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Abstract

In this research we consider the effects of the variable ordering in Binary Decision Diagrams
(BDDs) on the computational effort required for symbolic supervisor synthesis. In recent research
it has been shown that improving the variable ordering can result in a substantial further decrease
of synthesis effort required compared to current ordering techniques. Therefore, we propose a
novel variable ordering heuristic for the reduction of computational effort of BDD-based symbolic
supervisor synthesis. By performing an analysis of the backwards reachability search, we show
how variables can be ordered to reduce symbolic synthesis effort. By placing variables that often
appear together in transition relations near each other, the effort can be reduced by orders of
magnitude. We achieve this by utilizing a Dependency Structure Matrix (DSM) to store the
number of times pairs of BDD-variables appear together in transitions. Subsequently, the DSM is
manipulated by two matrix reordering heuristics, resulting in several feasible variable orderings.
We utilize a metric that has been shown to be able to predict if variable orders perform well for
effort reduction in other decision diagram-based applications, to choose which of the computed
orders should be used for synthesis. We perform an experiment on a set of benchmark models
to measure the achieved effort reduction of our proposed heuristic. Finally, we show that our
approach is competitive in reducing computational effort compared to a state of practice variable
ordering heuristic named FORCE, commonly applied to symbolic supervisor synthesis. Moreover,
the best improvements in effort reduction are shown for the computationally most demanding
models tested.
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Chapter 1

Introduction

1.1 Background and related work

Supervisory Control Theory (SCT) [24] is a model-based approach to control Discrete Event
Systems (DESs). In the framework of SCT we compute a supervisor that is safe (unsafe or
undesirable states are not reachable), non-blocking (marked states are reachable), controllable
(only controllable events are disabled) and maximally permissive (restrictions are minimal with
regards to the three aforementioned criteria). The supervisor is computed by synthesis of plants
(models of the uncontrolled system) with respect to requirements (specifications of allowed or
desired behavior). In this report the plants and requirements are modeled as automata.

Despite the fact that SCT has been successfully applied to some examples of industrial size,
e.g. in a magnetic resonance imaging scanner [34] and a waterway lock [27], industrial acceptance
is yet scarce. This is mainly due to the computational complexity of synthesis for industrial sized
models. The exponential state-space explosion that occurs is a limiting factor [38]. To partially
overcome this, the plants and requirements can be represented by Extended Finite Automata
(EFAs) that are symbolically expressed by Binary Decision Diagrams (BDDs) [22]. Synthesis can
be directly applied to the symbolic representation of EFAs. Essential to utilizing BDDs is finding
an efficient variable ordering. This ordering has a critical influence on the amount of computation
time and computer memory required [21,32]. Computing the most efficient order is unfortunately
NP-complete [4] and therefore heuristic algorithms are often used to find a decent ordering. This
type of algorithm is designed to find an approximate solution to a problem when finding the exact
solution is deemed to be computationally too expensive.

The importance of the variable ordering has been well described in literature. More specifically,
in recent research [35] it has been proposed that improving the variable ordering can reduce the
computational effort required for BDD-based supervisor synthesis of EFAs by orders of magnitude,
even if FORCE [2] is applied, a state-of-the-art [20] variable ordering heuristic.

1.2 Report goal

This research proposes a new heuristic algorithm to find a variable ordering that results in a
further reduction of computational effort required for supervisor synthesis compared to current
implementations. More precisely, the plants and requirements are linearized, resulting in a single
EFA. Subsequently, a variable ordering is computed and the linearized EFA is converted to BDDs.
Synthesis is directly applied to the symbolic description of the model to result in a supervisor.
Thereafter, the symbolic supervisor is converted to Disjunctive Normal Form/Conjunctive Normal
Form (DNF/CNF), in which the representation in BDDs is transformed back to a comprehensible
form, such that the user can better understand the computed supervisor. In these forms the
supervisor is expressed in a predicate solely consisting of conjunctions, disjunctions and negations.
The magnitude in which the variable ordering affects the computational effort required for symbolic
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CHAPTER 1. INTRODUCTION

Plant/requirement
model Linearization Variable	ordering BDD	conversion

Symbolic
synthesis

CNF/DNF
conversion

Input

Output
Supervisor

Figure 1.1: Flowchart of symbolic supervisor synthesis and the pre- and post-processing steps required.

supervisor synthesis is known from literature [35]. In this report we conduct further research to
point out why the variable ordering influences the required computational effort for synthesis and
how an ordering can be chosen such that the effort reduces. Therefore, the variable ordering is
the main topic of this report. A flowchart of symbolic synthesis and its pre- and post-processing
steps is shown in Figure 1.1.

1.3 Outline

The outline of this report is as follows: Chapter 2 elaborates about symbolic synthesis and prelim-
inary knowledge the reader may be unfamiliar with. Subsequently, an analysis of the backwards
reachability search is performed. This analysis and effect of the variable ordering on this essential
part of synthesis is described in Chapter 3. This leads to the proposition of a new variable ordering
heuristic for reduced computational effort, as described in Chapter 4. The proposed heuristic is
applied to a set of benchmark models to compare its effectiveness with FORCE, this benchmark
experiment is described in Chapter 5. The conclusions and recommendations for future work that
result from this study are found in Chapter 6.

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis
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Chapter 2

Symbolic synthesis of Extended
Finite Automata

In this research we present a heuristic to reduce the computational effort of symbolic supervisor
synthesis. In the context of this report we perform synthesis of Extended Finite Automata (EFAs)
represented by Binary Decision Diagrams (BDDs). This chapter elaborates on some preliminary
knowledge about this type of synthesis, BDDs and related subjects.

2.1 Extended Finite Automata

The modeling framework of Extended Finite Automata (EFAs) [30] is a more compact representa-
tion to model DESs compared to regular Finite Automata (FAs). An EFA is found by appending
discrete variables, guard expressions and update functions to FAs, defined as follows.

Definition 2.1: An EFA is a 7-tuple (L, V,Σ, E, Lm, L0, V0) with the set of locations L,
domain of variables V = V 1× ...×V n where n is the number of discrete variables, set of events Σ,
set of edges E, set of marked locations Lm ⊆ L, set of initial locations L0 ⊆ L and set of initial
variable valuations V0 = V 1

0 × ...×V n0 . Each edge e ∈ E is a 5-tuple e = (oe, te, σe, ge, ue) with the
origin location oe ∈ L, target location te ∈ L, event label σe ∈ Σ, guard ge : V → {true, false}
and finally the variable update function ue : V → V [23].

Events are divided into two types: controllable- and uncontrollable events. The first type can
be disabled while the second type cannot be disabled by the supervisor. We denote the set of
controllable events by Σc ⊆ Σ and uncontrollable events by Σu ⊆ Σ, additionally Σc ∩Σu = ∅ and
Σc ∪ Σu = Σ. When referring to controllable or uncontrollable edges, we refer to whether σe ∈ Σ
in e is controllable or uncontrollable. Furthermore, we use the notation P [u] for a predicate P
where all occurrences of variables are replaced by the assignment of the update function u. As an
example, let P : x > 2 and u : x := x+ 1, such that (x > 2)[x := x+ 1] becomes x > 1. Moreover,

oe
ge σe ue−−−−−−→ te

indicates an edge e ∈ E from origin location oe to the target location te with guard ge, event σe
and update function ue. This edge is enabled only if the guard is evaluated to true for the origin
location and current variable values. The variable valuations are updated thereafter according to
ue. An edge can only be taken if ge is evaluated to true for the current variable valuations.

2.2 Binary Decision Diagrams

An EFA can be symbolically described by Boolean functions [22]. Any Boolean function f : B →
{true, false}, where B is the set of Boolean variables and b ∈ B a single Boolean variable, can be

DSM-based variable ordering heuristic for reduced computational effort of symbolic
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CHAPTER 2. SYMBOLIC SYNTHESIS OF EXTENDED FINITE AUTOMATA

a

b

c

d

TF

(a) Variable ordering a < b < c < d.

a

c

b

d

TF

c

b

(b) Variable ordering a < c < b < d.

