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Abstract

New advancements in nanotechnology applications demand higher bandwidth actuation

of high-speed piezo scanning stages while maintaining high positioning accuracy. How-

ever, hysteresis and vibrational dynamics make accurate positioning of these systems

at high bandwidth a challenging task. While most work focuses on compensating

either hysteresis or dynamics in order to improve positioning accuracy, a proper and

comprehensive dynamic framework that is able to compensate for both hysteresis and

vibrational dynamics at high bandwidth is still missing. In this thesis, a modeling

framework is proposed that is able to describe the full dynamics of high speed piezo

scanning stages by modeling the hysteresis and vibrational dynamics together. Then,

the approach is experimentally applied to a miniaturized high-speed piezo-actuated

scanning stage. Experimental results demonstrate that the proposed modeling frame-

work is able to describe the amplitude and frequency varying dynamics of the scanning

stage with less than 1% RMS error for the full actuation bandwidth. The results

presented in this work can be used for improved model-based feed-forward control

combined with feedback control in order to improve the positioning accuracy of high

speed scanning stages.
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Chapter 1

Introduction

Nanotechnology is all about understanding and controlling matter at dimensions less

than 100nm [1]. An important aspect of this research field is precision control and

manipulation at nanoscale. This is called nanopositioning. Nanopositioning systems

are built to move objects over a very small distance, with resolutions down to atomic

level. These systems are generally driven by piezoelectric actuators and have been

widely applied in high-precision systems such as micromanipulator and ultra-precision

machine tools [2].

Piezo-actuated nanopositioning stages also play a key role in atomic force microscopy

(AFM) [3], which is a type of scanning probe microscopy (SPM) [1]. An AFM utilizes

a micro cantilever with a small tip to “feel” the topology of a sample, as shown in

Figure 1.1. The tip of the cantilever is able to sense the forces that are being exerted

on it by the atoms in the sample that is being scanned. The forces acting on the

cantilever tip influence the deflection of the cantilever. An Optical Beam Deflection

(OBD) measurement system is used to measure this deflection. A feedback loop is used

to control a nanopositioning stage (the z-stage) in vertical direction with the purpose

of keeping the cantilever tip at the most sensitive position. The topology of the surface

can be reconstructed using the OBD measurements and the control voltage that is

sent to the z-stage. The bandwidth of the z-stage is often the limiting factor for the

scanning speeds that can be achieved using these systems [4].

Numerous research areas and industrial applications have been fundamentally changed

with the development of nanopositioning systems, including biology, chemistry, material

science [5] and high density data storage systems [6]. Currently, lots of new potential
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Figure 1.1 Schematic representation of an AFM system. The deflection of the cantilever is
being measured via a laser by the OBD system as the x-y stage moves the sample relative to
the cantilever tip. This data is used to control the position of the z-stage using a feedback
controller.

applications require higher bandwidth actuation of systems such as the AFM while

maintaining high positioning accuracy. Examples include subsurface scanning probe

microscopy [7], the study of the fast dynamic movement of biological cells in real time

[3] and wafer metrology in semiconductor applications [8]. In order to meet this demand,

high-speed nanopositioning stages are being developed that can be actuated at much

higher bandwidth [8, 9]. The positioning errors in these systems are mainly caused by

hysteresis that is inherently present within piezo-actuated systems and dynamics as a

result of the characteristics of the mechanical stage [1, 2].

1.1 Hysteresis
Piezoelectric materials suffer from a nonlinearity between the applied voltage and the

obtained displacement, referred to as hysteresis. In order to more clearly reveal the

impact of this nonlinearity, an oscillating voltage can be applied to a piezo-actuated

stage. Due to hysteresis, the displacement does not travel along the same path when the

voltage is decreased after it is initially increased. This results in a so-called hysteresis

loop between input and output, shown in Figure 1.2. The output displacement is not

only dependent on the current input voltage, but also on previous input voltages. This is

a memory effect referred to as non-local memoryless [10, 11], which results in amplitude-

dependent behaviour [2]. This hysteresis phenomenon creates nonlinearities in the

constitutive relations between input fields E and stresses σ, and output polarisation P

and strains ε in the piezoelectric material [12].
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(a) Linear voltage-to-displacement behaviour with-
out hysteresis

(b) Observed voltage-to-displacement as a result
of hysteresis behaviour

Figure 1.2 Illustration of a linear and the actual observed voltage-to-displacement behaviour
in a piezoelectric actuator when an oscillating voltage is applied. The observed voltage-to-
displacement behaviour on the right side is known to as the hysteresis phenomenon. Arrows
indicate the direction of the path that is described.

1.2 Vibrational Dynamics
Besides hysteresis, vibrational dynamics as a result of the structural characteristics of

scanning stages is a major bottleneck in achieving high accuracy at high speeds for

nanopositioning [13]. Piezo-actuated stages are typically characterized by high stiffness

and low structural damping, which leads to a “sharp”, lightly damped resonance peak in

its frequency response [2]. Input signals that contain high-frequency components excite

this resonance and induce vibrational effects which negatively affect the positioning

accuracy, of which an example is shown in Figure 1.3. This disturbance is often avoided

by highly limiting the operating bandwidth of piezo-actuated stages to approximately

1% of the first resonance frequency [13]. However, this will result in drastically limiting

the speed, which means that this is not a plausible solution for high speed stages.

1.3 Control Strategies & Issues
Compensating hysteresis and vibrational dynamics in high speed piezo scanning stages

could be achieved by feedback control with sufficiently high feedback gain. However,

the improvements that can be achieved in terms of positioning accuracy are limited

because of the typically low gain margins of these systems as a result of the “sharp”,

lightly damped resonant peak and phase loss due to filters and other high-frequency

dynamics [1]. Additionally, it is reported [14] that hysteresis reduces the gain and
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reference trajectory

ouput trajectory

Figure 1.3 Illustration of uncompensated vibrational dynamics excited by high-frequency
components in the actuation voltage causing oscillations during open loop tracking

phase margins of these systems in closed loop even further, up to 28%. This quickly

leads to an unstable feedback system which limits the operating bandwidth that can

be achieved using feedback control [2, 12, 13].

In addition to feedback control, feed-forward control can theoretically improve the

accuracy of piezo scanning stages by exploiting a priori knowledge of the system’s

hysteresis and vibrational dynamics. This control approach does not suffer from the

issues associated with feedback control and can therefore improve the accuracy, even at

high operating speeds [1]. Several attempts are being made on compensating hysteresis

and dynamics of nanopositioning systems by developing feed-forward controllers based

on inverse models that improve the performance of these systems [15, 12, 16, 17]. The

main focus of most feed-forward control approaches has been on compensating either

hysteresis or vibrational dynamics.

For hysteresis compensation [18, 19, 20, 21], inverted hysteresis models are utilized

that describe the hysteresis nonlinearity phenomenologically [2]. Examples of these

models include the Preisach model [22], the Krasnosel’skii-Pokrovkii model [12], the

Prandtl-Ishlinskii model [23], the Bouc-Wen model [24] and the Maxwell model [25, 26].

Dynamic effects that are observed are often referred as rate-dependent hysteresis [2].

