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Abstract

Next-generation motion systems are envisioned to be lightweight due to increasing demands
regarding throughput and precision. As a result, flexible dynamic behaviour occurs within the
control bandwidth. For this reason, conventional control strategies do no longer deliver the
required performance. The aim of this research is to develop a joint system identification and
robust control synthesis framework that is tailored towards next-generation motion stages. To
synthesize robust controllers that achieve high performance, the identification step and the
robust controller step are connected. In addition, the model should have a low order to enable a
successful implementation of the resulting robust controller in a real-time environment. This is
achieved by developing a model order selection rule which is based on a novel connection between
the model order and the performance of the resulting controller. The developed framework is
successfully applied to a simulation example showing that the proposed framework extends to
existing methods.
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Chapter 1

Introduction

1.1 Technological Developments
In modern society, advancements in science and technology are a major driving factor in economic
growth, welfare and quality of life [39, 41]. A key contributor to sustaining economic growth
are advancements in the mechatronic industry [30, 57]. Examples include the semiconductor
industry which enables exponential growth in computational power, thereby directly affecting
science and daily life [40]. Also, developments in the electron microscopy enabling advancements
from medical to material science [13]. Other applications include the printing industry and
medical imaging [24, 20].

Many mechatronic systems contain a so-called motion stage that needs to be positioned with
extreme accuracy during fast motions. Increasing demands regarding throughput have lead to a
change in the design of next-generation motion stages. Observe that the velocity at which a
motion stage moves highly influences the throughput. In general, the velocity is determined by
Newton’s second law,

F = ma. (1.1)

Where F denotes the acceleration force, m denotes mass and a denotes the acceleration. To
enhance the speed at which the stage moves, increasing the actuator force might be considered.
However, the actuator force is often limited due to volumetric limitations or thermal constraints.
Therefore, to enhance the throughput of next-generation motion systems, light-weight motion
stages are indispensable.

1.2 High-Precision Motion Control
Motion stages typically need to be positioned with high accuracy during fast motions in six
Degrees of Freedom (DOFs). To obtain motion stages that achieve the desired performance,
feedback-control is indispensable. Traditionally, motion stages are approximated as a rigid body.
Then, by an appropriate choice of the input and output decoupling matrices, an approximately
diagonal system is obtained. Therefore, each output is only affected by one input. This allows
the implementation of Single Input Single Output (SISO) controllers [60].

Next-generation motion stages are envisaged to be inherently light-weight. Therefore, resonances
occur at a lower frequency. In addition, increasing demands regarding throughput and precision

1
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leads to increasing demands regarding the closed-loop bandwidth. For these reasons, the flexible
dynamic behaviour occurs within the control bandwidth. In general, the flexible dynamics are not
aligned with the DOFs. Therefore, next-generation motion stages are inherently multivariable.
Hence, SISO controllers can no longer achieve the desired performance.

For the design of a controller for next-generation motion stages, a model-based controller synthesis
method should be adopted for two reasons. (i) Manually tuning an inherently multivariable
controller is practically infeasible. (ii) A model is crucial to explore the limits of a system, i.e.
tradeoff between robustness and performance.

1.3 Modelling High Precision Motion Systems
A model is an approximation of reality. Therefore, a model cannot encompass the complete
behaviour a true system. Robust control takes modelling errors explicitly into account by
considering a model set which encompasses the true system. The model set is constructed
around a nominal model with a perturbation that reflects the model uncertainty. Regarding the
construction of the model set, the following requirements are formulated.

(R1) The model set should enable the synthesis of a robust controller that achieves high
performance.

(R2) The model set should enable the synthesis of a low-order controller for successful imple-
mentation in a real-time environment.

