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Abstract

This thesis describes the design process of a feedback and feedforward control strategy for a multi-
input multi-output mechanical ventilation system with expiration valve. A mechanical ventilation
system is used to assist patients who are not able to breathe sufficiently on their own. When
applied to a patient, the mechanical ventilation system is used to achieve a desired pressure and
flow control objective for the lungs of the patient. Pressure tracking performance is important
in mechanical ventilation systems, and a poor performance can easily over-extend the patient’s
lungs and cause ventilation-induced lung injuries. Flow control is used to achieve a refreshing
flow inside the mechanical ventilation system to wash out CO2-rich air. Strong coupling effects
between pressure and flow are present in the mechanical ventilation system. The state-of-practice
controller for the mechanical ventilation system does not take these coupling effects into account,
and achieves a sub-optimal performance using a complex control structure.

In this thesis, a feedback and feedforward control strategy are designed to improve the pressure
and flow tracking performance, while also achieving a more insightful controller design which is
easy-to-use for control engineers. The main strategy for the controller design is to base the
feedforward controller on known and fixed components of the ventilation system, i.e., the hose
system, ventilation module, and expiration valve. Thereafter, a feedback controller is designed
which attenuates unknown disturbances, such as, model uncertainties, a coughing patient, or a
twisted breathing hose.

The feedforward controller is designed using a parametric model of the ventilation module,
expiration valve, and patient. Using the steady-state characteristics of this model, it is possible to
design a patient-independent feedforward controller. A feedback controller is designed on the basis
of system identification experiments to characterize the plant dynamics, because of the significant
model uncertainty and non-linearities of the parametric model. The feedback controller is designed
using a decentralized multi-input multi-output control structure.

An experimental case-study of the derived control strategy has shown that the controller is not
yet suitable to outperform the state-of-practice controller of the ventilation system. The reason
for this is that unknown highly non-linear dynamics of the patient and expiration valve deteriorate
the pressure and flow tracking performance. Undesired pressure and flow overshoot is observed.
Although the desired performance is not yet achieved, the designed controller is more insightful
compared to the state-of-practice controller and provides a suitable foundation for performance
improvements in future research for this application.
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doubts during the more difficult parts of this project.

II



Contents

Abstract I

Acknowledgments II

1 Introduction 1
1.1 Mechanical ventilation system description . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pressure-controlled ventilation cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Control challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 State-of-the-art solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 High-level control strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Report layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 System modeling 9
2.1 Patient-hose-valve model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Patient model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Patient-hose model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Expiration valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Derivation of a patient-hose-valve state-space model . . . . . . . . . . . . . 13

2.2 Open-loop stability for bounded inputs . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Output switching condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Feedforward controller design 17
3.1 Feedforward design motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 High-level controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Constant steady-state solution of the patient-hose-valve system . . . . . . . . . . . 19
3.3 Expiration valve look-up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Limitations of the feedforward controller . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Frequency domain alternative strategy . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Feedback controller design 24
4.1 Decentralized feedback control motivation . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Control limitations of the non-linear state-space model . . . . . . . . . . . . 24
4.1.2 Motivation for a decentralized solution . . . . . . . . . . . . . . . . . . . . . 27

4.2 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Obtaining a MIMO FRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Interaction analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Decentralized feedback controller design . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Decentralized controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 MIMO stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Stability under switched output signals . . . . . . . . . . . . . . . . . . . . . . . . . 36

III



CONTENTS

4.4.1 Linearized closed-loop dynamics . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Switching scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Simulations and experimental verification 39
5.1 Performance measure and use-case description . . . . . . . . . . . . . . . . . . . . . 39
5.2 Verification of the feedforward controller . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Feedforward controller: simulation results . . . . . . . . . . . . . . . . . . . 40
5.2.2 Feedforward controller: experimental results . . . . . . . . . . . . . . . . . . 41

5.3 Verification of the feedback controller . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1 Feedback controller: simulation results . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Feedback controller: experimental results . . . . . . . . . . . . . . . . . . . 44

5.4 State-of-practice control compared to the proposed controller design . . . . . . . . 46
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions and Recommendations 48
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Improved model accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.2 Reset integrator for C1fb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.3 Pressure bound for C2fb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 55

Appendix A Steady-state solution 56

Appendix B LUT experiment for the expiration valve 57
B.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix C TU/e Code of Scientific Conduct 59

IV



Chapter 1

Introduction

Many patients on the Intensive Care Unit (ICU) or during hospital transportation are unable to
breathe sufficiently on their own. Hence, they require the assistance of a mechanical ventilation
system. Mechanical ventilation systems can be used to take over the full respiratory cycle, which is
often done for patients who are in a coma or during surgery. In less severe conditions, mechanical
ventilation systems can partially take over the breathing efforts of the patient, for instance, during
the recovery period after a surgery. Mechanical ventilation systems are widely used in practice
and can apply many different breathing modes to suit the need of every patient. Fig. 1.1a shows
an example of a mechanical ventilation system in an ICU setting.

Mechanical ventilation systems generate a positive pressure near the airway of the patient,
which results in an air flow to the lungs. For this research project, a blower-driven mechanical
ventilation system is considered, which compresses ambient air from the surrounding area. Fig.
1.1b shows a typical ventilation module for a mechanical ventilation system, which is produced
by Macawi [1]. The mechanical ventilation system can be used with a variety of oxygen mixtures
corresponding to the needs of each patient. Positive pressure ventilators use a hose system to
guide the air from the blower to the patient. Every hose system requires an air leak to refresh
CO2-rich air, thereby preventing the patient from inhaling his/her previously exhaled air. For
this project, the leak is actively regulated by means of an expiration valve.

Control plays an important role in mechanical ventilation systems, in particular lung pressure
control. A lung pressure overshoot leads to over-extension of the patient’s lungs, which is recog-
nized as one of the main causes of Ventilation Induced Lung Injuries (VILI) [2]. In addition, if the
lung pressure drops too far, an alveolar collapse can occur which causes shear stress lung damage
in a relatively short time span [3]. It is concluded that tight pressure control is an important
aspect in mechanical ventilation. Furthermore, the mechanical ventilator controller must also be

(a) Example of a mechanical ventilation
system in practice.

(b) Macawi ventilation module used in
mechanical ventilation systems.

Fig. 1.1. A mechanical ventilation system in use and a ventilation module produced by Macawi
[1].
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Fig. 1.2. Schematic visualization of the mechanical ventilation system with patient.
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Fig. 1.3. Detailed schematic of the ventilation module and its main components.

robust for unknown disturbances, such as, a coughing patient or a twisted breathing hose. The
mechanical ventilation system must be applicable for a large variety of patients, which requires
state-of-the-art control solutions. The focus of this thesis is on improving and simplifying an
existent control solution for a mechanical ventilation system with expiration valve.

First, in Section 1.1, the main components of the mechanical ventilation system are described.
Thereafter, in Section 1.2, the breathing cycle and the main purpose of the mechanical ventilation
system in this cycle is explained. The control problem and the main challenges for this research
project are defined in Section 1.3. Thereafter, the challenges are combined to a well-defined
research objective in Section 1.4. Finally, in Section 1.5, the layout of this thesis is provided.

1.1 Mechanical ventilation system description

This section describes the main components of the mechanical ventilation system. The blower,
hose system, and expiration valve are all part of the mechanical ventilation system. Fig. 1.2 shows
the most important components and parameters of the mechanical ventilation system with patient.
The blower uses ambient air to generate a blower outlet pressure, i.e., pout. Additional oxygen
can be added in a mixing chamber if required. However, in this thesis this is not considered.
The pressure generated by the blower results in an airflow Qout, which enters the beginning of
the inspiration hose, see Fig. 1.2. The generated O2-rich airflow propagates through this hose
towards the patient during inspiration. The flow entering or leaving the patient is called the
patient flow Qpat and the pressure just before the patient is called the patient airway pressure
paw. After the gas exchange inside the lungs, the CO2-rich air leaves the patient and enters the
expiration hose. This hose connects the patient with the expiration valve, and is used to direct
CO2-rich air out of the patient during expiration.

The expiration valve is located at the end of the expiration hose, and controls the expiration
flow Qexp leaving the hose system. The pressure just before the expiration valve is denoted as pexp.
The expiration valve is pressure controlled and can be actuated using the pressure inside a pilot
line, i.e., ppilot. Fig. 1.3 shows a more detailed schematic of the ventilation module, which shows
the location of the blower, piezo valve, and the mixing chamber. The pressure inside the pilot line
originates from the pressure inside the mixing chamber. This pressure is guided through the piezo
valve, which uses a voltage Upiezo to adapt pout to the desired pressure ppilot. This pressure is
then used to open and close the expiration valve, and, therewith, control the flow going through

2



CHAPTER 1. INTRODUCTION

the expiration valve. As a result, the airflow through the expiration valve is determined by both
pout and Upiezo. In the next section, the pressure-controlled ventilation cycle for the mechanical
ventilation system and patient in Fig. 1.2 is explained.

1.2 Pressure-controlled ventilation cycle

This section describes the pressure-controlled ventilation cycle, which is considered in this thesis.
The mechanical ventilation system is equipped with a large variety of ventilation modes. However,
this work only focuses on the Continues-Mandatory Ventilation (CMV) mode with a pressure-
controlled ventilation cycle, see [4] and [5]. Pressure-controlled ventilation focuses on applying the
correct air pressure to a patient which results in a patient flow. In this mode, spontaneous effort
of the patient is not taken into account, which means that it is also not in scope for this research.
In addition, this work only focuses on ventilation of adult patients, which means that neonates
and pediatric patients are not considered as well.

Fig. 1.4a shows a set of pressure-controlled ventilation cycle graphs for a mechanical ventilation
system with expiration valve. The first graph shows the pressure target ptarget (dashed black)
and a typical response of the airway pressure paw (solid red) to that target. This airway pressure
paw is measured just before the mouth of the patient. The lower pressure target for the airway
pressure is called the Positive End Expiratory Pressure (PEEP) which ensures that the patient
experiences a certain minimum lung pressure to prevent collapsing of the lung. The Inspiratory
Positive Airway Pressure (IPAP) is used as an upper pressure target. The values for IPAP and
PEEP are typically set by hospital personnel, depending on the patient. The second graph shows
the patient flow Qpat that enters and leaves the patient, and the third graph shows the blower flow
Qout that is going through the inspiration hose. The fourth graph shows the expiration flow Qexp
that leaves the hose system through the expiration valve. The following four phases are defined
during a pressure-controlled breathing cycle:

I. Inspiration phase 1,

II. Inspiration phase 2,

III. Expiration phase 1,

IV. Expiration phase 2.

Inspiration phase 1 (I) in Fig. 1.4a indicates the pressure build-up from PEEP to IPAP.
This increase in pressure results in an air flow entering the lungs of the patient. During this phase,
the expiration valve is slightly opened to allow some flow from the blower to circulate through
the hose system. This flow is called the ’baseflow’, and is used to refresh the hose and to wash
out the CO2-rich air present in the system. The baseflow target is indicated as Qbf in Fig. 1.4a.
Fig. 1.4b shows in red where and when baseflow is present in the hose system. The patient flow
is indicated in blue.

Inspiration phase 2 (II) starts when the patient is filled with O2-rich air and the IPAP
pressure is achieved. During this phase the airway pressure paw is kept constant while the same
baseflow Qbf is provided by the blower and expiration valve. Notice that there is no patient
flow during this period, the baseflow goes completely through the expiration valve. The constant
pressure and zero patient flow allows for gas exchange inside the lungs which is the main purpose
of mechanical ventilation.

In Expiration phase 1 (III), the airway pressure drops from IPAP to PEEP which results in a
negative patient flow, i.e., the patient is breathing out the CO2-rich air. This patient flow is guided
through the expiration hose towards the expiration valve. During this phase, the expiration valve
is operated to a more open position, such that the CO2-rich patient air can leave the system. Due
to the more open position of the expiration valve, the patient experiences a minimal breathing
resistance. During this phase, the baseflow level Qbf is still maintained near the blower, i.e.,
Qout = Qbf .

Finally, in Expiration phase 2 (IV), the breathing cycle is finished. The mechanical venti-
lation system controls pressure at PEEP level and sustains a baseflow through the complete hose
system. During this phase, the patient flow is zero and a new breathing cycle can be initiated
depending on the ventilation mode.

3
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Fig. 1.4. The pressure-controlled breathing cycle is divided in four phases. The red lines in b
represent the baseflow and the blue lines the patient flow.

1.3 Control problem

This section describes the high-level control problem for the mechanical ventilation of a patient
during the pressure-controlled ventilation cycle. To fully carry out the pressure-controlled venti-
lation cycle, the mechanical ventilation system has a pressure and a flow tracking objective.

The pressure tracking objective is defined for the airway pressure paw. As shown in Fig. 1.4a,
the airway pressure paw should track the pressure target ptarget during each phase of the breathing
cycle. The flow tracking objective is defined for the baseflow requirement of the pressure-controlled
breathing cycle. The baseflow target is defined as Qbf in the bottom two figures of Fig. 1.4a. It is
observed that baseflow is present at Qout during phase II, III, and IV, and at Qexp during phase
I, II, and IV. Notice that baseflow target Qbf is not always maintained by Qexp or Qout. During
phase I, for instance, it is impossible for Qout to maintain the baseflow target, because this would
conflict with the inspiration flow towards the patient, see Fig. 1.4a and 1.4b. During phase III,
it is physically impossible to maintain baseflow at Qexp, because this would conflict with the flow
leaving the patient during expiration.

From the bottom two figures in Fig. 1.4a it is concluded that there is always a baseflow present
somewhere in the hose system. However, this baseflow cannot be observed at one location during
the whole breathing cycle. As a result, the baseflow target Qbf is achieved using a combination
of Qexp and Qout. To summarize, the pressure and flow tracking objectives are defined as:

1. The airway pressure paw should track the pressure target ptarget.

2. The baseflow target Qbf is maintained during each phase of the breathing cycle using a
combination of Qexp and Qout.

To achieve the airway pressure and baseflow objective, the mechanical ventilation system uses the
following two inputs:

1. The blower outlet pressure pout.

2. The piezo valve voltage Upiezo.

As a result, the pressure-controlled ventilation cycle is considered a Multi-Input Multi-Output
(MIMO) control problem.
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To reach the desired objectives, several control challenges arise regarding the mechanical ven-
tilation system and patient. In the next section, the main control challenges for this project are
defined. After that, in Section 1.3.2, state-of-the-art control solutions for mechanical ventilation
systems are presented. Finally, in Section 1.3.3, the high-level control strategy for the mechanical
ventilation system is defined.

1.3.1 Control challenges

This section describes the control challenges that are encountered to achieve the desired objectives
from the previous section. The following control challenges are defined:

1. Multi-variable input-output coupling is present between pout and Upiezo and the two control
objectives. The blower pressure pout is used to generate pressure inside the hose system. In
addition, pout and the piezo valve voltage Upiezo together control the expiration valve, and
thus the expiration flow leaving the hose system. As a result, both inputs are coupled to
the expiration valve and opening the expiration valve influences both control objectives at
the same time. It is concluded that input-output coupling is present in the system, which
makes this MIMO control problem challenging.

2. Robustness for varying-load dynamics. The main objective of a mechanical ventilation sys-
tem is to ventilate the patient, which means that the patient dynamics are part of the system
to be controlled. The mechanical ventilation system is applied to a large variety of patients.
The dynamics differ from patient to patient, and can even be slowly varying when a pa-
tient is healing or deteriorating. Consequently, this induces a significant amount of model
uncertainty and unknown disturbances to the control problem.

3. Incomplete definition of the baseflow target. The baseflow target Qbf is not fully defined in
each phase of the breathing cycle for one single output. Although it is concluded that there
is a baseflow present somewhere in the hose system during each phase, the baseflow target
cannot be maintained at one location during the whole breathing cycle. As a result, it is
not possible to use a single output to control the baseflow target Qbf during the complete
breathing cycle.

These control challenges are encountered when solving the control problem. In the next section,
state-of-the-art control solutions for mechanical ventilation systems are shown and it is argued
that they do not solve the above mentioned control challenges.

1.3.2 State-of-the-art solutions

The state-of-the-art control of mechanical ventilation systems is explored in this section. Even
though the use of mechanical ventilation systems is applied on a world-wide scale, the number of
relevant papers on control applied to ventilation are limited. Possible reasons include, the rela-
tively straight-forward PID control structures that are often used in practice, or due to company
confidentiality. Model-based control strategies are often used for mechanical ventilation systems
and require the derivation of a dynamical model. This can either be done by fitting a Frequency
Response Function (FRF) measurement, or by developing a parametric model which captures the
dynamics of the system.