Existing mathematical models are often modified to capture this rate-dependency

[27, 28, 18, 29, 30]. However, due to the introduction of time-derivatives of input or

output signals, these models tempt to become very complex for model identification and
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Figure 1.4 Photo of the miniaturised AFM developed [5] for high-throughput parallel AFM
[9] showing the high speed scanning stage in use, highlighted by the arrow.

noise amplification problems may occur when used in inverse model-based feed-forward

controllers [2]. This makes these rate-dependent models unfavorable for model-based

feed-forward control for high speed piezo stages. An alternative approach that almost

fully eliminates the need for hysteresis compensation is using a charge drive rather

than a voltage drive. However, this method is rarely used for controlling piezo-actuated

systems because of its high cost and implementation complexity [2].

Alternatively, rather than compensating hysteresis, some works focus on compensating

the vibrational dynamics in order to the improve positioning accuracy of these systems.

Examples include input shaping control [31] and the optimal-inversion based approach

[32]. Amplitude varying dynamics in such control approaches as a result of hysteresis

can be avoided by using low voltage amplitude actuation [33].

Finally, attempts are being made on compensating both hysteresis and vibrational

dynamics in a feed-forward setting [15, 16]. Existing techniques for hysteresis and

vibration compensation such as inverse mathematical hysteresis models [2] and the

optimal-inversion based approach [32] are often combined in an attempt to successfully

compensate for both error sources.

In order to successfully implement such a compensation in high-speed piezo scanning

stages, a framework is required that allows to compensate for both rate-dependent and

amplitude-dependent dynamics as a result of the coupled [2] hysteresis and dynamic

behaviour. Model-based feed-forward control can fulfill a major role in achieving this.

However, this requires a modeling framework that describes the full dynamics of the

system with high accuracy up-to the full bandwidth of actuation.
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(a) Flexure-guided piezo-stack actuator [3] (b) Miniaturised z-stage [8]

Figure 1.5 (a) Illustration of the flexure guided piezo-stack actuator that is used in the
high-speed scanning stage shown in (b)

The goal of this thesis is to formulate and experimentally validate such a modeling

framework. The formulation of this framework specifically aims at accurately describing

the amplitude and frequency varying behaviour of high speed piezo scanning stages as

a result of hysteresis and dynamics.

The formulation of such a modeling framework contributes to the improvement of feed-

forward control for high speed scanning stages. A feed-forward based on the formulated

modeling framework can, in addition to feedback control, be used to improve the

positioning accuracy of high speed scanning stages at high bandwidth.

1.4 Scope of This Work
In this thesis, the work [15, 16] on compensating both hysteresis and dynamics in

piezo-actuated stages is continued by proposing a modeling framework for describing

rate-dependent and rate-independent hysteresis as well as the vibrational dynamics of

high speed piezo-actuated scanning stages, supported by experimental results. The

proposed framework deals with the rate-dependent hysteresis by capturing the rate-

dependent effects and the vibrational dynamics within one linear model. This model

is split into two sub-models in order to achieve this. Additionally, the hysteresis

nonlinearity is described by a nonlinear rate-independent model. This approach is

experimentally applied to a miniaturized [5] high-speed piezo-actuated scanning stage

[8], which has its first resonance at about 50kHz. The stage is used in the AFM scan

head shown in Figure 1.4 for high-speed positioning of the cantilever with respect to

the sample during scanning [8] in high-throughput parallel AFM [9]. The high-speed
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scanning stage indicated in Figure 1.4 is shown up-close in Figure 1.5.

The outline of this thesis is ordered as follows. First, the experimental setup that is used

for this work is presented in Chapter 2. In Chapter 3, a modeling framework is proposed

and formulated for characterizing the hysteresis behaviour and vibrational dynamics

of high speed scanning stages. Chapter 4 explains the model identification that is

performed when applying the proposed modeling framework to the high speed scanning

stage considered in this work. Finally, the identified model is validated in Chapter 5

by comparing predicted model output displacements with experimentally measured

displacements for frequency and amplitude varying actuation voltages, showing that

both dependencies are captured within the model.
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Chapter 2

Experimental Setup

An experimental setup is used to perform the research in this work. This chapter

explains the architecture of the setup, the components that are used and the most

important specifications of these components. A photo of the setup is shown in

Figure 2.1 and the setup architecture is shown schematically in Figure 2.2. In Table 2.1,

a summary of the components and the most important specifications is presented.

The scanning stage used in the setup utilizes a flexure-guided mechanism driven by a

piezo-stack actuator, similar to that of the miniaturized [5] high-speed piezo-actuated

scanning stage [8] shown in Figure 1.5. The stage is shown up-close in the inset in

Figure 2.1. The PI-883.11 piezo element used in the scanning stage has a capacitance of

210nF, a maximum travel range of 8µm and can be driven up-to 100V. The maximum

peak-to-peak excitation voltage that is used in this work is limited to 80V as a safety

measure. The setup utilizes a PiezoDrive PDu 150V high voltage amplifier with a

gain of 20 for driving the scanning stage. The amplifier has a power bandwidth of

up-to 80kHz, depending on the capacitive load of the piezo and the peak-to-peak

voltage stroke that is applied. This selection of piezo capacitance and high voltage

amplifier allows the stage to be driven up to its resonance frequency, which is located

at approximately 20kHz [34]. However, the actuation of the stage may be affected

by the amplifier bandwidth at higher operating frequencies as a result of the piezo

capacitance and the applied voltage stroke, which must be considered when interpreting

experimental data.

The displacement of the scanning stage is measured using a Polytec VibroFlex laser

vibrometer utilizing a VibroFlex Fiber sensor head, which allows for fast and accurate
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Figure 2.1 Photo of the experimental setup that is referred to throughout this work, the inset
shows an up-close top view of the scanning stage.

measuring with a bandwidth of up-to 24MHz and a resolution down-to 0.1pm/Hz0.5. A

selected bandwidth of 500kHz is used for the experiments performed in this work, with

a measurement sensitivity of 2.5µm/V. The software design on the host PC combined

with the NI-PCI-6229 DAQ device and BNC-2110 (16 bit) allows for synchronous data

acquisition and signal generation at sample rates up-to 250kHz. Synchronous data

acquisition is used in order to prevent delay between input and output signals as a

result of signal processing. With a measurement sensitivity of 2.5µm/V and a signal

output of 0-2V, the 16-bit resolution of the DAQ allows for a measurement resolution of

0.15nm, which is a typical requirement for nanopositioning stages. The available sample

rate is sufficient for measuring the resonance of the scanning stage at approximately

20kHz. The selection of this displacement sensor and DAQ device allows for sub-nm

resolution displacement measurements at a bandwidth that allows for measuring the

resonance of the scanning stage.

With this, the setup that is used for the research in this work is presented. The

setup architecture allows for actuating the high speed stage up-to its resonance at

approximately 20kHz while measuring with sub nanometer level resolution. More

details on the individual components are listed in Table 2.1. The development of this

setup and more details on specifications are discussed more extensively in [34].
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Host

PC

D/A

Converter

Input voltage

High Voltage

Amplifier
0V - 5V

Piezo Scanning
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0V-100V

Displacement
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A/D

Converter 0V - 2V

Displacement

Figure 2.2 Schematic representation of the architecture of the experimental setup shown in
Figure 2.1, details on components are given in Table 2.1.