In view of (R2), a low-order nominal model is desired for two reasons. (i) For the synthesis and
implementation in a real-time environment, a low-order controller is required. As the order of the
robust controller is directly related to the order of the nominal model, synthesizing a low-order
nominal model is necessary. (ii) Second, next-generation motion stages are equipped with
many sensors and actuators, more than the number of DOFs, which increases model complexity
significantly. From a numerical perspective, a high model complexity is undesirable. It is known
that model complexity is directly related to model order. Therefore, to obtain a nominal model
with limited complexity, selecting a low-order nominal model is necessary.

To address (R1), the model set has to be selected in view of the control goals. Therefore, joint
system identification and robust controller synthesis method is necessary. To address (R1),
the identification of the model set should be connected to the robust controller synthesis. In
[7] and [60], a joint system identification and robust control synthesis approach is presented.
However, the connection between the identification of the model set and robust controller
synthesis appeared to be a performance-limiting factor. In [14, 51], a first step is taken in view
of (R1). In this approach, the control objective is absorbed into the identification of the nominal
model. However, the model structure used in the approach resulted in a conservative synthesis
of the robust controller which hampers performance significantly. In [42, 47], the above approach
is improved by considering a novel model structure, enabling the estimation of a nonconservative
robust-control-relevant model set.

Next, observe that in view of (R1) an accurate nominal model is desired. In general, an accurate
model is achieved by high-order models. This, in turn, leads to a high-order controller, thereby
violating (R2). This motivates the investigation on how the order of the nominal model influences
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the performance of the model set. Secondly, the tradeoff between (R1) and (R2) motivates an
order selection procedure. Therefore, the following research objectives are formulated.

Research Objective 1. Investigate a connection between the performance of the model set
and the order of the model set.

Research Objective 2. Develop an order selection procedure to break the tradeoff between
the performance of the robust controller and the order of the nominal model.

For successful identification of the model set, the nominal model should be suitably parameterized.
The parametrization should enable (R2), i.e., the parametrization should enable an order selection
procedure. Secondly, for a selected order of the nominal model, the parametrization should
describe a rich class of systems. Lastly, the parametrization should enable numerically reliable
synthesis of the nominal model. Therefore, based on these findings, the following research
objective is formulated.

Research Objective 3. Develop a parametrization for the nominal model, that enables (i) the
selection of a low-order nominal model in view of (R2) and (ii) numerically reliable estimation
of the nominal model.

1.4 Experimental Setup
Over the last decade, many theoretical contributions are developed regarding next-generation
motion stages. However, in academic environments, the number of experimental setups rep-
resentative for next-generation motion stages is limited. In the motion laboratory of the
Eindhoven University of Technology, the Functional-model Floating Reticle (FFR) is available
to experimentally validate these control algorithms.

(a)

Recticle Stage

Metrology Frame

Base Frame

Actuators

Position
Measurement

(b)

Figure 1.1 (a) Overview of the FFR setup. (b) Figure showing the reticle stage.

In Figure 1.1b, the FFR is schematically shown with its main components. The setup consists of
two independently controlled systems. The first system is the active vibration isolation system.
It consists of a base frame which is mounted to the floor. On top of the base frame, a metrology
frame is mounted which is weakly suspended by air mounds. To enhance vibration isolation
properties, the system is equipped with Lorentz actuators to actively suppress disturbances. For
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more details on this part of the setup, see [9, 8]. The second system is the reticle stage. The
position of the reticle stage is measured with respect to the metrology frame. The actuation
is performed relative to the base frame. The reticle stage is considered to be a representative
as next-generation motion stage as it contains a light-weight motion stage and it contains 14
actuators and 14 sensors. Therefore, the following research objective is formulated.

Research Objective 4. Bring the FFR in service, and experimentally validate the joint-
identification-control framework on the FFR.

