
 Eindhoven University of Technology

MASTER

Reach tasks in QP robot control
task-points vs. SE(3) based formulations

van der Struijk, R.J.M.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f3729651-c1fe-4955-be97-0f21b8eef5d2

Reach Tasks in QP Robot Control:
Task-Points vs. SE(3) Based Formulations

Master’s Thesis

CST 2019.052

Author:

R.J.M. van der Struijk BSc

Supervisor:

prof. dr. ir. H. Bruyninckx

Coach:

dr. ir. A. Saccon

Department of Mechanical Engineering
Control Systems Technology

June 18, 2019

ii

Abstract

In the field of robotics, a fundamental task involves the positioning and orientation by parts
of the robot. These parts are often the end-effector or a camera mounted on the robot. The
types of tasks that need to reach for a certain desired position and/or orientation by a part
of the robot are referred to as reach tasks in this thesis. It is observed that many of these
reach tasks do not require all six degrees of freedom (DoF) to be specified. The state-of-the-art
approaches on the formulation of reach tasks use a different representation of the current and
desired pose depending on which DoF are specified by the reach task. Each representation also
comes with its own error definition and PD controller strategy. This prompted the desire for
a unified formulation using the same error definition and PD controller strategy for any reach
task. The approach presented in this thesis uses a set of points that are rigidly attached to a
part of the robot to represent the current pose. A second set of points is used to represent the
desired location of the rigidly attached points. This approach is referred to as a task-point reach
task. Different reach tasks can be specified by varying the amount of points and the relative
location between these points. Each point uses the same error definition and PD controller. A
single optimal control problem is created by embedding the cost function for each point in a
task-based quadratic programming (QP) controller. Several basic reach tasks and combinations
thereof are derived using this approach. A proof of concept simulation of the task-point reach
task formulation is provided. The simulation shows the execution of a reach task that specifies
all six DoF of the end-effector of a six joint serial manipulator.

Reach task formulations contain parameters, such as the PD gains of the controller that in-
fluence the resulting motion of the robot. A theoretical comparison with the state-of-the-art,
an SE(3) based reach task, is made by studying the effects of these parameters on the resulting
motion. This comparison shows that the parameters of the task-point reach task provide a
more direct relation to the resulting motion. The task-point approach therefore offers a unified
representation and a controller strategy that is intuitive in the specification of reach tasks, and
hence eliminates the use of different representations and controller strategies.

iii

iv

Acknowledgements

I would like to take this opportunity to thank the people who have assisted me in the long
journey that is called the graduation project. A long journey filled with opportunities to expand
my knowledge and experience.

First of all, I would like to thank my direct supervisors Herman Bruyninckx and Alessandro
Saccon for their support and critical feedback during the entirety of the project. I have learned
to be more critical of existing literature and of my own work. As someone who very curious,
I am also very appreciative of the one on one sessions where we would go more in-depth with
a problem. Resulting in a greater understanding of the topic. I also appreciate that we would
sometimes discuss interesting topics not always directly related to the project, but that piqued
my interest.

Furthermore, I would like the thank the other students of the robotics lab. We organized several
very fun activities, which set a positive mood in the lab and created many friendships. The
breaks were never boring and provided the much needed mental break for our brains. I would
like to especially thank Joep Linssen and Matthijs van der Burgh for helping me understand the
software related problems I was having. I also thank Stefan Driessen and Casper Beumer for
their support in sparring with me about QP related questions, and Martijn Bos for expanding
my knowledge on Lie group related theory.

Finally, I would like to thank my family for their support, cooking meals for me when I came to
visit and providing met with anti-stress cats and kittens to elevate my mood. I really appreciate
this.

Rik van der Struijk

Eindhoven, June 2019

v

vi

Nomenclature

A,B,C, . . . coordinate frames
p an arbitrary point
oB origin of B
[A] orientation frame associated to A
B[A] frame with origin oB and orientation [A]
Ap coordinates of point p w.r.t. to A
AoB coordinates of the origin oB w.r.t. to A
ARB rotation matrix relating [B] to [A]
AHB homogeneous transformation from B to A
AXB velocity transformation from B to A
CvA,B twist expressing the velocity of B w.r.t. to A written in C
Cv∧A,B 4× 4 matrix representation of CvA,B
CvA,B× 6× 6 matrix representation of the twist cross product
CJA,B Jacobian relating the velocity of B w.r.t. A expressed in C

vii

viii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Reach Tasks in Robot Control . 1
1.2 Existing Methods for Reach Task Formulations and Multi-Task Robot Control . 3

1.2.1 Pose Representations . 4
1.2.2 Pose Error Definition & Control . 5
1.2.3 Multi-Task Robot Control . 6

1.3 Research Objectives . 9
1.4 Approach . 10
1.5 Report Outline . 11

2 Preliminaries 13
2.1 Multibody Dynamics Notation . 13

2.1.1 Points and Coordinate Frames . 13
2.1.2 Velocity Vectors (Twists) . 14
2.1.3 Acceleration Vectors . 16
2.1.4 Forward Kinematics . 16

2.2 Optimization-Based Control . 17
2.2.1 Task-Based Constrained Optimal Control 17
2.2.2 Feedback and Feedforward Control on R3 18
2.2.3 PD Control on SE(3) . 18

2.3 Software . 20
2.3.1 Robotic Operating System . 20
2.3.2 Control Node . 21

3 Reach Task Formulations 23
3.1 Reach Task Definition . 23

3.1.1 Redundant Reach Tasks . 23
3.2 Embedding Reach Tasks in the QP Formulation 25
3.3 Reach Task Formulation on SE(3) . 25

3.3.1 Specification of (Redundant) Reach Tasks Using the SE(3) Reach Task
Formulation . 26

3.4 Task-Point Reach Task Formulation . 26

ix

CONTENTS

3.4.1 Specification of (Redundant) Reach Tasks Using the Task-Point Reach
Task Formulation . 28

3.5 Theoretical Comparison . 32
3.5.1 Redundant Reach Tasks . 32
3.5.2 Tuneable Parameters . 33

4 Simulations 35
4.1 Software Implementation . 35
4.2 Task-Point Reach Task Proof of Concept . 36

4.2.1 Singular Configurations . 36
4.2.2 Pose Reach Task . 36

4.3 Summary . 41

5 Conclusions & Recommendations 43
5.1 Conclusions . 43
5.2 Recommendations . 45

x

Chapter 1

Introduction

1.1 Reach Tasks in Robot Control

In the field of robotics, a fundamental task involves the positioning and orientation by parts of
the robot. These parts are often the end-effector or a camera mounted on the robot and are
used in manipulation and sensor tasks, see for example Figure 1.1. Both examples show that the
end-effector or camera need to be positioned and oriented in one or more stages of the specific
task. The types of tasks that need to reach for a certain desired position and/or orientation by
a part of the robot are referred to as reach tasks in this thesis. Another observation is that not
all reach tasks require all six degrees of freedom (DoF) to be specified. Take for example Amigo
picking up the can in Figure 1.1a. As long as the arm does not collide with itself or the can, the
rotation about the axis perpendicular to the table does not need to be specified. The gripper
will be able to pick up the can for any rotation about this axis, and hence leaves this DoF free.
These types of reach tasks are referred to as redundant reach tasks.

(a) Domestic robot Amigo from Tech United (TU/e)
[1]

(b) Camera robot Iris from Bot & Dolly [2]

Figure 1.1: Two examples of robotic systems executing (a) a manipulation + sensor task and
(b) a sensor task.

To specify a (redundant) reach task the current and desired pose of a part of the robot requires
a mathematical representation. Consider for example the robot arms in Figure 1.2. The figure
shows a similar reach task for both robot arms, however, the representation of the current pose

1

CHAPTER 1. INTRODUCTION

and desired pose differ. A coordinate frame defined by the combination of an origin oB and
an orientation frame [B] such that B = (oB, [B]). In Figure 1.2a, the coordinate frame B is
rigidly attached to the end-effector and is used to describe the current pose. Frame D describes
the desired pose of the end-effector. Both frames can be expressed relative to the inertial frame
A using a homogeneous transformation matrix AHB ∈ SE(3) of a frame B with respect to
frame A, where SE(3) is the special Euclidean group of dimension three. Since the homogeneous
transformation matrix is an element of SE(3), this reach task is referred to as an SE(3) reach
task. In Figure 1.2b the three points p1, · · · ,p3, which are rigidly attached to the end-effector,
are used to describe the current pose. Each of these points has a corresponding desired point
di. Both sets of points can be expressed in the inertial frame A, as Api and Adi. This type of
reach task is referred to as a task-point reach task. The task-point reach task is the approach
investigated in this thesis to specify reach tasks as an alternative to the ‘standard’ approaches
in literature, which are discussed in the next section.

A

D

B

(a)

p3

p1

p2

d3

d1

d2

A

(b)

Figure 1.2: Visualization of (a) an SE(3) reach task and (b) a task-point reach task.

In most robotic applications there is no direct control over a part of the robot in all six DoF,
instead multiple joints connected to each other create an n DoF kinematic chain, see for example
the robot arms in Figure 1.2. The core problem of a reach task is therefore to generate joint
commands such that, from its initial configuration, a part of the robot eventually reaches its de-
sired position and/or orientation in task-space (Cartesian space). An approach to this problem
is to consider the separate components of the problem, the generation task-space trajectory, the
conversion to joint space trajectories, the robot and control of the joints as individual problems.
Consider for example the end-effector of a robot arm. First, a reference trajectory for the end-
effector in task-space is generated that moves the end-effector from its initial pose to its desired
pose. Then, inverse kinematics (IK) is used to map the desired task-space trajectory to joint
space trajectories. Note that this map is not always unique or feasible and thus it is possible to
have multiple or no solutions. Several IK methods can be found in [3]. The map of a task-space
trajectory to joint space trajectories is never unique for redundant manipulators, where the task
requires less DoF than the manipulator offers. Thereafter, a low level joint controller is used to
realize the joint trajectories, which is often a regular PID type of controller.

The approach just described highlights the essential components in executing a reach task.
However, it considers each component as a separate problem, which might lead to infeasible

2

1.2. EXISTING METHODS FOR REACH TASK FORMULATIONS AND MULTI-TASK
ROBOT CONTROL

solutions. For example, the kinematics of the robot is only considered after generating the task-
space trajectory, which might lead to joint space trajectories that violate bounds set on the
joints. Additionally, the task-space trajectory is generated off-line as a path planning problem.
However, the robots executing these reach tasks are increasingly put into dynamic environments
where also humans are present. For example, domestic robots are supposed to support sick,
disabled or elderly people by serving drinks or breakfast, storing the groceries on a shelf or
taking out the trash [4]. Robots in these kinds of environments therefore have to consider the
dynamic environment as part of the problem and hence require the on-line adaptation of the
task-space trajectory.

Another approach is to consider all components together as a single problem by viewing the
reach task as an optimal control problem. A reach task is specified in task-space, the term
task-based control or output-based control is therefore used to refer to a control strategy that
uses feedback on the current state of the robot in task-space. Task-based controllers such as
the reactive QP controllers in [5, 6] generate both the task-space and joint space trajectories
simultaneously and on-line. The output of the QP controller are joint space trajectories and
therefore also require a low level joint controller to realize the joint trajectories. Due to the reac-
tive nature of the QP controller it is possible to consider a dynamic environment as part of the
reach task problem and not separately. For this reason, reactive or predictive control solutions
are preferred over off-line path planning and then tracking solutions. Additional challenges are
to be considered when performing a reach task on a real physical robot. Relevant challenges are
configuration singularities, self-collisions, the dynamics of the robot and physical limits such as
joint bounds and actuator saturation. Reactive task-based QP controllers are also able to take
into account these additional challenges as multiple tasks and/or constraints to the QP problem,
as shown in [5, 6].

Besides additional tasks as a result of dealing with the challenges of using a physical robot,
robots are also often tasked with multiple (reach) tasks simultaneously. Consider for example
again Figure 1.1a, Amigo executes two tasks simultaneously, one is the end-effector reaching
for the can and the other is the gaze direction of the camera mounted on top of the robot.
Both tasks are required to successfully pick up or place the can. In this case the tasks are not
conflicting. However, when for example a collision avoidance task for the robot arm is added, it
may be conflicting with the manipulation task.

The discussion in this section shows that there is a need for a formulation in which multi-
ple, possibly conflicting, (redundant) reach tasks can be formulated. The approach of this thesis
is therefore to assess existing control formulations that treat the (redundant) reach task as a
task-based control problem. This problem is explored in more detail in the next section.