Table 2.1 List of components of the experimental setup and their specifications

Component Specifications

A/D +
D/A

Converter

NI-PCI-6229
with

NI-BNC-
2110

Resolution: 16-bit
Sample rate: 250kHz
voltage range: ±10V

High
Voltage
Amplifier

PiezoDrive,
PDu 150V

Bandwidth: 80kHz @2V
Noise: 36µV@100nF

Piezo
Element PI-883.11

Capacitance: 210nF
Bandwidth: 135kHz
Stiffness: 36N/µm
max. travel range: 8µm

Displacement
Sensor

Polytec
VibroFlex

Laser
Vibrometer

freq. range: up-to 24MHz
Resolution: 0.1pm/Hz0.5

Max. displ.: 0.01µm-2.5m
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Chapter 3

Model Formulation

In this chapter, a modeling framework is proposed and formulated for predicting the

output displacement of a piezo-actuated high speed scanning stage for a given input

voltage. For this, the hysteresis nonlinearity in the piezo-actuator of the stage and the

vibrational dynamics of the mechanical stage itself play an important role. The chapter

starts with an overview of what the modeling framework must capture, followed by a

motivation for the framework that is chosen based on experimental data obtained from

the experimental setup presented in Chapter 2. After this, the modeling framework is

further formulated and defined in detail.

The modeling framework must be able to accurately predict the output displacement

of a piezo-actuated scanning stage over its full actuation bandwidth, taking into

account both frequency and amplitude dependent behaviour. For this, it is necessary

to model the vibrational dynamics of the stage as well as the hysteresis effect within

the piezoelectric actuator. Rate-dependent hysteresis that may be present must be

taken into account as well. Including both the vibrational dynamics and the hysteresis

nonlinearity allows the modeling framework to capture both the frequency-dependent

and amplitude-dependent behaviour, which is a key element in describing the full

dynamics of a piezo-actuated high speed scanning stage.

The consequence of hysteresis in piezo-actuated systems is often shown by applying an

oscillating voltage to the actuator. Visualizing the obtained voltage-to-displacement

behaviour reveals the so-called hysteresis loop. It is claimed that the rate of the applied

voltage generally significantly effects the hysteresis loop that is observed [2]. In order

to gain more insight in the hysteresis nonlinearity, voltage-to-displacement loops are
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Figure 3.1 Experimentally measured voltage-to-displacement loops using triangular input
voltages at various driving frequencies

measured, shown in Figure 3.1. These loops are measured on the setup presented in

Chapter 2 using 80V peak-to-peak triangular voltage strokes at different actuation

frequencies. A brief overview of the execution of experiments is given in Appendix A.1.

It is clear that the output displacement is indeed dependent upon the frequency of

actuation. Three main effects are observed as the frequency of actuation is increased:

1. Decreasing loop stiffness;

2. Increasing width;

3. Negative gradients at extremes.

In Figures 3.2a and 3.2b, some of the experimental data is shown in time-domain. The

curved path of the normalized output with respect to the input in the 10Hz data in

Figure 3.2a reveals the hysteresis phenomenon that is present in the piezo-actuator of

the scanning stage. In the 1000Hz data shown in Figure 3.2b, the presence of phase

lag between the input and output signals becomes visible, which shows that hysteresis

is coupled with additional linear dynamics, as concluded in [15]. A qualitative phase

lag compensation is performed in order to further demonstrate the effect of phase

lag on the hysteresis loops shown in Figure 3.1. This is done by aligning the input

and output extremes in time-domain. The result of this compensation is shown for

10Hz and 1000Hz in Figure 3.2. It shows that linear dynamics and time-delays in

the system play a big role in the rate-dependent effects that are observed in so-called

hysteresis loops. These effects are likely caused by the mechanical characteristics
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(c) Measured voltage-to-displacement loops with-
out phase lag compensation
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(d) Measured voltage-to-displacement loops with
phase lag compensation

Figure 3.2 Normalized input (voltage) and output (displacement) signals revealing the presence
of phase lag at increasing frequencies (10Hz, 1000Hz) and an illustration of the effect of a
qualitative phase lag compensation on the hysteresis loops at various driving frequencies, using
an 80V peak-to-peak voltage stroke. The phase lag compensation is performed by aligning
input and output extremes in time-domain.

of the stage, which includes vibrational dynamics, and the electrical characteristics

of the voltage amplification circuit. This has been reported before, for example in

[15, 16]. This phase lag compensation confirms that hysteresis can be modeled as a

rate-independent nonlinearity by distinguishing the effect from linear dynamics and

time-delays. Based on this, a modeling framework is proposed for the characterization

of the full dynamic behaviour of the piezo-actuated high speed scanning stage, which

includes both the hysteresis nonlinearity and the linear vibrational dynamics in the

system. The formulation of this framework is explained in Section 3.1.
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H GSD Gv

Vin û ŷ

Modeling Framework

Linear Model G

Figure 3.3 Schematic representation of the full modeling framework describing the dynamics
of the piezo scanning stage with the input voltage Vin and output displacement ŷ, block H
represents the rate-independent hysteresis model and û represents the hysteresis model output,
block GSD represents the spring-damper sub-model and Gv represents the sub-model that
describes the vibrational dynamics. The full linear model is defined as G = GSDGv.

3.1 Modeling Framework
Based on the conclusions drawn from the experimentally obtained data in Figure 3.1,

a modeling framework for modeling the full dynamics of the piezo scanning stage is

proposed in this section. The experimentally obtained data shows that the observed

hysteresis effects are coupled with additional linear dynamics when increasing the

actuation frequency. These linear dynamics explain the “rate-dependent hysteresis

effects” that are observed. For this reason, the modeling framework that is proposed

treats the hysteresis nonlinearity as rate-independent by utilizing a rate-independent

hysteresis model H. The hysteresis model H is cascaded with a linear model G. The

linear model G is used for describing the vibrational dynamics of the scanning stage.

By using this framework, the rate-dependent hysteresis effects and the vibrational

dynamics are captured within one linear model.

The proposed framework, shown schematically in Figure 3.3, describes the full input-

output behaviour from input voltage Vin to output displacement y. The rate-independent

hysteresis model H maps the input voltage to an intermediate hysteresis signal û. The

linear model G maps the hysteresis output signal û to the model output displacement

ŷ. This modeling framework simplifies the modeling challenges associated with piezo-

actuated systems as a result of hysteresis by decoupling the hysteresis nonlinearity and

the traditional linear effects, which solves the rate-dependency problem that is often

faced in modeling piezo-actuated systems.