1.5 Thesis Outline
This thesis is ordered as follows. In Chapter 2, the robust control problem and the corresponding
control-relevant-identification procedure is elucidated. Chapter 3, is considered to be the main
contribution of this thesis. In this chapter, the robust-control-relevant model structure is
developed, enabling a relation between the performance of the robust controller, the estimation
of the nominal model, and the selection of the model order. The parametrization of the nominal
model is derived in Chapter 4. A numerical method to reliably identify the robust-control-relevant
model set is developed in Chapter 5. The robust controller synthesis including the control
objectives is discussed in Chapter 6. The reticle stage is brought into service, by repairing
broken hardware and writing suitable code. This process is elaborated in Appendix A. However,
due to time limitations, the theoretical framework is not validated experimentally. Instead, a
representative simulation example is provided in Chapter 7. In Chapter 8, the conclusions and
recommendations are given.



Chapter 2

Robust Control and
Robust-Control-Relevant System
Identification

In this research, a robust-control-relevant identification framework is developed that enables
the synthesis of robust controllers that achieve high performance and successful application in a
real-time environment. To arrive at the robust-control-relevant identification procedure, first, the
robust control framework is investigated. Thereafter, the robust-control-relevant identification
approach is investigated. In the last section, the main contribution addressed in this research is
formulated.

2.1 Robust Control
The aim of this section is to investigate the robust control strategy. Therefore, first, the control
criterion is investigated. Second, the robust control problem is elaborated, which is a crucial
step in the development of the joint identification and robust control framework.

2.1.1 Control Criterion
A key property of a robust controller is that it achieves optimal performance with respect to
a control criterion. For this reason, the formulation of a suitable control criterion is crucial.
To arrive at a suitable control criterion, consider the closed-loop block diagram in Figure 2.1a.
Herein, C ∈ Cnu×ny denotes the controller and Po(s) ∈ Cny×nu denotes the true plant.

5
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C

r1 u

r2 y
Po

(a)

C

P

r2 r1

y u

(b)

Figure 2.1 (a) Closed-loop of the true system Po and the controller C. (b) Four-block feedback
interconnection T (P,C).

Next, consider the four-block-interconnection in Figure 2.1b. Herein, the closed-loop transfer
function T (P,C) is defined as,

T (P,C) =
[
r2
r1

]
7→
[
y

u

]
,

[
P

I

]
(I + CP )−1

[
C I

]
(2.1)

Based on the four-block feedback interconnection, the performance criterion is formulated.

Definition 1. Performance Criterion. Given the four-block-interconnection system according
to Eq. (2.1). Then, the performance criterion is defined as,

J (P,C) = ‖WT (P,C)V ‖∞. (2.2)

Where, W = diag (Wy,Wu) and V = diag (V2, V1) denote the output- and input-weighting filter.

The weighting filters may be used to specify the performance objectives. The value of J (P,C)
gives an indicates how well the performance objectives are satisfied. A small value of the control
criterion means high performance, whereas a large value means a poor performance.

The usage of four-block-interconnection, Eq. (2.1), in combination with the H∞-norm is adopted,
as it guarantees internal stability of the resulting closed-loop system [68]. Second, the selected
performance criterion allows specifying the control objective in an intuitive manner using
loop-shaping-based techniques [37].

Based on the performance criterion, Definition 1, the definition of the optimal controller is
formulated,

Copt = argmin
C
J (Po, C). (2.3)

However, the true system Po is not explicitly known. Therefore, a mathematical description of
the true system is required. This will be the topic of the next section.

2.1.2 Robust Control
Direct minimization of Eq. (2.3) is untractable as an exact mathematical description of the true
system Po is not explicitly known. Therefore, a nominal model P̂ (nx) of order nx is constructed
to approximate the behaviour of the true system Po. Next, consider the definition of the nominal
controller CNP ,

CNP = argmin
C
J (P̂ (nx), C). (2.4)
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However, a mathematical model is always an approximation of reality. Therefore, the nominal
model P̂ (nx) cannot capture the true behaviour of the true system Po. Instead, a model set
P(nx) is constructed which encompasses the true system Po,

Po ∈ P(nx). (2.5)

The model set is constructed around a nominal model P̂ (nx) of order nx with a model uncertainty
∆u ∈ RH∞. The nominal model and the model uncertainty are related to the model set through
an upper Linear Fractional Description (LFT)-based structure,

