EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Design of a decision maker for autonomous vehicles with safety and optimality considerations
over a future horizon

Verbakel, Jeroen J.

Award date:
2019

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b699f02c-21dc-4d7a-8e2d-6fc6a81e43a2

TU/e

CONTROL SYSTEM TECHNOLOGY GROUP
DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF TECHNOLOGY EINDHOVEN

INTEGRATED VEHICLE SAFETY DEPARTMENT
TRAFFIC & TRANSPORT
TNO HELMOND

Design of a decision maker for autonomous
vehicles with safety and optimality considerations
over a future horizon

MSc thesis

Author: ID Number:
J.J. Verbakel 0835870

Eindhoven, June 28, 2019

CST2019.048

MSec thesis CONTENTS

Contents
List of symbols iii
Summary vi
1 Introduction 1
2 Literature review 3
2.1 Control architectures 3
2.2 Sequential planningo 4
2.3 Behavior-aware planning 6
2.4 End-to-end methodso 7
2.5 Safety 8
2.6 Conclusion 8
3 Problem definition 10
3.1 State 10
3.2 Action 12
3.3 Expected behavior oo L 13
3.4 Decision maker architecture 14
4 Preliminaries 16
4.1 Discrete event modeling L 16
4.2 Supervisory controller synthesis 17
4.3 Markov decision process 19
4.4 Finding an action 20
4.5 'Tree graph representation of an MDP 21
4.6 Anytime AO* 22
5 Safety stage 25
5.1 Plant componentso 25
5.2 Requirements 26
5.3 Supervisory controller synthesis 26
5.4 Horizon of safety check o000 27
5.5 Action set reduction 27
6 Optimality stage 28
6.1 State 28
6.2 Action 29
6.3 Transition function 29
6.4 Reward 32
6.5 Anytime AO* 35

/CST Group i

MSec thesis Contents
7 Results 41
7.1 Scenarios 41
7.2 Controller comparison 42
7.3 Discussion, 45
8 Concluding remarks 46
8.1 Conclusions 46
8.2 Recommendations 46
References 50
Appendices
A Time to collision measure 53
A.1 Collision of line and point 53
B Reward table 55

/CST Group

i

MSec thesis

CONTENTS

List of symbols

symbol unit

name

—~

')max

—~

) —

s s T

ST
|

S]
|

Aprev

Bf(d)

o 1/m

3 1/m?

di m

dtrzw m

d; m/s

DuUcC m
do_optimal —
E

e
&
)

C

&

Maximal value for a quantized value.
Minimal value for a quantized value.
Quantized variable.

Set of all actions.

Set of possible actions in s for an MDP.
Action of an MDP.

Optimal action for a node.

Parent action.

Action taken during the last time step.

Bad location predicate for location [(at iteration k)
Coefficient of yf,,

Coefficient of yf .

Coefficient of yf

Coefficient of yf

Domain for all variables in an FSM.
Quantization step for a variable.

Initial values of all variables in an FSM.
Distance between ego vehicle and vehicle .
Distance traveled by the ego vehicle.

Rate of change of d;.

Lateral distance upon intersection of paths.
Boolean parameter for node selection in Anytime AO*.
Ego center-of-gravity coordinate frame

A transition in an FSM.

Set of all transitions in an FSM.

Set of all controllable transitions in an FSM.
Set of all uncontrollable transitions in an FSM.
Update of transition e.

Tree graph.

Best partial graph.

Guard of transition e.

Horizon.

Heuristic function.

Length of vehicle .

/CST Group

il

MSec thesis CONTENTS

symbol unit name

L Ego lane coordinate frame

lo Initial location for an FSM.

l; — Lane number of vehicle 7.

L Set of all Locations in a finite state machine (FSM).
Ly Set of all forbidden locations in an FSM.

Lo Set of all marked locations in an FSM.

N — Number of Samples.

NF(d) Non-blocking predicate for location [(at iteration k)
nrco — Number of lane changes by the ego vehicle.

Oc Origin location of transition e.

P — Probability of ending in a state after taking an action.
Dopt — Tuning parameter for node selection in Anytime AO*.
Q7 (s) Action value function for 7 in an MDP.

Q(s) Optimal action value function for an MDP.

Q(s,d) Action value function for Anytime AO*.

R Reward function of an MDP.

R; Reward feature i.

r — Immediate reward.

R Set of feature indices for rewards.

S Set of all states of a Markov decision process(MDP).
S’ Set of all reachable states for action a.

s — State of an MDP.

s — successor state of s for an MDP.

So — Initial state of an MDP.

Sp — Parent node.

T Transition function of an MDP.

T Set of all found nodes for Anytime AO*.

te Target location of transition e.

ts S Sample time.

tip Current tip for Anytime AO*.

TTC S Time to collision.

TTC s Maximal value of TTC.

V7™ (s) State value function for 7 in an MDP.

V(s) Optimal state value function for an MDP.

V(s,d) State value function for Anytime AO*.

/CST Group v

MSec thesis CONTENTS

symbol unit name

v+ — Value after updating node for Anytime AO*.

V- — Value before updating node for Anytime AO*.

v; m/s Speed of vehicle 7.

Vg m/s Relative longitudinal velocity.

Uy m/s Relative lateral velocity.

Uref — Quantized reference speed.

w; m Width of vehicle .

wy m Lane width.

TR m Closest reachable value of in one time step.

xr m Farthest reachable value of x in one time step.

X m Longitudinal position of vehicle 7.

TTTC m Maximal value of x for using TTC.

T m Longitudinal distance between ego vehicle and vehicle .
X Multi-vehicle system state.

X Vehicle vector.

X Longitudinal direction of coordinate frames

yE m Polynomial that describes the ego lane center

YL m Leftmost reachable value of y in one time step.

YR m Rightmost reachable value of y in one time step.
Yi m Lateral position of vehicle 7.

Yrre m Maximal value of DUC' for assuming collision.
YLK — Maximal expected value of g for lane keeping.

Ui m Lateral distance between ego vehicle and vehicle .
y Lateral direction of coordinate frames

Q; rad Angle of d; with respect to ego vehicle heading.

& rad/s Rate of change of «;.

v — Discount factor for an MDP.

ov m/s? Change in speed for reward function.

00 rad/s Change in heading for reward function.

A(Y) Difference in a variable for ego vehicle and obstacle vehicle.
py — Reward feature weight i.

7(s) Policy for an MDP.

T*(s) Optimal policy for an MDP.

T — Remaining horizon of a node in a tree graph.

0; rad Heading of vehicle ¢ with respect to the lane center.

/CST Group v

MSec thesis CONTENTS

Summary

Modern cars are equipped with more and more Advanced Driver Assistance Systems
(ADASSs), such as (adaptive) cruise control and lane assist. As cars become more intel-
ligent, automated vehicles (AVs) come closer to being commercially available. Many
methods exist to design a decision maker, i.e., a controller that provides commands
such as ‘do a lane change to the right’. Every method has some disadvantages and
there is no general agreement about which method is best suited to design a controller.

The purpose of this project is designing a decision maker that should choose desireable
actions only from the set of safe actions. This decision maker should be able to work on
all possible highway scenarios. The research question therefore is: Given a state and
goal, how can an autonomous vehicle make a discrete decision in a stochastic highway
environment, such that safety is guaranteed? To that end, this report proposes a new
design of a controller that operates in two stages. In the first stage, the safety of all
actions is checked and in the second stage, the optimal action is selected from the
actions that are considered safe.

The safety stage uses discrete event modeling and supervisory controller synthesis to
select the actions that are guaranteed to be safe one time step (1s) ahead. After that,
the short-term safe actions are checked for long-term safety. Only the long-term safe
actions are considered when searching the optimal action.

The process of finding this optimal action is modeled as a Markov decision process
(MDP). To this end, the multi-vehicle state is quantized and a transition model based
on simplified vehicle dynamics is used. Each action in an MDP incurs a reward, which
is determined through a linear combination of reward features. These features are
chosen by the designer, to model desireable behavior. To find the optimal action,
multiple actions over a future horizon are considered, much like receding horizon con-
trol schemes. The optimal action to execute is found through Anytime AO*. It is an
algorithm to find a (near) optimal action, within a predefined time.

The contribution of this project is a unique design, which combines guarantees on
safety with optimal decision making. Moreover, the decision maker was designed for
and validated on many different scenarios.

To validate the behavior of the decision maker, its performance is compared to a
baseline controller according to three different criteria. The baseline controller is a
rule-based controller that was developed at TNO. To show the broad applicability of
the new controller, both controllers are compared on eight different scenarios.

From this validation, it can be concluded that the overall architecture and algorithm
design is a viable methodology to implement scalable and generic decision making
systems for autonomous driving. In addition, the decision maker shows safe behavior
and consideration of the future impact of actions, for different scenarios.

/CST Group vi

MSec thesis Introduction

1 Introduction

Modern cars are equipped with more and more Advanced Driver Assistance Systems
(ADASSs), such as (adaptive) cruise control and lane assist. As cars become more
intelligent, automated vehicles (AVs) come closer to being commercially available.
Additionally, with advanced vehicles, communication with other vehicles (V2V) or
infrastructure (V2I) also becomes a realistic possibility. To speed up the arrival of
AVs, researchers are investigating many different approaches to automated driving,
as shown in [1]. In all approaches, a method is needed to determine what commands
have to be provided to the vehicle, such that it can drive without the need of human
aid.

A controller can provide these commands on several levels, which are introduced in [2],
namely strategic, tactical and operational. For example, a strategic level command
could be to take the next exit, due to traffic jams. On the tactical level, a command
might be to switch lanes and overtake a slower vehicle. On the operational level, a
vehicle might increase its acceleration to reach a desired speed. In this report, the
focus is on the tactical level. Here, the controller subsystem that takes decisions on
the tactical level is called the decision maker. It may also take decisions on other levels,
but any subsystem on the tactical level is considered a decision maker. However, the
algorithms proposed in this thesis to design a decision maker for the tactical layer may
also be suitable to implement subsystems on other layers.

Many methods exist to design a decision maker. Often, these methods use some
optimization program for taking a good action. In addition, some form of prediction
of motion is used to obtain desireable behavior. Clearly, desireable behavior includes
safety considerations. In the literature, two main approaches to incorporate safety
considerations can be distinguished. First, safety is considered as a reward, along
with other desiderata in an optimization scheme. This method is undesired, because
the optimization algorithm may decide to sacrifice safety for other desiderata, such as
urgency. Second, an auxiliary system is used to check the safety of an action after it
is selected. Then the executed action will always be safe, but computational resources
are wasted on finding an optimal action, which is then discarded because it is unsafe.

The purpose of this project is designing a decision maker that produces safe actions,
while still taking desireable actions. This decision maker should be able to work on
all possible highway scenarios. To this end, this report proposes a different design of
a controller that operates in two stages. In the first stage, the safety of all actions is
checked and in the second stage, the optimal action is selected from the actions that
are considered safe.

The design that is proposed in this report uses various existing methods and algo-
rithms. On the one hand, discrete event modeling and supervisory controller synthesis
are used. On the other hand, Markov decision processes and tree search are used.
These methods are closely related to dynamic programming, qualitative modeling and
model predictive control. The contribution of this project is a unique design, which
combines guarantees on safety with optimal decision making. Moreover, the decision
maker was designed for, and validated on, many different scenarios.

/CST Group 1

MSec thesis Introduction

This report is structured as follows. In Section 2, the current state of the art is
given. In Section 3, the problem definition is formulated, and the two-stage controller
design is introduced. Section 4 gives an overview of the techniques that are used
in the design. Sections 5 and 6 explain each of the two stages of the controller. In
Section 7 the results are presented and the performance is compared to the performance
of a baseline controller. The baseline controller is a rule-based controller that was
developed at TNO. Finally, conclusions and recommendations for future research are
given in Section 8.

/CST Group 2

MSec thesis Literature review

2 Literature review

In this section a representative set of controller designs for automated vehicles is
discussed. First, three different control architectures are introduced. Next, several
designs fitting these architectures are given. They are reviewed on safety and broader
applicability, as mentioned in Section 1. Communication here means the need or pos-
sibility for the framework to include communication with other vehicles or a roadside
unit. Many methods are tailored to a specific scenario, broader applicability refers
to whether these methods also function in other scenarios. Safety of each method is
reviewed in light of the definition of safety that is given in the paper which proposes
the method.

In the future, communication can be included to improve the performance of the multi-
vehicle system. For this thesis only one autonomous vehicle is considered, therefore,
communication is not included. However, the possibility for communication should
still be considered when evaluating methods.

2.1 Control architectures
In [1], a distinction between three different control architectures for AVs is made, these

are shown in Figure 2.1. Namely, sequential planning, behavior-aware planning and
end-to-end planning.

Sequential planning

making

Sensor —Jp» Perception P PaEHE P Path planning —3 Controller

Behavior-aware planning

Sensor P Perception P Behavior-aware planning —J Controller

End-to-end planning
Sensor P End-to-end planning P Controller

Figure 2.1: Three control architectures and the required components. The highlighted
block shows the component to be designed in this project

Sequential planning separates perception, decision making and path planning into
three sequential steps. A perception module converts raw input data into a usable
state representation; how this is done is beyond the scope of this review. The state
representation contains all the necessary information about the environment, e.g., the
positions of all nearby vehicles. The decision maker uses this state representation to
decide upon some discrete action from a set of possible actions, such as ‘lane keeping’

/CST Group 3

MSec thesis Literature review

or ‘lane change to the left’. This action is then converted to a trajectory by the path
planner, which is executed by low-level controllers. The algorithms used for path
planning fall outside the scope of this project!. In this review the following methods
are considered for sequential planning: manual programming, supervisor synthesis,
game theory, Max-Plus algebra, temporal logic and Markov decision processes.

In behavior-aware planning, the motion plan is also (partially) generated by the de-
cision maker. The input for the behavior-aware planner is a state representation
generated by the perception module. The output is the trajectory that is used for the
low-level controller. Note that the trajectory is actually an input to the vehicle on
the operational layer. Since the controller decides what actions to take as well, it is
still considered a decision maker. For behavior-aware planning methods, the following
methods are considered: Game theory, MDP, temporal logic and Model Predictive
Control.

If input data processing is incorporated in the decision making process as well, the con-
troller is called an end-to-end controller. Usually, end-to-end controllers are made us-
ing machine learning, where the relation between input and output is inferred through
real-world data or simulation, as is mentioned in [1].

