. (A.7)

This is used in (3.48), where the partial derivatives of two equations are written. The first equation
is

IDb

`

H, s,v, r, FDbpH, s,v, r, τ̄ b, τ q, FDjpH, s,v, r, τ̄ b, τ q
˘

“ τ̄ b, (A.8)

of which we want to compute the partial derivative with respect to H, s,v and r. It should be noted
that Bτ̄ b{Bx “ 0 where x “ H, s,v, r, as τ̄ is assigned a specified value. We write the derivative of
the left-hand side with respect to the first variable, H, as

D1 IDb

`

H, s,v, r, 9v, 9r
˘

`D5 IDb

`

H, s,v, r, 9v, 9r
˘

D1 FDb

`

H, s,v, r, τ̄ b, τ
˘

(A.9)

`D6 IDb

`

H, s,v, r, 9v, 9r
˘

D1 FDj

`

H, s,v, r, τ̄ b, τ
˘

, (A.10)

where we define

9v :“ FDbpH, s,v, r, τ̄ b, τ q (A.11)

and

9r :“ FDjpH, s,v, r, τ̄ b, τ q. (A.12)

The same can be done for the partial derivative with respect to the second, third, and fourth
arguments, hence we replace D1 with Di and state i P t1, 2, 3, 4u. The partial derivatives of the
bottom equation of (3.48) are found in a similar manner.
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Appendix B

Algorithmic Functions

This appendix presents three functions that are used in the algorithms in this thesis. These func-
tions, ‘get gravity’, ‘jcalc’ and ‘jcalcderiv’, retrieve the gravity, compute joint variables, and compute
the derivative of the joint variables respectively.

B.1 Gravity

The algorithms in this thesis obtain the gravitational acceleration Aagrav from the function
‘get gravity(model)’. The gravitational acceleration expressed in the inertial frame A is provided in
the model. By specifying it in the model, one can easily change the gravitational acceleration vector
if desired. The algorithms in this thesis allow for both translational and rotational acceleration,
resulting in a 6D vector.

B.2 Joint calculation

As shown in Assumption 2.2, in this thesis we assume all joints to be (modelled as joints) of the
following types:

• Revolute (hinge joint) (1-DoF)

• Prismatic (sliding joint) (1-DoF)

• Helical (screw joint) (1-DoF)

These three 1-DoF joints are depicted in Figure B.11. For each joint type, there is a specified
velocity transformation matrix iXλpiq|i and joint velocity subspace ΓJ i as specified in Subsections
2.7.3 and 2.7.4. These quantities are computed by the function ‘jcalc(jtype(i),si)’. The input
‘jtype(i)’, specified by the model, is used to describe which of which type the joint is. The input si
is used to specify the joints position. The velocity transformation matrix is given by

iXλpiq|i “

«

iRλpiq|i
io^λpiq|i

iRλpiq|i

03ˆ3
iRλpiq|i

ff

P R6ˆ6, (B.1)

1Pictures retrieved from https://www.researchgate.net/figure/Revolute-R-prismatic-P-and-helical-H-joints_

fig1_318418364

https://www.researchgate.net/figure/Revolute-R-prismatic-P-and-helical-H-joints_fig1_318418364
https://www.researchgate.net/figure/Revolute-R-prismatic-P-and-helical-H-joints_fig1_318418364
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(a) Revolute joint. (b) Prismatic joint. (c) Helical joint.

Figure B.1: All three 1-DoF types of joints.

where iRλpiq|i and io^λpiq|i are specific to the joint type. We define the following rotation matrices,
which are pure rotations in x, y and z direction, specified by angle si

Rxpsiq :“

»

—

–

1 0 0

0 cos si sin si

0 ´ sin si cos si

fi

ffi

fl

, (B.2)

Rypsiq :“

»

—

–

cos si 0 ´ sin si

0 1 0

sin si 0 cos si

fi

ffi

fl

, (B.3)

Rzpsiq :“

»

—

–

cos si sin si 0

´ sin si cos si 0

0 0 1

fi

ffi

fl

. (B.4)

The joint types and their rotation matrix, origin and joint velocity subspace are shown in Table
B.1, where x, y and z denote the axis around/in which the joint is moving.
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Table B.1: Overview of joint types.

Joint type
Rotation matrix
iRλpiq|i

Origin ioλpiq|i
Joint velocity subspace
ΓJ i

Revolute
x: Rxpsiq,
y: Rypsiq,
z: Rzpsiq

»

—

–

0

0

0

fi

ffi

fl

x:

»

—

—

—

—

—

—

—

—

—

–

0

0

0

1

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, y:

»

—

—

—

—

—

—

—

—

—

–

0

0

0

0

1

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, z:

»

—

—

—

—

—

—

—

—

—

–

0

0

0

0

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Prismatic I3

x:

»

—

–

si

0

0

fi

ffi

fl

,

y:

»

—

–

0

si

0

fi

ffi

fl

,

z:

»

—

–

0

0

si

fi

ffi

fl

x:

»

—

—

—

—

—

—

—

—

—

–

1

0

0

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, y:

»

—

—

—

—

—

—

—

—

—

–

0

1

0

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, z:

»

—

—

—

—

—

—

—

—

—

–

0

0

1

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Helical (with pitch h)
x: Rxpsiq,
y: Rypsiq,
z: Rzpsiq

x:

»

—

–

h si

0

0

fi

ffi

fl

,

y:

»

—

–

0

h si

0

fi

ffi

fl

,

z:

»

—

–

0

0

h si

fi

ffi

fl

x:

»

—

—

—

—

—

—

—

—

—

–

h

0

0

1

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, y:

»

—

—

—

—

—

—

—

—

—

–

0

h

0

0

1

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, z:

»

—

—

—

—

—

—

—

—

—

–

0

0

h

0

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

In general, the time-derivative of the joint velocity subspace (see right column of Table B.1) 9ΓJ i
is not equal to zero. For our joint types, however, it is equal to zero, as it is independent of time.
In some versions of the RNEA and ABA, the time derivative of the joint subspace matrix 9ΓJ i is
computed, however we omit the computation as it is equal to zero for our joint types.

