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Abstract—In this project, a novel model predictive control
(MPC) scheme is proposed to make MPC real-time feasible
for large-area magnetic-resonance-guided high-intensity focused
ultrasound (MR-HIFU) hyperthermia (HT) treatments. HT treat-
ments involve the local heating of tumors to enhance the cancer-
killing potential of radio- and chemotherapies. For the treat-
ment of larger tumorous regions in MR-HIFU HT, mechanical
movement of the heating actuator is required due to the limited
range in which heat can be generated from a fixed actuator
location. Due to system restrictions, the actuator locations are
fixed to a finite amount of a-priori determined coordinates.
Hence, including the actuator movement into the MPC problem
leads to the formulation of a computationally heavy mixed-integer
programming (MIP) problem. To achieve computation times that
are feasible for real-time implementation, a hierarchical model
predictive control (HMPC) structure is proposed, in which the
original MIP problem is decomposed into two control layers.
A high-level MPC algorithm using a low-complexity prediction
model is used to approximate the original MIP problem, which
serves the main goal of determining the actuator trajectory.
The resulting trajectory is then provided to a low-level MPC
which refines the optimal (continuous) inputs based on a high-
complexity model. Additional contributions are the investigation
and comparison of appropriate reduction methods for the deriva-
tion of the high-level prediction model, optimization of actuator
locations to optimally treat irregularly shaped target areas, and
a stability analysis of HMPC applied to hyperthermia. Both
simulation studies and experiments are conducted to validate
the performance of the HMPC controller.

Index Terms—Healthcare, large-area hyperthermia, hierarchi-
cal MPC, cancer treatment, high-intensity focused ultrasound.

I. INTRODUCTION

In cancer treatment, hyperthermia is used as an adjuvant
technique to improve treatment success. Mild local/regional
hyperthermia involves the heating of tumorous tissue to tem-
peratures of 39 − 45 [◦C] for a duration of 90 minutes. A
significant increase in effectiveness of primary methods such
as chemo- and radiotherapy is shown when used in combi-
nation with hyperthermia, see, for example, [1–3]. Besides,
the use of temperature-sensitive liposomes for heat-mediated
drug release is enabled, resulting in more efficient delivery of
anticancer drugs to specifically targeted regions, see [4, 5].
If not heated, healthy tissue is not affected by the treatment,
which makes it highly appealing for clinical application to

enhance treatment effectiveness and improve quality of life
for the patients in therapy.

Hyperthermia treatments come in multiple forms in which
different types of energy are used to apply heat, including
microwave, radiofrequency, and ultrasound. In this work, the
main focus will be on the magnetic-resonance-guided high-
intensity focused ultrasound (MR-HIFU) technique, which is
a completely noninvasive procedure in which sound waves are
used to deposit energy in the patient’s body with a spatial
accuracy in the millimiter range. The thermal response of the
treated area is monitored via volumetric temperature maps that
are obtained using an MRI scanner, see [6]. This enables the
use of closed-loop control to realize and maintain the desired
temperature distribution.

In Figure 1, a schematic representation of the HIFU heating
is depicted. For a fixed transducer position, the focal point can
be moved over the focal plane by changing the amplitudes and
phases of the individual driving signals. Modulation of these
settings to move the focal spot is referred to as electronic beam
steering.

transducer axis

patient table

tumorfocal plane

transducer

driving signals

focal point

Fig. 1: Schematic representation of HIFU heating. Image
reproduced from [7].

Current clinical implementations typically use a mostly pre-
determined, ad-hoc, sonication plan that is possibly extended
with simple feedback control. Examples are [8, 9] and [10],
in which binary strategies to scale the sonication power and
time, and proportional-integral-derivative (PID) control are
used, respectively. Using these types of feedback control, the
future thermal behavior and the input constraints (resulting
from actuator limitations) are not taken into account, which
negatively impacts treatment quality.

More recent works propose a more advanced type of con-
trol, namely model predictive control (MPC), see [7, 11].
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In MPC, a mathematical model is used to make predictions
about the system’s future behavior, and control inputs are
calculated by solving an optimization that is subjected to a
cost function and constraints, see [12, 13]. Closed-loop control
is achieved by sequentially solving the MPC problem but only
applying the first input of the predicted sequence, after which
the MPC problem is solved again using new measurement
data. Therefore, MPC control enables to take future thermal
behavior of the patient’s body into account and is capable of
dealing with input constraints. Hence, MPC has the potential
to provide superior performance for hyperthermia treatments.
In particular, in [7], advanced MPC control is presented using
offset-free control to remove the steady-state offset resulting
from plant-model mismatch.

New challenges arise when treating larger tumors, as this
requires heating of a larger target area. Unfortunately, the
lateral movement of the focal spot using electronic beam
steering is limited in range (≤ 16 [mm] in diameter), impeding
the treatment of larger areas. To enable the treatment of
such large target areas, mechanical movement of the HIFU
transducer is needed, see [14]. In [14], a binary feedback
algorithm is used in which the mechanical location of the
transducer typically follows some predefined trajectory or is
chosen ad-hoc, resulting in suboptimal trajectories and hence
reduced treatment quality.

In [15], the mechanical movement of the transducer is
included in the MPC problem. Due to system limitations,
which will be discussed later on, the position of the transducer
is fixed to a finite number of predetermined, discrete, locations.
This introduces an integer part into the MPC problem in which
now simultaneous optimization occurs over both the continu-
ous input sequence, and an integer sequence that describes
the transducer path. The resulting optimization can then be
formulated as a mixed-integer programming problem (MIP).
In [15], it was shown that using mixed-integer MPC (MI-
MPC) had great potential for large-area MR-HIFU, since the
results were promising in terms of performance. Unfortunately,
due to the large state dimension used in the prediction model
combined with the integer problem introduced by including
the transducer movement, real-time computational feasibility
of the MI-MPC formulation has proven difficult.

The main contribution of this paper is the formulation of
a hierarchical MPC (HMPC) controller suited for large-area
MR-HIFU treatments to reduce the high computational com-
plexity of the MI-MPC problem. This is done by decomposing
the control into two levels. A high-level MPC controller uses
a lower-complexity prediction model to determine the cell-
to-cell transducer trajectory and communicates this path to a
low-level controller. At the low-level, a second MPC algorithm
is used to determine the optimal inputs for the provided
transducer path using a higher-complexity prediction model.
By doing so, the low-level controller solves a computationally
fast quadratic programming problem (QP), since the integer
variables are provided by the high level.

Additional contributions are the formulation of the reduced
order prediction models and enabling treatment of irregularly

shaped tumors. The high-level prediction models are obtained
through model reduction. Multiple methods are compared by
means of simulation. Moreover, in previous works only circu-
lar treatment areas are considered. However, as tumors may be
irregularly shaped in reality, the placement of the transducer
positions for arbitrarily shaped target areas is discussed in
this paper. Ultimately, the goal of this work is to provide
a significant step forward in fulfilling the potential of MPC
control in large-area hyperthermia treatments.

The sequel of this paper is organized as follows. In Section
II a description of the system is given with a derivation of a
mathematical model to capture the thermal behavior. Next, the
MI-MPC problem based on the work in [15] is discussed in
Section III, followed up by Section IV in which the proposed
hierarchical controller is elaborated on. Several reduced-order
prediction models are discussed in Section V followed by
Section VI in which the optimization of transducer locations
for arbitrarily shaped target areas is treated. Afterwards, a
stability analysis is included in which closed-loop stability and
performance of the HMPC approach is discussed in Section
VII. Both simulation- and experimental results are shown
to validate the performance of the proposed controller in
Section VIII and Section IX, respectively. Finally, the key
achievements are summarized and suggestions for future work
are included in Section X.

II. SYSTEM DESCRIPTION

This section introduces the hyperthermia-treatment setup,
and discusses the modeling procedure to obtain a state space
model of the system’s thermal dynamics. In addition, the
observer model that is used for state estimation is discussed,
and the goal of HT treatments is elaborated on.

A. MR-HIFU setup

The controller designs in this paper are specifically suited
for implementation on the Profound Sonalleve MR-HIFU
platform, which is a commercial system that is already being
clinically used, see [16]. The Sonalleve system offers incision-
free alternatives to traditional surgical treatments of uterine
fibroids, and enables incision-free, radiation-free palliative
treatment of pain associated with bone metastases. The setup
is a combination of an MRI scanner used for thermometry
and a dedicated patient table in which the HIFU transducer
is integrated. Figure 2 shows an image of the setup. The
HIFU applicator uses a phased-array transducer to generate the
ultrasound waves. Electronic beam steering is used to laterally
move the focal spot over the focal plane. For this particular
system, the focal spot can be chosen anywhere on the focal
plane within an 16 millimeter diameter circle centered around
the transducer axis. The resulting power deposition is relatively
distributed in the beam’s axial direction compared to its narrow
profile in the radial direction. This motivates the choice to
only consider temperature control in the two-dimensional focal
plane.

To acquire accurate MRT data, baseline images are required
for each transducer position. That is, due to the change in
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magnetic field when the heating actuator changes position, a
baseline image is required corresponding to each position. This
limits the possible locations from which sonication is allowed
to an a-priori defined set of discrete positions. Using the
baseline images, the MRI scanner obtains a new temperature
map ever 3.2 seconds. Motivated by this, the computational
limit for the MPC optimization problem is set to 3 seconds
such that during the acquisition of a temperature map, a new
MPC solution can be obtained. Also, HIFU-heating is disabled
during movement of the transducer, since reliability of the
MRT data is reduced due to the changing magnetic field.

Fig. 2: Sonalleve MR-HIFU system

B. Thermal process modeling

For the subset in the focal plane Ω ⊂ R2 that describes the
patient domain, the prediction model, as used in the model
predictive controller, captures the thermal behavior of the
body in the presence of HIFU heating. In previous works,
see e.g. [7, 15], Pennes’ bioheat equation as described in [17]
is successfully used to obtain an accurate prediction model.
The tissue’s temperature evolution is modeled as

ρc
∂T (r, t)

∂t
= k∇2T (r, t)+Q(r, t)−wbcb(T (r, t)−Tb), (1)

in which T : Ω×R≥0 → R is the temperature profile, such that
T (r, t) denotes the temperature at location r = [rx, ry]> ∈ Ω
at time instant t, and Q : Ω × R≥0 → R≥0 describes the
power deposition density. The parameters ρ, c, k, wb, cb ∈ R≥0

are the tissue- and blood parameters being the mass density,
specific heat capacity and thermal heat conductivity of the
tissue, and the blood perfusion coefficient of the tissue and
specific heat capacity of blood, respectively. For this work, all
parameters are assumed to be constant and homogeneous over
the entire patient domain.

The power deposition density is modeled as in [7], and is
given by

Q(r, t) = F (r, t)P (t), (2)

with F : Ω × R≥0 → R≥0 the acoustic deposition inten-
sity profile and P : R≥0 → R≥0 the sonication power.

The acoustic deposition intensity profile F is modeled as
a radially symmetric two-dimensional Gaussian distribution
centered around the focus location rf : R≥0 → Ω

F (r, t) =
α

2πσ2
f

exp
(
− ‖r − rf (t)‖2

2σ2
f

)
, (3)

with r ∈ Ω, t ∈ R≥0, standard deviation σf = 2.4 [mm] and
scaling factor α ∈ R≥0.

C. State space model

Using (1)-(3), a discrete-time state space realization of the
thermal model can be obtained. The model is discretized
spatially using the central difference scheme and in time using
forward Euler discretization. This results in a prediction model
that is suited for control in the form

xk+1 = Axk +Buk, (4a)
yk = xk + vk, (4b)

with xk ∈ Rn the state vector representing the voxel tempera-
ture elevation with respect to the body’s mean temperature of
37 [◦C] at instant k ∈ N, which connects to real time through
tk = kTs, with sampling interval Ts. The input-to-state matrix
B ∈ Rn×m captures the effect of applying input uk ∈ Rm
to the system at instant k. Within a single sampling interval,
the focus location rf can be rapidly scanned over multiple
points. These points are referred to as sonication points and
are determined a-priori, such that uk describes the average
power applied per sonication point. The possible sonication
points are captured in the set S = {s1, s2, . . . , sm}, with
si = [rx ry]> ∈ R2, i = 1, 2, . . . ,m, the location of a single
sonication point. The locations of sonication points are not
chosen arbitrarily, but are limited to be within a 16 millimeter
diameter of a transducer location τi = [rx ry]> ∈ R2,
i = 1, 2, . . . , nt, contained in the set T = {τ1, τ2, . . . , τnt}.
Therefore, the points at which power can be deposited at
instant k depend on the current transducer location and are a
subset of S. More specific, the input vector uk is constructed
as

uk =

 u
1
k
...
untk

 ∈ Rm, (5)

where uik ∈ Rns , for i = 1, 2, . . . , nt, and ns = m/nt
being the number of sonication points associated to a single
transducer location. Each vector uik now captures the inputs
at sonication points sq , with q = (i − 1)ns + 1, . . . , ins,
which are associated to transducer location τi. Hence, given
that the transducer is at one of the locations in T at instant
k, only the vector uik that corresponds to the current location
can contain nonzero inputs, whereas all the other inputs are
zero. In addition, in case the transducer is moving at instant
k, all entries of uk are zero since heating is disabled during
movement of the actuator.

The output yk ∈ Rn contains the measured temperatures
corresponding to the voxel locations vi = [rx ry]> ∈ Ω,
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i = 1, 2, . . . , nv , in the set V = {v1, v2, . . . , vnv}. By
choosing the spatial discretization to specifically match the
measurement grid, a full state measurement is enabled, and
it follows that n = nv . In all simulations and experiments
contained in this work, the measurement grid consists of
n = 1296 voxel locations corresponding to a 36 × 36 grid
with a uniform spacing of 2.25 [mm] between two neighboring
voxels.

The measurements are corrupted by noise represented by
vk ∈ Rn. To obtain improved temperature estimates x̂k with
respect to noisy measurement data, a model-based observer is
used. The state estimator is designed as a Luenberger observer
following

x̂k = ŷ−k + L(yk − ŷ−k ), (6)

where

ŷ−k = Ax̂k−1 +Buk−1 (7)

denotes the model-based measurement estimate at instant k
before applying the correction using output injection to obtain
the current state estimate.