2.2 Sequential planning

The simplest method is manual programming?. A rule-based program is written that
outputs a decision, based on the inputs. Whether the program includes communication
can be chosen by the programmer. Safety considerations for this method depend on
the programmer and only situations that are accounted for can be safely handled. This
also shows the lack of scalability of the solution, because only predefined situations
can be handled. Clearly, this is not a feasible solution, since not all possible situations
can be included. Furthermore, this method has a high chance of errors, since every
line of code is written manually.

It is also possible to generate a rule-based decision maker automatically, based upon
models of the system and requirements. For instance, in [6], supervisor synthesis is
used to create a cruise control system, including human interaction. The safety of a
decision is guaranteed by construction. This method is easily scalable, by adding more
components to the model of the system. Similar to manual programming, communi-
cation can be included or excluded when modeling the system. Supervisor synthesis
suffers from the state explosion problem, but methods exist to cope with this, such
as the method given in [7]. A supervisor prevents actions that drive the system into
undesired states, but it does not choose the best action to take, as explained in [§].
Besides that, it is impossible for a synthesized supervisor to not follow the specified
requirements. But in traffic, situations might occur where traffic rules need to be
broken to guarantee safety, e.g. driving on the wrong lane when avoiding a static
obstacle. Modeling all these situations as requirements impedes broader applicability
of supervisor synthesis. In [9], a different synthesis algorithm is proposed, which can

'Examples include [3, 4, 5]
2no reference is included, because most papers on AVs state that this is a non-preferred method.

/CST Group 4

MSec thesis Literature review

break rules to achieve a goal. The rules are only broken if inevitable, and then only
as long as required.

In [10], a two-player game-theory model is used for deciding to switch lanes or not.
The authors assume all vehicles communicate their utility values, meaning this only
works for CAVs. They give each vehicle a ‘safety envelope’ to model safety. The safety
of a decision is calculated by a function based upon the overlap in ‘safety envelopes’.
The authors mention that a different strategy should be used for guaranteeing safe
mandatory lane changes (such as taking an exit). When more players are introduced
in the game, the complexity increases exponentially. This is because all players’ actions
are interdependent.

At TNO, Max-Plus algebra was investigated as a possible approach to the decision
maker, as shown in [11, 12]. Max-Plus algebra allows modeling discrete event systems
in a framework similar to (discrete time) linear time invariant systems. The framework
is especially suited for scheduling tasks, such as merging cars at a lane reduction. This
does require V2I communication, since there is one global scheduler that communicates
with the CAVs. The control strategy that is produced is cyclical, unlike the original
system description. Because of the cyclic nature of the controller, it is assumed Max-
Plus algebra is not suited for all general traffic situations, which, from the perspective
of the driver, are not cyclic. It is possible to create controllers that are not cyclic, but
Max-Plus algebra is best used for cyclical processes, as explained in [13].

In [14], Linear Temporal Logic(LTL) is used. LTL is a formal language to specify
properties of systems, such as liveness and safety. Evaluating a LTL formula is a
process that suffers from the state explosion problem. To prevent the state from
becoming too large, the controller solves a sequence of smaller, short horizon problems
while adhering the system requirements. The authors do not mention communication,
it is not know whether this method can be extended to include communication. By
dividing up the problem, this method is also feasible for larger problems. LTL allows
for defining generic safety and liveness properties, such that the controller can easily
be applied to other scenarios. The safety of the controller is guaranteed through the
LTL formulae.

Another option is Markov decision processes (MDPs). MDPs are used in many differ-
ent forms. An MDP has 4 basic elements: a set of states, a set of actions, a transition
function and a reward function. A state represents the environment, it contains all
necessary information to make a decision. The set of actions contains all actions that
can be taken. The transition function gives the probability of ending in some state,
upon taking an action from a (possibly different) state. The reward function gives the
expected reward upon taking an action from a state. A more in-depth explanation
is given in Section 4.3. An MDP controller determines what action to take, when
in a specific state. The reward function should penalize unsafe decisions, but safety
is not enforced. It can be imagined that other vehicles communicate intentions or
information to create a more extensive state. This means MDP can be used for both
communicating and non-communicating vehicles. The evaluation of safety and com-
munication is similar for all MDP-based approaches, so these evaluations will not be
explicitly mentioned for every MDP approach.

/CST Group 5

MSec thesis Literature review

In [15], an MDP is used, which is solved offline. As a reward function, they use a
weighted sum of several functions that are chosen by the designer, called features.
These features represent a reward for important factors in driving, such as collision,
desired velocity, fuel efficiency or driver comfort. The weights are found by an in-
verse reinforcement learning algorithm, based on expert demonstrations, this allows
for choosing what features are relevant, and finding ‘optimal’ weights for them. This
method is feasible for small state spaces, i.e. simple systems, but as the complexity of
scenarios increases, computing or storing the policy might become infeasible.

In [16], the MDP is also solved offline. The transition model is based on multi-vehicle
system predictions, which are based upon statistical data. Therefore, this approach
works best in structured environments, where the prediction model is known. As a
reward function, they use three features to represent efficiency and comfort, these are
weighted manually. In addition, the vehicle receives a large negative reward upon
collision with another vehicle.

An online solver for an MDP is used in [17], this means the optimal action is computed
at each time-step. They also use a weighted feature reward function with manually
designed weights. This allows penalizing unsafe decisions further, although this might
decrease overall performance. The online solver can handle many different scenarios,
if the reward functions are capable of capturing desiderata for all scenarios. In that
paper, it is assumed that the entire state is known, this might not always be the case.

In [18], a partially observable MDP (POMDP) is used to handle uncertainties in the
current state. They keep a set of probabilities for each state, based upon the obser-
vation made by the decision maker. Due to random sampling of the state space, this
method remains feasible for complex systems. The reward function is an unweighted
sum of several features, the features can be modified to weight the reward function.

2.3 Behavior-aware planning

In [19]3 a Stackelberg game is used. It is a game where vehicles take decisions one after
another, which is more scalable than the system used in [10]. Since only the worst-case
decision of other vehicles are considered as explained in [19]. They use a ‘safe-mode’
when getting too close to a predecessor to increase the safety of the system.

To handle uncertainties in the state, a point-based MDP(QMDP) is used in [20], where
future rewards are calculated assuming only the first step is uncertain. The decision
is made by assuming that enough random samples of future states are chosen to get
a proper representation of the future state distribution. The scalability of QMDP is
limited by the number of samples that is required to get a proper representation of
the future state distribution. The authors make no mention of computation times,
so little can be said about the broader applicability of QMDP related to other MDP
methods. Unlike other MDP-based methods, this method is classified as behavior-
aware, because the decision maker outputs a (quantized) speed reference for multiple
time-steps ahead.

3The authors use controllers adapted from other papers, but these papers are unavailable.

/CST Group 6

MSec thesis Literature review

Signal Temporal Logic(STL) is used in [21]. STL is a variant of temporal logic that
allows propositions over real valued, continuous signals. In the paper, STL constraints
on the position and velocity are defined. A receding horizon control scheme is used,
this means that the condition the system is always safe turns into the system is safe
over the horizon, otherwise the same guarantees as for LTL still hold. Similar to LTL,
this method is scalable when using general formulae. In the paper, the environment
is modeled as an external (uncontrollable) input. If communication is included, this
can reduce uncertainties on the environment input.

For creating optimal paths, Model Predictive Control (MPC) can be used. In MPC,
the optimal control inputs are computed for a (short) horizon, and the first control
input is applied. This is called the receding horizon strategy, see e.g., in [22]. The
control inputs are optimized for some (quadratic) cost function, satisfying constraints
and system dynamics.

For example, in [23], a single lane ACC controller is designed through explicit MPC.
Safety is measured through time headway, which is included in the reward function.
Communication is not included in the paper, but could be included to increase the
accuracy of the state. Explicit MPC is generally feasible for small states, (up to 5
variables, according to [24]), for larger states, different methods are needed.

In [25], implicit MPC is used to determine the (continuous) longitudinal speed and
(discrete) highway lane. They use a special extension called Mixed-Logical-Dynamical
(MLD) modeling, which allows the use of logical expressions in constraints. They
consider safety as a set of constraints on the system, so the computed path is guaran-
teed to be safe. The authors do not mention communication, but it might be hard to
implement this, for future trajectories of different vehicles are inter-dependent.

2.4 End-to-end methods

In [26], a deep neural network is proposed, which uses a discrete world occupancy grid.
That paper focuses on the tuning of hyperparameter: parameters for the network,
instead of the problem that is considered, such as preview horizon or what grid cells
to consider as input. The hyperparameters are manually tuned to maximize the speed
of the ego vehicle in simulation. If the ego vehicle observes squares it cannot normally
percept, communication is necessary to gather all required information. To guarantee
system safety, the authors use a separate (simple) collision avoidance system. It is
assumed broader applicability depends on the coverage of different scenarios in the
simulation.

Another end-to-end method is provided in [27], where no controller is modeled, but
only lane changes are predicted from real-world data. It can be easily imagined that
this prediction can be used as a control signal for the car. The system is based upon
a five layer feed-forward neural network getting information about vehicles on its lane
and both adjacent lanes. The authors give no guarantees with respect to safety, since
the paper only discusses prediction of maneuvers. It is assumed communication can
be used to give a more complete input layer, which improves the decision, but it is not

/CST Group 7

MSec thesis Literature review

necessary. The current output is only a lane-change prediction, but it can be extended
to predict other behavior, such as acceleration.

2.5 Safety

Above, it was mentioned for each method how the authors handled safety. There are
also several papers related to AD, where safety is explicitly dealt with, which will be
discussed below.

In [28], the safety of platooning vehicles is investigated. They define state-based safety
regions. Inside these safety regions, either no collision occurs, or a collision occurs at
a low relative velocity. In [29], invariant safe sets are computed based upon vehicle
dynamics. When a system starts inside the invariant set, it will always stay there.
The size of the invariant set, and therefore the safe region of operation, can increase
if the controller or dynamical model is improved.

For cooperative driving, an interaction protocol is needed for safely navigating traffic.
A merging protocol that allows for safely merging two platoons is proposed in [30]. In
[31], another protocol is presented, based on finite-state machines without interleav-
ing?. They use the concept of lane claiming to prevent two cars moving to the same
space on a lane. This is an interesting solution to simultaneity, which is one of the
largest problems encountered when implementing finite-state machines, as explained
in [8].

The first two methods given above, based on state space divisions, are better suited for
behavior-aware planning. The latter two methods are useful for both behavior-aware
planning and sequential planning. They provide safe methods for communication, but
are not complete solutions for guaranteeing safety.

2.6 Conclusion

For sequential planning, controller synthesis gives the best possibility for guarantees on
the safety of the controller. However, there are still some problems, such as ‘breaking
rules’ or choice, which have to be solved. Another versatile and promising method is
MDPs. From the papers on MDPs, an approach that can handle uncertainty in the
state is considered necessary, since the state cannot be fully known. POMDPs appear
better than QMDPs, since the former includes information on the uncertainties. Some
way to preclude unsafe actions has to be investigated to increase the possibility for
safety guarantees. In addition, it has to be investigated if online solving is necessary,
since the state space becomes very large (possibly even infinite), but there is only a
small set of actions.

In discrete control, the decisions can easily be communicated, since a decision contains
little data, such as a single integer decision ID. For trajectories, this is a more network
intensive procedure, since there is a large amount of data, i.e., a vector of real values.

4interleaving means no two events occur simultaneously

/CST Group 8

MSec thesis Literature review

Therefore, it is assumed the sequential planning methods can be extended to cooper-
ative driving more easily than behavior-aware planning methods. This argument does
not rely on exact values, but on the intuition that communication bandwidth is a finite
resource, as demonstrated in [32].

At this moment, end-to-end methods are not considered as a feasible solution. The
safety of the controller cannot be guaranteed, since the algorithm is a black-box model.
A more elaborate study on opacity of machine learning algorithms is given in [33]. If
one wants to guarantee safety, an additional safety system needs to be implemented.
The influence of communication on neural networks is not known at this moment.

/CST Group 9

MSec thesis Problem definition

3 Problem definition

The decision makers mentioned in the previous section, give little guarantees with
respect to safety of a decision. Some papers do not mention safety at all, others
(e.g., [20, 15, 17]) consider safety as a reward, along with other desiderata. Often,
an auxiliary system is used to guarantee safety, as in [10, 19, 17]. This shows that
handling safety is an open problem. The goal of this project to solve this problem
by proposing a decision maker that guarantees safety. This gives rise to the following
research question:

Given a state and goal, how can an autonomous vehicle make a discrete decision in a
stochastic highway environment, such that safety is guaranteed?

As mentioned in [17], highways provided a structured environment and consistent
behavior on a short prediction horizon. Therefore, considering all possible trajectories
is not necessary when making a decision. Because of that, sequential planning is used
for this project. Sufficiently advanced perception and path planning algorithms have
already been developed at TNO and are considered given.

To properly answer the research question and find a decision maker, a problem def-
inition is required. This problem definition specifies the input, output and expected
behavior of the system. The input to the system is given in the form of a state, it
is introduced in Section 3.1. Because the system is intended to be implemented on a
real vehicle, the origin of values is considered in that section as well. The output of
the system is a discrete action, how these are formed is explained in Section 3.2. The
expected behavior is measured based upon three criteria, these are given in Section
3.3. Based upon these definitions, a decision maker architecture was designed. This
architecture is introduced in Section 3.4.

3.1 State

All different vehicle parameters and coordinate systems are shown in Figure 3.1. Pa-
rameters are given a superscript for their coordinate systems. Coordinate system FE
is centered on ego vehicle center-of-gravity £, with Cartesian axes X'”, in the same
direction as the ego-velocity and V¥, which is perpendicular to X* in counterclock-
wise direction. Coordinate system L is centered on the intersection between ¥ and
yE (x), its XL direction is tangential to the road. It is assumed that the road curva-
ture is small, which holds for highway scenarios, such that L can be assumed Cartesian.

The state is divided in two parts, road information and a system state of all vehicles.
The road information consists of a 3" order polynomial that describes the path of the
ego-lane in ego vehicle center-of-gravity coordinates (£). The polynomial is expressed
using 4 variables:

yfme(l‘E) :Co+C1'IE+Cz' $E2—|—03- ng (1)

Typically, this polynomial is inferred from camera data, e.g., in a lane tracking system.

