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Abstract

Mechanical ventilators are used for patients who cannot breathe (sufficiently) on their
own. In this thesis, controller design of mechanical ventilators is considered. The con-
trol goal is to ensure good pressure tracking performance, i.e., low overshoot, rise-, and
settling-time, of a pressure controlled mechanical ventilator for all possible patient types
that are either fully sedated or (partly) spontaneously breathing. The main challenge in
achieving this goal, is that the same mechanical ventilator is used on a wide variety of pa-
tients. Existing control strategies do not give the desired pressure tracking performance
for all combinations of hoses, patients and settings. Therefore, a different approach is
considered as a potential solution to improve the pressure tracking performance of me-
chanical ventilators.
Breathing has a repetitive nature and the target pressure of a mechanical ventilator is
periodic for fully sedated patients. In this thesis, repetitive control is applied to mechan-
ical ventilation to increase the pressure tracking performance by exploiting the repetitive
nature of breathing. Repetitive control learns a disturbance model by using informa-
tion from errors made in previous breaths and includes a disturbance model in the loop.
Therewith, asymptotic disturbance rejection is achieved and the tracking performance in
next breaths is increased.
Several repetitive controllers are designed and a comparison of their tracking perfor-
mance is made. Furthermore, the best repetitive controller is compared to existing con-
trollers in a simulation and experimental case-study. This case-study consists of fully
sedated patient scenarios and spontaneously breathing patient scenarios. Due to sponta-
neous breathing of a patient, an unknown (possibly) aperiodic disturbance is introduced
to the system. Several spontaneously breathing scenarios of interest are defined. The
tracking performance of the repetitive controller compared to the existing controllers
shows promising results for all the fully sedated patient- and spontaneously breathing
scenarios. The main (practical) challenge for repetitive control applied to mechanical
ventilation is triggered mechanical ventilation.

iii





Acknowledgments

This thesis is a result of many things: hard work, support of all kinds, in depth discus-
sions, relaxing, and so on. I am grateful to everyone who helped me during my gradua-
tion project, but I want to give special thanks to some people.

First of all, I want to thank my TU/e supervisors Tom Oomen and Nathan van de Wouw.
Thanks for all the feedback and critical view on my graduation project. I have learned a
lot from you and am very grateful for that.

Furthermore, I want to thank my DEMCON supervisors Joey Reinders and Bram Hun-
nekens. Thanks for all the fruitful discussions, daily supervision, and fun times. Your
passion for and knowledge about mechanical ventilation have helped me enjoy this grad-
uation project a lot. I also want to thank DEMCON, Macawi Respiratory Systems, for
giving me the opportunity for this graduation project.

Last but not least, I want to thank my friends and family for supporting me all the way,
even in the tough times. Very special thanks to my girlfriend, parents, brothers and
parents in law for the continuous support and encouragement throughout my years of
study. You helped me see the bigger picture and relax at times I needed it.

v





Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Mechanical ventilation background . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Control applied to mechanical ventilation . . . . . . . . . . . . . . . . . . . 3

1.2.1 State-of-practice control strategies . . . . . . . . . . . . . . . . . . . 3
1.2.2 State-of-the-art control strategies . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Envisioned solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Project goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 System Modeling 9
2.1 Patient-hose-blower model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Patient model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Patient-hose model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Blower model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Combining the patient-hose model with the blower . . . . . . . . . 14

2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Repetitive Control Theory 15
3.1 Iterative learning control and repetitive control . . . . . . . . . . . . . . . . 15
3.2 Basic principles of repetitive control . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Internal Model Principle . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Repetitive control in an existing control scheme . . . . . . . . . . . 17

3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Filter design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Learning filter design . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Robustness filter design . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Repetitive control design procedure . . . . . . . . . . . . . . . . . . 23

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Repetitive Control Applied to Fully Sedated Patient Scenarios 27
4.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Fully sedated patient scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Simulations on fully sedated patient scenarios . . . . . . . . . . . . . . . . 29

4.3.1 Filter design for mechanical ventilation . . . . . . . . . . . . . . . . 29
4.3.2 Simulation results for fully sedated patient scenarios . . . . . . . . 29

4.4 Repetitive control filter design for experiments . . . . . . . . . . . . . . . . 31
4.4.1 Repetitive controller design based on a first-principle model . . . . 32
4.4.2 Repetitive controller design based on a fit of an average FRF . . . . 34

4.5 Experiments on fully sedated patient scenarios . . . . . . . . . . . . . . . . 35
4.5.1 Comparison of different repetitive controllers . . . . . . . . . . . . 36

vii



viii Contents

4.5.2 State-of-practice control compared to repetitive control . . . . . . . 38
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Repetitive Control Applied to Spontaneously Breathing Patient Scenarios 41
5.1 Challenging scenarios for repetitive control applied to mechanical ventila-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.1 Target pressure variation scenario . . . . . . . . . . . . . . . . . . . 41
5.1.2 Spontaneously breathing patient scenarios . . . . . . . . . . . . . . 42

5.2 Considered spontaneously breathing patient scenarios . . . . . . . . . . . 44
5.3 Simulations of spontaneously breathing scenarios . . . . . . . . . . . . . . 45

5.3.1 Simulations of the periodic scenario . . . . . . . . . . . . . . . . . . 45
5.3.2 Simulations of the periodic scenario with a deep breath . . . . . . . 46
5.3.3 Simulations of the aperiodic scenario . . . . . . . . . . . . . . . . . 47

5.4 Experiments of spontaneously breathing scenarios . . . . . . . . . . . . . . 47
5.4.1 Experiments of the periodic scenario . . . . . . . . . . . . . . . . . . 48
5.4.2 Experiments of the periodic scenario with a deep breath . . . . . . 49
5.4.3 Experiments of the aperiodic scenario . . . . . . . . . . . . . . . . . 50

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions and Recommendations 53
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Blower clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Triggered mechanical ventilation . . . . . . . . . . . . . . . . . . . . 56
6.2.3 Aperiodic disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Internal delays 59



Chapter 1

Introduction

The human body relies on oxygen to stay alive. The body acquires oxygen via its respira-
tory system. The respiratory system ensures that the concentration levels of oxygen and
carbon dioxide in the blood are adequate. In critically ill patients, the human respiratory
system might fail, such that patients are unable to breathe (sufficiently) on their own. Me-
chanical ventilation is a treatment used to assist such patients. Mechanical ventilators are
operated by a physician and commonly used in an intensive care unit (ICU) or at home
for people with sleep apnea. An example of mechanical ventilation in an ICU setting is
shown in Figure 1.1a.

In this project, control of mechanical ventilators is considered. Existing control methods
can possibly be improved for certain patients and settings of the mechanical ventilator.
Therefore, an alternative approach is pursued as a potential solution to improve the pres-
sure support of mechanical ventilators. DEMCON, Macawi respiratory systems, devel-
ops respiratory modules, an essential part of a mechanical ventilator. An example of such
a respiratory module is shown in Figure 1.1b.

In Section 1.1, the background of mechanical ventilation is described in an engineering
context. Thereafter, in Section 1.2, it is described how control is applied to mechanical
ventilation. Subsequently, the research goal of this thesis are given in Section 1.3. Finally,
an outline of this thesis is given in Section 1.4.

1.1 Mechanical ventilation background

Often, a mechanical ventilator uses a blower to pressurize ambient air to ventilate a pa-
tient. Figure 1.2 gives a schematic overview of a mechanical ventilator, the hose, and the

(a) An example of mechanical ventilation. (b) An example of a respiratory module.

Figure 1.1. Example of mechanical ventilation and a respiratory module, [1].
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Figure 1.2. Schematic of a mechanical ventilation without a controlled expiration valve.
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Figure 1.3. A pressure-controlled breathing cycle.

patient. In this thesis, a mechanical ventilator with passive expiration, i.e., without a con-
trolled expiration valve, is considered. An intended leak ensures that the hose is flushed
from exhaled CO2-rich air, such that O2-rich air is inhaled.

Pressure-controlled ventilation (PCV) is considered in this thesis, see Figure 1.3. In PCV,
the minimum target pressure is the Positive End Expiratory Pressure (PEEP), which guar-
antees that there is always a positive pressure in the lungs, such that the alveoli (tiny air
sacs in the lung that allow gas exchange) do not collapse [16]. The Inspiratory Positive
Airway Pressure (IPAP) is the maximum target pressure. In PCV, the goal is to ensure
that the airway pressure paw follows a time-varying pressure target ptarget, see Figure 1.2.
This change in airway pressure induces a patient flow Qpat, in and out of the patient’s
lungs, see Figure 1.3. The desired airway pressure is achieved with a blower, i.e., the
actuator. The blower has a target pressure pcontrol and an outlet pressure pout, see Figure
1.2. By increasing the blower outlet pressure pout the pressure at the patient’s airway
paw is increased. The pressure difference between the blower outlet pressure pout and the
airway pressure paw induces an outlet flow Qout through the hose. Furthermore, the in-
tended leak near the patient’s mouth induces a leak flow Qleak. A target pressure profile,
and resulting airway pressure and patient flow of a full breathing cycle in PCV-mode are
shown in Figure 1.3.
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A patient can be fully sedated or a patient can breathe spontaneously. A fully sedated
patient cannot breathe on its own. Therefore, its respiration fully relies on the mechan-
ical ventilator. When a patient breathes spontaneously, the patient might be unable to
breathe sufficiently and, thus, requires some assistance from the ventilator. For sponta-
neously breathing patients, triggering is typically used in order to synchronize the pa-
tients breathing effort with the mechanical ventilator. The ventilator is triggered by the
patient’s breathing and supports it as needed. The mechanical ventilator triggers a res-
piration if the patient flow exceeds a physician-set threshold. Due to bad performance
of the mechanical ventilator, a respiration can be falsely triggered, i.e., airway pressure
overshoot caused by the controller might cause the flow threshold to be exceeded. If
this occurs too often, asynchrony between the patient and ventilator may result. Such
asynchrony is very uncomfortable for the patient and even associated with increased
mortality rates [3].

1.2 Control applied to mechanical ventilation

Control is applied to a mechanical ventilator in order to achieve sufficient pressure sup-
port. The control goal is to ensure good pressure tracking performance of a mechanical
ventilator for all possible patient types that are either fully sedated or (partly) breathe
spontaneously. The main challenge in achieving this goal is that the same mechanical
ventilator must deal with a wide variety of patients, hoses, and filters, i.e., large plant
variations. In Section 1.2.1, the considered state-of-practice control strategies are de-
scribed in detail. The state-of-practice controllers are used in practice by Macawi and are
used for comparison in Chapter 4 and 5. In Section 1.2.2, state-of-the-art control strate-
gies are presented. Thereafter, in Section 1.2.3, the envisioned solution to open issues of
the considered state-of-practice and state-of-the-art control strategies is presented.

1.2.1 State-of-practice control strategies

In this section, the considered state-of-practice controls strategies are described in de-
tail. The first considered state-of-practice controller is a unit feedforward (FF) controller,
i.e., the feedforward signal is equal to the target pressure ptarget, see Figure 1.4. An
internal controller in the blower ensures that for frequencies up to 10 Hz, the blower
target pressure pcontrol and blower outlet pressure pout are approximately the same, i.e.,
pcontrol ≈ pout. In Figure 1.6, the tracking performance of the unit feedforward controller
is shown. For mechanical ventilation, the tracking performance of the unit feedforward
controller might potentially be acceptable. However, the tracking performance is poor in
a control engineering context. A significant steady-state tracking error ∆p at the plateau
pressure (from 1-1.5 seconds and 3-4 seconds) is observed. This is caused by the pressure
drop over the hose.
The second considered state-of-practice controller is a linear (integral) feedback con-
troller. The unit feedforward controller and the internal blower controller are used. A
linear feedback controller C is added to decrease the tracking error that the feedforward
controller does not compensate for, see Figure 1.4. The linear feedback controller C is
tuned robustly based on FRF-measurements on mechanical test lungs to deal with large
plant variations, but also to handle delays in the system. The linear (integral) feedback
controller compensates for the pressure drop over the hose ∆p; however, significant pres-
sure overshoot occurs in some cases, see Figure 1.6.
The last considered state-of-practice controller is the hose resistance compensation con-
troller, see Figure 1.5. The unit feedforward controller and the internal blower controller
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Figure 1.4. Control scheme of the unit feedforward controller, including a linear feedback
controller applied to mechanical ventilation. For the unit feedforward control strategy
C = 0 and for the linear feedback control strategy C(s) = 6.285/s.
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Figure 1.5. Control scheme of the hose resistance compensation controller.