1.2 Existing Methods for Reach Task Formulations and Multi-
Task Robot Control

The objective is to create a reactive control formulation in which multiple, possibly conflicting,
(redundant) reach tasks can be incorporated and the manipulator redundancy is resolved. This
problem is split into two parts: the formulation of reach tasks and multi-task robot control.
The formulation of a reach task, consists of a representation for the current and desired pose,
an error definition and a control strategy that drives the error to zero.

3

CHAPTER 1. INTRODUCTION

1.2.1 Pose Representations

The term pose is used to represent the position and orientation of a part of the robot. The
position is uniquely described by a vector in R3, orientation however, is not described by a
vector space, but by a Lie group. Specifically, the special orthogonal group of dimension three
SO(3), which is the set of R3×3 orthogonal matrices with determinant equal to one endowed
with matrix multiplication. The rotation matrix ARB is an element SO(3) and describes the
rotation from orientation frame [B] to [A]. The rotation matrix can therefore be used to de-
scribe the orientation of a frame. As discussed in the previous section, the pose is described
using AHB ∈ SE(3), where SE(3) is also a Lie group. The rotation matrix is not the only way to
describe the orientation, parameterizations of SO(3) also exist [7, 8]. For example, Euler angles,
quaternions and axis-angle pair, which are briefly discussed in the next paragraph.

The rotation matrix description uses nine parameters while only three DoF are involved. Mini-
mal representations use only three parameters (e.g. Euler angles), however, these representations
suffer from singularities in one way or another. For example, Euler angles are singular in the
transformation from the time derivative of the angles θ̇ to the angular velocity ω of a frame. This
particular singularity is also referred to as a gimbal lock in [7] and corresponds to a singularity
in the representation Jacobian. Due to this singularity, the time derivatives of the Euler angles
are not globally defined. The Euler angle representation also suffers from non-uniqueness, since
multiple angles map to the same rotation (e.g. 0 rad and 2π rad represent the same rotation).
Continuous time control using Euler angles should only be used if the requested angular mo-
tions are small and not in the neighborhood of a representational singularity. Since all minimal
representations suffer from singularities, they are not suitable for continuous time control or
are limited to local motions away from singularities. Other non-minimal parameterizations (e.g.
quaternions and axis-angle pairs) use an additional k parameters, related by k constraints in
order to keep the original three DoF of the system. Both quaternion and axis-angle pair rep-
resentations are globally defined, however, their non-uniqueness may lead to undesired effects
such as unwinding [7, 9].

Reduced Pose Representations. As discussed in the first section, redundant reach tasks do
not specify all six DoF of a pose, instead one or more DoF is/are left free. The representations
of the current and desired pose for such reach tasks are referred to as reduced pose. When
a translational DoF is left unspecified, the vector representing a reduced position becomes an
element of R2 or R. In the case of orientation, the reduced orientation representation of [7, 10]
can be used. The reduced orientation representation uses a unit vector representing the pointing
direction in S2 (the unit sphere in R3), as shown in Figure 1.3. This figure shows the unit vector
v ∈ S2, which can be represented with respect to an inertial frame A in R3.

4

1.2. EXISTING METHODS FOR REACH TASK FORMULATIONS AND MULTI-TASK
ROBOT CONTROL

A

v

S
2

Figure 1.3: Illustration of a reduced orientation representation using the unit vector v ∈ S2,
which can be expressed in the inertial frame A in R3.

This representation leaves the rotation about the pointing direction free and hence can be used
in pointing or grabbing applications (e.g. Figure 1.1a). Other parameterizations, such as Euler
angles, quaternions and axis-angle can also be used a reduced attitude representations, however,
also still suffer from the same non-global and non-uniqueness issues discussed above.

From this discussion it becomes clear that the rotation matrix and reduced attitude vector
of [7, 10] are orientation representations that are global and unique and hence fit for continuous
time control. Therefore, in the remainder of this literature review, only representations in SO(3)
and in S2 are considered.

1.2.2 Pose Error Definition & Control

The pose is described by the homogeneous transformation matrix, which is an element of SE(3),
and control on this pose has two approaches as studied in [11]. The first approach is PD control
on SO(3) × R3, which comes down to separately applying PD control on R3 and PD control
on SO(3). This type of control is referred to as double-geodesic control in [11]. The second
approach is PD control on SE(3) directly. Starting with the first approach, [11] describes a
double-geodesic PD feedback control function

uR3 : R3 × R3 → R3 (1.1)

and
uSO(3) : SO(3)× R3 → R3 (1.2)

that almost globally stabilizes a desired pose equilibrium. The position error is defined as the
standard vector error between the current and desired position of a part of the robot. The
velocity error is the time derivative of the position error. The orientation error is defined as
the product of the desired rotation matrix transposed with the rotation matrix representing the
current orientation of a part of the robot. This error is an element of SO(3), however, (1.2) shows
that the for a control application the output should be in R3. For this reason the orientation
error is transformed to its Lie algebra so(3) by means of a logarithmic mapping. The result is a
skew-symmetric 3 × 3 matrix, which has only three unique values and hence can be written as
a vector in R3. The angular velocity error is the vector error between the current and desired

5

CHAPTER 1. INTRODUCTION

angular velocity of a part of the robot.

The second approach in [11] describes a PD feedback control function

uSE(3) : SE(3)× R6 → R6 (1.3)

that almost globally stabilizes a desired pose equilibrium. The pose error is the product of the
desired homogeneous transformation matrix transposed with the homogeneous transformation
matrix representing the current pose of a part of the robot. Again a logarithmic map is used to
transform this error to its Lie algebra se(3) and can be written as vector in R6. The velocity
error is defined as the vector error between the current and desired twist (velocity vector in R6).

Reduced Pose. The reduced position is described as a vector in R2 or R therefore the PD
feedback control functions become

uR2 : R2 × R2 → R2 (1.4)

and
uR : R× R→ R, (1.5)

respectively. The reduced orientation is described by a vector in S2. Feedback control of the
reduced orientation has been studied in [10, 7] as PD control on S2 and describes a feedback
control function

uS2 : S2 × R3 → R3 (1.6)

that stabilizes a desired reduced orientation equilibrium. The reduced orientation error in [7] is
the cross product of the desired reduced orientation with the current reduced orientation of a
part of the robot.

1.2.3 Multi-Task Robot Control

The example in Figure 1.1a shows that robots often have to deal with multiple, possibly con-
flicting, (redundant) reach tasks using redundant manipulators. The goal is therefore to assess
control formulations that can cope with these challenges. In [12, Chapter 5] different state-of-
the-art approaches to multi-task robot control have been compared. The approaches can be
captured into two main categories: null-space projection methods and quadratic programming
(QP) methods. Both methods view a task as a constrained optimal control problem, specifically
a QP problem.

Redundancy. An n DoF manipulator is considered redundant when the m DoF task it needs
to execute specifies fewer DoF than the manipulator offers (i.e. n > m). Specifically, it is
redundant with respect to the task and hence is also referred to as task redundancy, where
n−m is the task redundancy degree.

QP Control. Consider for example the two, possibly, conflicting point reach tasks, as shown
in Figure 1.4. The objective of reach task one is to match the body-fixed point p1 with the
corresponding desired point d1. The objective of reach task two is to match body-fixed point p2
with the corresponding desired point d2. The two reach tasks can be conflicting in two cases.
Firstly, the manipulator physically can’t reach both tasks simultaneously, which depends on the

6

1.2. EXISTING METHODS FOR REACH TASK FORMULATIONS AND MULTI-TASK
ROBOT CONTROL

location of both d1 and d2. Secondly, the manipulator is not redundant with respect to both
tasks (i.e. n < (m1 +m2)), meaning that the manipulator is not able to comply with both reach
tasks even if they are physically obtainable. Unless, for example, the desired point of reach task
two coincides with the solution of reach task one. The task redundancy degree in this case is
equal to one, since both point reach tasks specify three DoF, and the manipulator has seven
DoF.

A

p1

p2

d2

d1

Figure 1.4: Visualization of two point reach tasks to be performed by a seven DoF manipulator.

The derivation of a general QP controller is discussed in Chapter 2. For now, consider a point
reach task to be formulated as a QP controller on velocity level (similar to [13]) as

min
q̇∈Rn

1

2
||Aṗ− u||2

s.t. Aṗ = AJq̇

u = −Kp(
Ap− Ad) + Aḋ,

(1.7)

where the dot notation represents the time derivative d/dt, n the number of joints, q the joint
angles, AJ := ∂Api(q)/∂q ∈ R3×3 the Jacobian expressed in frame A, u the output of the
feedback and feedforward controller and Kp ∈ R3×3 the gain matrix. Or written compactly as

min
q̇∈Rn

1

2
||AJq̇ +Kp(

Ap− Ad)− Aḋ||2. (1.8)

The result is a task-based controller formulated as a QP problem, where the task error, under
the influence of constraints, is to be minimized in order to execute this task. The QP problem
resolves the task redundancy by minimizing the associated task error as the cost function and
hence “chooses” a solution. The output of this particular QP controller (i.e. the solution to the
QP problem) are the joint velocities q̇∗ ∈ Rn. Since the input is in task-space and the output in
joint space, the QP controller effectively solves the inverse kinematics (IK) problem. Integration
of q̇∗ is then performed to retrieve the updated state of the robot arm q∗ and is used to update
the kinematic model for the next time-step. Besides control in task-space, the joint references
q∗ and q̇∗ should also be realized in e.g. the presence of disturbances or model errors. There-
fore, joint space control is also part of the problem and often regular PID type controllers are

7

CHAPTER 1. INTRODUCTION

used for this application. Some tasks, like joint bounds, are naturally described using inequality
constraints. The QP formulation of (1.7) naturally allows for inequality constraints, since a
numerical solver is employed to solve the optimal control problem.

The example in Figure 1.4 shows two reach tasks that are possibly conflicting. The solutions to
this possible conflict can be divided into three main categories. The first category considers task
one as the main task and only allow motions towards the second task that do not disturb the
main task. The second category considers both tasks simultaneously with a relative importance.
The third category determines which task should be active based on a certain condition, for
example, first complete reach task one and then two. The first two categories are a form of
hierarchy, hard and soft priority respectively. The third category is a form of task switching
based on either simple conditions or possibly a higher level decision making process.

Hard Priority. In a QP context, hard priority is realized by successively solving QP problems
while ensuring that the lower priority task is solved in the remaining solutions space of the higher
priority task as is done in [14]. The result is

min
q̇2∈S

1

2
||AJ2q̇2 +Kp2(Ap2 − Ad2)− Aḋ2||2

s.t. S =

{
arg min

q1∈Rn

1

2
||AJ1q̇1 +Kp1(Ap1 − Ad1)− Aḋ1||2

}
,

(1.9)

where S is the remaining solutions space after solving for reach task one. In [13] the remain-
ing solutions space S is directly implemented as the equality constraint AJ1q2 = AJ1q

∗
1. This

constraint can be interpreted as stating that the second reach task should still comply with the
solution of the first reach task Aṗ1 = AJ1q

∗
1.

The null-space projection method is based on the same principle as the successive QP prob-
lems, the lower priority task should not interfere with the higher priority task. In the context of
multi-task robot control a null-space projection can be interpreted as a lower priority task that
is applied to the null-space of a higher priority task. This can be done repeatedly to create a
hierarchy. The strictness of this hierarchy is measure for how much and how a lower priority task
influences a higher priority task. A comparison of null-space projectors and their effect on the
strictness of the hierarchy is made in [15]. The main result is that an augmented mass matrix
weighted null-space projection is required for a strict hierarchy, which for example, is used on
the HRP-2 humanoid robot in [16]. Note that a hard priority hierarchy of tasks only makes sense
when the higher priority task leaves a non-empty null-space for additional tasks. Consider for ex-
ample the end-effector of an n DoF manipulator, if the end-effector is required to execute a task
that requires n DoF, then there are no DoF “left” (i.e. an empty null-space) for additional tasks.

In the case of inequality constraints, null-space projection methods are limited, since they need
special treatment. In [17] a hierarchical active-set algorithm is developed where inequality con-
straints are added as equality constraints when they are considered active by the algorithm.