A few approaches on parametric modeling for the hose system, expiration valve, and patient
dynamics have been developed in literature. In [6], many methods are described for linear and
non-linear models for lung dynamics, which include the airway resistance and lung compliance,
i.e., the inverse of stiffness. In [7], one specific strategy from [6] is emphasized, which models
the patient and hose system using the knowledge and lay-out of an electrical circuit. Modeling
strategies for expiration valves are also presented in literature. In [8], for example, the modeling
process of a voice coil actuated expiration valve is presented, which is used for simulations of a
complete mechanical ventilation system. A different valve model is suggested in [9], which models
a voice coil expiration valve as a mass-spring-damper system. [10] applies the same strategy, and
introduces a force balancing method which also applies for pressure-actuated expiration valves.
A flow-based model is presented in [11], which describes a fluid-flow analytical model for several
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CHAPTER 1. INTRODUCTION

critical locations around the expiration valve. The model shows a high accuracy compared to a
finite element model. The patient models in [6] and [7] are suitable for control. However, the
expiration valve models in [8]-[11] are mainly applied as simulation tools for flow analysis. The
application in actual control strategies for mechanical ventilation systems is limited.

A few suitable control designs for mechanical ventilation systems can be found in literature.
In [12], for instance, a model-based control design is applied which uses a linear lung and hose
model. Spontaneous breathing effort is estimated using a disturbance observer. However, this
method focuses on one specific patient type and requires identification of each patient beforehand
to achieve the desired performance. In a different approach, [13] describes a variable-gain controller
which switches between a high-gain and low-gain controller to distinguish between two conflicting
control goals, i.e., a short pressure rise time and limited flow oscillations.

To improve performance of feedback control strategies for mechanical ventilation systems,
additional learning and estimation-based control strategies have been studied which incorporate
unknown dynamics and resistances. An Iterative Learning Control (ILC) approach is applied by
[14], this work takes into account unknown lung and hose parameters. This control technique
uses information from previous breathing cycles to improve the performance of the next cycle.
When this ILC control strategy is applied, the unknown repeating errors are almost completely
eliminated and very high pressure tracking performance can be achieved. However, ILC is only
applicable in the case of a repetitive breathing stroke. Disturbances, such as, a coughing patient,
a twisted hose, and other non-repeating disturbances are not taken into account using ILC and
slow down the learning rate of the controller, and thus its performance. A different approach
is applied by [15], who uses an adaptive controller with estimator which compensates for the
unknown pressure drop along the hose system. Although this adaptive control design does not
show an increased performance compared to an ILC design, it can perform well without a repetitive
breathing pattern and it guarantees robustness against spontaneous breathing efforts.

Although these control strategies show great performance improvements for mechanical ven-
tilation systems, they are mainly focused on ventilators that require only one control objective,
for instance, pressure or flow tracking. Additionally, they only use one input to control the sys-
tem, which is either an inspiration/expiration valve or the blower pressure pout. The involvement
of multiple actuators and control objectives for mechanical ventilation systems is not yet inves-
tigated. To conclude, the current state-of-the-art control solutions are not suitable, or require
more research, to apply for this MIMO control problem. In the next section, a high-level control
strategy is derived for the control problem.

1.3.3 High-level control strategy

This section presents the considered high-level control strategy for the MIMO control problem,
taking into account the control challenges from Section 1.3.1. As discussed, the mechanical venti-
lation system consists of a ventilation module, hose system, and expiration valve. In addition, the
patient is also part of the control system, see Fig. 1.2. The control strategy for this control system
is to derive a MIMO feedforward and feedback control strategy to achieve the two objectives that
are presented at the beginning of Section 1.3. This control strategy also aims to tackle the control
challenges stated in Section 1.3.1. The high-level control strategy is visualized in Fig. 1.5, in
which Cff represents the feedforward controller, Cfb represents the feedback control strategy, and
G represents the hose system, expiration valve, unknown patient dynamics, and the ventilation
module.

The first control challenge, i.e., the input-output coupling problem, is tackled by deriving a
dynamical model of the mechanical ventilation system. Using this model, it is possible to describe
the coupling between the inputs and outputs. Next, a feedforward controller is derived which
incorporates these coupling effects. The main idea of the feedforward controller is to compensate
for all system components that are fixed and known, i.e., the inspiration hose, expiration hose,
ventilation module, and the expiration valve characteristics. These components do not change over
time which means that they can be compensated for by means of a feedforward control strategy.

Thereafter, a feedback controller is designed to tackle the second challenge, i.e., to attenuate
unknown disturbances, e.g., a coughing patient, a twisted hose, and modeling uncertainty due to
the large variety of unknown patient dynamics. The third challenge, i.e., the incomplete definition
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Qbf

Cfbptarget +

+

G

Qexp

Qout

paw

+

+ pout

Upiezo

Cff

Fig. 1.5. High-level control block scheme. Cfb is the feedback controller, Cff is the feedforward
controller, and G represents the hose system, expiration valve, ventilation module, and the
patient dynamics.

of the baseflow target Qbf , is tackled using a switching algorithm, which is explained in Chapter
2. The design of the feedforward and feedback controller is presented in Chapter 3 and Chapter
4, respectively. In the next section, the research objectives and sub-objectives are presented for
this project.

1.4 Research objectives

This section provides the research objectives for this project. The state-of-practice controller
that is currently running on the mechanical ventilation system, is designed without the use of a
parametric model. As a result, the cause of the coupling effects between flow and pressure are
not fully understood, and are therefore not incorporated in the controller design, which results
in a sub-optimal performance. To partially improve this sub-optimal performance, the state-of-
practice controller design is expanded with multiple ventilation-related events, such as, triggers,
gain scheduling, and resets, that over-complicate the controller design.

Given the complexity of the state-of-practice controller design and its sub-optimal performance,
the main objective for this research project is defined as:

Design a controller for a mechanical ventilation system with expiration valve to improve both
pressure and baseflow tracking performance, by taking into account the coupling between pressure
and flow in the design process.

This objective can be achieved by splitting up the main objective in several smaller sub-objectives:

• Derive a dynamical model of the breathing hose system, expiration valve, and patient, which
is suitable for a controller design.

• Using the dynamical model, establish a well-defined feedforward control strategy which takes
the pressure and flow coupling into account.

• Design a feedback controller that controls the large variety of unknown patient dynamics, and
attenuates unknown disturbances. Minimize the use of triggers, resets, and gain scheduling
to obtain a controller design which is insightful and easy-to-use for control engineers.

• Experimentally test the designed controllers.

These sub-objectives are used again in Chapter 6 to draw conclusions about the findings of this
work. In the next section, the layout of this thesis is provided.

7
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1.5 Report layout

This thesis is structured as follows; First, in Chapter 2, a dynamical model is derived for the
patient-hose-valve system. After that, in Chapter 3, a feedforward controller is designed based on
the dynamical model from Chapter 2. In Chapter 4, a feedback controller is designed to increase
the robustness against unknown disturbances, such as a coughing patient or modeling errors.
Thereafter, in Chapter 5, the feedforward and feedback controller are verified using simulations
and an experimental case-study. Finally, in Chapter 6, the main conclusions are presented which
are compared to the research objectives of Section 1.4. In addition, recommendations for future
research are also provided in Chapter 6.

8



Chapter 2

System modeling

In this chapter, the dynamical model of the considered patient-hose-valve system is derived as
described in the first sub-objective of Section 1.4. The model consists of the patient dynamics,
inspiration hose, expiration hose, and expiration valve. This model is used to gain insight in the
system dynamics. Furthermore, the obtained model is used to derive a steady-state feedforward
strategy in Chapter 3. First, in Section 2.1, the patient-hose-valve model is derived. In Section
2.1.4, the derived model is rewritten as a non-linear state-space model. Stability of the open-loop
system with bounded inputs is analyzed in Section 2.2. An output switch is defined in Section 2.3,
which deals with the incomplete baseflow definition. Finally, the main conclusions are summarized
in Section 2.4.

2.1 Patient-hose-valve model

In this section, the model for the patient-hose-valve system is derived. First, the patient model
is derived in Section 2.1.1. Then, the hose system is added to the patient model in Section 2.1.2.
Thereafter, the system is extended by adding the expiration valve to the model. The complete
patient-hose-valve model is rewritten as a non-linear state-space model in Section 2.1.4.

2.1.1 Patient model

This section describes the process of deriving a patient model which consists of patient’s lungs
and the airway. In this work, a linear one-compartmental lung model is considered as described
in [6]. A first-order differential equation is used to describe the lung dynamics as

plung(t) =
1

Clung

∫
Qpatdt → ṗlung(t) =

1

Clung
Qpat, (2.1)

where plung is the lung pressure in mbar, ṗlung describes the time derivative of the lung pressure,
Qpat is the patient flow, i.e., the flow going in and out of the lungs in L/min, and Clung is the
lung compliance, i.e., inverse of stiffness, in L/mbar. A schematic visualization of the lung and
its most relevant parameters is shown in Fig. 2.1. The patient’s airway is added to the lung
model, which connects the lungs to the patient’s mouth. The patient flow Qpat, that enters and
leaves the lung, flows through the airway. The patient flow depends on the airway resistance, and

plung

Clung

Qpat

Fig. 2.1. Schematic visualization of the lung.
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Qpat

plung

Clung

Raw

paw

Fig. 2.2. Schematic visualization of the lung and the airway with the relevant parameters.

the pressure difference between the lung pressure and the pressure just before the airway. This
relation is described by

Qpat =
paw − plung

Raw
, (2.2)

where paw is the pressure at the start of the patient’s airway, i.e., the airway pressure, and Raw is
the airway resistance in mbar s/L. Fig. 2.2 shows a schematic representation of the lung and the
airway with the relevant parameters. The first-order lung differential equation in (2.1) is extended
to the full patient model by substituting (2.2) in (2.1), which results in

ṗlung =
paw − plung
ClungRaw

. (2.3)

2.1.2 Patient-hose model

This section describes the process of obtaining a model for the inspiration and expiration hose,
which is combined with the patient model. The inspiration hose connects the patient’s airway
with the ventilation module. The total airflow through the inspiration hose depends on the hose
resistance, and the the pressure difference between the pressure at the beginning of the inspiration
hose, i.e., pout, and the pressure at the end of the inspiration hose, i.e, paw. A similar flow-pressure
relation as in (2.2) is derived for the inspiration hose, which is

Qout =
pout − paw
Rhose1

, (2.4)

where Qout is the flow through the inspiration hose, pout is the pressure generated by the blower
at the beginning of the inspiration hose, and Rhose1 is the inspiration hose resistance in mbar s/L.
Besides the inspiration hose, there is also an expiration hose, which is used to guide the exhaled
CO2-rich air away from the patient. The expiration hose attaches to the patient’s airway and the
expiration valve. The flow through the expiration hose is denoted as Qexp in L/min. This flow
depends on the expiration hose resistance, in combination with the pressure difference between
the patient’s airway and the pressure just before the expiration valve, i.e., pexp in mbar. The
resulting equation for the expiration flow Qexp is defined as

Qexp =
paw − pexp
Rhose2

, (2.5)

where Rhose2 is the expiration hose resistance. Fig. 2.3 shows the complete model of the patient-
hose system, which includes the patient, the inspiration hose, and the expiration hose. The system
is considered to have no leaks, hence, conservation of flow gives the following relation:

Qpat = Qout −Qexp. (2.6)

In other words, the difference between Qout and Qexp gives the patient flow Qpat. Flow can
only be generated by the blower, and can only leave the system through the expiration hose, i.e.,
Qout ≥ 0 and Qexp ≥ 0. The constraint Qout ≥ 0 is established mechanically by means of a check
valve in the ventilation module. The constraint Qexp ≥ 0 is automatically imposed, because the
patient can only breath in through the inspiration hose, and breath out through the expiration
hose. These constraints are insightful, but they are not incorporated in the patient-hose model.
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Qout Qpat

plung

Clung
Patient

Raw

Rhose1
pout paw

Qexp

pamb = 0
Rhose2

pexp

Fig. 2.3. Schematic drawing of the patient-hose system.

The blower that generates the pressure pout is equipped with an internal controller. This
internal blower controller is used to control pout to the desired pressure set-point pcontrol. This
controller reduces the error made as a result of the blower actuator dynamics. Given the focus
of this research research project, the blower dynamics and internal controller are not taken into
account. As a result, the blower dynamics are assumed to be perfectly controlled by the internal
controller, i.e., pcontrol = pout.

2.1.3 Expiration valve

This section describes a technique to model the expiration valve as a variable resistance. To
derive the full model of the patient-hose-valve system, an expiration valve model is added to the
patient-hose model. The expiration valve is shown schematically in a closed and open position
in Fig. 2.4a and 2.4b, respectively. As described in Section 1.1, the valve is pressure actuated
by ppilot. This pilot pressure is generated by the blower, i.e., pout. To achieve the desired ppilot,
pout is scaled using a piezo valve. By changing the voltage to the piezo valve, i.e., Upiezo, the
desired pilot pressure ppilot is obtained. The piezo valve voltage is set between -24V and 24V.
Thus, -24V means that the piezo valve is completely closed, i.e., ppilot = 0. 24V means that the
piezo valve is completely open, i.e., ppilot = pout. The scaled pressure propagates through the
pilot line to actuate the expiration valve. Inside the expiration valve, the pressure ppilot exerts a
force to the top side of a membrane, see Fig. 2.4. The expiration pressure pexp exerts a force to
the bottom side of the membrane in opposite direction. The force difference results in a deflection
of the membrane, which allows air to flow through. Using this knowledge, the expiration valve is
modeled as a variable resistance Rexp, which depends on ppilot and pexp, i.e.,

Rexp := Rζ(ppilot, pexp), (2.7)

ppilot

pexp

Membranepout

Upiezo

(a) Expiration valve closed, i.e., Qexp = 0.

ppilot

pexp

Qexp

pout

Upiezo

Qexp

(b) Expiration valve open, i.e., Qexp 6= 0.

Fig. 2.4. Schematic of the pressure actuated expiration valve in an open and closed position.
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Qout Qpat

plung

Clung
Patient

Raw

Rhose1
pcontrol = u1 paw

Upiezo = u2

Qexp

Rexp pamb = 0
Rhose2

Rη(u, pexp)

Fig. 2.5. Schematic drawing of patient-hose-valve system, with the new input notation and
variable expiration valve resistance Rexp.

in which Rζ(ppilot, pexp) is an unknown function for Rexp, expressed by ppilot and pexp. Since the
pressure ppilot depends on both Upiezo and pout, (2.7) becomes

Rexp := Rη(pout, Upiezo, pexp). (2.8)

As discussed in Section 2.1.2, the blower dynamics are not taken into account for this project,
which means that pout is renamed pcontrol for the remainder of this work. The expiration valve
resistance is then defined as

Rexp := Rη(pcontrol, Upiezo, pexp). (2.9)

In Section 1.3, the inputs of the control system are defined as the blower pressure and the piezo
valve voltage. Consequently, pcontrol and Upiezo are renamed as u1 and u2, respectively. The input
vector u is defined as

u =

[
u1
u2

]
=

[
pcontrol
Upiezo

]
. (2.10)

With this new input notation, the function for Rexp in (2.9) is simplified to

Rexp = Rη(u, pexp). (2.11)

Force balancing models for expiration valves are presented in [8] and [10]. However, due to the
unpredictable highly non-linear behavior of the expiration valve, these methods are deemed not
accurate enough for this particular type of expiration valve. In Chapter 3, more details are
presented about this non-linear behavior of the expiration valve and an experimental model is
obtained. For now, the function Rη in (2.11) is sufficient to derive the full patient-hose-valve
system.