D. Goal of hyperthermia treatments

In the sequel, the region of interest in which an elevated
temperature is desired is denoted as R ⊂ Ω. Hence, the subset
VR = V ∩ R contains the voxel locations that are located
inside the region of interest. The goal of the MR-HIFU HT
treatments is now to elevate the temperature of the voxels
in VR to match the reference profile xr ∈ RnR , with nR
the number of voxels in VR. The desired temperature range
in the entire patient domain Ω is specified by an upper and
lower temperature bound which are represented by x̄ ∈ Rn and
x ∈ Rn, respectively. Within the desired temperature range,
preference is given to the temperature distribution described
by xr. The numeric values for the temperature bounds and
setpoint are based on the work in [7], where a flat temperature
distribution of five degrees elevation is set as the reference.
The lower bound features an elevated plateau of four degrees
on R and is zero on Ω \R. The upper bound is defined as an
elevated plateau of six degrees on the sub-space consisting of
the ROI with an outwards offset of 7 millimeters, and is set
to three degrees outside of this area.

III. MIXED-INTEGER MPC

In this section, the MI-MPC problem is discussed based
on the work presented in [15], which aims to achieve the
aforementioned treatment goal.

A. Optimization variables

In the MI-MPC formulation, simultaneous optimization oc-
curs over the states of the system, the inputs to be applied and
the transducer trajectory. The state vector xk ∈ Rn contains
the temperatures at instant k corresponding to the discrete
locations in V . The input vector uk ∈ Rm contains the power

deposition at the sonication points in S, at instant k. The
position of the transducer at instant k is captured via the vector

δ>k = [δ1
k, δ

2
k, . . . , δ

nt
k ] ∈ {0, 1}nt ,

in which δik equals 1 if the transducer is at position τi at
instant k, or when it is traveling towards position τi, and
is zero otherwise. To penalize violations of the temperature
bounds x̄ and x, the slack variables ε̄k = ‖max(xk − x̄,0)‖∞
and εk = ‖max(x − xk,0)‖∞ are introduced, in which the
maximum operator is used component-wise, and ‖v‖∞ :=
max
i
|vi| with vi being an element of v. The optimization

variables for the model-predictive controller are then contained
in ζ>k = [U>k X>k ∆>k ε>k ε̄>k ], in which

Uk =


u0|k
u1|k

...
uN−1|k

 , Xk =


x0|k
x1|k

...
xN |k

 ,∆k =


δ0|k
δ1|k

...
δN−1|k

 ,

εk =


ε0|k
ε1|k

...
εN |k

 , ε̄k =


ε̄0|k
ε̄1|k

...
ε̄N |k

 ,
such that Uk ∈ RNm, Xk ∈ R(N+1)n, ∆k ∈ {0, 1}Nnt
and εk, ε̄k ∈ RN+1

≥0 , with N the prediction horizon of the
controller. The subscript i|k denotes the predicted value of
the respective variable at future instant k + i, based on the
knowledge available at instant k.

B. Constraints

Mathematical constraints are now formulated to include
the physical-system constraints into the optimization problem.
Firstly, the system dynamics are captured in equality con-
straints

x0|k = x̂k (8a)
xi+1|k = Axi|k +Bui|k i ∈ [0, N ], (8b)

with i, k ∈ N and x̂k the state estimate at instant k. Inequality
constraints are introduced to capture the temperature bounds
as soft constraints of the form

x− 1εi|k ≤ xi|k ≤ x̄+ 1ε̄i|k i ∈ [0, N ], (9a)

εi|k ≥ 0 i ∈ [0, N ], (9b)

ε̄i|k ≥ 0 i ∈ [0, N ], (9c)

with 1 the all-ones vector of suitable dimension. To ensure
positive inputs only that are below the maximal input umax ∈
R>0, the inequality constraints

0 ≤ ui|k ≤ 1umax i ∈ [0, N − 1], (10)

with 0 the all-zeros vector of suitable dimension, are included.
Since a single transducer is used, only one of the entries in
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the δ vector can be a one at each instant. This constraint is
formulated as

1>δi|k ≤ 1 i ∈ [0, N − 1]. (11)

Using the structure of the input vector (5), the inputs are
coupled to the transducer location via the inequality constraints

Zui|k ≤ δi|kPmax i ∈ [0, N − 1], (12)

in which Pmax is the maximal total power input and

Z = I ⊗ 1>ns ∈ Rnt×m,

with 1ns the all-ones vector of dimension ns, and ⊗ denoting
the Kronecker product, such that the product Zui|k contains
the sums of the inputs per cell. Finally, the last constraints
implement the inability to apply heat to the system when
the actuator is traveling. To do so, a movement matrix M̄ is
specified that corresponds to the configuration of transducer
positions in T , such that M̄(i, j) specifies the movement time
that it takes to move the heating actuator from position τi to
position τj . Since the state-space model for the MPC problem
is in discrete time, the movement times in M̄ are integer values
representing the number of samples that the corresponding
move of the transducer takes. Then, using the movement
matrix, additional matrices Md ∈ {0, 1}nt×nt referred to as
delay matrices are constructed according to

Md(i, j) =

{
1, if M̄(i, j) < d

0, else
d = 1, 2, . . . , dmax, (13)

with dmax the maximal travel time in samples that occurs in
M̄ . Consequently, Md(i, j) = 1 corresponds to a movement
time of less than d samples from location τi to τj . The
constraints that prevent inputs from being nonzero while the
transducer is moving are now formulated as

Zui|k ≤Mdδi−d|kPmax i ∈ [0, N − 1], d ∈ [1, dmax],
(14)

in which the history of the transducer path now plays a role
in constraining the current and future inputs. To clarify the
constraints (14), the following example shows how the δ
vectors that describe the position of the transducer come in
and possibly allow for control.

Example 1. A three-cell example system is shown in Figure
3, from which the movement matrix

M̄ =

0 1 2
1 0 3
2 3 0

 (15)

follows. The maximal delay is three sample times, resulting in
the delay matrices

M1 = I3 M2 =

1 1 0
1 1 0
0 0 1

 M3 =

1 1 1
1 1 0
1 0 1

 . (16)

In case u0|k is now desired to be nonzero at the inputs related

τ1

τ2τ3

1

3

2

Fig. 3: Three-cell configuration with indicated movement
times.

to the first location τ1, it can be derived from constraints (12)
and (14) that this is only possible if

δ0|k =

1
0
0

 δ−1|k =

1
0
0

 δ−2|k ∈


1

0
0

 ,
0

1
0


and

δ−3|k ∈


1

0
0

 ,
0

1
0

 ,
0

0
1

 .

The same analysis can be done for the other transducer
positions. This illustrates how the history of the transducer
trajectory is now included in the input constraints to capture
the travel times of the heating actuator.

Throughout the sequel of this report, only symmetric move-
ment matrices are considered because during experiments
it was observed that the movement times are not direction
dependent. This effectively means that the transducer moves
equally fast from τi to τj as the other way around.

C. Cost function

In the region of interest, a reference temperature profile is
defined as xr ∈ RnR , with nR the number of voxels located
inside the ROI. The performance variables, being the states
that correspond to the voxels in VR, are obtained via the linear
mapping xR = Hx ∈ RnR , where H ∈ {0, 1}nR×n is a
matrix with exactly one 1 in each row. Hence, following the
way the reference profile and temperature bounds are specified,
see Section II-D, it holds that Hx ≤ xr ≤ Hx̄. The control
objective is now formulated as the constrained optimization
problem in the form of a mixed-integer-problem

min
ζk

N∑
i=0

(xRi|k − x
r)>Q(xRi|k − x

r) + f>εi|k (17a)

subject to (8)− (14), (17b)

with Q ∈ RnR×nR and f ∈ R2 the weighting matrices for the
states in the region of interest and the slack variables εi|k =
[εi|k, ε̄i|k]>, respectively. In closed-loop control, problem (17)
is solved at each instant k from which the input uk is chosen
as uk = u0|k using the receding-horizon principle.

The state dimension in (17) is typically large (order 103)
and both real- and integer variables are present, which make
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the optimization of problem (17) computationally demanding.
In the next section, the computational complexity of (17) is
alleviated by using hierarchical MPC or reduced-order MPC,
in which the approximation of the dynamics (4a) plays a key
role.

IV. HIERARCHICAL MODEL PREDICTIVE CONTROL

In this section, the framework of the hierarchical controller
is discussed. A short literature review is included in which
background information on hierarchical control is presented.
Afterwards, the control structure is discussed and each control
layer is elaborated on.

A. Background on hierarchical MPC

In literature, several applications are found which show the
working principle and benefits of hierarchical MPC. Generally,
the decomposition of the control problem can be based on a
difference in functionality, difference in time-sale, or based
on a spatial decomposition, see [18]. A survey on multi-
agent MPC is found in [19] in which the hierarchical control
structure is discussed.

A wide variety of applications in which the principle of hier-
archical control is shown are found in literature. These include,
control of redundant refrigeration circuits [20], generating
and tracking trajectories in highly automated vehicles [21],
control for the fuel cell hybrid electric vehicles [22], matching
uncertain wind generation with PEV charging demand in a
microgrid [23] and in building energy management systems
[24]. All applications show the efficacy of the hierarchical
control in combination with the MPC framework.

Each work shows how a complex control problem is de-
composed into sub-problems of lower complexity. Suitability
of decomposition type depends strongly on the application.
Therefore, following the examples in literature, it is believed
that the MR-HIFU problem is well suited for HMPC control
since a functional decomposition in control layers lies at hand,
but that a case-specific approach is needed.

An alternative to hierarchical MPC to reduce computational
complexity of the heavy MIP is reduced-order MPC (RO-
MPC) in which the MPC problem is not decomposed, but
a single MPC layer is used that makes use of reduced order
dynamics, see, for example, [25, 26]. Interestingly, the high-
level of the HMPC setup proposed in this work involves a
RO-MPC problem, allowing for direct comparison between
HMPC and RO-MPC.

B. HMPC control structure

Inspired by the examples in literature, a functional decom-
position is proposed for the MR-HIFU problem as depicted in
Figure 4. The decomposition in functionality is the following.
At the high level, the main goal is to determine the cell-to-
cell trajectory of the heating actuator, whereas the focus of
the low-level is to compute the optimal heating inputs for the
provided transducer path.

At the high level, an MPC problem is formulated that is
subjected to constraints and an objective function, in which

High-level

MPC

Low-level

MPC

MR-HIFU

setup and

patient

Model-based

observer

ζh
k

Desired

acoustic

power

MRT data

x̂k

High-level

constraints

Low-level

constraints

Setpoint

Fig. 4: Closed-loop HMPC control for MR-HIFU.

simultaneous optimization occurs over the continuous heating
inputs and the integer variables describing the transducer
path. Hence, the high-level optimization vector ζhk contains
the predicted inputs, state predictions and transducer path.
This leads to the formulation of a mixed-integer optimization
problem similar to the original problem (17). However, real-
time feasibility is achieved by using reduced-order dynamics
instead of using (4a) for state predictions, which yields the
formulation of a RO-MPC problem at the high level.

The low-level MPC problem receives ζhk and uses the
predicted transducer path to fix ∆k in the original problem
(17). Hence, since the integer part is removed, a QP problem
remains. As a QP requires much less computational power,
this allows for the use of the full-order model (4a) for state
predictions to compute the desired acoustic power.

Using the MR-HIFU setup, the desired acoustic power is
applied to the patient. Each instant, new MRT data is obtained
from which a new state estimate x̂k is computed using the
observer as in (6). The next two subsections are dedicated to
elaborate on the details of both the high- and low-level MPC
problems, respectively.

C. High-level MPC

In the high-level controller, the computationally expensive
optimization (17) is approximated by a simplified problem. An
approximation of (4a) is captured in a model of order nh < n,
which follows the dynamics

xhk+1 = Ahxhk +Bhuhk , (18)

with xh ∈ Rnh and uh ∈ Rmh the state vector and input
vector of the reduced system, respectively. The matrices Ah ∈
Rnh×nh and Bh ∈ Rnh×mh describe the dynamics of the
reduced model. In Section V, multiple reduced order models
are discussed, which all allow for a linear transformation
between the high- and low-level state of the form xh = Tx,
with T ∈ Rnh×n the transformation matrix. The full state
vector is approximated by x̃ = T †xh, with T † the pseudo-
inverse of transformation matrix T . An approximation of the
performance variables is then computed as x̃R = Hx̃.

The slack variables εi|k, i = 1, . . . , N , are excluded in
the high-level MPC problem. The reason is that in (17) the
slack variables help in preventing temperature peaks at single
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voxel resolution. The reduced-order models discussed in this
work do not have the ability to predict the behavior of single
voxel temperatures and therefore implementing slack variables
cannot serve this exact purpose. However, in [15] it was
observed that for increased input powers (around 200 Watts),
larger regions of the patient domain are predicted to exceed
the upper temperature limits when the weight on the slack
variables is set to zero. Hence, in case the maximal available
power exceeds the usual limit of 100 Watts it does make
sense to include the slack variables, but then applied to the
approximated state prediction x̃. Since these cases are not
considered in this project, the slack variables are excluded
from the high-level optimization problem for simplicity.

The optimization variables of the reduced problem are con-
tained in the vector ζhk

>
= [Uhk

>
Xh
k

>
∆>k ], with Uhk ∈ RNmh

and Xh
k ∈ R(N+1)nh . The vector ∆k remains unchanged

with respect to the original problem (17). Using the reduced
order dynamics, the approximated optimization problem is
formulated as the mixed-integer problem

min
ζhk

N∑
i=0

(x̃Ri|k − x
r)>Q(x̃Ri|k − x

r) (19a)

s.t. xh0|k = T x̂k (19b)

xhi+1|k = Ahxhi|k +Bhuhi|k i ∈ [0, N ] (19c)

Zhuhi|k ≤Mdδi−d|kPmax i ∈ [0, N − 1], d ∈ [1, dmax]

(19d)

1>δi|k ≤ 1 i ∈ [0, N − 1] (19e)

0 ≤ uhi|k ≤ 1uhmax i ∈ [0, N − 1], (19f)

with uhmax the maximal individual input of the high-level
model, and

Zh = I ⊗ 1>ns̄ , (20)

with ns̄ = mh/nt. Note that in case mh = m, it holds that
Z = Zh. The upper limit is not necessarily equal to umax,
since the input space can be formulated differently for the
reduced model. In case RO-MPC is used, all control actions are
extracted from solving (19). For situations in which mh 6= m,
it is assumed that a linear mapping exists such that uk = Tuu

h
k ,

with Tu ∈ Rm×mh the mapping matrix that depends on the
type of model reduction. For hierarchical control, the solution
of (19) is passed through to the low level. A reduction in
computational complexity is expected for significantly reduced
high-level prediction models.