B.3 Joint calculation derivatives

In the algorithm in Table 4.3, the derivative of the extended inverse dynamics (3.39) with respect
to generalized position vector s is computed. Line 2 calls the function ‘jcalcderiv(jtype(i),si)’ to
compute the derivative of the velocity transformation matrix iXλpiq|i with respect to si. Here we
make use of the definition of iXλpiq|i given in B.2. As it only depends on the joint type and the
generalized position si, we can mathematically write out its derivative with respect to si. In the
table below we show the outcome partial derivative of iXλpiq|i with respect to si for each joint type,
where the functions c and s represent cosine and sine respectively.
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Table B.2: Derivative of iXλpiq|i w.r.t. si.

Joint type Derivative B iXλpiq|i {Bsi

Revolute around x

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0

0 ´spsiq cpsiq 0 0 0

0 ´cpsiq ´spsiq 0 0 0

0 0 0 0 0 0

0 0 0 0 ´spsiq cpsiq

0 0 0 0 ´cpsiq ´spsiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Revolute around y

»

—

—

—

—

—

—

—

—

—

–

´spsiq 0 ´cpsiq 0 0 0

0 0 0 0 0 0

cpsiq 0 ´spsiq 0 0 0

0 0 0 ´spsiq 0 ´cpsiq

0 0 0 0 0 0

0 0 0 cpsiq 0 ´spsiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Revolute around z

»

—

—

—

—

—

—

—

—

—

–

´spsiq cpsiq 0 0 0 0

´cpsiq ´spsiq 0 0 0 0

0 0 0 0 0 0

0 0 0 ´spsiq cpsiq 0

0 0 0 ´cpsiq ´spsiq 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Prismatic in x

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0

0 0 0 0 0 ´1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Prismatic in y

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 ´1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Prismatic in z

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 ´1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

continued on the next page.
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Joint type Derivative B iXλpiq|i {Bsi

Helical in x (with pitch h)

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0

0 ´spsiq cpsiq 0 h spsiq ` hsi cpsiq hsi spsiq ´ h cpsiq

0 ´cpsiq ´spsiq 0 h cpsiq ´ hsi spsiq h spsiq ` hsi cpsiq

0 0 0 0 0 0

0 0 0 0 ´spsiq cpsiq

0 0 0 0 ´cpsiq ´spsiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Helical in y (with pitch h)

»

—

—

—

—

—

—

—

—

—

–

´spsiq 0 ´cpsiq h spsiq ` hsi cpsiq 0 h cpsiq ´ hsi spsiq

0 0 0 0 0 0

cpsiq 0 ´spsiq hsi spsiq ´ h cpsiq 0 h spsiq ` hsi cpsiq

0 0 0 ´spsiq 0 ´cpsiq

0 0 0 0 0 0

0 0 0 cpsiq 0 ´spsiq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Helical in z (with pitch h)

»

—

—

—

—

—

—

—

—

—

–

´spsiq cpsiq 0 h spsiq ` hsi cpsiq hsi spsiq ´ h cpsiq 0

´cpsiq ´spsiq 0 h cpsiq ´ hsi spsiq h spsiq ` hsi cpsiq 0

0 0 0 0 0 0

0 0 0 ´spsiq cpsiq 0

0 0 0 ´cpsiq ´spsiq 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Appendix C

Correction of the IMMA

In this section we report, detail and correct the IMMA as it is presented in [28]. Table C.1 shows
the original version of the IMMA in the Eindhoven-Genoa notation, where the line 34 to 38 are not
presented but implied in [28].
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Table C.1: Original version of the IMMA in the Eindhoven-Genoa notation.

Inputs model, s

Line IMMA (original version)