The additional resistance Rexp at the end of the expiration hose changes the expiration flow
equation in (2.5). To define a new equation for Qexp, the pressure difference is now taken between
the airway pressure paw and the ambient pressure pamb. In this work, all pressures are expressed
with respect to the ambient pressure, i.e., pamb = 0. The new equation for Qexp is

Qexp =
paw

Rexp +Rhose2
, (2.12)

Qexp =
paw

Rη(u, pexp) +Rhose2
. (2.13)

The new input notation (2.10) and the variable resistance Rexp in (2.11) are added to the patient-
hose model. Fig. 2.5 shows the new patient-hose-valve model schematically, in which the expira-
tion valve is located at the end of the expiration hose. The pilot line with piezo valve connects
u1 (pcontrol) with the expiration valve. In the next section, a non-linear state-space model of the
patient-hose-valve system is derived.
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2.1.4 Derivation of a patient-hose-valve state-space model

This section describes the derivation of a non-linear state-space model for the patient-hose-valve
model described in the previous sections. The differential equation in (2.3) is extended by deriving
a more detailed expression for paw. This is achieved by exploiting the conservation of flow in (2.6),
in combination with the flow-pressure relations, i.e., (2.2), (2.4), and (2.13). These relations are
substituted in (2.6), resulting in

paw − plung
Raw

=
u1 − paw
Rhose1

− paw
Rη(u, pexp) +Rhose2

. (2.14)

This is rewritten, to obtain an expression for paw, which results in

paw

(
1

Raw
+

1

Rhose1
+

1

Rη(u, pexp) +Rhose2

)
=

u1
Rhose1

+
plung
Raw

, (2.15)

paw =

u1

Rhose1
+

plung
Raw(

1
Raw

+ 1
Rhose1

+ 1
Rη(u,pexp)+Rhose2

) . (2.16)

Rewriting this equation results in

paw =
Rhose1(Rhose2 +Rη(u, pexp))plung +Raw(Rhose2 +Rη(u, pexp))u1

Rsum(u, pexp)
, (2.17)

in which

Rsum(u, pexp) = Rhose1(Rhose2 +Rη(u, pexp)) +Raw(Rhose1 +Rhose2 +Rη(u, pexp)). (2.18)

Next, (2.17) is substituted in (2.1). This results in the following first-order differential equation:

ṗlung = −Rhose1 +Rhose2 +Rη(u, pexp)

ClungRsum(u, pexp)︸ ︷︷ ︸
A(u,pexp)

plung +
Rhose2 +Rη(u, pexp)

ClungRsum(u, pexp)︸ ︷︷ ︸
B(u,pexp)

u1. (2.19)

This differential equation consists of a state matrix A(u, pexp) and an input matrix B(u, pexp).
However, pexp is also influenced by the state plung, which means that the expiration valve resistance
Rexp in (2.11) also depends on the state plung. Furthermore, if both inputs u1 and u2 are known,
and the state plung is known, then the patient-hose-valve system is fully defined. As a result, pexp
is a redundant variable, which means that Rexp can be fully defined as

Rexp := Rψ(u, plung). (2.20)

As a result, Rη(u, pexp) in (2.19) is replaced with Rψ(u, plung), which results in

ṗlung = −Rhose1 +Rhose2 +Rψ(u, plung)

ClungRsum(u, plung)︸ ︷︷ ︸
A(u,plung)

plung +
Rhose2 +Rψ(u, plung)

ClungRsum(u, plung)︸ ︷︷ ︸
B(u,plung)

u1. (2.21)

It can be observed that the inputs u1 and u2, and the state plung are present in the state matrix
A(u, plung) and input matrix B(u, plung). This phenomena couples the inputs and the state in a
non-linear manner. To complete the state-space model, the output equations are derived for paw,
Qexp, and Qout. The output equation for paw is obtained by rewriting (2.17) as

paw =
Rhose1(Rhose2 +Rψ(u, plung))

Rsum(u, plung)︸ ︷︷ ︸
Cp(u,plung)

plung +
Raw(Rhose2 +Rψ(u, plung))

Rsum(u, plung)︸ ︷︷ ︸
Dp(u,plung)

u1, (2.22)
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in which Cp(u, plung) and Dp(u, plung) are the output matrix and feedthrough matrix for paw,
respectively. The output equation for Qexp is obtained by substituting (2.22) in (2.13), which
results in

Qexp =
Rhose1

Rsum(u, plung)︸ ︷︷ ︸
CQexp (u,plung)

plung +
Raw

Rsum(u, plung)︸ ︷︷ ︸
DQexp (u,plung)

u1. (2.23)

The output equation for Qout is obtained by substituting (2.22) in (2.4), which results in

Qout = −Rhose2 +Rψ(u, plung)

Rsum(u, plung)︸ ︷︷ ︸
CQout (u,plung)

plung +
Raw +Rψ(u, plung) +Rhose2

Rsum(u, plung)︸ ︷︷ ︸
DQout (u,plung)

u1. (2.24)

A full non-linear state-space model is obtained by combining (2.21), (2.22), (2.23), and (2.24).
The state-space model for the patient-hose-valve system is defined as

ṗlung = A(u, plung)plung +
[
B(u, plung) 0

]
u, pawQexp

Qout

 =

 Cp(u, plung)
CQexp(u, plung)
CQout(u, plung)

 plung +

 Dp(u, plung) 0
DQexp(u, plung) 0
DQout(u, plung) 0

u (2.25)

with

A(u, plung) =

[
−Rhose1 +Rhose2 +Rψ(u, plung)

ClungRsum(u, plung)

]
, (2.26)

B(u, plung) =

[
Rhose2 +Rψ(u, plung)

ClungRsum(u, plung)

]
. (2.27)

In these matrices, Rsum(u, plung) is defined as in (2.18). The combined C(u, plung) matrix is
defined as

C(u, plung) =

 Cp(u, plung)
CQexp(u, plung)
CQout(u, plung)

 =


Rhose1(Rhose2+Rψ(u,plung))

Rsum(u,plung)
Rhose1

Rsum(u,plung)
−Rhose2−Rψ(u,plung)

Rsum(u,plung)

 (2.28)

and the combined D(u, plung) matrix is defined as

D(u, plung) =

 Dp(u, plung) 0
DQexp(u, plung) 0
DQout(u, plung) 0

 =


Raw(Rhose2+Rψ(u,plung))

Rsum(u,plung)
0

Raw
Rsum(u,plung)

0
Raw+Rψ(u,plung)+Rhose2

Rsum(u,plung)
0

 . (2.29)

The state-space model in (2.25) describes the complete patient-hose-valve system. Although
the state-space model can be used to gain insight in the system dynamics, the derived state-space
structure has several interesting characteristics. The input u2 is only present in the state-space
model through the expiration valve resistance Rψ(u, plung). It is concluded that Rψ(u, plung)
induces a non-linear coupling between both inputs and the state plung. As a result of this coupling,
analyzing the input-output behavior and the state behavior is challenging.

It is important to analyze the open-loop stability of the non-linear system with bounded inputs.
If a system is open-loop stable for bounded inputs, it is always possible to apply a feedforward
controller without destabilizing the system. Moreover, it allows for open-loop identification mea-
surements without the process of designing a stabilizing controller first. Open-loop stability of the
patient-hose-valve system with bounded inputs is analyzed in the next section.

2.2 Open-loop stability for bounded inputs

In this section, an open-loop stability analysis for the patient-hose-valve system is provided. This
analysis is used to show that the state-space model in (2.25)-(2.29) is open-loop stable for bounded
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inputs. In addition, it is shown that for these bounded inputs, the system has a unique asymp-
totically stable solution.

Let us first analyze the system without inputs, i.e., u = 0. Although the system is non-linear,
the open-loop stability analysis is relatively straight-forward due to the one-dimensional nature of
the system dynamics, i.e., A(u, plung) ∈ R1×1, and the physical properties of Rexp. The expiration
valve resistance Rexp := Rψ(u, plung) operates in the following range:

Rmin < Rψ(u, plung) ≤ ∞, (2.30)

in which Rmin > 0 is the minimal resistance of the expiration valve, which occurs when the valve
is completely open. An infinitely large resistance occurs when the valve is closed, which allows no
flow to pass through the valve. Rψ(u, plung) is never negative, because this would indicate that
air flows from a low pressure point to a high pressure point, which is physically impossible. Using
(2.30), it is concluded that Rexp := Rψ(u, plung) is strictly positive. As a result, all parameters
in A(u, plung), i.e., Clung, Raw, Rψ(u, plung), Rhose1, and Rhose2 are all strictly positive. From
(2.26), it is then concluded that the matrix A(u, plung) is always strictly negative, independent
of the value of Rψ(u, plung). Although negative definiteness of all switching state matrices does
not guarantee asymptotic stability in general, see [16, p. 7], it is sufficient for this scalar system.
In more detail, as long as A(u, plung) < 0 then it is guaranteed that for any value of plung, ṗlung
is always pointing in the opposite direction which yields global asymptotic stability (GAS) of the
open-loop non-linear system without inputs. In addition, it is concluded that plung = 0 is the only
equilibrium point of the system without inputs.

To prove asymptotic stability of the system with inputs, it is sufficient to check if B(u, plung)
is bounded ∀Rψ(u, plung) in (2.30). For Rψ(u, plung) 6= ∞ it is concluded that B(u, plung) in
(2.27) is always bounded, because Clung, Raw, and Rhose1 are all strictly positive. However, for
the closed valve position, i.e., Rψ(u, plung) =∞, it is important to verify that B(u, plung) is also
bounded. This is analyzed by solving limRψ→∞ for B(u, plung):

lim
Rψ→∞

B(u, plung) =
1

Clung(Raw +Rhose1)
. (2.31)

From (2.31), it is concluded that B(u, plung) is bounded ∀Rψ(u, plung) in (2.30). This result
in combination with GAS of the state matrix A(u, plung), concludes that the patient-hose-valve
system with bounded inputs is open-loop GAS ∀Rψ(u, plung) in (2.30). In addition, it is concluded
that any solution is GAS, because the unperturbed system only has one asymptotically stable
equilibrium point. This characteristic is later used to design a feedforward controller for the
system in Chapter 3.

2.3 Output switching condition

This section describes an output switch for the state-space model in (2.25)-(2.29), which is applied
to solve the incomplete definition of the baseflow target. As described in Section 1.3, the baseflow
target Qbf is partially defined for the expiration flow Qexp and partially for the blower outlet flow
Qout. The corresponding output equations have been defined in (2.23) and (2.24), respectively. To
achieve a fully defined target during each phase of the breathing cycle, a straight-forward solution
is to switch the baseflow target between Qexp and Qout.

The desired output switch is defined as follows: during phase I in Fig. 1.4a, Qexp is used as an
output, and during phase II, III, and IV, Qout is used as an output. To achieve this, the following
switching condition is defined:

µ =

{
Qexp if Qout > Qbf ∧ ptarget 6= PEEP,
Qout otherwise.

(2.32)

During phase I in Fig. 1.4a, the blower outlet flow Qout is larger than Qbf , and the pressure target
ptarget is at IPAP level. This means that, according to the switching algorithm in (2.32), Qexp is
used as an output. During phase II, the blower outlet flow Qout decreases to the baseflow level.
Consequently, the output switch is enabled and switches to the output Qout, because Qout = Qbf .
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Fig. 2.6. Multiple switches due to flow oscillations.

During phase III and IV, it is not possible to switch back to Qexp because of the condition
ptarget 6= PEEP .

However, during phase II, the baseflow might oscillate around the baseflow level Qbf due to
disturbances. These oscillations cause a chattering effect for the output switch in (2.32). In other
words, for every flow oscillation around Qbf during phase II, the output switch µ is triggered,
which is undesired. To prevent this chattering effect, a third boolean condition b+ is derived for
the switching algorithm in (2.32), which is defined as

b+ =

{
1 at the start of the mandatory inspiration of the breathing cycle,
0 when the output switches to Qout for the first time.

(2.33)

In more detail, b+ = 1 as soon as a mandatory inspiration is initiated at the start of a breathing
cycle. This happens when PEEP changes to IPAP , i.e., at the start of phase I, see Fig. 1.4a.
The boolean in (2.33) switches to b+ = 0 when the output is switched from Qexp to Qout for the
first time in the breathing cycle. This boolean ensures that only one switch is allowed during
phase II. In other words, when the output switches from Qexp to Qout, it only switches back to
Qexp at the the end of the breathing cycle. This prevents the chattering effect of the switching
condition µ.

A new switching condition φ is defined which combines the old switching condition µ in (2.32)
with the boolean condition b+ in (2.33), which results in

φ =

{
Qexp if Qout > Qbf ∧ ptarget 6= PEEP ∧ b+ = 1,
Qout otherwise.

(2.34)

This switching condition ensures that the output switch occurs only once from Qexp to Qout at
the transition from phase I to phase II, and only once from Qout back to Qexp at the end of the
breathing cycle, during the transition from phase IV to phase I. The switching condition φ in
(2.34) applies to the non-linear state-space model in (2.25)-(2.29), and is later analyzed during
the feedback controller design process in Chapter 4.

2.4 Summary

In this chapter, a state-space model for the patient-hose-valve system has been derived. First,
a first-order differential equation is used to describe the patient’s airway and lung dynamics.
Thereafter, the inspiration hose and expiration hose have been modeled. Then, the expiration
valve is modeled as a variable resistance Rexp := Rψ(u, plung), which depends on both inputs and
the state plung. The separate models have been combined to a non-linear state-space model, which
is proven to be open-loop globally asymptotically stable for bounded inputs, which has a unique
steady-state solution. This property allows for separate designs of a feedback and feedforward
control strategy. Finally, an output switch is defined for Qexp and Qout to deal with the incomplete
definition of the baseflow target Qbf . In the next chapter, the state-space model in (2.25)-(2.29)
is used to derive a feedforward controller for the patient-hose-valve system using a steady-state
solution.
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Chapter 3

Feedforward controller design

This chapter describes the design process of a feedforward controller for the patient-hose-valve
system in (2.25)-(2.29). This feedforward controller design is the second sub-objective of Section
1.4. As described in Section 1.3.3, the feedforward design is based on all known components of
the state-space model. Thereafter, in Chapter 4, a feedback controller is designed to deal with
unknown disturbances and modeling uncertainties.

This chapter describes the feedforward controller design and is structured as follows. First,
in Section 3.1, the use of a constant steady-state feedforward controller is motivated. Thereafter,
in Section 3.1.1, the high-level feedforward controller design is presented. In Section 3.2, a con-
stant steady-state solution of the state-space model is derived which is used for the feedforward
controller design. After that, in Section 3.3, the constant steady-state solution is extended with
an experimental model for the expiration valve resistance Rexp. Furthermore, in Section 3.4, the
limitations of the feedforward control strategy are investigated. In Section 3.5, an alternative
feedforward strategy is briefly explained. Finally, the chapter is summarized in Section 3.6.

3.1 Feedforward design motivation

In this section, the use of a constant steady-state feedforward controller for the patient-hose-valve
system in (2.25)-(2.29) is motivated. In an ideal setting, the feedforward controller is designed as
the exact inverse of the state-space model in (2.25)-(2.29). However, an exact plant inverse is only
possible when all system parameters are known, which is not the case for the considered system,
e.g., patient parameters Raw and Clung are unknown. As a result, an exact plant inverse is not
available.

As explained in Section 1.3.3, a suitable strategy is to base the feedforward controller on the
system components that are fixed and known, i.e., the hose system and expiration valve. This
control strategy is achieved by designing the feedforward controller using the constant steady-state
solution of the state-space model. Fig. 3.1 shows the patient-hose-valve system in a constant
steady state. A constant steady state is achieved by setting u1 and u2 to a constant value, i.e.,

paw

Patient

Raw

Rhose1

pcontrol = paw

Upiezo =

Qexp

Rexp

pamb = 0

Rhose2

(u1ss)

(u2ss)

ξ(uss)

Qout=
=plung

Fig. 3.1. Schematic drawing of the patient-hose-valve system in a constant steady state.
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Fig. 3.2. The pressure-controlled breathing cycle with the constant steady-state phases
indicated in red.

u1ss and u2ss. As explained in Section 2.2, the open-loop system with constant inputs is globally
asymptotically stable and has a unique steady-state solution. This ensures that the system reaches
a constant steady state and does not diverge. In a constant steady state, the airway pressure and
lung pressure are equal, i.e., paw = plung. Consequently, no flow enters or leaves the patient, i.e.,
Qpat = 0, which means that all flow generated by the blower leaves through the expiration valve,
i.e., Qout = Qexp, and the constant steady-state solution is independent of the patient parameters
Raw and Clung. In addition, the expiration valve resistance Rexp is also constant and patient
independent. This means that the Rexp only depends on the constant inputs u1ss and u2ss, i.e.,
Rψ(u, plung) in (2.20) changes to a new constant function Rξ(uss) for Rexp. These steady-state
characteristics are supported using the non-linear state-space model in Appendix A.

Fig. 3.2 shows the pressure-controlled breathing cycle with the output targets ptarget and Qbf .
Phase II and IV of the pressure-controlled breathing cycle are both examples of the system in a
constant steady state and are indicated with a red line in Fig. 3.2. The exact value of paw, Qexp,
and Qout during phase II and IV depends on the value of the constant steady-state inputs u1ss
and u2ss, and the hose and valve parameters.

The main concept of the constant steady-state feedforward controller is that for constant
targets of ptarget and Qbf , it is always possible to find constant inputs u1ss and u2ss which achieve
paw → ptarget, Qexp → Qbf , and Qout → Qbf , as the system reaches a constant steady state. In
other words, using the asymptotically stable characteristic and the unique steady-state solution
of the system, it is possible to find suitable constant inputs such that the system response will
converge to the desired constant steady state during phase II and IV. The constant steady-state
inputs u1ss and u2ss can therefore be used as feedforward inputs u1ff and u2ff , respectively. Note
that this also means that the feedforward controller does not require the output switch (2.34),
described in Section 2.3, because during the constant steady state Qout = Qexp. In the following
section, a high-level description of the feedforward controller design is presented.

