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Abstract

Many industrial motion systems that perform repetitive positioning tasks suffer from fric-
tional effects, limiting the achievable system performance. Classical PID control is employed
in the vast majority of industrial motion systems with dry friction, motivated by the in-
tuitive, easy design and tuning rules available. However, PID control suffers from severe
system performance limitations in terms of position accuracy and settling time. Namely, un-
desirable limit cycling (hunting) behaviour occurs when integral control is applied in systems
with unknown Stribeck friction. The system’s performance is highly dependent on its partic-
ular friction characteristic, which is generally uncertain or unknown, and may be time- and
position-dependent. To achieve optimal system performance in terms of improved setpoint
positioning accuracy and enhanced transient response by minimizing overshoot for frictional
motion systems in a repetitive motion setting, a PID-based controller with a time-varying
learning integrator gain is proposed. The time-varying integrator gain design is adaptively
tuned using a model-free sampled-data extremum seeking control approach. The advantage
of the proposed approach is that it does not rely on prior knowledge of the friction character-
istics. The working principle and effectiveness of the proposed approach are demonstrated
by means of a simulation study and experimental application on an industrial high-precision
positioning stage setup of a high-end electron microscope.
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CHAPTER

Introduction

1.1 Control of frictional motion systems

Many high-tech motion control systems that perform repetitive tasks, such as robotic arms,
printing systems, pick and place machines, and the manipulation stage of electron micro-
scopes (see Figure suffer from frictional effects, which limit the achievable system per-
formance. Friction is described as the resistance to motion when two surfaces slide against
each other. It is a nonlinear phenomenon which can cause undesirable behaviour in motion
control systems such as stick-slip limit cycling, non-zero steady-state errors, and large set-
tling times , when classical control solutions are employed.

In the literature, many control approaches have been presented that deal with motion systems
subject to friction, which can be divided into model-based friction compensation and non-
model based control techniques. Often in model-based friction compensation techniques, a
parametric friction model is used either in a feedback or feedforward control loop in order
to compensate for friction . Model-based friction compensation methods can be
inaccurate and insufficient due to the fact that these frictional effects are often hard to model
accurately, as these are in general uncertain, possibly position-dependent, and subject to
changing characteristics due to, e.g., changing lubrication conditions, temperature, wear,
humidity, etc., resulting in modelling errors. Adaptive control can be employed to
cope with uncertain or time-varying friction circumstances by a continuous online update
of the friction model parameters used in the control law. However, unavoidable modelling
errors still remain, resulting in limited positioning performance.

electron source

condenser system
sample stage

objective lens

projector lens

Figure 1.1: Electron microscope [Figure 1.1 in ]




Control of frictional motion systems

Non-model based friction compensation techniques have the advantage that these techniques
do not rely on knowledge of the friction characteristic. In non-model based techniques,
specific control signals are applied to change the system behaviour in order to obtain the
desired system performance despite the presence of friction. For example, non-model based
friction compensation techniques are impulsive control strategies and dithering-based
controllers . In dithering-based techniques , high-frequent vibrations are em-
ployed to smoothen the discontinuity induced by the friction. The impulsive control strate-
gies use impulsive control signals when the system gets in a stick phase with non-zero
position error, in order to escape such a stick phase. The disadvantage of both non-model
based friction compensation techniques is that these may excite high-frequency system dy-
namics which can damage the motion system. Therefore, non-model based friction compen-
sation techniques are not appealing for being used in industrial applications .

Despite the existence of these control techniques, the classical PID feedback controller
, is most commonly applied for frictional motion systems in industry, due to
the existence of intuitive tuning tools (loop-shaping), and knowledge of control practition-
ers. Conventional P(I)D-based feedback control is however prone to performance limitations.

In the absence of integral action, a non-zero steady-state error may be obtained . For
motion control systems subject to Stribeck friction, including integral action, it is possi-
ble to escape the stick behaviour, since the integral action eventually compensates for the
static friction by integrating the position error. When the error is non-zero, the integrator
builds up control force, eventually leading to a control effort exceeding the unknown static
friction force. However, due to the velocity-weakening Stribeck effect, the integrator action
overcompensates the friction force which can lead to overshooting the desired setpoint, and
subsequent a stick phase occurs. The process of (re)filling and depletion of the integrator
induces the undesired limit cycle behaviour (hunting) ,), thereby losing asymptotic
stability of the setpoint. Furthermore, in absence of Stribeck effect, the slow build up (deple-
tion and (re)filling) of the integration buffer can lead to large settling times which are highly
undesired as well . A solution for this problem is presented in . A reset integral control
approach is proposed in , which circumvents the time-consuming process of depletion and
refilling of the integrator buffer (whenever the system overshoots the setpoint). Resetting
the integral action, results in shorter periods of stick and thereby significantly faster settling.

The main focus of this project resides on improving PID-based control for repetitive posi-
tioning of frictional systems because PID-based control is still applied in the vast majority
of industrial motion systems. Given the performance limitations in conventional PID-based
control when considering frictional motion systems in a repetitive motion setting, PID-based
control with a time-varying integrator gain design is proposed to improve setpoint position-
ing performance. Due to the fact that the friction characteristics are uncertain, the optimal
tuning of this time-varying integrator gain is unknown. As such, in this project, a data-based
learning approach is pursued that iteratively improves the system performance by adaptive
tuning of the time-varying integrator gain.




Data-driven performance optimization

1.2 Data-driven performance optimization

In the literature, many optimisation-based methods to adaptively tune system parameters to
achieve improved performance have been presented. A commonly used optimisation-based
method to improve the system performance is Iterative Learning Control (ILC) [25][28].
The optimisation-based method ILC can be employed to iteratively learn the scheduling
of the integrator gain for repetitive motion profiles. Iterative Learning Control (ILC) is a
learning based method which executes the same task multiple times and under the same
operating conditions. ILC improves the performance by using the previous error information
in the control input for subsequent iterations. In general, ILC is employed to modify the
feedforward control input under the condition that the system is reset at the beginning of
every task . In addition, ILC can compensate for exogenous signals, such as repeating
disturbances by learning from previous iterations. One of the methods for ILC is the norm-
optimal ILC , in which the optimization problem is defined as finding the minimum of
a quadratic objective function. In [3§], a generalization of norm-optimal ILC for nonlinear
systems with constraints is discussed. It is an extension of the conventional normal-optimal
ILC for linear time-invariant (LTI) systems in [30]. A model-based iterative learning control
(ILC) for nonlinear systems is proposed in [39]. The control law makes use of the inverse
of the nonlinear model. Another frequently used ILC methodology is ILC with basis func-
tions ,. The basis functions are used to parameterize the inverse model of the
real system. Moreover, basis functions are exploited to enable performance enhancement
through iterative learning, while providing flexibility with respect to task variations. There
are also other ILC methodologies for nonlinear systems, such as the high-order internal model
(HOIM) ILC [40], robust ILC [28], machine learning ILC [41].

In the literature, there are also model-free PID tuning methods, such as unfalsified con-
trol and iterative feedback tuning (IFT) [44H46]. In unfalsified control, a controller
can be designed that meets a given performance criterium, without knowledge of the system
model (based on output measurements). In unfalsified control, an adaptive algorithm is used
to update the PID controller gains based on whether or not the controller satisfies a given
criterion (performance specifications) . IFT can be used to iteratively optimize the PID
controller gains with respect to an objective function, obtained from output measurements.

The optimisation-based ILC methods and the model-free PID tuning methods are not suit-
able to adaptively tune the time-varying integrator gain. The vast majority of the conven-
tional optimisation-based ILC methods have the disadvantage that these methods rely on
accurate knowledge of the plant model (including the friction characteristic). It is hard to
model friction due to changing environmental conditions. Moreover, in most ILC methods, a
feedforward signal is adaptively tuned and not the feedback controller. The model-free PID
tuning methods are tailored to adaptively tune constant PID controller gains only. Therefore,
in this project, a model-free sampled-data extremum seeking control framework is proposed,
to adaptively tune the time-varying integrator gain design . The sampled-data
extremum seeking control is able to cope with the nonlinear behaviour of the motion system,
because it does not rely on model knowledge. The optimization problem is described in terms
of a model-free sampled-data extremum seeking control problem in which
basis functions are used to parametrize the time-varying integrator gain. The extremum
seeking control framework is able to optimize the system performance by adaptive tuning of
the parameters in the basis functions.
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1.3 Problem statement

As described in Section motion control systems subject to friction are challenging to
control accurately to a setpoint, due to the fact that friction is generally unknown or un-
certain. Classical PID control is commonly used in industry for frictional systems, but PID
control has performance limitations, such as limited setpoint accuracy, limit cycling, and
large settling times. The main focus of this project is on improving PID-based control in
order to overcome the performance limitations for repetitive positioning of frictional systems.

Therefore, in this project, the research control goal is formulated as follows:

?Design a PID-based learning controller for motion systems subject to an unknown friction
characteristic that achieves optimal setpoint positioning accuracy and an optimal transient
response, for a repetitive motion profile”.

The related sub-goals, also reflecting the approach taken, are:

(i) Design of a time-varying integrator gain to facilitate improved setpoint accuracy and
transient responses for repetitive point-to-point motion of systems subject to friction.

(ii) Development of an automatic tuning procedure to improve performance optimization,
by learning the optimal time-varying integrator gain.

(iii) Experimentally verify the proposed PID-based learning controller on an industrial nano-
positioning motion stage setup.

1.4 Outline of thesis

This report is organized as follows. In Chapter [2] the considered frictional dynamical system
is given and discussed. Furthermore, the performance limitations of classical PID control
for frictional motion systems are illustrated by means of a numerical simulation example. In
addition, various designs of the time-varying integrator gain are proposed. The effectiveness
and the working principle are illustrated by numerical simulation examples. In Chapter
the model-free sampled-data extremum seeking control framework is introduced and a de-
tailed explanation is given. Simulations results in which the sampled-data ESC framework
is applied on the considered frictional motion system with the proposed time-varying inte-
grator gain controller are presented and discussed. Chapter [4] focusses on the application of
the proposed sampled-data ESC framework on an industrial high-precision positioning stage
setup. Its working principle and effectiveness are demonstrated via several experiments. This
thesis is closed with conclusions and recommendations given in Chapter




CHAPTER

PID-based control for motion systems with
Stribeck friction

In this chapter, the performance limitations of classical PID control for frictional motion
systems are discussed to support the problem statement of the current research. Furthermore,
a PID-based controller with time-varying integral gain is presented and discussed. The
proposed designs of the time-varying integrator gain are applied on the single-sliding mass
motion system and their working principle and effectiveness are illustrated using a numerical
simulation example, see also .