Figure 2.1: Two variable orderings for f : (a ∧ b) ∨ (c ∧ d).

expressed as
f = (b ∧ f |b=true) ∨ (¬b ∧ f |b=false) , (2.1)

where f |b=true denotes assigning true to b. By recursively applying above expression for all b ∈ B
a Binary Decision Diagram (BDD) [1] can be constructed to express f . BDDs are directed acyclic
graphs that consist out of two types of nodes: decision- and terminal nodes. Each decision node is
labeled by a Boolean variable b ∈ B and has two edges leading to child nodes, one edge labeled true
and the other false. When evaluating b to true or false we take aforementioned edge, respectively.
Visually we represent a true (false) edge by a solid (dashed) line. At the leaves of the BDD are
placed the terminal nodes, these can either be labeled by true or false.

The BDDs used for the synthesis of EFAs are reduced ordered BDDs [7]. As a result of some
reduction rules these are minimal in the number of decision nodes and in canonical form for a given
ordering. A total ordering over the set of Boolean variables is imposed, such that the reduced
ordered BDD only has the same Boolean variables placed at each level. This ordering is referred
to as the variable ordering. Moreover, there is only one terminal node for true and one for false.
In this report we refer to reduced ordered BDDs as BDDs.

The variable ordering is denoted by <, where b1 < b2 indicates that decision node b1 is placed
closer to the root than decision node b2. Furthermore, the ordering can have a major influence on
the number of decision nodes that are required to represent the same function. The size of the
BDD is defined by the number of decision nodes, in the following example we show the effect of
the variable ordering on the size.

Example 2.1: Let the function f : (a ∧ b) ∨ (c ∧ d) be a logical expression, two BDDs corre-
sponding to f are shown in Figure 2.1 for orderings a < b < c < d and a < c < b < d. While both
BDDs describe the same Boolean formula, one ordering requires four and the other six decision
nodes. For BDDs describing more variables this effect is even more noticeable and in worst-case
can lead to a size exponential in the number of Boolean variables [7].

2.2.1 BDD operations

The BDD size affects the amount of computer memory required. Furthermore, it also has a major
effect on the computation time of logical manipulations applied to the BDD. Common operations
are those of computing the conjunction (And operation) and the disjunction (Or operation) of two
BDDs. These operations are both based on the recursive expansion following from Equation 2.1
of BDDs f and g with operation op for variable b

f op g = [b ∧ (f |b=true op g|b=true)] ∨ [¬b ∧ (f |b=false op g|b=false)] .

The two sub-operations are recursively being expanded according to the formula shown above,
starting from the top node(s), as imposed by the variable ordering. The operations are recursively
applied until they lead to a terminal case [32]. Important to applying BDD operations is the use
of the unique table guaranteeing their canonicity and a hash table, where recent results are stored
and can be retrieved later. Thereby, it is prevented that often performed operations are repeatedly

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis
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CHAPTER 2. SYMBOLIC SYNTHESIS OF EXTENDED FINITE AUTOMATA

Algorithm 1 Supervisor synthesis of Extended Finite Automata [23]

Input Plant P and requirement R modeled as EFAs
Output EFA G with restricted guards that is safe, non-blocking, controllable and maximally
permissive w.r.t. P and R

1: Create refined G with the allowed behavior of P where the disallowed behavior of R results in
the set of forbidden locations Lf ⊆ L

2: while Guards changing do
3: Set the initial non-blocking predicate N for marked locations l ∈ Lm to true and for all

other locations l /∈ Lm to false
4: while Non-blocking predicates changing do
5: Compute the new non-blocking predicate for every origin location oe w.r.t. every outgoing

edge to the target location te

Noe := Noe ∨
∨

oe
ge σe ue−−−−−−→te

(ge ∧Nte [ue])

6: end while
7: if Non-blocking predicate B not yet initialized then
8: Set the initial bad-state predicate for locations l ∈ Lf to true and for all other locations

l /∈ Lf to Bl := ¬Nl
9: else

10: Set the bad-state predicate for locations l ∈ Lf to true and for all other locations l /∈ Lf
to Bl := ¬Nl ∨Bl

11: end if
12: while Bad-state predicates changing do
13: Compute the new bad-state predicate for every origin location oe w.r.t. every outgoing

edge to the target location te where σe ∈ Σu

Boe := Boe ∨
∨

oe
ge σe ue−−−−−−→te, σe∈Σu

(ge ∧Bte [ue])

14: end while
15: Adapt the guards for all edges where σe ∈ Σc w.r.t. to the bad-state predicate of target

location te
ge := ge ∧ ¬Bte [ue]

16: end while

being computed [32]. Applying operations to smaller BDDs results in fewer recursive operations
and thereby to a reduction of computation time.

2.3 Compositional Interchange Format

In this report we utilize the Compositional Interchange Format (CIF) [36] for symbolic synthesis.
CIF is an automata-based modeling language that allows for BDD-based synthesis of EFAs, based
on the backwards reachability search [23] shown in Algorithm 1.

In CIF, there are two types of variables: the first type is used as a location pointer for automata
and the second type to describe the value of a discrete variable. Both variables are described by
BDD-variables during synthesis. The BDD-variables as used in CIF are separated into two types:
current-state x ∈ X and next-state x+ ∈ X+ variables. A more thorough elaboration follows in
Section 3.1. Each BDD-variable only belongs to a single automaton or discrete variable. In this
report we group all BDD-variables that belong to a single automaton or discrete variable and refer

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis
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CHAPTER 2. SYMBOLIC SYNTHESIS OF EXTENDED FINITE AUTOMATA

to these groups of BDD-variables as CIF-variables. Furthermore, in the ordering of BDD-variables
we do not interleave [3] BDD-variables belonging to separate CIF-variables. Moreover, each next-
state BDD-variable is always placed adjacent its current-state variable in the order. For automata
with only one location, no location pointer is required and therefore no CIF- and BDD-variable is
utilized for these.

By default, CIF automatically orders the CIF-variables alphabetically by the name of the au-
tomaton or discrete variable. Subsequently, the variable ordering heuristic FORCE [2] is utilized to
find a more efficient order. FORCE minimizes a so called span by trying to place highly dependent
variables near each other. Afterwards, a window is slid over the order produced by FORCE where
the variables within the window are reordered locally according to the same placement criteria.
In this report we refer to applying FORCE as applying both reorderings sequentially.

Moreover, the modelling tool Supremica [18] allows for BDD-based synthesis of EFAs com-
parable to CIF’s implementation. Supremica also utilizes FORCE as variable ordering heuristic.
However, Supremica is not regarded in this report.

2.4 Metrics for computational effort

In this report the computational effort required for synthesis is expressed by two BDD-based
metrics: peak used BDD nodes and total operation count [35]. The first metric is the peak size
of all BDDs combined during synthesis. As computer memory is always finite, this is the main
limiting factor for successful synthesis. The latter is the number of times a recursive call is made to
any BDD operation and mainly expresses the computation time of synthesis. These metrics allow
to measure the computational effort required in a deterministic, platform-independent way and
include no overhead in their measurements, opposed to more traditional metrics such as computer
memory usage and wall-clock time. Performing synthesis with constant parameter settings results
in the same measurement each time for these BDD-based metrics.

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis
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Chapter 3

Analysis of the backwards
reachability search

In this chapter we analyze the symbolic computations of non-blocking and bad-state predicates.
These predicates are required during the backwards reachability search based on Algorithm 1 and
take a considerable amount of computational resources during symbolic synthesis. By an analysis
of the computations of these predicates we show how the variable ordering affects the BDD size
and by what extent this contributes to the total computational effort of synthesis.