3.1.1 High-level controller design

In this section, a step-by-step description of the feedforward controller is presented. The feedfor-
ward inputs, u1ff and u2ff , are derived using the following three steps:

1. The constant steady-state input u1ss and the desired constant expiration valve resistance
Rexp := Rξ(uss) are calculated directly by solving the state-space model (2.25)-(2.29) in a
constant steady state. To achieve this, Rhose1, Rhose2, ptarget, and Qbf are required. Note
that the parameters Rhose1 and Rhose2 are typically obtained through calibration. The
constant steady-state solution of the system is derived in Section 3.2.
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Fig. 3.3. Feedforward controller block scheme.

2. Using the solution of u1ss and the desired Rexp, the constant steady-state piezo voltage u2ss
is obtained using an inverse model of the expiration valve. This expiration valve model is
obtained by means of a Look-Up Table (LUT). In Section 3.3, it is described how this LUT
is obtained and implemented.

3. The values for u1ss and u2ss are now used as feedforward inputs u1ff and u2ff , respectively.

Fig. 3.3 visualizes the feedforward calculation process using a block scheme. In the following
section, the constant steady-state solution for step one of the feedforward controller is derived.

3.2 Constant steady-state solution of the patient-hose-valve
system

In this section, the constant steady-state solution of the patient-hose-valve system in (2.25)-(2.29)
is derived. This constant steady-state solution is used to derive the input u1ss and the desired
constant valve resistanceRξ(uss). The constant steady-state solution is achieved by setting ṗlung =
0. As a result, the state equation part of (2.25) is defined as

p̄lung = −A−1(uss)B(uss)u1ss, (3.1)

in which p̄lung is the constant lung pressure, A(uss) is the state matrix in a constant steady state,
and B(uss) is the input matrix in steady-state. Note that the matrices no longer depend on the
state plung, because Rψ(u, plung) is now Rξ(uss). The equation in (3.1) describes the constant
steady-state solution of the lung dynamics. This solution is extended to a constant steady-state
output solution. The output solution is described by[

paw
Qbf

]
=

[
Cp(uss)
CQ(uss)

]
p̄lung +

[
Dp(uss)
DQ(uss)

]
u1ss, (3.2)

in which paw and Qbf are the constant steady-state outputs during phase II and IV. The output
equation Qbf can either be the desired baseflow level for Qexp or Qout in (2.23) and (2.24),
respectively. The reason for this is that the constant steady-state values of Qexp and Qout are the
same during phase II and IV, see Fig. 3.2. In more detail, this means that CQ(uss) and DQ(uss)
are either CQexp(uss) and DQexp(uss), or CQout(uss) and DQout(uss). This choice is trivial and
does not change the outcome whatsoever. Substituting the constant steady-state lung dynamics
from (3.1) in (3.2) results in[

paw
Qbf

]
=

[
Cp(uss)
CQ(uss)

]
(−A−1(uss)B(uss)u1ss) +

[
Dp(uss)
DQ(uss)

]
u1ss, (3.3)

[
paw
Qbf

]
=

([
Cp(uss)
CQ(uss)

]
(−A−1(uss)B(uss)) +

[
Dp(uss)
DQ(uss)

])
u1ss. (3.4)
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Then, the complete constant steady-state output response is calculated by substituting the state-
space matrices (2.26)-(2.29) into (3.4). Then, (3.4) is inverted to derive u1ss and Rξ(uss), which
results in

u1ss = paw +QbfRhose1, (3.5)

Rξ(uss) =
paw
Qbf

−Rhose2. (3.6)

A physical explanation for (3.5) is relatively simple, because it is a rewritten version of the pressure
drop equation in (2.4). Correspondingly, (3.6) is a rewritten version of (2.13).

The hose resistances Rhose1 and Rhose2 are constant and are typically estimated by a calibration
routine before ventilation starts. From (3.5) and (3.6) it is concluded that, if the desired targets
for paw and Qbf are known, u1ss and the desired valve resistance Rξ(uss) are computed using (3.5)
and (3.6). In this case, the output paw is then replaced with the desired pressure target ptarget,
see Fig. 3.3. This means that step one from Section 3.1.1 is now fulfilled. In step two, the input
u2ss is obtained by deriving a LUT of Rξ(uss). In the following section, this LUT is derived and
its function in the feedforward controller is explained.

3.3 Expiration valve look-up table

This section describes the derivation of a LUT for Rξ(uss), i.e., the desired Rexp in a constant
steady state. This LUT is used to obtain the constant steady-state input u2ss, as described in
step two of Section 3.1.1. First, experiments are described to generate a LUT for the expiration
valve resistance Rexp in steady state. Thereafter, it is described how this LUT is used to obtain
u2ss.

Fig. 3.4 shows a schematic of the experimental set-up that is used to perform the measure-
ments. The patient side is closed-off, which does not affect the constant steady-state behavior of
the system, because Qpat = 0 during steady state anyway. The LUT is derived by setting the
blower pressure u1 to a constant value, while slowly ramping the piezo voltage u2 up and down
from 24V to -24V, see Fig. 3.5a. Using this strategy, the expiration valve moves from a completely
closed to a completely open position, and vice versa. During this ramp, the expiration flow Qexp
is measured, which results in a relation between Qexp and u2 at a given u1. Fig. 3.5b shows one
measurement of Qexp while the u2 ramp is applied and u1 is kept constant at 20 mbar. Qexp ↑ is
the measured expiration flow when the expiration valve is opening, and Qexp ↓ is the measured
expiration flow when the expiration valve is closing.

In an ideal situation, the opening and closing motion of the expiration valve generates the
same flow curve, i.e., Qexp ↑= Qexp ↓. However, a hysteresis curve is observed in Fig. 3.5b. This
hysteresis effect is caused by non-linear frictional effects inside the piezo valve. During ventilation
of a patient, it is impossible to know on which side of the hysteresis curve the expiration valve is
operating, because of the unknown disturbances by the patient. Therefore, picking one side of the
hysteresis curve is not a suitable solution and leads to significant model errors when the expiration
valve operates on the wrong curve. In more detail, if the expiration valve is modeled at Qexp ↑

Ventilation

u1

Qexp

Inspiration hose

Expiration hose

paw

Expiration valve

u2

pexp

module

Fig. 3.4. Experimental set-up for LUT measurements.
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(a) u2 voltage ramp input
signal.

(b) Measurement of Qexp while a u2 ramp is applied. u1 is set constant
to 20 mbar.

Fig. 3.5. One of the measurements of Qexp, which is used to derive a LUT for the desired Rexp
in a constant steady state. The hysteresis effect of the piezo valve is clearly visible in figure b.

while the actual expiration valve operates on Qexp ↓, this would result in a significant flow error.
Take for example u2 = 0V in Fig. 3.5b, then the Qexp flow error is defined as

Qexp ↓ − Qexp ↑= 110− 30 = 80 L/min, (3.7)

which is the vertical distance between Qexp ↑ and Qexp ↓. The same error occurs when the
expiration valve is modeled at Qexp ↓ while the expiration valve operates at Qexp ↑. To minimize

this modeling error, Qexp ↑ and Qexp ↓ are averaged, which results in Q̃exp, see Fig. 3.5b. The
averaging process ensures that the modeling error never reaches the maximal value when the
expiration valve operates on the wrong hysteresis curve. Using Q̃exp, the flow error at u2 = 0 is
now defined as

Qexp ↓ − Q̃exp = Q̃exp − Qexp ↑= 40 L/min. (3.8)

As a result, the flow error is now limited and is independent of which curve the expiration valve
is operating, which also results in a more predictable model error.

To derive a model for the desired constant Rexp, the single measurement of Q̃exp in Fig. 3.5b
is repeated for a variety of constant pressure inputs of u1. By doing this, a 3D-surface is created
for the average expiration flow Q̃exp which depends on u1 and u2. During each measurement,
the expiration valve pressure pexp is also measured and averaged, i.e., p̃exp. It is now possible to

obtain the average valve resistance R̃exp using

R̃exp =
p̃exp

Q̃exp
. (3.9)

Using (3.9), a 3D-surface is created for the average expiration valve resistance R̃exp, which is
defined for a variety of values of u1 and u2. Fig. 3.6a shows this 3D-surface which functions as a
LUT for R̃exp. The measurements of the LUT are performed sufficiently slow, such that they are
valid during a steady state. This means that the inputs u1 and u2 are replaced with the constant
inputs u1ss and u2ss, respectively. A more detailed description of the measurement process of the
LUT experiment is provided in Chapter B.

To fulfill the second step of the feedforward controller in Section 3.1.1, the R̃exp LUT is used
as the expiration valve model in a constant steady state. This model is inverted to derive a LUT
for u2ss. However, the LUT in Fig. 3.6a is subject to measurement noise which means that it is
not unique, i.e., it is not invertible. To achieve an invertible LUT, a least squares fit is made for
the measured R̃exp LUT, which is monotonically increasing. The fitting function is comprised of
the following structure:

R̃exp = αeγu2ss + β, (3.10)
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(a) LUT of the average expiration valve resistance
R̃exp.

(b) Error made by using a fit of the LUT. This fit
ensures that the LUT is unique.

Fig. 3.6. LUT of the average constant valve resistance R̃exp, which is achieved by applying the
voltage ramp for u2 for several constant pressures of u1.

where α, β, and γ are strictly positive fitting parameters that are used to fit each measurement
of R̃exp, for a constant pressure u1ss. In other words, the fitting parameters α, β, and γ depend
on the constant pressure u1ss. Fig. 3.6b shows the fitting error around the constant steady-state
operating voltage and pressure of the expiration valve. The fitting equation (3.10) is inverted to
obtain a function for u2ss, which results in

u2ss =
1

γ
ln

(
R̃exp − β

α

)
. (3.11)

This equation for u2ss depends on the average constant valve resistance R̃exp and u1ss through
the parameters α, β, and γ. As a result, the required inverse valve model from step two in Section
3.1.1 can be obtained by filling in the desired Rexp and the fitting constants for the desired u1ss.
Therewith, step two of the feedforward controller in Section 3.1.1 is fulfilled. As a result, it is now
possible to calculate the full feedforward controller inputs u1ff and u2ff using the block scheme
in Fig. 3.3, the state-space model in (2.25)-(2.29), and the LUT for the constant expiration valve
resistance.

3.4 Limitations of the feedforward controller

Although the feedforward controller is patient independent, it also has some limitations that are
explored in this section. First, the feedforward controller uses a LUT of the expiration valve that
is based on the average value of a hysteresis curve. As a consequence, the feedforward controller
always makes an unavoidable error. Another limitation is that the feedforward controller is de-
signed for the constant steady-state phases II and IV, and not for the transient phases I and III
in Fig. 3.2. The only thing that is guaranteed is that the system will eventually converge to
the steady-state phase II and IV. However, the transient behavior is not predictable. In addition,
feedforward control is an open-loop control strategy, which means that it is not suitable for attenu-
ating unknown disturbances, such as, a coughing patient or a change in hose resistance. Therefore,
a feedback controller is designed in Chapter 4. In the next section, the use of a frequency domain
based feedforward controller is discussed.

3.5 Frequency domain alternative strategy

This section describes an alternative feedforward strategy based on a frequency domain approach.
Note that this feedforward strategy is not applied in this research project, and is mainly explained
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as an alternative solution.
From a frequency domain standpoint, it is also possible to design the same constant steady-state

feedforward controller using Frequency Response Functions (FRF). For instance, it is possible to
derive the static gain of the ventilation system using local FRF measurements of the system. The
static gain is the system gain at low frequencies. To achieve a feedforward controller, the static
gain is inverted, and used as a feedforward signal. This strategy is also referred to as ”steady-state
decoupling” in [19]. This feedforward controller is easier to compute in less time compared to the
constant steady-state approach in this chapter, because it does not require the derivation of the
complete state-space model and the corresponding constant steady-state solution.

Although this steady-state decoupling strategy might seem tempting, it has several disadvan-
tages compared to the state-space strategy:

• The low frequent dynamics of the complete ventilation system are not captured in one single
FRF, because they change significantly at different baseflow and airway pressure levels. To
obtain a useful FRF based feedforward, a very large variety of measurements is required
which is not preferable.

• Using the FRF based feedforward approach, it is unknown how the hysteresis effect of the
expiration valve in Section 3.3 affects the constant steady-state behavior.

3.6 Summary

This chapter described the design process of a patient-independent feedforward controller for the
non-linear system in (2.25)-(2.29). First, the overall feedforward controller design is introduced
which uses the knowledge of all fixed components of the mechanical ventilation system. Thereafter,
the required constant steady-state solution of the state-space model is derived for u1ss and the
desired expiration valve resistance Rexp. This solution automatically provides the first feedforward
input u1ff . After that, an experimental model is obtained for Rexp which depends on u1ss and
u2ss. This model is inverted to obtain a LUT for u2ss, i.e., u2ff . As a result, a feedforward
controller is derived for phase II and IV of the breathing cycle, which solely depends on Rhose1,
Rhose2, ptarget, and Qbf . Moreover, it does not depend on the patient parameters, which is a strong
feature. Finally, the limitations of the proposed feedforward controller design are presented. In
the next chapter, a decentralized feedback controller is designed for the patient-hose-valve system
which is added to the feedforward controller. This feedback controller is used to achieve robustness
against unknown patient disturbances and modeling errors.
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Chapter 4

Feedback controller design

In this chapter, the design process of a decentralized feedback controller is presented. The design
of a feedback controller is part of the third sub-objective of Section 1.4. The feedback controller
is used in combination with the feedforward controller from Chapter 3. As explained in Section
1.3.3, the feedback controller is required to attenuate unknown patient disturbances. In addition,
the feedback controller is required to compensate for modeling errors and uncertainties, such as
the hysteresis effect of the expiration valve in Section 3.3.

In Section 4.1, the use of a decentralized feedback controller is motivated. Thereafter, in
Section 4.2, the considered system is identified through experimental identification as a linear
MIMO plant. In Section 4.3, the decentralized controllers are derived for the identified system.
In addition, the closed-loop stability of the MIMO system is analyzed without the output switch.
After that, in Section 4.4, the closed-loop stability of the switched system is discussed. Finally,
the chapter is summarized in Section 4.5.

4.1 Decentralized feedback control motivation

This section describes the motivation for a decentralized feedback control strategy for the consid-
ered patient-hose-valve system. Fig. 4.1 shows the complete control scheme for the patient-hose-
valve system. In this control scheme CGb represents the internal blower controller and dynamics,
G is the patient-hose-valve system, Cff resembles the designed feedforward controller from the
previous chapter, and C1fb and C2fb represent the decentralized feedback controllers. The output
switch is used to switch between Qexp and Qout to achieve a fully defined baseflow target. The
switching condition φ(Qout, ptarget) is defined in (2.34). As described in Section 2.1.2, the internal
blower controller and dynamics are assumed to be under perfect control, i.e., CGb = 1.

As described in [19], a decentralized feedback control strategy uses independent SISO con-
trollers to control the MIMO system. For this system, this means that one controller is designed
for the transfer function between paw and u1, and another controller that is suitable for the transfer
function between Qexp and u2, as well as the transfer function between Qout and u2.

First, in Section 4.1.1, the control limitations of the derived state-space model (2.25)-(2.29)
are discussed. In addition, the need for system identification experiments for feedback control is
explained. After that, in Section 4.1.2, the decentralized control strategy is motivated.

4.1.1 Control limitations of the non-linear state-space model

This section motivates why control strategies, such as, feedback linearization and input-output
decoupling, are not suitable for the considered patient-hose-valve model. Many model-based
MIMO feedback control strategies have been developed for non-linear state-space models, see
[20] and [21]. For example, feedback linearization is often used to control multivariable non-
linear systems. By deriving the error dynamics of a non-linear state-space model, it is possible
to determine a feedback controller which yields asymptotic tracking of a desired output reference.
Using this technique the input-output dynamics of the system are linearized, which allows for
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Fig. 4.1. Control scheme of the full system with the feedforward controller Cff from Chapter 3
and the decentralized feedback controllers C1fb and C2fb. The internal blower dynamics and
controller CGb are equal to 1, as explained in Section 2.1.2. The output switch φ(Qout, ptarget) is
applied for the baseflow tracking controller. The switching condition is defined in 2.34.

well-known linear control strategies. Although this method is often applied to a large variety of
non-linear systems, it is not suitable for the patient-hose-valve system in (2.25)-(2.29). The reason
for this is that feedback linearization methods require a non-linear system which is affine in the
input, i.e., the inputs appear linearly in the state-space model [21, p. 163]. This is not the case for
the state-space model in (2.25)-(2.29). Moreover, feedback linearization partially aims to linearize
the non-linear dynamics, which means that it is important that the state-space model is accurate
and all model parameters are known. As described in Section 1.3, this is not the case for this
ventilation system, because the patient parameters Raw and Clung are unknown. Furthermore,
the outputs of the system, i.e., paw, Qexp, and Qout, all contain feedthrough terms of both inputs.
This also makes it challenging to cancel all unstable dynamics due to multiple couplings between
the inputs and the state in each output. This also increases the need for an accurate model. A
poorly estimated parameter leads to an incomplete cancellation of the system dynamics, which
might result in instability. As a result, a feedback linearization technique is considered not a
suitable control solution for this system.