2.1 PD and PID control for motion systems with friction

2.1.1 Description of a single-mass system with Stribeck friction

Consider a single sliding mass m, which is subject to a control force u., and a friction force
f7, as shown in Figure The goal is to control the single sliding mass to the constant
setpoint (z,2) = (r,0), with x the displacement and & the velocity. Using Newton’s second
law, the equation of motion can be written as:

mi = u. — fr, (2.1)
where the friction force f; is given by the following set-valued friction law :
fr € FiSign(z) + ax — f(&), (2.2)
x
lg
e
—»
m

fr

Figure 2.1: Single sliding mass m subject to friction and controlled by wu, \|




PD and PID control for motion systems with friction

In Figure the friction model in (2.2)) is depicted with its individual components and
below every individual component in (2.2) is discussed:

1. The first term FSign(#) in is the discontinuous, set-valued static friction model,
where F denotes the static friction. The set-valued sign function Sign(#) is defined as
follows:
{1} if x>0,
Sign(i) = { [-1,1] ifd =0, (2.3)
{-1} ifz<0O.

Static friction is the friction that exists between a stationary object and the surface on
which it is resting. When the static friction has been overcome by the control input u,
the object starts to move (i.e., when u. > fy, see (2.1)).

. The second term « in (2.2)) is the viscous friction, which is a linear function of the
velocity, with @ > 0 the viscous friction parameter.

. The last term f() in (2.2) enables the modelling of the velocity-weakening (Stribeck)
effect, which can, for example, be modelled as an exponentially decrease from static
friction Fs to Coulomb friction F,.

The control force u,. is generated by a PID controller and is defined as:

Uec = Kp€ + kdé + kixg, (2 4)
T3 = e, '

where e is the position error (e = r - x), k, denotes the proportional gain, kq denotes the
derivative gain, k; denotes the integral gain, and x3 the integrator state.

friction force f;
4

s

A
Y

Figure 2.2: Friction characteristic.




PD and PID control for motion systems with friction

Using the following change of variables z1 := z, x9 := &, (2.1)) can be rewritten in the form
of two first-order differential equations, and a differential inclusion:

T = X2
Zo € (—F,Sign(z2) — axe + f(x2) — kp(x1 — r) — kqwa — kixg)/m (2.5)

.I'gle—?“,

where z1 is the position of the mass, and xo the velocity.

The equilibria set of ([2.5)) is found by evaluating (2.5) at 21 = 29 = 23 = 0 and f(0) = 0
and solving for x1, x2 and x3, resulting in

Epip = {(1‘1,582,%3) ER® |z =r,29=0,23 € [_%7%]}' (2.6)

The PID controller results in an equilibrium set in x3, and, the setpoint (r,0) is the only
equilibrium point on the (z1,r2)-plane. The set Eprp is not attractive, and solutions gen-
erally do not converge to the set Ep;p, but a limit cycle occurs instead in the presence of
a velocity-weakening effect . When f(z&) = 0, no limit cycling occurs for a single-sliding
mass motion system and the setpoint (r,0) is asymptotically stabilized by the PID controller

[2.4), if the following assumption holds [16}[19]:

Assumption 1. The control parameters ky, kq, ki satisfy k; >0, k, > 0, kpkq/m > k;

For (2.5) without friction, according to the Routh-Hurwitz stability criterion, global expo-
nential stability of the equilibrium z1 = r, o = 3 = 0 is ensured under Assumption 1.

The equilibrium set of the system ([2.5) without the integrator term (k; = 0) is given as
follows:
5PD:{(551,332)6R3|m1€[r—£—;,r+%],x2:0]}. (2.7)

This means that the PD controller results in an equilibrium set in z1. All the solutions tend
to the equilibrium set, but not necessarily to the setpoint (r,0) [3].

2.1.2 Repetitive motion control setting and performance measure

Consider a repetitive motion profile defined on the time interval t € [0,7], where T is the
period time of the motion profile. The time window [0,7’] can be divided in two time intervals:

1. t € [0,T4); this is the transient time window in which the system starts and moves to
a constant setpoint reference r and where transient response is to be improved. T4 is
the time instant where the system is required to be at the setpoint as accurately as
possible.

2. t € [Ty, T]; in this time window, the system should be at rest (standstill, velocity
should be zero) with optimal setpoint accuracy.

The desired performance of the motion control system, minimized overshoot (transient re-
sponse) on the time interval [0, T4], and an optimal setpoint accuracy on [T'4,7], is captured
by the following objective function:

Ta T
J(e):wl/o |e(7')|2d7'+w2/ le(T)|? dr, (2.8)

T
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where e : = 7 - 1, and w; and wy are suitable weighting factors. These weighting factors
can be chosen, depending on the performance requirements (transient performance versus
setpoint accuracy). If for example, the system behaviour during transient time window is
not of interest and the focus lies only on setpoint accuracy, the weight w; can be chosen as
zero or a small number and weight ws can be chosen as 1 or higher.

2.1.3 Analysis of the control system performance

To illustrate the performance limitations of using conventional linear PD and PID feedback
control for motion control systems subject to Stribeck friction, the closed-loop system ,
, and is simulated using a numerical time-stepping method , chap. 6]. The
numerical time-stepping method is used to effectively deal with the discontinuous set-valued
friction without the need for event detection. In Figure[2.3] the state 1 (displacement) with
the boundary of the equilibrium set , x9 (velocity), control force u, and the total
friction force fy are depicted. The friction characteristic are as follows; Fs = 0.981 N
and the velocity-weakening Stribeck effect is given by [2}[3]:

(Fs — Fe)nxy
1+ nlas|
where F,. denotes the Coulomb friction, n is the Stribeck shape parameter and « the viscous
friction parameter. The simulations are done using the following values: m = 1 kg, g = 9.81
m/s®, ky, = 18 N/m, kg = 2.5 Ns/m, k; = 30 N/(ms), z1(0) = 0 m, 22(0) = 0 m/s, F, =

Fs/2 N, n =20, « = 0.5 Ns/m, and » = 0.1 m.

flx2) = (2.9)

Time responses
T

E 0.2
T 01— £ - - -  —
O
[
E l Epp T PD-action PID-action ‘
: 0 :
A 10 15 20 25 30
time [s]
£°
& A A
z Y, \Y, \Y,
Q
3
T}) 02 I I I |
10 15 20 25 30
= tim‘c s]
<
[
o
E AN
°
2
Q
@) 0 30
tune s]
1
0.5
Z L |
Dy
05 rl \/-( \/( \/( ]
_1 1 1 | 1 |
0 5 10 20 25

time [s]

Figure 2.3: The state z; (displacement) with the boundary of the equilibrium set (2.7), z2
(velocity), control force u. (2.4) and the total friction force fy (2.2)).
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Consider first a PD controller for input . . It is illustrated in Figure that the error
response results in a nonzero steady-state error due to the presence of the static friction Fj,
see the equilibrium set for the PD control case in . As the error becomes small, the
control force u. generated by the PD controller may be smaller than the static friction Fj.
As as result, the stick phase has been reached. The size of the equilibrium set depends
inversely proportional on k.

Second, consider the PID controller. Adding an integrator to the controller allows to com-
pensate for the static friction Fs by building up control force, and allows the system to break
free from the stick phase. As a result of the Stribeck effect, the controller overcompensates
the friction during the slip phase that follows, leading to overshoot, and a subsequent stick
phase occurs. Subsequently, the integration buffer first has to deplete in order to apply a
control force in the opposite direction (refilling of the integration buffer) to overcome the
static friction again. The process of (re)filling and depletion of the integrator repeats itself
and induces the undesired stick-slip oscillations (limit cycle) around the setpoint. It can be
seen from Figure that the equilibrium set Eprp is not attractive, and solutions do
not converge to the set Eprp , but a limit cycle occurs instead in the presence of the
Stribeck effect. In Figure 2.3 the settling, depletion and refilling behaviour of the integration
buffer are depicted.

In absence of the Stribeck effect, the process of depletion and refilling of the integrator
buffer (change of sign of the integrator state) causes long periods of stick, resulting in large
settling times (the system converges increasingly slow towards its setpoint). This process
takes increasingly more time with a decreasing position error, and as a result long periods
of stick occur. Therefore, the settling performance of the motion system is limited. In , a
reset integral control approach is proposed, which circumvents these (time-consuming) long
periods of stick. The integrator is reset whenever the system overshoots the setpoint, and
when the system enters a stick phase. Resetting the integral action results in shorter periods
of stick, which increases the settling performance significantly.
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2.2 PID-based control with time-varying integrator gain

2.2.1 Intuitive feedback control design

As have been demonstrated in Section [2.1.3] using the classical PID controller, and in par-
ticular the integral action, on motion control systems subject to Stribeck friction results
in stick-slip limit cycling. The stick-slip limit cycling process motivates the design of a
time-varying integrator gain k;(t). The resulting PID-based controller is defined as follows:
’L'Lc = kpe + kqé + ki(t)xs for ¢t € [0,T] , (2.10)
I3 = e,
where the gains k, and k4 are defined beforehand using loop-shaping techniques and the
proposed k;(t) denotes the time-varying integrator gain. Intuitively, a time-varying integrator
gain k;(t) design that enables improved system performance can have the following shape:
during the transient time window, initially, a high integrator gain is desired to overcome
the static friction Fy and escape possible stick. Subsequently, a low (or even negative)
integrator gain can be needed to avoid overcompensation of friction and minimize overshoot,
and achieve a high setpoint accuracy at the end of the transient window. Finally, at the
setpoint, a zero integrator gain is desired to prevent limit cycling and create robustness close
to the setpoint. Namely, if k; = 0, the system cannot escape the stick phase (standstill of the
system), since the integral action is and remains zero, preventing unnecessary control force.
Therefore, the total control force at the setpoint is significantly lower (proportional action
is low) than the level of static friction Fj, resulting in robustness against force disturbances.
A possible shape of the time-varying integrator gain k;(¢) is demonstrated in Figure
In the next section, potential designs of the time-varying integrator gain are presented and
discussed.

Shape of the time-varying integrator gain
10 T T

ki(t) [N/ (ms)]

4 - -
3 - -
2t ‘ .
I
1t 1 Ta 1
|
0 | Y 1
0 0.5 1 1.5
time [s]

Figure 2.4: Qualitative shape of the time-varying integrator gain k;(t).

10
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2.2.2 Time-varying integrator gain design

To design the time-varying integrator gain, a parametrization is proposed using a finite set
of basis functions ¥, and a parameter vector u € RP to be constructed, as follows:

P

ki(t) = uDwl)(e), (2.11)

j=1

where u is a vector with to be designed parameters, ul) indicates the jth element of the vec-
tor u, and p is the number of elements in vector u. In literature, various basis functions have
been proposed, including step-like basis functions , Fourier basis functions , polyno-
mial basis functions , rational basis functions , etc. In this project, three potential
choices for the basis function ¥ are investigated, which are step-like, Fourier and linear basis
functions.

Example 1: Step-like basis functions

The step-like basis function and the corresponding parameter vector are given by :

(9) — 17 le [(] - 1)tsajts) o
v - {0, t ¢ [(j — Dts, jts) forj=1,2,...,p, (2.12)

ul = [u® @ ..y @), (2.13)

where t¢ satisfies T' = pts. Note that T is the period time of the repetitive motion profile.
To investigate the potential of this specific parametrization of the time-varying integrator
gain k;(t) (2.1142.13)), a simulation example is presented in Section and the resulting
time responses are compared with other examples.