1 for i “ 1 to nB do

2 riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

3 iXλpiq “
iXλpiq|i

λpiq|iXλpiq

4 Mc
Bi “MBi

5 end

6 for i “ NB to 1 do

7 UBi “MA
BiΓJ i

8 DBi “ ΓTJ iUBi

9 if i is not a leaf then

10 Minv
fb ri, subtreepiqs “ ´D´1

Bi Γ
T
J iFir:, subtreepiqs

11 if λpiq ‰ 0 then

12 Fir:, subtreepiqs “ UBi Minv
fb ri, subtreepiqs

13 Fλpiqr:, subtreepiqs “ Fλpiqr:, subtreepiqs ` λpiqX
i
`

Fir:, subtreepiqs
14 end

15 end

16 else

17 Fλpiqr:, is “ Fλpiqr:, is ` λpiqX
iUBi Minv

fb ri, is

18 end

19 Minv
fb ri, is “ D´1

Bi
20 if λpiq ‰ 0 then

21 Ma
Bi “MA

Bi ´UBiD
´1
Bi U

T
Bi

22 MA
Bλpiq “MA

Bλpiq ` λpiqX
iMa

Bi
iXλpiq

23 end

24 end

25 for i “ 1 to nB do

26 if λpiq ‰ 0 then

27 Minv
fb ri, subtreepiqs “ Minv

fb ri, subtreepiqs ´D´1
Bi U

T
Bi
iXλpiqPλpiqr:, subtreepiqs

28 end

29 Pi “ ΓJ iM
inv
fb ri, subtreepiqs

30 if λpiq ‰ 0 then

31 Pir:, subtreepiqs “ Pir:, subtreepiqs ` iXλpiqPλpiqr:, subtreepiqs
32 end

33 end

34 for i “ 1 to nB do

35 for j “ i to nB do

36 Minv
fb rj, is “ Minv

fb ri, js

37 end

38 end

Outputs Minv
fb
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The code as it is presented can not be executed, since the end in line 15 should not be there. After
removing line 15, there is the problem that Minv

fb ri, is gets defined on line 19, although it should

be defined between line 8 and 9. Defining Minv
fb ri, is on line 19 returns a (falsely) diagonal inverse

mass matrix. Besides these errors, the algorithm can be simplified a lot. The if i is not a leaf can
be completely dropped, which saves us from needing to compute whether each joint is a leaf. The
definition of Fi, which is now done on three lines, can be done on a single line as
Fλpiqr:, subtreepiqs “ Fλpiqr:, subtreepiqs`λpiqX

iUBiM
inv
fb ri,model.subtreepiqs. All these changes are

in the backwards pass. For clarity, the optimized version of the backwards pass is written below.

Table C.2: Optimized backwards pass of the original IMMA.

Line Backwards pass of IMMA

6 for i “ nB to 1 do

7 UBi “MA
BiΓJ i

8 DBi “ ΓTJ iUBi

9 Minv
fb ri, is “ D´1

Bi
10 Minv

fb ri, subtreepiqs “ Minv
fb ri, subtreepiqs ´D´1

Bi Γ
T
J iFir:, subtreepiqs

11 if λpiq ‰ 0 then

12 Fλpiqr:, subtreepiqs “ Fλpiqr:, subtreepiqs ` λpiqX
iUBiM

inv
fb ri, subtreepiqs

13 Ma
Bi “MA

Bi ´UBiD
´1
Bi U

T
Bi

14 MA
Bλpiq “MA

Bλpiq ` λpiqX
i Ma

Bi
iXλpiq

15 end

16 end

This algorithm returns the same result as the original version in [28] (provided that the extra end
in line 15 is removed and the Minv

fb from line 19 is moved between lines 8 and 9). Instead of the
original 18 lines, this algorithm only uses 11 lines of code. However, with the added changes, the
resulting inverse mass matrix obtained through this algorithm is still incorrect. A term is missing
in line 12 of the optimized backwards pass in Table C.2, namely λpiqX

iFir:, subtreepiqs. With this
term added, line 12 is shown in the following table.

Table C.3: Correct line 12 of the IMMA.

Line Line 12 of IMMA

12 Fλpiqr:, subtreepiqs “ Fλpiqr:, subtreepiqs ` λpiqX
i
`

Fir:, subtreepiqs `UBiM
inv
fb ri, subtreepiqs

˘

Furthermore, when dealing with branched systems, the second forward pass of the original IMMA
is incorrect. This mistake is corrected in the second forward pass below.
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Table C.4: Correct second forward pass of the IMMA.

Line Second forward pass of IMMA

25 for i “ 1 to nB do

26 if λpiq ‰ 0 then

27 Minv
fb ri, :s “ Minv

fb ri, :s ´D´1
Bi U

T
Bi
iXλpiqPλpiq

28 end

29 Pi “ ΓJ iM
inv
fb ri, :s

30 if λpiq ‰ 0 then

31 Pi “ Pi ` iXλpiqPλpiq
32 end

33 end

The resulting correct IMMA is presented in Table 4.6 in Section 4.3, and it is verified to be correct
in Section 5.3.
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Appendix D

Details on Numerical Verification

In this appendix we present details on the numerical verification. The first section shows the details
of the designed test system which is used in Chapter 5. The second section presents the numerical
results of the inverse of the mass matrix for moving-base systems, as the resulting matrices are too
big to display in the main text.

D.1 Details on the designed test system

This section shows the details on the designed test system of Section 5.1. The joint types, the
velocity transformation matrices λpiq|iXλpiq (which are body fixed constants), and the rigid body
inertia’s MBi are presented below. The joint types of the designed test system are shown in Table
D.1. The different types of joints are specified in Appendix B.2.

Table D.1: Joint types of the designed test system.

Joint Type Direction Extra details

1 Prismatic x

2 Revolute y

3 Helical z pitch h “ 4

4 Helical x pitch h “ 5

5 Revolute z

6 Prismatic y

7 Revolute x

8 Prismatic z

9 Helical y pitch h “ 3

The velocity transformation matrices λpiq|iXλpiq are body fixed constants. It can physically be
seen as the velocity transformation matrix from joint λpiq, resembled by frame λpiq to joint i,
resembled by frame λpiq|i. As both frames are attached to body λpiq, the velocity transformation
matrix between them is constant, and since it is a constant, it is modelled as a model design
parameter. The velocity transformation matrices for the designed test system of Section 5.1 are
chosen to be a pure rotation multiplied by a pure translation, so that the velocity transformation
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matrix of (2.36) is given by

λpiq|iXλpiq “

«

λpiq|iRλpiq 03ˆ3

03ˆ3
λpiq|iRλpiq

ff«

I3
λpiq|io^λpiq

03ˆ3 I3

ff

P R6ˆ6. (D.1)

The velocity transformation matrices of the designed test system are shown in Table D.2 where
Rx,Ry and Rz are defined in (B.2)-(B.4).