An input-output decoupling technique is also challenging, because of the non-affine input cou-
pling and the feedthrough terms in all outputs. This increases the sensitivity to model uncertainty,
which limits the use of such techniques.

A different strategy is to base the feedback controller design on a linearization of the non-linear
system around an operating point. The linearized model allows for well-known linear control
strategies for the feedback controller design. Linearizing the system in (2.25)-(2.29) results in a
linear MIMO state-space model. The linearized model is obtained by calculating the following
partial differential equations:

Alin =

[
∂ṗlung
∂plung

]
op, Blin =

[
∂ṗlung
∂u1

∂ṗlung
∂u2

]
op,

Clin =


∂paw
∂plung
∂Qexp
∂plung
∂Qout
∂plung

 op, Dlin =


∂paw
∂u1

∂paw
∂u2

∂Qexp
∂u1

∂Qexp
∂u2

∂Qout
∂u1

∂Qout
∂u2

 op,

(4.1)

with the complete linearized system denoted as

Glin =

[
Alin Blin

Clin Dlin

]
(4.2)

The system is linearized around an operating point, i.e., op. To realize the linearization, the fitted
LUT model of the expiration valve in (3.10) is used as a model for Rexp in a constant steady state,
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i.e., Rξ(uss). As a result, the state-space model is only accurate in steady state. For now, the
hysteresis effect of the piezo valve is ignored, because this is deemed out of scope for this research
project. The operating point op for linearization is described as

op =

 u1ssu2ss
p̄lung

 =

 paw +QbfRhose1
LUT

−A−1(uss)B(uss)u1ss

 (4.3)

where LUT represents the look-up table in Fig. 3.6a, which obtains u2ss using u1ss and the desired
Rexp. Using the equation in (4.3), it is possible to linearize the system at a desired constant airway
pressure paw and a desired baseflow Qbf , by choosing realistic values for the state-space parameters
Raw, Clung, Rhose1, and Rhose2. The output targets are then translated to the desired inputs using
(4.3).

Fig. 4.2 shows a 3×2 MIMO Bode diagram of the linearized system at paw = 30 mbar and
Qbf = 3 L/min. The lungs are modeled with an airway resistance Raw = 5 mbar s/L and a
compliance Clung = 20 ml/mbar, i.e., an R5C20 lung. Rhose1 and Rhose2 are set to 1.02 mbar

Fig. 4.2. Bode diagram of the linearized state-space model.
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s/L. Using these parameters, it is possible to calculate the desired op using (4.3) which results in
the required inputs and state op = [30.051 7.80 30]T .

It is observed from Fig. 4.2, that only one Bode diagram is dimensionless, i.e., paw/u1. As a
result, vertical shifting effects are observed in all Bode diagrams except for paw/u1. The linearized
transfer function for paw/u1 contains almost no dynamics, i.e., it behaves as a constant gain up
until 20 Hz. Only a very slight drop-off is observed at higher frequencies, due to the lung dynamics.
This means that an increase in blower pressure is almost one to one proportionate to the response
of the airway pressure paw up until 20 Hz. A similar drop-off effect is observed for the entry
paw/u2. Although it has the same drop-off shape as paw/u1, it is shifted vertically due to the unit
mismatch. This means that the valve voltage u2 has a similar effect on paw as the blower pressure
input u1. The drop-off is again caused by the high-frequency lung dynamics, which results in more
flow entering the lungs. Consequently, the airway pressure paw drops.

The middle two transfer functions, i.e., Qexp/u1 and Qexp/u2, show a proportionate response
at low frequencies. Above 20 Hz, the response of Qexp to both inputs shows a similar drop-off,
due to the high-frequency lung dynamics, which causes more air to flow into the lungs and less
air to flow through the expiration valve.

The bottom two figures, i.e., Qout/u1 and Qout/u2, show the opposite behavior compared to
Qexp at higher frequencies. As explained, more air flows into the lungs at higher frequencies, which
also increases the the blower output flow Qout. This explains the gain increase in both bottom
figures.

Although the lung dynamics are visible in every transfer function in Fig. 4.2, they only show
up at high frequencies above 20 Hz. The reason for this is that the system is linearized around
a constant steady state. As discussed in the previous chapter, the constant steady-state phase is
independent of the lung dynamics, which means that those dynamics are less visible in the Bode
diagrams. In addition, the model for Rexp in Section 3.3 is obtained in a constant steady state,
which means that it does also not contain any lung dynamics. The remaining dynamics in Fig.
4.2 are governed by static gains and feedthrough terms which only represents the system behavior
during a constant steady state. However, the linearized model is not suitable to simulate small
perturbations around this constant steady state.

To achieve a suitable MIMO model for the feedback controller design process, the real system
dynamics are obtained by means of identification experiments of the actual set-up. Using identifi-
cation experiments, it is possible to achieve the actual system dynamics for perturbations around
a constant steady-state operating point. The identification experiments are performed at vari-
ous steady-state operating points to fully define the patient-hose-valve system. The identification
process is explained in more detail in Section 4.2. Using the identified linear model, a suitable
linear MIMO control strategy is applied. The next section motivates the choice for a decentralized
feedback controller.

4.1.2 Motivation for a decentralized solution

In this section, the choice for a decentralized controller instead of other MIMO strategies is mo-
tivated for the identified linear system. Over the past fifty years, many MIMO feedback control
strategies have been developed for coupled linear systems, see [19] and [22]. MIMO control strate-
gies such as Linear Quadratic Guassian (LQG) control and H∞ control are often used to control
multi-variable systems. However, these techniques require an accurate model. The accuracy of
each separate model is sufficient. However, due to the large variety in patients, baseflow levels,
and pressure levels, picking a nominal model is challenging and might not result in the desired
overall performance. In addition, the identification experiments are obtained by perturbating the
system around a constant steady-state operating point. As a result, the behavior of the system
during the transient phases I and III in Fig. 3.2 is still unpredictable. Other MIMO control
strategies, such as decoupling, are also not suitable for this system. A static decoupling is not
possible as explained in Section 3.5. Although it is possible to decouple one specific patient type,
at a fixed pressure and baseflow level, it will most likely deteriorate the performance for other
configurations.

A more suitable solution is to use a decentralized feedback control strategy, which is described
in [19]. This is a straight-forward solution, in which each controller can be based on well-known
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(a) Experimental set-up for identification
measurements.

(b) Close-up of the ventilation module with a
sensor just before the expiration valve.

Fig. 4.3. Set-up with all components that were used for the identification experiments.

loop-shaping techniques. The next sections show the complete decentralized feedback controller
design process in detail. In Section 4.2, the identification process of a linear MIMO control
system is shown. After that, an interaction analysis is performed in Section 4.2.3 to quantify the
coupling inside the system. Finally, in Section 4.3, the design process of the decentralized feedback
controller is shown.

4.2 System identification

This section describes the process of identifying a linear MIMO system by means of Frequency
Response Functions (FRF’s) of the real set-up using a predefined set of test lungs. These identified
models are later used for the decentralized controller design in Section 4.3. First, in Section 4.2.1,
the experimental set-up is introduced which is used to identify the MIMO models. Thereafter, in
Section 4.2.2, the measurement procedure for the identification experiments is explained and the
obtained MIMO FRF’s for several lungs are shown. After that, in Section 4.2.3, an interaction
analysis is applied to the obtained MIMO models to quantify the coupling in the system.

4.2.1 Experimental set-up

In this section, the experimental set-up is explained, which is used for the identification experi-
ments. Fig. 4.3 shows the considered set-up, which contains the ventilation module, hose system,
breathing simulator, and an expiration valve. The patient’s airway and lungs are simulated us-
ing the breathing simulator, i.e., the ASL 5000 simulator (IngMar Medical, Pitssburg, PA). This
breathing simulator accurately simulates a large variety of linear one-compartmental patients, by
setting the resistance Raw and the lung compliance Clung to a desired value. The ASL 5000 is
attached to the hose system and the expiration valve. A sensor is located at the end of the expi-
ration hose just before the expiration valve. This sensor measures the expiration flow Qexp going
through the expiration valve and the pressure pexp. The response of paw is estimated using inter-
nal measurements Qout and pout. dSPACE software and hardware is used to receive the measured
data from the internal and external sensors. In addition, dSPACE is used to control the actuators
and computes all required algorithms to actuate the mechanical ventilator. The sampling time for
each experiment is set to 500 Hz.

4.2.2 Obtaining a MIMO FRF

This section shows how the MIMO FRF is obtained using the real set-up. To fully describe the non-
linear patient-hose-valve system, a large variety of measurements is required at different pressure
and flow operating points. The open-loop system is stable for bounded inputs, as described in
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Section 2.2. This means that it is possible to use an indirect open-loop identification experiment,
as described in [23].

By exciting each input separately, and measuring the output response for each input, it is
possible to obtain the MIMO FRF models. This is achieved as follows: first, u1 and u2 are set
to a constant value, such that the set-up reaches a desired steady state. After that, u1 is excited
and the output response of paw, Qexp, and Qout are measured. Thereafter, u2 is excited and the
output responses are again measured. A white-noise signal is chosen as an excitation signal, which
is filtered through a bandpass filter. This bandpass filter improves the quality of the estimated
FRF models for a predefined frequency range and reduces the required measurement time. The
bandpass filter consists of a high-pass and a low-pass filter which creates the predefined frequency
range for the white-noise signal. The range for the bandpass filter is set between 0.5 and 50 Hz.
The identification experiments are performed for five different combinations of lung parameters
Raw and Clung, three different paw pressure levels, and three different baseflow levels Qbf .

Fig. 4.4 shows the obtained MIMO FRF measurements for four different patients, perturbed

Fig. 4.4. Obtained MIMO FRF of the system for several lung parameters. The measurements
are obtained by perturbing the system around a constant steady-state operating point.
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around the steady state at paw = 30 mbar and Qbf = 3 L/min. This is the same operating
point as the one used for the linearized simulation models in Fig. 4.2. In the legend of Fig. 4.4,
each lung is expressed using R and C, where R = Raw in mbar s/L and C = Clung in ml/mbar.
Although a total of fifteen identification measurements have been performed, Fig. 4.4 only shows
the four cases that are the most challenging for stability. In other words, these lungs and settings
require the most stabilizing control action. The measured system in Fig. 4.4 represents the system
behavior around a steady-state operating point. The measured system is defined as

G =

G11 G12

G21 G22

G31 G32

 (4.4)

in which each matrix entry in G represents the corresponding identified model from Fig. 4.4.
As shown in the figure, the transfer functions are not dimensionless except for paw/u1 (G11) in

the upper left corner. This transfer function shows that the system behavior between 2 and 10 Hz
is mostly determined by the Raw term, because the R5C20 and R5C50 lung show similar behavior
up until 10 Hz. The lungs with a higher resistance both show the same behavior as well up until
10 Hz. At high frequencies, i.e., above 30 Hz, the compliance Clung is the dominant term. From
the top left figure it is observed that the R5C50 and R20C50 lung show the same behavior above
30 Hz. Clung is more dominant at higher frequencies, because the lung dynamics are excited at
higher frequencies. The transfer function paw/u2 shows a low gain at frequencies below 1 Hz. This
is due to the internal blower controller which ensures that pcontrol is constant at low frequencies,
which also keeps paw constant. In other words, opening and closing the expiration valve has a
minimal effect on the airway pressure at low frequencies.

The Qexp/u2 and Qout/u2 transfer functions both show the same low-frequency behavior, i.e.,
a static gain of approximately 4.5 L/min V−1. This corresponds to the constant steady-state
behavior of the ventilation system, i.e., Qout = Qexp. This constant steady-state effect is not
observed between Qexp/u1 and Qout/u1. Instead, Qexp/u1 shows a noisy signal up to 6 Hz. This
is explained by the fact that a pressure perturbation near the blower is almost completely damped
out as soon as it reaches the expiration valve. This is mainly due to the long inspiration and
expiration hose distance through which the air propagates. Furthermore, the long hose distance
also causes a significant phase delay for the transfer function Qexp/u1.

It is observed that the identified system in Fig. 4.4 and the linearized model in Fig. 4.4, shows
fairly similar constant steady-state behavior for frequencies below 1 Hz. However, the identified
system shows much more active lung dynamics up until 10 Hz compared to the linearized model.
Therefore, the identified system in Fig. 4.4 is deemed more suitable for the feedback controller
design process.

To design the decentralized feedback controllers, it is important to quantify the input-output
coupling in the identified MIMO system. The dimensional dependency of each transfer function
makes it challenging to compare the magnitude of each MIMO entry with one another. In the next
section, an interaction analysis is performed to quantify the coupling between the different FRF’s.
In addition, this interaction analysis is used to conclude about a suitable controller bandwidth.

4.2.3 Interaction analysis

This section describes an interaction analysis for the measured system G in Fig. 4.4. The in-
teraction analysis is used to motivate the controller bandwidth choice in Section 4.3.1. The unit
dependency of the MIMO transfer functions makes it challenging to quantify the coupling in the
system. A unitless interaction analysis is used to quantify the coupling using the Relative Gain
Array (RGA). The RGA and its characteristics are described in detail in [19]. Due to the out-
put switch in (2.34), it is possible to divide the system in (4.4) as two separate MIMO systems,
depending on which output is used. The first MIMO system with Qexp as output is defined as:

paw = G11u1 +G12u2,

Qexp = G21u1 +G22u2.
(4.5)

30



CHAPTER 4. FEEDBACK CONTROLLER DESIGN

The second system with Qout as an output is defined as:

paw = G11u1 +G12u2,

Qout = G31u1 +G32u2.
(4.6)

First, the RGA is determined for the case in (4.5) where paw and Qexp are considered as the
output. As discussed in Section 1.3, u1 is used to control paw, and u2 is used to control Qexp. As
a result, two different gains can be calculated for the MIMO system. The first gain calculates the
transfer function from u1 to paw when u2 is constant, or equivalently pick u2 = 0. The transfer
function from u1 to paw is then defined as

paw = G11u1. (4.7)

For the second gain, the same transfer function from u1 to paw is calculated, but now the loop
between u2 and Qexp is under perfect control, i.e., Qexp = 0. The required control action for u2
to perfectly control Qexp = 0 also depends on the first input u1, due to interaction. As a result,
the perfect control action for u2 is defined as:

u2 = −G21

G22
u1. (4.8)

Note that substituting this u2 control action into (4.5) results in the desired Qexp = 0. To calculate
the second gain, (4.8) is substituted in paw equation of (4.5), which results in

paw =

(
G11 −

G12G21

G22

)
︸ ︷︷ ︸

Ĝ11

u1. (4.9)

The difference between Ĝ11 and G11 shows the change in gain when the loop from u2 to Qexp is
closed. Using this result, the corresponding RGA element is then calculated using

λ11 =
G11

Ĝ11

. (4.10)

If λ11 = 1, then the gains G11 and Ĝ11 are almost equal. This means that the effect of closing
an individual feedback loop has a negligible effect on the other loop. In other words, there is
no bi-directional interaction between the two loops. The calculation of the RGA element λ11 in
(4.10) is repeated for the second subsystem in (4.6) using the same strategy.

The RGA element λ11 is shown for the MIMO sub-systems (4.5) and (4.6) in Fig. 4.5a and
4.5b, respectively. The four lungs that are shown use the same parameters as the ones shown in

(a) |λ11| with paw and Qexp as outputs. (b) |λ11| with paw and Qout as outputs.

Fig. 4.5. The absolute value of the RGA element λ11 shown for the frequency range of interest
for both sub-systems in (4.5) and (4.6). The RGA element is calculated for four different lungs.
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the MIMO Bode diagrams in Fig. 4.4. If the output switch is applied to Qexp, the RGA element
in Fig. 4.5a describes the interaction in the system. If the output switch is applied to Qout, the
RGA element in Fig. 4.5b describes the interaction in the system.

From Fig. 4.5a it is concluded that the system with Qexp is decoupled, i.e., λ11 ≈ 1, for all
lungs up until 6 Hz. After that, λ11 deviates too far from 1 which means that strong coupling
effects might be observed by closing a feedback loop. For the sub-system with Qout in Fig. 4.5b,
the system is only decoupled up until approximately 1 Hz. As a result, it is concluded that
the switching system shows coupling effects at frequencies higher than 1 Hz. This characteristic
might induce stability problems for the decentralized feedback controller design if the controller
bandwidth is chosen higher than 1 Hz. However, a typical breathing cycle in Fig. 1.4a takes four
seconds to complete. This corresponds with a periodic reference of 0.25 Hz, which means that a
controller bandwidth up to 1 Hz is sufficient for this system.

The next section, the decentralized feedback controller is designed using the obtained knowl-
edge of this interaction analysis.