Figure 1.6. Airway pressure paw and patient flow Qpat for a state-of-practice controlled
breathing cycle.

are used. In addition, the pressure drop over the hose ∆p is compensated for. To com-
pensate for the pressure drop over the hose, the hose parameters should be known. The
hose parameters describe the relation between the outlet flow Qout and pressure drop
∆p = f (Qout). For this reason, an offline calibration is done to obtain an estimate of the
hose parameters. Thereafter, the measurement of Qout and the estimated hose parameters
are used to compute an estimate of the pressure drop ∆ p̂. In Figure 1.6, it is observed that
the hose resistance compensation partly improves the tracking performance compared to
the unit feedforward- and linear feedback controller. However, there is still some over
overshoot in the pressure response paw, and, additionally, the pressure build-up is not
sufficient. Moreover, for the hose resistance compensation, an offline calibration has to
be done before it is used. This increases the workload of physicians, which is undesired.
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1.2.2 State-of-the-art control strategies

Research has been done on controller design of mechanical ventilators. However, litera-
ture is limited, probably because of confidentiality of companies developing mechanical
ventilators. A brief overview of the relevant publications is given here.
In [14], variable-gain control is applied on mechanical ventilators. This is used to balance
the trade-off between fast pressure build-up and steady flow response, i.e., small flow
overshoot. It is shown that a variable-gain controller outperforms the state-of-practice
controllers in terms of tracking performance. However, the desired tracking performance
for the wide variety of patients is not reached. In [22], an online hose calibration is used
to estimate the hose resistance online by using measurements of paw, Qout, and pout in the
loop. The resulting tracking performance is the same as that of the (manual) hose resis-
tance compensation of Section 1.2.1. The main advantage of the online hose calibration is
that less effort by a physician is required. Drawbacks of this method are that the blower
dynamics and delays in the system are ignored. A repetitive Model Predictive Control
(MPC) approach is used to track a periodic reference volume in a multi-compartment res-
piratory system in [17]. The volume tracking performance is good. However, the hose,
filter, and air source are not taken into account. Besides, no experimental results, on me-
chanical test lungs, are shown. Therefore, it is unsure if this method works in practice.
In [24], Iterative Learning Control (ILC) applied to mechanical ventilation is investi-
gated. The method shows good tracking performance for a variety of patients (tested on
mechanical test lungs). Shortcomings, however, are that only fully sedated patients are
investigated and that the tracking performance can be even further increased. Finally,
adaptive control is used to improve the performance of mechanical ventilators over clas-
sical PID control methods in [8]. Experiments on mechanical test lungs show a significant
improvement in tracking performance for a wide variety of patients. However, the track-
ing performance can be further increased. The difference with [22], is that in [8] the whole
plant (hose and patient) is estimated, while only the hose is estimated in [22].

1.2.3 Envisioned solution

Although the state-of-the-art control strategies all improve the tracking performance com-
pared to the state-of-practice control strategies, the tracking performance can be increased
even further. Besides, spontaneously breathing patients are not taken into account, except
for the online hose calibration strategy. Improving the tracking performance is challeng-
ing, due to the following challenges:

• Patient and hose parameters are typically a priori unknown and may vary in time;
• No (unintentional) leakage information is available;
• The exact patient effort is unknown and may vary in time.

Breathing has a repetitive nature and, also, for fully sedated patients ptarget is the same for
every breath. Hence, the reference is periodic for every breath. To exploit the repetitive
nature of breathing, repetitive control, [18] and [25], can potentially be used. Repetitive
control adjusts the control input based on errors made in previous breaths. Repetitive
control learns a disturbance model by using information from errors made in previous
breaths and includes a disturbance model in the loop. Therewith, asymptotic distur-
bance rejection is achieved and the tracking performance in next breaths is increased.
Repetitive control is a data-driven control technique and no exact model of the system
is required. Therefore, it is expected that repetitive control can deal with the aforemen-
tioned challenges without requiring additional actions of a physician. In Figure 1.7, a
control scheme for a repetitive controller R applied to mechanical ventilation is shown.
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Figure 1.7. Control scheme for repetitive control applied to mechanical ventilation.

Repetitive control has been applied to a wide range of systems. In [25], repetitive con-
trol is applied to a tracking control problem of a Compact Disc player. A power sup-
ply to magnets of a synchrotron accelerator is controlled with repetitive control in [15].
Repetitive control also sees an application in industrial printers in [6]. For an extensive
overview of applications, see [12].

In [24], a similar control technique as repetitive control, namely Iterative Learning Con-
trol (ILC), is applied to mechanical ventilation. As described in Section 1.2.2, the main
shortcoming is that only fully sedated patients are assumed. Therefore, in this thesis,
spontaneously breathing patients are also considered. Furthermore, it is expected that
the tracking performance gain by using a learning control technique can be bigger.

1.3 Project goals

The goal of this project is to ensure good pressure tracking performance of a mechanical
ventilator for all patient types that are either fully sedated or (partly) breathe sponta-
neously. As observed in Section 1.2, previous control work does not give the desired
tracking performance for every combination of blower, hose, and patient. Therefore, in
the scope of this project, an alternative control approach is pursued, namely repetitive
control. The research goal of this thesis can be formulated as:
Investigate the potential and limitations of repetitive control applied to mechanical ventilation.

Several sub-questions are formulated and should be answered to reach this goal:
• How to design a repetitive controller that gives a good tracking performance of a

mechanical ventilator for fully sedated patient scenarios?
• How does the designed repetitive controller compare to existing control strategies

in:
– fully sedated patient scenarios?
– the presence of patient effort?

• Is it possible to apply repetitive control to triggered mechanical ventilation whilst
still obtaining a good tracking performance?

1.4 Thesis outline

This thesis is structured as follows. In Chapter 2, a plant model is derived that is used for
controller design and simulations. In Chapter 3, repetitive control theory is described.
The essentials, stability and the design methodology of repetitive control are described.
Subsequently, repetitive control is applied to a variety of fully sedated patient scenarios
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in Chapter 4. Both simulations and experiments are conducted to compare the tracking
performance of repetitive control with the state-of-practice controllers. In Chapter 5, the
challenge in applying repetitive control to spontaneously breathing patients is described.
Thereafter, a comparison of the tracking performance of repetitive control and the state-
of-practice controllers applied to mechanical ventilation of spontaneously breathing pa-
tients is given. Finally, in Chapter 6, conclusions are drawn and the research goal of
Section 1.3 is reflected upon. Also, recommendations for future work are given.





Chapter 2

System Modeling

In this chapter, a plant model is derived. This plant model is used for simulations and
controller design in Chapter 4 and 5. In Section 2.1, the plant model is derived. The plant
consists of a patient, hose-filter, and a blower-driven mechanical ventilator. Finally, this
chapter is summarized in Section 2.2.

2.1 Patient-hose-blower model

This section describes the plant model, consisting of a patient-, hose-filter-, and a blower
model. The plant model is divided into multiple subsystems, which are derived using
first-principle modeling. First, the patient model is given, consisting of the lungs and
airway, see Section 2.1.1. Thereafter, the hose-filter model is derived and combined with
the patient model, see Section 2.1.2. Subsequently, the blower model is given, see Section
2.1.3. Finally, in Section 2.1.4, the patient-hose model is combined with the blower model.
This results in the plant model without delays.

2.1.1 Patient model

The patient is modeled by combining a lung compliance model with an airway resistance
model. Both are modeled separately and, thereafter, the lung- and airway model are
combined, resulting in the patient model. A linear single-compartment model is used for
the patient model, see [2, Chapter 3].

Lung Model

A schematic of the lung is shown in Figure 2.1.
The lung model has a compliance, Clung, an internal pressure, plung, and the patient flow,
Qpat, is going in and out of the lungs. Compliance is inverse-stiffness, hence, a compliant
lung is a non-stiff lung and vice-versa. Clung gives the following relation between the
lung volume Vpat and the lung pressure plung:

plung
Qpat

Clung

Figure 2.1. Schematic of the lung.

9
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paw plung
Qpat

Rlung

Clung

Figure 2.2. Schematic of the patient, consisting of the lung and airway.

Clung =
Vpat(t)
plung(t)

. (2.1)

Substituting Vpat(t) =
∫

Qpat(t)dt in (2.1) and rewriting gives:

plung(t) =

∫
Qpat(t)dt
Clung

. (2.2)

Taking the derivative with respect to time of (2.2), leads to the linear differential equation
for the lungs:

ṗlung(t) =
Qpat(t)
Clung

. (2.3)

Patient airway model

The patient’s airway connects the mouth to the lungs and is modeled as a linear resis-
tance. A schematic representation of the airway and lungs is depicted in Figure 2.2. Since
Qpat in ventilation is typically small, it is valid to assume a linear airway resistance Rlung.
In this figure, Rlung is the resistance of the airway and Qpat is defined as:

Qpat(t) =
paw(t)− plung(t)

Rlung
. (2.4)

By substituting (2.4) in (2.3), the following differential equation for the lung pressure is
obtained:

ṗlung(t) =
paw(t)− plung(t)

ClungRlung
. (2.5)

2.1.2 Patient-hose model

During mechanical ventilation, the patient is connected to a hose-filter system. Together
this forms the patient-hose system, shown in Figure 2.3. Note that ambient pressure is
considered to be zero, since all pressures are defined with respect to the ambient pressure.
In the hose, a pressure drop ∆p = pout − paw occurs. In Figure 2.4, a measurement of
the pressure drop ∆p for positive outlet flows Qout is shown. Three least-squares fits are
made on the measurement data, a quadratic and two linear fits. The quadratic fit is of the
form
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Figure 2.3. Schematic of patient-hose system

Figure 2.4. A measurement and several fits of the pressure drop over the hose ∆p over the
outlet flow Qout.

∆p = RlinQout + RquadQout|Qout|. (2.6)

It is observed that the quadratic fit matches the measurement accurately. The linear fits
are of the form

∆p = RlinQout. (2.7)

The first linear fit is made for small flows, namely Qout < 100L/min, and the other linear
fit for large flows, namely Qout < 250L/min. It is observed that the linear fit for large
flows does not match the measurement accurately, however, the linear fit for small flows
matches the measurements significantly better for small flows. The hose-resistance Rlin
is modeled linear for control purposes.
The hose contains an intended leak near the patient to flush the system from exhaled,
CO2-rich, air such that O2-rich air is inhaled. The intended leak is also modeled as a lin-
ear resistance Rleak.

The hose-filter system and the patient are combined, by using conservation of flow, i.e.,
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the incoming flow is equal to the outgoing flow. This gives the following relation between
the flows in the system:

Qpat(t) = Qout(t)−Qleak(t). (2.8)

Where the patient flow Qpat(t) is defined in (2.4). Furthermore, the outlet flow Qout(t)
and the leak flow Qleak(t) are defined as:

Qout(t) =
pout(t)− paw(t)

Rlin
, (2.9)

Qleak(t) =
paw(t)
Rleak

. (2.10)

By substituting (2.4), (2.9), and (2.10) in (2.8), it follows that:

paw(t)− plung(t)
Rlung

=
pout(t)− paw(t)

Rlin
− paw(t)

Rleak
. (2.11)

Rewriting (2.11), gives

paw(t) =
RlinRleak

R̄
plung(t) +

RleakRlung

R̄
pout(t) (2.12)

with R̄ = RleakRlin + RleakRlung + RlinRlung.
By substituting (2.12) in (2.5), the patient-hose model is obtained

ṗlung(t) = −
Rleak + Rlin

R̄Clung
plung(t) +

Rleak

R̄Clung
pout(t). (2.13)

This differential equation describes the rate of change of the lung pressure, ṗlung(t), as a
function of the state plung(t) and input pout(t).

The considered measured output variables are Qpat(t) and paw(t). The output expression
for paw is given in (2.12). The expression for Qpat(t) is found by substituting (2.12) in
(2.4), resulting in

Qpat(t) = −
Rleak + Rlin

R̄
plung(t) +

Rleak

R̄
pout(t). (2.14)

State-space formulation

Here, the patient-hose model is written in state-space formulation. The patient-hose state
xph, input uph, and outputs yph are defined as:

xph := plung, uph := pout, and yph :=
[
paw Qpat

]T , (2.15)

respectively. This results in the state-space system:
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pout paw plung

Qleak

QpatQout

paw sensor tube

Rlin
Rlung

Rleak
Clung

pamb = 0

Hose-filter system Patient

paw sensor

Blower

pcontrol

Figure 2.5. Schematic of patient-hose system with blower.

ẋph = −Rleak + Rlin

R̄Clung︸ ︷︷ ︸
Aph

xph +
Rleak

R̄Clung︸ ︷︷ ︸
Bph

uph,

yph =
[

RlinRleak
R̄ −Rleak+Rlin

R̄

]T

︸ ︷︷ ︸
Cph

xph +
[

RleakRlung

R̄
Rleak

R̄

]T

︸ ︷︷ ︸
Dph

uph.
(2.16)

It is seen that Aph = −Rleak+Rlin
R̄Clung

< 0, since {Rlung, Clung, Rlin, Rleak} ∈ R>0. Therefore, the
obtained patient-hose system is asymptotically stable.

2.1.3 Blower model

The final part of the plant is the blower-driven mechanical ventilator, or simply a blower.
In Figure 2.5, it is seen that the plant consists of the blower and the patient-hose model.
The blower is an actuator with set-point pcontrol that creates an output pressure pout and,
therewith, an outlet flow Qout.
An internal controller is present in the blower. This internal controller ensures that for
frequencies up to 10 Hz, the blower target pressure pcontrol is approximately the same
as the blower outlet pressure pout, i.e., pcontrol ≈ pout. The blower, including internal
controller, is modeled as a second-order low-pass filter

B(s) =
pout(s)

pcontrol(s)
=

ω2
n

s2 + 2ζωns + ω2
n

, (2.17)

where B(s) is the transfer-function of the blower-model, ζ = 1 and ωn = 2π30 rad/s.
To combine the blower with the patient-hose model, (2.17) is rewritten into state-space
form. The blower states xb, input ub, and output yb are, defined as

xb ∈ R2, ub := pcontrol , and yb := pout, (2.18)
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respectively. This results in the following state-space system:

ẋb =

[
−2ωn −ω2

n
1 0

]
︸ ︷︷ ︸

Ab

xb +
[
1 0

]T︸ ︷︷ ︸
Bb

ub,

yb =
[
0 ω2

n
]︸ ︷︷ ︸

Cb

xb.
(2.19)

It is seen that λ1,2Ab
= −ωn < 0, since ωn ∈ R>0, where λ1,2Ab

are the eigenvalues of Ab.
Thus, the blower described by (2.17) is asymptotically stable.