Example 2: Fourier basis functions

Based on intuition, a high k; is needed to overcome the stick phase, a reduced k; is required
to prevent overcompensation of friction and a zero k; at the setpoint is required to put the
system at rest (rule out limit cycling); the shape of the time-varying integrator gain k;(t)
can be captured by a first-order cosine Fourier (periodic) basis function, see Figure As
a result, the number of elements in vector u is reduced to p = 2, and the parametrization of
E;(t) is almost everywhere continuous differentiable.

The PID controller is given by (2.10) and the parametrization of the integrator gain k;(t) is
according to k;(t) = u¥(t), in which the Fourier basis function and the parameter vector are
defined as follows [24]:

1
m , t € [Ta,T]

_ [COS(M)] o el (2.14)

u'=[A 4], (2.15)

where w = 27 f is the angular frequency. The parameters A and § are the amplitude and
offset, respectively.
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In (2.14]) the integrator gain k;(t) is set to zero in the time window [T'4,T] to rule out limit

o
T+ cosfl(z)

that for /A > 1 and §/A < -1 there are no solutions for w and thus also for the control

input force u, ([2.10]).

cycling. To enforce continuity of k;(t), the parameter w is fixed to w =

Example 3: Linear basis functions

In this case, the control input force u, is given by (2.10]), where the parametrization of k;(t)
is given by (2.11) in which the basis function is defined as [29]:

t—(—2)ts , ,
A Wa tel(j—2)ts, (5 — Dts) .
VO(t) = { et e [ — i jts) for j=1,2,..,p, (216
0, otherwise

where ¢, satisfy T' = pts. The corresponding parameter vector u in ([2.11)) is given by:

ol = D @) (2.17)

2.3 Simulation study: Parametrization of time-varying inte-
grator gain

In this section, numerical simulation examples are presented to illustrate the effectiveness of
all the proposed parametrizations of the time-varying integrator gain, as discussed in Section
Consider the single-mass sliding motion system as defined in Section 2.1} which is
subject to a control force u. and a friction force fy . In this simulation study,
two types of Stribeck characteristics are applied to show the robustness of the time-varying
integrator gain k;(t) for different friction characteristics. The velocity-weakening (Stribeck)
effect is given by , where Fs = 0.981 N. The two types of Stribeck characteristic (weak
and strong Stribeck effect, see Figure are defined by the following parameters:

case a) F, = Fg/2, n =20 and o = 0,
case b) F, = Fs/4, 7 =60 and a = 0.5

A repetitive motion profile is considered on the interval [0, T], with T'= 1.5, T, = 0.75 s
and a constant reference r = 0.1 m. The following numerical values are used: z1(0) = 0 m,
x2(0) = 0 m/s, k, = 18 N/m, kg = 2.5 Ns/m and k;(t) is parametrized by a basis function,
and a parameter vector, as given in Section [2.2.2

12



Simulation study: Parametrization of time-varying integrator gain

Friction characteristics
1 T T T T T T T T

case a
0.8

~ case b
0.6 \ )

0.4 1

0.2 4

friction force fy [N]
o

_1 1 1 1 1 1 1 1 1
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

velocity [m/s]

Figure 2.5: Weak (case a) and strong (case b) Stribeck effect.
Simulation 1: Step-like basis functions

For this simulation example of the step-like basis function (2.6)), the parameter vector u is
given by:

o= D @ B @ 6 ) (2.18)

where p = 6 and from T = pt, it can be derived that ¢, = 0.25 s. The parameter uV) is
fixed at the value of 10 N/(ms) and «U) = 0 N/(ms) for all j = 4,...,p. In this simulation
example, the parameters u(? and u(® are chosen as follows:

case a) u(?) = 5 and u(® = 1,
case b) u® = -4 and u® = -8.

The parameters u(?) and u(® are chosen based on the intuition that the optimal time-varying
integrator gain k;(¢) is expected to have decaying shape, as explained in Section Note
that for case b) negatives values of the parameters 1 and u® are chosen, which are needed
to resist the rapid reduction of the friction force due to this kind of severe Stribeck effect.

In Figure the position error e and control force u, with fixed k; = 0 N/(ms), and k; =
10 N/(ms), and time-varying integrator gain k;(t) for both the friction cases are depicted. It
is illustrated in Figure that for a fixed k; = 0 N/(ms), the response results in a nonzero
constant steady-state error and for k; = 10 N/(ms), the response results in overshoot of the
setpoint and subsequently hunting occurs (note that the time window in Figure is too
short to observe the limit cycle). So, on the one hand, k; = 0 N/(ms)(PD control), and
on the other hand k; = 10 N/(ms) both results in limited setpoint accuracy and transient
performance. When a time-varying integrator gain k;(t) is applied, the system performance
can be improved; the setpoint accuracy and transient performance are significantly enhanced
for both the friction cases compared to the classical P(I)D control, as depicted in Figure

13



Simulation study: Parametrization of time-varying integrator gain

Parametrization of k;(t) using step-like basis function

case a case b
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Figure 2.6: Position error e, control force u. and step-like basis function parametrization of
the time-varying integrator gain k;(t) (2.12)).

Simulation 2: Fourier basis functions

A numerical example is presented to validate if the Fourier basis function parametrization
of ki(t) (2.14) improve the desired system performance. For this simulation example, the
parameters A and ¢ in the parameter vector ([2.15)) are chosen as follows:

case a) A =>5and § =5,
case b) A =8 and 0 = 2.

It can be seen from Figure that when a time-varying integrator gain k;(¢) is parametrized
as a Fourier basis function, the desired performance is improved; the position error at the
setpoint has decreased significantly and transient performance is improved for both the
friction cases, compared to k; = 0 N/(ms) and k; = 10 N/(ms). To have a more clarified
figure, the results of fixed k; = 0 N/(ms) for case b), and k; = 10 N/(ms) for case b) are
omitted in Figure but these results are already depicted in Figure [2.6
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0 Parametrization of k;(t) using fourier basis function
1 = T T

0, case a ki(t), case a
10, case a ki(t), case b |

ki =
= 0.08F — ki =

0.06 F \ .
0.04} .

0.02 B

position error e [m

sl N ]

05 B

control force u, [N]

-0.5 . .

time [s]

10

time [s]

Figure 2.7: Position error e, control force u. and Fourier basis function parametrization of
the time-varying integrator gain k;(t) (2.14).

Simulation 3: Linear basis functions

The effectiveness of the linear basis function parametrization for k;(t) is also validated
by a numerical simulation example. In this simulation example, the number of elements in
u is p = 6, resulting in t, = 0.25 s. The parameter u(!) is fixed at the value of 10 N/(ms)
and u() =0 N/(ms) for all j =4,...,p. The parameters 1@ and u® are chosen as follows:

case a) u? = 7 and u®® = 2,
case b) u(? = 2 and u® = -8.

Between the parameters u(1) and ©(?); and between the parameters v(2) and u®); and between
the parameters u® and u® a linear interpolation polynomial function is used, which is given

by (Z10).
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Simulation study: Parametrization of time-varying integrator gain

For the linear basis function parametrization of k;(t) the same conclusions can be drawn as
from the simulation examples of the Fourier and linear basis functions parametrizations of
ki(t). It can be seen from Figure that with this linear basis function parametrization
of the time-varying integrator gain k;(¢) the setpoint accuracy is significantly improved and
overshoot/undershoot (transient performance) is minimized with respect to both the friction
cases, compared to k; = 0 N/(ms) and k; = 10 N/(ms).

0 Parametrization of k;(t) using linear basis function
1 T T

0, case a ki(t), case a

ki =0,
ki = 10, case a k;i(t), case b

"= 0.08 - —_—
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Figure 2.8: Position error e, control force u. and linear basis function parametrization of the
time-varying integrator gain k;(t) (2.16)).
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Discussion

2.4 Discussion

In Section [2-3]it has been shown that for all the three proposed basis functions parametriza-
tions of the time-varying integrator k;(t), both the setpoint accuracy and transient response
can be improved. The integrator gain is set to zero at the setpoint, which prevents build up
of the control force. As such, the system cannot escape the stick phase (ruling out limit cy-
cling), and provide robustness against force disturbances. So, the design of the time-varying
integrator gain k;(t) is a good approach to achieve the setpoint control goal as defined in
Section [I.3] Nevertheless, some of these basis function parametrizations have some disad-
vantages, which makes them less suitable to use in practice.

For example, a disadvantage of the step-like basis function parametrization of k;(t) is that
there are jumps (discontinuity) in the time-varying integrator gain and thus in the control
force u.. Due to these jumps in the control force u., higher-order motion system dynamics
can be excited ,, which may cause, e.g., instability of the closed-loop system, or the
machinery can be damaged as well.

The major disadvantage of the Fourier basis function parametrization of the time-varying
integrator gain is that the two parameters A and § are strongly dependent on each other.
A small change in A (in the wrong direction), can deteriorate the performance, or § has to
change accordingly to compensate for the change in A, to still achieve optimal performance.
Another disadvantage is, there are constraints on the parameters A and 40, §/A < 1 and
d/A > -1, which makes the optimization problem more complex. One way to solve this
constrained optimization problem is by using the gradient projection method . If the
solution is not in the feasible set, then the gradient projection method ”projects” it onto
the feasible set. The idea of the gradient projection method is explained in Appendix
Moreover, due to these constraints, not all realisations of the parameter vector u are possible.
An advantage of the Fourier basis function parametrization of the time-varying integrator
gain is that it is almost everywhere continuous differentiable.

The linear basis function parametrization of k;(¢) has many advantages which satisfy the
requirements:

(i) The control force u, ([2.10)) is continuous (smooth), which prevents higher-order motion
system dynamics to be excited unnecessarily,

(ii) No strong dependency and no constraints between the parameters in the parameter
vector u. So, the linear basis function parametrization offers more flexibility in the
shape of the parameter vector u.

Therefore, for the remainder of the thesis, the PID controller, in which k;(¢) is parametrized
as a linear basis function is employed.

To obtain optimal performance (setpoint accuracy and transient response), the parameter
vector u has to be designed optimally. Due to the fact that friction is generally unknown or
uncertain, the optimal realisation of the parameter vector u is typically unknown and, there-
fore, difficult to tune. In Chapter [3] a model-free sampled-data extremum seeking control
framework is discussed, which enables data-driven performance optimization by adaptively
tuning v and therefore, the optimal vector u can be found.
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CHAPTER

Extremum seeking control for transient
performance optimization

In this chapter, the sampled-data extremum seeking control (ESC) framework in an iterative
learning context is presented. Furthermore, its working principles are illustrated by means
of a simulation study in which the sampled-data ESC framework is applied to optimally
tune the time-varying integrator gain design for improved setpoint positioning in frictional
motion systems.