Table D.2: Velocity transformation matrices of the designed test system.

Body λpiq|iRλpiq
λpiq|io^λpiq

1 Rxp1q r2; 1; 7s

2 Rzp4q r1; 7; 6s

3 Ryp7q r8; 9; 3s

4 Rxp8q r7; 0; 7s

5 Ryp5q r6; 5; 8s

6 Rxp1q r3; 8; 0s

7 Rxp0q r4; 3; 2s

8 Rzp6q r7; 5; 1s

9 Ryp4q r3; 2; 2s

The rigid body inertia’s MBi are presented in Table D.3.
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Table D.3: Rigid body inertia’s of the designed test system.

MB0 “

»

—

—

—

—

—

—

—

—

—

–

120 ´23 ´68 0 ´14 6

´23 153 ´39 14 0 ´10

´68 ´39 76 ´6 10 0

0 14 ´6 2 0 0

´14 0 10 0 2 0

6 ´10 0 0 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB1 “

»

—

—

—

—

—

—

—

—

—

–

129 ´71 ´138 0 ´24 12

´71 314 ´43 24 0 ´36

´138 ´43 241 ´12 36 0

0 24 ´12 6 0 0

´24 0 36 0 6 0

12 ´36 0 0 0 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB2 “

»

—

—

—

—

—

—

—

—

—

–

238 ´74 ´403 0 ´45 9

´74 959 ´42 45 0 ´81

´403 ´42 746 ´9 81 0

0 45 ´9 9 0 0

´45 0 81 0 9 0

9 ´81 0 0 0 9

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB3 “

»

—

—

—

—

—

—

—

—

—

–

852 ´113 ´214 0 ´72 40

´113 725 ´357 72 0 ´24

´214 ´357 280 ´40 24 0

0 72 ´40 8 0 0

´72 0 24 0 8 0

40 ´24 0 0 0 8

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB4 “

»

—

—

—

—

—

—

—

—

—

–

45 ´41 ´36 0 ´6 6

´41 118 ´13 6 0 ´14

´36 ´13 117 ´6 14 0

0 6 ´6 2 0 0

´6 0 14 0 2 0

6 ´14 0 0 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB5 “

»

—

—

—

—

—

—

—

—

—

–

122 ´34 ´34 0 ´8 7

´34 91 ´51 8 0 ´5

´34 ´51 75 ´7 5 0

0 8 ´7 1 0 0

´8 0 5 0 1 0

7 ´5 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB6 “

»

—

—

—

—

—

—

—

—

—

–

94 ´83 ´88 0 ´15 15

´83 230 ´42 15 0 ´30

´88 ´42 233 ´15 30 0

0 15 ´15 5 0 0

´15 0 30 0 5 0

15 ´30 0 0 0 5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB7 “

»

—

—

—

—

—

—

—

—

—

–

168 ´121 ´158 0 ´20 16

´121 361 ´77 20 0 ´32

´158 ´77 328 ´16 32 0

0 20 ´16 4 0 0

´20 0 32 0 4 0

16 ´32 0 0 0 4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB8 “

»

—

—

—

—

—

—

—

—

—

–

569 ´503 ´246 0 ´28 56

´503 681 ´219 28 0 ´63

´246 ´219 1016 ´56 63 0

0 28 ´56 7 0 0

´28 0 63 0 7 0

56 ´63 0 0 0 7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MB9 “

»

—

—

—

—

—

—

—

—

—

–

184 ´11 ´4 0 ´6 18

´11 25 ´51 6 0 ´2

´4 ´51 172 ´18 2 0

0 6 ´18 2 0 0

´6 0 2 0 2 0

18 ´2 0 0 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

D.2 Numerical results of the inverse of the mass matrix for
moving-base systems

The inverse of the mass matrix M´1 is found through the CRBAmb (Appendix E.4) and through
the IMMAmb of Table 4.7 as shown below.
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Appendix E

Standard Algorithms in
Eindhoven-Genoa notation

This appendix presents all algorithms relevant to this thesis, which are the RNEA, CRBA, ABA,
RNEAmb, CRBAmb, ABAmb, GBWAmb, and the derivatives of the fixed-base inverse dynamics.
These algorithms are presented both in Featherstone notation and Eindhoven-Genoa notation, so
that they are accessible and recognizable to readers familiar to these algorithms in Featherstone
notation. All algorithms have ‘model’, as an input, which contains the following model-specific
constants:

• the number of bodies

• the gravitational constant

• each body’s parent, λpiq

• each joint’s joint type

• each body’s rigid part of the velocity transformation of the precedent joint w.r.t the current
joint, λpiq|iXi

• each body’s inertia, MBi

For each algorithm we removed any parts containing external forces, as in Assumption 2.3 we assume
there are none.

E.1 Recursive Newton Euler Algorithm (RNEA)

The following table presents the RNEA, as found on [43] without external forces, which is also
presented in [8, Table 5.1] in a slightly different version.
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Table E.1: The Recursive Newton Euler Algorithm for fixed-base systems (RNEA).