3.1 The backwards reachability search

The non-blocking N and bad-state B predicates are essential during symbolic synthesis. The non-
blocking predicate expresses what locations and discrete variable values can be reached backwards
from the marked states, with respect to the current guards and updates. The bad-state predicate
expresses what locations and discrete variable values lead to undesirable states [23]. By continu-
ously adapting these predicates based on possible transitions in the model a stage is reached where
these predicates do not change anymore. Subsequently, the initial guards are restricted based on
the final non-blocking predicate to result in the supervisor.

To be more precise, synthesis is applied to a single EFA described by BDDs, where each
transition is determined by an edge e ∈ E. This single EFA results from the linearization of a set
of automata, a more thorough elaboration about this follows in Section 3.3. Edges are applied in
a backwards manner such that we start at the target location te towards the origin location oe.
We utilize current-state variables x ∈ X and next-state variables x+ ∈ X+, to allow BDDs to
express predicates before and after a transition, respectively. Therefore, the BDD of each update
ue(X,X

+) is expressed in both current- and next-state variables (the update adapts the state
after a transition based on the state before a transition). The BDD of each guard ge(X) is only
expressed in current-state variables (the evaluation of the guard only depends on the state before
the transition).

Symbolic synthesis of EFAs in CIF is based on Algorithm 1. However, it slightly differs from
the original algorithm as the states are symbolically encoded by BDDs. The main differences are
that there is only one non-blocking and one bad-state predicate combining all states. Instead of
a predicate of forbidden states, a predicate of safe states Ps(X) is used, that allows all states of
the plants to be reached, except the forbidden states as imposed by the requirements, see [23]
for a more thorough elaboration. Controllable edges that lead from forbidden to safe states are
disallowed by restriction of their guards. Uncontrollable edges lead to a restriction of Ps if the
edge is enabled in the plants but disabled by the requirements.

The backwards reachability search commences from the initial non-blocking predicate N0(X),
this is the marked state predicate Nm(X) set to true for every marked state and false for all
other states, conjoined to Ps(X), such that the search commences from N0(X) = Nm(X)∧Ps(X).

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis
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CHAPTER 3. ANALYSIS OF THE BACKWARDS REACHABILITY SEARCH

l2 l3
a

l1
b

l2 l3
a

l1
b

l2 l3
a

l1
b

$$
N0(X)

N1(X)

N2(X)

Figure 3.1: Non-blocking predicate during the backwards reachability search for first applying edge a and
second edge b. Grey states are not (yet) part of the corresponding predicate as the grey edges leading
from those states have not (yet) been searched backwards.

Next, a copy is made of N0(X) where all x ∈ X are replaced by their x+ ∈ X+, resulting in
N0(X+). The conjunction of the guard and update is called the transition relation Te(X,X

+) =
ge(X) ∧ ue(X,X+) and is expressed in both X and X+ for aforementioned reasons. The non-
blocking predicate backwards-reachable in at most one step N1(X) [8] follows

N1(X) = N0(X) ∨ ∃X+

[
N0(X+) ∧ Te(X,X+)

]
.

Subsequently, repeatedly apply above equation for k steps

Nk(X) = Nk−1(X) ∨ ∃X+

[
Nk−1(X+) ∧ Te(X,X+)

]
, (3.1)

until the fixed-point Nk(X) = Nk−1(X) is reached. This results in the states backwards-reachable
from the marked state, an example is shown in Figure 3.1. For the bad-state predicate we perform a
similar search, however, in this case only uncontrollable edges are regarded. We set the BDD of the
initial bad-state predicate to B0(X) = ¬Nk(X) and perform a similar sequence of computations
until we find the fixed-point Bj(X) = Bj−1(X), using

Bj(X) = Bj−1(X) ∨ ∃X+

[
Bj−1(X+) ∧ Te(X,X+)

]
, (3.2)

by only applying Te(X,X
+) corresponding to uncontrollable edges. Next, the initial non-blocking

predicate is set equal to N0(X) = Nm(X) ∧ ¬Bj(X) and we repeat from the first step at least
once. If the bad-state predicate is unchanged after the new iteration, the backwards reachability
search is finished and the predicate of the controlled system Pc(X) is set equal to the most recently
computed Nk(X), otherwise repeat. Finally, it is verified whether the initial state is still present
in the predicate and the supervisor is computed by strengthening the guards of all controllable
edges using

ge(X) := ge(X) ∧ ∃X+

[
Pc(X

+) ∧ Te(X,X+)
]
.

3.2 The relational product

Next to the And and Or operations, the existential quantification is an operation that can be
applied to a BDD [7]. Given a BDD f and variable x, the quantification of x out of f results from
recursively applying

∃xf = f |x=true ∨ f |x=false,

starting from the top variable as imposed by the variable ordering. This leads to a frequently
applied operation during the backwards reachability search

∃v [f ∧ g] ,

where f and g are both BDDs and v the set of variables we want to existentially quantify. This
operation can be executed by first computing the And between f and g and later quantifying over
v. However, this results in a large intermediate result of f ∧ g. Therefore, we compute both the
conjunction and existential quantification in a single recursive pass over f and g by utilizing the
relational product [8] operation. The idea behind this operation is to avoid computing the entire

DSM-based variable ordering heuristic for reduced computational effort of symbolic
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l1

l1

l1

l2

l2
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b

M
linearization

A:

B:

C:

a
when	A	=	l1	and	B	=	l1
do	A	:=	l2	and	B	:=	l2

b
when	C	=	l1
do	C	:=	l2

initial;
A	=	l1	and	B	=	l1	and	C	=	l1

marked;
A	=	l2	and	B	=	l2	and	C	=	l2

Figure 3.2: Linearization of a set of automata. The initial and marked predicates are given under initial;
and marked;, respectively.

BDD f ∧ g, quantifying early over v and thereby reducing memory usage and number of required
operations. The worst-case complexity [19] of the relational product is

O(|f | × |g| × 22|b|), (3.3)

where |f | and |g| are the sizes of the BDDs and |b| the number of total BDD-variables. Nonetheless,
computing the relational product is known to be an expensive computation during the backwards
reachability search [8].

3.3 Linearization of automata

In CIF, synthesis is applied to a linearization of plant and requirement automata, which is only
thereafter converted to BDDs. For linearization1, a single EFA M is introduced with the same
alphabet as the union of all alphabets of original automata. For each automaton a discrete pointer
variable is generated to enumerate the locations. Next, all edges are assigned to automaton M as
self-loops where the update is used to assign the target location te that is reached when the edge
is taken and the guards are evaluated true for origin location oe, for which the edge can be taken.
Discrete variable updates of the original automata are conjoined to the updates of the linearized
EFA. Finally, M is converted to BDDs and symbolic synthesis is directly applied to this single
EFA. See the following example where a set of automata is linearized.

Example 3.1: Let A, B and C be three automata with each two locations denoted by l1 and
l2 and a single edge leading from the initial state to the marked state. The edges of automata A
and B have a synchronized event a and automaton C event b. After applying the linearization, we
find automaton M with an initial and marked state predicate described by location pointers and
two self-loops with a guard (when) and update (do), see Figure 3.2 for the linearized automaton
M. Note that even though A,B and C are regular FAs in this example, the resulting M is an EFA.

3.4 Propagation of transition relations

Notice that in Equations (3.1) and (3.2) each computation depends on the previously computed
result. As the number of BDD-variables |b| and the size of the transition relation for each edge
is equal throughout synthesis, we know that the BDD that mainly determines the worst-case
complexity of the following relational product operation is the previously computed non-blocking
or bad-state predicate, recall Equation (3.3). Thus, if Nk−1(X) is small, the effort required for
the computation of Nk(X) is low. Furthermore, note that during every step of the computation
of the non-blocking predicate we first compute the following predicate

∃X+

[
Nk−1(X+) ∧ Te(X,X+)

]
.