The linear model G consists of two sub-models, a spring-damper model GSD and
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a vibrational model Gv. The vibrational model Gv captures the traditional linear

dynamics of the system, with an emphasis on the vibrational dynamics at high frequency

resulting from the mechanical characteristics of the stage. The spring-damper model,

also known as the Kelvin-Voight model [16], is often used for modeling creep in piezo-

actuators. Creep is often observed at operating frequencies below 1Hz. In this work

however, the spring-damper (Kelvin-Voight) model is used to support the vibrational

model Gv by capturing all rate-dependent effects which the vibrational model fails to

capture. The hysteresis model H captures the rate-independent hysteresis nonlinearity

in the actuator. Note that the physical signal û cannot be measured directly because

hysteresis happens on molecular level in the piezoelectric material. The formulation

and identification of the hysteresis model H and the linear model G is discussed in

Sections 3.2 and 3.3, respectively.

3.2 Hysteresis Model: Prandtl-Ishlinksii
In this section, the formulation of the hysteresis model H is given. The model that

is chosen for this is the well known Prandtl-Ishlinskii (P-I) model [23]. This model is

widely used in literature for describing hysteresis in various applications, among which

the modeling of hysteresis in piezoelectric actuators [35, 36]. The main motivation

for choosing this model is its analytical invertibility, meaning that the inverse of this

model is exact and can directly be derived from the forward P-I model, as done in e.g.

[36, 37]. This makes this model very favorable for feed-forward control applications.

The traditional Prandtl-Ishlinksii model is defined [37] as

û(t) = a0Vin(t) +
∫ R

0
a(r)Fr[Vin](t)dr, (3.1)

where û(t) represents the output of the model and Vin(t) is the input of the model

at time t, parameter a(r) represents a density function, a0 is a positive constant and

Fr[Vin](t) is the play operator. For the definition of the play operator [23], let Cm[0, tE ]

be the space of piecewise continuous functions. For an input Vin(t) ∈ Cm[0, tE ], let

0 = t0 < t1 < t2 < · · · < tN = tE be a partition of [0, tE ], such that Vin(t) is monotone

on each of these sub-intervals Cm[ti, ti+1]. The play operator Fr[Vin](t) is then defined
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(a) single play-operator (b) weighted summation of play-operators

Figure 3.4 Play operator illustration: The left figure illustrates the output of a single play
operator with a threshold r as a function of an oscillating input voltage, where the arrows
indicate the path of the output of the play operator. The right figure illustrates a weighted
summation of multiple play operators with different thresholds ri (in gray) to obtain a modeled
hysteresis loop (in red).

as follows:

z(0) = Fr[Vin](0) = fr(Vin(0), 0), (3.2)

z(t) = Fr[Vin](t) = fr(Vin(t), z(ti)), (3.3)

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, with

fr(Vin, z) = max [Vin − r,min(Vin + r, z)] , (3.4)

where z(t) represents the output of the play operator, shown in Figure 3.4a. The P-I

model as described here is used as a base for describing the hysteresis nonlinearity in

the piezo-actuated stage. In order to implement the formulated P-I model in real-time,

the model formulated in Eq. (3.1) is discretised. At the kth time step, the discretised

P-I model is given by

û(k) = a0Vin(k) +
Q∑

i=1
aiFri [Vin(k)] , (3.5)

with û(k) := û(tk), where tk represents the time at the kth time-step. The integral

term in Eq. (3.1) is approximated by a sum of Q play operators with discrete thresholds
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Figure 3.5 Measured responses of the piezo-actuated scanning stage subjected to triangular
input signals showing vibration and additional low-frequency dynamics in the system

ri. These discrete thresholds ri are defined as

ri = i− 1
Q
||Vin(k)||∞ for i = 1, 2, . . . , Q. (3.6)

The outputs of the play operators Fri [Vin(k)] are multiplied by weights ai, which replace

the continuous density function a(r) in Eq. (3.1). These weighted play operators are

then summed to form a hysteresis loop, of which an example is shown in Figure 3.4b.

The parameters ai for i = 0, 1, 2 . . . Q determine the shape of the hysteresis curve. The

shape of this curve is dependent upon the considered actuator and its piezoelectric

material. For this reason, these parameters are system specific and must be identified

by matching the model with training data obtained from the actuator. This model

identification procedure is performed by applying the Differential Evolution [38] al-

gorithm. The model identification and more specifically, the implementation of the

Differential Evolution algorithm, are explained in more detail in the next chapter.

3.3 Linear Model: Spring-Damper and Vibration
Next to hysteresis, vibrational dynamics must also be considered when modeling

the behaviour of piezo scanning stages. This can be achieved using a linear model,

which is demonstrated in previous work such as [1, 16, 32]. In this section, a linear

model is formulated for capturing the linear dynamics of the piezo-actuated scanning
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stage, including vibrational dynamics. The linear model that describes the vibrational

dynamics is defined as Gv. The vibrational dynamics are measured using low voltage

amplitude actuation, less than 5% of the full stroke voltage. For this operating

region, the amplitude-dependent behaviour resulting from hysteresis is insignificant and

negligible [16], resulting in approximately linear behaviour. Note that the amplitude-

dependent behaviour for higher driving voltages is captured by the hysteresis model

H. In order to quantify a vibrational model Gv that is able to describe the vibrational

dynamics specific to the scanning stage, a model identification must be performed using

experimental data as well. This is explained in more detail in Chapter 4. Figure 3.5a

shows vibration behaviour in the scanning stage.

The experimental results shown in Figure 3.1 show additional low frequency voltage-to-

displacement behaviour. The peak-to-peak output displacement is increasing in the

low-frequency domain (10-100Hz) as the actuation frequency decreases. This is shown

more clearly in Figure 3.5b, where some of the displacement data in Figure 3.1 is shown

as a function of normalized time. At low frequency, the dynamics of typical scanning

stages are stiffness based, i.e. a flat frequency response is observed, which contradicts

with the voltage-to-displacement behaviour observed in Figure 3.1, where a small

increase in magnitude is still visible as a function of decreasing actuation frequency.

The exact cause of this behaviour is unknown at this point. It is recommended to

investigate the root of this behaviour in future research when utilizing the test setup

presented in Chapter 2. Despite the fact that creep is not the cause of this behaviour,

the viscoelastic spring-damper model GSD [15, 16] still allows for modeling the observed

behaviour. This model is defined as

GSD(s) := ŷ

û
= 1
k0

+
NSD∑
i=1

1
kis+ ci

, (3.7)

where ki for i = 1, 2, . . . , NSD are stiffness coefficients and ci for i = 1, 2, . . . , NSD are

damping coefficients. The parameter NSD represents the model order of the spring-

damper model, also known as the Kelvin-Voight model [16]. As with the unknown

parameters within the hysteresis model H, these coefficients are system specific and

must be identified through model identification as well, using training data. This is

explained in the next chapter, where a motivation for the selected model order NSD is
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given as well. The full linear model G(s) is given as

G(s) = GSD(s)Gv(s), (3.8)

describing the linear dynamics within the system. With this, the full modeling framework

that is proposed in this section is shown schematically in Figure 3.3.