Soft Priority. In a QP context, soft priority is realized by adding the cost of each task using
weights to signify the relative importance between tasks, as is done in [6]. On velocity level this

8

1.3. RESEARCH OBJECTIVES

becomes

min
q̇∈Rn

1

2

2∑
i=1

wi||AJ iq̇i +Kpi(
Api − Adi)− Aḋi||2, (1.10)

where wi is the relative weight between the two tasks. In a general task context the combination
of a hard and soft QP hierarchy is also possible. However, one should determine to what extent
that is useful for the task.

Task Switching. The last strategy to cope with conflicting tasks is to switch tasks based on
simple conditions or a possibly a higher level decision making process. Using the situation of
Figure 1.4, reach task one could, for example, be execute first using a QP controller with the
condition that the Euclidean norm of the task error is smaller than some constant epsilon (i.e.
||Ap1−Ad1||2 < ε). And then switching to the second reach task that also uses a QP controller.
The same task switching strategy can applied to the null-space projection case. Take for example
a situation where two tasks are implemented using a null-space projection and a third task e.g.
obstacle avoidance is triggered by a certain distance condition and needs to take full priority.
When a set of tasks gets more elaborate/complex and the redundancy or null-space might be
empty, one might want to consider a switching strategy in order to preserve predictability of the
resulting motion of the robot arm for a set of tasks.

In conclusion, two main multi-task approaches, QP control and null-space projection, have
been compared and both approaches are able to provide a formulation for multiple, possibly
conflicting, (redundant) reach tasks used on redundant manipulators. This has been shown in
the form of hard and soft priority hierarchy and a task switching approach. The QP approach
offers the most flexible formulation due to the fact that inequality constraints can be added to
the problem without additional care and because it can also be used as a soft priority hierarchy.

1.3 Research Objectives

The literature review of the previous section shows that the most elaborate multi-task formula-
tion is constructed by viewing a task as a QP problem. The discussion on the formulation of a
reach task has led to multiple different representations depending on the amount of DoF used
for a reach task. Each representation requires a different type of error definition and controller
strategy. It is therefore interesting to explore a way of creating a reach task formulation that
uses the same representation irrespective of the amount DoF specified by the reach task. The
error definition and control strategy should also be independent of the amount DoF specified
by the reach task (i.e. a unified reach task formulation). It is then interesting to compare this
formulation with a state-of-the-art formulation. The SE(3) representation with PD control on
SE(3) is chosen as the state-of-the-art, because it considers the structure of the SE(3) Lie group
as part of the problem and can cover all reach tasks with an error definition that is inertial frame
independent. However, this approach does disregards the DoF that are left “free” by redundant
reach tasks, because the pose error cannot be split into smaller parts. This thesis only considers
the kinematic aspects of the QP controllers, because the focus is on reach task formulations
and the convergence of the QP controller towards its the goal. This leads to the main research
objective of this thesis.

9

CHAPTER 1. INTRODUCTION

‘Create a unified reach task formulation, compare this with a state-of-the-art reach
task formulation in a QP control context and provide a proof of concept simulation
of the unified reach task formulation.’

To achieve this objective, five sub-objectives are defined:

1. Understand the state-of-the-art reach task formulation and structure the ob-
tained knowledge
Investigate PD control on SE(3), how to embed it in a QP controller and how to formulate
a reach task. The output of a QP controller on acceleration level are joint acceleration
trajectories and usually requires a joint space controller. However, a purely kinematic
simulation considers each joint as a decoupled double integrator system. Therefore, the
QP solution is directly applied to the system and as a consequence, the system states are
updated by integrating twice.

2. Create a unified reach task formulation
Create a unified reach task formulation in the form of a QP controller, asses its ability to
specify (redundant) reach tasks and assess the effects of its parameters on the resulting
motion.

3. Compare the state-of-the-art with the unified approach
Make a theoretical comparison of both methods on their ability to specify (redundant)
reach tasks and their ability to tune the resulting motion.

4. Software implementation of the unified reach task formulation
Implement the unified reach task formulation in either an existing software framework or
create one.

5. Provide a proof of concept simulation of the unified reach task formulation
The proof of concept should show the successful execution of a reach task using the unified
reach task formulation and analyze the resulting motion.

1.4 Approach

In an effort to create a unified reach task formulation inspiration is found in [18]. Herein, a task-
function approach is used as a general formulation for sensor-based control of robot manipulators.
In one of their examples a sensor task is shown using three sensors in a plane surface following
task. From this example, the idea was born to use a set of points p1, · · · ,pN that are rigidly
attached to a part of the robot to be matched by a second set of corresponding desired points
d1, · · · ,dN in R3. An example of three points is shown in Figure 1.2b. The set of points
indirectly represents the position and/or orientation of a part of the robot and can therefore be
considered a reach task. Since this idea is inspired by the task-function approach and makes use
of points, this type of reach task is referred to as a task-point reach task. The task-point reach
task presents a unified representation for multiple different (redundant) reach tasks by varying
the amount and placements of both sets of points. The specification of task-point based reach
tasks and its formulation as a QP controller are discussed in Chapter 3.

10

1.5. REPORT OUTLINE

1.5 Report Outline

The report is structured as follows. Chapter 2 presents essential background material and
introduces the multi-body dynamics notation used throughout this report. Chapter 3 formulates
the SE(3) and task-point based reach tasks as a QP controller. At the end of this chapter a
theoretical comparison between both methods is made. Chapter 4 provides a proof of concept
simulation of a task-point reach task. Finally, in Chapter 5 conclusions on the research are
drawn and areas for future research are presented.

11

12

Chapter 2

Preliminaries

This chapter provides a review of relevant preliminary material for this thesis. Starting with
the multibody dynamics notation used throughout this thesis. Optimization-based control and
the controller design for different representations of pose are treated next. Finally, the software
architecture, and its components, that enables numerical simulations of reach tasks is introduced.

2.1 Multibody Dynamics Notation

This section proves a review of the multibody dynamics notation introduced in [19]. First, points
and coordinate frames are discussed. Second, velocity vectors in different frames and coordinate
transformations are presented. Third, acceleration vectors are derived and finally the forward
kinematics are reviewed.

2.1.1 Points and Coordinate Frames

A coordinate frame A is defined as the combination of a point oA (called origin) and an orienta-
tion frame [A] in 3D space, such that A := (oA,[A]). The coordinates of a point p, with respect
to frame A, are collected in the coordinate vector Ap. This vector represents the 3D geometric
vector

→
r oA,p connecting the origin of frame A with the point p, pointing towards p, expressed

in the orientation frame [A]. Mathematically, this is written as

Ap :=

→
r oA,p ·

→
xA

→
r oA,p ·

→
yA

→
r oA,p ·

→
z A

 ∈ R3, (2.1)

where · denotes the scalar product between two vectors and
→
xA,

→
yA,

→
z A, are the unit vectors

defining the orientation frame [A]. Figure 2.1 shows an illustration of two frames A, B, a point
p and the relations between them.

13

CHAPTER 2. PRELIMINARIES

p

A

B

oA

!

r oA;p

A
HB

Figure 2.1: Illustration of two frames A and B, and a point p.

The rotation matrix ARB ∈ SO(3) is used to denote the coordinate transformation from frame
B to frame A and is only dependent on the orientation frames [A] and [B], irrespectively of the
position of the origins oA and oB. The 4× 4 homogeneous transformation matrix

AHB :=

[
ARB

AoB

01×3 1

]
∈ SE(3) (2.2)

is used to express the position and orientation of frame B with respect to frame A. The
homogeneous transformation matrix can also be used to map to the coordinate vector Bp to
Ap. To this end, a homogeneous representation of Ap is defined as Ap̄ := (Ap; 1) (the symbol ;
denotes row concatenation). The map is then given by

Ap̄ = AHB
Bp̄. (2.3)

2.1.2 Velocity Vectors (Twists)

The the hat operator ∧ is used to map a vector w ∈ R3 to a skew-symmetric matrix in so(3),
such that

w∧ =

xy
z

∧ :=

 0 −z y
z 0 −x
−y x 0

 ∈ so(3). (2.4)

In the case of a vector v = (v;ω) ∈ R6, with v and ω ∈ R3, the hat operator ∧ maps the vector
v to a matrix in se(3), such that

v∧ =

[
v
ω

]∧
:=

[
ω∧ v

01×3 0

]
∈ se(3). (2.5)

The vee operator ∨ is used to indicate the inverse operation. The velocity of frame B with
respect to frame A can be expressed in several different frames. The left trivialized velocity of
frame B with respect to A is given by the twist

Bv∧A,B = AH−1B
AḢB ∈ se(3). (2.6)

As a vector, the left trivialized velocity represents the velocity of frame B with respect to frame
A expressed in frame B

BvA,B :=

[
BvA,B
BωA,B

]
∈ R6, (2.7)

14

2.1. MULTIBODY DYNAMICS NOTATION

where

BvA,B := ART
B

AȯB, (2.8)
Bω∧A,B := ART

B
AṘB. (2.9)

The right trivialized velocity of frame B with respect to A is given by the twist

Av∧A,B = AḢB
AH−1B ∈ se(3), (2.10)

As a vector the right trivialized velocity is given by

AvA,B :=

[
AvA,B
AωA,B

]
∈ R6, (2.11)

where

AvA,B := AȯB − ˙ARB
ART

B
AoB, (2.12)

Aω∧A,B := AṘB
ART

B. (2.13)

In some cases the specification of a natural velocity AȯB and AωA,B is desired. In that situation
a mixed frame representation can used B[A] := (oB,[A]), which is a frame whose origin coincides
with frame B, but has the orientation of frame A. This mixed velocity is given by

B[A]vA,B =

[
AȯB

AωA,B

]
. (2.14)

The velocities just presented can be expressed in an arbitrary frame using the linear transfor-
mation

AXB :=

[
ARB

Ao∧B
ARB

03×3
ARB

]
∈ R6×6. (2.15)

For an arbitrary frame C the velocity frame transformations are given by

CvA,B := CXA
AvA,B = CXB

BvA,B. (2.16)

The time derivative of (2.15) is given by

AẊB = AXB
BvA,B×, (2.17)

where the term BvA,B× is defined as

BvA,B× :=

[Bω∧A,B
Bv∧A,B

03×3
Bω∧A,B

]
∈ R6×6. (2.18)

Equation (2.18) is referred to as the matrix representation of the cross product on R6. The cross
product of velocity vectors satisfies the distributive property

AXB
BvA,B× = (AXB

BvA,B)× AXB = AvA,B × AXB. (2.19)

15

CHAPTER 2. PRELIMINARIES

2.1.3 Acceleration Vectors

The acceleration vectors associated with the left, right trivialized and mixed velocity are its time
derivatives, defined as

C v̇A,B :=
d

dt
(CvA,B) =

[
C v̇A,B
Cω̇A,B

]
∈ R6. (2.20)

So that the left and right trivialized accelerations are given by Bv̇A,B and Av̇A,B, respectively.
The left and right trivialized accelerations are related by the transformation

Av̇A,B = AXB
Bv̇A,B. (2.21)

The mixed frame acceleration is given by

B[A]v̇A,B =

[
B[A]v̇A,B
B[A]ω̇A,B

]
=

[
AöB

Aω̇A,B

]
∈ R6. (2.22)

2.1.4 Forward Kinematics

Robots often consist out of multiple links and joints and one would like to be able to express the
pose of an end-effector as a function of its joint states, referred to as forward kinematics (FK).
In this thesis only fixed-base serial manipulators with n joints are considered, for example, the
three joint manipulator in Figure 2.2.

B

A

q1

q2

q3

Figure 2.2: Illustration of a fixed-base three joint manipulator, the joint states are denoted by qi.
The pose of the end-effector can be described by the homogeneous transformation matrix AHB,
relating frame B to the inertial frame A.

The joint states are collected in the vector q ∈ Rn. The pose of the end-effector frame B
expressed in frame A can be described as a FK function of the joint states

(AoB,
ARB) = f(q). (2.23)

This function can be found as a composition of homogeneous transformation matrices relating
each joint to the next. The velocity of the end-effector frame B with respect to frame A expressed
in frame A is related to the time derivative of the joint states q̇ by means of the Jacobian AJA,B

AvA,B = AJA,B(q)q̇. (2.24)

16

2.2. OPTIMIZATION-BASED CONTROL

Taking the time derivative of (2.24), results in the forward kinematics on acceleration level.
The acceleration of the end-effector frame B with respect to frame A expressed in frame A as a
function of q and q̇ is given by

Av̇A,B = AJA,B(q)q̈ + AJ̇A,B(q, q̇)q̇. (2.25)

2.2 Optimization-Based Control

As discussed in Chapter 1 the objective is to compare an SE(3) and task-point reach task in
the context of quadratic programming (QP) robot control. This section elaborates on the QP
controller used for both reach tasks.