P(nx) =
{
P |P = Fu(Ĥ(P̂ (nx)),∆u), ‖∆u‖∞ ≤ γ

}
. (2.6)

Where, γ denotes the size of the model uncertainty ∆u. The upper LFT is defined as,

Fu(Ĥ,∆u) = Ĥ22 + Ĥ21∆u(I − Ĥ11∆u)−1Ĥ12. (2.7)

By definition, Ĥ22 = P̂ (nx). To see this, consider γ = 0, as a result ∆u = 0 =⇒ Fu(Ĥ, 0) =
P̂ (nx). Furthermore, Ĥ12, Ĥ21 and Ĥ11 depend on the selected model structure.

Next, observe that the performance criterion specified in Definition 1, may be evaluated for all
candidate systems in P(nx). This leads to the formulation of the worst-case performance,

JWC(P(nx), C) = sup
P∈P(nx)

J (P,C). (2.8)

Based on the formulation of the worst-case performance, Eq. (2.8), a performance guarantee is
formulated for a controller C,

J (Po, C) ≤ JWC(P(nx), C) (2.9)

This means that if a controller achieves a certain worst-case performance, the controller achieves
at least the same performance when applied to the true system. Therefore, the bound in Eq. (2.9)
may be used for the synthesis of the robust controller,

CRP = argmin
C
JWC(P(nx), C). (2.10)

Observe that for the robust controller, Eq. (2.10), a performance and stability guarantee is
provided. However, for the controller that achieves nominal performance, Eq. (2.4), neither a
stability guarantee nor a performance guarantee can be given when applied to the true system.
This is the key motivation for considering a robust control strategy.

2.2 Robust-Control-Relevant Model Set Estimation
Note that the worst-case performance bound, Eq. (2.9), depends on the model set P(nx).
Therefore, the performance achieved by the robust controller CRP depends on the quality of the
model set. To see this, consider a large model set P(nx). As a large model set is considered,
the model set encompasses the true system, hence, Eq. (2.5) is satisfied. However, the robust
controller, Eq. (2.10), needs to be robust the entire model set. Consequently, the performance
achieved by the robust controller is low.

To enable the synthesis of a robust controller that achieves high performance, the model set
should be small. Therefore, the control objectives are incorporated within the identification
procedure of the model set. This is achieved by considering a similar expression as in Eq. (2.10),

PRCR(nx) = arg min
P(nx)

JWC(P(nx), C), s.t. Po ∈ P(nx). (2.11)
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Note that Eq. (2.11) depends on the controller C. However, during the identification step,
CRP , is not yet available. To enable a tractable identification procedure, a stabilizing exper-
imental controller, Cexp, is implemented. In general, the experimental controller Cexp is not
optimal. Consequently, if the distance between Cexp and CRP is large, iterative robust-control-
relevant identification and robust controller synthesis may be advantageous [3, 11, 14, 46]. The
identification of the model set is formally defined in the following definition.

Definition 2. Robust-control-relevant model set. The robust-control-relevant model set with
the experimental controller Cexp is defined as,

PRCR(nx) = arg min
P(nx)

JWC(P(nx), Cexp), s.t. Po ∈ P(nx). (2.12)

2.2.1 Robust-Control-Relevant Model Order Selection
For successful application in a real-time environment, it is important that the order of the robust
controller is low. Observe that the order of the robust controller is directly related to the order
of the weighting filters, the synthesis method and the order of the nominal model nx [68, 54].
This motivates the selection of a low-order nominal model for two reasons. (i) Typically, the
synthesis method is fixed. Furthermore, the order of the weighting filters is typically low and,
compromising on the control objectives specified in the weighting filter is not preferable. (ii)
Second, a low-order nominal model is also desired from a numerical point of view, as model
complexity is related to the order of the nominal model. Therefore, for successful numerical
estimation, it is desirable to estimate a low-order nominal model.