1CIF documentation about linearize-product is available at: http://cif.se.wtb.tue.nl/tools/cif2cif/

linearize-product.html
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CHAPTER 3. ANALYSIS OF THE BACKWARDS REACHABILITY SEARCH

The same applies to the bad-state predicate

∃X+

[
Bj−1(X+) ∧ Te(X,X+)

]
.

The results of these equations only consist out of current-state variables, as the next-state variables
are existentially quantified. In a sense, we add assignments that are imposed by the current-state
variables of the transition relation. Furthermore, we know that the variables in each transition
relation are strongly related in the Boolean functions the BDDs represent. Moreover, BDDs are
overall small if strongly related BDD-variables are placed near each other [21, 32]. An example
of this effect is shown in previous chapter in Figure 2.1, where keeping BDD-variables a and b as
well as c and d near each other results in a smaller BDD.

To summarize our observation, if we keep all current-state variables of each transition relation
near each other, it is likely that the resulting non-blocking and bad-state predicates are small,
as we know that these variables are strongly related. Placing these variables near each other in
the ordering should result in less synthesis effort. In the following section we show an example
of this effect on the BDD size of the non-blocking and bad-state predicates and confirm with an
experiment that this indeed is the case.

3.5 Relation between the transition relations, variable or-
dering and the computational effort required

We observe that variable orderings that result in low computational effort are ordered such that
BDD-variables appearing together in transition relations are placed near each other, opposed to far
apart for orderings resulting in high computational effort. This observation can best be described
by the following example where we utilize the linearized model from Example 3.1.

A

B

F T

A

B

C

F T

A

B

C

F T

Edge	a Edge	b

C

F T
N0(X)

A

B

F T

B

Ta(X) Tb(X)

B

N1(X) N2(X)

(a) Variable ordering A < B < C.

A

B

F T

A

C

B

F T

A

C

B

F T

Edge	a Edge	b

C

F T

A

B

F T

B

N0(X) Ta(X) Tb(X)

C

B

N1(X) N2(X)

(b) Variable ordering A < C < B.

Figure 3.3: BDDs of N(X) and T (X) for two different variable orderings during the first two steps of
computing the non-blocking predicate for the linearized automaton M shown in Figure 3.2.
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Example 3.2: Figure 3.3 shows the first two steps of computing the non-blocking predicate
for variable orderings A < B < C and A < C < B for the linearized automaton shown in Figure
3.2. To encode automaton M we require three BDD-variables: A, B and C. For each variable
it holds that taking the false path relates to l1 and the true path to l2. After applying edge
a in reverse, it results in a non-blocking predicate BDD of four decision nodes for the first, but
five decision nodes for the second order. Next, edge b is applied in reverse resulting in the final
non-blocking predicate of this synthesis, for both orders resulting in a non-blocking predicate of
three decision nodes.

Strictly keeping A and B near each other in the ordering results in less peak used BDD nodes
as the intermediate non-blocking predicate N1(X) is smaller. To further analyze this behavior we
execute the same experiment for a model of relevant complexity. We measure the size of all BDDs
combined, non-blocking/bad-state predicates and new guard predicates during synthesis. Two
different variable orderings are chosen: one such that variables appearing in transition relations
are placed near each other and the other such that variables appearing in transition relations are
placed apart from each other. In Figure 3.4 the results of this experiment are shown for the Cluster
tool model [33]. We notice that the total size of the BDDs prior to the backwards reachability
search is relatively equal for both orderings. For the first ordering the size of the non-blocking/bad-
state predicate only becomes slightly larger during synthesis, for the second ordering this predicate
becomes substantially larger, more so, during the computation of the new guards the total BDD
size increases even more. For the first ordering this effect is hardly noticeable. Naturally, applying
operations to larger BDDs also results in more operations as this requires more recursive calls.

As previous results show, we conclude that the non-blocking and bad-state predicates are
of major importance in synthesis. The predicates of newly computed guards increase as well,
however, this is a result of the size of the final predicate of the controlled system, as can be seen
in Equation (3.1). All other BDD predicates do hardly differ in size depending on the chosen
variable ordering during the major part of synthesis. This can be explained as all other BDDs
describe relatively few Boolean variables. Recall that the worst-case size of a BDD is exponential
in the number of Boolean variables and therefore, the variable ordering has less effect on the total

(a) Total BDD size and operation count for a vari-
able ordering where variables appearing in the same
transition relations are placed near each other.

(b) Total BDD size and operation count for a vari-
able ordering where variables appearing in the same
transition relations are placed apart from each other.

Figure 3.4: The total BDD size and operation count for two variable orderings applied to the Cluster tool
model. The dashed line indicates the size of the BDDs prior to the backwards-reachability search. Note
that in (a) this is 6.8 · 103 nodes and in (b) 6.7 · 103 nodes.
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CHAPTER 3. ANALYSIS OF THE BACKWARDS REACHABILITY SEARCH

size of these BDDs.
To conclude, we have shown that placing variables that appear in the same transition relation

near each other can give an enormous improvement to the computational effort required. In next
chapter we show how to find these groups of variables and propose a heuristic approach to reorder
the variable ordering such that these variables are placed near each other in the order.

DSM-based variable ordering heuristic for reduced computational effort of symbolic
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Chapter 4

Variable ordering heuristic

The previous chapter shows how placing the variables within the ordering influences the size of
the intermediate predicates and that this placement has a substantial effect on the computational
effort required. It is shown that variables appearing together in transition relations should be kept
near each other in the ordering, to reduce the computational effort required.

In this chapter we introduce a novel variable ordering heuristic to achieve the aforementioned
ordering. This heuristic requires a Dependency Structure Matrix (DSM) to store pairs of CIF-
variables that often appear together in transition relations. Subsequently, the DSM is manipulated
utilizing two matrix reordering heuristics, resulting in several viable orders. By utilizing the
Weighted Event Span (WES) metric we estimate which ordering should be applied to symbolic
synthesis to result in the most effort reduction. To efficiently compute the WES, we introduce
the Transition Relation Matrix (TRM) to store current-state BDD-variables appearing in each
transition relation.

4.1 Dependency Structure Matrix

A Dependency Structure Matrix (DSM) is an n × n matrix utilized to represent dependencies
between n aspects of a system or model [5, 6]. The aspects of a system are captured along the
rows and columns, both ordered as (1, ..., n), where each index represents a unique aspect of the
system. The diagonal elements are always equal to zero. The values of the off-diagonal elements
indicate whether there is a dependency between the aspects that the row and column indices
represent.

There are two main types of DSMs: binary DSMs and Numerical DSMs (NDSMs). The first
have off-diagonal elements that can either be valued 0 (no dependency) or 1 (a dependency). The
latter can have off-diagonal elements valued either 0 or a positive integer, where a higher value
indicates a stronger dependency in relation to lower valued elements. Furthermore, aforementioned
types of DSMs can either be static or dynamic. The first indicates that all dependencies are
regarded as undirected and accordingly this DSM is always symmetric. The second has directed
dependencies and therefore can be asymmetric.

The framework of DSMs is useful for analyzing and manipulating the structure of a system
or model. For this purpose many algorithms exist to cluster (find clusters of related aspects) or
sequence (remove feedback marks) DSMs, see [6] for an overview. However, in this report no
conventional DSM manipulation algorithms are used. We utilize static NDSMs to store which
pairs of CIF-variables often appear together in transition relations. Subsequently, the NDSM is
manipulated by two matrix ordering heuristics to result in a variable ordering where CIF-variables
of aforementioned pairs are placed near each other in the order. The construction of the NDSM
is shown in Section 4.3 and the manipulation of the constructed NDSM in Section 4.4.
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4.2 Transition Relation Matrix

In this section the Transition Relation Matrix (TRM) is introduced. This is a matrix with |E|
rows and |x| columns, where |E| indicates the number of edges in a model and |x| the number of
current-state BDD-variables. The row index represents the transition relation of e ∈ E and the
column index the current-state variables x ∈ X that appear in the transition relation. This is
indicated by the elements of each row as 0 (not appearing) or 1 (appearing). Each BDD-variable
is counted only once per edge, as the number of decision nodes in a BDD depends on the variable
ordering. The construction of the TRM is shown in the next section. We utilize the TRM to
compute the Weighted Event Span (WES) for a given variable ordering, shown in Section 4.5.