A general QP problem consists of a quadratic cost function with linear equality and inequality
constraints is given by [20, Chapter 16]

min
χ

1

2
χTGχ+ gTχ.

s.t. CEχ = cE

CIχ ≤ cI ,

(2.26)

where χ ∈ Rn is the variable used to minimize the cost function, G ∈ Rn×n is a positive definite
matrix, g ∈ Rn a vector, CE ∈ Rm×n and cE ∈ Rm form the equality constraints and CI ∈ Rm×n

and cI ∈ Rm the inequality linear constraints. The cost function of (2.26) is often written in a
different form by using G = ATA and g = −AT b, which results in

min
χ

1

2
||Aχ− b||2. (2.27)

2.2.1 Task-Based Constrained Optimal Control

The current and desired pose used in a reach task are specified in task-space, the term task-based
control is therefore used to refer to a control strategy that uses feedback on the current state of
the robot in task-space. Task-based control is the minimization of a task error under the con-
straint of the kinematics of the robot which can be realized in a QP formulation. The resulting
output of the controller are the joint states, therefore effectively solving the inverse kinematics
(IK) problem. QP problems require linear constraints and the kinematics of the robot are linear
in q̇ or q̈ when considered on velocity (2.24) or acceleration (2.25) level respectively. For future
considerations, an acceleration based formulation is preferred if the robot dynamics are to be
taken into account, since the robot dynamics of a fixed-base serial manipulator are linear in
q̈, while being non-linear in q and q̇. Since the output of the QP controller allows for jumps
in the optimization variable, another benefit of defining the QP controller at acceleration level
is that the resulting motion of the robot is smoother compared to a QP controller at velocity level.

The exact mathematical form of the kinematic constraint depends on the representation of
the pose and therefore the kinematic constraint on acceleration level is left unambiguous, until
the SE(3) and task-point reach tasks are formally introduced in Chapter 3. A general task-based

17

CHAPTER 2. PRELIMINARIES

QP formulation on acceleration level, expressed in frame A, is then written as

min
q̈

1

2
||AE(q, q̇, q̈)||2W

s.t. Aa = AJq̈ + AJ̇ q̇

CE q̈ = cE

CI q̈ ≤ cI ,

(2.28)

where AE is the task error on acceleration level, Aa the acceleration of a part of the robot
depending on the representation used for its pose, AJ the Jacobian, also dependent on the
representation of the pose, and with || · ||W the weighted norm

||x||W =
√
xTWx ∈ R. (2.29)

The task error AE should represent stabilized error dynamics on acceleration level in order to
evoke stability of the QP controller in case the minimization is successful. Stable error dynamics
are derived for control on R3 and on SE(3) in the next two sections.

2.2.2 Feedback and Feedforward Control on R3

Given a point p with the reference point d, which can be a function of time. The task error is
defined as the error between the two vector quantities

Aep = Ap− Ad, (2.30)

The system to be controlled are the kinematics of a point on acceleration level expressed in the
inertial frame A.

Ap̈ = u (2.31)

with u the controller action/output. To create a stabilizing controller that drives the task error
Aep to zero a PD-controller with feedforward is used

u = −Kp
Aep −Kd

Aėp + Ad̈. (2.32)

Applying this controller to (2.31) leads to the error dynamics

Aëp +Kd
Aėp +Kp

Aep = 0. (2.33)

Critically damped behaviour can be achieved for Kd = 2
√
Kp. Equation (2.33) can be used as

a cost function in (2.28).

2.2.3 PD Control on SE(3)

A PD controller that almost globally stabilizes the origin of SE(3) is presented in [11]. This sec-
tion aims to use this result to derive a cost function on acceleration level such that is compatible
with the QP control formulation in 2.28. The derivation follows the same approach as in [21].
The PD controller of [11] is given by

Ė = v∧EE (2.34)

v̇E = −KdvE −Kp(log(E))∨, (2.35)

18

2.2. OPTIMIZATION-BASED CONTROL

where E ∈ SE(3) and v∧E ∈ R4×4. The pose error E is defined as the homogeneous transforma-
tion matrix from the desired frame D to the current body frame B, so

E := AH−1B
AHD (2.36)

The twist vE denotes the twist of the desired frame with respect to the current frame, expressed
in the current frame, such that

vE = BvB,D. (2.37)

For the sake of clarity, let D := AHD, B := AHB, E := B−1D, vD = Av̇A,D, vB = Av̇A,B and
XB = AXB. From (2.34), it follows that

˙(B−1)D +B−1Ḋ = v∧EB
−1D,

˙(B−1)B +B−1ḊD−1B = v∧E ,

−B−1Ḃ +B−1ḊD−1B = v∧E ,

−B−1v∧BB +B−1v∧DB = v∧E ,

B−1(v∧D − v∧B)B = v∧E .

(2.38)

Where was used that ˙(B−1) = −B−1ḂB−1, v∧D = ḊD−1 and v∧B = ḂB−1. This equation
can be transformed from skew-symmetric twist velocity matrices to twist velocity vectors using
v = (v∧)∨, which results in

vE = X−1B (vD − vB) (2.39)

Where the following insight was used

Bv∧A,B = AH−1B
Av∧A,B

AHB ∈ se(3) (2.40)

BvA,B = AX−1B
AvA,B ∈ R6. (2.41)

The error dynamics can then be written on acceleration level by taking the time derivative of
(2.39)

v̇E = Ẋ
−1
B (vD − vB) +X−1B (v̇D − v̇B)

v̇E = −X−1B vB × (vD − vB) +X−1B (v̇D − v̇B)

XBv̇E = −vB × vD + v̇D − v̇B.

(2.42)

Where was used that the time derivative of AX−1B can be written as

˙(AX−1B) = −AX−1B
AẊB

AX−1B

˙(AX−1B) = −AX−1B
AXB

BvA,B × AX−1B

˙(AX−1B) = −AX−1B
AvA,B × AXB

AX−1B

˙(AX−1B) = −AX−1B
AvA,B × I6×6

(2.43)

Equation (2.42) can be rewritten as

v̇D = v̇B + vB × vD +XBv̇E (2.44)

19

CHAPTER 2. PRELIMINARIES

Implementing the control law (2.35) gives

v̇D = v̇B + vB × vD +XB(−KdvE −Kp(log(E))∨), (2.45)

which, by substitution of (2.39), is equal to

v̇D = v̇B + vB × vD −XBKdX
−1
B (vD − vB)−XBKpX

−1
B XB(log(E))∨. (2.46)

This equation hides the effect of the gain matrices Kd and Kp on the position and velocity error
among cross terms as a result from the matrix multiplications. If the gain matrices Kd and Kp

are scalar, so Kd = kd and Kp = kp, then

XBKdX
−1
B = kd (2.47)

XBKpX
−1
B = kp (2.48)

such that (2.46) equals

v̇D = v̇B + vB × vD − kd(vD − vB)− kpXB(log(E))∨. (2.49)

This equation can be used as the cost function in 2.28 to create a reach task.

2.3 Software

This section introduces the software architecture and its components that are used for the
kinematic reach task simulations in Chapter 4.

2.3.1 Robotic Operating System

The robotic operating system (ROS) is a software framework for interprocess communication
[22]. There is also exists a rich set robotic related software libraries that make use of the ROS
framework. ROS views a process as a node, which can subscribe to topics that receive messages
from its publishers. Two nodes can therefore communicate via this publisher and subscriber
model. ROS provides a 3D visualization tool called rviz which is not only useful for the visual-
ization of a robot, it also provides debugging in the form of graphs of the robot states and user
interaction with a robot in simulation. ROS also provides a tool for recording and playing back
ROS topics called rosbags. This feature can be used to play back an entire simulation, partially
or even used as a way to save the time evolution of the states of the robot or any other variable.

The ROS framework is used to create a controller node that contains all the QP controller
related computations and a visualization node that makes use of rviz. The overall architecture
is given by Figure 2.3. The following section goes into detail about the controller node.

20

2.3. SOFTWARE

control node

Pinocchio

QP solver

K&D library

uQuadProg++

visualization node

rviz

visualization

URDF

parameters

local files

task & constra-

TSID

int formulation

interactive
marker

rosbags

Figure 2.3: Illustration of the software architecture. The dashed lines represent optional func-
tionality. The interprocess (node) communication is handled by ROS.

The local files represent all the files that contain parameters that configure the two nodes or
stores information from both nodes in rosbags. One in particular, the unified robot description
format (URDF), provides a description for an entire robot [23]. Most importantly it describes
how each link is connected each joint. The QP controller software described in the next section
and rviz are able to parse the URDF and use this information for kinematic calculations and
3D visualization respectively.

2.3.2 Control Node

The control node contains three main components: the task-space inverse dynamics (TSID)
library [24], the kinematics and dynamics library Pinocchio [25] and a TSID modified version
of QP solver uQuadProg++ [26, 27]. The TSID library provides a layer of abstraction in the
creation of a QP problem by providing an interface for specifying tasks and constraints, which
TSID is then able to convert into a QP problem. However, not all tasks that were advertised
on its wikipage have been implemented. The relevant tasks that were implemented during the
work of this thesis:

• Joint posture task. This task is used to move the joint angles towards a possibly time
dependent reference trajectory in joint space by employing a PD controller on the joint
angles.

• SE(3) task. This task is used to move a part of the robot to a possibly time dependent
reference pose in Cartesian space by employing a PD controller on SE(3).

The use of multiple tasks can be handled in multiple different ways as discussed in Section 1.2.3.
The documentation of TSID suggested that the library offers a hard hierarchy, however, currently
only offers a soft hierarchy using weights. TSID makes use of the Pinocchio library for its
kinematic and dynamic calculations, the exact algorithms used to calculate these have not been
investigated. Finally, the QP problem created by TSID using Pinocchio is solved using a modified
version of the numerical solver uQuadProg++ based on Eigen data structures [26, 27]. TSID
also offers the option to choose a solver, for example qpOASES, however it seems that it has not

21

CHAPTER 2. PRELIMINARIES

been implemented yet. The solver also offers an interface to monitor the state the QP solver
as: unknown, optimal, infeasible, unbounded, max iter reached and error. A monitor like this
is useful tool in debugging a library that is build around the use of QP problems.

22

Chapter 3

Reach Task Formulations

In this chapter, the mathematical descriptions of the two reach task formulations, SE(3) and
task-point based, are formalized. In order to achieve this, the definition of a reach task and reach
task function are stated first. After which, the concept of a redundant reach task is introduced
together with a few examples. Then, the QP control formulation, in which the SE(3) and task-
point reach tasks functions are formalized, is recalled. Finally, both reach tasks functions are
formalized and compared on their ability to specify (redundant) reach tasks and the effect of
their tuneable parameters on the resulting motion.

3.1 Reach Task Definition

In the context of robot control, a reach task is defined as the task to reach a certain desired
position and/or orientation by a part of the robot. The associated reach task function is the
mathematical formulation of the reach task in terms of a chosen error to quantify the difference
between the desired and current pose of a part of the robot, the latter being a function of the
robot state. Reach tasks are a fundamental task and many more complicated tasks can be build
from this it. For example, in the case of a service robot: opening a door, grabbing a cup from a
table and storing the groceries. The reach tasks in these examples, all require the specification
of a desired position and/or orientation of the end-effector in one or more stages of the task.

3.1.1 Redundant Reach Tasks

A coordinate frame in R3 attached to a link of the robot has six degrees of freedom (DoF),
three for position and three for orientation. A reach task specifies a desired position and/or
orientation for this frame, however not every reach task requires all six DoF to be specified.
As a consequence, at the goal position and/or orientation, the frame is still allowed to move in
the direction of the unspecified DoF or allowed to rotate about the axis of the unspecified DoF,
depending on which DoF was left unspecified. An m ∈ R3 DoF reach task is said to have m
DoF specified by the desired position and/or orientation of the frame attached to a link of the
robot. This is equal to imposing m soft constraints on the pose of this frame (i.e. the dimension
of the reach task function). The class of reach tasks that specify m < 6 DoF are referred to as
redundant reach tasks. For a coordinate frame in R2, a reach task that specifies m < 3 DoF is
a redundant reach task.

23

CHAPTER 3. REACH TASK FORMULATIONS

Redundant reach tasks are common for robotic systems that use a manipulator to grab ob-
jects or a camera to look at objects. Figure 3.1 illustrates three examples.