D. Low-level MPC

The low-level controller is similar to the original MIP
controller (17). However, the transducer positions are now no
longer optimization variables, but are provided by the high-

level controller. This yields the optimization problem in the
form of a QP

min
ζk

N∑
i=0

(xRi|k − x
r)>Q(xRi|k − x

r) + f>εi|k (21a)

s.t. x0|k = x̂k (21b)
xi+1|k = Axi|k +Bui|k i ∈ [0, N ] (21c)
Zui|k ≤ δ̄i|kPmax i ∈ [0, N − 1] (21d)
0 ≤ ui|k ≤ 1umax i ∈ [0, N − 1] (21e)

x− 1εi|k ≤ xi|k ≤ x̄+ 1ε̄i|k i ∈ [0, N ] (21f)

εi|k ≥ 0 i ∈ [0, N ] (21g)

ε̄i|k ≥ 0 i ∈ [0, N ], (21h)

with δ̄i the parameters that describe the transducer path which
are defined according to

δ̄i|k =

{
δi|k, if 1>uhi|k > 0,

0, else.
(22)

Hence, the high-level input is used to determine whether the
transducer is moving at future instant i, and the predicted
inputs ui|k are constrained to be zero accordingly. Both the
high- and the low-level MPC problem are solved with the
Gurobi solver, see [27].

Remark. Updating δ̄i|k following (22) is an easy to imple-
ment, pragmatic, approach to include the transducer path into
the optimization problem. A more formal way would be to
include constraints (19d) into the low-level problem as well,
but then acting on ui|k. However, since no occurrences are
observed in which uhi|k is predicted to be all zero at instances
where a nonzero input would be allowable, no further action
is taken.

V. REDUCED ORDER PREDICTION MODELS

In this section, the computation of the reduced-order pre-
diction models is discussed. Three different approaches are
considered with different properties. A short discussion is
included in which pros and cons of the methods are compared.

A. Balanced truncation

The first option that is considered to derive a high-level
model of reduced order that captures the dynamics with suf-
ficient detail is by balanced truncation, see [28, 29]. The core
idea of this reduction is to apply a balancing transformation to
the state such that the corresponding transformed reachability
and observability Gramians are equal and diagonal. A reduced-
order state space model can be obtained from the balanced
system by truncation, which removes states that are the most
difficult to reach and to observe. The truncation order is user-
defined and is typically chosen on the basis of tuning. Ad-
vantages of the balancing type reduction are that the reduced
system possesses the same properties as the balanced system
with respect to reachability, observability and stability, and
that an error bound between the output of the reduced system
and the original system is known.
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For continuous-time systems, the infinite-horizon reachabil-
ity and observability gramians are computed by solving the
Lyapunov equations

AcP + PA>c +BcB
>
c = 0 (23)

A>c Q+QAc + C>C = 0, (24)

in which P,Q ∈ Rn×n are the reachability and observability
Gramian respectively, and Ac ∈ Rn×n and Bc ∈ Rn×m are
the continuous-time system matrices.

To avoid numerical trouble in calculating the balancing
transformation, a minimal realization of the system is calcu-
lated first. That is, only states that are both reachable and
observable are retained, while all other states are removed
from the system. This results in a system with the same
transfer function as the original system, but with a minimal
number of states. In order to calculate a minimal realization,
the reachable and observable set of states RO is calculated
according to

RO = {x ∈ Rn | x ∈ Im(PQ)}, (25)

with Im(·) denoting the image of a matrix, which follows from
the properties that Im(P) denotes the reachable set of states
and ker(Q) denotes the unobservable set of states, with ker(·)
being the kernel of a matrix. Consequently, the set of states
in RO⊥, which is the complement of RO, are to be removed
from the system description. To do so, the transformation
matrix

T =
[
Im(RO) Im(RO⊥)

]>
(26)

is defined.
Using the transformation matrix (26), the system matrices

are transformed according to

Ā = TAcT
−1 B̄ = TBc C̄ = CT−1. (27)

The minimal realization is now obtained by writing the trans-
formed system matrices in (27) as

Ā =

[
A11 A12

A21 A22

]
∈ Rn×n, B̄ =

[
B1

B2

]
∈ Rn×m, (28)

C̄ =
[
C1 C2

]
∈ Rn×n, (29)

from which the minimal system matrices

Am = A11 ∈ Rrm×rm , Bm = B1 ∈ Rrm×m, (30)
Cm = C1 ∈ Rn×rm , (31)

follow, with rm the number of columns in Im(RO).

Remark. Calculation of the minimal representation of the sys-
tem may remove states that are reachable, but due to numerical
tolerances are interpreted as unreachable. The same holds for
observable states. The set RO has rm columns which equals
the rank of PQ. This rank equals the number of singular
values which are smaller than a certain tolerance. Therefore,
the minimal representation is here only a numerically min-
imal representation. Theoretical aspects on reachability and
observability of the system are not investigated any further.

Using the minimal system matrices (Am, Bm, Cm),
the corresponding reachability- and observability Gramians
(Pm,Qm) are computed by solving (23) and (24), respec-
tively. A balancing transformation matrix can now be com-
puted, see [29], which obtains balanced Gramians with de-
creasing singular values on the diagonal. First the Cholesky
reachability Gramian Pm is computed as

Pm = S>S. (32)

A singular value decomposition is now performed on the
product S>QmS as

S>QmS = ΓΣΘ>, (33)

from which the balancing transformation matrix is calculated
as

Tb = Σ1/4ΘS−1. (34)

The reduced model is now obtained by computing the
balanced representation of the minimal system as

Ab = TbAmT
−1
b , Bb = TbBm, Cb = CmT

−1
b , (35)

and truncating the matrices in (35) to the user-defined order
nh, after which the discrete time model is obtained using
forward Euler discretization.

An error bound on the output of the reduced-order system
is known and is given by

||G−Gh||H∞ ≤ 2(σnh+1
+ . . .+ σrm), (36)

in which G and Gh are the transfer functions of the minimal-
and the reduced system, and σnh+1, . . . , σrm are the truncated
singular value. The error bound provides useful information on
the accuracy of the reduced model and can be used for initial
estimates on the desired reduction order.

Remark. The presented balanced truncation procedure does
not incorporate any input constraints in the construction of
the reduced model. Constraints (11), which limit heating to a
single transducer location, allow to interpret the state space
model as a switched system in which the input-to-state matrix
is mode dependent. Each transducer position is then coupled
to a mode-dependent Bq(t) matrix, in which q(t) specifies
the mode at time t. In [30], balanced truncation for linear
switched systems of the form

ẋ(t) = Aq(t)x(t) +Bq(t)u(t) (37)
y(t) = Cq(t)x(t), (38)

is discussed, in which all system matrices are mode dependent.
Following the procedure in [30] for the simplified case in
which only the B matrix is switched, the resulting observability
and reachability Gramians that are used for model reduction
turn out to be equivalent to the ones obtained by solving the
Lyapunov equations (23)-(24), respectively. Therefore, neglect-
ing the switched nature of the system is validated.
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B. POD basis reduction

A second model-reduction technique that is considered is a
data-based approach. The reduction technique is based on a
proper orthogonal decomposition (POD) of a data set, see [29].
The POD basis problem aims to find an orthonormal basis
that can best describe a given data set. For the data matrix
W = [w1, w2, . . . , wnw ] ∈ Rn×nw , the set of orthonormal
basis functions Φ = {φ1, φ2, . . . , φr}, with φi ∈ Rn, i =
1, . . . , r, with r < nw should be such that the approximation
error computed by the sum

nw∑
j=1

‖wj −
r∑

k=1

〈wj , φk〉φk‖2, (39)

in which 〈·, ·〉 denotes the inner product, is minimal.
The basis to minimize (39) can be obtained by computing

the singular value decomposition of the data matrix W as

W = ΓΣΘ>, (40)

with Γ = [γ1, . . . , γn] ∈ Rn×n, Θ = [θ1, . . . , θnw ] ∈ Rnw×nw
and

Σ =

[
Σ̄ 0
0 0

]
,

with Σ̄ = diag(σ1, . . . , σn) and n the rank of matrix W .
Setting φi = γi, i = 1, 2, . . . , r, is then a POD basis, i.e.
(39) is minimal.

A reduced-order model can now be constructed by us-
ing time series data of a simulation to fill the matrix W .
The singular value decomposition is then performed to pick
relevant directions. For a truncation order nh, the projec-
tion matrix to obtain the high-level state is then defined as
T = [γ1, γ2, . . . , γnh ]> ∈ Rnh×n, such that xh = Tx and
x̃ = T>xh. The reduced-order system matrices are obtained
by applying Galerkin projection of the original model on the
orthonormal basis T , which leads to the system matrices

Ah = T>AT Bh = T>B, (41)

for the high-level prediction model. Appendix A contains a
proof regarding the stability of the reduced order prediction
model.

No formal bound on the prediction error is obtained. How-
ever, a quantification of the approximation error with respect
to the data matrix is given by the largest truncated singular
value

‖W − W̃‖2 = σrb+1, (42)

with W̃ = T>TW the approximated data matrix. Hence, the
largest neglected singular value gives an indication of the
model accuracy.

C. Heuristic approach

As a third reduced order model, a heuristic approach is
considered. In [14], control decisions are made on the basis
of average cell temperatures. Motivated by this, a simplified
model is constructed in which the state vector contains average

temperatures over larger areas. Taking just the average cell
temperatures comes with the disadvantages that temperatures
of voxels that are not located in a cell, are not monitored. To
this extent, the patient domain is divided into subspaces using
a Voronoi diagram. In general, a Voronoi diagram divides a
space such that the resulting Voronoi cells Rj associated with
site Pj ∈ Rp, being a point in the p-dimensional space, satisfy
the property

Rj = {r ∈ Rp | d(r, Pj) ≤ d(r, Pi) ∀i 6= j}, (43)

in which d : Rp×Rp → R≥0 specifies a distance function, see
[31]. For this project, a convenient choice of sites to divide
the patient domain are the locations of transducers. This leads
to the definition of the Voronoi cells in the patient domain as

Rj = {r ∈ Ω | d(r, τj) ≤ d(r, τi) ∀i 6= j}, (44)

with the distance function now working on the subspaces d :
Ω × T → R≥0 and i, j ∈ {1, 2, . . . , nt}. Hence, in total the
number of Voronoi cells is equal to the number of transducer
positions in T .

In order to split the region of interest from the subspace
outside the region of interest, a refinement is made according
to

Ij = Rj ∩R j ∈ {1, 2, . . . , nt}, (45a)
Oj = Rj \ R j ∈ {1, 2, . . . , not}, (45b)

in which it is possible that not < nt in case one or more of
the Voronoi cells is located completely inside the region of
interest.

An illustrative example of the partition of the patient domain
into cells using a Voronoi diagram is provided in Figure 5.
Each cell is enclosed by the Voronoi edges and the boundaries
of the patient domain and region of interest. For this example,
the reduced state is of dimension ten.

R
Ω n R

Transducer

centers

Interaction

Voronoi

edges

Fig. 5: Voronoi partition.
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Each cell in (45) is associated with a set of voxel locations
that are contained within the boundaries of the respective cell.
The indexes of the voxels in each set are captured in

IIj = {i ∈ {1, . . . , n} | vi ∈ V ∩ Ij}, j ∈ {1, . . . , nt},
(46a)

IOj = {i ∈ {1, . . . , n} | vi ∈ V ∩Oj}, j ∈ {1, . . . , not},
(46b)

such that the average temperature of each cell is calculated as

xIj =
1

N I
j

∑
i∈IIj

xi, j ∈ {1, . . . , nt}, (47a)

xOj =
1

NO
j

∑
i∈IOj

xi, j ∈ {1, . . . , not}, (47b)

with xi the i-th element of the full-state vector x, and
N I
j and NO

j the number of elements in the sets IIj and
IOj , respectively. Consequently, the reduced state vector is
constructed as

xhk = [xI1,k, . . . , x
I
nt,k, x

O
1,k, . . . , x

O
not ,k

]>, (48)

which is obtained from the full temperature profile via the
linear mapping xhk = Txk that follows from (47).

Using the transformation matrix, the reduced input-to-state
matrix is defined as Bh = TB. To define the A matrix for the
high-level, physical modeling is used. To do so, the energy
balance

ρV c
dT

dt
= Q̇in + Q̇out, (49)

with density ρ in [kg/m3], volume V in [m3], specific heat
capacity c in [J/kg·K], temperature T in [K], time t in [s]
and energy flow Q̇ in [J/s], is used. For each cell, the energy
inflow Q̇in and outflow Q̇out are considered to be only the
applied heat by the transducer and heat conduction between
neighboring cells, respectively. The energy flow due to heat
conduction is modeled using Fourier’s law

Q̇out = −kAq∇T, (50)

with conductivity k in [W/m·K], area Aq over which heat
transfer occurs in [m2] and the temperature gradient ∇T in
[K/m]. Both the volume V in (49) and the area Aq in (50)
depend on the out of plane direction z. Since this direction is
not considered in the prediction model, the z-dependency is
removed by normalizing both

V = Acell∆z and Aq = L∆z,

with Acell the area of the cell perpendicular to the z direction,
and L the length over which heat transfer occurs, in the z
direction which yields

ρAcellc
dT

dt
= −kL∇T. (51a)

Using these relations, the temperature evolution as a result of
heat conduction can be found for each cell by summing over

all interaction terms. The temperature gradient between two
interacting cells is calculated as

∇T =
Ti(k)− Tj(k)

∆ri,j
, (52)

with ∆ri,j the Euclidean distance between the center points,
which are calculated as

M I
j =

1

N I
j

∑
i∈IIj

vi ∀j ∈ {1, . . . , nt}, (53a)

MO
j =

1

NO
j

∑
i∈IOj

vi ∀j ∈ {1, . . . , not}, (53b)

corresponding to the cells (45). For each cell, the temperature
update can now be calculated using

Tc(k + 1) = Tc(k)− k

ρAcell,cc

∑
i∈Nc

Lc,i
Tc(k)− Ti(k)

∆rc,i
Ts

+Bhc uk, (54)

with Acell,c in [m2] the area of cell c, Lc,i in [m] the length
of the touching edge between cell c and i, Nc the set of cells
indexes that have a touching edge with cell c, Ts the sampling
time and Bhc the row of the input matrix that corresponds to
cell c.