4.3 Decentralized feedback controller design

This section describes the decentralized feedback controller design process based on the identified
MIMO systems from Section 4.2. First, the two independent SISO controllers are tuned in Section
4.3.1. Then, stability of the closed-loop MIMO system is proven in Section 4.3.2.

4.3.1 Decentralized controller tuning

As described in Section 4.1, a decentralized controller consists of a combination of independent
SISO controllers. A decentralized controller uses a diagonal structure which is defined as

C =

C11 0 0
0 C22 0
0 0 C22

 . (4.11)

The purpose of this section is to define this diagonal controller C, which is used to control the
measured system G in (4.4). The entry C11 is tuned for G11, and C22 is tuned for both G22 and
G32. Note that this means that only one feedback controller is tuned for both Qexp and Qout.
In theory it is possible to design separate controllers for Qexp and Qout. However, this would
introduce a switching controller, which complicates the controller design process and makes it
very challenging to guarantee stability of the complete system. To only assess the SISO diagonal
control systems, the diagonal system G̃ is defined as

G̃ =

G11 0
0 G22

0 G32

 (4.12)

Using this diagonal model structure, the open-loop system L̃ is defined as

L̃ = CG̃. (4.13)

Substituting the matrices G and C from (4.4) and (4.11) results in

L̃ =

L̃11 0

0 L̃22

0 L̃32

 =

G11C11 0
0 G22C22

0 G32C22

 . (4.14)

The controllers C11 and C22 are both designed as cut-off integrators, i.e., PI controllers. The P
action is required to shift the Bode diagram vertically to compensate for the offsets due to the unit
mismatch. The integral action I is required to eliminate steady-state tracking errors due to model
uncertainty that is not taken into account with the feedforward controller. The SISO controllers
are defined as

C11 =
0.1s+ 4.398

s
, C22 = 10−4

0.14s+ 13.19

s
. (4.15)
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Fig. 4.6. Open-loop controller tuning for L̃11.

(a) Open-loop controller tuning for L̃22. (b) Open-loop controller tuning for L̃32.

Fig. 4.7. Open-loop controller tuning for the baseflow controller.

The controllers both achieve a bandwidth of approximately 1 Hz. As a result, the coupling effects
that are discussed in Section 4.2.3 are limited. In Fig. 4.6 and 4.7, the tuning process of the
SISO controllers for the R5C20 lung is shown. Each open-loop of (4.14) and the corresponding
controller is shown in Fig. 4.6, 4.7a, and 4.7b. The controllers are designed to achieve low-
frequency reference tracking up to 1 Hz. In the next section, stability of the MIMO system is
proven.

4.3.2 MIMO stability

This section describes a generalized Nyquist stability test for the MIMO system in Fig. 4.4 with
the decentralized controller design in (4.15). To achieve MIMO closed-loop stability the following
theorem from [19, Theorem 4.9] is applied.

Theorem 4.3.1 ([19]) Let Pol denote the number of open-loop unstable poles in L. The closed-
loop system with loop transfer function L and negative feedback is stable if and only if the Nyquist
plot of det(I + L)

i) makes Pol anti-clockwise encirclements of the origin, and

ii) does not pass through the origin.

Due to the open-loop stability of the system, as described in Section 2.2, there is no need for
anti-clockwise encirclements in the first condition. The second condition ensures that the the
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system is well-posed, i.e., a unique solution exists. Theorem 4.3.1 is used to prove that the SISO
controller designs from the previous section do not destabilize the complete MIMO system. First,
the closed-loop stability of each individual SISO loop is analyzed.

Fig. 4.8 shows the SISO Nyquist diagrams of L̃11 for four lungs, which are the same lungs
as shown in Fig. 4.4. The grey disc is a visual tool to ensure that the systems achieve the
desired robustness, using a modulus margin of 6 dB. Notice that the controller design of C11 is
very conservative. This is done to obtain a less aggressive controller with a low bandwidth of 1
Hz to prevent coupling effects as discussed in Section 4.2.3. Fig. 4.9a and 4.9b show the SISO
Nyquist diagrams of L̃22 and L̃32, respectively. Due to the switching condition in (2.34), the
system switches between the outputs Qexp and Qout, and consequently, between the two Nyquist

diagrams in Fig. 4.9. It can be seen that the open-loop for Qout, i.e., L̃32, limits the performance
of the controller C22.

Using SISO Nyquist theory, it is possible to conclude that a SISO closed-loop system is stable
when the open-loop is stable and the system does not encircle the (0,-1) point, see [24]. From

Fig. 4.8. Nyquist diagram of the open-loop transfer function L̃11, i.e., from u1 to paw.

(a) Nyquist diagram of the open-loop transfer
function L̃22, i.e., from u2 to Qexp.

(b) Nyquist diagram of the open-loop transfer
function L̃32, i.e., from u2 to Qout

Fig. 4.9. Two SISO open-loop systems that both use the controller C22. Depending on the
switching condition in (2.34), the left or the right Nyquist diagram is active.
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the SISO Nyquist diagrams in Fig. 4.8 and 4.9 it is concluded that all SISO loops are closed-loop
stable. However, this is not sufficient to guarantee stability of the full MIMO system. The reason
for this is that the designed SISO controllers can still destabilize each other due to the cross terms
G12, G21, and G31 in (4.4). To prove stability of the closed-loop MIMO system, the generalized
Nyquist test in Theorem 4.3.1 is applied. Stability of the closed-loop MIMO system is proven by
analyzing the MIMO open-loop system L, which is defined as

L = CG =

C11 0 0
0 C22 0
0 0 C22

G11 G12

G21 G22

G31 G32

 =

C11G11 C11G12

C22G21 C22G22

C22G31 C22G32

 (4.16)

Due to the switching outputs Qexp and Qout, the system in (4.16) is split in two separate MIMO
systems:

LQexp =

[
C11G11 C11G12

C22G21 C22G22

]
(4.17)

LQout =

[
C11G11 C11G12

C22G31 C22G32

]
(4.18)

Stability under switched outputs will be discussed in Section 4.4. Let us for now assume that the
system does not switch, in order to study closed-loop stability for the two separate MIMO systems
during steady-state phase.

Closed-loop stability of each separate MIMO system is proven using generalized Nyquist sta-
bility theory for the open-loop systems LQexp and LQout . The MIMO system is closed-loop stable
if det(I + LQexp) and det(I + LQout) do not encircle the origin. Fig. 4.10 shows the MIMO gen-
eralized Nyquist for the four lungs. As can be seen, none of the MIMO open-loops encircle the
origin which means that the each individual MIMO system for Qout and Qexp is closed-loop stable
with the proposed decentralized controller C.

Although the closed-loop stability is proven for both closed-loop MIMO systems, it does not
guarantee stability during the transient phases of the breathing cycle, i.e., phase I and III in Fig.
1.4a. During those phases the flow and pressure deviate too far from the identified models. As
a result, the system behavior is partially unknown during those phases and extensive testing is
required to ’guarantee’ stability under various operation conditions. Furthermore, the closed-loop
stability of the two individual MIMO systems in (4.17) and (4.18) does not a priori guarantee
stability of the output switched MIMO system, see [25, p. 19]. The next section discusses the
closed-loop stability of the output switching system.

(a) Nyquist diagram of the MIMO transfer
function LQexp .

(b) Nyquist diagram of the open-loop transfer
function LQout .

Fig. 4.10. Two MIMO open-loop systems which are used to prove MIMO closed-loop stability.
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4.4 Stability under switched output signals

In the previous section, it is concluded that each MIMO sub-system in (4.17) and (4.18) is closed-
loop stable during the steady-state phases II and IV. However, this does not guarantee closed-loop
stability under switching, see [25, p. 19]. The switching condition is explained in Section 2.3, and
defined in (2.34). In this section, stability of the switched closed-loop system is analyzed using
the linearized model in (4.1).

First, in Section 4.4.1, the linearized closed-loop switched model is defined. Based on this
model, the stability under switching outputs is discussed in Section 4.4.2 for two different switching
scenarios.

4.4.1 Linearized closed-loop dynamics

To analyze the stability of the switching system, the linearized state-space model of (4.1) is
considered. For ease of notation, the linearized system state plung is renamed xl. The open-loop
linearized system is written in a state-space format as

Gl =

{
ẋl = Alxl + Blu
y = Clxl + Dlu

, (4.19)

in which Al is the linearized state matrix, Bl is the linearized input matrix, Cl is the linearized
output matrix, and Dl is the linearized feedthrough matrix. As a result of the output switch in
(2.34), the output y is defined as

y =



[
paw
Qexp

]
if φ = Qexp,

[
paw
Qout

]
otherwise.

(4.20)

A more detailed description of the switching condition φ is found in Section 2.3. The output
switching condition in (4.20) is combined with the linearized state-space model in (4.19), which
results in

Gl =

ẋl = Alxl + Blu

y =

{
Cl1xl + Dl1u if φ = Qexp,
Cl2xl + Dl2u otherwise

(4.21)

The designed decentralized controller in (4.11) is rewritten to a state-space structure, which results
in

C =

{
ẋc = Acxc + Bce
u = Ccxc

, (4.22)

where xc is the controller state, u is the input vector, and e is the error vector. Due to the output
switch in (4.20), the error vector e switches analogous to the output vector. The error vector is
defined as

e =



[
ptarget − paw
Qbf −Qexp

]
if φ = Qexp,

[
ptarget − paw
Qbf −Qout

]
otherwise.

(4.23)

The closed-loop dynamics of the linearized system are obtained by combining the switched system
and the controller state-space models using a cascade interconnection, see [18, p. 8]. This inter-
connection combines the switched linearized model Gl in (4.21) with the controller C in (4.22),
which results in the following closed-loop dynamics:

Closed loop =

ẋl = Alxl + BlCcxc

ẋc =

{
Acxc + Bc(r −Cl1xl −Dl1Ccxc) if φ = Qexp,
Acxc + Bc(r −Cl2xl −Dl2Ccxc) otherwise,

(4.24)
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where r = [ptarget Qbf ]T . In addition, u is replaced with Ccxc. Restructuring this closed-loop
system results in

[
ẋl
ẋc

]
=



[
Al BlCc

−BcCl1 Ac −BcDl1Cc

]
︸ ︷︷ ︸

Acl1

[
xl
xc

]
+

[
0

Bc

]
︸ ︷︷ ︸
Bcl1

r if φ = Qexp,

[
Al BlCc

−BcCl2 Ac −BcDl2Cc

]
︸ ︷︷ ︸

Acl2

[
xl
xc

]
+

[
0

Bc

]
︸ ︷︷ ︸
Bcl2

r otherwise.

(4.25)

This closed-loop system is simplified as

ẋ =

{
Acl1x+ Bcl1r if φ = Qexp,
Acl2x+ Bcl2r otherwise,

(4.26)

where x = [xl xc]
T . The closed-loop state matrices Acl1 and Acl2 are Hurwitz, because of the

stability of each linear MIMO closed-loop system in (4.17) and (4.18), respectively. Stability is
proven using the Generalized Nyquist theorem in Section 4.3.2. However, due to the switching
condition for e in (4.23), closed-loop stability for the switched system is not guaranteed. In the
next section, two different switching scenarios are defined for the closed-loop switching system in
(4.26).

4.4.2 Switching scenarios

Due to the switching condition for e in (4.23), there are two possible switching scenarios for this
system, which depend on the lung characteristics. The two scenarios are defined as:

• e is continuous, which occurs when the switch is applied for a low resistance lung. The airway
pressure paw and patient flow Qpat for a low resistance lung are shown in Fig. 4.11a. During
phase I, the stable controller ensures that Qexp → Qbf and e→ 0. The output switch occurs,
as described in (4.23), at the moment when Qout = Qbf . At this moment, the ventilation
system has reached a constant steady state and Qpat = 0. Due to the conservation of flow
in (2.6), it is concluded that Qexp = Qout. Consequently, the error vector e is continuous
during the output switch.

• e is discontinuous, which occurs when the switch is applied for a high resistance lung. The
airway pressure paw and patient flow Qpat for a high resistance lung are shown in Fig. 4.11b.
Due to the high resistance of the lung, the flow going in and out of the lung is lower compared
to the low resistance lung. In this case, the lung does not reach phase II or phase IV, but
instead jumps from phase I to phase III. In other words, it skips the constant steady-state
phases II and IV. During phase I, the stable controller still ensures that Qexp → Qbf and
e → 0. At the moment of the output switch the system is not yet in steady state, which
means that there is still air flowing into the lungs of the patient, i.e., Qpat 6= 0. Due to the
conservation of flow in (2.6), it is concluded that Qout 6= Qexp at the moment of the output
switch. As a result, e experiences a discontinuity when switching from Qexp to Qout and
vice versa.

For the low resistant lung, i.e., e is continuous, the system switches the outputs during the
transition from phase I to phase II, and again during the transition from phase IV to phase I.
This means that the output switch occurs when the system transitions from a constant steady
state to a transient state, or vise versa. During the transient state, the linearized model in (4.26)
is not valid. However, an assumption is made regarding the switching location. Let us assume
that at the switching location, there exists a very small area δ, where the transient phase changes
to a constant steady-state phase. Within this area δ, the linearized model is assumed to be valid.
Using this assumption, a conclusion is made regarding the closed-loop stability of the switched
system for a low resistant lung scenario.
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Fig. 4.11. Two different types of lungs. A low resistant lung (left) reaches the steady-state
phases II and IV. a high resistant lung (right) does not reach a steady state. From phase I it
jumps directly to phase III.

Due to the asymptotically stable controller C, the sub-systems Acl1 and Acl2 are Hurwitz.
This means that the error e converges to zero for each output configuration. When the output
switch is applied, the system does not experience a discontinuity at e, because Qbf = Qexp = Qout,
which means that e remains at zero, see Fig. 4.11a. As a result, the closed-loop dynamics in (4.25),
do not contain any switching dynamics and it is concluded that the switched system is closed-loop
stable for this scenario.

For the high resistant lung, i.e., e is discontinuous, it is not possible to analyze closed-loop
stability using the linearized model, because the output switch occurs during the transient phases
I and III. During those phases, the linearized model is no longer valid, and no accurate analytical
model is available for the patient-hose-valve system. Consequently, it is not possible to conclude
about closed-loop stability of the switched system for high resistance lungs. An extensive experi-
mental case-study is shown in Chapter 5 to validate the stability and performance of the designed
feedforward and feedback controllers.

4.5 Summary

This chapter described the motivation and design process of a decentralized feedback controller
for the patient-hose-valve system. First, the motivation for a decentralized controller is provided.
In addition, the need for identification experiments is explained. Then, a linear MIMO FRF of
the system is acquired. Thereafter, a decentralized feedback controller is designed based on the
identified MIMO systems, while also taking the RGA of the system into account for a suitable
controller bandwidth. Stability of the proposed controller is proven using a generalized Nyquist
test. MIMO switching stability in steady state is analyzed using the closed-loop linearized state-
space model. Several assumptions regarding switched system stability are made. However, these
do not apply for all switching scenarios. In the next Chapter, the feedforward controller from
Chapter 3 and the decentralized feedback controller from this chapter are tested using simulations
and experiments.
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Chapter 5

Simulations and experimental
verification

In this chapter, the performance of the feedforward and feedback controllers from Chapter 3 and 4,
respectively, are analyzed by means of a simulation and experimental case-study. This is the fourth
and final sub-objective of Section 1.4. First, in Section 5.1, the performance measures are defined
for the ventilation system. Thereafter, in Section 5.2, the feedforward controller design without
feedback is tested in simulations and experiments. In section 5.3, the decentralized feedback
controller in combination with the feedforward controller is tested in simulation and experiments.
After that, in Section 5.4, the proposed control strategy is compared to the state-of-practice control
solution. Finally, in Section 5.5, the chapter is summarized.

5.1 Performance measure and use-case description

This section describes the measure of performance of the proposed controller design. During
ventilation, the following performance criteria are defined:

• Minimize the paw overshoot during the inspiration phase I. A pressure overshoot may cause
over-extension of the lung tissue which causes ventilation induced lung injuries [2].

• Minimize the paw undershoot during the expiration phase III. Pressure undershoot may result
in a drop in lung pressure. If the lung pressure is too long too low during expiration, it might
cause alveolar collapsing [2]. Frequent alveolar collapsing during mechanical ventilation
causes lung damage over time.

• Baseflow tracking is desired in all phases of the breathing cycle. However, during phase I
and III, the pressure tracking performance is more important, because this guarantees that
the patient is sufficiently ventilated.

• A baseflow overshoot must be prevented as much as possible for two reasons. The first
reason is that a baseflow overshoot might result in an undesired pressure ripple due to the
physical connection. The second reason why baseflow overshoot must be prevented is that,
hospitals often use the baseflow target Qbf to calculate the usage of O2. Overshoot of Qbf
results in more O2 usage then predicted. A baseflow undershoot, however, is less critical,
because it results in less O2 usage. As a result, the hospital calculations are too conservative
which is not a problem.