Line Featherstone Eindhoven-Genoa

Inputs model, q, 9q, :q model, s, r, 9r

1 ag “ get gravity(model) 0agrav “ get gravity(model)

2 for i “ 1 to NB do for i “ 1 to nB do

3 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

4 vJ “ Si 9qi vJ i “ ΓJ iri

5 iXλpiq “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

6 if λpiq “ 0 then if λpiq “ 0 then

7 vi “ vJ vi “ vJ i

8 ai “ ´
iXλpiqag ` Si :qi ai “ ´

iXλpiq
Aagrav ` ΓJ i 9ri

9 else else

10 vi “
iXλpiqvλpiq ` vJ vi “

iXλpiqvλpiq ` vJ i

11 ai “
iXλpiqaλpiq ` Si :qi ` vi ˆ vJ ai “

iXλpiqaλpiq ` ΓJ i 9ri ` vi ˆ vJ i

12 end end

13 fi “ Iiai ` vi ˆ
˚ Iivi fJ i “MBiai ` vi ¯̂

˚MBivi

14 end end

15 for i “ NB to 1 do for i “ nB to 1 do

16 τi “ S
T
i fi τ i “ ΓTJ ifJ i

17 if λpiq ‰ 0 then if λpiq ‰ 0 then

18 fλpiq “ fλpiq `
λpiqX˚

i fi fJλpiq “ fJλpiq ` λpiqX
i fJ i

19 end end

20 end end

Outputs τ τ

E.2 Recursive Newton Euler Algorithm for moving-base systems
(RNEAmb)

The following table presents the RNEAmb, as found on [44] without external forces, which is also
presented in [8, Table 9.6] in a slightly different version.



E.3. Composite Rigid Body Algorithm (CRBA) 103

Table E.2: The Recursive Newton Euler Algorithm for moving-base systems (RNEAmb).

Line Featherstone Eindhoven-Genoa

Inputs model, q, 9q, :q, 0XA,
Av0 model, s, r, 9r,AH0,

AvA,0

1 Aag “ get gravity(model) Aagrav “ get gravity(model)

2 - 0HA “
AH´1

0

3 - 0RA “
0HAr1:3, 1:3s

4 - 0oA “
0HAr1:3, 4s

5 - 0XA “

«

0RA
0o^A

0RA

03ˆ3
0RA

ff

6 v0 “
0XA

Av0 v0 “
0XA

AvA,0

7 ar0 “
0XA

Aag ar0 “
0XA

Aagrav

8 Ic0 “ I0 Mc
B0 “MB0

9 - mB0 “MB0v0

10 pc0 “ I0a
r
0 ` v0 ˆ

˚ I0v0 bcB0 “MB0a
r
0 ` v0 ¯̂ ˚mB0

11 for i “ 1 to NB do for i “ 1 to nB do

12 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

13 vJ “ Si 9qi vJ i “ ΓJ iri

14 iXλpiq “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

15 vi “
iXλpiqvλpiq ` vJ vi “

iXλpiqvλpiq ` vJ i

16 ari “
iXλpiqa

r
λpiq ` Si :qi ` vi ˆ vJ ari “

iXλpiqa
r
λpiq ` ΓJ i 9ri ` vi ˆ vJ i

17 Ici “ Ii Mc
Bi “MBi

18 - mBi “MBivi

19 pci “ Iia
r
i ` vi ˆ

˚ Iivi bcBi “MBia
r
i ` vi ¯̂

˚mBi

20 end end

21 for i “ NB to 1 do for i “ nB to 1 do

22 Icλpiq “ I
c
λpiq `

λpiqX˚
i I

c
i
iXλpiq Mc

Bλpiq “Mc
Bλpiq `

λpiqX˚
i Mc

Bi
iXλpiq

23 pcλpiq “ p
c
λpiq ` λpiqX

i pci bcBλpiq “ bcBλpiq ` λpiqX
i bcBi

24 end end

25 0a0 “ ´pI
c
0q
´1pc0 a0 “ ´pMc

B0q
´1bcB0

26 for i “ 1 to NB do for i “ 1 to nB do

27 ia0 “
iXλpiq

λpiqa0
iaA,0 “

iXλpiq
λpiqaA,0

28 τi “ S
T
i pI

c
i
ia0 ` p

c
i q τ i “ ΓTJ ipMc

Bi
iaA,0 ` bcBiq

29 end end

30 Aa0 “
0XA

0a0
AaA,0 “

0XAa0

Outputs τ ,Aa0 τ ,AaA,0

E.3 Composite Rigid Body Algorithm (CRBA)

The following table presents a slightly modified version of the CRBA, as found in [8, Table 6.2].
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Table E.3: The Composite Rigid Body Algorithm for fixed-base systems (CRBA).

Line Featherstone Eindhoven-Genoa

Inputs model, q model, s

1 H “ 0 Mfb “ 0

2 for i “ NB to 1 do for i “ nB to 1 do

3 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

4 iXλpiq “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

5 Ici “ Ii Mc
Bi “MBi

6 if λpiq ‰ 0 then if λpiq ‰ 0 then

7 Icλpiq “ I
c
λpiq `

λpiqX˚
i I

c
i
iXλpiq Mc

Bλpiq “Mc
Bλpiq ` λpiqX

i Mc
Bi
iXλpiq

8 end end

9 end end

10 for i “ 1 to NB do for i “ 1 to nB do

11 F “ IciSi iFBi “Mc
BiΓJ i

12 Hii “ ST
i F Mii

fb “ ΓTi FBi

13 j “ i j “ i

14 while λpjq ‰ 0 do while λpjq ‰ 0 do

15 F “ λpjqX˚
j F λpjqFBi “ λpjqX

j
jFBi

16 j “ λpjq j “ λpjq

17 Hij “ F
TSj Mij

fb “ jF
T
BiΓJ j

18 Hji “Hij Mji
fb “ Mij

fb

19 end end

20 end end

Outputs H M

E.4 Composite Rigid Body Algorithm for moving-base systems
(CRBAmb)

The following table presents a slightly modified version of the CRBAmb, as found in [8, Table 9.5].
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Table E.4: The Composite Rigid Body Algorithm for moving-base systems (CRBAmb).