Besides the reduction in state dimension, the Voronoi
partition allows a reduction in input space as well without
losing accuracy with respect to (54). All inputs that only
effect a single element of the reduced state vector can be
grouped together. Specifying ūi ∈ {0, 1}m, i = 1, 2, . . . ,m,
with a single 1 at the i-th position and x̄hj ∈ {0, 1}nh ,
j = 1, 2, . . . , nh, with a single 1 at the j-th position, all i-
th inputs for which it holds that

〈Bhūi, x̄hj 〉 = 1, (55)

for a certain j, can then be grouped together without losing
model accuracy. This allows a reduction in optimization vari-
ables which further reduces computational times.

D. Discussion

Out of the three presented methods, two methods allow for a
user-defined reduction order being the balanced truncation and
the POD-based model. The Voronoi model does not have this
possibility in the way the reduction is modeled now, which can
be problematic in case the model turns out to be insufficiently
accurate. For the other two models, this can be solved by
increasing the reduction order until the desired accuracy is
achieved.

In terms of computational times, the Voronoi model is
expected to outperform the other two models for similar
reduction orders based on the sparsity of the system matrices.
For both the balanced truncation and the POD-based models,
the matrix Ah is typically a full matrix caused by the full
transformation matrix, whereas the Voronoi method yields a
sparse matrix. Therefore, higher prediction horizons are possi-
ble within computational constraints when using the Voronoi
model.
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Comparing the balanced truncation to the POD-based
method, it is expected that the POD model is more case
specific which is beneficial for the accuracy of the model.
That is, since the POD model is based on simulation data that
is obtained from a case study in which the reduced model
is planned to be used in the HMPC controller, the vectors
that span the transformation matrix are more specific. For the
balanced truncation this is not the case since the transformation
follows solely from the matrices of the original system. Hence,
in case an accurate data set is available that is related to the
desired case, the POD model is expected to be more accurate
than the balanced truncation for equal reduction orders.

VI. TRANSDUCER LOCATION OPTIMIZATION

In this section, two methods are discussed for the calcu-
lation of the transducer positions. Both methods rely on an
optimization procedure, but differ in their objectives. Using
the calculated transducer positions, the input-to-state matrix
can be defined as is needed for state predictions in the MPC
controller.

A. Method I: utility-based optimization

The first optimization method is based on optimizing the
utility resulting from placing a transducer center at a certain
location. For the particular case of determining the transducer
locations, a sensible choice of utility would be a quantitative
measure of the ability to apply heat to the system. Therefore,
the utility is defined as the negative sum of distances from the
transducer centers to each voxel in the set VR. This definition
is such that a maximal utility is obtained when the sum of
distances is minimal. Using distance as a utility measure is
a common approach in literature for solving facility location
problems, see e.g. [32], in which facilities are to be placed
such that clients are optimally served. In the hyperthermia
context, the transducer could be interpreted as the facility
which supplies the region of interest with heat. Hence, the
voxels in the region of interest can be interpreted as clients.

The optimal placement of the transducers is now computed
by solving the optimization problem

min
T

( ∑
vi∈VR

wi min
τj∈T

d(τj , vi)
)

(56a)

s.t. τj ∈ Ω ∀j ∈ [1, nt], (56b)

with d : R2 × VR → R≥0 chosen to define the Euclidean
distance and wi ∈ R≥1, i = 1, . . . , nv , constants, which
allow additional weighting for voxels vi, i = 1, . . . , nv . Since
most heat flux typically occurs at the edges of the region of
interest due to the temperature gradient, it could be beneficial
to increase the weight on the voxels at the edge of the ROI
which results in transducer locations that are more positioned
towards the edge of the ROI and therefore allowing more heat
generation here to counteract the heat flux. In addition, in case
of a known source of local heat loss, such as a blood vessel,
these areas could be weighted extra as well to counteract the
heat loss. However, determining the weights a-priori based on
this information is not straightforward.

Due to the obvious non-convex nature of the optimization
problem (56), the genetic algorithm provided by Matlab is used
to solve the problem which enhances the likelihood of finding
the global optimum, see [33]. Note that constraint (56b) is
assumed to be inactive, but is included to limit the search
space. This assumption is reasonable since the patient domain
is typically two to three times larger than the region of interest
in dimensions. Therefore, placing the transducers at the edge
of the patient domain would result in a low utility.

A useful extension to optimization problem (56) would
be to include a minimal utility constraint, which gives the
opportunity to search for a minimal amount of transducer
positions to comply with this constraint. The minimal amount
of transducer locations is then the minimal amount of locations
for which the optimization problem, in which the utility
constraint is included, is feasible. The implementation as it
is now also allows to find a minimal amount of transducer
locations by iteratively increasing the number of locations and
monitoring the utility until the lower bound is met. Therefore,
the additional constraint is not implemented.

The advantages of this method are the ease of implementa-
tion and applicability to arbitrary sets of voxels in the region
of interest VR. A main disadvantage is that the system’s
thermal behavior is in no way included into the optimization,
potentially leading to suboptimal placing of the transducer
centers. Therefore, a second method is considered which does
include some thermal behavior.

B. Method II: including thermal behavior

An approximation of the steady-state performance is made
to represent average behavior of the system by allowing
simultaneous heating at all transducer-locations. For a fixed
input-to-state matrix this problem can be formulated as a
quadratic programming problem (QP). Since the input-to-state
matrix B is dependent on the location of the transducers,
the transducer location problem is formulated as the clustered
optimization problem

min
T

(
min
ζqp

(xR − xr)>Q(xR − xr) + f>ε
)

(57a)

s.t. x = Ax+Bf (T )u (57b)
x ≤ x̄+ 1ε (57c)

0 ≤ u ≤ 1umax (57d)

1>u ≤ Pmax (57e)
ε ≥ 0 (57f)
τj ∈ Ω ∀j ∈ [1, nt], (57g)

in which x ∈ Rn, u ∈ Rm and ε ∈ R≥0 are the optimization
variables of the QP problem, being the steady-state temper-
ature profile, heating input and slack variable, respectively,
and are contained in the vector ζqp = [u> x> ε]>. Using
the function Bf : T → Rn×m, the input-to-state matrix for
the current configuration of transducer locations is obtained.
The reference temperature map in the region of interest xr

and the maximum temperature map x̄ are defined similar
to the MPC problem as discussed in section IV. Equality
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constraint (57b) ensures that the obtained solution is a steady-
state temperature profile. The input constraints are similar to
the MPC problem (21), but of reduced complexity since the
input is no longer constrained to a single transducer location.
Note that no slack variable is included to penalize violations
of the lower temperature bound as this typically does not occur
in steady steady.

The usage of a genetic algorithm turned out to be
computationally intractable for solving (57). Therefore, to
make solving (57) computationally tractable, the solution is
obtained by first solving (56) and providing the outcome as
an initial guess to a gradient-based solver. Convexity of the
problem is not investigated, so no conclusions are drawn with
respect to global optimality. However, it can be concluded
that the configuration of transducer locations as obtained
from (57) will be no worse than the locations obtained from
(56) with respect to the performance criterion (57a).

C. Comparison

To compare the two methods, the transducer locations in T
are optimized for two different regions of interest, resulting in
different sets of voxels VR. The first ROI is chosen as a corner
profile whereas the second is a square region of interest. In
Figure 6, the resulting transducer locations that follow from
both optimization methods are plotted. The circles represent
the range in which focal spots can be generated by electronic
beam steering, corresponding to the transducer locations in T .
In both the first and the second method all voxels are equally
weighted, i.e. wi = 1, i = 1, . . . , nv , Q = I and f = 0.

The first method results in a homogeneously distributed
set of transducer locations over the region of interest, while
the second method finds the optimal transducer locations to
lie closer to the edges of the ROI. These results stress the
importance of heating the edges, due to the largest heat flux
by diffusion there, and in case of using the first method, an
additional weight on the critical edges can be used to enhance
steady-state performance. However, method I comes with the
disadvantage that the additional weights will always be an a-
priori guess, while method II automatically incorporates an
approximation of the system’s thermal behavior to optimize
the locations.

A quantitative performance comparison is made in which
for several chosen transducer paths, the low-level MPC opti-
mization problem (21) is solved. To find a periodic solution,
the equality constraint

xNσ = x0, (58)

with Nσ the length of the transducer path, is added. This
way, the result of the low-level optimization provides the
optimal temperature profiles in steady-state when periodically
following the given transducer path. The transducer path
σ = {σ0, σ1, . . . , σNσ} is defined such that a zero corresponds
to no heating allowed, whereas σi = t implies that heating is
allowed at transducer location τt. Performance is quantified by
calculating the average stage cost over the length of Nσ time

(a) (b)

Fig. 6: Transducer locations for two different sets VR. Plot (a)
shows a corner profile with three transducer locations, whereas
(b) shows a square region of interest with four locations. The
circles indicate the region in which heat can be applied.

instants. In Table I and Table II, the average stage costs are
shown for method I and II, for both the corner case and the
square case, respectively. Relative difference in performance
is expressed by r = −100× (Cost II - Cost I)/Cost I. Num-
bering of the transducer locations is clockwise, starting with
the upper right corner.

TABLE I: Performance comparison of transducer configura-
tions I and II for the corner case in Figure 6a.

σ Cost I Cost II r [%]
{1, 0, 2, 0, 3, 0} 6.89 1.84 73.3

{1, 1, 0, 2, 2, 0, 3, 3, 0} 7.01 1.90 72.9
{1, 0, 0, 2, 0, 0, 3, 0, 0} 7.14 1.97 72.4

{1, 1, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0} 7.29 2.06 71.8

TABLE II: Performance comparison of transducer configura-
tions I and II for the square case in Figure 6b.

σ Cost I Cost II r [%]
{1, 0, 2, 0, 3, 0, 4, 0} 8.64 0.91 89.5

{1, 1, 0, 2, 2, 0, 3, 3, 0, 4, 4, 0} 8.87 1.00 88.7
{1, 0, 2, 0, 4, 0, 3, 0} 8.64 1.97 72.4

{1, 1, 0, 2, 2, 0, 4, 4, 0, 3, 0} 8.87 1.00 88.7

A clear increase in performance is observed for method
II. This indicates a significant potential benefit of placing
the transducers according to method II in addition to the
fact that no a-priori heuristic weighting of the voxels is
needed. However, robustness against model inhomogeneity is
decreased when using the second method. In case local spots
of increased perfusion are present inside the ROI that are
not included in the model, utility plays an important role in
counteracting this disturbance. Therefore, one may still decide
on using method I for transducer placement depending on the
application.

As a validation of the simplified optimization problem (57),
the QP costs are computed for the transducer locations as
obtained through both optimization methods. The numeric
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values are

corner case: CIqp = 6.71 CIIqp = 1.73

square case: CIqp = 8.32 CIIqp = 0.76,

which shows a slightly optimistic estimate of the steady-state
cost that are computed for different sequences, but turns out
to be a good indicator. The slightly lower cost is as expected,
since in problem (57) the heating is not limited to a single
location at a time, which enhances performance and therefore
results in a lower cost. Conclusively it can be said that the
reduced problem is well suited for optimization of transducer
locations, such that steady-state performance is enhanced.

VII. STABILIZING HMPC FOR HYPERTHERMIA

So far, stability properties of hierarchical MPC are not
addressed. The goal of this section is to provide a stability
analysis of HMPC applied to the hyperthermia case. As a
first step, the proposed controller consisting of the two MPC
problems (19) and (21) is altered to a setup in which the
two MPC problems are defined as tracking problems, since
tracking MPC allows for an insightful stability analysis. First,
the approach of the stability analysis is discussed, after which
the separate parts are elaborated on in detail.

A. Stability approach

In order to draw conclusions on the stability of the HMPC
controller, the stability analysis is split up into multiple steps.
Firstly, stability of MPC is analysed for the simplified case in
which the high-level dynamics are assumed to capture the true
dynamics of the system. To define an appropriate reference
signal for the tracking-MPC problem, an optimization proce-
dure is presented, from which a periodic reference signal is
generated that is suited for periodic tracking as in, for example,
[34]. Afterwards, stability towards this trajectory is shown.

As a second step, the interconnection between high- and
low-level is analyzed. Since the high-level dynamics do not
capture the true behavior of the system, there exists a mismatch
of the form

xhk+1 = Txk+1 6= Ahxhk +Bhuhk . (59)

This mismatch is included in the analysis by considering a
bounded disturbance that acts on the high-level dynamics. A
link can now be made to tube-based robust MPC, see [12],
from which conclusions regarding the stability of the tracking
HMPC are drawn.