The order selection process of the nominal model leads to a tradeoff. To see this, consider a
high order nominal model P̂h. As a consequence, P̂h contains most of the behaviour of the true
model Po. Therefore, the corresponding model set Ph is small. This means that the controller
needs to be robust for a small model set. Hence, the performance of the robust controller is
high. However, as the order of the nominal model is high, the order of the robust controller is
also high.

Analogously, a low order nominal model leads to a low order robust controller with a poor
performance. To break the tradeoff, the order of the nominal model, nx, should be penalized
during the identification process of the robust-control-relevant model set, Definition 2.

In [61], model order selection is studied from the perspective of the robust-control-relevant
identification framework. However, no specific model order selection rule is given. Model order
selection for the nominal model that constitutes a model set using H∞ bounded perturbations
has been studied in the set-membership framework [22, 38]. However the framework is considered
to be unsuitable for three reasons. First of all, an additive uncertainty is considered instead
of a dual-Youla-Kučera as considered in this research. Second, the proposed approach requires
the true system to be explicitly known. Third, the proposed algorithm suffers from a large
computational complexity, which inflates especially for next-generation motion stages which
contain many inputs and outputs and use large sample frequencies.

Model order selection is largely studied in the prediction error framework, see [56, 26] and
references therein. Essentially, these methods penalize for the addition of model order by adding
a so-called regularization term. In this research, the concept of adding a regularization term
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is adopted, therefore, using Eq. (2.12) the following definition of the optimal model order is
considered,

n∗x = argmin
nx
JWC(P(nx), Cexp) + f(nx), s.t. Po ∈ P. (2.13)

Where f(nx) denotes a monotonically increasing regularization term that depends on the order
of the nominal model nx. The addition of the regularization term enables a rational tradeoff
between model order and the worst-case performance associated with the robust controller.



Chapter 3

Model Order Selection

The aim of this chapter is to develop a robust-control-relevant model set and a model order
selection procedure. In the development of the robust-control-relevant model set, defining
the model structure is crucial. A suitable model structure is investigated in the first section.
Thereafter, the identification procedure of the nominal model is investigated. In the third
section, the robust-control-relevant model set is developed. A model order selection procedure is
developed in the last section.

3.1 Model Structure
An uncertainty structure should be selected that enables the minimization of the worst-case
performance JWC(P, Cexp). To arrive at a suitable model structure, first, observe that the LFT
based structure of the model set P , Eq. (2.6), can be used to express the worst-case performance.
Next, based on the LFT description and the experimental controller Cexp in conjunction with
the weighting filters W and V , the weighted closed-loop matrix M̂ is constructed in Figure 3.1.

Cexp

∆u

Ĥ

W

V

M̂

Figure 3.1 Block diagram of the weighted closed-loop.

Using the weighted closed-loop M̂ , the worst-case performance criterion is reformulated,

JWC(P, Cexp) = sup
P∈PdY

J (P,Cexp), (3.1)

= sup
‖∆u‖∞≤γ

∥∥∥Fu (M̂(P̂ , Cexp),∆u

)∥∥∥
∞
, (3.2)

= sup
‖∆u‖∞≤γ

∥∥∥∥M̂22 + M̂21∆u

(
I − M̂11∆u

)−1
M̂12

∥∥∥∥
∞
. (3.3)

The worst-case performance depends on the model uncertainty ∆u in a complicated manner.
Therefore, minimization of the worst-case performance JWC(P, Cexp) over the model set P is

10
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not immediately tractable. To enable the minimization of the worst-case performance, the model
set is structured based on coprime factors. Therefore, the nominal model is structured as an
Right Coprime Factorization (RCF).

Definition 3. Right Coprime Factorization (RCF). {N,D} is an RCF of P̂ if

1. N,D ∈ RH∞;
2. Bezout identity holds, i.e. ∃X,Y ∈ RH∞ s.t. XD + Y N = I.

For a dual definition of an Left Coprime Factorization (LCF), see [68].