2.1.4 Combining the patient-hose model with the blower

Here, the patient-hose model (2.16) is combined with the blower model (2.19). Note that
the output of the blower model is equal to the input of the patient-hose model. There-
fore, the plant model is derived by computing the cascade of the patient-hose model and
blower model. The states x, input u, and outputs y, of the plant model are defined as

x :=
[

xb
xph

]
, u := pcontrol , and y :=

[
paw Qpat

]T , (2.20)

respectively. This results in the following state space formulation:

ẋ =

[
ẋb
ẋph

]
=

[
Ab 0

BphCb Aph

]
︸ ︷︷ ︸

A

[
xb
xph

]
+

[
Bb
0

]
︸ ︷︷ ︸

B

u,

y =
[
paw Qpat

]
=
[
DphCb Cph

]︸ ︷︷ ︸
C

[
xb
xph

]
.

(2.21)

Since the patient-hose-blower system, i.e., the plant, is defined as a cascade connection of
two asymptotically stable LTI systems, the plant is asymptotically stable.

2.2 Summary

In this chapter, the plant model has been derived. The plant model consists of several sub-
models, namely a patient model, hose-filter model and a blower model. After deriving
models for each part of the plant, the models have been combined, obtaining the plant
model.



Chapter 3

Repetitive Control Theory

In this chapter, repetitive control theory is described in detail. In Section 3.1, a brief
comparison of Iterative Learning Control (ILC) and repetitive control is given. Then, in
Section 3.2, the basic principles of repetitive control are presented. Thereafter, in Section
3.3, the stability of repetitive control is analyzed. Subsequently, in Section 3.4, the de-
sign methodology of repetitive control is treated. Finally, this chapter is summarized in
Section 3.5.

3.1 Iterative learning control and repetitive control

In this section, a brief comparison of ILC, [26] and [20], and repetitive control, [18] and
[25], is given. Both ILC and repetitive control are typically used in dynamical systems
that operate repetitively, [19]. By learning from errors made in previous tasks, the track-
ing performance can be improved. In Figure 3.1a and 3.1b, a typical disturbance is given
that can be attenuated by ILC and repetitive control, respectively. An essential difference
between ILC and repetitive control are the requirements on the initial conditions. For
ILC, the initial conditions are equal for every trial x(0) = x(N) = x(2N) = x0 with
x0 ∈ R and N the trial length in samples. Iterative learning control resets the initial con-
dition after every trial and operates over independent iterations. Therefore, ILC consists
of a time- and trial-domain, i.e., it is a 2-D control structure. For repetitive control, the ini-
tial conditions x(0) = x0, however, x(N), x(2N), and x(3N) depend on previous inputs
since repetitive control does not reset after operation has started. Therewith, repetitive
controller is a 1-D feedback controller. Hence, classical feedback theory, e.g., Nyquist’s
stability criterion, applies to repetitive control. Since breathing does not reset after every
breath, repetitive control is used instead of ILC in this thesis.

15
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(b) Periodic disturbance that can be attenuated
by repetitive control.

Figure 3.1. Typical disturbances that can be attenuated by ILC and repetitive control, [4].

3.2 Basic principles of repetitive control

This section describes the basics of repetitive control. In Section 3.2.1, the Internal Model
Principle (IMP) is introduced, including illustrative examples to show the working prin-
ciple of the IMP. Thereafter, in Section 3.2.2, it is shown how to add repetitive control to
an existing control scheme.

3.2.1 Internal Model Principle

The basic idea of repetitive control was first shown in [15]. The fundamentals on stability
and controller design are shown in [11] and [28]. In essence, repetitive control is based on
the Internal Model Principle (IMP) [9]. The IMP states that asymptotic disturbance rejection
is achieved if a model of the disturbance generating system is included in a stable feedback loop.
Next, two illustrative examples are given to show the working principle of the IMP [4].
These examples are given in discrete-time, since the repetitive controllers in this thesis
are also designed in discrete-time.

Step disturbance

As an example of the IMP, consider a step disturbance:

d(k) =
{

1, for k ≥ 0
0, for k < 0

. (3.1)

By taking the z−transform of d(k), one finds that:

D(z) =
1

1− z−1 , (3.2)

where z is the discrete Laplace-variable.
In Figure 3.2 the model of a step-disturbance d(k) (3.2) is depicted in a block scheme. A
step-disturbance is given as input for one sample and, thereafter, the input is zero. It is
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z−1

Figure 3.2. Disturbance generating system for a step disturbance.

z−N

Figure 3.3. Disturbance generating system for an arbitrary periodic disturbance with
period N.

observed that the disturbance generating system, i.e., the discrete integrator, generates
the step-disturbance even after the input is zero. Furthermore, it is observed that the
disturbance is a periodic signal with period one.

Arbitrary periodic disturbance

Now consider an arbitrary periodic disturbance with period N. In that case the distur-
bance generating system, or disturbance model, is a series of integrators. This is visual-
ized in Figure 3.3. One period of a periodic disturbance with period N is put into a series
of integrators and, thereafter, the input is zero. It is observed that the series of integrators
generate the periodic disturbance with period N, even after the input is zero.

3.2.2 Repetitive control in an existing control scheme

This section describes how to include repetitive control in an existing control scheme.
Note that this is done in discrete-time throughout this thesis. In previous section it has
been shown that a series of integrators generates a periodic disturbance. If one adds
the series of integrators to an existing (asymptotically stable) control loop, as shown in
Figure 3.4, the series of integrators are an error-driven disturbance model. Therewith,
asymptotic rejection of periodic disturbances, e.g., a periodic reference r or periodic dis-
turbances d, is achieved. The repetitive controller R amplifies the error e at harmonic
frequencies, in which the fundamental frequency matches the inverse of the period of the
periodic disturbance, see Figure 3.5a. In terms of disturbance rejection, the repetitive con-
troller modifies the transfer from r to e, i.e., the sensitivity, see Figure 3.5b. It is observed
that, compared to the sensitivity without repetitive control, r is rejected at the harmonic
frequencies of the period of r. Therewith, asymptotic rejection of periodic disturbances
is achieved. Note that the control scheme needs to be (asymptotically) stable in order to
asymptotically reject the periodic disturbances. In Section 3.3, concrete mathematical ex-
pressions of the repetitive controller R and the sensitivity are given, including a stability
analysis of the closed-loop controlled system.

3.3 Stability

In this section, stability conditions of repetitive control are presented, resulting in a nec-
essary and sufficient-, and a sufficient stability condition, see [18]. In Figure 3.6, the same
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Figure 3.4. Repetitive control added on to a typical control scheme.

(a) Magnitude of the repetitive controller R. (b) Sensitivity function for add-on repetitive
control.

Figure 3.5. Essential transfer functions for a repetitive controller with period of r equal to
1 s.

control scheme as Figure 3.4 is shown, however, a learning filter L and robustness filter
Q are added to the repetitive controller. In Section 3.4, L and Q are explained in more
detail. In Figure 3.6, r is a periodic reference with period N, C is a feedback controller, H
is the plant, R is the repetitive controller, d is an input-disturbance, yRC is the output of
the repetitive controller, y is the output, and e is the tracking error.
The transfer function from the tracking error e to the output of the repetitive controller
yRC = Re is

R =
z−N LQ

1− z−NQ
. (3.3)
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Figure 3.6. Closed-loop system with add-on repetitive control, including learning filter L
and robustness filter Q.

An expression for the tracking error e = r− y is derived as follows:

e = (1 + HC(1 + R))−1(r− Hd) (3.4)

= (1 + HC + (1 + HC)(1 + HC)−1HCR)−1(r− Hd) (3.5)

= (1 + TR)−1︸ ︷︷ ︸
SR

(1 + HC)−1︸ ︷︷ ︸
S

(r− Hd) (3.6)

= SRS(r− Hd), (3.7)

where SR is called the modifying sensitivity and T = (1+ HC)−1HC = 1− S the compli-
mentary sensitivity with R = 0. It is assumed that the sensitivity S, the process-sensitivity
SH and the complementary sensitivity T are asymptotically stable due to design of C. Us-
ing this assumption and (3.7), it follows that the closed-loop is asymptotically stable if SR
is asymptotically stable.

By substituting (3.3) in SR, from (3.6), and rewriting, it is obtained that

SR =
1− z−NQ

1− z−NQ(1− TL)
. (3.8)

From (3.8), a necessary and sufficient stability condition for repetitive control is derived,
see Theorem 1 (see [18] Theorem 1 and 2 and [5]).

Theorem 1 (Necessary and sufficient stability condition for repetitive control) Assume S
and T are asymptotically stable. Then, SR is asymptotically stable if and only if the Nyquist plot
of −z−NQ(1− TL)

• makes no encirclements of the point -1, and
• does not pass through the point -1.

It is complex to see whether −z−NQ(1− TL) makes encirclements of the -1 point, due to
the following reasons:

• In most physical systems |S| > 1 for some frequencies, due to the Bode sensitivity
integral.

• z−N gives a 360◦ phase-shift every 1/NTs Hz, with Ts the sample-time.
Therefore, a sufficient condition for stability, based on the small-gain theorem, is used in
practice, see Theorem 2.
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Theorem 2 (Sufficient stability condition for repetitive control) Assume S and T are asymp-
totically stable. Then, SR is asymptotically stable for all N if

|Q(1− TL)| < 1, ∀z = eiω, ω ∈ [0, 2π),

which is a special case of the multivariable case, see [18] Theorem 4. Essentially, this
means that −z−NQ(1− TL) stays inside the unit-circle and, therewith, encirclements of
the -1 point never occur. An important difference between Theorem 1 and 2 is that The-
orem 2 holds for all values of N. Therewith, design based on Theorem 2 is independent
of N. For a fixed T, one should shape L and Q such that stability is ensured. In the next
section, design of L and Q is treated in more detail.

3.4 Filter design

This section describes the design methodology of the learning- and robustness-filter, L
and Q, respectively. In Section 3.4.1, design of the learning filter L is explained. There-
after, in Section 3.4.2, design of the robustness filter Q is explained. Illustrative examples
are given to show how L and Q affect stability and performance. Finally, in Section 3.4.3,
a typical design procedure for a repetitive controller is presented.

3.4.1 Learning filter design

In this section, design of the learning filter L is described in detail. From Theorem 2, it is
seen that if L = T−1 and Q = 1, then |Q(1− TL)| = 0. Hence, the closed-loop, containing
a repetitive controller, is asymptotically stable for every N. One cannot always simply
invert T to obtain L, however, due to the following reasons:

• If T is strictly proper, T−1 is improper and, therewith, non-causal. Non-causal fil-
tering requires knowledge of future outputs, which is unavailable;

• If T is non-minimum phase, T−1 is unstable. Including an unstable L to an existing
stable closed-loop, results in an unstable closed-loop.

To overcome these problems, several techniques have been developed in literature, such
as Zero Phase Error Tracking Control (ZPETC), [27], Non-minimum Phase Zeros Ignore
(NPZ-Ignore), [10], Extended Bandwidth Zero Phase Error Tracking Control (EBZPETC),
[29], and stable-inversion, [30]. In this thesis, ZPETC is used to compute an asymptoti-
cally stable and non-causal inverse of the complementary sensitivity T. Note that ZPETC
requires a (parametric) model to compute the non-causal inverse.
For a strictly proper T, T−1 is improper and, hence, non-causal. Non-causal filtering
requires knowledge of future outputs, which is unavailable. Therefore, ZPETC computes
a causal learning filter Lc. This causal Lc is used to obtain a non-causal learning filter

L = zp+dLc, (3.9)

where p is the relative degree of T and d is the number of samples delays in T. This
non-causal learning filter L can be implemented, since the repetitive controller contains a
delay of N samples, see Figure 3.6. Therefore, implementing the non-causal L is possible
for p + d ≤ N, since N can be replaced by N − (p + d). By computing L with (3.9), the
phase of TL is zero, i.e., zero-phase error between T and L, as depicted in both Bode plots
of Figure 3.7.
For a non-minimum phase T, i.e., T contains zeros outside the unit circle, T−1 is unstable.
To avoid instability of the inverse, ZPETC ignores the zeros outside the unit circle. There-
with, an approximate inverse of T is computed. In Figure 3.8, the error 2-norm ||e||2, or
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Euclidean norm, is shown for a minimum- and non-minimum phase system. The error
2-norm ||e||2 is defined as:

||e||2 =
√

∑
i
|ei|2, (3.10)

where i is the sample in a breath. In Figure 3.7a it is observed that the minimum phase
system yields an exact inverse of T. Hence, TL = 1 and, thus, (3.8), is zero for the har-
monics of the periodic disturbance. Therefore, the error 2-norm in Figure 3.8 converges
in 1 breath. For the non-minimum phase system, an approximate inverse is computed,
see Figure 3.7b. Hence, TL ≈ 1 and, thus (3.8), is approximately zero for the harmonics
of the periodic disturbance. Therefore, the convergence rate of the error 2-norm in Figure
3.8 is lower compared to the minimum phase system.