4.3 Constructing the NDSM and TRM

To compute the NDSM and TRM we require the transition relation of current-state variables
Te(X) for each e ∈ E. For each Te(X,X

+) we can find Te(X) by existential quantification of the
set of next-state variables

Te(X) = ∃X+Te(X,X
+).

The reasoning behind this is that we are only interested in the current-state variables that remain
after the existential quantification of Te(X,X

+). These variables are the only ones that remain
in the non-blocking and bad-state predicate during the backwards reachability search.

Subsequently, we extract all BDD-variables that appear in Te(X) for each edge and extract the
related CIF-variables. We denote by Te(X) = {b1, b2} that current-state BDD-variables b1 and b2
appear in Te(X). To describe which BDD-variables belong to a CIF-variable a similar notation is
used.

For each row of the TRM depicting Te(X) an element is set to 1 for each BDD-variable that
appears, otherwise to 0. In the NDSM we increment an off-diagonal entry by 1 for each time
the corresponding pair of CIF-variables appears together in a transition relation, this is done in
a way that the NDSM remains symmetric. We construct the NDSM and TRM together, as these
are both constructed based on the transition relations. Therefore, it is more efficient to construct
these at the same time. However, the NDSM stores pairs of CIF-variables that appear together in
transition relations and the TRM the BDD-variables that appear in transition relations. See the
following example.

Example 4.1: We apply synthesis to a model with CIF-variables A to C and current-state
BDD-variables b1 to b4 where A = {b1}, B = {b2, b3} and C = {b4}. The model has two edges
e1, e2 ∈ E and corresponding transition relations T1 and T2, furthermore T1(X) = {b1, b2, b3} and
T2(X) = {b2, b3, b4}. We start with an initial empty

NDSM0 =

A B C 0 0 0 A

0 0 0 B

0 0 0 C

and initial empty

TRM0 =

b1 b2 b3 b4[ ]
0 0 0 0 T1

0 0 0 0 T2
.

Subsequently the transition relations are used to manipulate both matrices. In this example we
first apply T1(X) and next T2(X), however, note that the order in which the transition relations
are applied does not matter for the final result. First, we manipulate the matrices based on T1(X).
This results in an increment of 1 to elements (A,B) and (B,A) in the NDSM. Thus, the NDSM
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results in

NDSM1 =

0 1 0
1 0 0
0 0 0

 .
Subsequently, elements (T1, b1), (T1, b2) and (T1, b3) in the TRM are set to 1

TRM1 =

[
1 1 1 0
0 0 0 0

]
.

Subsequently, by repeating the same matrix manipulations, only now for T2(X) we result in the
next and final

NDSM2 =

0 1 0
1 0 1
0 1 0


and

TRM2 =

[
1 1 1 0
0 1 1 1

]
.

Applying these steps for each transition relation of a model results in an NDSM where the value
of each non-diagonal element indicates the number of times the represented pair of CIF-variables
appears together in a transition relation. The TRM describes all BDD-variables that appear in
each Te(X), this matrix is utilized in Section 4.5 to efficiently compute the WES for a given
variable ordering. The use of DSMs in SCT is not novel, in [16] clustering is applied to a DSM
containing the dependencies between plants and requirements, applied to multilevel synthesis. For
our application however, the NDSM is reordered based on the values of each element. By placing
higher valued elements near the diagonal and zero values far away from the diagonal, we can find
a variable ordering where groups of variables that often appear together in transition relations are
placed near each other.

To achieve this matrix reordering we utilize existing so called node ordering heuristics. These
heuristics have been designed for bandwidth, profile and/or wavefront reduction of symmetric
sparse matrices, for an elaboration on these metrics we refer the reader to [12] for bandwidth
and [31] for profile and wavefront. We do not directly utilize these metrics, however, minimizing
one (or more) of the three aforementioned metrics results in a matrix where non-zero elements
are placed near the diagonal. Note that the NDSMs in our approach are also sparse symmetric
matrices. Moreover, the effective use of these heuristics for static variable ordering optimization
for decision diagrams is shown in [20], where several node ordering heuristics have been compared
on their effectiveness in effort reduction for symbolic reachability analysis. We analyze two node
ordering heuristics and compare the effectiveness of orderings computed using these.

4.4 Weighted adjacency graph and node reordering

The node ordering heuristics are applied to the weighted adjacency graph of the NDSM. For an
NDSM with row index i, column index j and size n we denote elements by ei,j . For each row i
we generate a node labeled by i. Subsequently, each non-zero element ei,j results in an undirected
edge with weight ei,j between nodes i and j. This results in a weighted adjacency graph where
the node labels are reordered using the heuristic approaches described in Sections 4.4.1 and 4.4.2.
Some notations and definitions that are of importance regarding weighted adjacency graphs are
the following: order R is a reordering of the list of initial node labels L = (1, ..., n) such that the
index of nodes in the initial order is replaced by the integer value of the same index in R. For a
matrix this is simply reordering both the column and row indices in a similar manner. We denote
the reordering of a list L by R as L(R) and of a matrix M by R as M(R,R). The degree of a
node is the number of direct neighbors. A peripheral node is a node whose shortest path to the
node furthest away is of maximal length. See the following clarifying example.
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11 2 3

45

2 4 1

3

Figure 4.1: Weighted adjacency graph of Equation (4.1).

Example 4.1: The weighted adjacency graph of matrix

M =


0 1 0 0 2
1 0 3 4 0
0 3 0 1 0
0 4 1 0 0
2 0 0 0 0

 (4.1)

is shown in Figure 4.1. Node 2 has the maximum degree of 3, and nodes 3, 4 and 5 are peripheral
nodes as each of these nodes has a shortest path of length 3 to the node furthest away.

4.4.1 Cuthill-McKee ordering

The Cuthill-McKee (CM) ordering [12] is a bandwidth reducing heuristic algorithm for the re-
ordering of sparse symmetric matrices. The basics of the standard CM ordering are as follows:
to begin with, the NDSM is converted to a weighted adjacency graph. Subsequently, a starting
node must be chosen, the choice of this starting node is of great importance for the results of
the CM ordering. A peripheral node is usually a good choice, however, finding a true peripheral
node is computationally expensive for large graphs. A pseudo-peripheral node finder can find an
approximate solution p that is sufficient for this application [15]. Subsequently, all direct neighbors
of the initial node p are marked and appended in ascending degree to (an initial empty) list R.
Afterwards, the next node in R is selected as p and repeatedly all unmarked neighbors of p are
appended to R in ascending order of degree and marked. This breadth first search is recursively
applied until all nodes are marked, the resulting list R is the resulting order.

We implemented the CM ordering based on the queue implementation [28] shown in Algorithm
2. Furthermore, we notice that with a small adjustment of the standard algorithm we allow a bias
for appending nodes with a higher weight first. With the weight of a node we mean the weight of
the edge that connects the parent node p to this (child) node in list C in the weighted adjacency
graph. Instead of appending nodes to R based on degree, we append based on descending weight.
However, if two or more nodes to be appended have equal weight, we first append nodes in
ascending degree. This adjustment is shown in lines 9 - 11 in Algorithm 2. Nodes that are
appended earlier during each expansion over neighbors have a bias to be placed closer to the
diagonal compared to nodes visited afterwards. Despite losing some of the bandwidth reducing
characteristics of the CM ordering, we found that this adjustment gave improved results for the
intended use. Furthermore, it might occur that unconnected CIF-variables appear, these result
in a node without any neighbors in the adjacency graph. These are excluded from the reordering
as applied by the node ordering heuristics and are always placed at the front of the ordering, for
reasons that are given in Section 4.5.