(a) cylinder grasping (b) direction task (c) inspect inner circle from center

Figure 3.1: Redundant reach task examples. Illustration (a) shows a 2D example, illustrations
(b) and (c) show 3D examples. The arrows indicate the DoF that have been left unspecified and
the dashed version then shows a possible new pose that still complies with the requested reach
task.

The first example in Figure 3.1a shows a three DoF robot arm where the reach task is to position
the gripper before grabbing the object. This particular example is actually a 2D problem, but
it has a 3D equivalent. For the task at hand the rotation about the axis of the object is left free
(the center point) and therefore specifies two DoF out of the three available DoF. The second
example in Figure 3.1b shows a camera and its reach task is look in a certain direction (i.e. a
vector direction task). For this task the rotation about the dashed axis and the movement in
all three directions are not important and therefore only specifies two DoF out of the six DoF.
The third example in Figure 3.1c, again shows a camera and its reach task is to position itself
in the center of the circle and always point towards the inner edge of the circle. For this task
the rotation about the center of the circle and around the pointing direction are irrelevant. This
means that the three position DoF and one orientation DoF are specified. However, notice that
the body can still obtain any orientation by successive rotations about the two unspecified DoF.
This leads to the notion that this reach task only specifies four DoF instantaneously. Meaning,
that at each instance of time the camera is specified by four DoF, however, in time it can reach
poses these four DoF would not allow instantaneously. Another example of a three DoF position
+ one DoF orientation reach task can be found in [28].

From these examples it becomes clear that it is important to, firstly, realize that these tasks are
redundant by nature, and secondly, to design reach tasks that do not specify more DoF than
necessary. As a result, the robot has a number of free DoF that could be used for additional
tasks, for example, avoiding an obstacle. This is related to the concept of redundancy introduced
in Section 2.2. If a robot with n DoF is to execute a task of m DoF, a task redundancy exists
when n > m with n −m the task redundancy degree. The difference is that task redundancy
considers the DoF of the robot as a whole, whereas, redundant reach tasks consider the DoF of
a frame attached to a link of the robot, most often the end-effector of a robot arm.

24

3.2. EMBEDDING REACH TASKS IN THE QP FORMULATION

3.2 Embedding Reach Tasks in the QP Formulation

As mentioned in Section 1.3, the focus of this thesis is on comparing the SE(3) and task-point
reach task formulations that can handle task redundancy and multiple tasks simultaneously. In
Section 2.2, a task-based QP formulation was developed that is able to take each of these ele-
ments into consideration. The formulation achieves this by viewing the reach task as an optimal
control problem in which constraints, such as the joint limits, can be added as constraints in
the QP problem. As any control problem, a task error needs to be defined and control law that
aims to minimize this error. The QP controller minimizes the task error at acceleration level,
where the joint accelerations q̈ are the optimization variables. The control laws that drive the
task error to zero, should therefore also output accelerations in order to add them to the QP
formulation.

In the following two sections the representation of the goal, task error, and a controller on
acceleration level that aims to minimize this error for the SE(3) and task-point reach tasks
respectively. Both controllers are then integrated in the aforementioned QP formulation.

3.3 Reach Task Formulation on SE(3)

The homogeneous transformation matrix AHB ∈ SE(3) is used to represent the pose (position
and orientation) of a frame B relative to a frame A. Consider the six DoF fixed-base serial
manipulator, shown in Figure 3.2.

D

B

A

Figure 3.2: Visualization of the SE(3) reach task for a serial manipulator. The goal of this task
is to match frame B with reference frame D. Frame A is the inertial frame.

The SE(3) reach task is then to match the link-fixed frame B with the reference frame D
(possibly, a function of time), where frame A is the inertial frame. Mathematically, this means
that AHB should become equal to AHD. If the reference frame D is a function of time, then
the twist AvA,D ∈ R6 expresses the reference velocity of frame D with respect to A expressed
in A and the acceleration Av̇A,D ∈ R6 the reference acceleration of frame D with respect to A

25

CHAPTER 3. REACH TASK FORMULATIONS

expressed in A. Using the cost function (2.49) derived in Section 2.2.3 results in the SE(3) reach
task formulation

min
q̈∈Rn

1

2
||Av̇A,B − Av̇∗A,D||2W

s.t. Av̇A,B = AJA,B q̈ + AJ̇A,B q̇
Av̇∗A,D = kp

AXB(log
(
AH−1B

AHD

)
)∨ + kd(AvA,D − AvA,B)

+ Av̇A,D − AvA,B × AvA,D,

(3.1)

where n is the number of joints, W ∈ R6×6 the weighting matrix, q ∈ Rn the joint angle vector,
AvA,B ∈ R6 the twist expressing the velocity of frame B relative to A expressed in A, Av̇A,B ∈ R6

the acceleration of frame B relative to A expressed in A, AJA,B ∈ R6×n the Jacobian relating
the velocity of frame B with respect to A expressed in A and kp and kd ∈ R the proportional
and derivative gain that are used to control the speed of convergence of B to D. This reach
task formulation represents the minimization of the error dynamics on acceleration level (second
order system on SE(3)) and almost globally stabilizes the origin of SE(3). This minimization is
equivalent to executing an SE(3) reach task.

3.3.1 Specification of (Redundant) Reach Tasks Using the SE(3) Reach Task
Formulation

The SE(3) reach task function cannot be used to create redundant reach tasks since the reference
homogeneous transformation matrix AHD cannot be split into smaller components without also
changing the control law and hence the reach task formulation, as shown in the literature review
of Section 1.2.

3.4 Task-Point Reach Task Formulation

Consider Figure 3.3, where a six DoF manipulator is used to demonstrate the basic idea of a
task-point based reach task.

26

3.4. TASK-POINT REACH TASK FORMULATION

B

A

p3

p1 p2

d3

d1
d2

Figure 3.3: Illustration of the task-point reach task for a six DoF serial manipulator. The goal of
this task is to match the body-fixed points p1,p2,p3 with corresponding reference points d1,d2,d3.
Frame B is the end-effector frame and frame A is the inertial frame.

The objective of a task-point reach task is to match a set of points p1, · · · ,pN that are rigidly
attached to a link of the robot with the corresponding reference points d1, · · · ,dN in R3, which
can be a function of time. In the example of Figure 3.3, three points that are rigidly attached to
the end-effector link have been chosen and placed on each of the axis of the end-effector frame B.
Note that these points do not have to lie on frame B or the link necessarily, just rigidly attached
to the link. Intuitively, one can already tell that these reference points indirectly specify the
position and orientation of the end-effector. A certain set of points can be used to create a
fully specified reach task and removing some points then leads to redundant reach tasks. The
construction of these reach tasks is discussed in Section 3.4.1.

In order to create a motion of each point pi towards its reference point di the coordinates
of these points need to be quantified and a controller that drives the error between the coor-
dinates of these points to zero to be defined. In Section 2.2.2, a feedback with feedforward
controller on R3 (2.32) was introduced. This controller uses the error vector Aei = Api−Adi as
the task error for each point. It is possible to use this controller on each point separately and
combine them in a QP formulation as the summation of multiple point reach tasks functions.
This results in a QP controller and is referred to as the task-point reach task formulation.

min
q̈∈Rn

1

2

N∑
i=1

||Ap̈i − Ad̈
∗
i ||2Wi

s.t. Ap̈i = AJ iq̈ + AJ̇ iq̇

Ad̈
∗
i = −Kpi(

Api − Adi)−Kdi(
Aṗi − Aḋi) + Ad̈i,

(3.2)

where q̈ are the joint accelerations, Wi ∈ R3×3 the weighting matrix of each task, Kpi ∈ R3×3

and Kdi ∈ R3×3 are the gain matrices for position and velocity error respectively and Ad̈
∗
i ∈ R3

the output of the feedback and feedforward control law. The Jacobian is defined as AJ i :=
∂Api(q)/∂q ∈ R3×3, where Api(q) ∈ R3 are the forward kinematics of each point pi expressed

27

CHAPTER 3. REACH TASK FORMULATIONS

in frame A.

The idea of using multiple points to control the position and/or orientation of a rigid-body
is inspired by the work of [18], in which the task-function approach was used for sensor-based
control tasks of robot manipulators. The task-function approach can be seen as an even more
general formulation.

3.4.1 Specification of (Redundant) Reach Tasks Using the Task-Point Reach
Task Formulation

The task-point reach task formulation has been formalized as (3.2) and can be seen as a template
from which it is possible to specify different (redundant) reach tasks. This section explores the
two main parameters for specifying (redundant) reach tasks: the amount of points and the
location of each of the link-fixed points pi and reference points di. Note that in this section the
relative distances among p1, · · · ,pN and among d1, · · · ,dN are chosen to be equal in order to
preserve predictability of the resulting motion. As for the amount of points, it is well known that
three points are the minimum amount of points required to fully constrain the six DoF of a rigid-
body in space. However, not any three arbitrary points have this property. The requirement
is that the third point does not lie on the line spanned by the first two points. Considering
the left illustration of Figure 3.4, this requirement is written as v1 × v2 6= 0, where v1 and
v2 ∈ R3. The three points indirectly represent the pose of a link and it is possible to extract
a frame from them using e.g. Gram–Schmidt orthonormalization to quantify this pose, see the
right illustration of Figure 3.4. In this case the Gram–Schmidt orthonormalization would apply
to v1 and v2, which creates the 2D orthonormal frame represented by XB and Y B. The third
axis is then found by using the cross product on the two axes of this frame ZB = XB × Y B,
which creates a right handed frame with oB = p1. Hence, using three points to represent the
pose of of a link of the robot is equivalent to using a frame.

p
1

p
2

p
3

ZB Y B

XB

oBv1

v2

oB

Figure 3.4: Illustration of the extraction of a frame B from the three points p1, p2 and p3.

Position Reach Task. A position reach task function is easily created from (3.2) by setting
N=1 (i.e. using one point) and by specifying the reference position Ad, which can be a function
of time, for the corresponding point Ap that is attached to a link of the robot. The QP controller
will then try to drive the task error Ae = Ap−Ad to zero by minimizing the cost function. The
position reach task function just described specifies the position Ad in all three position DoF
and leaves all three orientation DoF free. This reach task is therefore already redundant, but it
is also possible to only specify two or even one position DoF, see Figure 3.5, making it even more
redundant. Where the notation dx,z ∈ R2 is employed to represent a reference line specified by

28

3.4. TASK-POINT REACH TASK FORMULATION

only the x and z coordinate, hence leaving the y DoF unspecified. The same logic applies to
dz ∈ R, which represents a reference plane only specified by z coordinates.

oA

dx;z

XA

Y A

ZA

(a)

dz

XA

Y A

ZA

oA

(b)

Figure 3.5: Illustration of two redundant reference positions for a task-point reach task.

This is achieved by not taking identity for W in (3.2), but by setting the diagonal element of the
identity matrix to zero that corresponds to the DoF the reach task leaves unspecified, effectively
reducing the dimension of reach task function. In the case of Figure 3.5a, the result is that the
fixed point Ap is controlled towards the reference line Adx,z instead of a reference point, and
is allowed to move on this line. Resulting in the cost function 1

2 ||
Ap̈x,z − Ad̈x,z||2. In case of

Figure 3.5b, the fixed point Ap is controlled towards the surface spanned by the two unspecified
axes, and is allowed to move on this surface. Resulting in the cost function 1

2 ||
Ap̈z − Ad̈z||2.

This last case, could for example be used to position the end-effector of a robot to be a certain
distance from a table (i.e. hover over the table). Note that for highly redundant reach tasks,
like the two reach tasks in Figure 3.5, the optimization is made harder due to the many DoF
that allow for drifting. In practical applications, these reach tasks are usually constrained (i.e.
finite lines and surfaces) or used in conjunction with additional tasks.