B. Generation of periodic reference trajectory

For the generation of reference trajectory as used in the
tracking MPC is calculated by solving an optimization prob-
lem similar to the high-level problem (19), but now over a
horizon of Nσ samples and with additional constraints to

ensure periodicity of the solution. This leads to the mixed-
integer optimization problem

min
ζσ

Nσ∑
i=0

(s̃Ri − xr)>Q(s̃Ri − xr) (60a)

s.t. si+1 = Asi +Busi i ∈ [0, Nσ − 1] (60b)
s0 = sNσ (60c)

Zusi ≤Mdδ
s
i−dPmax i ∈ [0, Nσ − 1],

d ∈ [1, dmax] (60d)
Zus0 ≤Mdδ

s
Nσ−dPmax d ∈ [1, dmax] (60e)

1>nsδ
s
i ≤ 1 i ∈ [0, Nσ − 1] (60f)

0 ≤ usi ≤ 1uhmax i ∈ [0, Nσ − 1], (60g)

with the optimization variables now defined as ζσ =
[s,us,∆s] consisting of

s = [s0, s1, . . . , sNσ ] ∈ Rnh×(Nσ+1), (61a)

us = [us0, u
s
1, . . . , u

s
Nσ−1] ∈ Rmh×Nσ , (61b)

∆s = [δs0, δ
s
1, . . . , δ

s
Nσ−1

] ∈ Rnt×Nσ , (61c)

being the reduced-order temperature profiles, input- and delta-
sequence of the reference signal, respectively. The full-order
states in the region of interest are approximated as s̃Ri =
HT †si. Compared to problem (19), the constraints in (60e)
are added, which ensure that the input sequence is periodically
admissible, i.e. the input sequence Ū = 1>⊗us is admissible
for all sizes of 1, by making sure that the first input is
admissible at the first instant after executing one period. In
addition, constraint (60c) ensures periodicity of the obtained
temperature profile.

As an illustrative example, problem (60) is solved for the
three-cell corner case as depicted in Figure 6a. The transducers
are placed according to the utility-based optimization method.
The weighting matrix Q is defined as Q = T †

>
Q̄T , with

Q̄ ∈ Rn×n a diagonal matrix in which the weight on the ROI
voxels is a hundred times larger than for the other voxels. By
doing so, the Q matrix is known to be positive definite and
the ROI voxels are dominant in the penalty matrix, which is in
line with the control objective. The reduced-order model that
is used in this example is obtained using a balanced truncation
wit a reduction order of nh = 45.

For various lengths of the periodic reference signal the
optimization problem (60) is solved, resulting in the optimal
switching sequences σ and average costs as stated in Table
III. A performance measure Javg is calculated as the average
cost over the first Nσ instants according to

Javg =
1

Nσ

Nσ−1∑
i=0

(s̃Ri − xr)>Q(s̃Ri − xr), (62)

with s̃Ri , i = 0, 1, . . . , Nσ − 1, now the optimal sequence that
follows from optimization of (60). This allows for comparison
between the various sequence lengths. The reason that the
last term s̃RNσ is excluded from the average cost is that the
variable sNσ is only included in the optimization to ensure
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periodicity of the solution by using constraint (60c). Hence,
including the last term would give a biased view on the
performance since the initial state would be weighed twice.
Uniform movement times are implemented of one sample time
between each location. A minimal horizon of six samples is
chosen since this is the minimal sequence length such that each
location can be visited. Out of the tested prediction horizons,
the horizons of six and twelve samples turn out to be optimal.
It turns out that the sequence in which each location is visited
once for the duration of one sample is optimal. Note that an
increased sequence length does not necessarily imply a lower
average cost. For example, from Table III it becomes clear
that sequence lengths that are not a multiple of six samples
are suboptimal since the optimal path that is described by
the the sequence of six and twelve samples cannot be exactly
followed.

In Figure 7 the average temperature profile X̃ss correspond-
ing to the twelve-sample reference sequence, which has the
lowest average cost, is shown together with the voxel locations
in the setR. An elevated temperature plateau of approximately
five degrees is achieved over almost the whole region of
interest, with slightly increased temperatures at the corners.
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Fig. 7: Average temperature profile of the optimal reference
sequence.

TABLE III: Optimal switching sequences and costs for the
three-cell case.

Nσ σ Javg
6 {0, 1, 0, 3, 0, 2} 56.40
7 {0, 1, 1, 0, 3, 0, 2} 56.44
8 {0, 3, 0, 1, 0, 3, 0, 2} 56.45
9 {0, 3, 0, 1, 1, 0, 3, 0, 2} 56.47
10 {0, 3, 0, 2, 0, 1, 0, 3, 0, 2} 56.45
11 {0, 3, 3, 0, 2, 0, 1, 0, 3, 0, 2} 56.47
12 {0, 1, 0, 3, 0, 2, 0, 1, 0, 3, 0, 2} 56.40
13 {0, 1, 0, 3, 3, 0, 2, 0, 1, 0, 3, 0, 2} 56.42
14 {0, 1, 0, 3, 0, 2, 0, 3, 0, 1, 0, 2, 0, 3} 56.43
15 {0, 1, 0, 3, 0, 2, 2, 0, 3, 0, 1, 0, 2, 0, 3} 56.44

C. Stability of periodic tracking MPC

The solution of (60) is now used in a tracking MPC similar
to [34], in which the high-level dynamics are assumed to
capture the true behavior of the system. To periodically track
the sequence s in (61a) using MPC, at each instant k a
reference signal rk = [rk, rk+1, . . . , rk+N ] ∈ Rnh×(N+1) is
defined where ri = st, with

t = i−
⌊
i

Nσ

⌋
Nσ, (63)

where b·c denotes the floor function. The input sequence
urk = [urk, u

r
k+1, . . . , u

r
k+N−1] ∈ Rmh×N and delta sequence

∆r
k = [δrk, δ

r
k+1, . . . , δ

r
k+N−1] ∈ Rnt×N that correspond to

the reference signal are generated similar to rk, but based on
the sequences us and ∆s, respectively.

The MPC cost function is now defined as

J(ζh, k) = eh
>

N |kPe
h
N |k +

N−1∑
i=0

eh
>

i|kQe
h
i|k, (64)

with Q,P ∈ Rnh×nh the stage-penalty and terminal-penalty
matrices, respectively, and ehi|k = xhi|k − rk+i ∈ Rnh the
predicted error with respect to the reference signal. The cost
function depends on the optimization parameters in ζh and is
time-varying because of the time-dependent reference trajec-
tory. Using the periodic input sequence, the error dynamics
are derived as

ehk+1 = xhk+1 − rk+1 (65a)

= Ahxhk +Bhuhk − (Ahrk +Bhurk) (65b)

= Ahehk +Bh∆uk, (65c)

with ∆uhk = uhk − urk the difference in input between the
reference sequence and current input. Since Ah is known to
be Schur, it can be concluded that for ∆uhk = 0, k ∈ N, the
error converges to zero.

A value function is now defined as

V (Eh
∗

k ) = J(ζh
∗

k , k), (66)

with ζh
∗

k = [Uh
∗

k

>
Xh∗

k

>
∆∗k
>] the optimization vector at

instant k, consisting of the optimal parameters

Uhk
∗

=


uh
∗

0|k
uh
∗

1|k
...

uh
∗

N−1|k

 , Xh
k

∗
=


xh
∗

0|k
xh
∗

1|k
...

xh
∗

N |k

 , ∆∗k =


δ∗0|k
δ∗1|k

...
δ∗N−1|k

 ,

such that (64) is minimal and complies to the high-level MPC
constraints (19c) - (19f), and Eh

∗

k ∈ R(N+1)nh the vector
containing the errors eh

∗

i|k = xh
∗

i|k − rk+i, i = 0, 1, . . . , N ,
stacked on top of each other.
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Stability of the tracking MPC controller is now proven by
showing that the value function (66) satisfies the Lyapunov
properties

V (0) = 0, (67a)

V (Ehk ) > 0 ∀Ehk ∈ R(N+1)nh 6= 0, (67b)

V (Ehk+1)− V (Ehk ) < 0 ∀Ehk ∈ R(N+1)nh 6= 0. (67c)

The first two properties (67a)-(67b) are ensured due to the
matrices Q and P being positive definite. The last property
(67c) can be proven by considering the inequality

V (Ẽh
∗

k+1)− V (Eh
∗

k ) < 0, (68)

in which Ẽh
∗

k+1 is the error sequence that corresponds to the
shifted optimization vector ζ̃h

∗

k+1, which is the vector ζh
∗

k ,
but shifted one step and added with one step of the periodic
sequence, see e.g. [35]. Hence, ζ̃h

∗

k+1 is such that the input-
and delta sequence are Ũh

∗

k+1 = [uh
∗

1|k, . . . , u
h∗

N−1|k, u
r
k+N ] and

∆̃∗k+1 = [δ∗1|k, . . . , δ
∗
N−1|k, δ

r
k+N ], respectively. From equation

(64) it can be seen that

V (Ẽh
∗

k+1) = V (Eh
∗

k )− eh
∗>

0|k Qe
h∗

0|k − e
h∗>

N |kPe
h∗

N |k

+ eh
∗>

N |kQe
h∗

N |k + eh
∗>

N |kA
h>PAheh

∗

N |k, (69)

From which it can be concluded that

V (Ẽh
∗

k+1)− V (Eh
∗

k ) ≤ −eh
∗>

0|k Qe
h∗

0|k < 0 ∀eh
∗

0|k ∈ Rnh 6= 0

(70)

if

eh
∗>

N |k [Ah
>
PAh − P +Q]eh

∗

N |k ≤ 0, (71)

which holds if the matrix inequality

Ah
>
PAh − P ≤ −Q (72)

is satisfied. Using optimality, it is known that V (Eh
∗

k+1) ≤
V (Ẽh

∗

k+1). Hence, it is concluded that stability of the tracking
MPC for the simplified case in which the system follows the
reduced dynamics can be guaranteed by construction of P .

This analysis assumes that the shifted input sequence Ũh
∗

k+1

is always admissible at k+1. To comply with this assumption
and ensure recursive feasibility, additional constraints should
be added on the delta variables such that the input sequence
[Uh

∗

k , urk+N , . . . , u
r
k+N+h] is admissible, with h the number

of travel instances after the prediction horizon until the first
nonzero input occurs in the reference sequence. In case of
only zero travel times between the transducer locations it is
obvious that no additional constraints are necessary since h =
0, always. For uniform movement times of p samples between
each location, the additional constraints can be specified as

δN−i|k = δrk+N−i ∀i ∈ [1, q], (73)

with q = h − p. For non-uniform movement times, the
additional constraints become more complex since multiple
trajectories could be allowed. For brevity reasons, these cases
are not considered in this paper.

D. Stabilizing HMPC

In the previous subsections, the reduced-order dynamics
are assumed to capture the true behavior of the system.
However, as previously mentioned, simplifying the dynamical
model of the system is inherently linked to the existence of
prediction errors, i.e., xhk+1 6= Ahxhk + Bhuk. To incorporate
this uncertainty, consider the disturbed system

xhk+1 = Ahxhk +Bhuhk + wk, (74)

in which wk ∈ W ⊂ Rnh is the disturbance at instant k
with W assumed to be a compact, convex, subset containing
the origin. The size of the set W depends on the accuracy
of the reduced model, i.e., a more accurate model shrinks
the size of the set W . For example, the error bound (36)
shows how the accuracy of the reduced model obtained by
balanced truncation depends on both the reduction order and
the input. This illustrates that both the order of the reduced
model and the inputs influence the boundaries of the set W .
The exact relation between the error bound (36) and the setW
is not investigated. In addition, for the other reduction types
no formal output bound is found, which makes it difficult to
formally quantify the bounds on the disturbance wk.

The difference between the nominal high-level dynamics

x̄hk+1 = Ahx̄hk +Bhūhk (75)

and (74) is captured in the error vector ek = xhk − x̄hk ∈ Rnh .
For the case in which the input on the nominal system and the
disturbed system are the same, i.e., uhk = ūhk , the error between
the real and the nominal system follows the dynamics

ek+1 = Ahek + wk. (76)

A compact set Ek is now defined as

Ek =

k−1⊕
j=0

(Ah)jW =W ⊕AhW ⊕ . . .⊕ (Ah)k−1W, (77)

with ⊕ the Minkowski sum, such that from (76) it follows
that ek ∈ Ek if e0 = 0. Since Ah is known to be Schur for all
three reduction methods discussed in Section V, the set

E∞ =

∞⊕
j=0

(Ah)jW (78)

exists and is forward invariant for the error dynamics (76),
i.e., e ∈ E∞ implies that Ae + w ∈ E∞ for all w ∈ W , see
[36]. Hence, the high-level state is known to be contained in
the tube xhk ∈ {x̄hk} ⊕ E∞ for all instances k, provided that
e0 ∈ E∞. In tube-based MPC, see [12, 37], a typical approach
to shrink the set (78) is to use feedback control on the error
between the nominal state and the actual state. The input to
the disturbed system (74) is then defined as

uhk = ūhk +Kek, (79)

with K ∈ Rmh×nh the feedback gain matrix, and ūhk the MPC
input that follows from the stabilizing controller applied to
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the nominal high-level system (75). This changes the error
dynamics (76) to

ek+1 = (A+BK)e+ wk, (80)

and consequently the set (78) changes to

E∞ =

∞⊕
j=0

(Ah +BK)jW, (81)

which can be expected to be smaller than the set (78), see
[12]. Hence, since the nominal high-level state is known to
converge to the reference under inputs ūhk , the disturbed system
converges to xhk ∈ {rk} ⊕ E∞ as k → ∞. From this result,
the full-order state is known to converge to the time-varying
set xk ∈ X∞(k) defined as

X∞(k) = {xk ∈ Rn | Txk ∈ {rk} ⊕ E∞}, (82)

as k →∞, from which stability to a bounded set around the
reference trajectory is concluded.

Due to the present input constraints, the applicability of
a feedback gain (79) to shrink the outer-bounding tube is
limited. However, the HMPC framework allows the use of low-
level control to track the high-level state predictions, which
effectively shrinks the tube. One possible choice of the low-
level MPC controller is

min
ζk

N∑
i=0

(xi|k − T †x̄hi|k)>Q̄(xi|k − T †x̄hi|k) (83a)

subject to (21b)− (21e), (83b)

with Q̄ ∈ Rn×n the weighting matrix, in which the full-order
states predicted by the nominal controller are tracked. Note
that the nominal state trajectory may be generated at the initial
time, or generated sequentially using standard MPC for the
nominal system.

Remark. The cost function (83a) is not necessarily the best
choice with respect to reducing the disturbance wk. Implemen-
tation of the low-level stage cost (Txi|k−x̄hi|k)>(Txi|k−x̄hi|k),
which effectively minimizes wk over the prediction horizon,
has proven difficult caused by bad scaling of the matrix T>T .
Nevertheless, it is assumed that (83a) contributes in reducing
the uncertainty of the nominal model.