Line Featherstone Eindhoven-Genoa

Inputs model, q model, s

1 H “ 0 M “ 0

2 for i “ NB to 1 do for i “ nB to 1 do

3 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

4 iXλpiq “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

5 Ici “ Ii Mc
Bi “MBi

6 Icλpiq “ I
c
λpiq `

λpiqX˚
i I

c
i
iXλpiq Mc

Bλpiq “Mc
Bλpiq ` λpiqX

i Mc
Bi
iXλpiq

7 end end

8 for i “ 1 to NB do for i “ 1 to nB do

9 F “ IciSi iFBi “Mc
BiΓJ i

10 Hii “ ST
i F Mii “ ΓTi FBi

11 j “ i j “ i

12 while λpjq ‰ 0 do while λpjq ‰ 0 do

13 F “ λpjqF ˚j F λpjqFBi “ λpjqX
j
jFBi

14 j “ λpjq j “ λpjq

15 Hij “ F
TSj Mij “ jF

T
BiΓJ j

16 Hji “Hij Mji “ Mij

17 end end

18 Fi “
0X˚

jFi 0FBi “ 0X
j
jFBi

19 end end

20 F “ rF1 ... FNB
s 0F “ r0F1 ... 0FBnB

s

21 H “

«

Ic0 F

F T H

ff

M “

«

Mc
B0 0F

0F
T M

ff

Outputs H M

E.5 Articulated Body Algorithm (ABA)

The following table presents the ABA, as found on [45] without external forces, which is also
presented in [8, Table 7.1] in a slightly different version.
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Table E.5: The Articulated Body Algorithm for fixed-base systems (ABA).

Line Featherstone Eindhoven-Genoa

Inputs model, q, 9q, τ model, s, r, τ

1 ag “ get gravity(model) 0agrav “ get gravity(model)

2 for i “ 1 to NB do for i “ 1 to nB do

3 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “jcalc(jtype(i), siq

4 vJ “ Si 9qi vJ i “ ΓJ iri

5 iX0 “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

6 vi “
iXλpiqvλpiq ` vJ vi “

iXλpiqvλpiq ` vJ i

7 ci “ vi ˆ vJ -

8 IAi “ Ii MA
Bi “MBi

9 - mBi “MBivi

10 pAi “ vi ˆ
˚ Iivi bABi “ vi ¯̂

˚mBi

11 end end

12 for i “ NB to 1 do for i “ nB to 1 do

13 Ui “ I
A
i Si UBi “MA

BiΓJ i

14 Di “ S
T
i Ui DBi “ ΓTJ iUBi

15 ui “ τi ´ S
T
i p

A
i uBi “ τ i ´ ΓTJ ib

A
Bi

16 if λpiq ‰ 0 then if λpiq ‰ 0 then

17 Ia “ IAi ´UiD
´1
i U

T
i Ma

Bi “MA
Bi ´UBiD

´1
Bi U

T
Bi

18 pa “ pAi ` I
aci `UiD

´1
i ui baBi “ bABi `Ma

Bipvi ˆ vJ iq `UBiD
´1
Bi uBi

19 IAλpiq “ I
A
λpiq `

λpiqX˚
i I

a iXλpiq MA
Bλpiq “MA

Bλpiq ` λpiqX
i Ma

Bi
iXλpiq

20 pAλpiq “ p
A
λpiq `

λpiqX˚
i p

a bABλpiq “ bABλpiq ` λpiqX
ibaBi

21 end end

22 end end

23 a0 “ ag a0 “
0agrav

24 for i “ 1 to NB do for i “ 1 to nB do

25 a1 “ iXλpiqaλpiq ` ci a1 “ iXλpiqaλpiq ` vi ˆ vJ i

26 :qi “D
´1
i pui ´U

T
i a

1
iq 9ri “ D´1

Bi puBi ´UT
Bia

1
iq

27 ai “ a
1
i ` Si :qi ai “ a1i ` ΓJ i 9ri

28 end end

Outputs :q 9r

E.6 Articulated Body Algorithm for moving-base systems
(ABAmb)

The following table presents the ABAmb, as found on [46] without external forces, which is also
presented in [8, Table 9.4] in a slightly different version.
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Table E.6: The Articulated Body Algorithm for moving-base systems (ABAmb).