Position + Direction Reach Task. A direction reach task specifies the direction a link needs
to point at, but leaves the position of the link free, see Figure 3.1b. A position + direction reach
task also specifies the location from where the link needs to point. The reach task function
is created from (3.2) by setting N=2 (i.e. using two points) and by specifying the reference
positions Ad1 and Ad2 for the corresponding points Ap1 and Ap2 that are attached to a link of
the robot. The line through both points specifies the direction of the reach task, see Figure 3.6.
This reach task specifies five DoF and only leaves the rotation about the direction vector free.

d1

d2

oA

XA

Y A

ZA

Figure 3.6: Illustration of a task-point reach task using two reference points.
s

Pose Reach Task. As discussed in Section 3.4.1, three points can fully describe the six DoF
pose of a link. A pose reach task function is therefore created from (3.2) by setting N=3 (i.e.
using three points) and by specifying the reference positions Ad1, · · · ,Ad3 for the corresponding

29

CHAPTER 3. REACH TASK FORMULATIONS

points Ap1, · · · ,Ap3 that are attached to a link of the robot, see for example Figure 3.3. How-
ever, a disadvantage of this reach task function is that it does not separate the position from
orientation One solution could be to use two successive QP controllers. The first QP controller
only controls the position by using one point (3.2) (N=1) and once this position is reached,
switch to a second QP controller that controls the pose (3.2) (N=3). The second QP controller
effectively only controls the orientation since the position has already been reached. However,
the other way around allows for rotation during the positioning task and hence orientation is
not preserved.

The choice for the location of the fixed points Ap1, · · · ,Ap3 also influences the relative mo-
tion between the position and orientation part of the motion. This effect is the most clearly
visible when visualizing the frames that can be extracted from the points Ap1, · · · ,Ap3 (link
frame B) and Ad1, · · · ,Ad3 (reference frame D). Consider the case where the origin of the link
frame B already coincides with the reference frame D and only an “orientation error” around
the z-axis remains, see Figure 3.7.

Y D

p0

2

d
0

2

A

e0
2

Y B

XD

XB

p
2

d2

e2

d1=oD=p
1
=oB

ZD=ZB

d3=p
3

Figure 3.7: Shows the effect of an increasing error vector e2 for the choice of the points p2 and
d2 further from the origin of its frames B and D respectively. Where A is the inertial frame.

Here the magnitude of the error Ae2 = Ad2 − Ap2 increases as the distance of the points from
the origin increases, Ae′2 = Ad′2 − Ap′2 >

Ae2. In turn, this also increases the magnitude of the
control action and hence affects the relative motion between position and orientation. In the
case of Ae′2, the motion towards the implicit reference orientation is considered more important
than for Ae2. The choice for the location of Api and Adi can therefore be seen as a parameter
that can be used to tune the resulting motion.

A method to completely separate position from orientation is proposed in the next paragraph.
The separation offers greater control of the resulting motion and allows for the specification of
an orientation reach task.

Orientation Reach Task. The objective of an orientation reach task is to match a link-fixed
orientation frame [B] with a reference orientation frame [D], as illustrated in Figure 3.8. Hence,

30

3.4. TASK-POINT REACH TASK FORMULATION

the position of the frames in space are irrelevant.

[A]

[D]

[B]

Figure 3.8: Visualization of an orientation reach task, where the goal is to match a orientation
frame [B] with a reference orientation frame [D]. Both orientation can be related by the inertial
orientation frame [A].

To derive an orientation reach task function from the task-point formulation (3.2) the reference
points d1, · · · ,d3 need to be used to represent the reference orientation only and not also the
position. This can be achieved by defining the reference frame D as D := (oB,[D]). This way,
wherever frame B is, the origin of frame D coincides with it, see Figure 3.9. Note again that
the points p1, · · · ,p3 and d1, · · · ,d3, do not necessarily have to lie on the coordinate axes of the
frame, they only have to be sufficient to uniquely specify an orientation, which requires three
points.

A

D

B

d3

d2

d1

p
3

p
2

p
1

Figure 3.9: Illustration of an orientation reach task using reference points d1, · · · ,d3 that are
attached to a reference frame D redefined as D := (oB,[D]).

Mathematically, this is written as

Adi = AoB + ARD
Ddi. (3.3)

However, the purpose of a task-point reach task is to only use reference points to implicitly
represent reference orientation and not by means of a rotation matrix ARD. So, define D[A]di :=
ARD

Ddi, which is also equal to B[A]di due to the redefinition of the D frame. Equation (3.3)
then becomes

Adi = AoB + D[A]di. (3.4)

31

CHAPTER 3. REACH TASK FORMULATIONS

The result is that the references now become D[A]d1, · · · ,D[A]d3 and with the pre-processing
step of (3.4) the input to the QP controller template of (3.2) is kept intact. The change of
reference ensures that the origin of the current frame B and reference frame D coincide every
time step, therefore there is no position error related to the origins of these frames and also no
control action that controls the position of these frames. The new reference coordinates D[A]di
are again intuitive, since one can now directly specify the point in the reference frame regardless
of its location while still expressed in the orientation of frame A. The result is a QP controller
that allows the position of the frame, attached to a link of the robot, to drift due to any cause
(e.g. under the effects of gravity) while still controlling its orientation.

To complete the formulation, the pre-processing step is also derived for the velocity and ac-
celeration references by taking the time derivative of (3.4)

Aḋi = AȯB + D[A]ḋi (3.5)

and
Ad̈i = AöB + D[A]d̈i. (3.6)

An implication of this new formulation is that it is now possible to describe pose reach task
function in two different ways. As three reference points specified as Ad1, · · · ,Ad3 or as three
relative reference points D[A]d1, · · · ,D[A]d3 for orientation and one point Ad4 for position. Where
the later method successfully separates position and orientation control and therefore gaining
more control over its resulting motion.

Direction Reach Task. Before the insight of orientation separation by means of a pre-
processing step of the desired points, it was not possible to specify a direction reach task,
since the reference coordinates Ad1 and Ad2 also specified the position. However, by using (3.2)
(N=2) and by specifying the coordinates of the reference points as D[A]d1 and D[A]d2, for the
corresponding points Ap1 and Ap2 that are attached to a link of the robot, and using the pre-
processing step of (3.4) it is possible. Which makes it possible to describe redundant reach task
example of Figure 3.1b. This has the same useful implication as in the aforementioned pose task,
since it is now possible create a position+direction reach task that splits the direction from the
position task. Gaining more control over its resulting motion

3.5 Theoretical Comparison

This section offers a theoretical comparison between the SE(3)- and task-point-based reach
task functions, formulated as (3.1) and (3.2). Both formalizations have been derived from
their respective stabilized error dynamics using PD controllers and have been embedded in a
task-based QP control formulation. The comparison is done on the ability of the reach task
functions to specify redundant reach tasks and the effect of the tuneable parameters, present in
the formulation, on the resulting motion.

3.5.1 Redundant Reach Tasks

Starting with the SE(3) reach task function (3.1). This reach task function is not able to
formulate any redundant reach tasks since the reference homogeneous transformation matrix
AHD cannot be split into smaller components without also changing the control law and hence

32

3.5. THEORETICAL COMPARISON

the reach task function. On the other hand, the task-point reach task function (3.2) has proven
to be quite versatile in this regard. By varying the amount and the location of the reference
points and link-fixed points, (3.2) was able to construct a one, two and three DoF position reach
task function, a two and three DoF orientation reach task function and the combinations of
these. As a result the task-point reach function now has two ways to specify a pose reach task.
The first is using three points expressed in an inertial frame A. The second is using four points,
three points relative to the link-fixed frame B to specify the orientation and one point expressed
an inertial frame A to specify the position. The great number of (redundant) reach task the
task-point reach task approach is able to create proves the effectiveness of a unified reach task
formulation, which can therefore be considered successfully created.

3.5.2 Tuneable Parameters

SE(3) Reach Task. The SE(3) reach task function (3.1) has three tuneable parameters that
can be used to influence the resulting motion, namely the weighting matrix W and the scalar PD
gains kp and kd. The derivation in Section 2.2.3 showed that if the gains of the PD controller
are the scalars kp and kd, then the effect of gains on the position and velocity error is more
directly visible, instead of hiding among cross terms as a results from the matrix multiplications
in (2.46). The scalar gains can be used to specify the relative importance between the position
and velocity error. Eventually the resulting magnitude and direction of Av̇∗A,D determines how
fast and how the QP controller tries to accelerate towards its goal. The weighting matrix W ,
via the weighted norm (2.29), can be used to specify the relative importance and magnitude
of the six components that constitute the acceleration error of the cost function in (3.1), i.e.
via 1

2(Av̇A,B − Av̇∗A,D)TW (Av̇A,B − Av̇∗A,D) ∈ R. Notice that the quadratic error of each of
the six components of the error vector are added together depending on the weights between
them and that therefore the weighting matrix determines the relative importance of the units
of acceleration [m/s2] and angular acceleration [rad/s2]. Depending on the requirements of the
reach task one should keep this weighing in mind, since they influence the rate of convergence
of each of the six error components. The same logic applies to the previously discussed velocity
error, however, since the gain is a scalar value kd it cannot be used to signify the relative
importance of the units. Due to the nature of the position error, a matrix multiplication and
log function, the choice of the relative importance between the units has already been made
intrinsically. A benefit of the SE(3) reach task function is that the error definition is inertial
frame independent, as shown in [11, Section V].

Task-Point Reach Task. The amount of tuneable parameters, for a (redundant) task-point
reach task function (3.2), varies with the amount of points used for the particular reach task.
Namely, each point has three tuneable parameters, the gain matrices Kpi and Kdi of the PD
controller and the weighting matrix Wi. The tuning of the motion using these parameters is
the same as in the SE(3) reach task case, except that the weighting matrix Wi can now also
be used to set the relative influence of each point on the resulting motion. And that the gain
matrices Kpi and Kdi can be used to tune the individual components of the error. For tasks
with multiple points the relative distance between the points can also be seen as an additional
parameter, as was shown in Figure 3.7. This parameter can be used to tune the relative im-
portance between the position and orientation part of e.g. a pose reach task. Notice that in
the case of a task-point reach task the problem of mixing units has been removed, since the
rotational component is now indirectly implemented by the use of multiple points. As discussed
in the previous section, the task-point reach task function offers two ways to implement a pose

33

CHAPTER 3. REACH TASK FORMULATIONS

reach task. The second approach splits the position and orientation by using four points, which
results in separate control over the resulting motion of the position and orientation part of the
pose. The intuitive and ease of use in creating (redundant) reach task can be regarded as a
benefit of this approach.

A disadvantage of the task-point reach task function is that the error definition is frame de-
pendent. As a result, the values of the tuneable parameters are different for each frame of
reference and the relation of the change in the many parameters’ value to the change of refer-
ence frame is not trivial. The choice of the relative distance between points might also negatively
influence the resulting motion if not chosen carefully. Take for example, the case of a pose reach
task using three points, the condition on creating this pose task is that these three points do not
lie on the same line. However, when does this transition occur, when do three points not lie on
the same line sufficiently enough? This point of transition can be seen singularity in which a loss
of controllability occurs for one rotational DoF, effectively turning it into a position+direction
reach task. This question is regarded as a subject for future research.

34

Chapter 4

Simulations

This chapter explains how the TSID library is used to implement the task-point reach task and
the challenges faced because of it. Then, by means of a simulation, a proof of concept for the
task-point reach task is provided. Finally, a summary of the chapter is given.

4.1 Software Implementation

The implementation of the task-point reach task formulation (3.2) was done in the software
framework presented in Section 2.3 by modifying the existing code of a SE(3) task to a 3D point
reach task. The modification required the rewriting of the dimension of the Jacobian and the
error definitions to match the ones in (3.2). The result is a function that can be used for each
point separately. Subsequently, the cost function of each point is added to the total cost in a
QP problem using weights to create a soft hierarchy. Different amount of points can be used to
generate the different (redundant) task-point reach tasks as presented in Section 3.4.

Unfortunately, the process leading up to the implementation of the task-point reach task formu-
lation was not so easy and was met with several obstacles. The first hurdle was integrating the
TSID library into the ROS framework. Having never worked with ROS before, there was a lot
to learn about the inner workings of both ROS and the integration of a complex C++ library.
Luckily, ROS provides good documentation with many tutorials, although some tutorials were
outdated. The second hurdle was understanding the TSID code in terms of what is calculated
where and how? Unfortunately, the documentation of the library was outdated and claimed
that the library was able to do things it was not able to, such as, a hierarchical QP (hard pri-
ority), torque tasks, joint, and actuation bounds to name the most relevant features. The code
itself also barely provided comments that explain what the function calculates and what the in-
put/output represent, so finding out what the code is calculating was hard. However, this issue
was later somewhat combated by learning how to read mathematical code. Instead of trying to
figure out what the code was doing the opposite stance was taken by first understanding the
fundamental mathematical problem one expects the code to be solving and then trying to find
these elements back in the code. This approach proved more successful in figuring out the TSID
library. Pinocchio, the library used for calculating all the kinematic and dynamic equations, was
also unfortunately also not well-documented. Another issue in understanding the TSID library
is the fact that it makes heavy use of C++ templates, which makes the code harder to read, but
also more flexible. To make the template matters even more complex it seems that the TSID
library makes use of a curiously recurring template pattern (CRTP) [29] or also called F-bound

35

CHAPTER 4. SIMULATIONS

polymorphism [30] and sometimes loosely called upside-down inheritance [31], which allows a
class X to derive from a class template instantiation using X itself as a template argument. The
third hurdle was that TSID was hard-coded for use of floating base robots only. However, some
minor adjustments to the dimensions of the vectors in TSID were made to mitigate this.