To analyze the performance of the feedforward and feedback controller, the controllers are analyzed
for a breathing cycle of four seconds. In more detail, the inspiration phase, i.e., phase I and II in
Fig. 1.4a, takes two seconds in total. After that, two seconds are used for the expiration phase,
i.e., phase III and IV in Fig. 1.4a. For each measurement, PEEP and IPAP are set to 5 and 20
mbar, respectively. The baseflow target Qbf is set to 3 L/min for the complete breathing cycle.
For each controller analysis, the performance for four different lungs are evaluated. The four lungs
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are: R5C20, R5C50, R20C50, and R50C20. These lungs are also used for the feedback controller
design process in Chapter 4.

The controllers are experimentally tested using the same set-up with the ASL 5000 breathing
simulator as explained in Section 4.2.1. In the next section, the simulation and experimental
results of the feedforward controller are analyzed.

5.2 Verification of the feedforward controller

This section shows the simulation and experimental results of the feedforward controller design
from Chapter 3. Note that this means that there is only feedforward and no feedback applied to
the system. In more detail, Section 5.2.1 shows the simulation results and Section 5.2.2 shows the
experimental results of the feedforward controller.

5.2.1 Feedforward controller: simulation results

This section analyzes the simulation results of the feedforward controller without feedback. The
feedforward controller is implemented first without feedback to assess its performance. The sim-
ulation model that is used for the controller verification is equal to the state-space model in
(2.25)-(2.29). Rhose1 and Rhose2 are both set to 1.02 mbar s/L. In addition, the experimentally
obtained model for the expiration valve in Section 3.3, is implemented as Rexp.

Fig. 5.1 shows the results of the feedforward controller in simulation for one breathing cycle
of four seconds. The top figure shows the paw tracking performance and the bottom two figures
together show the baseflow tracking performance. As explained in Section 1.3.3, the baseflow
target is split between Qexp and Qout according to the switching condition (2.34). The switching
effect of Qexp and Qout is visualized in the bottom two figures using the solid and dashed lines. If
a line is solid, then it is actively used as a baseflow control signal. When a line is dashed, then it
is not actively controlled.

During the inspiration phase in Fig. 5.1, i.e., up until t=2s, it can be concluded that the
feedforward controller shows a good paw tracking performance. The rise-time from PEEP to IPAP
is achieved within one second for all lungs. No overshoot is observed as well. The baseflow tracking
during the inspiration phase shows a good performance as well. Only a very small undershoot is
observed for all lungs at the start of the inspiration phase, i.e., at t=0.1s. However, as soon as
the system reaches a steady state, the expiration flow converges to the correct baseflow target for
all lungs.

At the start of the expiration phase, i.e., at t=2s, the airway pressure drops from 20 to 5
mbar, which allows the patient to exhale the used air. As can be seen, paw shows a very slow
pressure decrease for all lungs. This effect is caused by the Rexp model that is used for the
simulation. As described in Section 3.3, the model for Rexp is obtained in a constant steady
state, i.e., it only depends on u1 and u2. However, during transient phases, Rexp also depends on
the lung pressure plung, which helps to push open the expiration valve during expiration. This
phenomenon is not taken into account for the modeling process of Rexp. As a result, the pressure
decrease that is observed in the top figure is solely generated by the inputs u1 and u2. For the
experimental verification process, the pressure decrease is expected to be much faster. Due to
the slow pressure decrease, the system does not reach a new constant steady state before the
breathing cycle is finished, hence there is no baseflow for any lung during the expiration phase.
The flow discontinuity at t=2s for the R20C50 and R50C20 lung is caused by the output switch
(2.34). R20C50 and R50C20 lungs are considered high resistant lungs. As explained in Section
4.4.2, high resistant lungs experience a discontinuity during the output switch from Qexp to Qout.

From the simulation of the feedforward controller it can be concluded that, due to the limited
model accuracy of the valve model Rexp, it is challenging to analyze the exact performance of
the feedforward controller. In the next section, the experimental case-study for the feedforward
controller is presented.
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Fig. 5.1. Simulation of the patient-hose-valve system with feedforward controller. The airway
pressure shows a slow response during the expiration phase after t = 2s. Consequently, the
baseflow level is not achieved for Qout after t = 2s in the bottom figure.

5.2.2 Feedforward controller: experimental results

In this section, the proposed feedforward controller is applied to the experimental set-up. Fig. 5.2
shows the experimental results of a four second breathing cycle.

During the inspiration phase, the pressure tracking performance for paw shows the same rise-
time compared to the simulation results in Fig. 5.1. It can be observed that the C50 lungs show
a slightly slower response compared to the more stiffer lungs, i.e., the C20 lungs. In addition,
a slight overshoot is observed for the R5C20 lung which is caused by the combination of a low
resistance and a low compliance. This combination results in more pressure and flow oscillations
compared to the other lungs. The bottom two figures in Fig. 5.2 shows the baseflow tracking
performance of the experimental set-up for Qexp and Qout. During the inspiration phase, it can be
observed that the baseflow target is achieved for the R5C20 and R5C50 lung as soon as each lung
reaches a steady state. The time before each lung reaches a constant steady state depends on the
value of Raw and Clung. Lungs with a high resistance and high compliance take longer to reach
a steady state. Note that the R20C50 and R50C20 lungs are the slowest lungs and Qout does
not reach a steady state before the inspiration phase ends, i.e., before t=2s. The response of the
stiffer lungs R5C20 and R5C50 during the inspiration phase shows that the feedforward controller
reaches the baseflow target Qbf independently of the patient type. Note that if the inspiration
time would be longer, the R20C50 and R50C20 lung also achieve the desired baseflow level.

During the expiration phase, the airway pressure decrease is much faster compared to the
simulation result in Fig. 5.1, due to the exhaled air of the patient that pushes open the expiration
valve. As a result, more flow leaves the expiration valve, which allows the pressure inside the hose
system to decrease much faster. This faster pressure decrease, however, causes a pressure over-
shoot for all lungs at approximately t=2.5s. As described in Section 5.1, this pressure overshoot
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Fig. 5.2. Experimental test of the system with feedforward controller. The airway pressure
shows a much faster response during after t = 2s compared to the simulation results. The
baseflow target is achieved for Qexp as soon as each lung reaches a constant steady state. The
poor performance of the baseflow tracking in the bottom figure after t = 2s is caused by the
hysteresis effect of the expiration valve and the slow constant steady-state convergence.

Fig. 5.3. Patient flow Qpat for four lungs when the feedforward controller is applied in
experiments.
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is undesired during this phase of the breathing cycle. During the expiration phase the output
flow Qout shows a large baseflow error for all lungs in the bottom figure of Fig. 5.2. The main
reasons for this effect are:

• The hysteresis effect of the piezo valve causes a steady-state error for the R5C20 and R5C50
lungs which is not included in the feedforward controller, see Section 3.3.

• The lungs with a high resistance, i.e., R20C50 and R50C20, are still not in steady state
when the breathing cycle is finished at t = 4s. As a result, air is still flowing from the lungs
and the correct baseflow target is not achieved. Fig. 5.3 shows the patient flow for each
lung when the feedforward is applied. As can be seen, the patient flow of the R20C50 and
R50C20 lung do not reach zero at the end of the expiration phase.

The negative output flow in the bottom figure of Fig. 5.2 is caused by the check valve. This
check valve ensures that flow from the patient does not enter the inspiration hose, i.e., Qout > 0.
However, this check valve always has a small leak, which explains the negative blower output flow.

From the experimental case-study it is concluded that feedforward controller without feedback
does not achieve a desirable performance. The main performance limitations are:

• Slow baseflow response during the inspiration phase for lungs with a high resistance.

• Poor pressure and baseflow tracking during the expiration phase.

• Significant steady-state baseflow errors at the end of the expiration phase, due to the hys-
teresis effect of the piezo valve and slow response of the lungs with a high resistance, see
Fig. 5.3.

To improve the performance of the ventilation system, a decentralized feedback controller is added
to the feedforward controller, as explained in Chapter 4. The following section shows the simu-
lation and experimental results of the decentralized feedback controller in combination with the
feedforward controller.

5.3 Verification of the feedback controller

This section shows the simulation and experimental results of testing the decentralized feedback
control strategy from Chapter 4 in combination with the feedforward controller from Chapter
3. First, in Section 5.3.1, the simulation results are analyzed. Thereafter, in Section 5.3.2, the
proposed control strategy is experimentally verified.

5.3.1 Feedback controller: simulation results

In this section, the feedforward and feedback controller are combined and tested using simulations.
Fig. 5.4 shows the result of the feedback and feedforward controller for a breathing cycle of four
seconds.

During the inspiration phase, it can be concluded that the implementation of feedback control
improves the paw tracking performance by reducing the rise-time for all lungs. In addition, there
is no overshoot for any lung. The baseflow tracking performance during the inspiration phase also
shows that Qexp is almost perfectly maintaining a baseflow, with only a very small undershoot at
t=0.1s.

During the expiration phase, there is almost no paw overshoot in the top figure. For the baseflow
tracking problem, the same switching effect from Qexp to Qout is observed for the R20C50 and
R50C20 lung, which is the same as in Fig. 5.1. After t=2s, when the airway pressure decrease
is initiated, each lung experiences a drop in baseflow. Almost all lungs drop to zero flow for a
few tenths of a second, which is inevitable due to the fast pressure decrease and the delay in the
system. Due to the build-up of the baseflow integrator action, a baseflow overshoot is seen for all
lungs at t=2.5s. The highest overshoot is observed for the R5C50 lung. This transient behavior
is only present for approximately 0.5 seconds. After t=3s, all lungs have converged to the desired
baseflow target Qbf . In the next section, the same control strategy is applied to the experimental
set-up.
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Fig. 5.4. Simulation of the patient-hose-valve system with feedforward and feedback controller.
The airway pressure shows almost perfect tracking. The baseflow tracking shows some transiens
behavior between t = 2s and t = 2.5s. After that, perfect tracking is achieved in the bottom
figure.

5.3.2 Feedback controller: experimental results

In this section, the decentralized feedback controller in combination with the feedforward controller
is tested experimentally. Fig. 5.5 shows the experimental results of the feedback and feedforward
controller for the four seconds.

During the inspiration phase, a slight airway pressure overshoot is observed for the R5C20 and
R5C50 lungs at approximately t=0.4s. The baseflow tracking performance for Qexp is improved
for the R20C50 and R50C20 lungs up until t=2s. However, the baseflow tracking performance
has not improved for the R5C20 and R5C50 lungs. The R5C50 lung shows an undershoot which
is explained later in this section.

During the expiration phase, the pressure decrease for paw is slightly faster. However, this
comes at the cost of a significant airway pressure overshoot for all lungs at approximately t=2.7s.
The baseflow tracking of Qout during the expiration phase shows two very high flow peaks of
approximately 30 L/min for the R5C20 and R5C50 lungs. The cause of those peaks is explained
at the end of this section. These peaks are not allowed, because this increases the O2 usage of
the mechanical ventilation system significantly which conflicts with the performance requirements
in Section 5.1. In addition, the baseflow overshoot causes paw pressure ripples which need to be
corrected for by the pressure controller.

The generally poor performance of the combined feedback and feedforward controller is ex-
plained by analyzing the airway pressure error epaw and the baseflow error ebf in Fig. 5.6. The
numbers in the figure show a chain of events that explains the poor performance of the control
strategy. The chain of events in Fig. 5.6 is described as:
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1. The steep pressure drop during the expiration phase, i.e., at t=2s, causes a significant paw
error signal due to the slow response of the feedback controller. This error signal results in
a build-up of the integrator state of the C1fb controller.

2. The built-up integral action of the C1fb controller for paw generates a significant overshoot
at t=2.5s.

3. The negative pressure error epaw is compensated for by creating a positive blower pressure
u1. This pressure generation automatically results in a significant increase in blower output
flow Qout. This flow increase results in the large baseflow tracking error ebf , see Fig. 5.6.

The flow undershoot for the R5C50 lung at t=1.7s is also a result of the significant baseflow
error of the previous breathing cycle. It is concluded that the implementation of a feedback
controller in combination with the feedforward controller induces integrator overshoot effects which
cause an undesired performance. In the following section, the feedback and feedforward controller
combination is compared to the state-of-practice control solution.

Fig. 5.5. Experimental test of the system with feedforward and feedback controller. The paw
overshoot after t = 2.5s causes significant flow overshoot for Qout.
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3

2

1

Fig. 5.6. Error signals of the objectives for paw and Qbf . The numbers indicate a chain of
events which causes the poor performance of the proposed control strategy. The pressure error in
1 results in a overshoot effect of the integral control action in 2. This overshoot effect also
influences the baseflow behavior in 3.

5.4 State-of-practice control compared to the proposed con-
troller design

In this section, the designed controller of this project is compared to the state-of-practice control
solution. The state-of-practice controller is currently used for the produced mechanical ventilation
systems of DEMCON Macawi. The controller is designed solely using identification experiments,
and uses switching controllers, gain scheduling, and triggers to optimize its performance.

Fig. 5.7 shows the proposed feedforward and decentralized feedback controller in comparison
with the state-of-practice controller. For a clear comparison, the controllers are only compared
for the R5C20 lung.

During the inspiration phase, it is concluded that the paw tracking performance is improved.
A slightly reduced overshoot is observed at t=0.3s for the proposed controller design. In addition,
the settling time of paw to converge to 20 mbar is similar for both controllers. The baseflow
tracking performance during the inspiration phase shows a slower rise-time than the state-of-
practice control solution at t=1s.

During the expiration phase after t=2s, both the pressure and baseflow tracking performance
is much worse than the state-of-practice controller. The airway pressure shows a larger overshoot,
and the baseflow overshoot is also much higher (30 L/min compared to 14 L/min).

Although the proposed controller of this work does not outperform the state-of-practice con-
troller, it does provide a suitable foundation to build upon for a more insightful controller design.
An insightful controller design minimizes the use of resets and gain scheduling, which requires
expert knowledge of the ventilation system. This is also part of the sub-objectives in Section 1.4.
Multiple recommendations are available to improve the controller performance. In Chapter 6 a
collection of these recommendations is presented for the proposed control strategy. However, these
recommendations cause a trade-off between controller complexity and performance.
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Fig. 5.7. Experimental comparison between the state-of-practice controller and the proposed
control solution. The main limitations of the proposed controller design are the pressure
overshoot at t = 2.6s in the top figure and the baseflow overshoot at t = 2.7s in the bottom
figure.

5.5 Summary

This chapter presented the simulation and experimental results of the feedforward and feedback
control strategy of this thesis. It is concluded that the feedforward controller on its own does
achieve the desired steady- state targets for pressure and baseflow. However, the rise-time is
still too slow for all lungs. During the expiration phase, the non-linear hysteresis effect limit the
performance of the feedforward controller. This introduces a significant steady-state error and
a long settling time. Thereafter, the feedback controller is implemented on top of the feedfor-
ward controller. Although the baseflow tracking performance is improved for lungs with a high
resistance, it induces significant pressure and baseflow overshoot during the expiration phase. Fi-
nally, it is concluded that the proposed control solution does not outperform the state-of-practice
control solution. However, it does provide a suitable foundation for a more insightful controller
design without the use of resets and gain scheduling, which require expert knowledge on ventila-
tion systems. In the next chapter, the conclusions and recommendations regarding this thesis are
provided.
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Chapter 6

Conclusions and
Recommendations

In this work, a feedforward and feedback control strategy are proposed for a MIMO mechanical
ventilation system with patient. The main goal of the mechanical ventilation system during
the pressure-controlled ventilation cycle is to track a desired airway pressure trajectory and to
maintain a baseflow through the hose system. The control problem is challenging, because of the
physical interaction between inputs and outputs, and the large variety in the unknown patient
dynamics. In this thesis, a control strategy has been proposed to improve the pressure and
baseflow tracking performance with respect to the state-of-practice control solution. First, in
Chapter 2, a non-linear state-space model has been created for the patient-hose-valve system.
Thereafter, in Chapter 3, a steady-state feedforward control strategy is proposed. In Chapter 4, a
decentralized feedback controller is designed based on experimentally identified linearized MIMO
system dynamics. Finally, in Chapter 5, the feedforward and feedback control strategy have been
tested in simulation and in an experimental case-study.

In Section 6.1, the main conclusions of this master thesis are presented. Thereafter, in Section
6.2, several recommendations are presented for future research to improve the performance of the
designed controller.

6.1 Conclusions

In section 1.4, the main research objective is presented. This objective is divided into several
sub-objectives. The main results of this thesis are used to discuss each sub-objective separately.
Thereafter, all sub-objectives are combined to derive a thorough conclusion for the main research
objective.

• Derive a dynamical model of the breathing hose system, expiration valve, and patient, which
is suitable for a controller design.