Line Featherstone Eindhoven-Genoa

Inputs model, q, 9q, τ , 0XA,
Av0 model, s, r, τ ,AH0,

AvA,0

1 Aag “ get gravity(model) Aagrav “ get gravity(model)

2 - 0HA “
AH´1

0

3 - 0RA “
0HAr1:3, 1:3s

4 - 0oA “
0HAr1:3, 4s

5 - 0XA “

«

0RA
0o^A

0RA

03ˆ3
0RA

ff

6 v0 “
0XA

Av0 v0 “
0XA

AvA,0

7 IA0 “ I0 MA
B0 “MB0

8 - mB0 “MB0v0

9 pA0 “ v0 ˆ
˚ I0v0 bAB0 “ v0 ¯̂ ˚mB0

10 for i “ 1 to NB do for i “ 1 to nB do

11 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

12 vJ “ Si 9qi vJ i “ ΓJ iri

13 iXλpiq “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

14 vi “
iXλpiqvλpiq ` vJ vi “

iXλpiqvλpiq ` vJ i

15 ci “ vi ˆ vJ -

16 IAi “ Ii MA
Bi “MBi

17 - mBi “MBivi

18 pAi “ vi ˆ
˚ Iivi bABi “ vi ¯̂

˚mBi

19 end end

20 for i “ NB to 1 do for i “ nB to 1 do

21 Ui “ I
A
i Si UBi “MA

BiΓJ i

22 Di “ S
T
i Ui DBi “ ΓTJ iUBi

23 ui “ τi ´ S
T
i p

A
i uBi “ τ i ´ ΓTJ ib

A
Bi

24 Ia “ IAi ´UiD
´1
i U

T
i Ma

Bi “MA
Bi ´UBiD

´1
Bi U

T
Bi

25 pa “ pAi ` I
aci `UiD

´1
i ui baBi “ bABi `Ma

Bipvi ˆ vJ iq `UBiD
´1
Bi uBi

26 IAλpiq “ I
A
λpiq `

λpiqX˚
i I

a iXλpiq MA
Bλpiq “MA

Bλpiq ` λpiqX
i Ma

Bi
iXλpiq

27 pAλpiq “ p
A
λpiq `

λpiqX˚
i p

a bABλpiq “ bABλpiq ` λpiqX
ibaBi

28 end end

29 a0 “ ´pI
A
0 q
´1pA0

0aA,0 “ ´pMA
B0q

´1bAB0
30 for i “ 1 to NB do for i “ 1 to nB do

31 a1i “
iXλpiqaλpiq ` ci a1i “

iXλpiqaλpiq ` vi ˆ vJ i

32 :qi “D
´1
i pui ´U

T
i a

1
iq 9ri “ D´1

Bi puBi ´UT
Bia

1
iq

33 ai “ a
1
i ` Si :qi ai “ a1i ` ΓJ i 9ri

34 end end

35 0a0 “
0a0 `

0XA
Aag

0aA,0 “
0aA,0 `

0XA
Aagrav

Outputs :q, 0a0 9r, 0aA,0



108 Appendix E. Standard Algorithms in Eindhoven-Genoa notation

E.7 Generalized Bias Wrench Algorithm for moving-base
systems (GBWAmb)

The following table presents a slightly modified version of the GBWAmb without external forces,
as found in [8, Table 9.5].

Table E.7: The Generalized Bias Wrench Algorithm for moving-base systems (GBWAmb).

Line Featherstone Eindhoven-Genoa

Inputs model, q, 9q, :q, 0XA,
Av0,

0a0 model, s, r, 9r,AH0,
AvA,0,

0aA,0

1 Aag “ get gravity(model) Aagrav “ get gravity(model)

2 - 0HA “
AH´1

0

3 - 0RA “
0HAr1:3, 1:3s

4 - 0oA “
0HAr1:3, 4s

5 - 0XA “

«

0RA
0o^A

0RA

03ˆ3
0RA

ff

6 v0 “
0XA

Av0 v0 “
0XA

AvA,0

7 - mB0 “MB0v0

8 avp0 “ 0XA
Aag avp0 “ 0XA

Aagrav

9 f0 “ I0a
vp
0 ` v0 ˆ

˚ I0v0 bvpB0 “MB0a
vp
0 ` v0 ¯̂ ˚mB0

10 for i “ 1 to NB do for i “ 1 to nB do

11 rXJ,Sis “ jcalc(jtype(i), qi) riXλpiq|i,ΓJ is “ jcalc(jtype(i), si)

12 vJ “ Si 9qi vJ i “ ΓJ iri

13 iXλpiq “XJXTpiq
iXλpiq “

iXλpiq|i
λpiq|iXλpiq

14 vi “
iXλpiqvλpiq ` vJ vi “

iXλpiqvλpiq ` vJ i

15 - mBi “MBivi

16 avpi “ iXλpiqa
vp
λpiq ` vi ˆ vJ avpi “ iXλpiqa

vp
λpiq ` vi ˆ vJ i

17 fi “ Iia
vp
i ` vi ˆ

˚ Iivi bvpBi “MBia
vp
i ` vi ¯̂

˚mBi

18 end end

19 for i “ NB to 1 do for i “ nB to 1 do

20 Ci “ S
T
i fi hBi “ ΓTJ ib

vp
Bi

21 fλpiq “ fλpiq `
λpiqX˚

i fi bvpBλpiq “ bvpBλpiq ` λpiqX
i bvpBi

22 end end

23 - h “ rbvpB0; hB1...hBnB
s

Outputs f0,C h

E.8 Derivatives of fixed-base inverse dynamics

The following two subsections present slightly modified versions of the algorithms presented in [7],
which compute the derivatives of fixed-base inverse dynamics. The inverse dynamics of fixed-base
systems are found by rewriting (2.55) to

IDfbps, r, 9rq :“ τ “ Mfb 9r` hfb. (E.1)
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The derivatives of the fixed-base inverse dynamics with respect to s and r are expressed as D1 IDfbps, r, 9rq
and D2 IDfbps, r, 9rq respectively and are computed by the algorithms in the following two subsec-
tions.

We aim to remove unclarities from the algorithms by rewriting them more specifically. The
author of [7] writes one general algorithm for both derivatives, where many explanations and ex-
ceptions are provided. Instead, we write two algorithms specifically for the derivatives with respect
to s and r, so no specific cases require further clarification.