/CST Group 10

MSec thesis Problem definition

Figure 3.1: Coordinate systems.

The multi-vehicle system state X contains a vector x;,7 = e or ¢ € Ny ,,,],with vehicle
information of the ego vehicle and each of the n, vehicles that are detected by on-board
sensors, respectively.

Xi = [m£7yfvvi7057livhiawi]T < R7 (2)
X = [Xe,X1,X0, ..., Xy, | € X = R7X(mot1))

In each x;, ¥ and yF are the vehicle position in ego-lane coordinates (L), with zZ = 0,
v; is the vehicle speed, 87 € (—m, 7] is the heading of the vehicle w.r.t. the ego-lane,
l; € N is the lane number, h;, w; € R, are the length and width of the vehicle. The
state is associated to a discrete time step, the state at time step k is given by X (k).

For the ego-vehicle, the state is derived as follows.

zL . As mentioned above, x = 0 by definition.

yL : By substituting z = zX in (1), y* = c.

ve : Ego speed is given. Typically, this is given by the vehicle speed sensor.

6L : Since (1) is given relative to the vehicle heading, it can be determined

through:

d E
0 = — tan ™! (~Zlane)
Note the minus sign, to get the right direction for the heading.
e [. : Lane number is given. Typically this is done by the lane tracking system,
which also gives cg, ..., c3 in (1).
e h. : Vehicle length is a given constant.
e w, : Vehicle width is a given constant.

= —tan *(c;) (4)

/CST Group 11

MSec thesis Problem definition

For obstacle vehicles, the state is derived as follows:

e xl and yF : Target tracking returns the vehicle position relative to the ego vehicle
in polar coordinates (d¥,aF), as shown in the figure. This is translated to
Cartesian coordinates in E:

i;f = df cos(ozf) (5)

gi = di’ sin(o;’) (6)

Note that there is a difference between z (distance along lane center) and &
(longitudinal distance from ego vehicle). The same holds for y (distance to lane
center) and ¢ (lateral distance from ego vehicle). Next, y* is found by taking
the minimal distance between (zZ, §F) and (z,yf,.(z)):

yb = min\/(x — 3E)2 + (yE, () — GF)? (7)

zeR

E

This equation also gives #¥ = z. To obtain z¥ this distance should be taken
L o

along the lane-center, however, z¥ ~ zF for small 6. and road curvature.
e v; : The relative velocity of the vehicle is given in the same polar coordinates as
the position (dlE ,&F). These are converted to Cartesian coordinates in E as well
and the speed is obtained as

vF = v, + dF cos(af) — aFdP sin(a¥) (8)
vl =0+ dP sin(af) + afd? cos(al) (9)
v =/ (0E)? + (of)? (10)

e 0} : Using velocity vector (v, v)), the heading is found using (4):

0F = tany ' (vF) — tan_l(dyl—]‘inﬂ 5) (11)
% 2 y o Yx dXE '@

Where tan, ' is the four quadrant inverse tangent, such that all angles lie between
—m and 7. 5

e [; : The lane is found by taking [, + round(fy—il) where [, is the ego lane and w; is
the width of the lane (3.5m).

e h; : Vehicle length is a given constant.

e w; : Vehicle width is a given constant.

The state can be extended using road curvature and obstacle position estimates can
be improved by considering distance along the road (zF) instead of forward distance

(7).

3.2 Action

Based upon the state, an action is chosen. The decision maker has to choose one action
every time step of 1s. An action is defined by the combination of a lateral maneuver

/CST Group 12

MSec thesis Problem definition

and a speed update. There are three lateral maneuvers (lane change left (LCL), lane
keeping (LK) and lane change right (LCR)) and three speed values (increased speed
(a), current speed (c) and reduced speed (d)). The increased and reduced speed are
offset from the current speed by one quantized step (1m/s, see also Section 6.1).

Table 3.1: Actions as a combination of lateral maneuver and speed update

LCL LK LCR
increased speed | LCL, LK, LCR,
constant speed | LC'L, LK. LCR,
reduced speed | LCLy; LKy LCR,;

This results in set A of all possible actions, with 9 different elements, as shown in
Table 3.1. The decision maker has to select one action a € A for each timestep.

3.3 Expected behavior

As mentioned above, the focus is on safety. Therefore, the controller should produce
safe behavior. Of course, the ego vehicle should also follow traffic rules and move
towards a destination. Lastly, the controller should do all this without too much
activity, as to create a comfortable user experience. From these demands, three criteria
are selected to check the performance: safety, liveness and activity.

All of these measures are used to validate the behavior of the controller in simulations.
A discrete time simulation model, that was developed at TNO, is used. Each simula-
tion has a simulation time of 40s, discrete sample time ¢, = 0.01s and thus number of
samples N = 4001.

Safety is measured by the time to collision (TTC) as introduced by [34]. TTC is a
common safety measure for two vehicles, it gives the time until a collision will occur
given current velocities. A higher TTC suggests a safer situation. TTC is found using
the method given in [35]. This method is given in Appendix A. For each sample of
the simulation, the minimal TTC for all obstacle vehicles is determined. The TTC is
bound on [0s, 15s], since negative TTC and very distant collisions are not considered
relevant. To get a single value, the root mean square (RMS) over all samples is used.
By using RMS instead of mean, lower TTCs are penalized more.

safety = 15 — RMS(15 — TTC)
This measure is chosen such that a higher number means a safer controller and it is
always positive.

Obviously, it is considered a perfectly safe solution not to move at all>. However, this
is not a desirable solution. To prevent such solutions, liveness is introduced. It is
defined by reaching the destination at some point. Because no explicit destination

Shalting robot problem

/CST Group 13

MSec thesis Problem definition

is defined, it is measured by the distance traveled by the ego-vehicle dy.,. This is
computed by approximately integrating the speed with the Riemann sum

N

dt’r‘av - Z Ue(k)ts

k=1
where v,(i) is the ego speed at sample k.

Activity is measured by the number of lane changes. The low level controllers receive a
binary signal (LC') to determine whether a lane change has to be executed, the rising
edges on this signal are counted to get the number of lane changes.

npe = »_max (LC(k) — LC(k — 1),0)

k=2

Note that for this criterion, lower is better.

3.4 Decision maker architecture

As explained before, the decision maker selects an action in two stages, first safe actions
are selected, next the best safe action is selected. Safety is checked by a supervisor,
which is synthesized from models. An action is selected by searching for the optimal
action in a Markov decision process (MDP). Using the current method, the supervisor
cannot check long-term safety, this is further explained in Section 5.

Action set Long-tt T
: ong-term . .
[Pt P -y G

2N AN ﬂ

Figure 3.2: Controller design.

To overcome this challenge of the method, the safety check is split into two phases: a
long-term phase and a short-term phase, as shown in Figure 3.2. Each of these steps,
short-term safety, long-term safety and optimality, is executed by its own component
of the decision maker. The safety-related components are shown in red, the optimality-
related component is shown in blue. The orange components modify the state that
was given above for other components. The arrows show the flow of information
between components, what information is transferred between components is given in
the rounded rectangles in the figure.

The supervisor only considers the safety of a single timestep, guaranteeing only the
safety of the first action. After that, the action set reduction selects only the actions
that also pass a long-term safety check. The safety checks are done by the orange

/CST Group 14

MSec thesis Problem definition

blocks. The two red components together produce the set of safe actions, from which
an optimal action can be chosen. To find the optimal action, the state is quantized and
modeled as an MDP, for which the optimal action will be computed. This is further
explained in Section 4.

In Section 2 it was mentioned that an approach that can handle uncertainties in the
state was needed. However, this was not chosen, because those methods require a
significant amount of additional computational resources. Also, it is assumed the
state can be measured with sufficient accuracy. Furthermore several assumptions on
behavior of vehicles are made to reduce the uncertainties, as given in Section 6.

As explained above, the decision maker has to output an action every second. There-
fore, the time for safety and optimality computations together is limited to 1s. First
safety computations are done, these are relative fast, as is explained in Section 5. The
remaining time is used to find the optimal action.

In the figure, two inputs to the decision maker are shown on the lefthand side, namely
the set of possible actions (A) and the current state of the vehicle and its environment.
The set of all possible actions is fixed, the state changes over time, as described above.
Based upon the state, one of the possible actions is chosen. This action is the output
of the system.

/CST Group 15

MSec thesis Preliminaries

4 Preliminaries

The controller design from the previous section mentions several methods that were
used for the decision maker. This section elaborates on the modeling formalism that
are used. In addition, the algorithms that were used are explained.

First, the discrete event modeling formalism, as is used for the safety stage, is given.
The safety stage uses a supervisor which is automatically synthesized, how this is
done is given next. Then the modeling formalism for the optimality component, i.e. a
Markov decision process (MDP), is given. Next, it is explained how this model gives
an action to execute. The algorithm that is used to find the optimal action is Anytime
AO*. To be able to find the optimal action, the MDP is viewed as a tree graph.

4.1 Discrete event modeling

To be able to synthesize a supervisor, the vehicle is modeled as a discrete event sys-
tem. This means that all dynamics are abstracted such that only discrete states and
transitions between them remain. The plant, i.e., the system that is to be controlled,

is divided into components for clarity. Each component is modeled as a finite state
machine (FSM).

c_off

Figure 4.1: example of a finite state machine (FSM).

An FSM consists of a finite number of locations and transitions between those loca-
tions. An example of an FSM is given in Figure 4.1. Each location represents a state
of the component, in the example, the states are ‘On’ and ‘Off’. The initial location
of the FSM is ‘Off’, as denoted by the incoming arrow. Each transition represents an
event, such as turning on a system or selecting a maneuver. Transitions are denoted
as arrows in the figure.

To obtain a model of the full system from its component models, all separate models
are combined using parallel composition. Parallel composition consists of combining
FSMs such that a transition for a shared event can only be taken if it is possible in
all FSMs using that event. An explanation of this procedure can be found in [36, pp.
305-307].

It is also possible to include variables. Variables have an initial value and a finite
domain. They can be updated upon taking a transition. Transitions can now be
disabled for certain variable-based conditions, these are called guards. An FSM with
variables is called an extended FSM. Note that combinations of locations and variable

/CST Group 16

MSec thesis Preliminaries

values form states of an extended FSM.

4.2 Supervisory controller synthesis

Given the plant and the requirements, a supervisor can be generated using the super-
visory controller synthesis algorithm. As mentioned in [37], a synthesized supervisor
is guaranteed to have the following properties:

e The supervised plant will always adhere to the requirements.

e The supervisor will only disable controllable events. Uncontrollable events are
never disabled. This is called controllability.

e From every state the supervised plant can be in, it is possible to reach a marked
location. This is called non-blocking.

e The supervisor disables as little behavior as possible. This is called maximally
permissive.

The explanation of the supervisor synthesis algorithm is based on [38]. For this expla-
nation we consider a single extended FSM as a tuple (£, D, &, ly, dy, L), where L is
the set of all possible locations, D is the cartesian product of all domains of variables,
£ is the set of transitions, [y € L is the initial location, dy € D are the initial values of
all variables and £,, C L is the set of all marked locations. Each transition e € £ is a
tuple (0, te, ge, fe), with origin o, € L, target t, € L, guard g. : D — B and update
fe : D — D. & can be partitioned into controllable events £, and uncontrollable events
&,. Transition e is possible when current location | = o, and g¢.(d) = true for current
variable values d. When e is executed, [becomes t. and d changes according to f.(d).
The requirements are given as a set of forbidden locations £; C L, as explained in
[38] this can be done without loss of generality.

Supervisory controller synthesis is an iterative algorithm. In each iteration of the
algorithm, some unwanted behavior is removed, until only desired behavior remains.
The algorithm consists of the following steps:

e Compute the non-blocking predicates
Non-blocking predicates, i.e., logical conditions, are assigned to locations to spec-
ify under which conditions a marked location can be reached.

e Compute the bad state predicates
Bad state predicates extend the non-blocking predicates by checking if the en-
abled uncontrollable events do not lead to a bad state.

e Update the guards on all edges
Based on the bad states, the guards on controllable events are updated, prevent-
ing the supervisor from going there.

e Repeat if any guard changed
If no guards changed, synthesis is done. Otherwise, all steps above are repeated
using the system with updated guards.

Each of these steps is explained below, except for the last step, which is trivial.

/CST Group 17

MSec thesis Preliminaries

4.2.1 Non-blocking predicates

Each location | € L is given a non-blocking predicate N;(d) for all d € D. N;(d)
is computed iteratively, the value in iteration k is given by Nf(d). The initial non-
blocking predicates are true for all marked locations [€ £, and false otherwise:

t ifl e L,,
NO(d) = 3 e NEE VieLldeD
false, itl & L,
Here, and in the rest of this document, := denotes assignment. The non-blocking
predicates are updated iteratively using:
NfMd) = NF@) v\ [ge(d) A NE(fu(d))] Vie L£,deD
{eloc=1}

Informally, a state is non-blocking if the location [is non-blocking, or if any non-
blocking location is reachable through an enabled event for the variable values d. This
process is repeated until no predicate changed in the current iteration.

4.2.2 Bad location predicates

Next, the bad location predicates Bj(d) are computed in a similar manner to N;(d).
A location is marked as a bad location if is forbidden, blocking or uncontrollable.
An uncontrollable location has an uncontrollable event for which the target location
is blocking or forbidden. Bad location predicates are computed iteratively, with the
initial value given by:
true, ifle Ly
B)(d) := { ~Ny(d), if I ¢ L for the first iteration Vie £L,deD
-Ni(d) v Bi(d), ifl ¢ Ly otherwise
Note that B;(d) from a previous iteration of the supervisor synthesis algorithm is used.
Therefore, special case is included for the first iteration.
The bad location predicates are updated iteratively:
BN d):=Bid)v \/ [g(d)AB}(f(d))] VieLlL,deD
{e|oe=l,e€€u}

Informally, a location is bad when it was marked as bad before, or if an uncontrollable
event e € &, is enabled (g.(d) = true) which leads to a bad state with location ¢, and
variable values f.(d). If no bad location predicate changes, this process ends.

4.2.3 Update guards

The last step is updating the guards. Only the guards on controllable events can be
adapted, for the supervisor should not disable uncontrollable events.