4.4.2 Sloan’s ordering

Sloan’s ordering [31] is a profile and wavefront reducing heuristic for symmetric sparse matrices.
This heuristic reorders the adjacency graph starting at two pseudo-peripheral nodes. However,
unlike the CM ordering, no adjustment is made to Sloan’s ordering such that it can sort numeric
DSMs, as this is out of the scope of this research. Nevertheless, this might be of interest for
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Algorithm 2 Weighted Cuthill-McKee ordering

Input NDSM M
Output Ordering R

1: Initialize empty list R, compute weighted adjacency graph A of M and initialize list of uncon-
nected nodes E in any order

2: Compute pseudo-peripheral node p of A
3: Mark p and append p to R
4: while Unmarked nodes exist in A do
5: Find list of unmarked neighbors C of p and sort C in descending weight
6: Sort nodes in C with equal weight in ascending degree
7: Append C to R and mark all nodes in C
8: Set the next node in R as p
9: end while

10: Set R equal to R appended to E

future work. Sloan’s ordering is implemented based on a Matlab implementation2 of the original
FORTRAN code in [31]. Sloan’s ordering reorders the NDSM based on zero and non-zero values.

4.5 Weighted Event Span

Besides two heuristic algorithms, reversing the computed order shows (sometimes significant)
varying results for the computational effort required. As we want to find an efficient variable
ordering in advance of synthesis, we use the Weighted Event Span (WES) [29]. Siminiceanu and
Ciardo noticed that placing variables of more costly operations to the rear of the ordering (lower
in the BDD) improved results for a symbolic reachability search. Furthermore, the WES has
extensively been benchmarked in [20] which showed that the WES is a valuable metric regarding
the reduction of peak decision diagram nodes for symbolic methods utilizing several types of
decision diagrams. To compute the WES for a given ordering we utilize the computed TRM. We
reorder the row corresponding to each e ∈ E of the TRM according to ordering R, as the resulting
value depends on the ordering applied. Subsequently, we compute the WES by

WES =
∑
e∈E

2xl
|x|
· xl − xf + 1

|x||E|
, (4.2)

where |x| is the number of current-state BDD-variables, |E| the number of edges (equal to the
number of rows in the TRM) and xf (xl) the index of the first (last) non-zero element in row e of
the TRM reordered according to R [29]. Note that the first term in the WES results in a lower
score when the lowest BDD-node that appears in an edge is lower and vice versa. The second
term results in a lower score when the first (highest) and last (lowest) BDD-variables are placed
closer near each other after ordering R is applied.

4.6 Variable ordering heuristic

The aforementioned ordering heuristics and WES result in the proposed heuristic algorithm. For
ease of reference we name this heuristic DSM-based Cuthill-McKee-Sloan variable ordering Heuris-
tic (DCSH). For a given NDSM we compute both the weighted CM ordering RCM and Sloan’s
ordering RS . As reversing the order can have a noticeable impact on the computational effort,
we also reverse both orders denoted by RrCM and RrS , respectively. When reversing the order we
make sure that if any unconnected nodes in the adjacency graph appear, they are always placed

2Sloan’s ordering Matlab implementation is found at: https://mathworks.com/matlabcentral/fileexchange/

71934-reduceprofile
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(a) NDSM of the Cluster tool model that
resulted in small non-blocking and bad-state
predicates.

(b) NDSM of the Cluster tool model that
resulted in large non-blocking and bad-state
predicates.

Figure 4.2: Two NDSMs for an efficient (a) and inefficient (b) ordering for the Cluster tool model.

Algorithm 3 DSM-based Cuthill-McKee-Sloan variable ordering Heuristic (DCSH)

Input Transition relations T (X) for all e ∈ E
Output Ordering R

1: Initialize empty TRM and NDSM
2: for all e ∈ E do
3: Find all BDD-variables in Te(X) and add these to the TRM
4: Find all CIF-variables in Te(X) and add these to the NDSM
5: end for
6: Compute weighted adjacency graph A of the NDSM
7: Compute weighted CM ordering RCM and reversed order RrCM
8: Compute Sloan’s ordering RS and reversed order RrS
9: Compute WES for all four orderings using the TRM

10: Set R to the ordering with minimal WES

at the front of the ordering, as this reduces the WES. Subsequently, we compute the WES for all
four orderings and choose the ordering that results in minimal WES.

A summary of DCSH is shown in Algorithm 3. Computing two different orderings and WES for
four orderings can give an intricate impression, despite, the computation time required is marginal
and the possible improvements on the computational effort of synthesis is received to be significant
in some cases. For instance, executing the code for Algorithm 3 for the FESTO model [25], which
is the largest model encountered in this report based on worst-case peak used BDD nodes, has a
computation time of < 400 ms while the reduction of effort for synthesis is considerably larger.
Further optimization of DCSH’s implementation is expected to even reduce the computation time.
In Figure 4.2 the NDSMs are shown corresponding to the orderings used for the experiment of
which the resulting predicate sizes are shown in Figure 3.4. It can clearly be seen that the ordering
that resulted in small predicate sizes has all CIF-variables near the diagonal. For the order that
resulted in large predicate sizes we can see the opposite.

Note that the computed order R is used to order CIF-variables. We always keep the BDD-
variables belonging to CIF-variables adjacent to each other in the ordering. It is likely that
BDD-variables occurring in the same CIF-variables appear often together in transition relations
and therefore keeping these near each other is often effective. In the next chapter we analyze
DCSH and compare it to FORCE in a benchmark experiment based on the computational effort
that is required for synthesis when using the heuristics.
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Chapter 5

Benchmark experiment

We perform a benchmark experiment applied to a set of CIF-models to measure DCSH’s effec-
tiveness in reduction of computational effort required for synthesis. The computational effort is
expressed in peak used BDD nodes and total operation count (recall Section 2.4), denoted by PBN
an TOC for ease of reference, respectively. Moreover, a comparison of DCSH against FORCE is
made based on their ability in effort reduction. The models used for this experiment and their
references are given in Table 5.1. We execute two experiments: one to solely measure DCSH’s
performance and a second experiment to compare DCSH to FORCE. A description of each set-up
for these experiments is shown in the flowcharts in Figure 5.1. The edge ordering is an additional
ordering that has been shown to influence the computational effort [35]. This ordering is kept
constant for each model and is out of the scope of this research. Furthermore, all experiments are
performed using CIF.

Table 5.1: Set of CIF-models used for the benchmark experiments.

Model
Advanced Driver Assistance System (ADAS) [17]
Power substation [11]
Theme park [14]
Automated Vehicle Guidance (AVG) [37]
Multi Agent Formation (MAF) [9]
Cluster tool [33]
Ball system [10]
Bridge [26]
Production cell [13]
Waterway lock [27]
FESTO [25]

5.1 Experiments

5.1.1 Experiments without applying FORCE

To measure the effectiveness of DCSH in reducing computational effort, we perform an experiment
using the benchmark models. For each model shown in Table 5.1, 10,000 random variable orders
are generated that are directly used for synthesis without applying any heuristics. We extract
the PBN and TOC for each measurement, the means per model are denoted by µB and µO,
respectively. The results of the Bridge and FESTO models are excluded from this experiment,
as synthesis was unsuccessful due to out of memory errors for some of the orders with 16 GB of
computer memory allocated. We use aforementioned measurements as a baseline to determine
how much effort is required for synthesis without applying any heuristics.

Next, we compute a variable ordering for each model using DCSH as described in Algorithm
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10,000	random
variable	orders

SupervisorSymbolic
synthesis

DCSH
Computational

effort
Peak	used	BDD	nodes

Total	operation	count

CIF-model

(a) Flowchart describing the experiment set-up without applying
FORCE.

10,000	random
variable	orders

SupervisorSymbolic
synthesis

DCSH
Computational

effort
Peak	used	BDD	nodes

Total	operation	count

FORCE

CIF-model

(b) Flowchart describing the experiment set-up with applying FORCE.