(a) For a minimum phase system, where C = 1
and H is the zero-order hold discretized

patient-hose system (2.16).

(b) For a non-minimum phase system, where
C(z) = 6.285 Ts

2
z+1
z−1 and H is the zero-order

hold discretized patient-hose-blower system
(2.21).

Figure 3.7. Bode plots of the inverse of T = CH/1 + CH, and the causal- and non-causal
L-filter.
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Figure 3.8. Error 2-norm of 10 breaths of the same minimum phase and non-minimum
phase system as Figure 3.7.

Handling aperiodic disturbances using a learning gain

Throughout this section, only periodic disturbances are considered. However, typically,
aperiodic disturbances are also present in a system. These disturbances are not periodic
with the buffer length N, such as noise. Aperiodic disturbances can contain all frequen-
cies and not necessarily harmonic frequencies of the periodic disturbance. In Figure 3.5b,
it is observed that for frequencies other than the harmonic frequencies of the periodic
disturbance, the sensitivity is often higher than 1. Therefore, aperiodic disturbances are
not rejected, but amplified by the repetitive controller. Therewith, the attenuation of the
aperiodic disturbances relies only on the linear feedback controller C. Since, C is tuned
for robustness, the tracking error e after convergence is non-zero in the presence of ape-
riodic disturbances.
A method to deal with amplification of aperiodic disturbances, is by using a learning
gain α, as follows

Lα = αL, (3.11)

where α ∈ [0, 1]. For α = 0 R = 0, thus, no learning occurs and for α = 1 L is equivalent
to Lα. Next, an example is used to show the influence of the learning gain.
In Figure 3.9a, it is observed that the sensitivity for the case where α = 0.5 is lower for
most frequencies compared to the case where α = 1. Note that α = 1 corresponds to the
case where L = Lα. The effect of the lower sensitivity is two fold:

• The sensitivity is lower for every harmonic of the periodic disturbance. Therewith,
the learning filter with learning gain Lα is not equal to an exact inverse of the com-
plimentary sensitivity of the true system, therefore, the convergence rate decreases,
see Figure 3.9b. The reduction in convergence rate is explained in the comparison
of the minimum- and non-minimum phase systems, see Figure 3.8.

• The sensitivity is also lower for most other frequencies than the harmonics of the pe-
riodic disturbance. Therewith, amplification of aperiodic disturbances is reduced.
Therefore, a lower error 2-norm is obtained upon convergence, see Figure 3.9b.

Throughout the rest of this thesis α = 1.
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(a) Sensitivity SRS for a repetitive controlled
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Figure 3.9. Influence of the learning gain α on the sensitivity SRS and error-norm of 75
breaths in the presence of aperiodic disturbances. The system used is the minimum phase
system of Figure 3.7a.

3.4.2 Robustness filter design

This section describes the design methodology of the robustness filter Q. Throughout
this section, the L-filter of Figure 3.7b is used. The previous section used a model of the
complementary sensitivity T. In practice, however, this model is never exact or available.
Therefore, in order to guarantee stability, Theorem 1 and 2 are typically used with a
measured Frequency Response Function (FRF) of the complementary sensitivity TFRF.
Since the L-filter is based on a (possibly non-exact) model of T, Theorem 2 might be
violated, i.e., Q|(1− TFRFL)| ≥ 1, ∀z = eiω with ω ∈ [0, 2π) and Q = 1.
To guarantee stability, one typically chooses Q as a low-pass filter, with cut-off frequency
fcut, see Figure 3.11a. Hence, Q 6= 1 at frequencies above ≈ fcut. Then, by using (3.8), one
can derive that the modified sensitivity SR 6= 0 for the harmonics of the periodic distur-
bance above fcut, see Figure 3.11a. From (3.7), it is observed that for SR 6= 0, the tracking
error e 6= 0. In other words, if Q 6= 1, the error 2-norm is non-zero after convergence, see
Figure 3.11b. Thus, the tracking performance is lower compared to the case that Q = 1.
However, if Q 6= 1, robustness is increased. Therefore, a performance vs. robustness
trade-off exists in designing the robustness filter Q.

Typically, Q is a non-causal zero-phase Finite Impulse Response (FIR) filter, which is im-
plemented by computing a causal FIR-filter Q and applying a forward shift of zpq . There-
with, Q is a zero-phase FIR-filter and, thus, no phase lag is introduced when filtering. See
Figure 3.10 for an example Qc and Q.
Since the control scheme already contains a buffer of length N, z−N , it is possible to use
non-causal L and Q, however, only for p + d + pq ≤ N. If this inequality is violated, one
requires knowledge of future values of the tracking error e, which are not a priori known.

3.4.3 Repetitive control design procedure

In this section, a typical design procedure of a repetitive controller is given. First, the
learning filter L is designed using ZPETC. For further details see Section 3.4.1. Thereafter,
|1 − TFRFL| is used to check if stability is guaranteed using Theorem 2. If the closed-
loop is asymptotically stable, the robustness filter Q can be unitary, which is advised if
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Figure 3.10. Example of a second-order causal FIR-filter Qc and a non-causal zero-phase
FIR-filter Q = zpq Qc, where pq is equal to half the filter order.

(a) Bode magnitude plots of the Q-filter and
sensitivity with Q = 1 and with Q 6= 1.

(b) Error 2-norm with- and without a Q-filter.

Figure 3.11. Sensitivity and tracking error comparison compared for the case with- and
without a Q-filter.

tuning for performance. See Section 3.4.2 for further details. If stability is not guaranteed,
a robustness-filter Q is designed to guarantee stability using Theorem 2. An example
of |1− TFRFL| and |Q(1− TFRFL)| are shown in Figure 3.12. It is seen that without Q-
filter stability is not guaranteed, since |1− TFRFL| ≥ 1 for some frequencies. However,
when using a 50th-order FIR-filter with cut-off frequency of 23 Hz, it is seen stability is
guaranteed, since |Q(1− TFRFL)| < 1 for all frequencies.

3.5 Summary

This chapter has described the repetitive control theory in detail. First, a brief compar-
ison of ILC and repetitive control has been given. From this comparison, it followed
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Figure 3.12. Bode magnitude plots of 1− TFRFL and Q(1− TFRFL) to check if the
closed-loop is asymptotically stable using Theorem 2.

that repetitive control should be used in application with mechanical ventilation instead
of ILC. Thereafter, the basic principles of repetitive control have been treated. The in-
ternal model principle has been described and illustrative examples have been given.
Thereafter, it has been shown how repetitive control is added upon an existing feedback
control loop. Thereafter, a necessary and sufficient-, and a sufficient stability condition
have been presented. Finally, it has been described how one can design a learning- and
robustness filter to shape the repetitive controller, such that the stability, and required
performance and robustness are obtained. It has been shown that if the learning-filter is
not based on an exact model of the system, the error 2-norm convergence rate decreases.
Furthermore, aperiodic disturbances are amplified by the repetitive controller. This am-
plification can be reduced by the use of a learning gain. Thereafter, it has been shown
that if a robustness-filter is used, the error 2-norm upon convergence increases and, thus,
performance decreases. However, robustness increases and, therefore, a performance vs.
robustness trade-off exists in designing Q.
In the next chapter, the theory from this chapter is applied to mechanical ventilation in
fully sedated patient scenarios.





Chapter 4

Repetitive Control Applied to Fully
Sedated Patient Scenarios

This chapter describes the results of repetitive control applied to fully sedated patient
scenarios. First, in Section 4.1, the measurement setup is described. Thereafter, in Sec-
tion 4.2, the fully sedated patient scenario descriptions are presented. In Section 4.3,
simulations on fully sedated patient scenarios are treated. Subsequently, in Section 4.4,
the repetitive controller design procedure for experiments is described. Then, in Section
4.5, experiments on fully sedated patient scenarios are described. Finally, this chapter is
summarized in Section 4.6.

4.1 Measurement setup

In this section, the measurement setup used in experiments is briefly described. In exper-
iments, the breathing simulator shown in Figure 4.1 is used. A schematic of the measure-
ment setup is shown in Figure 4.2. The hose is connected to the respiratory module and
the ASL 5000 breathing simulator. Data from the respiratory module is send via dSPACE
(dSpace Inc., Wixom, MI) to a computer in which the processing is done in Matlab (Math-
works, Natick, MA). The sampling frequency in the experiments is 500 Hz.

Breathing simulator

Respiratory
module

paw sensor
tubeHose

Figure 4.1. The ASL 5000 breathing simulator (IngMar Medical, Pitssburgh, PA) that is
used in experiments to emulate a patient.
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Figure 4.2. Schematic of the measurement setup.

Table 4.1. Patient-hose parameters and ventilation settings used in simulations and
experiments for every scenario.

Parameter Adult Pediatric Baby Unit
Rlin 4.97 4.97 4.97 mbar s / L
Rleak 43.12 43.12 43.12 mbar s / L
Rlung 5 50 50 mbar s / L
Clung 50 10 3 L/mbar ·10−3

Respiratory rate 15 20 30 breaths / min
PEEP 5 5 10 mbar
IPAP 15 35 25 mbar
Inspiratory time 1.5 1 0.6 s
Expiratory time 2.5 2 1.4 s

4.2 Fully sedated patient scenarios

This section presents the fully sedated patient scenarios considered in simulations and
experiments. Since a mechanical ventilator is used on a variety of patients, simulations
and experiments are done on several patient types. Each patient type has a different set-
ting of the mechanical ventilator. A patient type with the corresponding settings of the
mechanical ventilator are considered to be a scenario. The parameters used in simula-
tions and experiments for the considered scenarios are given Table 4.1.
In Table 4.1, Rleak and Rlin are obtained by measurement. Rleak is defined as the leak
resistance, Rlin is the hose resistance, Rlung is the resistance of the airway, and Clung is the
compliance of the lungs. For the definitions of PEEP (Positive End Expiratory Pressure),
IPAP (Inspiratory Positive Airway Pressure), and the inspiratory- and expiratory times,
see Figure 1.3.
The considered control strategies in the simulations and experiments are:

• Unit feedforward (FF), i.e., the feedforward signal is equal to the target pressure
ptarget;

• Linear feedback (FB), with C(z) = 6.285 Ts
2

z+1
z−1 obtained via Tustin’s method;

• Hose resistance compensation;
• Repetitive control.

In the former three an internal controller of the blower is used that ensures pcontrol ≈ pout
up 10 Hz. For more details see Section 1.2.1. Repetitive control contains unit feedforward
and the linear feedback controller C(z), but no internal controller of the blower. The
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Figure 4.3. Control scheme for repetitive control applied to mechanical ventilation.

control scheme with repetitive control is given in Figure 4.3. In Chapter 3, repetitive
control has been described in more detail.

4.3 Simulations on fully sedated patient scenarios

In this section, simulation results on fully sedated patient scenarios are presented. The
simulations are conducted to show the possible tracking performance gain of repetitive
control applied to fully sedated patient scenarios. The simulation results of all scenar-
ios are similar, therefore, simulations of only one scenario are shown. In Section 4.3.1, it
is described how the repetitive controller for mechanical ventilation in simulation is de-
signed. Thereafter, in Section 4.3.2 simulation results are given. Note that in simulations
the true system is equal to a zero-order hold discretized plant model (2.21) and no delays
are included in the system.

4.3.1 Filter design for mechanical ventilation

This section describes how the repetitive controller is designed for mechanical ventila-
tion. First, a learning filter is designed based on the plant model (2.21). Thereafter, a
robustness filter is designed. In Figure 4.4a, the complementary sensitivity T of Figure
4.3 for R = 0, is given. The learning filter L is designed by using ZPETC, see Section 3.4.1.
Figure 4.4b depicts the resulting causal- and non-causal L-filter, compared with the true
complementary sensitivity inverse T−1. It is seen that |L| 6= |T−1| for high frequencies.
This mismatch is caused by T being non-minimum phase and, therewith, the learning
filter L is approximately equal to T−1 as explained in Section 3.4.1.
In Figure 4.5, a Bode magnitude plot of |Q(1− TL)| with Q = 1, is shown. Using The-
orem 2, it is concluded that the closed-loop is asymptotically stable. Hence, a unitary
Q-filter yields an asymptotically stable closed-loop. This is as expected, since L was de-
signed based on an exact model of the system T, i.e., the system used for simulations. Be-
sides, the difference between |L| and |T−1| due to T being non-minimum phase is small.
In other words, the difference between the L-filter and the true inverse of the system T−1

is small and, therefore, a unitary Q-filter yields an asymptotically stable closed-loop.

4.3.2 Simulation results for fully sedated patient scenarios

This section presents the simulation results for fully sedated patient scenarios. The fil-
ters designed in the previous section are used in these simulations. In Figure 4.6, the
tracking performance and error 2-norm are compared for the state-of-practice controllers
and the repetitive controller. It is observed that the hose resistance compensation is the
best state-of-practice controller in terms of tracking performance. However, the repetitive
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(a) Complementary sensitivity T of the model
in Section 2.1.4.

(b) The inverse of T, and the causal- and
non-causal L-filter designed with ZPETC.

Figure 4.4. Bode plots for repetitive control design in simulation.