9e(d) = ge(d) A =By, (fe(d)) Ve€&,deD

/CST Group 18

MSec thesis Preliminaries

Each guard is tightened by including the bad location predicate for the target state of
the corresponding event.

If no guard is updated, the synthesis is finished. Otherwise, the algorithm is executed
again from the first step.

4.3 Markov decision process

The process of finding this optimal action is modeled as a Markov decision process
(MDP). An MDP is used because the model includes future actions into the decision
making process. In addition, it can handle stochastic changes in the state very well.
In an MDP, actions are taken, each action incurs a rewards, the goal is to maximize
the reward over future actions. This closely resembles the driving process, where, for
example, doing lane changes reduces comfort, but it might speed up your journey by
overtaking slow vehicles.

The following definition of an MDP is based on [39]. An MDP is defined as a 4-
tuple (S, A, T(s,a,s"), R(s,a)), where S is any set of states, A is any set of actions, T :
SxAxS —[0,1], such that Y, .o 7T(s,a,s") = 1is a transition function representing
the stochastic change of state, based on the chosen action in a time step, R : SxA — R
is a function representing the immediate reward (or cost) for taking an action, when
in a state.

4.3.1 State

The state s € S, captures relevant information about the current state of the system.
After taking an action, the system transitions to a next (possibly different) state. The
state should contain all information that is needed to select an action. This means the
decision can be made without knowledge of past states and actions. The algorithm
that is used to find the optimal action in this work requires that S is a finite set or
countable infinite set. However, this is not generally necessary for MDPs, as explained
in [40, p. 18].

4.3.2 Action

Where the state describes the system itself, the actions describe how to control this
system. Action set A contains all possible ‘commands’ that can be given to a system.
Not all actions have to be possible in every state, therefore, the set A, C A of available
actions in state s is introduced.

4.3.3 Transition function

Whenever the decision maker takes an action a, the state s changes to a next state.
How the state changes is dependent not only on a, but might also depend on fac-
tors that cannot be controlled, such as other road users. To include these factors, a

/CST Group 19

MSec thesis Preliminaries

probabilistic relation is used. This relation is given by the transition function:
T(s,a,s') =Pr(s(k+1)=s"]s(k) =s,a(k) = a) (12)

With time step & € N. T gives the probability that the state at time step k + 1 is &
if, at time step k, action a is taken in state s. It is not necessary for all time steps to
be equally long, or for different actions to take the same time. However, for simplicity
all time steps in the model are assumed equal.

4.3.4 Reward

After every action, a reward is gained. How high this reward is, depends on s and a,
it is given by reward function R(s,a). Note that this is an immediate reward, it is
only dependent on the present action. For this project, the reward was chosen such
that is is always positive. It is also common that all rewards, or costs, are negative.
However, in the general formulation of an MDP, the reward can have any value.

4.4 Finding an action

To specify what decisions should be taken, often a policy is defined. A policy 7 : S — A
such that 7(s) € A, is a function specifying what action to take in each state. A
simple policy would be to always take the action with the highest reward.

7(s) = argmax R(s, a)
(lGAs

However, when making a decision in autonomous driving, it is necessary to look at
long-term returns, multiple time steps ahead. Otherwise, the vehicle might choose
actions that are very beneficial for a short time, but result in problems on a longer
horizon. For example, a vehicle can accelerate to the desired speed quickly, because
there is no vehicle in front of it. However, if there is a vehicle on the left lane that just
started a lane change to the right, a large deceleration is required a short time later,
which could have been prevented.

Since the future is not known beforehand and can only be predicted, the future rewards
should be valued less than immediate rewards. This is expressed using a discount factor
v € [0,1). For larger «, future values are valuated more. Since the predictions are
uncertain and several simplifications were used, ~ is chosen to be 0.5.

If an arbitrary policy 7(s) is used, the action is fixed @ = 7(s) and the outcome of
T(s,m(s),s’) is only dependent on the states. Therefore we can define state value
V7™ (s) as the expected returns when using policy 7(s) from s:

V™(s) = R(s,m(s)) +7 Y _ T(s,7(s),s)V7(s')

s'es

6Tn [39] a richer definition of a policy is used, but that is not necessary here.

/CST Group 20

MSec thesis Preliminaries

Note that this definition is recursive, which is forms the basis for dynamic programming
(DP) algorithms, as mentioned in [40]. Using V™ (s), we can also define the action value
Q™ (s,a), for taking a in s and using 7 (s) afterwards.

Q" (s,a) = R(s,a) + 7 Z T(s,a,s)V™(s)

s'eS

This is the desire for taking an action, using the long-term (even infinite-term) returns.
Note that if a = 7(s) is substituted, we can observe:

Q" (s, m(s)) = V7(s) (13)

The best action is now clearly the action with the highest value Q(s,a). So we can
define the optimal policy 7*, which always returns the best action:

T(s) = aragerilax Q(s,a) (14)
with
Q(s,a) = R(s,a) +~ Z T(s,a,s)V(s") (15)
s'esS

Where Q(s,a) and V(s) are the action value and state value for following 7*(s), re-
spectively. The optimal state value V(s) is the expected return for the best action, so
the highest value over all actions.

V(s) = max Q(s,a). (16)
acAs
(15) and (16) are called the Bellman (optimality) equations, as introduced in [41]. For
an explanation on these equations, see [39, Ch. 3]. Note that they do not depend on
7(s) anymore.

In the general definition of an MDP, (15) and (16) have an infinite recursion. In the
algorithm that is used to find the best action, the values are computed only for a
fixed number of recursions, i.e., the horizon H. This is similar to the receding horizon
strategy used in model predictive control, e.g., in [22]. Where a set of future inputs is
computed, and only the first input is executed on the system. In both methods, the
problem of not knowing the entire future is dealt with by assuming there is nothing
beyond the horizon.

4.5 Tree graph representation of an MDP

To find the optimal action, the MDP is viewed as a tree graph. Given the current
state sg of the system, there is a set of actions A, that can be taken, these branch
out from sy. Following from transition function 7', each action has multiple possible
future states. In these states, an action can be selected once again. It should be clear

/CST Group 21

MSec thesis Preliminaries

that this creates an ever branching succession of actions and states, a structure which
can be captured in a tree graph.

A tree graph is an undirected graph in which any two nodes are connected by a single
path. Here, the tree GG is explored incrementally, starting from an initial node called
the root node. The root node is a tuple (sg, H), where sy is the current state of the
real system and H is the horizon, as defined in Section 4.4. This node is an OR-
node, meaning a choice has to be made, i.e., the controller has to choose an action,
presumably this is the optimal action. For each possible action, there is a child AND-
node (a,s,7) of OR-node (s,7) where a € A; is the action, s is the state from which
a is taken and 7 is the remaining horizon of the tree. In an AND-node, there is no
choice, this differs AND-nodes from OR-nodes. AND-nodes (a,s,7) get child OR-
nodes (s',7 — 1), for which T'(s,a,s’) > 0. Since the controller cannot choose what
state will follow when taking an action, actions get AND-nodes. When an OR-node
has 7 = 0, i.e., the remaining horizon is 0, it is called a terminal node and no children
are added. There are no terminal AND-nodes for the MDP.

As mentioned, the tree is explored incrementally. During one iteration, one OR-node
(or state) is explored by adding all AND-nodes. All children of the AND-nodes are
added to tree G as well. OR-nodes without children are called tip nodes. It is possible
that there are OR-nodes with 7 > 0, but which do not yet have children.

A value can be associated to each node. These values were chosen such that they
represent the values given by the Bellman equations for () and V, as given in (15) and
(16). The value of a terminal node is 0. The value of a non-terminal OR-node is equal
to highest value of all child AND-nodes.

Vis.r) = {o, if =0 an

mazaea,Q(s,a,7), otherwise

The value of an AND-node (a, s, 7) is defined as the reward for taking the action plus
the sum of all values of children (s',7 — 1) weighted by the probability of occurring
and discount factor ~:

Q(s,a,7) = R(s,a) +7) T(s,a,8)V(s',7 = 1) (18)
s'eS
Once again, note the similarity to the bellman equations (15).

Given these values, the best partial graph G* can be defined. G* is defined here as
the subgraph of G in which, starting from the root node, only AND-nodes with the
highest value are selected, and all subsequent OR-nodes are selected. The optimal
action is now the action that is taken from the root node.

4.6 Anytime AO*

The best action is found through a tree search algorithm called Anytime AO*, as
introduced in [42]. Tree search algorithms are used to find the optimal path through a

/CST Group 22

MSec thesis Preliminaries

tree graph. This algorithm was chosen because it can handle large state spaces and it
can find a near-optimal action in a predefined time. This predefined time is equal to
the remaining time, after safety computations, as explained in Section 3.4. In Section
5, it is mentioned that safety computations take much less than 1s.

The values of unexplored states are estimated to decide what part of the state space
should be explored, the estimation function h(s, 7) is called a heuristic. The function
h should be chosen such that it accurately approximates V (s, 7) from (17), with little
computational complexity. It is undesired to use the Bellman equation (16) directly,
because it has a high computational complexity.

Usually, search algorithms require admissible heuristics, this means the heuristic al-
ways returns a higher reward than actually is received upon taking the action. The
Anytime AO* algorithm also works for non-admissible heuristics to predict the value
of an action. This means it is possible to use functions that estimate the value, but
not always over-estimate it, as is required for an admissible heuristic. Every time a
state is explored, it’s value is computed using (17) and (18), instead of estimated using
h. Therefore, the values for nodes at or near the root become increasingly accurate as
more states are explored.

The Anytime AO* algorithm works using a receding horizon strategy. Not only the
current action is considered, but also several actions into the future. After the pre-
defined time, only the first action is executed. For the next action, the algorithm is
executed again.

The solution is found iteratively by expanding (or, exploring) a non-terminal tip node
in G. With a probability of 1 — p,,, a node is selected to be in G*, otherwise it
is selected to be outside of G*. 0 < pyr < 1 is a parameter which determines the
trade-off between exploring actions that are not in G and refining the current value
estimate of the best action.

Once a node is selected, it is expanded in 5 steps. A visual representation of this
process, as executed on the root node (sg, H) is given in Figure 4.2. Each step is
explained below.

1. Add AND-nodes
For each possible action a € A, add node (a, s,7) as child of (s, 7). In the figure
actions a1, as and ag are possible for the root node.

2. Add OR-nodes
For each a € A, and s such that T'(s,a,s") > 0, add node (s',7 — 1) as child of
(a, s, 7). In the figure, 7 nodes are added, the probabilities are given next to the
edges. Note that the actual amount of nodes will be much larger. This is the
main reason for using a search algorithm instead of dynamic programming.

3. Initialize values
For each node (s',7 — 1) that was added, estimate the value V(s',7 — 1) :=
h(s',7—1), or V(s',7 — 1) := 0 if it is a terminal node (i.e., 7 = 0). The values
are given in blue in the figure, they are found by evaluating h(s, 7) for each node.

4. Update ancestors
Recursively update the values for all parents according to (17) and (18). @ and V/

/CST Group 23

MSec thesis Preliminaries

Step 1

Figure 4.2: visualization of node expansion. OR-nodes are shown in white, AND-nodes
are shown in black. Step 3 is given in blue in the center graph. Step 5 is given in green in
the righthand graph.

determine the best action and the best partial graph. In the figure, the immediate
reward for each action is given by r. Here, @) is added for each action, V' is only
updated for the root node. Note that the immediate reward is highest for as,
whereas as has the highest value for Q).
5. Mark best action

In each ancestor OR-node (s, 7), mark the best action a* for which Q(s,a,7) =
max,ea, Q(S,a,7), note that this value is equal to V' (s, 7), as defined above. In
the figure, as is marked in green.

Once the node is expanded, the best partial graph is updated by following the marked
actions. This sequence of finding a node, expanding, and updating the best partial
graph is repeated until no more non-terminal tip nodes exist or the time runs out.
If no more non-terminal tips nodes exist, the tree is fully explored and the heuristic
is no longer used. Therefore, the best action that was found, is the optimal action
for this tree. The best action is given at any time by the marked action in the root
node. Whenever the value V (s, 7) of a leaf node (s, 7) is required for computations, the
heuristic is computed as explained in step 3, and the value is averaged with previous
values, which might be different.

How the next node for expansion is selected is not fixed for the algorithm. In [42], it is
stated that the performance can significantly be improved if a good criterion is used.
For the decision maker, the next node is selected by taking an action at random and
then selecting a successor state based on the probability of ending there.

/CST Group 24

MSc thesis Safety stage

5 Safety stage

The first stage of the decision maker is the safety stage. The safety stage consists of
a supervisor which checks the short-term safety and action set reduction to check the
long term safety. The supervisor is automatically synthesized from plant models and
requirement models, as introduced by [37]. In this section, first the plant components
are introduced, next the requirements are given. From these plant and requirements,
a supervisor is generated using the synthesis algorithm. As explained above, the
supervisor only checks the safety of one action. At the end of this section, it is explained
why a supervisor cannot check long-term safety and how action set reduction is used
to overcome this challenge.

5.1 Plant components

The system is modeled using two plant components: one for enabling the autonomous
driving (AD) and one for modeling the possible actions.

coff

when —(esys V €sense) LK, LK., LK,
LCLd; LCLC; LCLCL?
LCRy, LCR., LCR,,
S e
when ﬁ(esys V esense) when (esys \ esense)

Figure 5.1: Plant model for the autonomous driving Figure 5.2: Plant model for all
(AD) capabilities. egys and egense are error signals that —possible actions in the decision
are provided to the supervisor. maker.

The autonomous driving behavior is modeled using a three-state automaton, as shown
in Figure 5.1. The leftmost location represents the AD capabilities being off, this
location is also marked, as it is considered idle. Marked locations are needed for
the synthesis algorithm [38], they are used to denote idle states or states where the
supervisor can safely end. The leftmost location represents the AD capabilities being
on, it is not marked. The bottom location is a safe state (hence SS), which is present
to allow for different behavior when something is wrong. Note that this location is not
marked, for the system is not yet safe in this location. This location is used to allow
the vehicle to get to safety.

The automaton can switch between these locations using controllable events c_on and
c_off. Controllable means the supervisor can choose whether to execute this event, as
opposed to uncontrollable events, with cannot be controlled by the supervisor, such as
a sensor turning on or off. There are two transitions leaving location On for the c_off
event, with different guards. The plant goes to a safe state whenever the supervisor is

/CST Group 25

MSc thesis Safety stage

notified of an internal error ey, or unexpected measurement ese,sc. When the problem
is resolved, the system turns off as normal, until the user turns it back on. Note that
these signals should represent errors that are not resolved by low level components,
such as the camera turning off.