3.4 Conclusion
In this chapter, a modeling framework is proposed for characterizing the hysteresis and

dynamics of a piezo-actuated high speed scanning stage. The proposed framework aims

at capturing both the amplitude-dependent behaviour and the frequency-dependent be-

haviour within the scanning stage. The proposed framework utilizes a rate-independent

Prandtl-Ishlinskii hysteresis model H cascaded with a linear model G, which is used to

describe the linear dynamics of the scanning stage. The chapter starts with a motivation

for the modeling framework that is chosen, after which each of the sub-models H, GSD

and Gv within the modeling framework are formulated and discussed in more detail.
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Chapter 4

Model Identification

In the previous chapter, a modeling framework is proposed and formulated to describe

the full dynamics of a piezo-actuated high speed scanning stage. In this chapter,

the formulated framework is applied to the test setup discussed in Chapter 2. The

framework is used to accurately describe the full dynamics of the test setup. For this,

a model identification is performed. This is done by identifying the unknown model

parameters using model training data obtained from the test setup. This chapter

explains the procedure of the model identification of the sub-models H, GSD and Gv.

The chapter starts with the identification of the vibrational dynamics Gv by measuring

the frequency response of the system. After this, the procedure for identifying the

hysteresis model H and the spring-damper model GSD is explained. This is done

by applying the Differential Evolution [38] minimization algorithm. This algorithm

is explained in detail as well. In the end, the results of the model identification

are presented and discussed. The full modeling framework and the corresponding

identification procedure is shown schematically in Figure 4.1.

4.1 Vibrational Dynamics Identification
The first step in the identification of the formulated modeling framework is the identifi-

cation of the vibrational dynamics captured within the linear sub-model Gv. To do so,

the frequency response function (FRF) of the scanning stage is measured by exciting

the system using white noise. In order to minimize the influence of the hysteresis effect

as much as possible, the maximum peak-to-peak input voltage is limited to 2V. The

obtained frequency response is shown in Figure 4.2. More details on processing are

provided in Appendix A.2. It is clear from the obtained results that two resonance
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Linear Model G

Differential Evolution TF Estimation

Figure 4.1 Schematic representation of the model identification procedure that is used for
each of the sub-models within the formulated modeling framework

peaks are observed within the 0-60kHz frequency domain, located at 24.2kHz and

37.4kHz. A roll-off is observed in the magnitude starting at approximately 3kHz. This

is caused by the limited bandwidth of the high voltage amplifier, which is known to be

within the order of a few kHz, depending upon the capacitance (210nF) of the piezo and

the voltage stroke that is applied. These parameters affect the amount of power and

current that must be delivered by the amplifier, which influences its bandwidth. The

small signal frequency response of the high voltage amplifier is given in Appendix A.3.

Using the frequency response data in Figure 4.2, a model estimation is performed

focussing on the 100Hz-45kHz frequency region in order to capture both resonances.

The model order is chosen as low as possible while achieving a data estimation fit of at

least 75%. The obtained vibrational model Gv is identified in transfer function form.

This model is given by

Gv(s) = Gnum
v (s)
Gden

v (s) , (4.1)

in which

Gnum
v (s) = 2.43 · 1029s2 + 8.06 · 1033s+ 9.10 · 1039,

Gden
v (s) = s8 + 5.19 · 105s7 + 2.10 · 1011s6 + 5.31 · 1016s5 + 1.18 · 1022s4

+1.61 · 1027s3 + 1.90 · 1032s2 + 1.48 · 1037s+ 3.74 · 1041.

The obtained transfer function and the frequency response data that is used for the

transfer function estimation are both shown in Figure 4.2. The estimated vibrational

sub-model Gv contains eight left-half plane poles and is therefore open-loop stable.
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Figure 4.2 Measured frequency response of the scanning stage showing the transfer from input
voltage Vin to output displacement y and the estimated vibrational model Gv

Furthermore, the estimated model contains two left-half plane zeros, which means

its inverse is stable as well. This is favorable for inverse model-based feed-forward

control applications [15, 39]. The identified model Gv is used as a fixed model in the

identification of H and GSD. This is explained in Section 4.2.

4.2 Hysteresis & Spring-Damper Model Identification
In the previous section, the vibrational dynamics are quantified and captured within

the model Gv. With the dynamics identified, the remaining hysteresis and spring-

damper models H and GSD can be identified. This procedure is explained in this

section. The P-I hysteresis model that is formulated in Eq. (3.5) contains parameters

ai for i = 0, 1, 2 . . . Q that must be identified in order to quantify the hysteresis model

H. Secondly, the spring-damper sub-model GSD formulated in Eq. (3.7) contains

parameters ki and ci for i = 1, 2, . . . , NSD which must be identified as well. This is

done by minimizing the error between the model output and experimentally obtained

training data. In order to quantify this error, an objective function Fobj is defined as

Fobj = 1
f

f∑
i=1

Erms
i , (4.2)
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Vin û ŷ

Identification models Fixed model

Figure 4.3 Schematic representation of the identification structure for the identification of
the hysteresis model H and the spring-damper model GSD, which are cascaded to the already
identified vibrational model Gv, given by Eq. (4.1).

where

Erms
i =

√√√√ 1
n

n∑
j=1

(
ŷi(j)− yi(j)

max (yi)−min (yi)

)2
, (4.3)

where yi(j) represents the jth data point of the ith training data set and ŷi(j) represents

the model output corresponding to this data point. Furthermore, Erms
i represents the

root-mean-square error (RMSE) of the ith training data set, with respect to the full

stroke length.

The identification parameters ai for i = 0, 1, 2 . . . Q and ki and ci for i = 1, 2, . . . , NSD

are stored in the parameter vector X:

X =
[
a0, . . . , aQ, c1, . . . , cNSD

, k1, . . . , kNSD

]>
. (4.4)

For each parameter in X, minimum and maximum bounds are defined and stored in

Xmin and Xmax, respectively. The parameters in X cannot exceed these bounds during

the identification procedure. The model parameters in X are identified by minimizing

the objective function Fobj in Eq. (4.2), which is equivalent to minimizing the mismatch

between the model output and the experimental output. This is equivalent to the

following minimization problem:

min
X

Fobj

s.t. Xmin ≤ X ≤ Xmax.

(4.5)

The hysteresis and spring-damper models H and GSD are cascaded with the previously

identified vibrational model Gv given in Eq. (4.1) to obtain the modeled output ŷ, as

shown in Figure 4.3. The output is then used in the objective function Fobj in Eq. (4.2).
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Figure 4.4 Schematic illustration of the Differential Evolution algorithm for a single candidate
solution Xc

i at the ith iteration, with the donor vector vi and the trial solution vector Ui

The Differential Evolution minimization algorithm [38] is applied to solve the minimiza-

tion problem formulated in Eq. (4.5). This algorithm utilizes a population of candidate

solution vectors Xc for c = 1, 2, . . . , NP , where NP represents the amount of candidate

solution vectors that are used. Each candidate solution vector represents a potential

solution to the minimization problem formulated in Eq. (4.5). These candidate solutions

are randomly initialized at the start of the minimization, while meeting prescribed

minimum and maximum bounds. An iterative procedure is executed for finding a

solution to the minimization problem, consisting of Mutation, Crossover and Selection

steps. This is shown schematically in Figure 4.4. These steps are explained in more

detail next.

Mutation

Within the Mutation step, a donor vector vi is defined for a candidate solution vector

Xc
i , where i represents the ith iteration of the iterative procedure that being executed.