Figure 5.1: Flowcharts of both experiments. DCSH and FORCE compute an order based on the charac-
teristics of the CIF-model, however, FORCE is highly dependent on the initial order provided. For both
experiments the same set of 10,000 random variable orders is used per model.

3. Subsequently, this order is used to perform one synthesis per model. The PBN hB and TOC
hO that result from applying DCSH are extracted accordingly.

5.1.2 Experiments with applying FORCE

To compare the effectiveness in effort reduction of DCSH with FORCE we repeat previous ex-
periment. The same random orders as previous experiment are used for each model. These are
used as initial order for FORCE and the order that results from FORCE is used for synthesis.
Again, we extract the PBN and TOC for each measurement, the means are denoted by µFB and µFO,
respectively. These measurements are used as a baseline to determine the effort that is required
when FORCE is applied as variable ordering heuristic for synthesis.

We use a large set of initial orders for FORCE as it is known from literature that FORCE is
highly dependent on the initial order provided and this has a significant effect on the results [35].
Moreover, we notice that utilizing DCSH to provide an initial order for FORCE can result in
a further decrease of effort required, the order that results from applying FORCE is used for
synthesis. Therefore, we also compute an order using this method for each model and apply it
to synthesis. The PBN and TOC are extracted, denoted by hFB and hFO, respectively. We apply
FORCE as it is currently implemented3 in CIF, thus FORCE applies the reordering based on
other dependencies than DCSH. For ease of reference, we denote by DCSH-FORCE that first an
order is computed by DCSH and that this order is used as initial order for FORCE.

The computations for both experiments are performed on a high performance cluster, how-
ever, as the used metrics are platform-independent, the utilized hardware has no influence on the
measurements [35].

5.2 Results of the experiments

For each model a normalized histogram of measured PBN and TOC is derived, one for each
experiment. These histograms along with the means and effort of applying DCSH and DCSH-

3See CIF’s documentation about the BDD variable order: http://cif.se.wtb.tue.nl/tools/datasynth.html

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis

20

http://cif.se.wtb.tue.nl/tools/datasynth.html
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(a) Peak used BDD nodes for both experiments.

(b) Total operation count for both experiments.

Figure 5.2: The computational effort measured for both experiments executed on the eleven benchmark
models. In (a) the peak used BDD nodes are shown and in (b) the total operation count. For each model
a normalized histogram is shown for both experiments. The results of the Bridge and FESTO models are
excluded from the experiment without using FORCE, as this resulted in out of memory errors for some
of the random orders. The top (bottom) of the solid line indicates the worst-case (best-case) of measured
peak used BDD nodes and total operation count. Furthermore, the markers indicate the mean of the
effort with FORCE applied when pointing towards the left and without FORCE applied when pointing
towards the right.

FORCE are shown in Figure 5.2. The worst- and best-case measured effort of each model is
indicated by the top and bottom of the solid part of the bold lines. In the following part of this
report we refer to the models as small if shown in the boxes on the left and large when shown in
the boxes on the right in Figure 5.2. This division is based on the worst-case PBN.

Moreover, to discuss the effectiveness of DCSH and DCSH-FORCE in reducing the effort
compared to FORCE on average, we compute the reduction of PBN rB = µFB/hB and reduction
of TOC rO = µFO/hO of comparing DCSH to µFB and µFO. Furthermore, we denote the reduction
of PBN by rFB = µFB/h

F
B and reduction of TOC by rFO = µFO/h

F
O for DCSH-FORCE against µFB

and µFO. We do not compute the ratios of effort reduction for DCSH and DCSH-FORCE against
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synthesis with no heuristics applied, as these are of less interest, however, these results can be
seen in Figure 5.2. The aforementioned ratios along with the mean PBN and mean TOC for both
experiments are shown in Table 5.2.

Lastly, we compute the fraction f of random initial variable orders for FORCE that resulted
in less synthesis effort compared to DCSH and DCSH-FORCE as follows

f =
Number of measurements that resulted in less effort than heuristic

Number of total measurements
.

These fractions are computed for DCSH against random initial orders for FORCE, denoted by
fB and fO for the PBN and TOC, respectively. Furthermore, these fractions are also computed
for DCSH-FORCE against random initial orders for FORCE, denoted by fFB for PBN and fFO for
TOC.

Table 5.2: Results of the experiments. The column indicated by R is the ordering with minimal WES and
thus applied to synthesis. Out of Memory (OoM) indicates that some of the random orderings resulted
in an OoM error with 16 GB of memory allocated and are therefore omitted from these results. Values
printed in bold are the best results.

Model
Mean effort

Effort reduction
of DCSH/DCSH-FORCE R

µFB µFO µB µO rFB rFO rB rO

ADAS 7.64 · 103 2.54 · 105 8.07 · 103 2.90 · 105 0.81 0.74 0.76 0.64 Rr
CM

Pow. sub. 8.46 · 103 1.30 · 105 9.60 · 103 1.68 · 105 1.04 1.13 1.05 1.13 RS

Theme park 9.56 · 103 1.86 · 105 9.53 · 103 2.83 · 105 0.91 1.11 0.94 1.11 RS

AVG 6.24 · 103 1.45 · 106 1.36 · 104 3.37 · 106 1.14 1.13 1.14 1.18 Rr
CM

MAF 2.53 · 104 1.39 · 106 2.83 · 104 1.48 · 106 1.19 1.73 0.96 1.09 Rr
CM

Cluster tool 1.77 · 104 6.89 · 106 1.42 · 105 8.02 · 107 1.59 1.88 1.62 1.94 RS

Ball system 1.74 · 104 2.24 · 107 5.44 · 104 2.45 · 108 1.10 2.15 0.82 1.33 RS

Bridge 1.67 · 105 1.63 · 107 OoM OoM 2.36 2.37 0.46 0.76 RS

Prod. cell 5.01 · 104 2.00 · 108 8.56 · 105 4.55 · 109 1.68 2.23 1.13 0.87 Rr
CM

Wat. lock 2.18 · 105 2.44 · 108 1.31 · 106 1.76 · 109 1.82 4.34 1.59 3.20 Rr
CM

FESTO 1.85 · 106 2.86 · 108 OoM OoM 54.01 93.46 53.12 89.69 Rr
CM

Table 5.3: Fractions of random initial variable orders for FORCE that performed better than DCSH and
DCSH-FORCE and the WES values for the order computed by DCSH and DCSH-FORCE. Values printed
in bold are the best results.

Model
DCSH DCSH-FORCE
fB fO WES fFB fFO WES

ADAS 1.00 1.00 0.044 1.00 0.97 0.061
Pow. sub. 0.01 0.00 0.063 0.02 0.00 0.065
Theme park 0.70 0.28 0.025 0.80 0.28 0.080
AVG 0.37 0.45 0.166 0.37 0.51 0.170
MAF 0.60 0.50 0.017 0.19 0.19 0.037
Cluster tool 0.06 0.17 0.055 0.12 0.18 0.050
Ball system 0.87 0.54 0.043 0.50 0.10 0.042
Bridge 0.97 0.81 0.090 0.02 0.01 0.086
Prod. cell 0.55 0.72 0.070 0.09 0.16 0.065
Wat. lock 0.16 0.13 0.078 0.05 0.05 0.075
FESTO 0.00 0.00 0.041 0.00 0.00 0.041

5.2.1 Results of the experiment without applying FORCE

For two models, ADAS and Theme park, DCSH was on average unable to reduce synthesis effort
compared to the mean of the measured effort, as shown in Figure 5.2. We suspect that for these
small models the placement of CIF-variables based on their appearance in transition relations is
not an effective way to reduce their effort. However, note that reducing the computation time and

DSM-based variable ordering heuristic for reduced computational effort of symbolic
supervisor synthesis

22



CHAPTER 5. BENCHMARK EXPERIMENT

memory usage is not very noticeable to the user, as for these two models the difference of best-
against worst-case effort is relatively small. Overall, for seven out of nine models on which the
experiment was successfully conducted, the effort reduced noticeably compared to the mean of the
random orders, as shown in Figure 5.2.