All possible actions, as given in Table 3.1 are represented using an automaton with
only one location. From this location, each action is represented as a controllable event
loop. This is shown in Figure 5.2, for compactness, all nine loops are depicted as a
single loop.

5.2 Requirements

Using these plant models, the requirements can be formulated. AD can be enabled
when lane keeping (LK) is possible and the driver wants to activate AD. Once AD is
activated, different conditions are used for different maneuvers. LK is enabled when
the current lane is detected by the lane tracking system, and the chosen action is safe.
LCR is enabled when the current lane is known, the right lane is detected and the
chosen action is safe. LCL is enabled when the current lane is known, the left lane is
detected and the chosen action is safe.

Safety is measured here by taking the time to collision (TTC). It is computed in the
same manner as for measuring safety in Section 3.3. A higher TTC suggests a safer
situation. The chosen speed update for an action is included by assuming the change
in speed is immediate, such that the new speed can be used for TTC computations.
Here, the TTC is bound on [0s, 65s], the upper bound was chosen because a maneuver
takes approximately six seconds.

An action is safe if the TTC exceeds a certain threshold for all vehicles. Therefore,
only the lowest TTC for all obstacle vehicles has to be considered.

5.3 Supervisory controller synthesis

Given the plant and the requirements, a supervisor can be generated using the super-
visory controller synthesis algorithm. As mentioned before, a synthesized supervisor is
guaranteed to always adhere to the requirements, it is controllable, non-blocking and
maximally permissive.

When applying supervisor synthesis to the models given in this section, no changes
are made to the system. This means that the synchronous product of the plant and
requirements already satisfies the properties mentioned above. Clearly, the system is
always controllable, for there are no uncontrollable events. Synthesis shows that the
requirements are non-blocking. For large systems, methods exist to check whether
synthesis is needed to guarantee these properties. However, this is not necessary
for small systems, where the synthesis algorithm finishes within seconds. For those
systems, a supervisor can directly be synthesized.

/CST Group 26

MSc thesis Safety stage

5.4 Horizon of safety check

First, the supervisor is used to check the safety of a single action, which takes one
time step (1s).

Action Execution Action Execution
Safety check | Safety check
\ \ \ \ \
0 1 2 > 0 1 2 >
t[s] t[s]

Figure 5.3: Horizon of safety check. Left: old check. Right: new check.

However, the action that is selected by the decision maker, is executed after the current
time step, as shown on the left hand side in Figure 5.3. Therefore, the safety check
is computed for actions one time step further, as shown on the right hand side in
the figure. Given that the action for the first time step is already fixed and should
be safe, this additional time step is exactly the same for all possible actions that are
considered. Therefore, the state is advanced by 1 time step of predictions and that
state is used for the safety computation. This happens in the orange short-term safety
check block in Figure 3.2. Note that the safety computations take much less than 1s7
all remaining time is used for finding the best action. The error signals eg,s and €sense
are used directly, because errors need an immediate response.

5.5 Action set reduction

The algorithm for synthesis in Section 4.2 allows for all variable types. However,
current tools® that implement this algorithm only allow boolean or integer variables in
updates. In addition, only simple arithmetic functions can be used, such as addition
and subtraction. Because of that, the dynamical behavior of the continuous state
cannot be included in the supervisor. As explained before, this challenge is overcome
by only considering short-term safety, i.e., choosing only a single action. By checking
the safety for only one time-step, the controller does not need real valued variables,
i.e., the state, in updates. Long-term safety is handled by the action set reduction
component. This way, long-term safety is considered before choosing the optimal
action.

The action set reduction component evaluates a long-term safety criterion for all short-
term safe action. All actions that do not meet this criterion are removed. The criterion
that is used is a threshold on the TTC, as is also used for short-term safety. In future
works, a more fitting method should be selected. In addition, lane changes to a lane
where a vehicle is already present are removed from the action set. These actions
are clearly unsafe, but this is not always reflected in the TTC. By removing these
actions, the search space for finding the optimal action can be reduced significantly.
The remaining actions are considered safe and will be used to find the optimal action.

"It is estimated that safety computations take up to 1ms.
8E.g., CIF3 [43] or supremica [7].

/CST Group 27

MSc thesis Optimality stage

6 Optimality stage

The second stage is the optimality stage. Its purpose is to find the optimal action
from the set of safe actions. The process of finding this optimal action is modeled as a
Markov decision process (MDP). An MDP is defined as a 4-tuple (S, A, T'(s, a, s'), R(s, a)),
as was explained in Section 4.3. In this section, each of the elements of the model that
was used are given. After that, it is explained how the algorithm to find the best
action was implemented.

6.1 State

The state s € S of the MDP is inferred from the state representation X of (3).
The state contains information on the position and velocity of the ego vehicle and
n, obstacle vehicles. To consider maneuver continuation as a condition for optimal
behavior, the previous action is also included.

As mentioned above, the algorithm requires that the state contains no continuous
variables. Therefore, the variables are quantized. This is similar to the work on
qualitative modeling by Lunze, e.g. in [44]. There, the continuous state is partitioned
(quantized) to obtain different regions that require different control strategies. These
regions are not necessarily regularly spaced, i.e., like the grid that is used for this
project. In addition, the signals can be discretized by only considering transitions
between regions, as opposed to using a fixed time step, as is done here. Further
studies are required to find out which strategy suits the problem best.

Each of the continuous variables in X is quantized, the quantization steps are given in
Table 6.1. The extremal continuous values that were used are also given in the table.

Table 6.1: state quantization steps

Variable T Vi V; 0;

Quantization size| 8m 0.5m | Im/s | 0.01lrad
Minimal value | —=152m | —=2.0m | Om/s | —0.11rad
Maximal value| 152m | 2.0m |42m/s| 0.11rad

All variables except #; are quantized by flooring, 6; is quantized by rounding. If 6;
was floored as well, the transition function would be biased towards the right, as is
explained in Section 6.3. Let the quantized sets be defined for position X C Z and Y C
Z, speed V C Ny, heading § C Z, and lane L C Ny, which is not quantized any further.
Note that vehicles moving in reverse is assumed not to occur, but standstill is allowed,
e.g., due to traffic jams. The set of all states is now a Cartesian product of these sets
and the action set:

S=(XxYxVx60xL)™"xA, (19)

As the state space is large(10'7 states for 3 vehicles), the MDP is solved online, i.e.,
the optimal action is found for the current state, at every time step. This means that

/CST Group 28

MSc thesis Optimality stage

only states (and values) that are reachable within the finite horizon are considered
when finding an action. Searches start at the current state so(k) of the system.

6.2 Action

The decision maker produces a decision every time step of 1s, except for emergency
situations. The low level controllers require an input every 0.01s, this is realized by
holding the last decision until the next one is found. The actions used in the MDP are
given in Table 3.1. A, C A is defined as the set of available actions in state s, because
not all actions are available in every state, as some actions might be unsafe. For the
first time step, Ay is given by the action set refinement from Section 5. For all future
actions, A, is based on the presence of a left or right lane. The presence of adjacent
lanes is assumed constant.

6.3 Transition function

The transition function for the MDP is based on simplified vehicle dynamics and the
chosen maneuver. It is stochastic due to uncertainties introduced by state quantiza-
tion. Sensor uncertainties can be included as well. Also, road-user behavior can be
captured in the stochastic transition function, if modeled in a stochastic fashion.

The transition function is used to compute the probabilities of reaching each possible
configuration of vehicles, given an action. The ego heading and speed change based
on the chosen action. Obstacle speed is assumed to be constant and heading (with
respect to the lane) is assumed to be constant and 0.

To predict the position after one time step, the vehicle is assumed to be a point mass
with constant velocity. A more accurate representation could be obtained using a
bicycle model, where the vehicle is a rigid body with wheels, like a bicycle. This
model can more accurately represent vehicle maneuvers, as long as no tight turns are
involved. For an explanation of the model see, e.g., [45, pp. 613-623]. However, the
bicycle model is computationally more intensive. In addition, the increase in accuracy
for highway scenarios is not assumed significant enough to justify using the bicycle
model.

Table 6.2: Heading change for lane keeping (left) and lane changing (right)

LK|0<0|0=0[0>0 LCL | LCR

y=1l| +0 | +0 | -1 y>yrx| +1 | +1
-1<y<0| +1 | 40 | —1 —Yrxk SYS Y| +1 |g—1
g<—2| +1 | 40 | +0 y<-—-yrx| —1] —1

Predictions are made based on the chosen action. When the maneuver is lane keeping,
the quantized heading is changed such that the vehicle is guided towards the lane
center, as shown on the lefthand side in Table 6.2. In the table and in the rest of

/CST Group 29

MSc thesis Optimality stage

this section, (_) denotes a quantized value. When the maneuver is a lane change, the
quantized heading is updated, depending on the direction of the lane change and the
in-lane position, as shown on the righthand side in the table. ¥px is the maximal
quantized value of y that is expected during lane keeping. The heading and speed are
changed by one quantization step, as this results in an accurate representation of a
lane change in the quantized domain.

ne e

Figure 6.1: Computation of reachable region.

A visualization of the transition function is given in Figure 6.1. The grid represents
the quantized intervals of the continuous x- and y-values. The origin cell (dark red)
shows the initial position of the ego-vehicle. By combining all possible speeds with all
possible headings for this quantized state, a region is found where the ego-vehicle can
end up in one time step.

In Figure 6.1, the possible end positions for the highest and lowest values for speed
and heading are shown in light red. All possible quantized end positions are given in
light grey. It can be seen that from a single quantized position, several end positions
can be attained, this produces stochastic transitions.

To reduce the complexity of the reachable region, it is assumed the region is rectan-
gular, such that only the highest and lowest lateral and longitudinal positions have to
be computed. This means the real probabilities for partially covered regions will be at
most the computed probabilities. There is a small possibility of a grid cell in a corner
of the reachable region being included while it is actually not reachable. It is assumed
this difference in real and computed probabilities is negligible.

The positions are now calculated by the following steps:

1. Find the extremal continuous values corresponding to the quantized
state.
Each state variable was quantized by flooring, so the minimum value can be
found by multiplying the quantized value with the quantization step size. This
value plus one step size gives the maximum value.

Toin = X - dx
Tomax = X - dx + dx

d(-) is the quantization step for each variable. This is done for each of the state
variables x, y, v and 6.

/CST Group 30

MSec thesis

Optimality stage

2. Find the extreme (continuous) lateral and longitudinal values that are

reachable.
xT T
B B

7?JL YR
0 <0

yL
0=0

YR

xrT

IB|

Figure 6.2: Extreme values for different 6.

The extreme values are dependent on the sign of 8, because the largest absolute
In Figure 6.2 a visualization of the
extreme values is given. Note that the figure is not to scale. xp and xp are the
nearest and furthest reachable longitudinal positions, respectively. y; and yg are
the leftmost and rightmost reachable lateral positions, respectively. How these
values are obtained is given below.

heading determines the extreme values.

If # > 0 and hence |0nin| < |Omaz|,

B Tmin + Umin ° COS(Hmaz)

TT = Tmar T Umaz - COS emzn)

Y = Ymin T Umin - Sln(emm)

YR = Ymaz T Vmaz- Sin<9max>
If § < 0 and hence |Omaz| < |Ominl,

TB = Tmin t+ Umin- COS(Qmin)

T Lmaz + Umaz * COS(Hma:E)

yL Ymin + Vmaz - Sln(‘gmzn)

YR = Ymax + Umin - Sln(emam)
If # = 0 and hence 0,50 = —0,in = %,

B Tmin + Umin * COS(Hma:B)

TT = Tmar + Umaz - €08(0)

Y = Ymin + Vmaz - Sin<0max)

YR = Ymaz T Vmaz: Sln<8mm)

/CST Group 31

MSc thesis Optimality stage

Where df is the step size for quantization of #. These values give the dotted
black rectangle in upper right corner of Figure 6.1. Note that for § = 0, the
reachable y values [y, yr| are centered on the original value of y, as can be seen
in Figure 6.2. This is because 6 was rounded when quantizing. Otherwise, i,
would have been 0, which results in a reachable y range that extends to the left
of the original value, similar to § > 0 in the figure.

3. Estimate the probabilities of ending in a region.

2/6 3/6 1/6

2/30 3/30 [1/30 1/5
0 B/5
2/6 3/6 1/6
I ﬂ I 0 1/5

Figure 6.3: Probabilities for one direction (left) and region (right).

The lateral and longitudinal probabilities are computed separately. Each reach-
able quantized value is assigned a probability proportional to the reachable part,
as shown on the lefthand side of Figure 6.3. This is done the same for lateral
and longitudinal positions. Afterwards, the probabilities are multiplied to get
the probability of ending up in each region. This is shown on the righthand
side of the figure. The values outside the grid show the lateral and longitudinal
probabilities. When these are multiplied, the values inside the grid are obtained.
These values are the probabilities for each cell.

6.4 Reward

The reward function is a linear combination of chosen features R;, i.e. functions of the
state representation, such as speed or time to collision.

R(s,a) = Y _ A\iRi(s,a) (20)

1E€ER

Where R is the set of feature indices and \; are the weights corresponding to each
feature. The weights for each feature are chosen or can be learned from data through,
e.g., inverse reinforcement learning, as was done by [15]. The used features are given
below.? Note that all reward features are bound on the domain [0, 1].

e Speed
Deviations from reference speed v,.r are penalized quadratically, to motivate

9These functions are defined for a single obstacle vehicle. For multiple vehicles, the sum, min or
max could be taken.

/CST Group 32

MSc thesis Optimality stage

overtaking slow vehicles and yielding to faster vehicles. A quadratic penalty was
chosen to give a larger penalty for larger deviations.

Te — Tres \
RU:(ei Tef)
Uref

e Lane change and acceleration penalty
Taking unnecessary actions is penalized for driver comfort and fuel efficiency.
A reward is given if the chosen action is lane-keeping or if the chosen speed is
constant.

1, ifa= LK,
RaL = .
0, otherwise

1, ifa==x,
RaV = ne *
0, otherwise

Note that * is used to denote three actions a € A with the given longitudinal or
lateral component.

e Safety
The time to collision is used to give preference to behavior that is even safer than
prescribed by the safety components. To increase the speed of computations,
TTC is approximated here. It is approximated by only considering longitudinal
movement.