This vector is defined by combing three randomly chosen candidate solution vectors

Xc1 , Xc2 , Xc3 as

vi = Xc1
i + f (Xc2

i −X
c3
i ) with c1 6= c2 6= c3, (4.6)

where the mutation factor f is a scalar that is chosen on the interval [0.4, 1]. Note

that there are many other possibilities for defining this donor vector. The work in [38]

supports the chosen definition of vi as given in Eq. (4.6) for the application that is

considered in this work. The computed donor vector is used in the Crossover step.

Crossover

Each candidate solution vector is mixed with its corresponding donor vector in order

to enhance the potential diversity of the potential solutions. Components of the donor

vector and the parameter vector are exchanged and used to create the trial solution
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vector Ui. In order to ensure that the constraints

Xmin(j) ≤ Xc
i (j) ≤ Xmax(j) for j = 1, 2, . . . , D

on the identification parameters are satisfied, an extra condition is added. Note that

D represents the total amount of parameters that must be identified. An entry of

the donor vector can only enter the trial vector if it satisfies the constraints on the

considered identification parameter. This is made clear in the pseudo-code in Algorithm

1. In this algorithm, Cr is called the crossover rate. This control parameter is used

Algorithm 1 Pseudo-code for trial vector Ui

1: procedure
2: for j = 1:D do
3: if rand(0,1) ≤ Cr and Xmin(j) ≤ vi(j) ≤ Xmax(j) then
4: Ui(j) = vi(j)
5: else
6: Ui(j) = Xc

i (j)

to tune the distribution of Xc
i and vi in Ui. The defined trial solution vector Ui and

its corresponding candidate solution Xc
i are used to evaluate the model using training

data.

Selection

In the Selection step, the performance of the new trial solution Ui is compared to

the performance of the original candidate solution Xc
i . The full model as shown in

Figure 4.3 is evaluated using each of these solutions. The obtained model output ŷ(t)

is compared to the experimentally measured output y(t) in the objective function in

Eq. (4.2). If Fobj(Ui) ≤ Fobj(Xc
i ), the potential solution has improved by generating

the trial vector and the candidate solution vector is updated according to Xc
i+1 = Ui,

otherwise, Xc
i+1 = Xc

i . This is an iterative process that is repeated until a pre-specified

criterion is met.

It must be noted that when applying Differential Evolution, there is no guarantee of

finding a global minimum to the minimization of the objective function in Eq. (4.2).

Applying this minimization algorithm most likely results in finding a local minimum.
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Figure 4.5 Study of the influence of the amount of play operators Q on the achieved modeling
accuracy using a 10Hz voltage-to-displacement loop training data set

4.3 Complete Model Identification Results
This section presents and discusses the results that are obtained by applying the

identification procedures which were explained in Sections 4.1 and 4.2. The vibrational

sub-model Gv is identified as described in Section 4.1. The vibrational sub-model is used

in the hysteresis and spring-damper model identification as explained in Section 4.2,

where the objective function defined in Eq. (4.2) is minimized by Differential Evolution.

Before the full model is identified, a study is performed in order to determine the amount

of play operators Q that is sufficient for modeling the hysteresis nonlinearity. Figure 4.5

shows that using 5 play operators suffices for capturing the hysteresis behaviour, as

using more does no longer improve the achieved accuracy.

The 1Hz, 10Hz, 100Hz, and 1000Hz voltage-to-displacement data sets shown in Figure 3.1

are used as model training data sets. During the identification, 600 iterations are

performed with 25 candidate solution vectors. Furthermore, the mutation factor is

chosen as f = 0.6, and the crossover rate is chosen as Cr = 0.9. The identification is

performed using different spring-damper model orders NSD. The results in Table 4.1

show that using a model order of NSD = 3 suffices, as choosing a higher model order

does no longer improve the obtained solution. The evolution of the objective function

defined in Eq. (4.2) is shown in Appendix A.4. Figure 4.6 shows the training data

along with the output ŷ predicted by the identified model. The model achieves < 1%

RMS error for each set of training data. The identified parameters of the hysteresis

and spring-damper model can be found in Tables 4.2 and 4.3, respectively.
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Figure 4.6 Model output ŷ predicted by the identified model along with the training data sets
that are used for model identification

In Figure 4.7, the bode diagram of the spring-damper model is displayed, which

shows an increasing magnitude as the frequency decreases. This coincides with the

observed behaviour discussed in Section 3.3. It can be seen that even at high operating

frequencies, the identified spring-damper model has some contribution to the dynamics,

Table 4.1 Influence of the spring-damper model order NSD on the minimization of the objective
function Fobj

NSD Fobj

1 0.0090

2 0.0070

3 0.0065

4 0.0065
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Figure 4.7 Bode diagram of the identified spring-damper model GSD

capturing the dynamics that are not captured in the vibrational model Gv and that

cannot be captured within the hysteresis model H. This further confirms that the

hysteresis nonlinearity is indeed frequency independent and that all rate-dependent

effects can be described using a linear model. With the identification of the vibrational

sub-model Gv, the hysteresis model H and the spring-damper sub-model GSD, each of

the models within the cascaded modeling framework is identified.

4.4 Conclusion
In Chapter 3, a modeling framework is formulated for modeling the dynamics of

piezo-actuated scanning stages, consisting of vibration, hysteresis, and a spring-damper

sub-model. This chapter discusses the identification of the modeling framework when

applied to the high speed scanning stage in Figure 2.1 by starting with a general

overview of the model identification. After this, the identification of each sub-model is

Table 4.2 Identified parameter weights ai characterizing the P-I model in Eq. (3.5), obtained
by applying Differential Evolution

a0 a1 a2 a3 a4 a5

1.1193 0.0730 0.1229 0.0756 0.10227 0.0004
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explained in more detail. The vibrational dynamics are quantified by performing FRF

measurements. The hysteresis and spring-damper model parameters are quantified by

minimizing the modeling error based on training data using the Differential Evolution

algorithm. Finally, the results of the full model identification and the identified models

are presented and discussed. The identification results demonstrate that the training

data can be predicted with less than 1% RMS modeling error.

Table 4.3 Identified parameters ci and ki characterizing the spring-damper model in Eq. (3.7),
obtained by applying Differential Evolution

c1 c2 c3 k0 k1 k2 k3

12.0411 6.4210 25.6608 1 1.9502 0.0016 0.2244
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Chapter 5

Model Validation

In Chapter 3, a modeling framework for describing the full dynamics of a piezo-actuated

high speed scanning stage is formulated. In Chapter 4, the formulated modeling

framework is applied to the test setup presented in Chapter 2 by performing a model

identification. In this chapter, the identified model is assessed using test data from the

setup. This validation focuses on the amplitude and frequency dependent behaviour

in the piezo-actuated scanning stage as a result of hysteresis and linear dynamics.

Experiments and simulations are performed with pre-computed input voltages Vin(t)

that induce amplitude and frequency varying behaviour. These are listed as follows:

1. Fixed Frequency - Fixed Amplitude;

2. Fixed Frequency - Varying Amplitude;

3. Varying Frequency - Fixed Amplitude.

First, the accuracy of the modeling framework is validated for additional voltage-to-

displacement loops with constant amplitude measured at different frequencies. This

is followed by a validation for voltage-to-displacement loops with varying amplitude.