Figure 4.5. Bode magnitude plot of Q(1− TL).

controller has an even better tracking performance after convergence. The hose resistance
compensation fully compensates the pressure drop caused by the hose and, thus, when
assuming the blower dynamics as a unitary gain, perfect tracking is obtained. The blower
dynamics are only a unitary gain for frequencies up to 10 Hz. In practice, however, ptarget
has some frequency content above 10 Hz. Therefore, when using hose resistance com-
pensation without assuming blower dynamics as a unitary gain, an error remains, which
is observed in Figure 4.6. Repetitive control includes the hose- and blower dynamics in
learning. Since ptarget is periodic, hence, it is asymptotically rejected by the repetitive con-
troller, see Section 3.2.1. Therefore, the tracking performance of the repetitive controller is
better than that of the state-of-practice controllers. In Figure 4.7, the error for five consec-
utive breaths is depicted for the linear feedback- and repetitive controller. It is observed
that the repetitive controller, indeed, asymptotically rejects the periodic target pressure
ptarget and, thus the tracking error e reduces to zero.
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 5).

(b) Error 2-norm of five consecutive breaths.

Figure 4.6. State-of-practice controllers and repetitive control for the adult scenario in
simulation.

Figure 4.7. Tracking error e for five consecutive breaths for the adult scenario in
simulation.

4.4 Repetitive control filter design for experiments

In this section, repetitive controller design for experiments is explained. The repetitive
controller is designed such that it ensures closed-loop stability on a variety of patients.
Different repetitive controller designs are considered. First, in Section 4.4.1, the repetitive
controller is designed based on the first-principle model (2.21). Thereafter, in Section
4.4.2, a fit of an average FRF of the system is used to design the repetitive controller.
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Table 4.2. Average patient parameters

Scenario Rlung [mbar s / L] Clung [L / mbar] ·10−3

Adult 5 50
Pediatric 50 10
Baby 50 3
Average 35 21

Figure 4.8. The average pressure drop over the hose ∆p over the average output flow Qout
for both FRF-measurements compared to the hose characterization of Figure 2.4 for the
adult scenario. The FRF-measurements are done with an average airway pressure paw of
PEEP and IPAP.

4.4.1 Repetitive controller design based on a first-principle model

Here, the repetitive controller is designed based on a zero-order hold discretized version
of the first-principle model (2.21). In (2.21), no delays are taken into account. However,
the blower has an input delay of 8 ms. Additionally, in the patient-hose system, it takes
time for the pressure propagates through the paw sensor tube. Therefore, an output delay
of 16 ms is present in the patient-hose system. In this section, a repetitive controller is
designed on (2.21) without and with delays taken into account. Since the repetitive con-
troller is used on a variety of patients, the learning filter L is designed using the average
patient parameters of the considered patients, see Table 4.2.
In order to compare the models to the true system, FRF-measurements are performed.
In the modeling of Section 2.1.2, the hose resistance Rlin is assumed linear. In practice,
however, the hose resistance is quadratic. To linearize the model, FRF-measurements are
done at an average airway pressure of PEEP and IPAP, i.e., the maximum target pressures
during ventilation. Also see Figure 4.8. In total six FRF-measurements are done, two per
scenario. Using the response of all six TFRF, an average FRF is computed.
In Figure 4.9, a Bode plot of the average FRF, and the complimentary sensitivity T with-
out and with delays are shown. At frequencies below 7 Hz the models match the average
FRF. However, at frequencies above 7 Hz, a significant difference in magnitude exist,
since the models do not contain higher-order dynamics. The phase of the model with de-
lays matches the phase of the average FRF accurately, whereas the model without delays
does not.
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Figure 4.9. Complementary sensitivity of a model without and with delays, and an
average of complimentary sensitivity FRF measurements for all scenarios. The magnitude
difference in the zoom-plot between the model without and with delays is caused by
internal delays, see Appendix A.

Using the models without and with delays, learning filters are designed. In Figure 4.10,
the resulting non-causal L-filters are compared with the models. It is observed that a sig-
nificant difference in phase exist between L based on the model without and with delays.
This is as expected, since this phase difference is also present in the complimentary sensi-
tivity T without and with delays. It is also observed that for high frequencies |T−1| 6= |L|
for both the model without and with delays. This is due to the fact that the learning filter
L is approximately equal to T−1, since T is non-minimum phase, see Section 3.4.1.

Figure 4.10. Comparison of T−1 and the non-causal L-filter based on a model with- or
without delays.

To guarantee that the closed-loop system is asymptotically stable for both learning filters,
two robustness filters Q are designed. This is done by computing |(1− TFRFL)| for every
TFRF of all scenarios, i.e., not the average FRF, but all six TFRF are used. A 50th-order
low-pass FIR-filter is used as robustness filter Q and is tuned such that |Q(1− TFRFL)| is
just below 0 dB. In Figure 4.11, |Q(1− TFRFL)| is depicted for every TFRF, including the
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Q-filters. The cut-off frequency of the robustness filters are 7.5 and 23 Hz for the learning
filter L based on a model without and with delays, respectively. Thus, for L based on
a model with delays, the cut-off frequency of Q is significantly higher compared to L
based on a model without delays. This is as expected, since T with delays matches the
average FRF significantly better than T without delays, i.e., the model quality of T with
delays is better, see Figure 4.9. Due to a better model quality, |TFRFL| is closer to 1 for
a broader range of frequencies, hence, |1− TFRFL| is closer to zero for a broader range
of frequencies. Thus, the cut-off frequency of Q can be increased, whilst guaranteeing
closed-loop stability. In Figure 4.11 it is observed that for both L-filters, Theorem 2 is
satisfied. Therefore, the closed-loops are asymptotically stable.

(a) With L-filter based on a model without
delays (cut-off frequency 7.5 Hz).

(b) With L-filter based on a model with delays
(cut-off frequency 23 Hz).

Figure 4.11. |Q(1− TFRFL)| for a model based on a model without or with delays. TFRF is
measured and linearized for two average airway pressures per patient (PEEP and IPAP).

4.4.2 Repetitive controller design based on a fit of an average FRF

In this section, the repetitive controller is designed based on a fit of the average FRF.
Similar to Section 4.4.1, the average FRF is computed using the response of all six TFRF,
two FRF’s per scenario. All six FRF’s are shown in Figure 4.12. The fit is fourth-order
since a lower order fit decreases the quality of the fit with respect to the FRF significantly.
However, a higher-order fit results in a fit of a single measurement. Since robustness
with respect to plant variation is required, the order of the fit is not increased. In Figure
4.12, the complimentary sensitivity of the first-principle model with delays of Section
4.4.1, and a fourth-order fit Tf it of the average FRF are compared with the average FRF.
It is observed that the fit matches the FRF significantly better, especially for frequencies
above 7 Hz.
A learning filter L is designed based on Tf it using ZPETC. To guarantee closed-loop sta-
bility with this learning filter, two robustness filters Q are designed. Both Q-filters are
50th-order FIR-filters, however, the cut-off frequencies are different. The first Q-filter is
tuned such that |Q(1− TFRFL)| is as close to 0 dB as possible, resulting in a cut-off fre-
quency of 54 Hz, see Figure 4.13a. The second Q-filter is tuned such that the maximum
of |Q(1− TFRFL)| is ≈ −5 dB, resulting in a cut-off frequency of 23 Hz, see Figure 4.13b.
The latter is done to increase robustness of the controller with respect to plant variations.
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Figure 4.12. Complementary sensitivity of a model with delays, a fit on an average FRF
and an average of complimentary sensitivity FRF measurements for all scenarios.

This robustness is particularly desired for mechanical ventilation, since a wide variety of
patients is ventilated. In Figure 4.13, it is seen that Theorem 2 is satisfied for both Q-filters
and, thus, the closed-loops are asymptotically stable.

(a) With L-filter based on a fit and a high
cut-off frequency (54 Hz) for Q.

(b) With L-filter based on a fit and a low cut-off
frequency (23 Hz) for Q.

Figure 4.13. |Q(1− TFRFL)| for L based on a fit of an average FRF for two different
Q-filters. TFRF is measured and linearized for two average airway pressures per patient
(PEEP and IPAP).

4.5 Experiments on fully sedated patient scenarios

This section describes the experimental results of the fully sedated patient scenarios.
First, in Section 4.5.1, a comparison between all four repetitive controllers, designed in
previous section, is made. Thereafter, in Section 4.5.2, the state-of-practice control strate-
gies, described in Section 1.2.1, are compared with repetitive control. In all experiments
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Figure 4.14. Tracking performance and error 2-norm before- and after convergence of
repetitive control for the adult scenario in experiments.

the ASL 5000 breathing simulator (IngMar Medical, Pitssburgh, PA) is used, to emulate
the patient.

4.5.1 Comparison of different repetitive controllers

In this section, all four repetitive controllers designed in Section 4.4 are compared. The
main difference between the repetitive controllers of Section 4.4 how good the model,
on which the repetitive controllers are based, matches the true system. In this section, a
recommendation is made on which repetitive controller should be used in practice. In
Figure 4.14 different repetitive controllers are compared. Also, paw for the case where
the repetitive controllers have not start learning yet is included. It is observed that all
repetitive controllers significantly improve the tracking performance in terms of rise- and
fall-time, and over- and undershoot compared to the non-converged breath. However,
no clear difference between the repetitive controllers is observed from Figure 4.14.
In Figure 4.15, the error 2-norm is shown for all four repetitive controllers designed in
Section 4.4. Also, a lower bound on the error 2-norm is shown in Figure 4.15. This lower
bound is computed by predicting the performance that can be achieved when applying
repetitive control. For this prediction, the methodology given in [20] is used. First, Nexp
experiments without repetitive control are done, while the error for every breath, ej, j =
0, ..., Nexp − 1, is measured. Thereafter, the sample-mean me(k) is computed:

me(k) =
1

Nexp

Nexp

∑
j=0

ej(k), (4.1)

where k ∈ Z. Repetitive control is able to compensate for me(k), i.e., the periodic part of
the tracking error e. The maximal achievable performance after learning, i.e., the resid-
ual error or the aperiodic part of the tracking error e, is given as: ej(k) − me(k), j =
0, ..., Nexp − 1. A repetitive controller rejects periodic disturbances, however, e also has
an aperiodic part, which is not rejected by the repetitive controller. Therefore, the aperi-
odic part of e represents the maximal achievable performance after a repetitive controller
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Figure 4.15. Error 2-norm for different repetitive controllers and the lower-bound on the
error 2-norm, for the adult scenario in experiments.

Table 4.3. Average error 2-norm of last ten breaths and lower-bound of the error 2-norm
for all repetitive controllers and scenarios.

First-principle
no delays [mbar2]

First-principle
delays [mbar2]

Fit 23 Hz
[mbar2]

Fit 54 Hz
[mbar2]

||ej −me||2
[mbar2]

Adult 3.58 3.67 2.87 3.67 2.47
Pediatric 5.83 2.92 2.84 3.00 2.21
Baby 3.35 2.35 2.21 2.55 1.69
Average 4.25 2.98 2.64 3.07 -

has learned the periodic part of e. Thus, by computing ||ej(k)−me(k)||2, a lower-bound
on the error 2-norm for repetitive control is obtained.
Figure 4.15 shows that the convergence rate for the repetitive controllers based on fit
compared to the repetitive controllers based on a first principle model, is slightly higher.
This is as expected, since Section 4.4.2 already concluded that the fit matches the FRF
significantly better than the first principle models. Therefore, the learning filter based on
a fit approximates the true inverse of the system better and, hence, the convergence rate
is higher, see Section 3.4.1. In Table 4.3, the average error 2-norm of the last ten breaths
and ||ej(k)−me(k)||2, is given for all repetitive controllers and different scenarios.
Table 4.3 shows that the repetitive controllers based on the fit result in a significant dif-
ference in error 2-norm. However, based on Section 3.4.2, for a higher cut-off frequency
of the Q-filter one expects a decrease in the error 2-norm. However, the higher cut-off of
the robustness filter Q results in an increase in error 2-norm. This phenomenon can be
explained by considering the power spectral density (PSD) of the periodic and and ape-
riodic disturbances. In Figure 4.16, the PSD of ej(k)−me(k) and me(k) are shown for an
adult, including the locations of the cut-off frequencies for every Q-filter. For the adult,
it is observed that, ej(k) − me(k) has a higher power than me(k) for frequencies above
23 Hz. Hence, for the Q-filter with a cut-off frequency of 54 Hz, the repetitive controller
controller amplifies the aperiodic part of the disturbance more compared to the Q-filter
wit a 23 Hz cut-off frequency. Since repetitive control amplifies aperiodic disturbances,
see Section 3.4.1, a higher error 2-norm results upon convergence for the Q-filter with a
cut-off frequency of 54 Hz.
In Table 4.3, the lowest average error 2-norm for every scenario is achieved with the
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Figure 4.16. Power spectral density of the sample mean of the error, me(k), and residual
error after learning, ej(k)−me(k), compared to different cut-off frequencies of the Q-filter
for the adult scenario.

Table 4.4. Average error 2-norm of last ten breaths for state-of-practice and repetitive
controller for every scenario in experiments.

Unit feedforward
[mbar2]

Linear feedback
[mbar2]

Hose resistance
compensation [mbar2]

Repetitive control
[mbar2]

Adult 78.96 34.62 35.72 2.87
Pediatric 85.61 40.35 42.92 2.84
Baby 51.56 17.78 21.17 2.21

repetitive controller based on the fit with a cut-off frequency of 23 Hz for the Q-filter.
Also, Section 4.4.2 describes that this repetitive controller has more robustness with re-
spect to plant variations, compared to the other repetitive controllers. Therefore, it is
recommended to use the repetitive controller based on the FRF fit with the robustness
filter cut-off at 23 Hz.