Also, to enable a tractable optimization problem, the experimental controller is also factorized
as an RCF, Cexp = NcD

−1
c .

Next, observe that the true system Po is stabilized during experiments by the controller Cexp.
Therefore, the true feedback-loop T (Po, Cexp) should never be modelled by an unstable feedback-
loop T (P̃u, Cexp). Therefore, the systems P̃u that results in an unstable feedback-loop should be
excluded from the model set. The exclusion of these systems results in a non-conservative model
set, which enables high-performance motion control. Therefore, a model set should be selected
that only parameterizes systems stabilized by the experimental controller Cexp. For this reason,
the dual-Youla-Kučera structure is adopted. The key aspect of the dual-Youla-Kučera structure
is that it only parameterizes systems stabilized by Cexp [4, 19, 14, 47, 43].

Definition 4. dual-Youla-Kučera model structure.

PdY =
{
P

∣∣∣∣P =
(
N̂ +DC∆u

) (
D̂ −NC∆u

)−1
}

(3.4)

The dual-Youla-Kučera model structure can also be expressed as an LFT,

Ĥ(P̂ , Cexp) =
[

D̂−1NC D̂−1

DC + P̂NC P̂

]
. (3.5)

To arrive at an expression for the worst-case performance for the dual-Youla-Kučera model
structure, the weighted closed-loop is expressed as an LFT [43, 47, 50, 12],

M̂(P̂ , Cexp) =

 0
(
D̂ + CexpN̂

)−1 [
Cexp I

]
V

W

[
DC

−NC

]
WT (P̂ , Cexp)V

 . (3.6)

Next, the worst-case performance criterion is rewritten to,

JWC(PdY , Cexp) = sup
P∈PdY

J (P,Cexp), (3.7)

= sup
‖∆u‖∞≤γ

∥∥∥Fu (M̂(P̂ , Cexp),∆u

)∥∥∥
∞
, (3.8)

= sup
‖∆u‖∞≤γ

∥∥∥∥M̂22 + M̂21∆u

(
I − M̂11∆u

)−1
M̂12

∥∥∥∥
∞
, (3.9)

= sup
‖∆u‖∞≤γ

∥∥∥M̂22 + M̂21∆uM̂12
∥∥∥
∞
, (3.10)

≤J(P̂ , Cexp) + sup
‖∆u‖∞≤γ

∥∥∥M̂21∆uM̂12
∥∥∥
∞
. (3.11)
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The inverse expression of the LFT,
(
I − M̂11∆u

)−1
, drops out since for this structure it holds

that M̂11 = 0. The inequality in Eq. (3.11) holds as M̂22 = J(P̂ , Cexp). Furthermore, as the
dual-Youla-Kučera model structure only parameterizes systems stabilized by Cexp, Eq. (3.10)
is bounded [44]. In addition, this also means that for a finite uncertainty magnitude γ, the
dual-Youla-Kučera model structure PdY covers the true system Po, i.e. Po ∈ PdY .

However, direct minimization of JWC(PdY , Cexp) over the model set PdY is still untractable
because of the transfer matrices M̂21 and M̂12. These transfer matrices, complicate the con-
nection between the magnitude of the model uncertainty, γ, and the worst-case performance,
JWC(PdY , Cexp). To facilitate minimization of JWC(PdY , Cexp), observe that the RCFs of P̂
and Cexp are not unique. In the next sections, this freedom is exploited to arrive at a transparent
connection between the worst-case performance and the size of the model uncertainty.

3.2 Nominal Model
For the construction of the model set, defining the nominal model is crucial. Therefore, in this
section, the nominal model and its identification procedure will be investigated.