E. Performance of stabilizing HMPC

Using the generated example of a reference trajectory for
the three-cell case, see Figure 7, a closed-loop simulation with
the stabilizing HMPC controller implemented is performed.
The weighting matrix Q is defined equal to the matrix used
in computation of the reference sequence. From the defined Q
matrix, the stabilizing terminal weighting matrix is computed
such that the Lyapunov equation (72) is satisfied with equality.
A prediction horizon of N = 5 is used for both control layers
and a reduced order model of dimension nh = 45 is used that
follows from a balanced truncation.

Figure 8a shows the evolution of the cost function of the
nominal system V̄k that is calculated as

V̄k = ēh
∗>

N |kP ē
h∗

N |k +

N−1∑
i=0

ēh
∗>

i|k Qēh
∗

N |k, (84)

together with the actual cost function Vk that is obtained by
applying the low-level inputs to the system, and is calculated
as

Vk = (Tx∗N |k − rk+N )>P (Tx∗N |k − rk+N )

+

N−1∑
i=0

(Tx∗i|k − rk+i)Q(Tx∗i|k − rk+i), (85)

in which ēh
∗

i|k and x∗i|k, i = 1, . . . , N , are the optimized vari-
ables that follow from the high- and low-level MPC problems,
respectively. It is observed that for the nominal system the
value function indeed decreases every instant, whereas the
real value function converges towards a constant level. This
is in line with our expectations, since the error ek is known to
converge to a bounded set. This makes that the cost function
does not necessarily converge to zero, but is upper-bounded
depending on the size of E∞. The exact properties of E∞ and
the reduction in size by introducing the low-level MPC (83) are
not investigated. However, the tube-based like analysis clearly
shows stability towards a bounded set around the reference,
which is in line with the analysis of the stabilizing HMPC
controller.

In Figure 8b, the evolution of the minimal, average and
maximal temperature of the nominal system ˜̄xR = T †x̄h

are shown together with xR. The difference between the
temperature measures is small, which implies that the sequence
of predicted states by the reduced model are well traceable for
the low-level MPC. In the first fifty seconds of the simulation,
a negative temperature is observed in the temperature profile
¯̃xR, which is physically not possible. Although this may
seem potentially problematic, the input behavior is captured
correctly by the model since a positive input yields a positive
increase in temperature at the locations at which the input
is applied. If this was not the case, i.e., a positive input
would result in a decreased temperature at the locations of the
inputs, issues could occur regarding the stability of the reduced
model. Hence, the negative temperatures are an undesirable
effect induced by approximating the dynamics, but are not
problematic for control purposes.

The temperature evolution shows high, undesirable, tem-
perature peaks up to twelve degrees during the heat-up phase.
After approximately 2000 seconds, a steady-state solution is
reached which is close to the reference trajectory. To investi-
gate the effect of including the terminal weighting matrix P
which satisfies (72), the same simulation is performed but now
with P = Q. Figure 9 shows the evolution of the temperatures
for the two cases in which P is determined using (72) or
P = Q. A clear difference in heat-up behavior is observed
with a much more favorable temperature evolution for the case
in which P = Q.
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Fig. 8: Evolution of the value function for both the nominal
system and real system (a), and temperature evolution of the
nominal and real system (b).

In Appendix C, a more detailed analysis is included on the
cause of the undesirable behavior. It turns out that the terminal
penalty dominates the cost function when P is calculated
to satisfy (72). Two methods are discussed which increase
the prediction horizon in order to reduce the relative weight
of the terminal term in the total cost function. Although in-
creasing the prediction horizon indeed reduces the temperature
peaks significantly, it turns out that computational feasibility
becomes an issue for real-time implementation. Hence, it is
concluded that the presented HMPC controller with stability
guarantee is not well suited for real-life implementation.

F. Discussion

In addition to the undesirable behavior of the proposed
HMPC controller with stability guarantee, a second disadvan-
tage is that the steady-state behavior is potentially suboptimal
since the optimization problem (60), from which the reference
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Fig. 9: Comparison of the temperature evolution following
from HMPC control with different terminal penalties.

trajectory follows, uses the the reduced-order model to de-
scribe the system dynamics. Therefore, the obtained reference
trajectory is not necessarily the optimal trajectory, but is
an approximation only. The originally proposed controller
consisting of the MPC problems (19) and (21) does not face
this potential suboptimality as the low-level MPC problem
(21), that uses the full-order model (4a) for state predictions,
aims to control the states in the ROI to the reference profile xr,
instead of tracking the (potentially suboptimal) high-level state
predictions. Hence, the originally proposed controller has the
potential to obtain better steady-state performance compared
to the HMPC controller with stability guarantee.

The case in which P = Q shows more desirable behavior,
but stability can not be guaranteed by the presented approach.
In literature, see [38], a method to guarantee stability is found
for which a terminal penalty or constraint is not needed,
but stability is guaranteed for a sufficiently large prediction
horizon. Due to the complexity of the presented approach,
the computation of the prediction horizon which guarantees
stability is not established. Comparing the tracking controller
with P = Q to the originally proposed controller, the main
difference is again that in the originally proposed controller,
the full-order model is used to optimize performance instead
of tracking the potentially sub-optimal high-level state predic-
tions.

Following this discussion, the HMPC controller as origi-
nally proposed in Section IV will be used in all following
simulations and experiments.

VIII. SIMULATION STUDY

In this section, simulation studies are performed to assess
the performance of the HMPC controller as proposed in
Section IV. Firstly, a method is discussed to select appro-
priate reduction orders for the high-level prediction models.
Afterwards, case studies are discussed and the comparison to
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reduced-order MPC and the current clinical implementation
based on [8] is made.

A. Order selection for reduced order model

In order to select an appropriate order for the reduced model
in the high-level controller, simulations have been performed
in which the HMPC optimization problem, consisting of
problems (19) and (21), is solved in parallel to the full
MIP problem (17). For closed-loop control the inputs of
the full MIP problem are used, whereas the HMPC results
are stored for comparison. Figure 10 schematically shows
this control structure. This approach allows to evaluate the
suboptimality that is induced when using hierarchical MPC, by
comparing the cost function values of the two approaches. For
a fixed horizon, it follows from optimality that at instance k,
JMIP
k ≤ JHMPC

k in which JMIP
k denotes the cost associated

to problem (17) and JHMPC
k the low-level cost of the HMPC

controller associated to (21). Sub-optimal behavior is induced
at instances at which the predicted transducer paths of the
controllers do not coincide. In case both controllers predict
the same path, the two costs are theoretically the same.

MI-MPC

HMPC

xk+1 = f(xk; uk)

Store

xref

Fig. 10: Parallel control structure

An example study to select appropriate orders for the high-
level prediction models is performed for the 5-cell case as
depicted in Figure 11. A circular region of interest is chosen
with a radius of 16 millimeters. The transducers are placed
axisymmetrically over the region of interest with per cell
a fixed sonication-point pattern consisting of 13 individual
points. The movement matrix for the five-cell case is defined
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Fig. 11: 5-cell test case

to be

M̄ =


0 2 3 3 2
2 0 2 2 2
3 2 0 2 2
3 2 2 0 2
2 2 2 2 0

 , (86)

from which it follows that the maximal movement time is up
to three times the sample time. Simulation parameters are set
to the values as stated in Table IV.

TABLE IV: Simulation parameters

Q f Tref umax Pmax N Ts
value I 0 5 15 100 8 3.2

All three reduced models as discussed in Section V are
analyzed with different reduction orders. Figure 12 shows
the cost at each simulation instant for different reduction
models and orders. A performance interval with respect to
the MI-MPC solution of ten percent J10

k is plotted as well
which indicates the bound JMIP

k ≤ J10
k ≤ 1.1JMIP

k . Hence,
when the HMPC cost is within this region, it shows that the
predicted transducer path results in a low-level cost within ten
percent of the optimal cost at instant k. From Figure 12a it
is observed that out of the three simulated reduction orders
for the balanced truncation model, only rb = 45 satisfies
the performance criterion to be within J10

k at all instances k.
Comparing this to the POD basis model as shown in Figure
12b, it is observed that a reduction order of just rb = 10
satisfies the performance criterion.

The Voronoi model shows significant suboptimal behavior
J10
k criterion, see Figure 12a. Contrary to the other two

reduction models, the accuracy of the Voronoi model, as it
is defined now, can not be improved by increasing the reduc-
tion order. In order to increase the accuracy of the Voronoi
model, an optimization over the physical parameters in the Ah

matrix could be performed, or the model should be changed
by increasing the number of sites in the Voronoi model to
allow a higher model order which potentially increases the
accuracy of the model. However, since the other two models
show promising results, the mentioned options to increase the
performance of the Voronoi model are not further investigated.

Computational times for the balanced truncation models
and POD models are compared to each other in Table V,
while Table VI shows the computational times of the MI-
MPC solution and HMPC using the Voronoi model. The
mean and maximal computation times are shown together with
the number of times Nv that the threshold of three seconds
that follows from the system restrictions, see Section II-A, is
trespassed. The total number of simulation steps is equal to
188 for this example. From Tables V it is concluded that for
a prediction horizon of eight samples, the balanced truncation
is not well suited to be used for HMPC control, since the
loss in performance is expected to be above ten percent for
reduction orders which are computationally feasible. On the
other hand, the performance loss when using a POD model
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Fig. 12: Performance comparison between HMPC and full-
MIP control for the five-cell case with (a): balanced truncation
models and the Voronoi model, and (b): POD-basis models.

with a reduction order of fifteen is expected to be acceptable
and computational feasibility is achieved. Table VI shows
that the MI-MPC solution is indeed not suited for real-time
implementation. In addition, the low computation times of
the Voronoi solution show the potential of low-order sparse
prediction models. Therefore, a recommendation for future
work is to investigate other forms of sparse reduced models
that allow for an increased accuracy.

To evaluate how the J10
k criterion relates to closed-loop per-

formance, simulations have been performed with the HMPC
controller incorporated in the control loop instead of the MI-
MPC controller. The closed-loop performance is measured
using the metric J0

k , which corresponds to the current stage
cost.

J0
k = (xRk − xr)>Q(xRk − xr) + f>εk. (87)
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Fig. 13: Closed-loop performance comparison between HMPC
control and full-MIP control for the five-cell case with (a):
balanced truncation models and the Voronoi model, and (b):
POD-basis models.

TABLE V: Computation times in seconds for different reduced
models

Balanced POD
mean max Nv mean max Nv

rb = 10 - - - 0.67 1.21 0
rb = 15 0.83 2.40 0 0.99 2.06 0
rb = 25 - - - 2.30 4.69 15
rb = 35 3.79 9.14 160 - - -
rb = 45 6.64 14.74 188 - - -

TABLE VI: Computation times in seconds of MI-MPC solu-
tion and HMPC using Voronoi model

mean max Nv
MI-MPC 6.51 29.62 188
Voronoi 0.31 0.78 0

Figure 13 shows the evolution of the performance metric J0
k
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for each closed loop simulation. For the balanced truncation
it is observed that for reduction orders rb = 15 and rb = 35,
for which the J10

k criterion was violated, the loss in steady-
state performance is indeed significant. It was observed that
for these reduction orders, the transducer stays in one position
for a couple of samples in steady-state, whereas for increased
reduction orders and the MI-MPC solution the transducer stays
typically one sample at a single location. This difference in
transducer path causes the suboptimal behavior. For reduction
order rb = 45, which satisfies the performance criterion, it is
observed that steady-state performance is comparable to the
full MIP case. The Voronoi solution shows severe suboptimal
behavior in both heat-up and steady state, which is as expected
based on the results related to the J10

k criterion. Therefore, the
current definition of the Voronoi model is indeed not suited
for HMPC control.

For the POD case, in which all three analyzed reduction
orders satisfy the performance criterion, it is observed that for
all three cases the steady-state performance is comparable to
the MIP solution. In both the balanced truncation case and
the POD case, it is observed that during the heat-up phase,
the HMPC controller outperforms the full MIP controller.
Although this seems counter intuitive, one should realize that
the full MIP solution is not necessarily the optimal trajectory
over the complete simulation. Hence, when deviating from the
MIP solution, it can occur that at a next time instant, a lower
value is obtained using a different controller. This effect is
expected to reduce with an increased prediction horizon since
optimality of the overall behavior is known to increase with
growing prediction horizon.

The combination of the results in Figure 12 and Figure 13
leads to the conclusion that the J10

k performance criterion
is well suited as a means to decide which reduction order
to select for which reduction type. The computation times
are then inspected to determine whether the desired reduction
order is feasible for real-time implementation.

B. Case study I: 5-cell circular ROI

For the 5-cell configuration as depicted in Figure 11, further
analysis of the behavior of the control loop is provided.
To mimic real-life experiments, output noise is added to
the simulation, which is modeled as uncorrelated zero-mean
Gaussian white noise with standard deviation σv =

√
0.2

[◦C]. All results that are shown originate from a simulation
in which a POD basis model is used at the high level with a
reduction order of rb = 15 and a prediction horizon N = 8.
Figure 14 shows the temperature evolution in the region of
interest and the input power over time. In total five lines are
drawn which represent the temperatures (from low to high)
Tmin, T10, Tavg, T90 and Tmax. The T10 and T90 temperature
measures refer to the highest and lowest tenth percentile within
the examined area, respectively, and subscripts min, avg and
max denote the minimal, average and maximal temperature,
respectively. It can be seen that the average temperature neatly
converges towards the setpoint of five degrees. During heat-
up the maximal available power is used after which the

input power decreases when the temperature comes close to
the setpoint. Short temperature peaks are observed above six
degrees. Introducing a ceiling cost could possibly prevent this
behavior, however, since the temperature peak is so short and
the violation is not severe, no further action is taken. In steady
state, the transducer typically stays at a position for no longer
than one sample, see Figure 14b. This is in line with the
optimal switching sequences as found for the three cell-case
in Section VII-B, in which similar behavior is observed.
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Fig. 14: Temperature evolution in the region of interest (a) and
power inputs (b) for the five-cell test case.