3.1 Sampled-data extremum seeking control for transient per-
formance optimization

3.1.1 Background on extremum seeking control

Extremum seeking control is a data-driven and model-free control technique, which is em-
ployed to locate an optimal operating regime of an unknown steady-state input-output map
of general nonlinear systems in real-time ,. Extremum seeking control assumes the
existence of a steady-state input-output relation (input-output performance map) between
the tunable input and the measured steady-state output . In literature, there are two
main types of extremum seeking methods. The first type is continuous-time extremum seek-
ing, which uses periodic excitation signals to explore the local behaviour of the dynamical
system to be optimized, and continuously steers the system’s input to one that results in
optimal steady-state performance ,. The second type is sampled-data extremum seek-
ing, which can be classified as an online extension of classical nonlinear programming (NLP)
problem of function minimization within a periodic sampled-data framework . Given an
objective function @ : R™ — R, the goal is to find one input v* € R™ (optimal point) such
that Q(u*) is minimal. In extremum seeking control, the objective function is not given
analytically but information on its value (and the values of its derivatives) at any selected u
is only obtained experimentally by probing the system, which is called the evaluator of the
objective function ) . Within extremum seeking the gradient of the objective function
Q is typically estimated based on the measured data, which is subsequently used to steer
the input to the optimal input that minimizes the objective function (), thereby achieving
optimal steady-state performance.

Extremum seeking control can be used when: the plant/disturbances are unknown, per-

formance depends on tunable system parameters/measurable output, and it is desired to
optimize steady-state performance. The classical extremum seeking control is meant to op-
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timize the steady-state performance, as described in . In this project, it is desired to
optimize the transient performance, i.e., minimize the tracking error over the time period of
the setpoint, by adaptively tuning a time-varying integrator gain using extremum seeking
control. The difference with the classical extremum seeking control is that now for each new
input the system does not have to wait to settle down (reach steady-state) before taking the
output measurements that reflect steady-state performance.

There are several reasons to consider sampled-data ESC method instead of continuous-time
ESC method. Sampled-data ESC:

1. covers a larger class of optimization methods, for example, it is able to apply global
optimization algorithms. Therefore, it can deal with non-differentiable (nonsmooth)
and nonconvex input-output mappings that depend on many input parameters in a

highly coupled manner ;
2. can deal with nonsmooth (infinite-dimensional) dynamical systems [51}[53].

3. is a discrete optimization framework. For the proposed time-varying integrator gain,
the controller is updated after each trial to find the optimal parameter vector u, which
is a discrete operation. Therefore, the sampled-data ESC is particularly suitable to
find the optimal settings of u.

Therefore, in this project the main focus lies on performance optimization using a sampled-
data extremum seeking control approach.

3.1.2 Sampled-data extremum seeking control framework

In this section, an iterative learning algorithm is proposed, which enables data-driven per-
formance performance optimization by adaptively tuning u. The setpoint control problem is
formulated as a model-free sampled-data ESC optimization problem by using the linear basis
functions parametrization of the time-varying integrator gain k;(¢) in [23l[47]. Based
on the cascade connection of the PID-controlled motion system given by (, and
[24)), with the linear basis function parametrization of k;(t) by (2.16), and the objective
function J(e) in , the unknown input-output mapping is defined as follows:

Ta T
Q(u):J(e):wl/O |e(7')|2d7-+w2/ le(T)| dr. (3.1)

Ty

Note that the realized error profile for e depends on the parameters u of k;(t).

j Q!
u | | User-defined ki N PIDt—contrtl))Illedt e_ !
"1 basis functions i em_SLf lec "] 1
| to friction I
-_—— - o __ 7
A
ZOH Sampler
u(t) = wy, 7z, = z(kT)
tefkr,k+vyry

r 3 I I I

Uk-1 | Optimization | _ Derivative | Zk
| algorithm - estimator h |
|

I Extremum Seeking Algorithm };

Figure 3.1: Sampled-data ESC framework.
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Using output measurements, extremum seeking is able to adaptively find the optimal pa-
rameter vector v that minimizes the objective function . In Figure a sampled-data
extremum seeking framework is depicted in which the PID-controlled system subject to fric-
tion is given by , and . In this framework a Sampler, Zero-Order Hold and an
Extremum Seeking Algorithm Y is employed. The sampler samples the continuous output
signal of the motion system such that it can be employed as an input for the sampled-data
extremum seeking algorithm »_. The sampling operation is given as follows :

zi = z(kT) forall k=1,2,..., (3.2)

where 2z = Q(uk—_1) are the output measurements.

The ZOH is used to transform the sampled-based output of the sampled-data extremum
seeking algorithm ) to a continuous signal such that it can be used as an input for the
motion system. The zero-order hold (ZOH) operation is defined as follows [47]:

u(t) == uy forall t € KT, (k+ 1)T7, (3.3)

with £ = 0,1,2,..., and u(t) the input signal, with 7" > 0 is the sampling period. Note that
T is the sampling period of the extremum-seeking controller (not the motion system), which
can be chosen the same as the period time of the repetitive motion profile. In the next
section, the design of the extremum seeking controller is discussed.

3.1.3 Extremum seeking controller design

In the literature, many optimization algorithms ) are presented within the sampled-data
ESC framework that solves the optimization problem of finding the minimum of Q(u):

zF = muin Q(u). (3.4)

The extremum seeking algorithm ) consists of an optimization algorithm and a derivative
estimator. In this thesis, the steepest descent optimization algorithm is employed to

optimize the vector w in ([2.17)):
ug = ug—1 — YVQ(up—1), (3.5)

where v is a fixed optimizer gain. The optimizer gain v determines how fast the extremum
seeking learning controller reaches the optimal value. A large value for the optimizer gain
results in that the extremum seeking learning controller reaches an optimum value faster
(convergence). However, when close to an optimum value, a large value of the optimizer
gain results in overshooting the optimal value. When the same optimizer gain ~ is chosen,
this would result in that for some cases the system converges to the optimal value, and for
other cases, it overshoots the optimal value and oscillate without ever converging. So, there
is a trade-off between region of attraction (accuracy) and convergence rate.

In general, the gradient VQ(ug_1) is not available, since the objective function @ is not
analytically known. It is only possible to perform measurements to estimate the objective
function @ and its derivative. Using these measurements and specific input signals, the
gradient of ) can be estimated based on finite-differences :

Qup_1 +7d1) — Q(ug_1)
VQ(ur—1) = - : with j =1,..., po, (3.6)
Qug—1 + 7d;) — Q(ug—1)

derivative estimator

20



Sampled-data extremum seeking control for transient performance optimization

where 7 is the step (dither) size of the derivative estimator (a real number), k denotes the
iteration index , p, denotes the number of parameters in the parameter vector u that are
dithered to determine one entry of , and d; are vectors (dither sequence) with jth ele-
ment equal to one and all others equal to zero. The dither size 7 determines the size of the
fluctuation around the optimal value. Increasing the dither size 7 would increase the size of
fluctuation around the optimal value, resulting in deteriorating the accuracy. The parameter
P, is defined as the number of elements in the parameter vector u that have to be optimized.
The vectors 7d; are called dither (perturbation) signals, which needs to be applied in a
sequential order. The purpose of the perturbation signal is to provide sufficient excitation
to accurately estimate the gradient of the objective function (). The dither sequence and
the gradient descent method can be combined in an extremum seeking algorithm to
estimate the gradient of the objective function @ ({3.6]).

The extremum seeking algorithm is defined as follows :

e — {ukn + 7dy, if n 7 0 for all k =1,2,..., (3.7)

Uk—(po+1) — VVQ(ukf(p(rkl)) ifn=0"

where n = mod(k,p, + 1) € N. Hence, for n = 0, the parameter vector u is updated, while
for n # 0 the input is excited by dither in order to estimate the gradient. The gradient

VQ(ug_(p,+1)) in (3.7) is given by:

) Q(ug—p,) — Q(Up—(p,+1))
VQ(Up—(py41)) = - : ; (3.8)
Q(uk—1) — Q(Uk—(po+1))

The working principle of the learning algorithm in (3.7)) and (3.8)) is as follows:
1. First, the system is probed with an input u;_; (base experiment).

2. The next step is to probe the system with an input ug_1 + 7d; (perturbation of the
first parameter in vector u), then with an input ug_1 +7ds (perturbation of the second
parameter in vector u), etc.

3. After collecting the output measurements of all the inputs, a new input u (controller
update) can be computed using the extremum seeking algorithm and , that
brings the input closer to the one that minimizes the objective function. These steps
are repeated, until the extremum is obtained.

In the next section, the extremum seeking learning algorithm, given by and ,
and the sampled-data ESC framework are employed, to find the optimal settings of the
parameters (2 and «® in and where k;(t) is parametrized by linear basis function
. Moreover, the effectiveness of the extremum seeking learning algorithm is illustrated
by means of a simulation study.
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3.2 Simulation study: Optimal tuning of a time-varying inte-
grator gain for motion systems with friction

3.2.1 Input-output mapping

In Section 2.3] it has been demonstrated that the proposed linear basis function parametriza-
tion of the time-varying integrator gain improves the desired performance. To obtain optimal
performance (setpoint accuracy and transient response), the optimal settings of the param-
eters u? and u® in have to be obtained by solving .

There are many optimization algorithms that can solve the optimization problem of finding
the minimum of Q(u) (3.4). The unknown input-output mapping Q(u) is visualized
to determine which optimization algorithm suffices to solve the optimization problem. If
Q(u) has only one global optimum, or finding a local optimum is sufficient, the classical
gradient descent method or Newton method can be used . If Q(u) has multiple
optima (local and global), then global optimization methods (e.g. DIRECT and Shubert)
can be used , to find the global optimum. Moreover, an advantage of visualizing the
input-output mapping @Q(u) is that the initial parameter vector u can be chosen close to
the optimum, which results in faster convergence. Another benefit of visualizing the input-
output mapping Q(u) is to evaluate the extremum seeking learning control results.

In Section the free 'tunable’ number of elements p, for the proposed linear basis func-
tion parametrization of the time-varying integrator k;(t) is chosen as 2. If the number
of parameters p, increase, the vector u becomes larger, which makes the controller more
complex and may required significantly more experiments to obtain optimal performance.
Another major disadvantage of choosing more number of elements p, to be optimized, is
that the optimization problem (input-output mapping) becomes less intuitive. In general,
it is more difficult to gain insight in the optimization problem through visualization for an
increasing amount of parameters. For instance, if the number of elements p, = 15, this
results in an optimization problem with 15 inputs and 1 output. As a result, 1) the optimal
settings cannot be visualized, and 2) it is unknown if the obtained optimum is a local one, or
a global one. Moreover, it becomes more difficult to decide on which optimization algorithm
is best to use for this optimization problem.