3.2.1 Robust-Control-Relevant Nominal Model Identification
The nominal model should be selected such that it results in a small model set P. Therefore,
the nominal model P̂ is identified in a robust-control-relevant manner with respect to Po. Next,
observe that the performance of the true system is related to the performance of any system P

through,
J (Po, C) ≤ J (P,C) + ‖W (T (Po, C)− T (P,C))V ‖∞. (3.12)

The inequality follows from the triangular equality [51, 3]. Herein, the last term can be seen
as the weighted mismatch between the candidate model P and the true system Po. Therefore,
evaluating Eq. (3.12) for the experimental controller Cexp results in the following identification
criterion,

P̂ = argmin
P
‖W (T (Po, Cexp)− T (P,Cexp))V ‖∞ . (3.13)

The main advantage of Eq. (3.13) is that the nominal model is identified with the weighting
filters used for the synthesis of the robust controller. Taking the control objectives into account
during the identification procedure results in a robust-control-relevant nominal model.

3.2.2 Coprime Factor Identification

The nominal model P̂ is internally structured as an RCF to enable the construction of the
dual-Youla-Kučera model structure. In this section, the non-uniqueness of the coprime factors is
exploited to connect the identification procedure of the nominal model to the identification of
the coprime factors.

The following definition is important for the upcoming derivations.

Definition 5. The pair
{
Ñe, D̃e

}
is an Left Coprime Factorization (LCF) with co-inner numer-

ator of
[
CexpV2 V1

]
, if it is an LCF of

[
CexpV2 V1

]
and in addition, ÑH

e Ñe = I.

The existence of the LCF with co-inner numerator is guaranteed [43].
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Next, consider the following definition, which provides a connection between the identification of
the nominal model and the identification of the coprime factors by the development of a new
pair of coprime factors.

Theorem 1. Coprime Identification Criterion. Let
{
Ñe, D̃e

}
be an LCF of

[
CexpV2 V1

]
, with

Ñ∗e Ñe = I and Ñe =
[
Ñe,2 Ñe,1

]
. Then the identification criterion in Eq. (3.13) is equivalent

to,

min
N̂,D̂

∥∥∥∥∥W
([
No

Do

]
−
[
N̂

D̂

])∥∥∥∥∥
∞
, N̂ , D̂ ∈ RH∞. (3.14)

Where,[
N̂

D̂

]
=
[
P̂

I

] (
D̃e + Ñe,2V

−1
2 P̂

)−1
,

[
No

Do

]
=
[
Po
I

] (
D̃e + Ñe,2V

−1
2 Po

)−1
. (3.15)

A proof is given in [43, Theorem 1], [42, Proposition 2].

It can be seen that the optimization criterion is reduced from a four-block problem, Eq. (3.13),
to a two-block problem, Eq. (3.14). This is achieved as the H∞-norm is invariant for the
pre-multiplication of a matrix with an inner numerator and the post-multiplication of a matrix
with a co-inner numerator. Using the new coprime factorization, the robust-control-relevant
model set is constructed in the next section.

3.3 Robust-Control-Relevant Model Structure
In this section, the model structure is completed such that identification of the nominal model
and the size of the uncertainty together aim at the minimization of the worst-case performance.
Therefore, the coprime factorization introduced in the previous section is adopted, and a new
coprime factorization of the experimental controller developed in the next definition.

Definition 6. Robust-Control-Relevant RCF of the experimental controller. The pair {NC , DC}
is a (Wu,Wy)-normalized RCF if it satisfies Definition 3 and,[

WuNC

WyDC

]H [
WuNC

WyDC

]
= I. (3.16)

Using the new coprime factorizations in Theorem 1 and Definition 6, the robust-control-relevant
model set is defined.