Av = (0, — U — 6v)dv
Ax = (T, — T.)dx + Av
Az

¢ = ——
¢ Av

Where dv is the change in speed following from the chosen action, (). corresponds
to ego vehicle variables and (+), is used for obstacle vehicle parameters. However,
even when longitudinal TTC is low, the lateral distance might be large enough
to avoid a collision. This is measured by distance upon collision DUC"

Ay = (Jo — Ye)dy +wi(lo — lc)
A = (50 -0, — 56)db
DUC = Ay — AbAx

Where 06 is the change in heading following from the chosen action. Note that
the linearization tan(f) = 6 is used, which is valid for small angles. The safety
reward is then computed for each existing vehicle (v > 0) by:

TTCmaz’

R. — ITC if Az < Trre N DUC < yrrce
° 1, otherwise

/CST Group 33

MSc thesis Optimality stage

Where TTC,,,. = 15s is the maximal TT'C that is considered, it is used for
normalization. zpprc = 40m is the maximal longitudinal distance for which TTC
is used and yrrc = 2m is the maximal lateral distance for which the vehicles are
assumed to collide, it should be equal to or greater than the vehicle width.

e Lane preference
A reward is given for being in the rightmost lane or moving towards it.

1, ifl=1
Ry =<05, ifl>1ANa=LCR,
0, otherwise

e Urgency
Urgency is enforced by penalizing negative deviation from the desired speed.
Note that urgency, contrary to speed, is penalized linearly. This was done be-
cause the vehicle should not show increasingly hasty behavior if the speed de-

creases.
. Ve
R, = min (, 1)
Uref
e Maneuver continuation

Similar to the unnecessary action penalty, a reward is given if a maneuver is
continued. Also, a minor reward is given when starting or finishing a maneuver.
Note that this reward does not explicitly reward completing a lane change.

0.5, ifa= LK,V ape =LK,
1, if @ = LCR, A aprey = LCR,
1, it a=LCL, A aprey = LCL,

0, otherwise.

e Lane centering
A penalty is given for deviating too far from the lane center, to motivate finishing
a maneuver before switching back to LK.

Rie = 1— min (0, A= 1) dy)

2

Where 4.k is the limit for LK as above, dy is the quantization step size for y
and w; is the lane width. Note that for smal values |g| < gk, this reward does
not change, to allow for some deviations during lane keeping.

All these rewards are combined using weights \;, these were manually tuned by trial
and error in simulations. No formal procedure was found to tune the weights. Some
relations between individual weights were found, e.g., between activity penalty \,r
and maneuver continuation ..

/CST Group 34

MSc thesis Optimality stage

Values of different actions Difference in feature values

0 ° -
R,

100 5t - R
. R

I R

80 4 R,

I R,

60 |

iR
A Al

LCL LK LCR_ LCL, LK, LCR,6 LCL_ LK LCR LK LCR LCL LK LCR LCL LK LCR
c c c d d d a a a c

Value
o
Value
w

=

Actions Actions

Figure 6.4: Values for different actions. Left: values for different actions. Right: difference
between features.

An example of the decision making process is visualized in Figure 6.4. On the left hand
side of the figure the value Q(s,a), from (15), is given for each action from a certain
state s. Each individual bar is colored according to the portion of the value that
originates from different features. Note that R,, R, and R, have large contributions
to the value, whereas the others do not. It is not easily seen that LCL. is the best
action. The values for each feature are given in Appendix B.

To more clearly show the impact of all features, only the difference between different
actions is shown on the right hand side of the figure.

Value:Z(/\R(s a)—mln)\R(s a))

X a'€As
IER

It can best be seen for R, in LC'L,, that action had the lowest contribution for R,
and now appears as (. Note that the contribution of R,,. has a significant impact on
the best action (LCL,.), whereas it was barely visible in the left hand figure.

6.5 Anytime AO*

To find the optimal action, Anytime AO* is used, as explained Section 4.6. Several
design choices were made in the implementation of the algorithm.

As explained in Section 4.6, the algorithm iteratively selects and expands nodes in the
tree representation of the MDP. Expanding nodes happens in 5 steps:

1. adding AND-nodes (for actions);

adding OR-nodes (for states);

estimating V' for new OR-nodes, using a heuristic;

update the values @ and V' of ancestors, using (18) and (17);
mark the best action for all ancestors.

Ol WD

/CST Group 35

MSc thesis Optimality stage

Node selection is done based upon the probability of encountering a state using ran-
domly selected actions.

The heuristic that is used is based on the immediate reward for taking the same action.
That reward is gained for every future time step.

h(s,T) = R(s, aprev) +vR(s, apT@U) + ”YQR(& aprev) Tt 'YT_lR(Sa aprev)

This heuristic was chosen because it approximates the value using the actual reward
function R, without having to compute all future values.

To reduce the memory footprint, the expanded tree G is stored separately from the
unexpanded tip nodes 7. The tip nodes are triples (s, V,p). They are much smaller
than expanded nodes. All values are stored either in a tip or node. Therefore, only
values that are needed for selecting a tip are stored in tips. All other values are stored
in expanded nodes.

Nodes in G are stored as a 7-tuple (7, s,, a,, a*, As, [S.], [Qa)). Here 7 is the remaining
time horizon, s, is the parent node and a, is the parent action, these are all related
to the OR-node. The AND-nodes are stored implicitly as a variable inside the OR-
nodes. This was done because They are expanded at the same time as OR-nodes. The
AND-node contains set [S?], of all reachable states for each allowed action a € Ay, set

[Qa], with Q, = Q(s,a), for each allowed action a € Aj.

Table 6.3: Data storage for expanded nodes
in the implementation, A, and [Q,] are not
shown. IDs correspond to the numbers in
Figure 6.5.

Nodes
ID|T s, a, a*| S S, 54
13 2|23 456 78
21 2 2 9,10 11,12
2 1 1 213,14 15,16
16(1 3 2 2| 0 0
101 6 2 2 0 0
5121 2 3 17,18 19,20
2001 5 3 2 0 0

Figure 6.5: Visualization of G. OR nodes
in white, AND nodes in black, terminal nodes
in blue. Green arrows denote G*.

Table 6.3 shows how the structure of a tree G, as shown in Figure 6.5 is stored. Note
that not all values in expanded nodes are shown, only those related to the structure of
the tree. In the figure, OR- and AND-nodes are shown in white and black respectively,

/CST Group 36

MSc thesis Optimality stage

terminal nodes are shown in blue. After seven iterations of the algorithm, there are
seven nodes and many times more tip nodes than iterations, 20 for this example. For
the actual MDP, as given above, there are typically 6 actions leaving a state. And

there are between 100 and 200 states that follow a single action!®.

Q

=0

= (507071)
= {tip}
s = AAsSR
H
1]
0

1

RN

Sp :
ap :
loop 500

([Qal, [Sa), T) := add_nodes(As, T)

W = O Uk W

e
= O ©

V== tip.V

Vt= maXgeAg (Qa)

a* := argmax,c 4 _(Qa)

tip.V:=V+

update tip in T

add (7, sp,ap,a*, As,[S,],[Qa]) to G

N
N o oA W N

18 p:= tip.p
19 while s, # 0
20 P:=G(sp)

M)
-

P.Qa, = P.Qa, +yp(Vt —V7)

P.a* := argmax(P.Qq)

update P in G

V™ i=T(sp)V

VT = max(P.Qq)

if v- =vt
break

T(sp). V:i=VTF

=T (sp).p
sp:= P.sp
ap := P.ap

W W W W NNNNNN-N
W N = O © WO g W N

do_optimal := true with probability popt, false otherwise
(tip, As,) := select_tip(G,T, do_optimal)
if no tip was found
(tip,As,7) :=select_tip(G,T,—~do_optimal)
if no tip was found
break

W oW W W W W
[IR R RS RN

40 return G(sp).a*

Algorithm Section 1: Pseudo code for the implementation of AO*

The implemented algorithm is shown in Algorithm Section 1. Lines 1 through 8 are
initialization. Note that the expanded tree G is initially empty whereas 7 contains one
tip, which represents the initial node. tip is the tip that is currently being expanded,
A, and d are the allowed actions and depth of tip. s, and a, are its parent state and
action. Note that these are both empty for the root node, for it has no parents.

The algorithm is repeated until the entire tree is expanded or when the time runs
out. As the duration of computations cannot be measured during simulation, a fixed
number of iterations (500) is used.

The remainder of the algorithm is divided in three parts:

10Ty a simulation with three vehicles and 2 lanes.

/CST Group 37

MSc thesis Optimality stage

1. adding nodes (steps 1, 2 and 3 of expansion), this is done in line 9;
2. updating ancestors (steps 4 and 5), this is done in lines 11 through 31;
3. selecting the next tip for expansion, which is done in lines 33 through 38.

Each of these parts will be explained below.

6.5.1 Adding nodes

1 input: A, T

> outputs [Qul,[S4],T

3

4 for ae€ As

5 Q = R(s,a)

6 if T—1<0

7 Qo :=Q

8 Sh=10

9 else

10 S, ={s"€S|T(s,a,s") >0}
11 for s’ €5

12 p:=T(s,a,s’)

13 V:=h(s,7—-1)

14 add (s',V,p) to T
15 Q:=Q+pV

16 Qo =Q

Algorithm Section 2: Pseudo code for add nodes

Adding successor states is done using the function shown in Algorithm Section 2. The
function uses a loop over all allowed actions. For each allowed action a, the immediate
reward R(s,a) is computed. The action value is set as @ = R(s,a) as well. In Figure
6.5, there are three actions from the initial node.

Terminal nodes are never expanded. If 7 — 1 = 0, the successor states are terminal
nodes, and V(s',7 — 1) = 0 for all s’. This means the value of this action will be

Q(s,a) = R(s,a) +v > _(T(s,a,5')-0) = R(s,a).

s'eS

The immediate rewards are already known so no new tips are created. This can also
be seen in lines 6 through 8. In the Figure, terminal nodes are shown in blue, these
are not included in the list of tip nodes.

If the successor nodes are non-terminal, the set of reachable states S/ for action a is
computed. A loop over these states is started in line 11. For each successor state s
with probability p, the value V' = h(s’,7 — 1) is computed. It is assumed the heuristic
for a particular state always returns the same value, such that no averaging is needed.
A tip (s, V,p) is created is for the successor state. A reference to this tip node will
be stored in its parent node, as shown in Table 6.3. The action value for the current
action () is updated iteratively. After the loop over all reachable states, the action
value is stored and the next action is considered.

/CST Group 38

MSc thesis Optimality stage

6.5.2 Updating ancestors

After this has been done for all actions, the value of parent (s,7) is updated and the
best action is marked. This is done in lines 11 through 31 of Algorithm Section 1.

First, the old value V' ~of the tip is stored for later. Next, the value of the expanded
tip is updated, and the best action found as shown in line 12 and 13. The expanded
tip is added to the tree in line 16, using values that were computed previously.

Next, all ancestors are updated one by one, moving towards the root node, as shown
in lines 18 through 31. The parent P of the node is selected and the action value of
the parent is updated. Note that all values of other states remain constant during one
iteration. Therefore, only V= has to be subtracted in the sum of (18) and V™ has
to be added, as shown in line 21. Note that @, is the stored value of Q(s,,a,) and
p is the stored value of T'(sp, a,, s). The best action is updated by finding the action
with the highest @Q,. After updating Q,,, V'~ is stored for the next iteration and V*
is computed. If V did not change, further ancestors will not be updated and the loop
is ended. If V' did change, this value is updated in the tip, p, s, and a, are updated
and the next parent is updated, until the root node is reached.

6.5.3 Selecting nodes

1 input: G,7, do_optimal

2 output: tip, As, T

3

4 loop 50

5 Sp 1= 50

6 label deeper

7 P :=G(sp)

8 if do_optimal

9 ap = P.a*

10 else

11 ap := random action from P.A;
12 sp := prob. weighted state from P.S(’Lp
13 tip =T (sp)

14 if tip is expanded

15 goto deeper

16 if tip is non—terminal

17 As:= actions(tip.s)

18 T:=P1—1

19 break

Algorithm Section 3: Pseudo code for select_tip

Selecting a node to expand is done using the subroutine select_tip in Algorithm
Section 3. The search starts at the root node. Repeatedly, an action and successor
state are selected, until a tip node is reached. The probability of selecting an action
in the best partial graph is computed differently from the original algorithm in [42].

Prior to selecting nodes, in line 33 of Algorithm Section 1, a variable do_optimal is
set to true with probability p,,, this determines whether optimal actions are selected.
If do_optimal is true, the best action is chosen, otherwise a random action is chosen,
this is shown in lines 10 through 13. This means the best action could still be selected
if do_optimal is false. Therefore, the actual probability of selecting a node inside the

/CST Group 39

MSc thesis Optimality stage

best partial graph is slightly higher'! than p,.

After selecting an action, the next node is found by randomly selecting a successor
node. This random selection is weighted by the probability of a successor state occur-
ring.

If the successor node is already expanded, the search continues from that node. If the
node is non-terminal, 7 and A(s) are computed and the node is selected for expansion.
Otherwise, the node is terminal and the search is restarted from the root node. If the
search was restarted 50 times, it is assumed no non-terminal tip nodes exist inside or
outside of G* and the search is restarted in the other part of GG. If still no tip is found,
it is assumed the tree is fully explored and the algorithm finished. This can be seen
in lines 35-38 of Algorithm Section 1.

YUp = popt + (1 — popt)pr, where p, is the probability of randomly selecting the best actions, which
is dependent on allowed actions and explored nodes in the best partial graph.

/CST Group 40

MSec thesis Results

7 Results

The behavior of the controller is validated by comparing its performance to the per-
formance of a baseline controller. The baseline controller is a rule-based controller
that was developed at TNO. Since the controller should be able to handle all possible
highway scenarios, different scenarios are considered. First, the scenarios that were
considered are introduced. Next, the controllers are compared based upon the criteria
given in Section 3.3.