The input-output mapping Q(u) of the linear basis function parametrization of the time-
varying integrator k;(t) is visualized for both friction characteristics in Figures and
below. The number of elements that have to be optimized is chosen as p, = 2 and the
unknown input-output mapping Q(u) is given by . For the input-output mapping Q(u)
in Figures and the following conditions are used k, = 18 N/m, kq = 2.5 Ns/m, w;
=107 wy =1, 21(0) = 0m, 22(0) = 0m/s, T = 1.58, Ty = 0.75 s and r = 0.1 m. The
weight wy is chosen low, because obtaining optimal setpoint accuracy is more of interest,
compared to transient performance (minimized overshoot). In the extremum seeking liter-
ature it is a common requirement that the input-output mapping Q(u) is independent of
initial conditions . However, in this project, the transient behaviour is partly dependent
on the initial conditions. Therefore, to have an uniquely defined input-output mapping Q(u),
the states x1 and xo have to be re-initialized after every setpoint operation. In practice, an
automatic hooming procedure is employed to reset the system.

22



Simulation study: Optimal tuning of a time-varying integrator gain for motion systems with friction
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Figure 3.2: Contour plot of the input-output mapping (3.1)) for the linear basis function
parametrization of k;(t) with respect to friction case a).
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Figure 3.3: Contour plot of the input-output mapping (3.1)) for the linear basis function
parametrization of k;(t) with respect to friction case b).
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To improve the visualization of the input-output mapping Q(u), the cost J(e) in Figures
and is saturated. All values of Q(u) that are larger than or equal to 10~° m?s are set
to 107° m?s. Furthermore, the lowest cost J,;y is indicated by a red asterisk marker in both
Figures and In Figures and the contour plots of the input-output mapping
are depicted for the linear basis function parametrization of k;(t) regarding both friction
characteristics. It can be seen from Figures andthat there exists a set of optima (dark
blue area). The desired performance is achieved, as long as the optimal settings of the param-
eters u? and u(® are attained in the set of optima (dark blue area in Figures and .
The optimization problem at hand is nonconvex because there are combinations of points in
the optimal area (dark blue area) for which the line segment between the points lies outside
the optimal area. The classical gradient descent optimization algorithm can be used
to solve the optimization problem at hand (finding a local optimum is sufficient). Note that
there are small differences in the values of the cost J(e) in the optimal area (dark blue area in
Figures and, which are not visible due to the chosen saturation of the cost J(e) ([2.8).

The classical gradient descent optimization algorithm only finds local optima. There-
fore, the resulting k;(¢) (optimal settings of the parameters u(?) and u(%)), as determined by
the ESC learning algorithm, depends on the initialization of the time-varying integrator gain
k;i(t). From Figures|3.2]and [3.3]it can be observed that for a different friction case (Stribeck
effect) the input-output mapping Q(u) looks different. As a result, the extremum seeking
controller converges to different optimal settings of the parameters u(®) and u(®).

Remark 1. In this section, only the input-output mappings of the linear basis function
parametrization of k;(t) are visualized. The input-output mappings of both the step-like
and Fourier basis function parametrizations of k;(t) are presented in Appendix

3.2.2 Application to the time-varying learning integrator gain

In this section, the sampled-data extremum seeking control framework is applied on the
single sliding mass motion system as described in Section to find the optimal settings
of the parameters u® and «(® in the parameter vector u. The extremum seeking
learning controller adaptively optimize the parameters (2 and «(® in the parameter vector
u , resulting in a optimized k;(t) parametrized by linear basis functions, which achieves
the desired performance (setpoint accuracy and transient response). The objective function
is given by ([2.8) and the step size of the gradient estimator in the extremum seeking learning
algorithm is chosen as 7 = 10~%. Furthermore, the adopted optimizer gain v and the
initial parameter vector wug for all the parametrizations of k;(t) are given in Table

Table 3.1: The optimization gain ~, the initial parameter vector ug, the error at T4 and the
iteration index k.

07 ud er, [m] k (experiments)
Basis function | case a) and b) | case a) and b) case a) case b) case a) | case b)
Step-like 350000 W@ u®] =172 |85-10710 | 1.7-1071° [ 9 (27) |11 (33)
Fourier 15000 [A 5] = [8 2] 8.4-1071 | 6.1-10710 | 22 (66) | 90 (270)
Linear 100000 w® u®)=1[72] | 1.7-10710 [ 27-10710 [ 8(24) |9 (27)
ki =0 N.A N.A 9.3-107° | —6.7-107% | N.A N.A
k; =10 N.A N.A —14-1072 | =2.7-10°? | N.A N.A
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Remark 2. The aim is to control the system towards a setpoint with a desired accuracy egpec
= 1077, In this section, it is said that convergence is achieved (the objective function
is effectively minimized), when egpe. = 107 m is attained. Moreover, the parameter €T,
is defined as the error at time instant 7’4 where the system is required to arrive at the setpoint.

The setpoint error (er,) at the time ¢t = T4 of the linear basis parametrization of k;(t) for
both the cases are shown in Table and in the setpoint error plot of Figures and
It is illustrated in Table and in Figures that optimal transient response (no
overshoot) and optimal setpoint accuracy with respect to both friction characteristics are
achieved by the learning controller. It can be seen from Figures[3.4 and 3.7 compared to the
first iteration, the setpoint accuracy at the iteration where convergence is reached (see Table
, is approximately by a factor 10° (on average) improved. Compared to a fixed k; = 0
N/(ms) or k; = 10 N/(ms), the setpoint accuracy with the learning k;(¢) is approximately
by a factor 107 and 10® improved, respectively, see Table for the exact values. Note that
the setpoint accuracy (er,) as given in Table holds for the time window [T4, T]. In the
k;(t) plot of Figures[3.4and 3.6} it is depicted that in the time window [T'4, T, k;(t) is set to
zero. Due to a zero k;(t), build up of the control force is avoided, resulting in that the system
cannot escape the stick phase (u. < Fy), which eliminates limit cycling and robustness to
force disturbances is obtained. When looking at the shape of the obtained k;(t), it matches
the engineering intuition (decaying shape) as described in Section m

Linear basis function parametrization for friction case a
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Figure 3.4: The displacement x1, control force u. and time-varying integrator gain k;(t), for
the linear basis function parametrization of k;(¢) with respect to friction case a).
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Linear basis function parametrization for friction case a
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Figure 3.5: The absolute error |e| and the objective function J, for the linear step-like basis
function parametrization of k;(t) with respect to friction case a).

Linear basis function parametrization for friction case b
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Figure 3.6: The displacement x7, control force u. and time-varying integrator gain k;(t), for
the linear basis function parametrization of k;(¢) with respect to friction case b).
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Linear basis function parametrization for friction case b
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Figure 3.7: The absolute error |e| and the objective function J, for the linear basis function
parametrization of k;(¢) with respect to friction case b).

Table and the objective function plot of Figures and show that for friction case
a), after eight controller updates, and for friction case b), after nine controller updates the
objective function is effectively minimized. The evolution of k;(t), parametrized as a
linear basis function, during the iterative process of the learning controller is illustrated in
the k;(t) plot of Figures and with respect to both friction cases. Considering Figure
3.6 it can be observed that the time-varying integrator gain k;(t) takes negative values to
achieve the optimal performance by the sampled-data ESC framework. From a classical
PID-feedback control point-of-view for linear systems (when Fs = 0), a negative constant
integrator gain would almost always yields unstable closed-loop behaviour, see Assumption
1. For frictional motion systems with Stribeck effect, a negative time-varying integrator gain
E;(t) is needed (temporarily) to counteract the rapid reduction of the friction force due to
a severe Stribeck effect. From the displacement time response plot in Figures [3.6] it can be
seen that no unstable behaviour occurs. It is also remarkable, that a small change in the
obtained optimal settings of the parameters u(?) and u(®), results in a significantly increase
of the setpoint accuracy, see the zoomed-in k;(t) plot in Figures

In the input-output mappings Q(u) (Figures[3.2/and[3.3) in Section [3.2.1} the evolution of the
optimized parameters u(?) and u®) by the learning controller, for different initial parameter

vector ug are depicted (the magenta colored lines, labelled as 'ESC’). It is demonstrated,
that for several initial conditions of the parameter vector u, the optimal u is obtained in the
set of optima (dark blue area in Figures and , with respect to both friction cases. So,
the classical gradient descent method seems a suitable optimization algorithm to solve
the optimization problem of finding the minimum of Q(u). The classical gradient descent
algorithm only finds local optima, therefore, the resulting optimal settings depends on the
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chosen values for parameters 7 and - and on the initialization of the integrator gain (the
initial parameter vector ug). Moreover, the extremum seeking algorithm converges to a point
(optimal settings of the parameters u(?) and u(®)) other than the global minimum. There
are two possible causes for this. The first possibility is that a local minimum is found, which
can occur for a non-convex optimization problem. The second possibility is that the cost
J(e) at a point other than the global minimum is below the threshold value (tolerance)
of the time-stepping solver, preventing further convergence to the global minimum. Note
that for the initial parameter vector ug of the optimized parameters as given in Table
the time response results of the extremum seeking controller are shown in Figures [3.4]
Regarding other initial parameter vector ug only the evolution of the optimized parameters
are illustrated in the input-output mappings of Figures and

Remark 3. In this section, only the results of the linear basis function parametrization of
ki(t) are discussed. The results of the step-like and Fourier basis function parametrizations
of k;(t) are discussed in Appendix [A.3] The conclusions drawn in this section for the linear
basis function parametrization of k;(¢) also hold for both the step-like and Fourier basis
function parametrizations of k;(t).

3.3 Discussion

The sampled-data extremum seeking control framework is employed to adaptively tune the
input u and, therefore, construct the optimal realisation of the parameter vector u (param-
eters u@ and u(3)) that minimizes the objective function. The input-output mapping is
visualized with respect to both friction cases. The simulations results of the input-output
mapping show that there is a set of optima (optimal area), which results in optimal setpoint
accuracy. It is illustrated that for various initial conditions of the parameter vector u, the
obtained optimal u (parameters u? and u(3)) by the classical gradient descent method is
attained in the set of optima (optimal area), with respect to both the friction cases. There-
fore, it is concluded that the classical gradient descent method is a suitable optimization
algorithm to solve the nonconvex optimization problem at hand. Furthermore, the obtained
optimal settings of the parameters 1@ and u® by the extremum seeking learning controller
depends on the initial parameter vector. As a result, the extremum seeking learning con-
troller converges to different optimal settings of the paramters u(? and u® for different
initial parameter vectors.

Moreover, application of the PID-based learning controller on the single-sliding mass motion
system using ESC achieves, both optimal setpoint accuracy and optimal transient response
with respect to both Stribeck effect cases. In case of a strong Stribeck effect, negative optimal
settings of the parameter vector u are obtained by the sampled-data ESC framework to obtain
optimal performance. Typically, a negative constant integrator gain would almost always
result in an unstable closed-loop behaviour from a conventional PID-feedback control point-
of-view for linear systems. However, for nonlinear systems a negative time-varying integrator
gain is needed to counteract the rapid reduction of the friction force due to a severe Stribeck
effect.
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CHAPTER

PID-based control of an industrial
nano-positioning motion stage

In this chapter, the working principle and the effectiveness of the proposed learning controller
are demonstrated through various experiments on an industrial nano-positioning stage. The
nano-positioning stage is employed as an experimental setup, which is representative for the
R.-rotation of a sample manipulation stage of an electron microscope.