In Chapter 2, a non-linear state-space model is derived for the patient, hose system, and expiration
valve. This model is used to gain insight in the dynamics of the MIMO ventilation system.
Thereafter, in Chapter 3, the state-space model is extended with an experimentally obtained
expiration valve model. The derivation of this model shows that the inputs and outputs are
coupled in a non-linear way. The system is proven to be open-loop stable for bounded inputs and
has a unique steady-state solution. As a result, the steady-state dynamics of this model are proven
to be accurate and are therefore used for an effective feedforward control strategy. However, for
perturbations around this steady state, the state-space model is not accurate enough. As a result,
the feedback controller is designed independently of the state-space model.

The mechanical ventilation system has two main control objectives: a pressure and flow control
objective. The flow objective is to maintain baseflow during the whole breathing cycle. However,
it is physically impossible to constantly measure baseflow at one location in the hose system. This
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is due to the conflicting objectives of filling the patient’s lungs with air and maintaining a baseflow
target at the same time. As discussed in Section 2.3, the baseflow target problem is solved by
implementing a switching control strategy which uses the expiration flow and blower outlet flow to
achieve a fully defined baseflow target during the whole breathing cycle. During phase I, baseflow
is maintained at the expiration valve, and during the phase II, III, and IV, baseflow is maintained
near the blower, see Fig. 1.4a.

• Using the dynamical model, establish a well-defined feedforward control strategy which takes
the pressure and flow coupling into account.

A feedforward control strategy is derived, using the dynamical model of Chapter 2. This feedfor-
ward controller is designed to compensate for all known and fixed components of the mechanical
ventilation system, i.e., the hose system and expiration valve. Using this strategy, it is possible to
derive a feedforward control strategy that is independent of the unknown patient dynamics.

The feedforward controller is derived using a steady-state solution of the dynamical model and
the inverse expiration valve model. The feedforward controller provides the desired feedforward
inputs to control the system during the steady-state phases of the breathing cycle, i.e, phase II
and IV in Fig. 1.4a. The accuracy of the feedforward controller during the transient phases
is limited, because the system deviates too far from a steady-state operating point. However,
the asymptotically stable dynamics and the unique steady-state solution ensure that the system
converges to the correct steady-state pressure and baseflow level.

• Design a feedback controller that controls the large variety of unknown patient dynamics, and
attenuates unknown disturbances. Minimize the use of triggers, resets, and gain scheduling
to obtain a controller design which is insightful and easy-to-use for control engineers.

The feedback controller is designed using a decentralized feedback strategy in Chapter 4. This
controller is designed without the use of the non-linear state-space model of Chapter 2, because
this model is not suitable to simulate perturbations around a steady-state operating point. In
addition, the expiration valve model is only accurate for constant inputs.

To design a suitable feedback controller without the state-space model, a linear MIMO system
is identified using FRF measurements of the experimental set-up. Consequently, the decentral-
ized feedback controller is tuned based on those identified linearized MIMO transfer functions.
Although closed-loop stability of the system with output Qexp and Qout is proven separately, the
stability of the closed-loop system with switching dynamics is not guaranteed. A switching stabil-
ity analysis is performed which guarantees stability for certain switching scenarios. In addition,
overall switching stability of the designed controller is verified experimentally by extensive testing.

As discussed, the controller consists of a steady-state feedforward controller and a decentralized
feedback controller. These control strategies are relatively straight-forward in control engineering
practice and operate without the use of ventilation-related events or triggers. As a result, the
proposed controller design is deemed easy-to-use, and a more insightful solution compared to the
state-of-practice controller.

• Experimentally test the designed controller.

In Chapter 5 the feedforward and feedback controller are tested by means of a simulation and an
experimental case-study. From the experiments it is concluded that the control solution is not
yet suitable to improve the performance of the state-of-practice control solution. The feedforward
control strategy shows promising results in steady state. However, the addition of the decentralized
feedback controller does not achieve the desired performance improvements, compared to the state-
of-practice control strategy. The lack of performance is the result of modeling uncertainties and
unpredictable highly non-linear dynamics during the transient phases I and III of the breathing
cycle. These non-linear effects, such as, the hysteresis effect of the piezo valve and the unknown
patient dynamics, are not fully taken into account during the controller design process. As a
result, the proposed control strategy does not outperform the state-of-practice control solution.

Using the conclusions of each sub-objective, it is possible to draw a conclusion regarding the
main objective. The main objective is defined as:
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• Design a controller for a mechanical ventilation system with expiration valve to improve
both pressure and baseflow tracking performance, by taking into account the coupling between
pressure and flow in the design process.

The experimental case-study has shown that the designed controller of this work is not yet a
suitable control strategy to outperform the state-of-practice control solution. This is caused by the
significant amount of model uncertainty of the state-space model, and unpredictable non-linear
dynamics which are not incorporated in the controller design process. Although the proposed
control strategy is not suitable to improve the pressure and baseflow tracking performance of
the state-of-practice control solution, it is easy-to-use for control engineers, and provides a more
insightful controller foundation for future control research for this application.

Possible performance improvements are available and are briefly discussed in the following
section. In addition, it is most likely possible to apply elements of the proposed control structure,
such as, the steady-state feedforward controller, to the state-of-practice control solution to improve
its performance.

6.2 Recommendations

In this section, recommendations are presented which can be used to improve the performance
of the controlled system in future research. First, in Section 6.2.1, the lack of model accuracy
is discussed and a possible improvement is suggested for future research. Thereafter, in Section
6.2.2, a reset integrator for C1fb is suggested to reduce the pressure and flow overshoot during the
expiration phase. Finally, in Section 6.2.3, a pressure bound is suggested for C2fb to reduce the
build-up effect of the integrator during the transient phases of the breathing cycle, which results in
an improved baseflow performance during the expiration phase. The recommendations in Section
6.2.2 and 6.2.3 are motivated using experimental results.

6.2.1 Improved model accuracy

This section describes how the performance of the controlled ventilation system can be improved
by increasing the model accuracy. Due to the limited model accuracy, the exact coupling between
inputs and outputs is not properly defined in the state-space model in (2.25)-(2.29) for the transient
phases I and III of the breathing cycle, see Fig. 1.4a. This limited model accuracy also limits the
available controller design choices and their performance.

The main model accuracy limitation is due to the expiration valve resistance model Rexp. As
described in Section 3.3, the model is only obtained in a constant steady state, which means
that it solely depends on the constant inputs u1ss and u2ss. In reality, however, the expiration
valve resistance heavily depends the patient effort as well. The patient flow during expiration
influences the pressure just before the expiration valve, i.e., pexp, and thus the expiration valve
resistance Rexp. In addition, the hysteresis effect of the piezo valve is also not taken into account,
which causes a significant steady-state error for the feedforward controller. Due to these model
limitations, the feedback controller needs to compensate for many unknown disturbances, which
limits the performance of the complete ventilation system.

A possible future research objective is to derive a suitable dynamic model for the expiration
valve and the hysteresis effect, depending on u1, u2, and pexp. An improved model helps to gain
insight in the transient behavior of the ventilation system during phase I and III. As a result,
a more thorough control strategy (possibly non-linear) can be derived to control this transient
behavior.

6.2.2 Reset integrator for C1fb

As described in Section 5.3.2, one of the main causes of the poor controller performance is due to
the integrator build-up of the paw controller, i.e., C1fb. The integrator build-up effect is shown
in blue in the top figure of Fig. 6.1. As can be seen, the steep pressure drop at t=2s causes a
pressure overshoot at t=2.6s. As described in Section 5.3.2, this causes a chain of events which
also causes a large baseflow overshoot in the bottom figure of Fig. 6.1.
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A possible solution for this build-up effect is to apply a reset integrator to C1fb. The main
idea of a reset integrator is to reset the internal state of the integral controller to zero when a
predefined condition is fulfilled [26]. For this control problem, a suitable reset condition might be
paw < PEEP during the expiration phase. Using this reset condition, the build-up effect of the
feedback controller is prevented.

Fig. 6.1 shows the comparison between the proposed feedback controller from this thesis with
and without an additional reset during experiments. It is concluded that the implementation of a
reset integrator significantly reduces the paw overshoot during the expiration phase, i.e., at t=2.6s.
Due to the coupling effect between pressure and flow, the reduced paw overshoot also reduces the
baseflow overshoot ofQout during the expiration phase at t=2.7s. In addition, the reduced baseflow
overshoot results in a faster settling time of the baseflow target at t=3.5s for Qout. This effect also
translates to the next breathing cycle. It is observed that during the inspiration phase at t=1s,
the baseflow rise-time is slightly faster compared to the controller without a reset. However, this
faster rise time results in a minor baseflow overshoot.

In general, it can be concluded that the implementation of a reset integrator for C1fb gives
promising results. Although this solution is relatively easy to implement in the proposed controller
design, further research should indicate if this reset integrator is stable in every scenario. In ad-
dition, this reset complicates the overall controller design. A trade-off must be made regarding
improving performance and control structure simplicity.

Fig. 6.1. Experimental implementation of a reset integrator for the designed control strategy.
Adding a reset integrator prevents an airway pressure and baseflow overshoot.
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6.2.3 Pressure bound for C2fb

In this section, an improvement for the C2fb feedback controller is presented. This improvement
is based on a pressure error bound and is analyzed using the experimental set-up.

A limitation of the feedback controller is caused by the coupling effect between pressure and
flow during phase III of the breathing cycle, see Fig. 1.4a. During this phase, it is very challenging
to track baseflow using Qout due to the slow response of the C2fb feedback controller. This is also
observed in Fig. 5.5 between t=2s and t=2.5s. During this phase, the baseflow integrator in C2fb

is still building up to achieve the desired baseflow level. This integrator build-up effect is shown
in blue in the middle figure of Fig. 6.2. As depicted, the integrator signal u2fb builds up from
t=2s up until t=2.5s without any baseflow generation at Qout in the bottom figure. Due to this
build-up effect, a flow overshoot occurs at t= 2.8s, which results in a long settling time for Qout
to converge to the baseflow target Qbf for the remainder of the expiration phase.

A solution for this problem is to stop the integrator build-up effect of C2fb during the expiration
phase, i.e., when the pressure error epaw is high. To achieve this, a pressure error bound is defined
as ν = |epaw |, in which ν is a positive tunable parameter. This bound can be applied to the C2fb

controller as follows:

• If |epaw |> ν, i.e., during large pressure errors in phase III, the internal state of the integrator
for C2fb is frozen. In other words, the integrator input is zero.

• If |epaw |< ν, the internal integrator state is updated again.

Using this strategy, the main result is that the baseflow controller does not build up when the
pressure error is exceeds the pressure error bound ν, i.e., during the expiration phase III. The
results are shown in Fig. 6.2. In this figure, the feedback with feedforward controller is compared
with a C1fb reset and a pressure bound on C2fb and the same controller without the bound and

-

Integrator build-up

Integrator build-up

Fig. 6.2. Experimental implementation of a pressure error bound ν to prevent integrator
build-up for u2fb.
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reset. As depicted in the top figure, the pressure bound is chosen as ν = 1. It is observed that u2fb
freezes as soon as the pressure error exceeds the bound at t=2s. As a result, the bottom figure
shows that the baseflow overshoot for Qout during expiration is reduced from 30 to 18 L/min. In
addition, the settling time is reduced as well and a small final baseflow error is achieved.

Fig. 6.3 compares the state-of-practice control solution with the proposed control solution with
reset and pressure error bound. During the inspiration phase, the pressure tracking performance
is slightly better than the state-of-practice solution. The baseflow tracking is slightly worse, but
it does not show any overshoot compared to the state-of-practice solution. During expiration,
the proposed solution shows a slightly slower pressure drop. The pressure overshoot at t=2.4s is
similar for both solutions. The baseflow tracking controller shows a slightly higher flow overshoot
at t=2.6s. However, the settling time at t=3s is improved.

It is concluded that this proposed solution results in a similar performance compared to the
state-of-practice control solution. This solution is also easy to implement. However, future research
should indicate if this solution does not induce instability. In addition, this strategy induces
another ventilation related event to the proposed controller design which conflicts with the intuitive
controller design objective.

Fig. 6.3. Experimental comparison between the proposed controller design with pressure error
bound ν and reset, and the state-of-practice control solution.
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Appendix A

Steady-state solution

In this chapter, the constant steady-state solution of the patient-hose-valve system in (2.25)-(2.29)
is derived, which shows that during a constant steady state, paw = plung and Qpat = 0.

The constant steady-state solution is achieved by setting ṗlung = 0. As a result, the state
equation of (2.25) changes to

p̄lung = −A−1(uss)B(uss)u1ss, (A.1)

in which p̄lung is the constant lung pressure, A(uss) is the state matrix in a constant steady state,
and B(uss) is the input matrix in steady state. The equation in (A.1) describes the constant
steady-state solution of the lung dynamics. Substituting the matrices A(uss) and B(uss) results
in

p̄lung =
Rhose2 +Rξ(uss)

Rhose1 +Rhose2 +Rξ(uss)
u1ss. (A.2)

It is concluded from (A.2), that the constant steady-state lung dynamics only depend on the
expiration valve resistance and hose resistances, and that the patient parameters Raw and Clung
are not present. Hence, the constant steady-state solution is patient independent.

To show that during a constant steady state paw = plung, (A.1) is inverted, which results in

u1ss = −B−1(uss)A(uss)p̄lung. (A.3)

The constant steady-state output solution for paw is described by

paw = Cp(uss)p̄lung + Dp(uss)u1ss. (A.4)

Substituting the constant steady-state lung dynamics from (A.3) in (A.4) results in

paw = Cp(uss)p̄lung −Dp(uss)B
−1(uss)A(uss)p̄lung. (A.5)

Next, it is possible to fill in the state-space matrices from (2.26)-(2.29). The equation in (A.5)
then simplifies to

paw = p̄lung. (A.6)

From this equation it is concluded that during a constant steady-state, i.e., ṗlung → 0, the airway
pressure paw and lung pressure plung equalize. Consequently, the patient flow Qpat is reduces to
zero. Due to the asymptotically stable open-loop dynamics for bounded inputs in Section 2.2, it
is concluded that the system with constant inputs will always achieve this constant steady state.
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LUT experiment for the
expiration valve

This chapter describes the derivation of a Look Up Table (LUT) for the expiration valve resistance
Rexp.

B.1 Purpose

The purpose of this experiment is to obtain a more realistic expiration valve resistance model
Rexp, by means of a LUT. This LUT provides insight in the dynamics of the expiration valve,
and is used as part of the steady-state feedforward controller in Chapter 3. The LUT is derived
in steady state, such that it only depends on two parameters, i.e., u1 and u2. As a result, the
proposed LUT is only accurate during steady-state operation of the mechanical ventilation system
and patient. In the following section, the experimental set-up is briefly described.

B.2 Set-up

For the LUT experiment, the following items are required:

• Bonemine ventilation module

• Inspiration hose

• Expiration hose

• Membrane actuated expiration valve

• Seal (To close off the patient entrance of the hose).

• dSPACE setup

• Laptop

Fig. 3.4 shows a schematic drawing of the proposed set-up. The hose system is closed off at the
patient side which means that all generated flow from the blower is equal to the flow that leaves
the system, i.e., Qout = Qexp. In the following section, the measurement method is described.

B.3 Method

In this section, the method of obtaining a LUT is explained in detail. The LUT is accurate during
steady state operation of the system, i.e., Qpat = 0. As a result, it is possible to derive a two
dimensional look up table which estimates Rexp as:

Rexp = f(u1, u2). (B.1)

The following steps are applied to derive a LUT for Rexp:
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1. Set the blower pressure u1 to a constant value.

2. Ramp down the piezo voltage u2 from 24 to -24 Volt (u2 ↓).

3. Ramp up the piezo voltage u2 from -24 to 24 Volt (u2 ↑).

4. Qexp and pexp are averaged to eliminate a maximum error due to hysteresis, as explained in
Section 3.3. The following averaging equations are used:

p̃exp =
pexp(u2 ↓) + pexp(u2 ↑)

2
, Q̃exp =

Qexp(u2 ↓) +Qexp(u2 ↑)
2

, (B.2)

in which Q̃exp and p̃exp are the averaged values of Qexp and pexp. Fig. B.1 shows an example
of the hysteresis curve for a measurement of Qexp.

Fig. B.1. Hysteresis effect of the piezo valve.

5. Derive the average expiration valve resistance R̃exp using:

R̃exp =
p̃exp

Q̃exp
(B.3)

6. Step 1 to 5 is now repeated for several different constant values of u1 to derive a 3d-surface
for R̃exp. The lowest value for u1 is 2.5 mbar, which is increased with increments of 2.5 mbar
up until 40 mbar.

B.4 Limitations

This section describes the limitations of the proposed LUT strategy for Rexp. The LUT is only
valid during steady state which means that it is not accurate during the transient phases, i.e.,
phase I and III of the breathing cycle in Fig. 1.4a. As a result, when Qpat > 0 then Rexp is
estimated too high. When Qpat < 0 then Rexp is estimated too low.
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