7.1 Scenarios

To be able to compare the performance of the decision maker to the baseline controller,
multiple scenarios are considered. This was done to show the robustness of the decision
maker. In addition, the decision maker should work in all highway scenarios, so a
variety of scenarios is used. The current implementation of the controller is not suitable
for all highway scenarios. For example, the controller does not take upcoming exits
into account when choosing an action. This can be integrated in future works, e.g.,
through a distance to the exit in the state, and a reward feature that discourages lane
changes to the left close to an exit.

The scenarios that are used were chosen because they show a variety of different
behaviors. Certain behavior is expected for each scenario. It can easily be checked
whether this behavior also occurs.

Empty road Overtake Table 7.1: Scenario parameters

- - “ Name Vo.e | V0,1 | V0,2

Empty road 70

ouble overtake o overtak

Double overt Noo ert;- Overtake 70 | 50
Fast overtake 70 | 65

Overtaken Overtake interrupt

Double overtake 70 | 50 | 50
Single overtake 70 | 50 | 50

“ “ - No overtake 70 | 50 | 50
@ (= B L=} Overtaken 70 | 50 | 80

Figure 7.1: Schematic view of vehicle posi- Overtake Interrupt | 60 | 50 | 90
tions. Ego vehicle in red, obstacles in blue.

A schematic view of relative vehicle positions for all scenarios is given in Figure 7.1.
The initial/desired speeds are given in Table 7.1. The fast overtake scenario uses
the overtake positions from the figure, the single overtake uses the double overtake
positions. This should not affect the behavior of the controller, though the reward
feature weights might require additional tuning for higher speeds. Unless mentioned
otherwise, all obstacle vehicles are lane keeping with adaptive cruise control.

/CST Group 41

MSec thesis Results

e Empty road
There are no obstacle vehicles in this scenario. It is used to check default be-
havior, such as maintaining speed and not doing unnecessary maneuvers.

e Normal overtake
There is one obstacle vehicle in this scenario. It is driving at a constant speed,
which is significantly lower than the desired speed of the ego vehicle. The ego
vehicle starts behind the obstacle and it is expected it will overtake the slower
vehicle.

e Normal overtake fast
This scenario is the same as the previous scenario, except the obstacle speed is
much closer to the ego speed. Simulating an overtake at different speeds shows
the balance between inactivity and speed. It is expected that no overtake will
take place.

e Double overtake
There are two slower vehicles in front of the ego vehicle. The vehicles are rela-
tively close together, to promote a double overtake.

e Single overtake
The same as above, except with increased inter-vehicle distance. Simulating this
scenario twice shows the balance between inactivity and right lane alignment.
The vehicle is expected to overtake each vehicle individually.

e No overtake
The ego vehicle is stuck behind two vehicles driving at a low speed on different
lanes. The ego vehicle is unable to overtake, but should still continue to behave
correctly. It is debatable whether the vehicle should move to the left lane, as
to indicate the desire to overtake a slower vehicle. Both lanes are considered
correct behavior, as long as the controller does not continue switching lanes.

e Overtaken
This is the same as the overtake scenario but with an additional vehicle that
is executing a double overtake. Due to simulation considerations, the obstacle
vehicle will continue lane keeping on the left after the double overtake. The
ego vehicle should wait for the first vehicle to pass, before overtaking the slower
vehicle itself.

e Overtake interrupt
Here the ego vehicle is halfway through an overtake (at reduced speed), when a
faster vehicle approaches from behind. The ego vehicle might consider increasing
its speed to promote safety and urgency for the approaching vehicle. To prevent
the obstacle vehicle from crashing into the ego vehicle.

7.2 Controller comparison

Both the baseline controller and new controller were tested on all scenarios, to be
able to compare them. The simulation time for each simulation is 40s, and thus with
ts = 0.01s, N = 4001.

/CST Group 42

MSec thesis Results

Table 7.2: Comparison of optimality criteria for baseline and new controller.

Baseline New

Scenario | safety diqn nrc |safety diqw Nic
Empty road | 15.00 778 0 |15.00 778 0
Normal overtake | 12.90 778 2 | 13.13 780 2
Normal overtake fast| 13.30 764 2 |[13.30 742 0
Not passing | 10.03 655 1 |[11.69 647 0
Overtaken | 11.99 774 2 | 11.70 712 2
Overtake interrupt | 9.35 667 1 |12.14 701 1
Double overtake| 9.92 725 4 |11.39 729 2
Single overtake| 12.05 778 4 | 10.52 698 3

The results for both controllers are given in Table 7.2. As can be seen for most
scenarios, the new controller has an equal or higher safety score. This also results in
slightly less distance covered, as can also be seen in the table. Below, several scenarios
that show interesting behavior are highlighted.

From the table, it can be observed that both controllers successfully perform a normal
overtake, the new controller is slightly more safe. However, as seen for the fast overtake,
the baseline controller overtakes a slightly slower vehicle as well, whereas the new
controller chooses to follow this vehicle at a slightly lower speed than was desired. As
a result, the new controller covers 22m less distance, but also executes two fewer lane
changes.

In the Figures 7.2, 7.3 and 7.4, the speed profiles for both controllers are given. The
baseline controller is shown on the lefthand side, the new controller is shown on the
righthand side. Maneuvers are shown using the background shading, dark gray denotes
an LCL, light gray denotes an LCR. Whenever only two speed profiles are visible, the
observers have equal speed profiles.

Baseline speed New speed
25 25+

@ @0t
E [E [=
= \ = \\
\\
15 = 151 ™

0 10 20 30 40] 10 20 30 40

o
obs
obs 2

S

Figure 7.2: Results for scenario not passing. Left: Baseline controller. Right: New con-
troller. Dark gray background denotes LCL. The speed of both obstacle vehicles is equal.

Figure 7.2 shows scenario not passing. It can be seen that both controllers slow down,
but the baseline controller first does a LCL, and then stays on the left lane. The new
controller stays on the right lane, because there is a reward for right alignment of the

/CST Group 43

MSec thesis Results

vehicle.

Baseline speed New speed

ego
obs
obs 2

0 10 20 30 40] 10 20 30 40

Figure 7.3: Results for scenario overtake interrupt. Left: Baseline controller. Right: New
controller. Light gray background denotes LCR.

For the Overtake interrupt, the new controller accelerates to above the preferred speed,
which is equal to the initial speed, as can be seen in Figure 7.3. This increases the
safety with respect to the approaching vehicle, which is much faster. After finishing
its overtake, the ego vehicle slows down to slightly above the desired speed. This
happens because the reward gained for driving the desired speed does not outweigh
the cost for deceleration. The baseline controller maintains it desired speed, causing
large deceleration for the obstacle vehicle, which then accelerates again after passing.
Note that the obstacle vehicle uses a lower reference speed for the second half of
the scenario, because there is a strong curvature in the road. This behavior has no
influence on the execution of the scenario for either controller.

Baseline speed New speed

ego
obs
obs 2

— u N P S —)
\\\
15 . 15 F \/

0 10 20 30 40 0 10 20 30 40

Figure 7.4: Results for scenario double overtake. Left: Baseline controller. Right: New
controller. Dark gray background denotes LCL, light gray denotes LCR. The speed of both
obstacle vehicles is equal.

It was observed during simulations that the new controller will usually slow down
before an overtake. This can be seen in Figure 7.4, for the double overtake scenario.
The ego vehicle slows down just before the double overtake and accelerates again after
switching lanes. Compare this to the behavior of the baseline controller, which main-
tains the original speed, overtakes only the first vehicle and then rapidly decelerates
when encountering the second vehicle. This also results in a slightly higher distance
covered for the new controller in this scenario.

An explanation of this behavior can be that slowing down increases the TTC, and
therefore the safety of a maneuver. However, the time spent close to the vehicle also
increases, which decreases the safety measure for the entire scenario. This is why the
new controller has a lower distance and safety score than the baseline controller for
the single overtake.

/CST Group 44

MSec thesis Results

7.3 Discussion

Given current results, it can be concluded that the overall architecture and algorithm
design is a viable methodology to implement scalable and generic decision making sys-
tems for autonomous driving. For the scenarios where the new controller successfully
executes maneuvers, its performance is similar to or better than the baseline controller.
It can be observed that the new controller considers the safety of the ego vehicle in in-
teraction with other vehicles. Compared to the baseline controller, the new controller
shows behavior that considers more actively the future effects of an action. This is
because the MDP also takes rewards of future actions into account.

/CST Group 45

MSc thesis Concluding remarks

8 Concluding remarks

In this section, first a brief conclusion to this report is given. Second, recommendations
for improving the decision maker proposed here and future research directions are
given.

8.1 Conclusions

The goal of this project was to design a scalable and generic decision maker that incor-
porates safety considerations. A decision maker is proposed, which uses a two-stage
architecture to accomplish this. First, the safety of all possible actions is evaluated,
next the optimal action is selected from the actions that are deemed safe.

The safety of actions is guaranteed by a supervisor and an action set reduction compo-
nent. The supervisor is automatically generated from plant models and requirement
models. By automatically generating a supervisor, it is guaranteed to adhere to the
requirements, to disable as little behavior as possible and to always allow return to an
idle state. Due to limitations in the tooling, the supervisor can only check the safety
of 1 time step. Therefore, action set reduction is used to check the safety of future
time steps. Action set reduction checks long term safety using TTC and then selects
only actions which exceed a certain safety threshold.

A Markov decision process (MDP) is used to find the best action taking into account
both the safety of actions and the future evolution of the multi-vehicle system. The
MDP is obtained by quantizing the multi-vehicle system state. Transitions are based
on the chosen action and the probability of reaching different positions in the next
time step. Rewards are based on eight different reward features that reflect relevant
behavior. These features are weighted according to manually tuned weights.

The MDP is solved using a search algorithm named Anytime AO*. This algorithm
searches for the best actions over a fixed horizon, whilst maintaining the best action
found so far. That way, the algorithm always produces a (near-optimal) result, even
when the algorithm has not completely finished yet.

To validate the behavior of the decision maker, its performance is compared to a
baseline controller according to three different criteria. To show the broad applicability,
both controllers are compared on 8 different scenarios. From this comparison, it is
concluded that the controller design produces decisions that are safe and considers the
impact of this action on the future multi-vehicle system, for the given scenarios.

8.2 Recommendations

As mentioned above, the newly proposed controller shows promising behavior. How-
ever, many improvements can be made to the controller, which are given below.

In the state, obstacle position estimates can be improved by considering the real

distance along the road (zf) instead of forward distance (zF). The state can also

(2

/CST Group 46

MSc thesis Concluding remarks

be extended using road curvature to give a better representation of the real world.
Currently, it is assumed the number of lanes does not change. If information on lane
reductions or oncoming ramps is included in the state, the decision maker can take
these into account when deciding upon an action.

The long-term safety check for action set reduction uses TTC, which is also used in the
short-term safety check for the supervisor. To better accommodate the probabilistic
nature of future traffic, long-term safety should be measured using a probabilistic
measure. For example, the measures proposed in [46] or [47] can be considered.

To keep computation times low, several assumptions are made in the transition func-
tion for the MDP. Below, it is explained how some of these assumptions could be
eliminated.

e Heading of obstacle vehicle is always 0
This is clearly too restrictive. Since predicting maneuvers of vehicles is a complex
problem [48], it is necessary to assume that obstacle vehicles do not start a
maneuver. However, if a vehicle is halfway through a lane change, it is safe to
assume it will finish the maneuver. This can easily be used to generate more
accurate predictions in specific scenarios.'?

e Obstacle vehicle speed is constant
Similar to constant heading, this is also too restrictive. If communication with
other vehicles is possible, obstacles can communicate their intent. This produces
more accurate and realistic predictions, resulting in a safer system.

e x and y positions are independent stochastic variables
The positions are not independent, since they are related through the heading
and speed. Moreover, there is a lane which a vehicle will probably follow. It is
not known whether this assumption yields realistic values, because the difference
between computed probabilities and actual probabilities is unknown. This should
be further investigated.

e Distributions of quantized state values are uniform
The continuous state of a vehicle will have some equilibrium within a quantized
interval, e.g., the speed will be inclined towards the speed limit. However, this
inclination towards one value is not modeled, since the intentions of vehicles are
not taken into consideration. If the quantized is small enough, the distribution
can be accurately represented as uniform. It should be investigated whether the
chosen quantization is small enough.

The results show decisions that fall in line with expectations from a human driver.
However, for actual highway speeds (over 100km/h) or for different vehicles, the re-
wards might have to be tuned again. A more structured method for finding weights
should be used, for example, reinforcement learning.

12Tn current simulations, other vehicles do not start maneuvers, but the possibility exists and should
be accounted for.

/CST Group 47

MSc thesis Concluding remarks

The observed behavior was adequate, but might be sub-optimal, since several as-
sumptions were made to ease the implementation of the algorithm finding the optimal
action. For each assumption, the validity and possible improvements are discussed
below.

e Heuristic function

The currently used reward function is deterministic, all randomness in the long-
term reward comes from the transition model. In the heuristic, this randomness
is removed by assuming the reward is constant over the remaining horizon. This
is an oversimplified view of the MDP, but the heuristic is only used to give an
estimate, so using a constant heuristic is considered a valid assumption. In [42],
it is suggested that the heuristic value should be the long-term reward when
following some base policy.

e Computational time
A chosen number of fixed iterations is assumed to represent a reasonable compu-
tation time. During simulation the exact computation time cannot be measured,
so this assumption cannot be validated. It is estimated from simulations that
computing one time step using 500 iterations for the controller takes less than
the allowed time of 1s. When implementing this algorithm on actual hardware,
the algorithm should be bound by time, not number of iterations.

e Terminating the algorithm

It is assumed the algorithm has finished if no non-terminal tip is found by ran-
domly selecting a tip 100 times. The entire tree consists of millions of nodes, so
it is assumed an expandable node, i.e., a non-terminal tip, can always be found
for the chosen number of iterations. Therefore, this assumption is considered
valid. During simulations, it has not yet occurred that the algorithm finished
within the given number of iterations without finding a non-terminal tip. This
assumption can be removed if an efficient way to check whether all nodes were
expanded is found.

e Number of iterations
This algorithm produces a near optimal solution, given enough iterations are
done. However, if the decisions are according to expectations, it can be as-
sumed the number of iterations is sufficient. It should be investigated how many
iterations are needed to produce the optimal action.

e Tip selection method
In [42], it is also mentioned that tip selection can significantly improve per-
formance. The tip selection criterion that is used is based on probability of
occurrence of a state. This criterion can be changed to improve performance.
For example, in [42] tips are selected based on potential impact on the value of
an action.