Since Figure 14a gives a limited view on the spatial temper-
ature distribution, an extra image is provided, which shows the
average temperature profile in steady-state, see Figure 15a. The
profile Xss is taken as the average of the last twenty simulation
steps corresponding to the time interval of 736-800 seconds.
A rather flat temperature plateau is observed over almost the
whole ROI. Outside the region of interest, the temperature
gradient is steep. Figure 15b shows the summation of the Buk
term over the whole time-span of the simulation. It is observed
that most heat is applied at the outer sonication points. This
is as expected since from the temperature gradient in Figure
15a it is observed that at these regions most diffusion occurs
being proportional to ∇2T (r, t), see (1).

C. Case study II: 3-cell corner profile

A second simulation study is performed using the 3-cell
configurations as depicted in Figure 6a. The sonication points
are spread over the cells equal to the five-cell case with thirteen
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Fig. 15: Spatial distributions for the five-cell case of the
average temperature profile in steady-state (a) and sum of Buk
terms (b).

sonication points per cell. Uniform movement times of three
samples are defined, from which the movement matrix

M̄ =

0 3 3
3 0 3
3 3 0

 (88)

follows. To obtain a well-performing high-level prediction
model, the same performance test procedure as for the five-
cell case is executed. Simulations are performed in which
the transducer locations are placed according to method II in
which the system’s thermal behavior is included in the placing
of the cells, see Section VI-B. A prediction horizon of N = 9
is used. The results are captured in Table VII with an extra
column Jv , which indicates the number of times that the J10

k

criterion is violated. The number of simulation steps for this
example is 251.

For brevity reasons, the equivalent of Figures 12 and 13 for
the three-cell case can be found in Appendix B, but the key
observations are discussed now. For all tested combinations
of reduction orders and model types, it is observed that the

J10
k criterion is violated. This could indicate performance loss

in closed-loop control. However, the closed-loop simulations
with HMPC implemented show that only one of the tested
cases induces a significant performance loss in the J0

k metric,
being the balanced reduction case with order rb = 15. For all
other cases, comparable performance to the full MIP controller
is obtained. Hence, violating the J10

k criterion does not nec-
essarily imply a noticeable loss in closed-loop performance.
Therefore, the J10

k should only be interpreted as a first-
step indicator for potential performance loss. As a validation,
incorporating the HMPC controller in the loop turns out useful
to determine the desired reduced-model order.

In terms of computation times, all tested combinations are
computationally feasible except for a single iteration using the
balanced truncation model for order rb = 35. Following this
analysis, it turns out that a reduction order of rb = 25 is
appropriate for real-time implementation for both reduction
methods. Comparing Table V to Table VII shows a clear
reduction in computational times for the three-cell case. Even
for a larger prediction horizon the computation times are
smaller for the same reduction order. This illustrates the effect
that the number of integer variables has on the computational
complexity of the optimization problem.

TABLE VII: Computation times in seconds for different
reduced models

Balanced POD
mean max Nv Jv mean max Nv Jv

MIP 3.31 12.12 251 - 3.31 12.12 251 -
rb = 10 - - - - 0.27 0.5 0 10
rb = 15 0.32 0.75 0 77 0.43 0.93 0 12
rb = 25 0.79 1.79 0 22 1.06 2.11 0 13
rb = 35 1.48 3.03 1 22 - - - -

Figure 16 shows the temperature evolution and power input
over time in which HMPC is used with the high-level model
being the POD model for order rb = 25. Again, a short
temperature peak above six degrees is observed during heat-
up. Furthermore, the temperature neatly evolves towards the
setpoint of five-degrees and the transducer typically stays one
sample in a cell to apply heat. In steady state, it is observed that
cell one is least visited, but more power is applied here during
each visit compared to the others. A possible explanation is
that the first position corresponding to δ1, the upper right cell,
needs less heating since it is located at a single corner in the
region of interest, whereas the other two cells are located in the
neighborhood of two corners. From the temperature gradient
shown in Figure 17a it is observed that indeed at the positions
corresponding to δ2 and δ3, more heat-diffusion occurs and
therefore need more visits of the transducer compared to the
first location. The sum of Buk terms as shown in Figure 17b
confirm that the corners of R are indeed critical.

To investigate the effect of transducer locations on the
performance of the HMPC controller, the same simulation is
performed for the corner case, but now with the cells located
using the utility-based optimization as discussed in Section
VI-A. The POD basis for the reduced model now originates
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Fig. 16: Temperature evolution in the region of interest (a) and
power inputs (b) for the three-cell test case.

from a simulation using the unreduced MIP controller with
correct transducer locations. The difference in performance is
illustrated in Figure 18, which shows the evolution of J0

k for
both cases. In steady state, a significant performance advantage
is observed for the case in which cells are located using
method II. This is as expected based on the results in Section
VI-C. During heat-up, it is observed that the first method
outperforms the second method. A possible explanation is that
the first method enables more heat generation inside the region
of interest since all sonication points are within the boundaries
of the ROI. This can be beneficial in heating-up the target
area quickly and thus minimizing the MPC cost. However, as
treatments typically take around 90 minutes of which just a
short period is needed for heat-up, the steady-state behavior
is most important.

D. Reduced-order MPC versus HMPC

To illustrate the difference in performance between reduced-
order MPC and HMPC, the three-cell case with cells placed
according to method II is used again. The performance of the
two controllers is again compared using the J0

k metric. Ad-
ditionally, to evaluate the approximation error of the reduced
model, the approximated cost J̃0

k is calculated according to
(87), but the estimated temperatures x̃Rk = HT †xhk are used
instead of the true temperatures xRk . Figure 19a shows the
two costs J0,rom

k and J̃0
k corresponding to the actual RO-MPC

performance and the approximated performance, respectively,
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Fig. 17: Spatial distributions for the three-cell case of the
average temperature profile in steady-state (a) and sum of Buk
terms (b).
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Fig. 18: Evolution of J0
k for different cell configurations.

together with the closed-loop HMPC performance. The same
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reduction model is used for both simulations, being the rb =
25 POD model. A significant loss in performance is observed
for the RO-MPC controller with respect to the HMPC setup.
In addition, a significant difference between the approximated
performance and actual performance is observed. Therefore,
it is concluded that the reduced model is not accurate enough
to be used for closed-loop control.

Increasing the model order to rb = 55 gives the results
shown in Figure 19b. The approximated- and real performance
of the RO-MPC controller now closely match each other and
the performance is comparable to the HMPC controller which
uses a model order of rb = 25. Table VIII shows the average
calculation times for both controllers. A decomposition is
made in high-level calculation times and low-level computa-
tion times to show that the low-level step is computationally
very fast. The computation times of the RO-MPC controller
show that real-life implementation is not possible. The combi-
nation of Figure 19 and Table VIII shows that extending RO-
MPC to HMPC yields a considerable performance improve-
ment with negligible increase in computation times. Therefore,
to obtain performance comparable to the full MIP controller
in real-life, in which computational constraints are present, the
HMPC control structure is found to be the best option.

TABLE VIII: Computation times in seconds for HMPC and
RO-MPC.

high-level low-level total
HMPC rb = 25 0.99 0.07 1.06

RO-MPC rb = 55 8.16 - 8.16

E. Comparison to binary feedback control

To compare the presented HMPC algorithm to the binary
feedback control as is currently used in clinics, the algorithm
presented in [8] is used as a guideline to design a controller
with comparable performance as the current clinical imple-
mentation. The heating algorithm works as depicted in Figure
20.

In each cell, three sub-trajectories are defined as circular
shapes of diameters ds ∈ {4, 10, 16} centered around the
transducer axis. The sonication points are distributed axi-
symmetrically over circles with diameters ds with an increas-
ing amount of points ns ∈ {5, 15, 20} per circle for an
increasing trajectory diameter. Each circle of sonication points
now corresponds to the sub-trajectory with equal diameter.
Note that the number of sonication points per cell is 40 com-
pared to 13 for HMPC. The increased number of sonication
points has more potential for better performance, however,
as a larger number of sonication points means an increased
amount of optimization variables in the MPC problem, this is
undesirable for the HMPC approach. In the binary feedback
control this plays no role, since the input powers are not
controlled individually by means of an online optimization
procedure, but follow a predetermined protocol. Therefore, if
the performance of the binary feedback is worse than HMPC,
it is really due to the algorithm, since the input selection
actually has better potential.
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Fig. 19: Performance comparison between reduced-order MPC
and HMPC, for (a) rb = 25 and (b) rb = 55.

During heat-up, a predetermined sonication plan is used in
which the maximal power is applied to the coldest cell for
three samples long after which the average cell temperature
is checked. This heat-up plan continues until the average cell
temperature is above 4.5 degrees elevation. Next, the algorithm
as depicted in Figure 20 is used. To heat up a cell, the average
temperatures of the sub-trajectories are monitored, which are
calculated as the average temperature of all voxels contained
within the boundary of the respective sub-trajectory. Starting
from the innermost trajectory, the temperature of the first sub-
trajectory is checked and heating is applied if the average
temperature is below the threshold of T̄ degrees elevation.
The sonication power that is used for each sub-trajectory is
equally distributed over the corresponding sonication points,
and the power is tuned by means of simulation to match the
goal of a five degree temperature elevation in the region of
interest. If the average temperature of the sub-trajectory is
above T̄ degrees elevation, but the average cell-temperature is
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below this threshold, the successive sub-trajectory is selected
being the next outward trajectory. This continues until the
threshold is met for the average cell temperature, after which
the transducer moves to the coldest cell and repeats this
heating protocol. Note that it could occur that the heating of a
sub-trajectory is followed up by the heating of an inward sub-
trajectory. However, as heat diffuses outwards, this is unlikely
to happen and will only occur in the presence of measurement
noise.

Move transducer

to coldest cell

Temp. of sub-

trajectory > T̄ ?

Heat

sub-trajectory

Average temp.

of cell > T̄ ?

Select next

sub-trajectory

Select first

sub-trajectory

Yes

Yes

No

No

Fig. 20: Schematic illustration of the binary feedback algo-
rithm.

The binary feedback control is simulated in closed loop
for the 5-cell and 3-cell case studies presented in Sections
VIII-B and VIII-C, respectively, and compared to the HMPC
approach. For the 3-cell case, the cells are located according
to optimization method II as presented in Section VI-B, which
includes the thermal behavior of the system. The sonication
powers per trajectory are set to Ps ∈ {5, 10, 15} [W] for
the five-cell case and to Ps ∈ {10, 15, 20} [W] for the
three-cell case, in which the input power increases for an
increasing trajectory diameter, and the temperature threshold
is set to T̄ = 4.7 degrees for both cases. These numeric
values are determined via tuning, such that for both cases
an average temperature of five degrees elevation is reached
in steady-state. The maximal power is set to Pmax = 100
[W], which corresponds to the maximal power in the other
simulation studies. In Figure 21, the results of applying the
binary feedback algorithm are shown for both cases, which
include the temperature evolution of the minimal, maximal
and average temperature in Figures 21a and 21b, the steady-
state temperature profile Xss in Figures 21c and 21d, and
the spatial distribution of the summation of Buk over the
entire duration of the simulation in Figures 21e and 21f.
Additionally, Figures 21a and 21b also show the HMPC results
to allow for comparison between the two controllers, and Xss

is calculated as the average temperature profile over the last
twenty simulation steps corresponding to the time interval 736-
800 [s].

The evolution of the minimal, maximal and average temper-
atures show that a much tighter temperature range is achieved
when using HMPC control compared to the binary feedback
algorithm. From the spatial profiles Xss it is observed that
compared to the HMPC controller, see Figures 15a and 17a,
the temperature profiles are less flat, which is not desirable
as a homogeneous profile is preferred. Comparing the spatial
distributions of

∑
Buk to the results obtained when using

HMPC, as shown in Figures 15b and 17b, it is observed that
most heat generation now occurs inside the ROI, whereas the
HMPC controller mostly heats the edges of the region of
interest. This also explains the less flat temperature profiles
since, keeping in mind that there is no out of plane diffusion,
heating the edge of the ROI will achieve a flatter temperature
profile compared to heating the center.

To quantitatively compare the two controllers, the stage cost
related to the current temperature profile J0

k , see (87), is taken
as a performance measure again. Figure 22 shows the evolution
of J0

k for both controllers and both cases. The results show
that the HMPC performs a factor ten to a hundred times better
than the binary feedback control when using J0

k to measure
performance. Therefore, it is concluded that the proposed
HMPC strategy significantly outperforms the control strategy
that is currently used for large-area hyperthermia treatments. In
addition, the tuning of the parameters for the binary feedback
controller is a cumbersome process based on trial and error.
The tuning of the HMPC controller is more intuitive as it
only involves the definition of the Q matrix. Hence, besides
achieving better performance, the HMPC comes with the
additional benefit that no case-specific tuning of parameters
is needed.

IX. EXPERIMENTS

Experiments are conducted at the Uniklinik Köln which
is a university hospital located in Cologne, Germany. The
experimental setup consists of the Profound Sonalleve MR-
HIFU therapy platform and a phantom is used to execute
the in-vitro experiments. The phantom used for experiments
is a polymethyl metacrylate (PMMA) container filled with a
polymer mixture.

Due to solver times of the controller, a small adaptation
is needed for correct implementation. So far, the solution at
instant k is assumed to be instantaneously available from
which the current input u0|k follows. Since in practice the
computational delay to obtain the current input is up to three
seconds, a one-step-ahead approach is used. That is, instead
of calculating the current input, the first input and transducer
position are now fixed as

u0|k = u1|k−1 (89a)
δ0|k = δ1|k−1, (89b)

and the input to be applied at k + 1 is extracted from the
solution at instant k. The observer step, which provides the
controller with the estimated state, requires negligible compu-
tation times (<0.05 [s]). Computation of the control inputs is
done using Matlab, while Phyton is used for communication
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Fig. 21: Results obtained by applying the binary feedback algorithm for the five-cell (left column) case and three-cell case
(right column). Evolution of the temperatures Tmin, Tavg, and Tmax over time in (a) and (b) for both HMPC and binary
feedback, spatial distribution of Xss in (c) and (d), and

∑
Buk in (e) and (f)

with the MR-HIFU setup. A visual representation of the
information flow is provided in Figure 23.