Finally, the modeling accuracy for frequency varying behaviour is validated by using

frequency varying input voltages with constant amplitude. For each of the performed

validations, the output displacements ŷ(t) predicted by the proposed modeling frame-

work are compared to the experimentally obtained output displacements y(t). The

model’s ability to capture amplitude and frequency varying behaviour is assessed by

examining the error signal e(t), which is defined as

e(t) = ŷ(t)− y(t)
max [y(t)]−min [y(t)] · 100%, (5.1)
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Figure 5.1 Measured and modeled output displacement for voltage-to-displacement loops at
30Hz and 300Hz obtained using triangular input voltages

in which the error e(t) is computed in percentage (%), with respect to the maximum

peak-to-peak displacement stroke of the test data. Each input voltage is defined as

a periodic signal in which a finite amplitude or frequency varying signal element is

repeated. With this, the obtained error signals e(t) must be periodic as well. The

root-mean-square error (RMSE) of the error signal is examined as well, for which a

value less than 1% with respect to the maximum peak-to-peak displacement stroke is

desirable. The results are presented and discussed in this chapter.

5.1 Fixed Frequency - Fixed Amplitude
First, the identified modeling framework is validated for triangular input voltages with

fixed frequency and amplitude in order to show that the modeling accuracy achieved

for model training data is also achieved for test data. The validation is performed for

30Hz and 300Hz voltage-to-displacement loops. The results are shown in Figure 5.1.

The results demonstrate the ability of the framework to predict these hysteresis loops

with < 1% RMSE accuracy, which matches the accuracy achieved for the training data

as shown in Figure 4.6.

5.2 Fixed Frequency - Varying Amplitude
Next, a validation is performed for an input voltage with varying amplitude, while

keeping the frequency of the input voltage constant. With this, the modeling frame-

work’s ability to capture the amplitude dependent behaviour as a result of hysteresis

is validated. For obtaining test data, two experiments are performed at 100Hz and
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(b) error signal, RMSE = 0.78%
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(d) error signal, RMSE = 1.12%

Figure 5.2 Measured and modeled output displacements and their corresponding error signals
for amplitude varying input voltages at 100Hz and 1000Hz, respectively

1000Hz, respectively. The experimental results and model predictions are compared

in Figure 5.2. Additional figures, in which the displacement data in Figures 5.2a

and 5.2c is shown as a function of time, are given in Appendix A.5. The results

demonstrate that the model is able to accurately capture the amplitude-dependent

hysteresis behaviour. The obtained error signals reveal a periodic trend. The RMS

error values are comparable to those obtained in the model identification and “Fixed

Frequency - Fixed Amplitude” model validation. However, in Figure 5.2d, it can be

seen that the error signal of Experiment 2 has a constant offset with respect to zero.

The root of this issue lays in the identified spring-damper model GSD, which describes

an incorrect creep induced by constant (step) input signals. This offset leads to an RMS

error that is slightly above 1%. Solving this issue requires further research. Despite

this constant offset, it can be concluded that the Prandtl-Ishlinskii model is able to

accurately capture the amplitude-dependent behaviour in the actuator as a result of

the hysteresis.
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(b) error signal, RMSE = 0.74%
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(d) error signal, RMSE = 0.68%

Figure 5.3 Measured and modeled output displacements and their corresponding error signals
for frequency varying input voltages

5.3 Varying Frequency - Fixed Amplitude
Finally, the modeling framework’s ability to capture the rate-dependent behaviour as a

result of the linear dynamics is validated. For obtaining test data, two experiments are

performed in which triangular input voltages are sent to the scanning stage with varying

frequency. In both experiments, the input voltages contain frequencies ranging from

10Hz up-to 1kHz. The experimental results and the model predictions are compared

in Figure 5.3. Additional figures, in which the displacement data in Figures 5.3a

and 5.3c is shown as a function of time, are given in Appendix A.5. The results reveal

a modeling error with a periodic trend as well. Furthermore, the RMS error values

are similar (RMSE< 1%) to those obtained in the model identification and previously

discussed model validation results. As mentioned previously, this validation considers

an operational frequency range of up-to 1kHz. It can be seen that for this frequency

range, the magnitude of the modeling error is barely affected by the actuation frequency.
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This demonstrates that the rate-dependent behaviour of the scanning stage up-to 1kHz

is accurately captured within the proposed modeling framework.

5.4 Conclusion
In this chapter, a model validation is performed for the modeling framework that is

formulated and identified in Chapters 3 and 4, respectively. The model validation

focuses on the model’s ability to capture amplitude-dependent behaviour as a result of

hysteresis and frequency-dependent behaviour caused by dynamics up-to 1kHz. The

results demonstrate that the model is able to capture and accurately describe varying

amplitude and varying frequency characteristics within the stage, with achieving less

than 1% RMS error. However, the model validation result in Figure 5.2d does reveal

a constant offset in the error signal. The root of this error lays in the spring-damper

model GSD and requires more attention in future research. For this, it is advised

to properly study the creep effect within the piezo-actuator. This can be done by

performing step-response experiments, which reveal the creep effect in the actuator.

Furthermore, it is recommended to study the cause of the low-frequency behaviour

discussed in Section 3.3 as well. Doing so can provide more insight in the formulation

of the linear model GSD in order to prevent the constant offset caused by the model.
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Chapter 6

Conclusion

New advancements in nanotechnology applications demand higher bandwidth actuation

of piezo scanning stages while maintaining high positioning accuracy. Two of the

main bottlenecks in achieving these requirements are hysteresis in the piezo-actuator

and vibrational dynamics as a result of the mechanical structure of the scanning

stage. In order to overcome these bottlenecks, a framework is required that is able to

compensate the hysteresis and vibrational dynamics in such systems at high operating

bandwidth. This thesis aimed at formulating a modeling framework that can be used

for compensating hysteresis and vibrational dynamics in high speed piezo scanning

stages, focussing on amplitude and frequency varying dynamics as a result of hysteresis

and dynamics. This work started by examining the rate-dependency of hysteresis loops

in a high speed scanning stage. Based on this, a modeling framework is formulated

in Chapter 3 that treats hysteresis as a rate-independent nonlinearity. The rate-

dependent effects are, along with the vibrational dynamics, described by a linear

transfer function model. In the end, the proposed framework consists of two sub-models.

A rate-independent hysteresis model and a linear transfer function model, where the

linear model is further subdivided into two sub-models, a spring-damper model and a

vibrational model.

The proposed modeling framework is applied to a miniaturized high-speed piezo-actuated

scanning stage. These stages are used in AFM scan heads for high-speed positioning of

the cantilever with respect to the sample during scanning in high-throughput parallel

AFM. Chapter 4 explained the identification procedure for quantifying the each of the

sub-models within the proposed modeling framework. The identification procedure
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started by identifying the vibrational dynamics using FRF measurement data. With

the vibrational dynamics identified, the spring-damper model and the rate-independent

hysteresis model are identified simultaneously. This is done by utilizing the Differential

Evolution algorithm. In the end, the results of the full identification were presented

and discussed. The proposed modeling framework achieves < 1% RMSE for the

training data that is used, demonstrating the effectiveness of the proposed framework.