4.5.2 State-of-practice control compared to repetitive control

This section gives a comparison of the state-of-practice control strategies, see Section
1.2.1, and the repetitive controller based on the fit with Q-filter with a cut-off frequency
of 23 Hz, see Section 4.5.1. The focus in this section is on comparing the tracking perfor-
mance of the state-of-practice controllers to the best repetitive controller.
In Figures 4.17, the tracking performance and error 2-norm of the state-of-practice control
strategies and repetitive controller are depicted in an experiment of the adult scenario.
The figure shows that repetitive control significantly improves the tracking performance
compared to the state-of-practice control strategies. It is complex to obtain a good rise-
and fall-time, and low over- and undershoot for the state-of-practice controllers, since
a higher rise-time typically increases the overshoot for the (linear) feedback controllers.
However, the repetitive controller succeeds in having a significant better rise- and fall-
time, and low over- and undershoot. It is also observed that no overshoot occurs in the
patient flow Qpat for the repetitive controller.
In Table 4.4, the average error 2-norm is given for the state-of-practice controllers and
repetitive control for every scenario. It is observed that the repetitive controller outper-
forms the state-of-practice controllers significantly with respect to tracking performance.
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 20).

(b) Error 2-norm of 20 breaths.

Figure 4.17. State-of-practice control and repetitive control for the adult scenario in
experiments.

4.6 Summary

In this chapter, repetitive control has been applied to fully sedated patient scenarios.
First, the measurement setup has briefly been described. Second, the fully sedated pa-
tient scenarios have been defined. To show the working principle of repetitive control
applied to fully sedated patient scenarios, simulations have been done. Thereafter, sev-
eral repetitive controller designs have been discussed. Using these repetitive controllers,
experiments have been conducted. A comparison based on tracking performance and
robustness of each repetitive controller has been presented. One repetitive controller has
been chosen to be used in further analysis. Thereafter, this repetitive controller has been
compared to the state-of-practice controllers. This comparison has shown that repetitive
control increases the tracking performance significantly for every fully sedated patient
scenario.





Chapter 5

Repetitive Control Applied to
Spontaneously Breathing Patient
Scenarios

This chapter describes the results of repetitive control applied to spontaneously breath-
ing patient scenarios. In Chapter 4, fully sedated patients are considered. Although a
large population of patients is fully sedated, another large population of patients is not;
they can breathe spontaneously. In Section 5.1, challenging scenarios for repetitive con-
trol applied to mechanical ventilation are identified. Thereafter, in Section 5.2, scenarios
considered in this chapter are described in more detail. Then, the simulation- and exper-
imental results of repetitive control applied to these scenarios are presented in Section
5.3 and 5.4, respectively. Finally, this chapter is summarized in Section 5.5. Throughout
this chapter, the patient-hose parameters and ventilation settings of the adult scenario of
Chapter 4 are used, see Table 4.1. Additionally, the same measurement setup is used in
experiments, see Section 4.1.

5.1 Challenging scenarios for repetitive control applied to me-
chanical ventilation

In this section, challenging scenarios for repetitive control applied to mechanical venti-
lation are described. For fully sedated patient scenarios, repetitive control achieves sig-
nificantly better tracking performance than the state-of-practice controllers, as shown in
Chapter 4. In the fully sedated patient scenarios the following assumptions are made:

• the periodic target pressure profile ptarget does not vary during ventilation;
• the patient does not breathe spontaneously.

In practice, however, the pressure profile ptarget can change during ventilation, i.e., when
a physician changes settings. Furtheremore, a patient often breathes spontaneously, i.e.,
when he/she is not fully sedated. Therefore, in this section, scenarios are presented in
which these assumptions do not hold. Also, the challenges for repetitive control that are
introduced by relaxing these assumptions are described. First, in Section 5.1.1, the chal-
lenges for repetitive control applied to mechanical ventilation with a change in target
pressure profile are presented. Thereafter, the challenges for repetitive controlled venti-
lation of a spontaneously breathing patient are described in Section 5.1.2.

5.1.1 Target pressure variation scenario

If a physician changes the settings of the mechanical ventilator, the target pressure ptarget
changes. This is considered an aperiodic disturbance in repetitive control. The following
settings are typically changed by a physician, also see Figure 5.1:

• PEEP or IPAP, i.e., the pressure plateaus during in- or expiration, respectively;

41
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Figure 5.1. Two examples of target pressures ptarget.

• Respiratory rate, i.e., the amount of breaths per minute;
• The ratio between the inspiratory time and the expiratory time;
• Rise- and fall-time, i.e., the time it takes for pressure to rise from PEEP to IPAP or

to fall from IPAP to PEEP, respectively.
The challenge for repetitive control with a changing target pressure ptarget, is that the
resulting error due to the new target pressure and, therewith, input to compensate this
error, are not learned by the repetitive controller yet. In other words, the internal model
learned by the repetitive controller is significantly different than the disturbance generat-
ing system, see Section 3.2.1. Therefore, the tracking performance decreases significantly.
A solution to this challenge is to reset the repetitive controller after a target pressure vari-
ation has occurred. Therewith, the repetitive controller restarts the learning process for
the new target pressure. In Section 4.5.2, it is shown that the error 2-norm converges in
approximately six breaths for the considered scenarios. These six breaths of converging
are considered negligible compared to the typical 700-900 breaths per hour of a mechan-
ical ventilator for the considered patients. Therefore, no further research is done in to
the challenge for repetitive control due to a target pressure variation of the mechanical
ventilator. It is recommended to reset the repetitive controller and restart the learning
process.

5.1.2 Spontaneously breathing patient scenarios

This section describes the challenges for repetitive control if a patient is allowed to breathe
spontaneously, i.e., patient effort is included in ventilation. For spontaneously breathing
patients, ventilation modes that use triggering to synchronize the mechanical ventilator
to the patient’s respiratory rate are used. The most common mode of triggering is using
patient flow triggers. A pressure controlled ventilator triggers if the patient flow Qpat ex-
ceeds a physician-set threshold, a typical threshold for an adult is 2 L/min. With such a
trigger, the mechanical ventilator determines when to start or stop in- and/or expiration.
Spontaneous breaths are a result of a change in muscle activity of the patient, e.g., con-
traction of the diaphragm. The pressure induced by the muscles of the patient is defined
as the patient effort pmus. Due to patient effort, the lung pressure plung is changed.
For spontanenously breathing patients many different scenarios exist. It is assumed that
a spontaneously breathing patient scenario consists of the following three main elements,
which all have two options:
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(a) Untriggered mechanical ventilation. (b) Triggered mechanical ventilation.

Figure 5.2. Examples of different forms of mechanical ventilation with periodic patient
effort that is constant in size for each breath.

1. Ventilation mode:
(a) without triggering.
(b) with triggering.

2. Patient effort timing:
(a) periodic, i.e., the same length for each spontaneous breath such that the period

length of the mechanical ventilator is an integer multiple of the length of a
spontaneous breath.

(b) aperiodic, i.e., a different length for each spontaneous breath.
3. Patient effort amplitude:

(a) constant for each breath.
(b) changes randomly, within certain bounds, for each breath.

A total of 8 possible combinations, i.e., scenarios, exist. See Figure 5.2a and 5.2b for exam-
ples of triggered- and untriggered mechanical ventilation, respectively. Next, a distinc-
tion is made between the scenarios for ventilation modes without and with triggering.
This distinction is made, since the scenarios without triggering consider only the influ-
ence of the patient effort on the pressure tracking, while the target pressure ptarget does
not change. The scenarios with triggering, however, also consider a change in the target
pressure ptarget due to triggering.

In mechanical ventilation without triggering, the target pressure ptarget is periodic. How-
ever, the spontaneous breaths of the patient introduce an unknown (possibly) aperiodic
disturbance pmus to the system. The challenge for repetitive control lies in the fact that
pmus is possibly aperiodic. As explained in Section 3.4.1, aperiodic disturbances are often
amplified by the repetitive controller, decreasing the tracking performance. In Section
5.2, mechanical ventilation without a triggered mode is discussed in more detail.

In mechanical ventilation with triggering, the start of inspiration and expiration are de-
termined by a trigger. Therewith, the timing of ptarget is unknown and possibly varying
for each breath. Hence, it can not be assumed that ptarget is periodic for each breath.
The latter decreases the tracking performance, as explained in the previous paragraph.
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For ventilation modes with triggering, the disturbance pmus is also present in the sys-
tem. Hence, the challenge that exist for ventilation modes without triggering, also exist
for ventilation modes with triggering. In this thesis, only ventilation modes without
triggering are considered, see Section 5.2. Therefore, no further research is done in the
challenges for repetitive control applied to triggered mechanical ventilation.

5.2 Considered spontaneously breathing patient scenarios

This section describes the spontaneously breathing patient scenarios that are considered
in this chapter. As stated in previous section, only ventilation without triggering is con-
sidered. The following three scenarios for ventilation of spontaneously breathing patients
are considered:

1. Periodic scenario, in which the spontaneous breaths have the same respiratory rate
and amplitude for each breath. Also, the respiratory rate is the same as the me-
chanical ventilator. The results on this scenario are presented in Sections 5.3.1 and
5.4.1.

2. Periodic scenario with a deep breath, which is the same as the first scenario, how-
ever, every sixth breath is a "deep" breath. During this deep breath, the patient effort
pmus increases by 30 % in amplitude. The results on this scenario are presented in
Sections 5.3.2 and 5.4.2.

3. Aperiodic scenario, in which the spontaneous breaths have a different respira-
tory rate (random between 12-15 breaths/min), but a constant amplitude for each
breath. The results on this scenario are presented in Sections 5.3.3 and 5.4.3.

For all these scenarios, the tracking performance of the state-of-practice control strategies
and repetitive control are compared in a simulation and experimental case-study, see Sec-
tion 5.3 and 5.4, respectively.

In Table 5.1, the parameters of the patient effort are given for each scenario. The percent-
age are given as a percentage of the time of a full respiratory cycle. In Figure 5.3, the
patient effort pmus profile and corresponding target pressure is shown for each scenario.

Table 5.1. Patient effort parameters for each scenario.

Parameter Periodic Deep breath Aperiodic
Respiratory rate [breaths/min] 15 15 12-15
Pressure rise % [-] 15 5 5
Pressure fall % [-] 5 5 5
Constant pressure % [-] 0 0 0
Amplitude [mbar] 6 6 or 7.8 6
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Figure 5.3. Patient effort profiles for each scenario.

The state-space defined in Section 2.1.4, including the disturbance pmus, is given as fol-
lows.

ẋ =

[
ẋb

ṗlung

]
= A

[
xb

plung

]
+ Bpcontrol + ṗmus,

y =
[
paw Qpat

]
= C

[
xb

plung

]
.

(5.1)

Consider plung as the solution to (5.1). Then, pmus influences the lung pressure plung. The
lung pressure plung and airway pressure paw are directly related via (2.12). Therefore, the
disturbance pmus directly affects the airway pressure paw.

5.3 Simulations of spontaneously breathing scenarios

In this section, the simulation results of spontaneously breathing scenarios are presented.
These results are used to compare the state-of-practice controllers with the repetitive con-
troller from Section 4.3.1 in simulations. In simulations, an L-filter designed based on an
exact model of the true system, i.e., the system used for simulations, and a unitary Q-filter
are used. Also, a breathing simulator based on the ASL 5000 breathing simulator (IngMar
Medical, Pitssburgh, PA), i.e., the breathing simulator used in experiments, is used to ob-
tain different patient effort pmus profiles. First, in Section 5.3.1, the periodic scenario is
discussed. Thereafter, in Section 5.3.2, the periodic scenario with a deep breath scenario
is discussed. Finally, the aperiodic scenario is discussed in Section 5.3.3.

5.3.1 Simulations of the periodic scenario

Here, the simulation results of the periodic scenario are presented and discussed. In Fig-
ure 5.4, the airway pressure and patient flow of the last breath, and the error 2-norm for
all 25 breaths is given for the state-of-practice controllers and repetitive controller. It is
observed that the repetitive controller has significant better tracking performance than
the state-of-practice control strategies. This is as expected, since the same conclusion is
drawn in Section 4.3.2 and, in this section, the only difference is that a periodic distur-
bance is injected in the system. The periodic disturbance has the same period as the
buffer of the repetitive controller and, therefore, is rejected by the repetitive controller.
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 25).

(b) Error 2-norm of 25 breaths.

Figure 5.4. State-of-practice control and repetitive control for periodic scenario in
simulations.

Therefore, the tracking error is fully suppressed. Note that the patient flow and airway
pressure are significantly different from the case without patient effort, see Section 4.3.2.