From simulations, non-physical transducer paths are ob-
served. That is, following the constraints (14) in the MPC
problem, the individual δi|k vectors are not constrained to be
physically possible, but only to construct input constraints

that incorporate the effect of mechanical displacement of
the transducer by inhibiting nonzero inputs in a treatment
cell when the transducer is not ready at the corresponding
location. Hence, the movement constraints are well suited for
simulation, but the elements of ∆k do not directly describe
the desired transducer path. To correctly communicate the
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Fig. 22: Performance comparison between binary feedback
control and HMPC based on J0
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Fig. 23: Information flow during experiments. The arrows
connecting the HMPC blocks contain the information related
to constraints (89)

transducer position to the system, the elements of ∆k are
updated according to

δi|k =

{
δi|k if ui|k 6= 0

δi+jmin|k else
, (90)

where
jmin = min{j ∈ N | ui+j|k 6= 0}

and N is the set of natural numbers. Note that only the current
vector δ0|k is communicated to the system, but updating the
whole sequence allows for easier to interpret data and could
function in a fall-back strategy at instances where a failure
occurs in the MPC algorithm. Implementing both adaptations
(89) and (90) makes the HMPC controller suited for real-time
implementation. Several experiments are conducted using the
five-cell and three-cell cases as discussed in the simulation
study.

A. 5-cell circular ROI

The first experiment is the five cell case with a circular ROI
as depicted in Figure 11. A slightly different movement matrix
then the one used in simulations is obtained via measurements
on the real system and is defined as

M̄ =


0 3 3 3 2
3 0 2 3 2
3 2 0 2 3
3 3 2 0 3
2 2 3 3 0

 . (91)

The HMPC controller uses a POD model of order rb = 20 with
a prediction horizon of N = 7. Experimental results are shown
in Figure 24. Both the temperature evolution over time and
the sum of inputs show similar behavior as in the simulations.
During the heat-up phase maximal power is used, after which
the inputs decrease on average when the temperature setpoint
is reached. The average temperatures are slightly above the
setpoint which could indicate a form of model mismatch. From
the spatial profiles of Xss and the sum of Buk it is observed
that the maximal temperature is located on the left side of
the ROI, while most heat is sonicated on the right side of the
region of interest. A possible explanation for this behavior is
found in a mismatch between the baseline images that are used
for thermometry. During some experiments, clear jumps in the
temperature profile were observed when the baseline image
changed. Although no clear temperature jumps are observed
in this particular experiment, it is believed that a mismatch still
causes the off-centered temperature peak. In particular, Figure
24b shows that at location corresponding to δ4 at t ≈ 400
[s] and t ≈ 540 [s], remarkably low inputs are generated
compared to the other inputs. Therefore, the baseline image
of location four seems to be not in line with the other images.
Besides the off-centered temperature peak, the temperature
profile is less flat compared to simulations. Potential causes
are unforeseen out of plane interaction effects and a mismatch
of the thermal parameters of the model compared to the
real phantom values. Therefore, further model identification
is advised to further improve performance. This is left as a
recommendation for future work as it is beyond the scope of
this project.

B. 3-cell corner profile

The second experiment is the three-cell case with the trans-
ducer positions placed using the utility-based optimization.
Due to the limited number of experiments, the other cell
configuration that follows from the optimization procedure in
Section VI-B is not tested unfortunately. The HMPC controller
uses a POD model of order rb = 20 with a prediction horizon
of N = 9 and the movement matrix is equal to (88). In Figure
25 the experimental results of the second experiment are
shown. The temperature evolution shows a neat convergence
towards the setpoint but from the lower temperature it is seen
that steady-state is not yet reached. Therefore, the experiment
time of approximately ten minutes turns out to be a bit short.
The input over time shows similar behavior as the simulation
result in Figure 16b in which the location corresponding to
δ1 is least visited. Although the configuration of the cells is
slightly different in this experiment, the same reasoning as
for the simulation study holds to explain this behavior. The
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Fig. 24: Experimental results for the five-cell case. Evolution of the temperatures Tmin, T10, Tavg , T90 and Tmax over time
(a), input power over time (b) and spatial distributions of Xss and

∑
Buk in (c) and (d), respectively.

spatial distributions of the temperature profile and input terms
show symmetry over the diagonal of the ROI, which indicates
that for this experiment the baseline images are well aligned.
A less flat temperature distribution is obtained compared to
simulations as is also the case for the five-cell configuration.

From the experimental data it is observed that the tem-
perature peaks above six degrees are now a bit more violent
compared to simulation results. Two possible explanations are
thought of:
• By fixing the first input in each optimization sequence, a

form of suboptimal control is introduced since the most
recent state knowledge is not used to calculate this input.
Due to an existing mismatch between model and real-life,
it could occur that temperature peaks exceed the maximal
predicted temperatures in the previous time step.

• A second explanation is found in a mismatch of the input
model. Besides under- or over estimating the parameters
of the input-profile, another cause could be the mis-
alignment between the sonication points and monitored
temperature locations. Since the sonication points are not
constrained to be at voxel-center coordinates, the peak
values of the temperature increase caused by applied
heat are not seen in the state vector. Therefore, at a

next iteration, a temperature increase could occur at spots
which is not caused by applying heat, but originates from
a previous sonication.

X. CONCLUSIONS AND RECOMMENDATIONS

The main contribution of this paper is a novel hierarchical
control structure in which two MPC controllers operate to-
gether to determine optimal control actions in large-area MR-
HIFU treatments. Three different reduced-order prediction
models are analyzed out of which the data-based POD models
show the best performance. A simulation study shows that
compared to the previously presented full blown mixed-integer
MPC controller in [15], similar performance is obtained, but
the HMPC controller shows more potential for real-time im-
plementation based on a significant reduction in computational
times. In Table IX, the computational times are shown for
two test cases consisting of five and three transducer cells, for
which both controllers obtain similar performance. In addition,
a significant increase in performance is observed when using
HMPC compared to a binary feedback algorithm as in [8].
Experiments are conducted which confirm the applicability of
the presented controller on a real-life setup.
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Fig. 25: Experimental results for the three-cell case. Evolution of the temperatures Tmin, T10, Tavg , T90 and Tmax over time
(a), input power over time (b) and spatial distributions of Xss and

∑
Buk in (c) and (d), respectively.

TABLE IX: Computation times in seconds for MI-MPC and
HMPC, for which closed-loop performance is comparable.

5-cell 3-cell
mean max mean max

MI-MPC 6.51 29.62 3.31 12.12
HMPC 0.99 2.06 1.06 2.11

A second contribution is making treatments of irregularly
shaped tumors possible. In previous works, only circular target
areas are considered with the cells located on a hexagonal
grid. To enable treatments of irregular shapes, two methods are
presented to determine the transducer locations for arbitrarily
shaped tumors. The first method uses the maximization of a
utility function, which results in a (somewhat) homogeneous
distribution of the transducer locations over the region of
interest. A second method includes a simplified representation
of the system’s thermal behavior in which input constraints
related to the movement of the heating actuator are neglected,
and the objective is to optimize the steady-state temperature
profile. Typically, it is observed that the second method places
the transducer locations at the outer edge of the region of
interest as required to counteract heat loss due to steep
temperature gradients. Out of the two options, the second

method performs better in closed-loop simulation.
The combination of the two discussed contributions is seen

as a significant step forward in reaching the full potential of
MPC control in hyperthermia treatments, ultimately enhancing
treatment quality and success. However, the presented work
does leave room for discussion and subsequent improvement.

As a first recommendation, the accuracy of the prediction
models could be further increased by performing an elaborate
model identification. From experiments, it was observed that
unexpected temperature peaks can occur of which the cause is
most likely a plant-model mismatch. Moreover, the accuracy
of the reduced-order models depends on the accuracy of the
full-order model. Hence, the potential benefits of a better full-
order model are twofold since both the high- and low-level
predictions become more accurate.

Secondly, robustness against system in-homogeneity is not
addressed in this work, which could be problematic for real-
life implementation in which a perfectly homogeneous plant is
unlikely. An interesting approach to include some robustness
is to extend the presented controller to an offset-free MPC
controller as is done in, for example, [7]. Using a disturbance
estimator, the steady-state offset resulting from plant-model
mismatch can be removed, and could also be used in addition
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to the recommended model identification. The applicability of
the offset-free algorithm in a hierarchical setting is therefore
seen as an interesting research topic to further investigate.

APPENDIX A
STABILITY OF POD-REDUCED MODELS

Stability of the POD-based models can be proven by real-
izing that the system matrices that results from discretization
of the bioheat equation (1) are symmetric and Schur, see [39].
Now, following the min-max theorem, it is known that the
eigenvalues of A satisfy

λmin(A) = min
y,‖y‖=1

y>Ay (92)

λmax(A) = max
y,‖y‖=1

y>Ay. (93)

Similarly, the eigenvalues of Ah satisfy

λmin(Ah) = min
y,‖y‖=1

y>T>ATy (94)

λmax(Ah) = max
y,‖y‖=1

y>T>ATy. (95)

Realizing now that

{y | y ∈ Im(T ), ‖y‖ = 1} ⊆ {y | ‖y‖ = 1}, (96)

it can be concluded that the eigenvalues of Ah must satisfy

λmin(A) ≤ λi(Ah) ≤ λmax i ∈ [1, nh], (97)

which implies stability of the reduced system.

APPENDIX B
PERFORMANCE OF CORNER CASE

Figures 26 and 27 shows the evolution of the cost function
for the cases in which HMPC is run parallel to MI-MPC
and for closed-loop HMPC, respectively. Subfigures 26a and
27a show results for reduced-models that are derived using
balanced truncation, whereas the results in subfigures 26b and
27b are obtained using POD-based models.

APPENDIX C
REDUCING THE EFFECT OF THE TERMINAL WEIGHT

Figure 28 shows the nominal value function for both cases
in which the terminal penalty is set to satisfy the Lyapunov
equation (72) and to P = Q, respectively. In addition, the
terminal penalty in the cost function e>N |kPeN |k is shown
together with ẽ>N |kP ẽN |k which corresponds to the terminal
error for the case in which P = Q, but then weighted using
P . The difference in the initial value of Vk shows that the P
matrix dominates the cost function since including P results
in an increase of approximately a factor 102. Moreover, the
difference between the terminal term and Vk is small which
also indicates the dominance of the terminal weight. Hence,
optimization when using the term e>N |kPeN |k indeed reduces
the terminal weight, however the temperature evolution is
affected in an undesirable way.

To reduce the undesirable effects of implementing the
terminal weighting matrix, two options are discussed.
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Fig. 26: Performance comparison between HMPC and full-
MIP control for the three-cell case with (a): balanced trun-
cation models and the Voronoi model, and (b): POD-basis
models.

The first option aims at reducing the influence of the ter-
minal penalty in (64) by increasing the prediction horizon N .
This decreases the relative weight of the terminal penalty with
respect to the sum of stage costs in the cost function. In order
to make long horizon predictions computationally tractable, a
move blocking approach has been adopted as presented in, for
example, [40]. Move blocking enables a reduction in optimiza-
tion variables by fixing the input to be constant over a span of
several time steps. Instead of solving for the input sequence
Uk = [u0|k, u1|k, . . . , uN−1|k] ∈ Rnu×N , the reduced problem
solves for Ûk = [û0|k, û1|k, . . . , ûM−1|k] ∈ Rnu×M , with
M < N , such that Uk = (Tu⊗Inu)Ûk, with Tu ∈ {0, 1}N×M
a so-called blocking matrix and nu the dimension of a single
input vector. The blocking matrix is specified such that each
row contains exactly one nonzero element being a one. An
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Fig. 27: Closed-loop performance comparison between HMPC
and full-MIP control for the three-cell case with (a): balanced
truncation models and the Voronoi model, and (b): POD-basis
models.

example of a blocking matrix:

Tu =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 ,
which corresponds to a prediction horizon of 5 steps, while
only three inputs are calculated.

A second option comes from the idea to decrease the
relative weight of P with respect to the matrix Q, which
in turn decreases the effect of the terminal term in the total
optimization cost. From (72) it can be seen that a smaller
Ah matrix leads to a smaller P matrix, which decreases the
relative weight of P over Q. Since Ah is a stable matrix, it is
obvious to see that for a larger sampling time, Ah decreases.
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Fig. 28: Evolution of value function for different terminal
weights for the single cell case.

Hence, by making state predictions with a larger sample time
in between the individual instances, the prediction horizon
in seconds effectively grows. The potential benefit of this
technique is limited by the maximal sampling time for which
the discrete time system is still stable. Using the forward Euler
discretization technique, the maximal sample time Ts to obtain
a stable discrete time system is known to be Ts ≤ −2/λ, in
which λ is the minimal eigenvalue of the continuous time A
matrix.

To investigate the effect of an increased prediction horizon,
simulations are performed on a simplified case with a single
transducer location. Since this removes the computationally
heavy integer part from the optimization, state predictions are
now performed using the full order model, i.e., Ah = A and
Bh = B. Figure 29 shows the evolution of the maximal
temperature for the single-cell case in which the prediction
horizon is varied over the values N ∈ {5, 10, 20, 60}. For the
horizon N = 20, the blocking matrix

Tu =

[
I5 0
0 I3 ⊗ 15

]
(98)

is used and for the N = 60 case the same blocking
matrix is used with an increased sample time by a factor
three. From the figure it becomes clear that increasing the
prediction horizon indeed suppresses the violent temperature
peaks. However, even with a prediction horizon of N = 60
samples, temperature peaks above six degrees are observed. In
Table X, the average and maximal computational time for the
simulation results in Figure 29 are stated. A prediction horizon
of N = 10 already exceeds real-time feasible computation
times. Therefore, it is concluded that limiting the effect of
the terminal weight to an acceptable level by increasing the
prediction horizon can not be done in a computationally
feasible way using the discussed methods.
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Fig. 29: Evolution of maximal temperatures for increasing
prediction horizons.

TABLE X: Computational times in seconds for the simulations
in Figure 29.

N = 5 N = 10 N = 20 N = 60
mean 0.863 4.995 24.816 22.919
max 1.296 6.780 28.010 26.991
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