4.1 Experimental setup

4.1.1 System description

The experimental setup (schematically) depicted in Figures and is an industrial
high-precision positioning stage which represents a sample manipulation stage of an elec-
tron microscope . An electron microscope is a type of microscope that uses a beam of
accelerated electrons to illuminate a sample and create a magnified image. The function
of the sample manipulation stage is to position the sample under the electron beam. This
high-precision stage can provide movement in 5 degrees of freedom (DOF), which are the
three translations (z, y, z) and two rotations (R, Ry). The four DOF (z, y, z and R,) are
considered frictionless. However, the rotation R, suffers from significant friction, limiting
the achievable system performance.

T

Figure 4.1: The nano-positioning motion stage experimental setup.

29




Experimental setup

Heidenh‘ain encoder

P DC L’[Otor Spring  Spindle Pie‘zo
— ‘\ Bearings - |
| ; eann@\ﬁ \ N‘ut LI_I_IJ Cartiava
) J < [ ] . =
7 \ ' g x| "
\ \“ |—
\ Frov | | [Fre2  Frow O L oM
Rotary encoder ,‘ } -
/ A ) 5
Cliplivi e . Renishaw encoder

Figure 4.2: Schematic view of the nano-positioning motion stage experimental setup .

The nano-positioning motion stage is depicted in Figure [£.1] The experimental setup con-
sists of a DC servo motor @, which is connected to a spindle @, by a coupling @

The coupling drives a nut @, converting the rotary motion of the spindle to a translational

motion of the attached carriage @ The coupling is stiff in the rotational direction, but
flexible in the translational direction. The position of the carriage is measured by a linear
Renishaw encoder @ with a resolution of 1 nm and peak noise level of 4 nm. To eliminate
any backlash between the spindle and the nut, the carriage is connected to the fixed world
frame via a coiled spring @

The experimental setup suffers from frictional effects, induced by different sources of friction,
such as the bearings Fyj; and Fypo supporting the motor axis and the spindle, as depicted
in Figure @ Friction is also induced by the contact between the spindle and the nut F .,
as illustrated in Figure The friction FY p,; is a lubricated contact, which caused the
Stribeck effect. Therefore, the friction F'f,,; contributes dominantly to the total friction
force in compared to the other friction sources [1].

The frictional nano-positioning motion stage is hard to control accurately towards a setpoint,
due to the fact that friction is generally unknown or uncertain. Classical PID has severe
performance limitations such as limited setpoint accuracy, or stick-slip behaviour. Therefore,
the proposed PID-based learning controller, described in Section [3.1} is implemented on the
nano-positioning motion stage to investigate the achievable performance benefits in practice,
in terms of setpoint accuracy and transient response. The motion profile is designed such that
the setup follows a third-order reference trajectory to the setpoint, which is a displacement
of 1 pm. The prescribed velocity to reach this setpoint is 0.1 m/s. The period time 7" of the
motion profile is set to 3 s and T} is 1.5 s.

The goal is to control the system towards a desired setpoint within an accuracy of + 10 nm
in the time window [T4 T (at the setpoint).

4.1.2 Classical PD vs PID-control experiment

To illustrate the performance limitations of using a conventional P(I)D controller, experi-
ments are performed on the nano-positioning motion stage experimental setup, employing a
classical P(I)D controller given by . The PID controller gains are set to k, = 107 N/m
, k¢ = 2103 Ns/m and k; = 10® N/(ms) [1]. These PID controller gains are obtained by
linear loop-shaping techniques and satisfy the linear stability criterion, see Assumption 1.
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Figure 4.3: Measured time responses using classical P(I)D controller.

Figure [£.3] shows that, when using a PD controller, the system stays in stick. This is a result
of not enough control force having built up to overcome the static friction F;. When using
a PID controller with a constant integrator gain, limit cycling occurs due to the presence
of Stribeck friction. Hence, the performance limitations of a classical P(I)D are also visible
on the experimental setup. To cope with these performance limitations the proposed PID
controller with a time-varying integrator gain is implemented on the nano-positioning motion
stage experimental setup in the next section.

4.2 PID-based control design

4.2.1 Control design

The working principle and the effectiveness of the PID controller with a time-varying
integrator gain k;(t) is demonstrated through an experiment on the nano-positioning motion
stage experimental setup. The time-varying integrator gain k;(t) is parametrized by linear
basis functions and the parameter vector u is given by . The adopted motion
profile is defined in Section The number of elements p in the parameter vector u equals

6, therefore, t; = — = 0.5 s. The proportional gain k, and the derivative gain k; are set at
p

k, = 107 N/m and kq = 2-10% Ns/m. The parameter u(!) in the parameter vector u is fixed
at 10% N/(ms) and ul9) = 0 for all j = 4,...,p. In this experiment, the parameters u(?) and
u®) have the values 8-107 N/(ms) and 7-107 N/(ms), respectively. Note that this experiment
is performed without the application of the extremum seeking learning algorithm.
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Figure 4.4: PID controller with a time-varying integrator gain.

Figure[£.4shows that the PID controller with the time-varying integrator gain design, results
in significantly improved setpoint accuracy, enhanced transient performance and elimination
of limit cycling. So, the proposed k;(t) design is also effective on the nano-positioning motion
stage experimental setup. However, the setpoint accuracy that is achieved with these settings
of the parameters u(? and u®) is approximately 85 nm, which is not the desired setpoint
accuracy of = 10 nm in the time window [T4 7. So, in order to achieve 1) optimal setpoint
accuracy, and 2) optimal transient response by minimizing overshoot, the unknown optimal
setting of the parameters u(® and u(® have to be found. The optimal settings for u(?
and u® can be adaptively find by the proposed learning algorithm, described in Section
In Section the extremum seeking learning PID controller is employed and results
of the PID controller with the application of the extremum seeking learning algorithm are
demonstrated.

4.2.2 Input-output mapping

In order to perform appropriate experiments on the experimental setup using the learning
controller, first, the optimization problem is analyzed by visualizing the unknown experimen-
tal input-output mapping. The experimental input-output mapping is given by . It is
desirable to visualize the input-output mapping using the time-varying integrator gain
design on the experimental setup to determine which optimization algorithm can be used
to solve the optimization problem of finding the minimum of Q(u). Furthermore, the initial
parameter vector ug (parameters u? and u(3)) can be chosen more accurately (close to the
optimum), which results in faster convergence of the extremum seeking controller. Another
benefit of visualizing the input-output mapping is to support the analysis of the results of
the extremum seeking learning controller.
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The input-output mapping Q(u) of the experimental setup, for the proposed linear basis
function parametrization of the time-varying integrator k;(¢), is visualized in Figures and
m The number of elements that have to be optimized is chosen as p, = 2 (same as in the
simulation study). The weights of the objective function are chosen as w; = 0 and ws
= 1. The weight w; is set to zero, because obtaining optimal setpoint accuracy is more of
interest, compared to transient performance (minimized overshoot). For the input-output
mapping in Figures and the numerical values from Section and the motion
profile as defined in Section [I.I.1] are adopted. In the input-output mapping experiment,
measurements are performed for multiple combinations of the parameters «(® and u® in
the linear basis parametrization of the time-varying integrator gain k;(¢) given by .

The measured combinations of the parameters u(? and u(® are depicted by red squares in
Figure Moreover, to improve the visualization of the input-output mapping Q(u) in
Figure the cost J(e) in Figure is saturated. All values of the cost J(e) (2.8)
that are larger than or equal to 1.5- 10719 m?s correspond to the yellow color. Furthermore,
the lowest cost J,,i, is indicated by a cyan asterisk marker in both Figures and It
is demonstrated in Figure that a high integrator gain action (e.g., u® = u® = 10%)
and a low integrator gain action (e.g., u?@ =B = 0) both result in significant overshoot
and undershoot, respectively. In Figure [I.7] the designs of a high and low time-varying
integrator gain action are illustrated. The purpose to consider these two cases is that between
the settings of the high and low integrator gain there are cases (settings of the parameters
u® and u®), which achieve the desired setpoint accuracy. From Figure it can be
observed that between the high and low integrator gain settings there exist a set of optima
(combinations u(?) and u(®) which results in appropriate setpoint accuracy).

o’ Experimental input-output mapping, J,,;, = 2.69e-14 «10°8

---------- =i - —

0 2 4 6 8 10 12
u® [] %107

Figure 4.5: Contour plot of the input-output mapping.
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Figure 4.6: Saturated contour plot of the experimental input-output mapping.

From Figure it is concluded that mainly combinations of a high u(?) (10%) and a lower
u®) (~ < 9-107) result in good performance (appropriate setpoint accuracy), satisfying the
intuition of the (decreasing) time-varying integrator gain k;(t). Intuitively, a high «(® (i.e.,
10%) is desired to overcome the static friction Fy and a lower u(®) (= < 9- 107) is needed
to avoid overcompensation of friction. It can also be seen that a very high u® (~ > 10%),
independently of the value of u® results in significant overshoot (bad performance).

From the input-output mapping in Figure [4.6] it can be observed that the optimization
problem at hand is nonconvex because there exist combinations of points (optima) in the
optimal area (dark blue area in Figure for which the line segment between the points
lies outside the optimal area. Moreover, for 6- 107 < @ < 8 107 and 6- 107 < u® <
8- 107 there exist multiple regions of optima, both local optima and global optimum. In
general, the classical gradient descent optimization algorithm is not suitable to solve a
nonconvex optimization problem (it can only find local optima). Nevertheless, it is presented
in Section that the gradient descent optimization algorithm is sufficient to solve
the optimization problem at hand, and that for several initial values of the parameter vector
u the desired setpoint accuracy is achieved.
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Figure 4.7: Designs of a high (¢ = u(®) = 10%) and low (u® = u(® = 0) k;(2).

4.3 PID-based learning control design

4.3.1 Extremum seeking control design

In Section [£.2.1] it has been demonstrated that application of the PID controller where
ki(t) is parametrized by linear basis functions parametrization on the experimental setup
results in significantly improved setpoint accuracy and transient performance. However,
the desired setpoint accuracy is not achieved due to the fact that the optimal settings of
the parameters u® and u(® are unknown. Therefore, in this section, the PID controller
where k;(t) is parametrized by linear basis functions is extended with the proposed learning
algorithm presented in Section [3.1] The PID-based learning controller adaptively optimizes
the parameters «(® and (3 in the parameter vector u, resulting in an optimized k;(¢) which
achieves optimal setpoint accuracy. The adopted numerical values of the PID controller and
the time-varying integrator gain design are given in Section Recall that the weighting
factors of the objective function are set at w; = 0 and wo = 1. The weight w; is set to
zero, because, at first, the focus lies more on optimal setpoint accuracy and less on transient
performance. The adopted motion profile is given in Section At the setpoint, in the
time window [T’y T, the aim is to achieve a setpoint accuracy of £ 10 nm. A requirement
for the extremum seeking control framework is that the system has to be re-initialized after
every setpoint operation which is accomplished by an automatic hooming procedure.