5.3.2 Simulations of the periodic scenario with a deep breath

This section gives the simulation results of the periodic scenario with a deep breath sce-
nario. Compared to Section 5.3.1, the only difference is that a deep breath occurs every
sixth breath. In Figure 5.5, the airway pressure and patient flow during a deep breath,
and the error 2-norm for all 25 breaths is given for the state-of-practice controllers and
repetitive controller. Due to the deep breath the tracking performance decreases for all
control strategies except the hose resistance compensation. Note that the amplitude of the
decrease in tracking performance is determined by the amplitude of the deep breath. The
disturbance pmus changes the airway pressure paw. If the airway pressure paw changes,
the patient flow Qpat changes via (2.4). Due to a change in patient flow Qpat, the out-
let flow Qout changes via (2.8). The hose resistance compensation uses a measurement
of the outlet flow Qout to determine its control input. No delays are present in simu-
lation and the hose resistance estimation is exact. Therefore, the tracking performance
of the hose resistance compensation controller does not change in the presence of the
disturbance pmus, in theory. For the repetitive controller, the error 2-norm increases for
the deep breath and the breath thereafter. This is explained as follows. Because the L-
filter is based on an exact model of the true system, the error 2-norm converges in one
breath. Therewith, the repetitive controller learns the error caused by the deep breath in
one breath. However, during the breath after the deep breath, the disturbance pmus is of
normal size. Since the repetitive control output is based on the deep breath, a tracking
error is introduced. However, since pmus does not change in the next breaths, the error 2-
norm converges to zero again. This process occurs during every deep breath , i.e., every
sixth breath. Although the tracking performance for the repetitive controller decreases
during a deep breath, the repetitive controller has the lowest error 2-norm compared to
the state-of-practice controllers.
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(a) Airway pressure paw and patient flow Qpat
during a deep breath (breath 23).

(b) Error 2-norm of 25 breaths.

Figure 5.5. State-of-practice control and repetitive control for periodic scenario with a
deep breath in simulations.

5.3.3 Simulations of the aperiodic scenario

This section gives the simulation results of the aperiodic scenario. In Figure 5.6, the air-
way pressure and patient flow of the last breath, and the error 2-norm for all 25 breaths is
given for the state-of-practice controllers and repetitive controller. It is observed that the
hose resistance compensation has the best tracking performance compared to the other
state-of-practice controllers and repetitive controller. Also, the tracking performance of
the hose resistance compensation controller is not affected by the disturbance pmus, see
Section 5.3.2. The error 2-norm of the repetitive controller converges to a bound of ±10
mbar2 around ≈ 20 mbar2. This increase in error 2-norm is expected, since the repetitive
controller has a constant buffer length, namely 2000, i.e., the number of samples in ptarget.
However, the disturbance pmus changes randomly in length, between 2000-2500 samples,
for each breath. Therefore, the disturbance pmus is aperiodic with the period length N,
which is not rejected by the repetitive controller, but even amplified. Hence, the attenua-
tion of the aperiodic disturbance pmus relies only the linear feedback controller C. Since C
is tuned for robustness, the aperiodic disturbance pmus affects the tracking performance
significantly. Therefore, the error 2-norm does not converge to zero, even though a uni-
tary Q-filter is used. A possible solution to reduce amplification of the aperiodic distur-
bance pmus, is to use a learning gain α as explained in Section 3.4.1. Therewith, however,
the convergence rate of the error 2-norm decreases. No further research is done on the
influence of a learning gain on aperiodic patient effort.

5.4 Experiments of spontaneously breathing scenarios

This section presents the experimental results of the spontaneously breathing scenarios.
These results are used to compare the state-of-practice controllers and the repetitive con-
troller in experiments. During all experiments the best repetitive controller of Section
4.5.2, i.e,. based on a fit of an average FRF tuned with slightly more robustness, is used.
In all experiments, the ASL 5000 breathing simulator (IngMar Medical, Pitssburgh, PA)
is used, to emulate the patient with spontaneous breathing activity, see Section 4.1. In
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 25).

(b) Error 2-norm of 25 breaths.

Figure 5.6. State-of-practice control and repetitive control for aperiodic scenario in
simulations.

Section 5.4.1, the periodic scenario is discussed. Subsequently, the periodic scenario with
a deep breath is discussed in Section 5.4.2. Finally, in Section 5.4.3, the aperiodic scenario
is discussed.

5.4.1 Experiments of the periodic scenario

Here, the experimental results on the periodic scenario are shown. In Figure 5.7, the air-
way pressure and patient flow of the last breath, and the error 2-norm for all 25 breaths
is given for the state-of-practice controllers and repetitive controller. Using the same
methodology as Section 5.3.1, it is observed that the repetitive controller achieves sig-
nificantly better tracking performance than the state-of-practice controllers. However,
blower clipping occurs during expiration for all controllers, except the feedforward con-
troller, indicated by the gray area in Figure 5.7a. This blower clipping is caused by the
fact that the blower rpm has a (physical) lower-bound of 1000 RPM. During the blower
clipping, the controller desires for a rotational speed of the blower lower than 1000 RPM
to decrease the patient flow Qpat fast enough to ensure a good pressure tracking per-
formance. However, the blower is clipped at 1000 RPM. All controllers, except the unit
feedforward controller, try to compensate for the error present at the time the blower clips
since feedback is used. However, the blower cannot physically turn slower. Therefore,
the tracking error cannot be rejected. Hence, a bad airway pressure tracking performance
results. Compared to the fully sedated adult scenario of Section 4.5.2, it is observed that
the patient flow Qpat for the periodic patient effort scenario is significantly higher. Also,
the pressure fall-time is unchanged in the periodic scenario. Thus, the blower needs to
decrease the higher patient flow in the same time to ensure good pressure tracking per-
formance in the periodic scenario. This is only achieved if the blower turns slower.

In the repetitive controller, the blower input pcontrol during clipping keeps getting lower
with every breath, due to the learning process. This is known as the windup problem [23],
which is caused by the fact that the repetitive controller consists of a series of integrators.
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 25).

(b) Error 2-norm of 25 breaths.

Figure 5.7. State-of-practice control and repetitive control for periodic scenario in
experiments.

During actuator saturation, the integrators keep integrating, i.e., the repetitive controller
keeps learning. However, the actuator is not reacting to the change in input, since it has
already reached its boundary value. Therefore, pcontrol keeps growing unbounded, and
pout is not following pcontrol , see Figure 5.8. It is undesired that pcontrol grows unbounded
due to the following. For a moment, consider a scenario where the blower has clipped
and, therewith, pcontrol has grown very large. Now assume the patient effort disappears,
which means the blower would not clip for a repetitive controller that just starts learning,
e.g., see Figure 4.17. However, since the repetitive controller has already learned based
on a system with the patient effort, pcontrol is very large. Therefore, the blower still clips
and in order to have effect on the pressure tracking, pcontrol first needs to decrease again,
which cannot occur instantaneously.

Although blower clipping occurs for every controller, except the feedforward controller,
the repetitive controller gives a significantly better tracking performance than the state-
of-practice controllers. Therefore, it is advised to use the repetitive controller in the case
of periodic patient effort.

5.4.2 Experiments of the periodic scenario with a deep breath

In this section, the experimental results of the periodic scenario with a deep breath are
presented. In Figure 5.9, the airway pressure and patient flow during a deep breath, and
the error 2-norm for all 25 breaths is given for the state-of-practice controllers and repet-
itive controller. For this scenario, blower clipping also occurs for every controller, except
the feedforward controller. In Figure 5.9a, the gray area indicates where blower clipping
occurs. For further details on blower clipping, see Section 5.4.1. In theory, the tracking
performance of the hose resistance compensation controller is not changed during a deep
breath, as observed in Section 5.3.2. In experiments, however, this is not the case. This is
caused by the fact that, in practice, delays are present in the blower and the measurement
of paw. Still, the effect of the deep breath on the hose resistance compensation controller
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Figure 5.8. Blower in- and output, pcontrol and pout, respectively, over time.

(a) Airway pressure paw and patient flow Qpat
during a deep breath (breath 23).

(b) Error 2-norm of 25 breaths.

Figure 5.9. State-of-practice control and repetitive control for periodic scenario with a
deep breath in experiments.

is lower compared to the other controllers. This is seen by the lower increase in error
2-norm during a deep breath for the hose resistance compensation controller.
Although the tracking performance of the hose resistance compensation is affected less
by the deep breath and blower clipping occurs for every controller, except the feedfor-
ward controller, the repetitive controller has a significantly better tracking performance.
Therefore, it is advised to use the repetitive controller in the case of periodic patient effort
with a deep breath.

5.4.3 Experiments of the aperiodic scenario

In this section, the experimental results of the aperiodic scenario are presented. In Fig-
ure 5.10, the airway pressure and patient flow of the last breath, and the error 2-norm
for all 25 breaths is given for the state-of-practice controllers and repetitive controller. It
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 25).

(b) Error 2-norm of 25 breaths.

Figure 5.10. State-of-practice control and repetitive control for aperiodic scenario in
experiments, for typical patient effort profile, see Figure 5.6a.

is observed that the linear feedback, hose resistance compensation, and repetitive con-
troller have similar tracking performance. Similar to Section 5.4.2, it is observed that
the tracking performance of the hose resistance compensation controller decreases due
to the aperiodic disturbance pmus. Also, the repetitive controller converges to a bound of
±12.5 mbar2 around ≈ 22.5 mbar2 caused by amplification of the significant aperiodic
disturbance. Possibly, a learning gain α could decrease the amplification of the aperiodic
disturbance. For further details, see Section 5.3.3. In Figure 5.10a, it is observed that, for
the depicted breath, the patient flow Qpat has significant overshoot during the pressure
plateau phases for the hose resistance compensation controller and repetitive controller.
This is caused by the fact that for aperiodic patient effort, the mechanical ventilator and
patient are not synchronized due to a varying respiratory rate of the spontaneous breaths.
The pressure tracking error at the end of inspiration (1-1.5 s) can be confusing to a physi-
cian. In the presence of such a sudden pressure drop, the physician might think that
the patient wants to start a spontaneous breath. However, the sudden pressure drop is
caused by the fact that the repetitive controller amplifies aperiodic disturbances of previ-
ous breaths.

Due to amplification of the aperiodic disturbances by the repetitive controller, the track-
ing performance compared to the state-of-practice controllers is not significantly im-
proved. The hose resistance compensation is affected less by the aperiodic disturbance.
Therefore, it is advised to use the hose resistance compensation in the case of aperiodic
patient effort or to further investigate the use of a learning gain in the repetitive controller.

5.5 Summary

In this chapter, repetitive control has been applied to spontaneously breathing patient
scenarios. First, in Section 5.1, two challenging scenarios for repetitive control applied



52 Chapter 5. Repetitive Control Applied to Spontaneously Breathing Patient Scenarios

to mechanical ventilation have been presented: a target variation due to a change in set-
tings of the mechanical ventilator, and spontaneously breathing patients. Thereafter, the
scenarios considered in this chapter have been presented in Section 5.2. These scenarios
consist of different spontaneously breathing patient scenarios for untriggered mechan-
ical ventilation. Subsequently, these scenarios have been used to compare the state-of-
practice controllers and repetitive control in a simulation and experimental case-study
in Section 5.3 and 5.4, respectively. From this case-study, it is concluded that the repeti-
tive controller has a better tracking performance in terms of error 2-norm than the state-
of-practice controllers for all scenarios, except the aperiodic scenario. For aperiodic pa-
tient effort, the repetitive controller amplifies aperiodic disturbances, which decreases the
tracking performance, but also confusing pressure profiles might appear for the physi-
cian. Amplification of aperiodic disturbances can be reduced by using a learning-gain,
but no further research on this is done in this thesis. In the experiments, it was also ob-
served that blower clipping occurs for all controllers, except the feedforward controller,
in both periodic scenarios. Blower clipping decreases the tracking performance signif-
icantly. Still, the tracking performance of the repetitive controller is significantly better
than the state-of-practice controllers. To conclude, it is adivsed to use the repetitive con-
troller in all scenarios, except the aperiodic scenario. For the aperiodic scenario, it is
advised to use the hose resistance compensation controller.



Chapter 6

Conclusions and Recommendations

In this thesis, control of mechanical ventilators has been investigated. The control goal is
to ensure good pressure tracking performance of a mechanical ventilator for all possible
patient types that are either fully sedated or (partly) spontaneously breathing. The main
challenge in achieving this goal is that the same mechanical ventilator must deal with a
wide variety of patients, hoses, and filters, i.e., large plant variations. Existing control
strategies do not give the desired tracking performance for all plant variations. Breath-
ing has a repetitive nature and, therefore, in this thesis, repetitive control is applied to
mechanical ventilation to increase the tracking performance for large plant variations. In
Section 6.1, the conclusions of this thesis are presented. Thereafter, recommendations for
future research are given in Section 6.2.

6.1 Conclusions

In this section, the conclusions of this thesis are presented. In Section 1.3, the research
goal for this thesis, including sub-questions, are given. Next, the sub-questions are dis-
cussed individually, thereafter, the research goal is discussed.

How to design a repetitive controller that gives a good tracking performance of a mechanical ven-
tilator for fully sedated patient scenarios?

Four repetitive controllers have been designed in Section 4.4. The first two repetitive
controllers are based on a first-principle model, either without or with delays taken into
account. Taking delays into account, increases the model quality. Therewith, the repeti-
tive controller can be tuned more for performance instead of robustness. The other two
repetitive controllers are based on the fit of an average FRF of the system. One repetitive
controller is tuned with slightly more robustness for plant variations than the other. A
comparison of tracking performance for all repetitive controllers has been made in Sec-
tion 4.5.1. This comparison has shown that the repetitive controller based on a fit tuned
with slightly more robustness for plant variations, gives the best tracking performance
for all considered fully sedated patient scenarios.

How does the designed repetitive controller compare to existing control strategies in fully sedated
patient scenarios?