Furthermore, this illustrates the suitability of stochastic optimization algorithms such

as the Differential Evolution algorithm for the optimization problem that is faced in

this chapter.

Finally, the model that is identified in Chapter 4 is assessed using test data in Chapter 5.

The validation specifically focussed on the two main dependencies within piezo-actuated

scanning stages, which are amplitude-dependency as a result of hysteresis and frequency-

dependency caused by dynamics. The validation demonstrates the modeling accuracy

that can be achieved using the modeling framework proposed in Chapter 3, which is

as low as < 1% RMS error for both amplitude-dependent and frequency-dependent

dynamics up-to 1kHz. However, it must be noted that the spring-damper model can

induce an incorrect offset with respect to the test data in some cases. This happens

because the spring-damper model is describing an incorrect creep, which is induced by

constant (step) input signals. Solving this issue requires additional attention in future

research.

Most work in the field of piezo-actuated (high-speed) scanning stages have focused on

modeling and compensating either hysteresis or vibrational dynamics in order to improve

performance. The result of this work contributes to improved performance at high

bandwidth actuation of these systems by developing a modeling framework that allows

for predicting the full dynamic behaviour of these systems with high (< 1% RMSE)

accuracy, which includes both hysteresis and vibrational dynamics. The development

of this framework opens the door for improved model-based feed-forward control of

high-speed scanning stages, and thus for improved performance at high bandwidth

operation.
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Chapter 7

Future Work

In this thesis, a modeling framework was presented for describing the dynamics of a

piezo actuated scanning stage. This framework focusses on amplitude and frequency

varying dynamics resulting from hysteresis and linear dynamics. The development of

this framework and the execution of the research in this thesis in general has provided

new research opportunities. This chapter discusses the most interesting follow up

research possibilities.

The work in this thesis provides a modeling framework for high speed scanning stages.

Within the framework, the hysteresis and linear dynamics are represented as separate

sub-models. For each of these sub-models, a base model or modeling technique was

chosen based on the application that is considered in this work. However, for a different

application, a different base model or modeling technique may be more suitable. For

example, the Prandtl-Ishlinskii hysteresis model can be substituted by a different

mathematical model such as the Bouc-Wen model. Alternatively, one can aim for a

hysteresis model based on first principle modeling. This also applies to the linear model

within the framework. The choice of choosing appropriate models within the proposed

framework provides many follow up research possibilities.

The second follow up research that can be done aims at improving the framework itself.

It is shown that the rate-dependent hysteresis effects can be explained by additional

linear dynamics. These are the result of, among others, the mechanical structure of

the stage, the characteristics of the voltage amplification circuit and potentially the

creep effect at very low frequency. Properly quantifying the contribution of each of

these influences can help in improving the modeling framework, as this can provide
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more insight for formulating an appropriate linear model. Furthermore, this can help

in improving or choosing the experimental setup’s hardware in order to prevent these

effects from being present in the first place.

Finally, the framework that is presented is developed for compensating hysteresis and

dynamics in high speed scanning stages. This can be done by using feed-forward

control combined with feedback control. The framework presented in this work can

be implemented in feed-forward control by model inversion. For the Prandtl-Ishlinskii

model that is used in this study, an analytical inverse is available that can be directly

implemented when the forward model is quantified. Inverting the linear dynamics may

result in difficulties as a result of non-causality or non-minimum phase zeros in the

system. However, a lot of research within this area is available which can be used to

deal with these potential issues. The performance of such a model-based feed-forward

implementation based on the proposed modeling framework (combined with feedback

control) can be studied in future research.

With this, it is clear that a lot of follow up research can be done based on the results

of this thesis. This research can be done by either improving the presented framework

itself or by implementation of the presented framework in feed-forward control combined

with feedback control.
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Appendix A

Appendix

A.1 Execution of Experiments
Experiments are performed for the identification of the proposed cascade model, which

consists of the hysteresis model H and the linear model G. The general purpose for

all experiments is to measure the response in terms of an output displacement of the

system for a pre-defined input voltage. The process that is followed during experiments

as illustrated in Figure 2.2 can be described as follows:

1. A given input voltage [0-5]V is pre-computed offline.

2. The pre-computed input voltage is loaded to the host PC and sent to the high

voltage amplifier, which amplifies the input voltage to a [0-100]V signal.

3. The amplified voltage is applied to the piezo-actuator, which results in a displace-

ment of the actuator.

4. This displacement is being measured by the displacement sensor.

5. Both the displacement data and input voltage (before amplification) are fed back

to the host PC via a D/A converter, where it is stored for offline analysis. This

minimizes delay between the input and output signals as a result of processing.

These steps are followed for obtaining the required data for performing the model

identification. Triangular input signals are used for identifying the hysteresis model. A

white noise input signal is used for performing frequency response measurements.
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A.2 Frequency Response Measurements
In the frequency response measurement, the output velocity of the stage is measured

for a white noise input voltage. This is done because the vibrometer suffers from sensor

drift which becomes visible when positioning measurements are performed over longer

time periods, which is done for obtaining FRF data. This FRF is shown in Figure A.1.
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Figure A.1 Frequency response measurement representing the transfer from input voltage to
output velocity

The transfer from voltage to displacement is obtained by

Gdisp(jω) = Gvel(jω)
jω

, (A.1)

where ω is the frequency in radians/s. Gdisp(jω) represents the transfer from voltage

to displacement and Gvel(jω) represents the transfer from voltage to velocity.

Additionally, the measured FRF is compensated for 2.5 · 10−5s of time-delay due to

signal processing. The resulting FRF is shown in Figure 4.2.
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A.3 High Voltage Amplifier
Figure A.2 shows the small signal frequency response of the high voltage amplifier for

different load capacitances. The piezo in the scanning stage has a capacitance of 210nF,

which is a limiting factor for the bandwidth of the high voltage amplifier.

Figure A.2 Small Signal Frequency Response of the high voltage amplifier for different load
capacitances, obtained from www.piezodrive.com

www.piezodrive.com
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A.4 Objective Function Evolution
Figure A.3 shows the evolution of the value of the objective function in Eq. (4.2) as

a function of the iteration, showing that objective function has converged to a (local)

minimum.
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Figure A.3 Evolution of the objective function
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A.5 Model Validation: Additional Figures
In this section, the results presented in the model validation in Chapter 5 are shown

in time-domain. Figure A.4 shows the varying amplitude trajectories as a function of

time and Figure A.5 shows the varying frequency trajectories as a function of time.
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(a) Data of Figure 5.2a shown as a function of time
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(b) Data of Figure 5.2c shown as a function of time

Figure A.4 Measured and modeled output displacement for as a function of time (varying
amplitude)
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(a) Data of Figure 5.3a shown as a function of time
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(b) Data of Figure 5.3c shown as a function of time

Figure A.5 Measured and modeled output displacement for as a function of time (varying
frequency)
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