4.3.2 PID-based learning control results

The first extremum seeking learning controller experiment results are depicted in Figures
[4.8 and In this experiment, the step size of the gradient estimator 7 and optimizer gain
have the values 3 - 10% and v = 6.5-10?2, respectively. The initial parameter vector is set
to ud = [u® w®] =0 10%]. Figures and show that application of the extremum
seeking learning controller achieves the desired setpoint accuracy of + 10 nm, and transient
response is improved (despite w; = 0), compared to a classical P(I)D controller.
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The top subplot of Figure shows that for the first iteration (input) the system is in the
stick phase for the first 0.75 s while for other iterations it takes approximately 0.45 s to escape
the stick phase. This difference is caused by the fact that not enough control force is built up
to overcome the static friction Fy (approximately 45 N). It can be seen from the top subplot
of Figure that a combination of a very low u(® and high u(® (first iteration) results in
significant overshoot. This is induced by a larger integrator buffer (state z3), resulting in a
larger integrator force and, therefore, in significant overshoot, compared to the other itera-
tions. It is also visible that the integrator state xg keeps decreasing instead of converging
to a set, which could lead to unstable behaviour. Moreover, it can be concluded from the
control force and time-varying integrator gain plot in Figure the higher parameter u(?),
the faster the system breaks free from the stick phase.

The top subplot in Figure demonstrates that starting from iteration six, the desired
performance is achieved and that the cost J(e) (2.8]) is minimized. The cost J(e) fluctuates
after iteration six. In practice this means that the extremum seeking learning controller is
close to an optimum value, and thus, fluctuations around an optimal value are observed,
caused by the chosen dither size 7 and the optimizer gain . This problem can be solved by
adapting step size 7 and optimizer gain 7 in the learning algorithm. In case the gradient is
(approximately) zero, the extremum seeking learning controller is at an optimum, and the
dither size 7 and « can be adjusted accordingly. As a result, the fluctuations around the
optimal value decrease and convergence takes place.

Moreover, the proposed learning algorithm can be employed for calibration procedures in
industrial applications, or as a continuous online adapting control tool in industrial applica-
tions to deal with unknown friction and time-varying disturbances. In case of a calibration
procedure, the extremum seeking learning algorithm can be stopped when the optimal set-
tings are obtained (the desired performance is achieved). Furthermore, the lower and upper
bound of each error response in the zoomed-in plot of Figure is related to the peak noise
level of the encoder, which is approximately + 4 nm, as given in Section [4.1.1

%1077 Integrator action
= o~ :
£ 0 —ter #1 |
3 iter #4
8 iter #9
wn
g -10 4
=
s
2
& 201 i i ‘ ‘ ‘ J

0 0.5 1 15 2 25 3

time [s]
60
z
g a0t ]
&
=
S
£ 201 ,
<
E
0 |
0 0.5 1 15 2 25 3
time (s
Figure 4.10: Integrator force with initial parameter vector uj = [u® «®]=[0 108].

37



PID-based learning control design

107 Evolution of the parameters v® and u(®
1 0 T T T T T T T

Integrator gain [N/(ms)]
(&)}
T

0 1 1 1 1 1 1 1
2 4 6 8 10 12 14

Number of updates [-]

Figure 4.11: Evolution of the parameters u(?) and u® for v = [u® u®)] =0 109).

«107 Experimental input-output mapping, J,;;, = 2.69e-14 x101

12

114

0 2 4 6 8 10 12
u® [] %107

Figure 4.12: Saturated contour plot of the experimental input-output mapping. The evolu-
tion of k;(t) are depicted for initial parameter vectors ug = [u® u®] =1[0 108] ( )s
ul = w® uw®]=[8-107 10-107] ( ), ud = [u® w®)] =[12-107 10-107] ( )
and vl = [u® u®)] =[8-10" 6-107] ( ).

38



PID-based learning control design

The evolution of k;(t) (the parameters u® and u®) for uf = [u® «®)] = [0 10%] dur-
ing the iterative process of the extremum seeking learning controller is illustrated in Fig-
ures and in the input-output mapping of Figure The obtained optimal set-
tings by the extremum seeking learning PID controller for u} = [u® u®)] = [0 10%] are
uly, = [w® u®] = [7.57-107 7.63-107). Figure shows that the obtained optimal
settings of the extremum seeking learning controller are in the set of optima (dark blue area
in Figure , indicated by red line. For these settings, the required setpoint accuracy is
met. Therefore, the classical gradient descent method is a sufficient optimization algorithm
to find suitable settings of the parameters 1@ and u® for which the required setpoint ac-
curacy is obtained. Additionally, it is shown that a slight change in the parameters u(?) and
u(3) results in different time responses. Therefore, the optimal performance depends on the
combination of the parameters u(? and u(®.

In Figures [£.13] and the time responses of an experiment with the learning controller
for an initial parameter vector ul = [u® «®)] = [8-107 10 - 107] are presented. For
this experiment, the step size of the gradient estimator 7 and optimizer gain are set to
3-10% and v = 1.2:10%2, respectively. The same conclusions are drawn as from the previous
extremum seeking learning controller experiment depicted in Figures and The ex-
tremum seeking learning controller achieves the desired position error accuracy band of 10
nm, and overshoot is significantly reduced. Furthermore, the cost J(e) (2.8) is significantly
reduced as well fluctuates, starting from iteration eight. Moreover, in Figure [£.12]it is illus-
trated that the obtained optimal settings by the extremum seeking learning PID controller for
ud = [u® u®] =[8-10" 10-107] are in the optimal area (dark blue area in Figure, see
the magenta line. The obtained optimal settings are ul , = [u® u®)] =1[9.41-107 8.79-107).
It can be observed that these optimal settings (the parameters u? and u(3)) are different
from the settings found previously, because the initial conditions are different. The optimum
found using the classical descent gradient method, which can only find local optima, depends
on the initialization of the parameter vector ug. In case of employing global optimization
methods, the resulting time-varying integrator gain (settings of the parameters u® and u(3))
is independent on the initialization of the integrator gain, since the global optimum is al-
ways found. However, global optimization methods have two weaknesses. First, they can
be slow in reaching the global optimum with high accuracy, and second, many evaluations
are spend exploring local optima . Furthermore, the optimum that is found by the ex-
tremum seeking learning algorithm also depends on the step size 7 and the optimizer gain
~, which have different values for both the experiments. These parameters determine which
optimum is attained and how fast the optimum is reached (convergence rate). Additionally,
the evolution of the parameters u(? and u® for ul = [u® «®)] =[8-107 10-107] with re-
spect to each update of the extremum seeking learning controller is illustrated in Figure [£.15}

More experiments with the extremum seeking learning controller are performed on the ex-
perimental setup for different initial parameter vectors (u(z) and u(3)). The time responses
of these experiments are presented in Figures [A.T4H{AT7] of Appendix [A:4] For these exper-
iments the same conclusions are drawn as from the previous experiments described in this
section. The evolution of k;(t) for various initial vectors is shown in Figure m It can be
seen that for other initial parameter vectors the optimal settings of the parameters u? and
13 also end up in the optimal area (dark blue area in Figure . Therefore, the classical
gradient descent method is a sufficient optimization method to find appropriate settings
of the parameters u® and u® for which the desired setpoint accuracy is achieved.
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4.4 Discussion

Various experiments are performed on an industrial nano-positioning motion stage experi-
mental setup using the linear basis function parametrization of k;(t). The experiment with
the classical PID controller shows occurrence of limit cycling due to the presence of Stribeck
friction. From the input-output mapping experiment, it can be observed that mainly com-
binations of a high u(® (10%) and a lower u® (=~ < 9- 107) result in good performance
(appropriate setpoint accuracy), satisfying the intuition of the (decreasing) time-varying in-
tegrator gain k;(t). Moreover, it can be observed that the optimization problem at hand is
nonconvex, since there exist combinations of points (optima) in the optimal area for which
the line segment between the points lies outside the optimal area. In addition, there exist
multiple regions of optima, including both local optima and a global optimum.

From the extremum seeking learning PID controller experiments, it is shown that application
of the extremum seeking learning PID controller for various initial parameter vectors achieves
the desired setpoint accuracy of + 10 nm, and enhanced transient response, compared to a
classical PID controller. Therefore, the classical gradient descent optimization method is a
sufficient optimization method to find the suitable settings of the parameters u® and u(3)
for which the desired setpoint accuracy is achieved. It has been illustrated that when the
extremum seeking learning PID controller is close to an optimum value and the extremum
seeking algorithm is still active, it results in fluctuations around the optimal value. This is
caused by the chosen dither size 7 and the optimizer gain . The obtained optimal settings
of the parameters u(?) and u® are located in the optimal area of the input-output mapping,
but for different initial parameter vectors the obtained optimal settings are different. So, the
resulting time-varying integrator gain (the parameters u? and u(3)), as determined by the
extremum seeking learning algorithm, depends on the initialization of the integrator gain,
the optimizer gain + and the dither size 7 of the gradient estimator.

41



CHAPTER

Conclusions and Recommendations

The conclusions drawn from this research, and recommendations for future research are
presented in this chapter.

5.1 Conclusions

The vast majority of repetitive industrial motion systems with friction employ conventional
PID-based control. For motion systems with unknown Stribeck friction, classical PID-based
control results in severe performance limitations, such as stick-slip limit cycling and non-zero
steady-state position errors, mainly induced by the integrator action. The performance of
the motion systems highly depends on its unknown, time- and position-dependent friction
characteristics. To deal with this kind of complicated friction characteristics, a PID-based
learning controller with a time-varying integrator gain is presented to obtain optimal setpoint
positioning accuracy and enhanced transient response by minimizing overshoot, thereby
eliminating the performance limitations of the conventional PID controller.

The time-varying integrator gain is parametrized by a set of basis functions, and a to-be-
constructed parameter vector. The optimal realisation of the parameter vector is typically
unknown due to the fact that friction is generally unknown or uncertain. Therefore, the
specific time-varying integrator gain tuning is adaptively obtained with the use of a model-
free sampled-data extremum seeking approach. The working principle and effectiveness
of the learning PID-based controller are demonstrated by a simulation study, and by an
experimental case study, using a high-precision positioning stage application that suffers
from friction.

Using a classical PID controller on the experimental setup results in limit cycling, due to
the presence of Stribeck friction. From both simulation and experimental study results, it
is concluded that the adaptively obtained PID-based learning controller by the ESC frame-
work for various initial parameter vectors and different friction characteristics achieves 1) a
significantly improved setpoint accuracy, 2) an enhanced transient response by minimizing
overshoot, compared to a classical P(I)D controller. The resulting time-varying integrator,
determined by the learning algorithm, depends on the initialization of the integrator gain,
the optimizer gain -« and the step size 7 of the gradient estimator.