5.2.2 Results of the experiment with applying FORCE

Applying FORCE as variable ordering heuristic to random orders reduced the mean effort in most
cases significantly. Only for the Theme park model we see that the mean PBN increased after
applying FORCE, although this is only marginal as can be seen in Table 5.2. All other results
show a reduction in mean effort required. However, the results did not show a consistent reduction
of effort. The individual measurement results fluctuate noticeably, as can be seen in Figure 5.2.

We notice that DCSH-FORCE indeed mostly resulted in a further decrease of computational
effort required compared to DCSH. Only for the Power substation, Theme park and Cluster
tool models the PBN increased and for the AVG and Cluster tool models the TOC increased, see
Table 5.2 and Figure 5.2. Furthermore, the decrease of effort was mostly noticeable for the Bridge,
Production cell and Waterway lock models, which are all three regarded as large models.

Lastly, the final comparison made is whether DCSH is able to reduce effort compared to
FORCE for more than half of the random measurements per model, see Table 5.3. If the fraction
corresponding to both metrics for a model is < 0.50, this is indeed the case.

For DCSH against FORCE we see that DCSH performed better for five out of eleven models.
However, some of the improvements, especially for the two large models Waterway lock and
FESTO, are substantial. For the second experiment, where DCSH-FORCE is applied, effort
is reduced in seven out of eleven cases.

FORCE minimizes a so called span [2] of transition groups that is related to the WES [20].
We suspect that FORCE gets stuck in a local optimum when minimizing the span, and therefore
is highly dependent on the initial order provided. Because the WES and span are related, DCSH
already provides an order with a low WES and by using FORCE the WES reduces even more.
This is indeed the case for most models, most noticeable for five out of the six large models, see
Table 5.3. For the most cases where the WES increased, the effort also increased, only for the
ADAS, MAF and Cluster tool models this correlation did not hold. As both DCSH and FORCE
require minimal computational effort, it is a viable option to utilize DCSH-FORCE, noting that
the further reduction in synthesis effort can be significant.

We noticed that DCSH is mostly independent of the initial ordering provided. As both the
weighted CM and Sloan’s algorithm start reordering from pseudo-peripheral nodes. The true
peripheral nodes in a (weighted) adjacency graph are constant for each possible labeling of the
nodes. Therefore, the resulting order is largely dependent on the initial approximation of the
peripheral node for weighted CM or nodes for Sloan. Any non-determinism that follows is due to
having two or more nodes with the same degree for Sloan and same degree and weight for weighted
CM. The exact order in which these nodes are appended to the order is therefore undecided.
However, to exactly quantify the effect of this, future experiments should be conducted.

5.2.3 Discussion of the experiment results

A noticeable outlier can be seen in the effort reduction of applying DCSH to the FESTO model, the
computationally most complex model based on PBN. This significant reduction can be explained
as for this specific model every CIF-variable in the transition relations only appears with few other
variables. Therefore, it is possible to perform a better optimization of the effort for models that
have a similar modular structure, based on our findings. We suspect that for models that have
a monolithic structure (where variables appear in transition relations together with many other
variables), there is a certain limit in possible effort reduction that can be achieved by computing
an effective variable ordering.

Figure 5.3 shows the ordered NDSM of the FESTO and MAF models, the modular nature of
the FESTO model allows an order in which non-zero values are placed close to the diagonal and
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(a) Ordered DSM of the FESTO model. (b) Ordered DSM of the MAF model.

Figure 5.3: Ordered DSMs for the FESTO and MAF model.

a modular clustering can be seen. All non-zero values are placed near the diagonal. The MAF
model, however, has a monolithic structure and therefore applying DCSH resulted in relatively
less effort reduction.

To conclude, we have shown that DCSH is competitive with the state-of-the-art heuristic
FORCE, most noticeable for computationally more complex models. However, FORCE is shown
to be highly dependent on the initial order. When comparing the effort resulting from applying
DCSH against FORCE, it can be seen that both heuristics perform about equal in reducing effort.
Both FORCE and DCSH were able to reduce total effort for five out of eleven cases. For the
Theme park model this is undecided, as FORCE resulted in lower TOC and DCSH in less PBN,
see the computed fractions in Table 5.3. However, the most significant reductions in effort when
DCSH is applied were made on the largest models, most noticeable the Waterway lock and FESTO
models. Note that for the effective use of FORCE the user must provide a decent order as input,
we noticed that for DCSH this is not the case. Performing DCSH as pre-ordering for FORCE
showed, in some cases significant, further reduction of effort and thereby also is the most effective
way in reducing computational effort as shown in this report.
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Chapter 6

Conclusions

This report describes a novel DSM-based variable ordering heuristic applied to symbolic supervisor
synthesis, named DSM-based Cuthill-McKee-Sloan variable ordering Heuristic (DCSH). We have
shown by what extent and why the variable ordering influences the backwards reachability search.
Moreover, we have shown the significance of the computational effort required for this search and
thereby for total symbolic synthesis.

By reordering the variables based on the transition relations of edges, synthesis effort can be
reduced by orders of magnitude. Even though the relationship among peak used BDD nodes and
transition relations have been described in literature, no explanation of the exact reasons behind
this behavior is described. In this research we show by means of an example and empirical results
why this takes place. Moreover, we show how much this contributes to the total synthesis effort
and thereby is a novel contribution of this research.

DCSH relies on a Numerical Dependency Structure Matrix (NDSM) and Transition Rela-
tion Matrix (TRM) that are computed before synthesis. Two node ordering heuristics, weighted
Cuthill-McKee and Sloan’s ordering, are directly applied to the (weighted) adjacency graph of the
NDSM to result in a reordering of the initial CIF-variables. The Weighted Event Span (WES)
metric is subsequently utilized to predict which of the found orders should be applied to synthesis,
besides whether reversing the order could be beneficial. DCSH is compared to a state-of-the-art
variable ordering heuristic FORCE in an experiment, applied to a set of benchmark models. The
results show that DCSH is competitive with FORCE in effort reduction. Moreover, DCSH showed
significantly better performance for the two largest models tested. Furthermore, effective use of
FORCE requires the user to provide a suitable initial variable ordering. Utilizing DCSH to com-
pute an initial order for FORCE is shown to further decrease the effort in most cases. As the
computational effort required for applying this additional heuristic is insignificant compared to the
potential reduction of effort for symbolic synthesis, this is a feasible option. Hence, this method
is the recommended method of applying DCSH.

Lastly, the DSM-based approach allows visualization of the ordering, which can be useful if one
wants to compare other matrix reordering schemes to the schemes used in DCSH to see whether
they provide the required reordering, as the DSM can be a useful method to visualize how related
variables appear in a variable ordering. The WES can be used to estimate whether the ordering
could result in decreased effort without applying synthesis, this could be especially useful for
computationally complex models.

For future work it is recommended to study whether the conclusions made in this context
hold for BDD-based algorithms utilized for alternative, albeit similar applications, such as model
checking. Furthermore, it could be beneficial to study whether adjusting Sloan’s ordering to sort on
weight results in a further decrease of effort when DCSH is applied. Moreover, the effectiveness of
other ordering algorithms should be studied. We experienced that DCSH was relatively insensitive
to the initial order provided due to the behavior of computing an order based on the adjacency
graph. It could be valuable to conduct further research whether this experienced behavior holds.

DCSH is a so called static variable ordering, it computes an order before synthesis commences
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based on model characteristics. It could be beneficial to study whether a dynamic ordering, that
updates the variable order during synthesis, could further reduce the effort required. Furthermore,
in this report no interleaving of BDD-variables belonging to separate CIF-variables is applied. It
could be of interest to study whether finding orders where BDD-variables are interleaved results
in less effort.
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