A comparison of the repetitive controller with existing control strategies for fully sedated
patient scenarios has been made. Simulations have shown that repetitive control can sig-
nificantly increase tracking performance compared to existing control strategies for fully
sedated patient scenarios, see Section 4.3. However, in simulations, an exact model of
the system is available, whereas this is not the case for experiments. In experiments, the
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repetitive controller based on a fit tuned with slightly more robustness for plant varia-
tions is used. The tracking performance of this repetitive controller is significantly better
than the tracking performance of the existing control strategies for all considered fully
sedated patient scenarios, see Section 4.5.2.

How does the designed repetitive controller compare to existing control strategies in the presence
of patient effort?

A comparison of the repetitive controller with existing control strategies in the presence
of patient effort has been made. Due to the patient effort, an unknown (possibly) ape-
riodic disturbance is introduced to the system. The influence of the patient-effort on
tracking performance has been investigated in simulation and experimental case-study,
see Sections 5.3 and 5.4, respectively. For periodic patient effort, the study shows that,
even with a deeper spontaneous breath every six breaths, the tracking performance of
repetitive control is significantly better compared to the existing control strategies. In
experiments, blower clipping occurs for the periodic scenarios with- or without a deep
breath, which limits performance. Still, the tracking performance of the repetitive con-
troller is better compared to the existing control strategies. Therefore, it is advised to
use the repetitive controller in the case of periodic patient effort with- or without a deep
breath. For an aperiodic patient effort the tracking performance of repetitive controller
decreases significantly due to amplification of aperiodic disturbances. No significant dif-
ference in tracking performance is observed, compared to the existing control strategies.
Due to amplification of aperiodic disturbances confusing pressure profiles might appear
for the physician. The amplification of aperiodic disturbances can be reduced by the use
of a learning gain. This learning gain reduces the amplification of aperiodic disturbances
and, therefore, increases the tracking performance and avoiding confusing pressure pro-
files, see Section 3.4.1. The hose resistance compensation is less affected by the aperiodic
disturbances. Therefore, it is advised to use the hose resistance compensation in the case
of aperiodic patient effort or to further research the use of a learning gain for the repetitive
controller. Recommendations on future research on repetitive controller with a learning
gain applied to mechanical ventilation are given in Section 6.2.3.

Is it possible to apply repetitive control to triggered mechanical ventilation while still obtaining a
good tracking performance?

Triggered mechanical ventilation is typically used for spontaneously breathing patients.
However, this is a challenging scenario for repetitive control, see Section 5.1. This is due
to the fact that the target pressure starts or ends when an inspiratory or expiratory trigger
occurs, respectively. Therewith, the timing of the target pressure is unknown and possi-
bly varying over breaths. Thus, it cannot be assumed that the target pressure is periodic.
Repetitive control only rejects periodic disturbances. In the case of triggered mechanical
ventilation it is, therefore, not guaranteed that repetitive control gives a good tracking
performance. No further research has been done on triggered mechanical ventilation.
However, it is considered to be the main practical challenge for repetitive control. Rec-
ommendations for future research on this subject are made in Section 6.2.1.

Using all previous sub-questions, the research goal is reflected upon.

Investigate the potential and limitations of repetitive control applied to mechanical ven-
tilation.
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For fully sedated patient scenarios, repetitive control significantly improves the pres-
sure tracking performance of a mechanical ventilator compared to existing control strate-
gies. However, for spontaneously breathing patient scenarios, challenges arise for repet-
itive control. For untriggered mechanical ventilation with periodic patient effort with-
or without a deep breath, repetitive control improves the tracking performance signifi-
cantly compared to the existing control strategies. Blower clipping can occur, depending
on the settings and scenario. Since blower clipping significantly limits performance, fur-
ther research is recommended, see Section 6.2.1. For aperiodic patient effort, no signif-
icant difference in tracking performance for repetitive control compared to the existing
control strategies exists due to amplification of aperiodic disturbances by the repetitive
controller. The amplification of aperiodic disturbances also leads to confusing pressure
profiles for physicians, however, the amplification of aperiodic disturbances can be re-
duced by using a learning gain, see Section 6.2.3 for recommendations. It is unsure if
repetitive control can be applied to triggered mechanical ventilation. Triggering is con-
sidered to be the main (practical) challenge for repetitive control. Recommendations for
future research on triggered mechanical ventilation are given in Section 6.2.2.

6.2 Recommendations

This section gives recommendations for future research. In Section 6.2.1, recommenda-
tions on future research on blower clipping in the context of repetitive control are given.
Thereafter, in Section 6.2.2, recommendations on future research in repetitive control ap-
plied to triggered mechanical ventilation are given. Finally, in Section 6.2.3, recommen-
dations on future research on the aperiodic disturbances due to aperiodic patient effort
are given.

6.2.1 Blower clipping

In the experiments on spontaneously breathing patient scenarios with periodic patient ef-
fort, blower clipping occurs for all control strategies, see Section 5.4. The blower clipping
is caused by the fact that the blower has a (physical) lower-bound of 1000 RPM. During
the blower clipping, the controller desires for a rotational speed of the blower lower than
1000 RPM in order to ensure a good pressure tracking performance. However, the blower
is clipped at 1000 RPM. It is expected that the blower also clips at its upper-bound, i.e.,
actuator limit, during inspiration for:

• patient effort with higher amplitudes;
• fully sedated patient scenarios with a large (unintended) leak in the system.

For both cases the pressure needs to rise while a significant flow is running, either due
to the patient effort disturbance or a significant leak in the system. Therefore, the blower
needs to have a high RPM, possibly higher than its physical upper-bound, in order to
ensure a good tracking performance. A measurement for a repetitive controller applied
to a fully sedated patient scenario with a large leak in the system is given in Figure 6.1.
It is observed that the outlet flow Qout does not change during blower clipping. This is
as expected since the blower is clipped and cannot turn faster to generate a higher out-
let flow Qout. Due to clipping, the tracking performance is significantly reduced. Since
blower clipping occurs for almost every controller, significantly limits performance, and
occurs for fully sedated- and spontaneously breathing patients, further research is rec-
ommended on blower clipping.

Repetitive control consists of a series of integrators and, therewith, the windup problem
occurs: during actuator saturation, the integrator keeps integrating, i.e., the repetitive
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(a) Airway pressure paw and patient flow Qpat
after convergence of the repetitive controller

(breath 25).

(b) Error 2-norm of 25 breaths.

Figure 6.1. A measurement of repetitive control applied to mechanical ventilation for a
fully sedated patient scenario with a significant leak in the system.

controller keeps learning, i.e., pcontrol keeps getting higher with every breath. However,
the actuator is not reacting to the change in input, since it has already reached its bound-
ary value. Therefore, pcontrol keeps growing unbounded, and pout is not following pcontrol ,
see Figure 6.2. It is undesired that pcontrol grows unbounded due to the following. For
a moment, consider a scenario where the blower has clipped and, therewith, pcontrol has
grown very large. Now assume the large leak disappears, which means the blower would
not clip for a repetitive controller that just starts learning, e.g., see Figure 4.17. However,
since the repetitive controller has already learned based on a system with the patient ef-
fort, pcontrol is very large. Therefore, the blower still clips and in order to have effect on
the pressure tracking, pcontrol first needs to decrease again. The decrease of pcontrol cannot
occur instantaneously. Therefore, in Figure 6.1a, it is observed that the blower still clips
even if the target pressure ptarget is decreasing already.

In [23] and [31], the windup problem in repetitive control is addressed and anti-windup
strategies are proposed. A comparison of different anti-windup strategies is made in [21].
Since blower clipping significantly reduces the tracking performance, it is recommended
to further research anti-windup strategies for repetitive control.

6.2.2 Triggered mechanical ventilation

For spontaneously breathing patients, triggered mechanical ventilation is often used in
practice. This is considered to be the main (practical) challenge for repetitive control. For
further details, see Section 5.1.2 and the conclusion on the last sub-question in Section
6.1. One could assume that the target pressure profile is not changed in terms of rise- and
fall-time and constant pressure plateaus. Then, if one assumes that the start and end of
the target pressure are determined by a inspiratory or expiratory trigger, respectively, a
challenge still remains for repetitive control. This is caused by the fact that the repetitive
controller learns with a fixed buffer length and only rejects periodic disturbances. How-
ever, the target pressure is aperiodic and varying in length due to triggering at unknown
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Figure 6.2. Blower in- and output, pcontrol and pout, respectively, over time.

times.

For untriggered mechanical ventilation, the target pressure starts immediately after the
end of the previous breath. Since the buffer length of the repetitive controller is equal
to the length of a breath length, the repetitive controller learns based on periodic distur-
bances. For triggered mechanical ventilation, however, the target pressure start and end
if a trigger occurs. If only an inspiratory trigger is used and the breath length is fixed, the
only unknown is the start of a breath. If an expiratory trigger is also used, the unknowns
are the start of a breath and the breath length. Three possible solutions are given next.

• The inspiratory and expiratory trigger occur during constant pressure plateaus,
PEEP and IPAP, respectively. Therefore, one could let the repetitive controller only
learn a fixed inspiration and expiratory target pressure after an inspiratory or expi-
ratory trigger occurs, respectively. Then, one should hold the last control value of
the fixed inspiratory or expiratory target pressure until a trigger occurs.

• A more formal approach is by using a basic task approach [13]. In essence, the
same methodology as the first solution is used, i.e., the repetitive controller is only
active after a trigger has occurred. However, the repetitive controller uses a library,
consisting of previously learned control, or basis, signals, to determine the control
values after a trigger has occurred. For instance, the library could consist of basis
signals for pressure rise and fall, and constant PEEP- and IPAP pressure for different
combinations of rise- and fall-times, and PEEP and IPAP. During operation, the
input signal is a concatenation of these individual basis signals.

• Another solution could be to use basis functions [7]. Basis functions parametrize
the signal learned by the repetitive controller. The parametrization consists of a
linear combination of (user-defined) basis functions ψj and parameters θj. These
parameters are found by computing the least squares optimal values of θj such that
ψjθj matches the learned signal of the repetitive controller as good as possible. For
instance, one could use repetitive control with basis functions on a second-order
mass-spring-damper system. By choosing the basis functions as the acceleration of
the reference, velocity of the reference and the (position) reference, one automat-
ically learn the mass, damping and stiffness of the system. Therewith, tracking
performance is obtained for repeating and (slightly) varying tasks.
The use of basis functions could be interesting to triggered mechanical ventilation,
since this method allows for (slightly) varying tasks. The drawback of this method,
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however, is that it requires one to design basis functions ψj. In mechanical systems,
one typically chooses the basis functions as the derivatives of the reference profile.
For mechanical ventilation, however, it is unknown what the basis functions should
be to obtain a good (pressure) tracking performance. Therefore, further research is
required.

6.2.3 Aperiodic disturbances

For repetitive control applied to untriggered mechanical ventilation with aperiodic pa-
tient effort, aperiodic disturbances act on the system. This is caused by the fact that
the buffer length of the repetitive controller is fixed and corresponds to a fixed respi-
ratory rate of the mechanical ventilator, while the spontaneous breaths have a varying
respiratory rate. Therewith, the patient effort is an aperiodic disturbance. Aperiodic dis-
turbances are amplified by the repetitive controller and, therewith, decrease the tracking
performance, see Section 3.4.1.

In this thesis, no learning gain has been used, i.e., α = 1. However, a learning gain
reduces amplification of aperiodic disturbances. Therewith, the error 2-norm upon con-
vergence is decreased. A learning gain also reduces the error 2-norm convergence rate,
however. Hence, a trade-off in final error 2-norm and convergence rate exists. Without
a learning gain, the error 2-norm convergences in approximately 6 breaths. However,
it is acceptable if the error 2-norm convergences slower, e.g., in 15 breaths, which is in-
significant to a typical 900 breaths per hour for an adult patient. To obtain both fast con-
vergence and reduce the amplification of aperiodic disturbances, one could use a time-
varying learning gain. In this case, the repetitive controller starts without a learning gain
to learn on the periodic disturbances caused by the target pressure. If the error 2-norm
is converged, the repetitive controller should switch to a lower learning gain, whilst not
resetting what was already learned in the case without a learning gain.



Appendix A

Internal delays

In this appendix, the influence of delays on the system is briefly described. The delays
are used for controller design in Section 4.4.1. Due to delays in the blower, an input delay
of 8 ms is present. In the patient-hose system, it takes time for the pressure propagates
through the paw sensor tube. Therefore, an output delay of 16 ms is present in the patient-
hose system. Hence, the open-loop plant contains both in- and output delays. As seen
in Section 4.2, the loop is closed around the in- and output delays. Therefore, the in- and
output delays are inside the loop. Thus, the closed-loop contains internal delays.
An open-loop with delays is: Ldelay(s) = L(s)e−Ndels with L(s) the open-loop without
delays and Ndel the in- and output delays in seconds. Hence, in- and output delays affect
only the phase of a system. An example is given in Figure A.1a. The complimentary

sensitivity with delays is: Tdelay(s) =
L(s)e−Ndel s

1+L(s)e−Ndel s . Hence, internal delays affect the phase
and magnitude of a system. An example is given in Figure A.1b.

(a) Open-loop: CH. (b) Complimentary sensitivity: CH
1+CH .

Figure A.1. Bode plots for a system with- and without delays in open- and closed-loop,
H = e−dss 1

s+2 with ds 0 or 2 in undelayed and delayed case, respectively, and C = 1.
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