The simulation study results show that in case of a strong Stribeck effect, negative
optimal settings of the parameter vector are obtained by the sampled-data ESC framework
to achieve optimal performance. Typically, a negative constant integrator gain would almost
always result in an unstable closed-loop behaviour from a conventional PID-feedback control
point-of-view for linear systems. However, for frictional motion systems with Stribeck effect,
a negative time-varying integrator gain is needed to resist the rapid reduction of the friction
force due to a severe Stribeck effect.
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The simulation and experimental visualizations of the input-output mapping show

that there exist regions of optima. It is illustrated that for various initial conditions of
the parameter vector, the obtained optimal parameter vector is attained in the region of
optima. Therefore, it is concluded that the classical gradient descent method is a suitable
optimization algorithm to solve the nonconvex optimization problem at hand because finding
local optima is sufficient to achieve the desired system performance.

5.2 Recommendations

In this section, open problems and possible extensions with regards to the research results
are listed:

(i)

(iif)

The classical gradient descent optimization algorithm only finds local optima. The
resulting time-varying integrator gain, as determined by the learning algorithm, results
in the desired setpoint accuracy and significantly reduced overshoot by finding local
optima. However, in case of more parameters in the parameter vector have to be
optimized, it may be that global optimization methods such as DIRECT, or Shubert
have to be employed to find the global optimum, in order to achieve the desired system
performance.

From the ESC experimental results, it is concluded that when the extremum seeking
learning controller is close to an optimum value and the extremum seeking algorithm
is still active, it results in fluctuation around the optimal value. This is caused by the
chosen dither size 7 and the optimizer gain . The dither size 7 determines the size of
the fluctuation around the optimal value. The optimizer gain v determines how fast the
extremum seeking learning controller reaches the optimal value. It is possible that when
the dither size 7 is chosen to be small, but the optimizer gain v is chosen to be large, it
still results in overshooting the optimal value due to a large input update, caused by the
large optimizer gain . This issue can be dealt with by extending the extremum seeking
algorithm with an adaptation mechanism for 7 and . That is, when the extremum
seeking learning controller is close to the optimum (gradient is approximately zero),
the dither size 7 and optimizer gain v can be adapted accordingly. As a result, the
fluctuations around the optimal value become small and convergence takes place.

From the ESC simulation results, it is concluded that, for a strong Stribeck effect
case, the extremum seeker finds negative optimal values for the time-varying integrator
gain. For linear systems, a negative constant integrator gain would often yields in
unstable closed-loop behaviour. For frictional motion systems with Stribeck effect, a
negative time-varying integrator gain is needed to counteract the rapid reduction of
the friction force caused by a severe Stribeck effect. The simulation results presented
in Section [3.2.2] suggest asymptotic stability of the setpoint. Nevertheless, it has been
observed on the experimental setup that a negative time-varying integrator gain indeed
yield in unstable closed-loop behaviour (out of scope for this report). In literature,
both the stability and convergence of the ESC control approach are proven. Using
these existing proofs, a stability and convergence analysis of the proposed time-varying
learning controller approach using ESC may be derived.

In this research, the integrator gain is only adaptively tuned by the ESC framework.
It is possible that tuning other parameters, e.g., proportional and derivative gains,
or the complete controller force may also be obtained through data-based learning.
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(vi)

Furthermore, instead of optimizing two parameters in the parameter vector of the
time-varying integrator gain, it is possible to optimize only one parameter and fix
the other parameters based on intuition and the input-output mapping results. As a
result, the optimal performance depends only on one parameter and less experiments
are required to obtain the optimal performance. Additionally, the first element in the
parameter vector is fixed in both the simulation and the experimental study at values of
respectively 10 N/(ms) and 108 N/(ms). The impact of the choice of these fixed values
on the obtained optimal learning controller, and thus on the system performance, could
be investigated.

In future research, these possible extensions can be investigated in order to verify if the
proposed learning controller is still effective.

Currently, the proposed extremum seeking learning controller is only applied for a
motion profile with only a forward movement. In the future, the effectiveness of the
proposed extremum seeking learning controller for a motion profile with a sequential
forward and backward movement could be investigated.

In the experimental input-output mapping not all the points are measured. Between
the measured data points, linear interpolation is used to estimate the output. Contour
lines between the measured points do not necessarily give a reliable representation of
the system behaviour. In the future, more points could be measured to have a more
accurate input-output mapping.
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APPENDIX

Appendix

A.1 Gradient projection method

The gradient projection method is used to solve constrained optimization problem. If the
solution is not in the feasible set, then gradient projection method ”projects” it onto the
feasible set. The gradient projection method is explained with an illustrative example.
Consider the following inequality constrained optimization problem :

min f(x)
subject to h(x) =Sx <0’ (A1)
where the constrained function h(z) is defined as follows:
—A—-90
Since S = Vh, equation can be rewritten as follows:
-1 -1 A
=] 1[4 »
\_\57_/\\,4

In Figure[A ] an illustrative example of the gradient projection method is depicted. Consider
a constraint set X, starting from a initial point () € X, the gradient projection method
iterates the following equation until a stopping condition is met:

x(kJrl) = Py y(kJrl)) with

y(k—i—l) — m(k) _ t(k)Vf(x(k)) s (A4)
with t®) the step size and Py the projection matrix ||
pPar-sT(ss")7"s, (A.5)

where [ is the identity matrix. The idea of gradient projection method is simple: if the point
yF+1) is located outside the constraint set X (due to the gradient update), then the gradient
projection method projects y**1) back on the constrained set X.
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Figure A.1: The gradient projection method.
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A.2 Input-output mapping

In Figures and the contour plots of the input-output mapping for both friction
characteristics are visualized where the time-varying integrator gain is parametrized by step-
like basis functions. It is illustrated that there exists a set of optima (optimal area) and the
classical gradient descent optimization algorithm can be used to solve the optimization
problem. In Figures and the evolution of the optimized parameters u(® and u® by
the learning controller, for different initial parameter vector ug are depicted (the magenta
colored lines, labelled as "ESC’). It is presented that indeed the classical gradient descent
optimization algorithm is sufficient to solve the optimization problem at hand and that
for several initial values of the parameter vector u, the minimum of Q(u) is obtained in the

set of optima (dark blue area in Figures and [A.3).

The input-output mapping for the Fourier basis function parametrization of k;(t) with
respect to both friction characteristics are illustrated in Figures[A 4 and [A.5] It is illustrated
that there exist regions of optima, which includes local and global optima (nonconvex map-
ping). The gradient descent algorithm only finds local optima, so, for this case the
gradient descent algorithm is not suitable. However, it is presented Figures and
that even for this case using the classical gradient descent method , a minimum of
Q(u) is obtained for several initial values of the parameter vector u, which still results in
optimal desired performance. This is due to the fact that the iterative learning algorithm
(ESC), independent of the initialization of the parameter vector u, still reaches an appro-
priate extremum (in the set of optima). The white area in Figures and depicts the
constrained set. The constrained set is, that for §/A > 1 and §/A < -1 there are no solutions
of the Fourier basis function, and thus for the control force.

0 Contour plot of the input-output mapping, J,,;, = 4.1e-11 _x11 0°
%  global optimum
ESC 109
10 1
10.8
or 107
1 0.6
_.-10
; 0.5
3
-20 -
0.4
30 F 0.3
0.2
-40 -
0.1
-50 0
-10 0 10 20 30
u [

Figure A.2: Contour plot of the input-output mapping (3.1 for the step-like basis function
parametrization of k;(t) with respect to friction case a).
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Input-output mapping

0 Contour plot of the input-output mapping, J,,;, = 5.1e-11 _x11 0°

|
%  global optimum
ESC

10.9

10.8

10.7

0.6

0.5

0.4

u® []

Figure A.3: Contour plot of the input-output mapping (3.1 for the step-like basis function
parametrization of k;(t) with respect to friction case b).

5 Contour plot of the input-output mapping, J,,;, = 2.8e-12 ><110'5

%  global optimum
ESC

10.9

10.8

10.7

0.6

0.5

0.4

0.3

0.2

0.1

60

Figure A.4: Contour plot of the input-output mapping (3.1 for the Fourier basis function
parametrization of k;(t) with respect to friction case a).
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Input-output mapping

Contour plot of the input-output mapping, J,;;, = 1.9e-12 X110'5
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Figure A.5: Contour plot of the input-output mapping (3.1]) for the Fourier basis function
parametrization of k;(t) with respect to friction case b).
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Simulation results: Application of the time-varying learning integrator gain

A.3 Simulation results: Application of the time-varying learn-
ing integrator gain

Step-like basis function parametrization for friction case a
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Figure A.6: The displacement z1, control force u. and time-varying integrator gain k;(t), for
the step-like basis function parametrization of k;(t) with respect to friction case a).

Step-like basis function parametrization for friction case a
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Figure A.7: The absolute error |e| and the objective function J, for the step-like basis function
parametrization of k;(t) with respect to friction case a).
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Simulation results: Application of the time-varying learning integrator gain

Step-like basis function parametrization for friction case b
T I
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Figure A.8: The displacement z1, control force u. and time-varying integrator gain k;(t), for
the step-like basis function parametrization of k;(t) with respect to friction case b).

Step-like basis function parametrization for friction case b
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Figure A.9: The absolute error |e| and the objective function J, for the step-like basis function
parametrization of k;(¢) with respect to friction case b).
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Simulation results: Application of the time-varying learning integrator gain

Fourier basis function parametrization for friction case a
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Figure A.10: The displacement x;, control force u. and time-varying integrator gain k;(t),
for the Fourier basis function parametrization of k;(t) with respect to friction case a).

Fourier basis function parametrization for friction case a
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Figure A.11: The absolute error |e| and the objective function J, for the Fourier basis function
parametrization of k;(t) with respect to friction case a).
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Simulation results: Application of the time-varying learning integrator gain

Fourier basis function parametrization for friction case b
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Figure A.12: The displacement x;, control force u. and time-varying integrator gain k;(t),
for the Fourier basis function parametrization of k;(¢) with respect to friction case b).

Fourier basis function parametrization for friction case b
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Figure A.13: The absolute error |e| and the objective function J, for the Fourier basis function
parametrization of k;(¢) with respect to friction case b).
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Experimental case study results

A.4 Experimental case study results

In Figures [A.14] and [A 15| the time responses of an extremum seeking learning controller
experiment for an initial parameter vector ug = [u(® «®)] =[12-107 10-107] are depicted.
For this experiment, the step size of the gradient estimator 7 and optimizer gain are set to
5-10° and v = 6-10?3, respectively. The found optimal settings are ug;)t = [u(2) u(?’)] =
[8.86 - 107 7.59-107].
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Figure A.14: Time responses of the displacement, control force u. and k;(t) using ESC.
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Figure A.15: Time responses of the error e and objective function J using ESC.
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Experimental case study results

In Figures [A.16] and [A.17] the time responses of an extremum seeking learning controller
experiment for an initial parameter vector uf = [u(?) u®)] = [8-107 6-107] are depicted.
For this experiment, the step size of the gradient estimator 7 and optimizer gain are set to

5-10° and v = 2-10%3, respectively. The found optimal settings are u

[6.65 - 107 6.67-107].
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Figure A.16: Time responses of the displacement, control force u. and k;(t) using ESC.
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Figure A.17: Time responses of the error e and objective function J using ESC.
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