4.2 Task-Point Reach Task Proof of Concept

This section starts with the notion of singular configurations and provides a numerical simulation
proof of concept of the task point-point reach task formulation presented in Section 3.4. To this
end, a pose reach task represented by three points is investigated. The reach task is executed
on a six DoF manipulator in the software framework introduced in Section 2.3.

4.2.1 Singular Configurations

Singular configurations are configurations where the manipulator loses one or more DoF of
motion. This is caused by a rank deficiency (singularity) of the Jacobian matrix, which is
configuration dependent. A review of singular configurations can be found in [3]. During the
execution of test simulations using the TSID software library, singular configurations have been
most often observed in configurations going from an elbow down towards an elbow up solution
(or visa-versa) or when reaching for a solution outside the workspace of the manipulator (i.e.
fully stretched out). Both situations go through a joint angle of 0 degrees and result in a loss
of control over the velocity component parallel to the stretched out arm. The observed result
is that the QP solution q̈∗ goes to infinity and eventually results in a software crash caused by
a NaN (not a number), an object that cannot be used for further computations. Singularities
like these are currently avoided ad-hoc by starting from a certain starting configuration of the
manipulator towards a certain goal position and checking if it goes through a singularity or not.
As this issue is not investigated in this thesis, it presents an area of research for future work.

4.2.2 Pose Reach Task

A pose reach task is chosen as the first proof of concept simulation, because it sets up a com-
parison with the SE(3) reach task for future work and it is theoretically the most stable reach
task on a six DoF manipulator. Specifically, the pose reach task is not redundant with respect
to the manipulator DoF and hence does not leave any DoF uncontrolled. This creates a more
stable foundation for the numerical solver to converge to a solution, since none of the DoF are
allowed to drift. Removing the manipulator redundancy has the additional benefit of reducing
the chance of drifting into a singular configuration caused by an uncontrolled DoF.

Task-Point Parameters. The QP controller of the task-point reach task formulation (3.2) is
repeated here for clarity and to highlight the parameters present in the formulation. A task-point
reach task formulation using three points for a six DoF manipulator is given by

min
q̈∈Rn

1

2

N∑
i=1

||Ap̈i − Ad̈
∗
i ||2Wi

s.t. Ap̈i = AJ iq̈ + AJ̇ iq̇

Ad̈
∗
i = −Kpi(

Api − Adi)−Kdi(
Aṗi − Aḋi) + Ad̈i,

(4.1)

36

4.2. TASK-POINT REACH TASK PROOF OF CONCEPT

with n = 6, N = 3. For this simulation the weighting matrix is chosen as Wi = I3×3 for every
i, which means each point is chosen to be equally important. The points are chosen to be
equally important, because the only goal of a proof of concept is to show the convergence of
the task-point reach task formulation (4.1) and hence there is no use-case to relate requirements
or specifications to. As discussed in Section 3.5, the distance between a set of points is also
considered a parameter to indirectly influence the relative importance of position and orientation.
In this case the three link-fixed points pi have been chosen to lie on the tips of end-effector frame
B as done in Figure 3.3 with a distance of 0.1 m, which is an arbitrary choice. The three PD
gain matrices Kpi and Kdi are chosen to be equal to identity times the scalar kpi = 3 and
kdi = 2

√
kpi respectively. These gains have not been chosen to optimize performance, only to

realize stable critically damped behavior of each point separately. The QP controller node of
Figure 2.3 runs at 100 Hz in the ROS framework, hence the time-step of the QP controller is
0.01 s. As discussed in Section 2.3, a modified version of uQuadProg++ is used to solve the QP
problem every time-step.

Initial Conditions & Reference Values. The starting configuration of the robot is chosen
as

qinit =
1

2
π[1 1 1 1 1 1]T , (4.2)

to make sure it does not start in a singular configuration. The joint velocities and accelerations
are set to zero, q̇init = 06×1 and q̈init = 06×1. As discussed in the previous paragraph, the
end-effector-fixed points pi each lie on 0.1 m distance from the origin of the end-effector frame
AoB. This corresponds to a starting position of the three points

Apinit1 =

 −0.10915
−0.3976
−0.253541

 , Apinit2 =

 −0.00915
−0.2976
−0.253541

 , Apinit3 =

 −0.10915
−0.2976
−0.153541

 , (4.3)

with ṗiniti = 06×1 and p̈initi = 06×1 for every i. The three static (i.e. its time derivatives are
zero) reference points d1,d2,d3 are derived from a reference frame D represented by AHD. To
ensure that the set of reference points have the same relative distance as the end-effector-fixed
points p1,p2,p3, the reference points are chosen to lie on 0.1 m from the center of frame D.
Note that this property is not required for (4.1) in order to execute the reach task. However, it
does provide an insightful goal and a more predictable resulting motion. Given Dd1,

Dd2,
Dd3

as the three base vectors (length 0.1 m) of frame D expressed in frame D, the reference point
di is expressed in frame A using the following homogeneous relation

Adi = AoD + ARD
Ddi, (4.4)

resulting in

Ad1 =

 0.49085
−0.2976
0.246459

 , Ad2 =

 0.39085
−0.1976
0.246459

 , Ad3 =

 0.39085
−0.2976
0.346459

 . (4.5)

Figure 4.1 shows a visual representation of the end-effector-fixed and reference points.

37

CHAPTER 4. SIMULATIONS

Results. This section presents the results of the simulation of a pose reach task using the task-
point approach. Figure 4.1a shows the initial configuration of the manipulator at the beginning
of the simulation. Figure 4.1b shows the final configuration after completing the reach task.
The resulting motion of the simulation is shown in Figure 4.1b as the cyan trails, starting from
the initial points.

d3

pinit

3
=p3

pinit

1
=p1 pinit

2
=p2

d2

d1

(a)

d3=p3

pinit

3

pinit

1

pinit

2

A d2=p2

d1= p1

(b)

Figure 4.1: Figure (a) shows the initial configuration of the manipulator and initial states of the
system. Figure (b) shows the final configuration of the manipulator. The cyan trails represent
the resulting motion from the initial points piniti towards the reference points di, executed on a
six DoF manipulator.

The cyan trails indicate a smooth motion of each end-effector-fixed point towards its correspond-
ing reference point. However, it is hard to conclude anything substantial from the two static
pictures other than the path taken by points. Further analysis is therefore done using the joint
states in Figure 4.2 and the task space error in Figure 4.3 as a function of time.

38

4.2. TASK-POINT REACH TASK PROOF OF CONCEPT

Figure 4.2: The QP controller output q̈∗, integrated to update the joint states q̇ and q.

The first plot shows the output of the QP controller q̈∗ (i.e. the control effort). The figure shows
that initially the QP controller has to do the most effort, which corresponds to the fact that
the initial error is the largest, see Figure 4.3. The magnitude of the controller effort is mainly
determined by the outputs of each of the PD controllers Ad̈

∗
i , since this is the acceleration the

QP tries to achieve. Without any physical limits the added as constraints the QP problem and
as long the three point tasks do not interfere with each other, the QP controller will generate
an acceleration that matches the output of the PD controllers. The second and third plot are
integrated from q̈∗ in order to update the state of the robot q̇ and q respectively, which is
required for the numerical computation of the Jacobian and its derivative.

39

CHAPTER 4. SIMULATIONS

Figure 4.3: Shows the position and velocity error (epi, ėpi) for all three points as a function of
time.

This figure shows the position and velocity errors used in the PD controller of (4.1). The PD
gains are chosen to generate a critically damped response, as discussed in Section 2.2.2, which
is visible in the left column representing the position error response for each point. What the
plots do not clearly depict is that the y component of the position error for the third point has
a slight overshoot of 0.006 m and correspondingly the y component of the velocity error goes
slightly below 0 m by 0.003 m. This behavior can be explained by the fact that the motion of
each point separately has been designed to exhibit critically damped behavior, however, the QP
controller employs a soft hierarchy and therefore cannot guarantee this behavior for each point,
only a compromise defined as the cost function. This could be verified by analyzing the value of
minimized cost of each of the points separately. If the value of the cost is not zero, there exists
a slight deviation from the desired critically damped behavior. The figures also show that the
task-point reach task is completed around the 4 s mark. This coincides with the steady state
behavior of the joint states shown in Figure 4.2 and is most clearly visible in the joint velocity
plot. The right column shows the velocity error and since the reference and initial velocity for
each point is zero, the error also starts at zero. During the motion phase, until around 4 s, this

40

4.3. SUMMARY

error cannot be zero or the end-effector is not able to move towards the reference points. This
derivative error prevents large velocities of the end-effector and the convergence to a steady state
solution.

4.3 Summary

The implementation of a task-point reach task was not a problem after the cumbersome process
of understanding the ROS framework and TSID library. Singular configurations have been
uncovered as an obstacle to numerically stable QP problems. However, under the right initial
and goal conditions, the task-point reach task has been proven to successfully converge to its
desired equilibrium state. The resulting motion of the end-effector and time evolution of its
error both presented the expected behavior of a critically damped system.

41

42

Chapter 5

Conclusions & Recommendations

In this chapter, the conclusions that can be drawn from this research are discussed. A reflection
on the main objective and its sub-objectives, as stated in Section 1.3, are made. Finally, recom-
mendations regarding the research and future works are provided.

The main objective and the sub-objectives that are introduced in Section 1.3 are repeated
here for convenience.

‘Create a unified reach task formulation, compare this with a state-of-the-art reach
task formulation in a QP control context and provide a proof of concept simulation
of the unified reach task formulation.’

Which has been divided into the five sub-objectives:

1. Understand the state-of-the-art reach task formulation and structure the obtained knowl-
edge.

2. Create a unified reach task formulation.

3. Compare the state-of-the-art with the unified approach.

4. Software implementation of the unified reach task formulation.

5. Provide a proof of concept simulation of the unified reach task formulation.

5.1 Conclusions

The literature review in Section 1.2, has provided the state-of-the art in reach task formulations
as a QP problem using the homogeneous transformation matrix to represent the pose of a part
of the robot. In Section 2.2, QP control has been investigated and found that a QP controller
on acceleration level results in smoother motions of the robot compared to a QP controller on
velocity level. Additionally, a QP controller on acceleration level allows adding the dynamics of
the robot if desired, because the dynamics are linear in the joint accelerations. In Section 2.2.3,
PD control on SE(3) has been investigated and used to derive the cost function for the SE(3)
reach task formulation in Chapter 3. The successful formulation of a SE(3) reach task as a QP
problem implies that the first sub-objective has been reached sufficiently. More knowledge can
still be obtained about other (redundant) reach task representations, such as the SO(3) × R3

and the reduced orientation (S2) representation discussed in Section 1.2. This knowledge can

43

CHAPTER 5. CONCLUSIONS & RECOMMENDATIONS

then be used to create reach task formulations for these representations in order to provide a
more elaborate comparison of the task-point approach with the existing literature.

In Chapter 3, the task-point reach task formulation has been developed using a set of points
to represent the current and reference pose of a part of the robot. A single optimal control
problem is created by adding the weighted norm of the cost function for each point in a QP
controller. The weighted summation creates a soft priority hierarchy. The task-point reach task
approach has proven to be quite flexible in specifying (redundant) reach tasks. The two main
parameters in the specification are the amount of points and the location of these points, which
has resulted in the specification of several (redundant) reach tasks: pose, position, position +
direction, orientation and direction. This result successfully completes the second sub-objective
to the extend of all basic reach task primitives. Furthermore, basic combinations of the reach
task primitives have been made, however, no research was done into more complex combinations
and its connection to practical applications. The task-point approach provides a unified and
intuitive approach to the specification of (redundant) reach tasks and adds to existing literature
in this regard. Especially, since existing literature has mainly focused on developing specific
approaches to specific reach tasks. The task-point approach lends its self for further exploration
as explained in the next section.