If another decision maker is designed using the same architecture, the possibility of
using a partially observable MDP (POMDP) should be investigated. This means the

/CST Group 48

MSc thesis Concluding remarks

method for finding the optimal action will be different. Therefore, a different solver
than Anytime AO* might also be necessary, such as DESPOT, which was introduced
in [49].

For future research, it can be investigated how communication influences the perfor-
mance of the controller. In addition, scenarios with more vehicles can be considered.
It might be interesting to study the effect on traffic flow of having multiple AVs using
this decision maker in highway scenarios.

/CST Group 49

MSec thesis REFERENCES

References

1]

2]

W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making for au-

tonomous vehicles,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 1, pp. 187-210, 2018.

J. Ploeg, E. Semsar-Kazerooni, A. I. M. Medina, J. F. de Jongh, J. van de Sluis,

A. Voronov, C. Englund, R. J. Bril, H. Salunkhe, A. Arrue, et al., “Cooperative auto-
mated maneuvering at the 2016 grand cooperative driving challenge,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1213-1226, 2018.

F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “Mpc-based approach
to active steering for autonomous vehicle systems,” International Journal of Vehicle
Autonomous Systems, vol. 3, no. 2-4, pp. 265291, 2005.

G. Schildbach, M. Soppert, and F. Borrelli, “A collision avoidance system at intersec-
tions using robust model predictive control,” in Intelligent Vehicles Symposium (IV),
2016 IEFEE, pp. 233-238, IEEE, 2016.

X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness guarantees for the
composition of lane keeping and adaptive cruise control,” IEEE Transactions on Au-
tomation Science and Engineering, vol. 15, no. 3, pp. 1216-1229, 2018.

T. Korssen, V. Dolk, J. van de Mortel-Fronczak, M. Reniers, and M. Heemels, “Sys-
tematic model-based design and implementation of supervisors for advanced driver as-

sistance systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 2, pp. 533-544, 2017.

R. Malik, K. Akesson, H. Flordal, and M. Fabian, “Supremica—an efficient tool for

large-scale discrete event systems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5794-5799,
2017.

M. Fabian and A. Hellgren, “Plc-based implementation of supervisory control for dis-

crete event systems,” in Proceedings of the 37th IEEE Conference on Decision and
Control, vol. 3, pp. 3305-3310, IEEE, 1998.

J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-violating control
strategy synthesis with safety rules,” in Proceedings of the 16th International conference
on Hybrid systems: computation and control, pp. 1-10, ACM, 2013.

C. Kim and R. Langari, “Game theory based autonomous vehicles operation,” Interna-
tional Journal of Vehicle Design, vol. 65, no. 4, pp. 360-383, 2014.

M. Fusco, E. Semsar-Kazerooni, J. C. Zegers, and J. Ploeg, “Decision making for con-
nected and automated vehicles: A max-plus approach,” in Proceedings on the 88th IEEE
Vehicular Technology Conference, pp. 1-5, IEEE, 2018.

M. Fusco and M. Alirezaei, “Report - decision making for autonomous vehicles: a max-
plus approach,” unpublished.

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and linearity:
an algebra for discrete event systems. John Wiley & Sons Ltd, 1992.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon control for tem-
poral logic specifications,” in Proceedings of the 13th ACM international conference on
Hybrid systems: computation and control, pp. 101-110, ACM, 2010.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,”

in Proceedings of the 21st international conference on Machine learning, p. 1, ACM,
2004.

/CST Group 50

MSec thesis REFERENCES

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

Y. Guan, S. E. Li, J. Duan, W. Wang, and B. Cheng, “Markov probabilistic decision
making of self-driving cars in highway with random traffic flow: a simulation study,”
Journal of Intelligent and Connected Vehicles, vol. 1, no. 2, pp. 77-84, 2018.

S. Zhou, Y. Wang, M. Zheng, and M. Tomizuka, “A hierarchical planning and con-
trol framework for structured highway driving,” IFAC-PapersOnLine, vol. 50, no. 1,
pp- 9101-9107, 2017.

W. Liu, S.-W. Kim, S. Pendleton, and M. H. Ang, “Situation-aware decision making
for autonomous driving on urban road using online POMDP,” in Proceedings of the
2018 IEEE International Conference on Intelligent Vehicles Symposium, pp. 1126-1133,
IEEE, 2015.

N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard, “Game
theoretic modeling of driver and vehicle interactions for verification and validation of au-
tonomous vehicle control systems,” IEEE Transactions on Control Systems Technology,
vol. 26, no. 5, pp. 1782-1797, 2017.

J. Wei, J. M. Dolan, and B. Litkouhi, “Autonomous vehicle social behavior for high-

way entrance ramp management,” in Proceedings of the 2013 IEEFE Intelligent Vehicles
Symposium, pp. 201-207, IEEE, 2013.

V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive synthe-
sis from signal temporal logic specifications,” in Proceedings of the 18th international
conference on hybrid systems: Computation and control, pp. 239-248, ACM, 2015.

E. F. Camacho and C. Bordons, Model predictive control. Advanced textbooks in control
and signal processing. Springer-Verlag, London, 2007.

G. Naus, J. Ploeg, M. Van de Molengraft, W. Heemels, and M. Steinbuch, “Design and
implementation of parameterized adaptive cruise control: An explicit model predictive
control approach,” Control Engineering Practice, vol. 18, no. 8, pp. 882-892, 2010.

F. Borrelli, Forecasts, Uncertainty and Control in Autonomous Systems. At the occasion
of Manfred Morari’s 65th birthday and retirement from ETH, May 2016.

F. Fabiani and S. Grammatico, “A mixed-logical-dynamical model for automated driv-
ing on highways,” in Proceedings of the 2018 IEEE Conference on Decision and Control,
pp- 1011-1015, IEEE, 2018.

L. Fridman, B. Jenik, and J. Terwilliger, “Deeptraffic: Driving fast through dense traffic
with deep reinforcement learning,” arXiv preprint arXiv:1801.02805, 2018.

J. Zheng, K. Suzuki, and M. Fujita, “Predicting drivers lane-changing decisions using a

neural network model,” Simulation Modelling Practice and Theory, vol. 42, pp. 73-83,
2014.

L. Alvarez and R. Horowitz, “Safe platooning in automated highway systems part I:
Safety regions design,” Vehicle System Dynamics, vol. 32, no. 1, pp. 23-55, 1999.

J. A. Ligthart, J. Ploeg, E. Semsar-Kazerooni, M. Fusco, and H. Nijmeijer, “Safety
analysis of a vehicle equipped with cooperative adaptive cruise control,” IFAC-
PapersOnLine, vol. 51, no. 9, pp. 367-372, 2018.

E. Semsar-Kazerooni and J. Ploeg, “Interaction protocols for cooperative merging and
lane reduction scenarios,” in Proceedings of the 18th IEEE International Conference on
Intelligent Transportation Systems, pp. 1964-1970, IEEE, 2015.

G. v. Bochmann, M. Hilscher, S. Linker, and E.-R. Olderog, “Synthesizing controllers
for multi-lane traffic maneuvers,” in Proceedings of the International Symposium on De-

pendable Software Engineering: Theories, Tools, and Applications, pp. 71-86, Springer,
2015.

/CST Group 51

MSec thesis REFERENCES

[32]

I. Llatser, A. Festag, and G. Fettweis, “Vehicular communication performance in con-
voys of automated vehicles,” in Proceedings of the 2016 IEEFE International Conference
on Communications, pp. 1-6, IEEE, 2016.

J. Burrell, “How the machine thinks: Understanding opacity in machine learning algo-
rithms,” Big Data & Society, vol. 3, no. 1, pp. 1-12, 2016.

J. Hayward, Near misses as a measure of safety at urban intersections. Pennsylvania
Transportation and Traffic Safety Center, 1971.

A. Laureshyn, A. Svensson, and C. Hydén, “Evaluation of traffic safety, based on
micro-level behavioural data: Theoretical framework and first implementation,” Ac-
cident Analysis & Prevention, vol. 42, no. 6, pp. 16371646, 2010.

C. G. Cassandras and S. Lafortune, Introduction to discrete event systems. Springer
Science & Business Media, 2009.

P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM journal on control and optimization, vol. 25, no. 1, pp. 206-230, 1987.

L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nonblocking and safe control of
discrete-event systems modeled as extended finite automata,” IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 3, pp. 560-569, 2011.

R. S. Sutton and A. G. Barto, Introduction to reinforcement learning, vol. 135. MIT
press Cambridge, 1998.

M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 1994.

R. Bellman, “A markovian decision process,” Journal of Mathematics and Mechanics,
pp- 679-684, 1957.

B. Bonet and H. Geflner, “Action selection for MDPs: Anytime AO* versus UCT,” in
Proceedings of the 26th AAAI Conference on Artificial Intelligence, AAAT, 2012.

D. A. van Beek, W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. Van De
Mortel-Fronczak, and M. A. Reniers, “Cif 3: Model-based engineering of supervisory
controllers,” in Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pp. 575-580, Springer, 2014.

J. Lunze, “Qualitative modelling of linear dynamical systems with quantized state mea-
surements,” Automatica, vol. 30, no. 3, pp. 417-431, 1994.

M. Mitschke and H. Wallentowitz, “Lineares einspurmodell, objektive kenngréfien, sub-
jektivurteile,” in Dynamik der kraftfahrzeuge, ch. 4, Springer, 1972.

E. van Nunen, T. van den Broek, M. Kwakkernaat, and D. Kotiadis, “Implementation
of probabilistic risk estimation for VRU safety,” in Proceedings of the 8th International
Workshop on Intelligent Transportation, 2011.

M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic collision detection in

autonomous driving,” IEEFE Transactions on Intelligent Transportation Systems, vol. 10,
no. 2, pp. 299-310, 2009.

F. Remmen, I. Cara, E. de Gelder, and D. Willemsen, “Cut-in scenario prediction

for automated vehicles,” in Proceedings of the 2018 IEEE International Conference on
Vehicular Electronics and Safety, pp. 1-7, IEEE, 2018.

A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP planning with

regularization,” in Advances in neural information processing systems, pp. 1772-1780,
2013.

/CST Group 52

MSec thesis Time to collision measure

A Time to collision measure

In [35], a generic method for computing the time to collision (TTC) between to vehicles
is given. The computations are based on the observation that a two-vehicle collision
always consists of a corner of one vehicle hitting the side of another vehicle. This
gives 32 possible collisions (4 corners x 4 sides x 2 vehicles), assuming the vehicles
are rectangular. The TTC is then found by taking the lowest TTC for a moving line
section (side) and a moving point (corner).

A.1 Collision of line and point

(x?nZ’ lenQ)

'Ul.x".
(x?nl’ y?nl) S

o
0

(0, 49)

Figure A.1: A moving line and point, adapted from [35].

Given a moving point (z,,,) with velocity vector [v,,,,] ", the position at time ¢ can
be found by:

Tp = L) + Upat 1)
Yp = 3/2 + Upyt

where (xg, yg) is the original position of the point. Note that the velocity vector is given
in Cartesian coordinates here, whereas the state from (3) contains polar coordinates.
This conversion is considered trivial.

Similarly, for the endpoints of a moving line section between (2,1, Yin1) and (T2, Yin2),
with velocity [Upmgtmy] and initial positions (z9,,,30,,) and (z9,,,%0,), the positions
at time t are given by:

0 0
Tinl = T Vinazt Tina = T Unazt
{ Inl = Tppy + UL and { In2 = Tppg + U1 (22)

Yinl = Ypn1 + Vinyl Yinz = Yppo + Vinyl

Both the point and line section are shown in Figure A.1.

The slope k of the line can be found from the initial positions of the line section:

0 0
o Yz — Yina
. (23)
n2 Inl

/CST Group 53

MSec thesis Time to collision measure

The point p intersects the line when:

Yp — Y
Tp — Tinl

=k (24)

Because the slope for the line section between Inl and p is equal to the slope for the
line, and Inl is known to be on the line.

By substituting (21) and (22) in (24), the possible time of collision ¢.,; can be found.

_('Upy - Ulny) + k(Vpe — Ving)

teotl =

Note that this equation is undefined if the line is vertical, for then k = oo. In that
special case, a different equation is used:

coll (’Upm o ’Ulnl.>

Only relevant values for t.0ll, i.e., 0 < t.0ll < tpe, With ., = 6 are considered to
find the TTC.

The final positions of the line section and point are computed by substituting t = t..y
in (21) and (22). A collision only occurs when the point crosses the line within the
line section:

m2, it Yma = Ym

y . (25)
Yin1, Otherwise

8 8

2y i Tppa = T Yinl
i and
mm1, otherwise

/CST Group 54

MSec thesis Reward table

B Reward table

Below is a table showing the values of each reward feature in Figure 6.4.

Table B.1: Reward feature values for different actions. Each value is multiplied by A;. Ry
is not shown, for A\ is 0.

al Q MRy AapRap AavBRav AsRs MR AuBly AR
LCL,|104.16(55.176 0.019 0295 23574 0.796 21.996 2.300
Lk.|103.21|55.052 0.351 0.342 23.350 0.958 21.855 1.303
LCL4|102.47]54.304 0.000 0.143 23.617 0.859 21.182 2.363
Lkq|101.78|54.272 0354 0.150 23.616 0.955 21.155 1.273
LCL,|103.01|55.775 0.003 ~ 0.135 21.291 0.806 22.645 2.352
Lk,|102.80|55.838 0.330 0.130 21.579 0.838 22.722 1.360

/CST Group 55

	List of symbols
	Summary
	Introduction
	Literature review
	Control architectures
	Sequential planning
	Behavior-aware planning
	End-to-end methods
	Safety
	Conclusion

	Problem definition
	State
	Action
	Expected behavior
	Decision maker architecture

	Preliminaries
	Discrete event modeling
	Supervisory controller synthesis
	Markov decision process
	Finding an action
	Tree graph representation of an MDP
	Anytime AO*

	Safety stage
	Plant components
	Requirements
	Supervisory controller synthesis
	Horizon of safety check
	Action set reduction

	Optimality stage
	State
	Action
	Transition function
	Reward
	Anytime AO*

	Results
	Scenarios
	Controller comparison
	Discussion

	Concluding remarks
	Conclusions
	Recommendations

	References
	 Time to collision measure
	Collision of line and point

	 Reward table