E.8.1 Derivatives of fixed-base inverse dynamics w.r.t. generalized position
vector

The algorithm presented below makes use of the following equations [7]:

BiXλpiq

Bsi
vi “ p

iXλpiqviq ˆ ΓJ i, (E.2)

BiXλpiq

Bsi
ai “ p

iXλpiqaiq ˆ ΓJ i (E.3)

and
BλpiqX

i

Bsi
fJ i “ λpiqX

ipΓJ i ¯̂
˚fJ iq. (E.4)
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Table E.8: Derivatives of fixed-base inverse dynamics w.r.t. generalized position vector s.

Inputs All outputs and intermediate variables of RNEA

Line Featherstone Eindhoven-Genoa

1 for i “ 1 to NB do for i “ 1 to nB do

2 if λpiq ‰ 0 then if λpiq ‰ 0 then

3
Bvi
Bq

“ iXλpiq

Bvλpiq

Bq

Bvi
Bs

“ iXλpiq

Bvλpiq

Bs

4
Bvi
Bqi

“
Bvi
Bqi

` piXλpiqvλpiqq ˆ Si
Bvi
Bsi

“
Bvi
Bsi

` piXλpiqvλpiqq ˆ ΓJ i

5
Bai
Bq

“ iXλpiq

Baλpiq

Bq

Bai
Bs

“ iXλpiq

Baλpiq

Bs

6
Bai
Bqi

“
Bai
Bqi

` piXλpiqaλpiqq ˆ Si`
Bai
Bsi

“
Bai
Bsi

` piXλpiqaλpiqq ˆ ΓJ i`

Bvi
Bq

ˆ vJ
Bvi
Bs
ˆ vJ i

7 end end

8
Bhi
Bq

“ Ii
Bvi
Bq

BmBi
Bs

“MBi
Bvi
Bs

9
Bfi
Bq

“ Ii
Bai
Bq

`
Bvi
Bq

ˆ˚ hi ` vi ˆ
˚
Bhi
Bq

BfJ i
Bs

“MBi
Bai
Bs
`
Bvi
Bs

¯̂ ˚mBi ` vi ¯̂
˚ BmBi
Bs

10 end end

11 for i “ NB to 1 do for i “ nB to 1 do

12
Bτi
Bq

“ ST
i

Bfi
Bq

Bτ i
Bs

“ ΓTJ i
BfJ i
Bs

13 if λpiq ‰ 0 then if λpiq ‰ 0 then

14
Bfλpiq

Bq
“
Bfλpiq

Bq
` λpiqX˚

i

Bfi
Bq

BfJλpiq

Bs
“
BfJλpiq

Bs
` λpiqX

i BfJ i
Bs

15
Bfλpiq

Bqi
“
Bfλpiq

Bqi
` λpiqX˚

i pSi ˆ
˚ fiq

BfJλpiq

Bsi
“
BfJλpiq

Bsi
` λpiqX

ipΓJ i ¯̂
˚fJ iq

16 end end

17 end end

Outputs Bτ {Bq Bτ {Bs

E.8.2 Derivatives of fixed-base inverse dynamics w.r.t. generalized velocity
vector

The algorithm presented below makes use of the following equation [7]:

BvJ i
Bri

“ ΓJ i. (E.5)
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Table E.9: Derivatives of fixed-base inverse dynamics w.r.t. generalized velocity vector r.

Inputs All outputs and intermediate variables of RNEA

Line Featherstone Eindhoven-Genoa

1 for i “ 1 to NB do for i “ 1 to nB do

2 if λpiq ‰ 0 then if λpiq ‰ 0 then

3
Bvi
B 9q

“ iXλpiq

Bvλpiq

B 9q

Bvi
Br

“ iXλpiq

Bvλpiq

Br

4
Bai
B 9q

“ iXλpiq

Baλpiq

B 9q

Bai
Br

“ iXλpiq

Baλpiq

Br

5
Bai
B 9qi

“
Bai
B 9qi

`
Bvi
B 9q

ˆ vJ ` vi ˆ Si
Bai
Bri

“
Bai
Bri

`
Bvi
Br
ˆ vJ i ` vi ˆ ΓJ i

6 end end

7
Bvi
B 9qi

“
Bvi
B 9qi

` Si
Bvi
Bri

“
Bvi
Bri

` ΓJ i

8
Bhi
B 9q

“ Ii
Bvi
B 9q

BmBi
Br

“MBi
Bvi
Br

9
Bfi
B 9q

“ Ii
Bai
B 9q

`
Bvi
B 9q

ˆ˚ hi ` vi ˆ
˚
Bhi
B 9q

BfJ i
Br

“MBi
Bai
Br
`
Bvi
Br

¯̂ ˚mBi ` vi ¯̂
˚ BmBi
Br

10 end end

11 for i “ NB to 1 do for i “ nB to 1 do

12
Bτi
B 9q

“ ST
i

Bfi
B 9q

Bτ i
Br

“ ΓTJ i
BfJ i
Br

13 if λpiq ‰ 0 then if λpiq ‰ 0 then

14
Bfλpiq

B 9q
“
Bfλpiq

B 9q
` λpiqX˚

i

Bfi
B 9q

BfJλpiq

Br
“
BfJλpiq

Br
` λpiqX

i BfJ i
Br

15 end end

16 end end

Outputs Bτ {B 9q Bτ {Br
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