Chapter 3 also provides a detailed theoretical comparison between the SE(3) reach task and
task-point reach task. The comparison mainly contributes to this research by investigating the
effects of the parameters of the reach task formulations on the resulting motion. Not surpris-
ingly, the resulting motion is mainly influenced by the magnitude of PD gains in combination
with the error definition of both approaches. The SE(3) approach has a less intuitive error
definition making the prediction of the resulting motion and therefore the tuning of the PD
gains harder. The task-point approach provides the an intuitive error definition and tuning
due to its simplicity and direct relation with the PD gains. The task-point approach removes
the issue of choosing a weight between the units of acceleration and angular acceleration of the
SE(3) approach. However, adds the parameter of deciding the relative placement of each point,
which in turn also effects the relative importance between the position and orientation error.
Simulations would need to be performed to analyze the tunability of the two approaches in this
regard. Regarding the third sub-objective, both approaches have been compared on a basic
theoretical level and add to the theoretical foundation of the task-point reach task. However,
the foundation lacks stability proofs when considering multiple points and simulations to further
the discussion on tunability of both approaches.

In Section 2.3, the software architecture used for the implementation of the SE(3) and task-
point reach tasks has been provided in the form of a ROS framework using the TSID and
Pinocchio libraries to generate and solve the QP problem. In Chapter 4, the task-point reach
task formulation has been successfully implemented in this framework. The SE(3) reach task is
already a part of the TSID library, however, the documentation on how exactly is missing. A
proof of concept simulation of the task-point reach task approach in the form of a pose reach
task has been performed. Overall, the results show the expected behavior of a critically damped
system for each of the three points, however, the y-component of one point has an overshoot of
0.006 m. The small overshoot might be a result of conflicting interactions between the points
during the motion. This could be verified by analyzing the value of minimized cost of each of
the points separately. If the value of the cost is not zero, there exists a slight deviation from the

44

5.2. RECOMMENDATIONS

desired critically damped behavior. A proof of concept has only been shown for a pose reach
task, however, the other basic (redundant) reach tasks still require a proof of concept simulation.
Also, the pre-processing step (3.4), required for the specification of orientation reach tasks, has
not been implemented yet. Therefore, regarding the sub-objectives four and five, only a first
step in the proof of concept of the task-point reach task has been made and leaves room for
future research.

5.2 Recommendations

As concluded in the previous section, the main research objective of this thesis has been achieved
on a theoretical level and the first steps towards a proof of concept have been made. Several
other topics on future research can also be derived from the current findings in this research.
Therefore, a list of recommendations on future work is presented.

Task-Point Reach Tasks. The task-point reach task formulation has only just been conceived
and only the most basic reach tasks have been formulated. It is therefore interesting to draw
inspiration from practical applications in the field of robotics for more complex reach tasks or
to use combinations of these basic reach tasks in order to form more complicated ones.

Physical Robot. The current discussion on reach tasks has been mainly focused on the
task formulation and the kinematics of the problem. However, reach tasks eventually need be
executed on a real physical robot, which brings several new issues to the reach task problem.
Firstly, in the case that the robot’s joints are torque controlled, the dynamics of robot can be
used to transform the output of the QP controller (joint acceleration) to joint torques by adding
the dynamics as an equality constraint. Secondly, the dynamics of the robot can also be used to
relate the joint positions, velocities and accelerations to joint torques bounds that represent the
actuator limits of the motors in the joints. These can be implemented as inequality constraints
to the QP control formulation. Thirdly, most joints have certain upper and lower bounds to their
range of motion. These can again be added as inequality constraints, however, their relation
to joint accelerations is not trivial. Several strategies for joint position and velocity bounds
are discussed in [32]. Fourthly, currently the QP controller does not consider any self-collisions
or collisions with its environment. In this regard, often an environment representation using
depth information together with potential field methods are employed to avoid self-collisions
and collisions with its environment. However, potential field methods do suffer from local
minima if not carefully designed. Besides the main task, potentially conflicting tasks such as
collision avoidance tasks can be added to the QP problem as an additional task in the form
of a cost function. Another option is to switch to a collision avoidance task for the duration
of a potential collision and then switching back to the main reach task. Finally, as mentioned
in Chapter 4, singular configurations can be a cause for unpredictable and unstable behavior.
It is therefore useful to avoid these singularities. A possible solution could be to quantify a
“distance” to singularities and create an avoidance strategy, perhaps similar to a joint bound.
Or plan “smart” global paths that avoid these singularities.

Numerical Simulations. Numerical simulations are an important tool in the validation of
models and control strategies. In the case of the task-point reach task a proof of concept
was the first step towards the validation of the proposed control strategy. Other interesting
simulations include, testing robustness against perturbations, inconsistent task-point references

45

CHAPTER 5. CONCLUSIONS & RECOMMENDATIONS

(i.e. the relative distances among a set of reference points and a set of link-fixed points are
not equal) and the investigation into task-point singularities, as discussed in Section 3.5. Once
the task-point reach has been fully implemented and validated, it should be compared to other
state-of-the-art solutions to compare performance metrics such as the convergence rate and how
predictable the resulting motion is based on the tuning of its parameters.

Experiments. When the task-point reach task formulation has been successfully validated,
physical experiments can be performed. Since the formulation currently only considers the
kinematics of the robot, good care in the design of the reach task and controller gains should
be employed to ensure safe operations of the robot. An interesting task is the task of reaching
for a cup on a table to highlight the effects of redundancy of the reach task on the robot in a
physical world.

46

Bibliography

[1] Tech united. http://www.techunited.nl/, 2019.

[2] Bot and dolly. http://www.botndolly.com/, 2019.

[3] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. Wiley, 2005.

[4] Robocup. www.robocup.org.

[5] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, K. Kaneko, M. Morisawa,
E. Yoshida, and F. Kanehiro. Vertical ladder climbing by the hrp-2 humanoid robot. In
2014 IEEE-RAS International Conference on Humanoid Robots, pages 671–676, Nov 2014.

[6] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson. Optimization based full body
control for the atlas robot. In 2014 IEEE-RAS International Conference on Humanoid
Robots, pages 120–127, Nov 2014.

[7] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch. Rigid-body attitude control. IEEE
Control Systems Magazine, 31(3):30–51, June 2011.

[8] R. Campa and H. de la Torre. Pose control of robot manipulators using different orientation
representations: A comparative review. In 2009 American Control Conference, pages 2855–
2860, June 2009.

[9] Sanjay P. Bhat and Dennis S. Bernstein. A topological obstruction to continuous global
stabilization of rotational motion and the unwinding phenomenon. Systems & Control
Letters, 39(1):63 – 70, 2000.

[10] F. Bullo, R.M. Murray, and A. Sarti. Control on the sphere and reduced attitude sta-
bilization. IFAC Proceedings Volumes, 28(14):495 – 501, 1995. 3rd IFAC Symposium on
Nonlinear Control Systems Design 1995, Tahoe City, CA, USA, 25-28 June 1995.

[11] F. Bullo and R. M. Murray. Proportional derivative (pd) control on the euclidean group.
Proceedings of the 3rd European Control Conference, page 1091–1097, 1995.

[12] Andrea Del Prete. Control of Contact Forces using Whole-Body Force and Tactile Sensors:
Theory and Implementation on the iCub Humanoid Robot. PhD thesis, 04 2013.

[13] A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis. Opensot: A whole-
body control library for the compliant humanoid robot coman. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 6248–6253, May 2015.

47

http://www.techunited.nl/
http://www.botndolly.com/
www.robocup.org

BIBLIOGRAPHY

[14] O. Kanoun, F. Lamiraux, and P. B. Wieber. Kinematic control of redundant manipulators:
Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics,
27(4):785–792, Aug 2011.

[15] Alexander Dietrich, Christian Ott, and Alin Albu-Schäffer. An overview of null space
projections for redundant, torque-controlled robots. The International Journal of Robotics
Research, 34(11):1385–1400, 2015.

[16] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar. A versatile generalized inverted kine-
matics implementation for collaborative working humanoid robots: The stack of tasks. In
2009 International Conference on Advanced Robotics, pages 1–6, June 2009.

[17] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchical quadratic pro-
gramming: Fast online humanoid-robot motion generation. The International Journal of
Robotics Research, 33(7):1006–1028, 2014.

[18] C. Samson and B. Espiau. Application of the task-function approach to sensor-based control
of robot manipulators. IFAC Proceedings Volumes, 23(8, Part 5):269 – 274, 1990. 11th IFAC
World Congress on Automatic Control, Tallinn, 1990 - Volume 5, Tallinn, Finland.

[19] A. Saccon S. Traversaro. Multibody dynamics notation (revision 2). Available online at
tue.research.nl, 2019.

[20] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[21] C. T. J. Beumer. Impact aware robot manipulation via task-based reference spreading.
2019.

[22] Ros control. http://ros.org.

[23] Ros: Urdf explained. http://wiki.ros.org/urdf/XML/joint.

[24] LAAS CNRS. Task-space inverse dynamics (tsid) software library. https://github.com/

stack-of-tasks/tsid.

[25] INRIA and LAAS CNRS. Pinocchio. https://github.com/stack-of-tasks/pinocchio.

[26] LAAS CNRS. Tsid hqp eiquadprog solver. https://github.com/stack-of-tasks/tsid/
blob/master/src/solvers/solver-HQP-eiquadprog.cpp.

[27] Tsid uquadprog++. https://github.com/stack-of-tasks/tsid/blob/master/

include/tsid/solvers/eiquadprog_2011.hpp.

[28] L. Žlajpah. On orientation control of functional redundant robots. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2475–2482, May 2017.

[29] James O. Coplien. Curiously recurring template patterns. C++ Rep., 7(2):24–27, February
1995.

[30] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. Abstract f-bounded poly-
morphism for object-oriented programming, 1989.

[31] Jim Beveridge. Understanding atl’s atypical design approach. https://web.archive.org/
web/20060315072824/http://www.apostate.com/programming/atlupsidedown.html.

48

tue.research.nl
http://ros.org
http://wiki.ros.org/urdf/XML/joint
https://github.com/stack-of-tasks/tsid
https://github.com/stack-of-tasks/tsid
https://github.com/stack-of-tasks/pinocchio
https://github.com/stack-of-tasks/tsid/blob/master/src/solvers/solver-HQP-eiquadprog.cpp
https://github.com/stack-of-tasks/tsid/blob/master/src/solvers/solver-HQP-eiquadprog.cpp
https://github.com/stack-of-tasks/tsid/blob/master/include/tsid/solvers/eiquadprog_2011.hpp
https://github.com/stack-of-tasks/tsid/blob/master/include/tsid/solvers/eiquadprog_2011.hpp
https://web.archive.org/web/20060315072824/http://www.apostate.com/programming/atlupsidedown.html
https://web.archive.org/web/20060315072824/http://www.apostate.com/programming/atlupsidedown.html

BIBLIOGRAPHY

[32] A. D. Prete. Joint position and velocity bounds in discrete-time acceleration/torque control
of robot manipulators. IEEE Robotics and Automation Letters, 3(1):281–288, Jan 2018.

49

January 15 2016

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

I have read the TU/e Code of Scientific Conduct i.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/

The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also.

More information about scientific integrity is published on the websites of TU/e and VSNU

18-06-2019

Rik van der Struijk

0739222

	Abstract
	Acknowledgements
	Introduction
	Reach Tasks in Robot Control
	Existing Methods for Reach Task Formulations and Multi-Task Robot Control
	Pose Representations
	Pose Error Definition & Control
	Multi-Task Robot Control

	Research Objectives
	Approach
	Report Outline

	Preliminaries
	Multibody Dynamics Notation
	Points and Coordinate Frames
	Velocity Vectors (Twists)
	Acceleration Vectors
	Forward Kinematics

	Optimization-Based Control
	Task-Based Constrained Optimal Control
	Feedback and Feedforward Control on R3
	PD Control on SE(3)

	Software
	Robotic Operating System
	Control Node

	Reach Task Formulations
	Reach Task Definition
	Redundant Reach Tasks

	Embedding Reach Tasks in the QP Formulation
	Reach Task Formulation on SE(3)
	Specification of (Redundant) Reach Tasks Using the SE(3) Reach Task Formulation

	Task-Point Reach Task Formulation
	Specification of (Redundant) Reach Tasks Using the Task-Point Reach Task Formulation

	Theoretical Comparison
	Redundant Reach Tasks
	Tuneable Parameters

	Simulations
	Software Implementation
	Task-Point Reach Task Proof of Concept
	Singular Configurations
	Pose Reach Task

	Summary

	Conclusions & Recommendations
	Conclusions
	Recommendations