Definition 7. Robust-Control-Relevant Model Set. Given the robust-control-relevant RCF of
P̂ ,
{
N̂ , D̂

}
according to Theorem 1, robust-control-relevant RCF of Cexp, {NC , DC} according

to Definition 6. Then the robust-control-relevant model set is defined as,

PRCR =
{
P

∣∣∣∣P =
(
N̂ +DC∆u

) (
D̂ −NC∆u

)−1
}
. (3.17)

The key advantage of the robust-control-relevant model set is the direct relationship between
the worst-case performance, the nominal performance and the size of the uncertainty as shown
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in the following derivation,

JWC(PRCR, Cexp) = sup
‖∆u‖∞≤γ

∥∥∥Fu (M̂RCR(P̂ , Cexp),∆u

)∥∥∥
∞
, (3.18)

= sup
‖∆u‖∞≤γ

∥∥∥M̂RCR
22 + M̂RCR

21 ∆uM̂
RCR
12

∥∥∥
∞
, (3.19)

≤J(P̂ , Cexp) + sup
‖∆u‖∞≤γ

∥∥∥M̂RCR
21 ∆uM̂

RCR
12

∥∥∥
∞
, (3.20)

=J(P̂ , Cexp) + γ. (3.21)

In contrast to Eq. (3.11), the transfer matrices M̂RCR
21 and M̂RCR

12 do not influence the bound
in Eq. (3.21), see [43, Theorem 9] for a proof. It can be seen that the worst-case performance
JWC(PdY , Cexp) is now directly related to the performance of the nominal model and the
magnitude of the model uncertainty.

Furthermore, the size of the model uncertainty, γ, is minimized during the identification of
the nominal model. In fact, the identification criterion, Eq. (3.13), is equal to γ. Hence, the
identification of the nominal model results in the minimal size of the model uncertainty γ.
Consequently, the selected model structure in combination with the nominal model identification
approach together aim at minimizing the worst-case performance Eq. (2.12). For this reason,
the considered model set is robust control relevant.

Furthermore, the proposed model structure allows the usage of an unstructured model uncertainty,
which results in a non-conservative robust controller synthesis. This is in contrast to existing
methods regarding system identification for control where structured model uncertainties are
considered which creates conservatism in the robust controller synthesis [15, 60].

3.4 Order Selection Rule
In this section, a model order selection procedure is developed which breakes the tradeoff
between the performance of the system with a robust controller and the order of the nominal
model. Therefore, deriving a connection between the worst-case performance, Eq. (2.11), the
robust-control-relevant nominal model identification criterion and the size of the uncertainty is
essential.

As mentioned in Section 2.2.1, in this research, the concept of a regularization term as considered
in the prediction error framework is used for the selection of the model order, see [56] and
references therein. Three commonly used order selection criteria are i) Bayesian information
criterion rule [52], ii) generalized information criterion rule [34] and iii) Akaike information
criterion rule [2]. Essentially, these order selection rules penalize model order by adding a
regularization term which depends linearly on the model order. In this research, a similar
regularization term is adopted by considering a regularization term that depends linearly on the
model order,

n∗x = argmin
nx
JWC(P(nx), Cexp) + φnx, s.t. Po ∈ P(nx). (3.22)

Herein, the constant φ is a non-negative tuning parameter. The value of this parameter may
be adjusted based on the selected parametrization, the considered system, and the required
performance. A possibility on how to select the value of the tuning parameter φ will be dis-
cussed in a simulation example in Chapter 7. The computation of the worst-case performance,
JWC(P(nx), Cexp), is essentially a skewed Structured Singular Value (SSV) problem, which
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requires a large computational effort. In addition, the connection with the identification proce-
dure is unclear. Therefore, in the next theorem, an overbound of the worst-case performance,
JWC(P(nx), Cexp), is derived, which reduces the computational effort, and provides a transpar-
ent connection between the identification criterion of the nominal model and the worst-case
performance.

Theorem 2. Given the robust-control-relevant model set PRCR according to Definition 7, with
a nominal model of order nx. Then,

JWC(PRCR(nx), Cexp) ≤ J (Po, Cexp) + 2γ(nx). (3.23)

A proof is given in Appendix B.1.

This theorem states that the worst-case performance of the control-relevant-model set is bounded
by the performance of the true system and the size of the uncertainty γ. Therefore, this bound
depends on the selected order nx only through the size of the model uncertainty. Notice that γ
is minimized during the identification of the nominal model. Next, Eq. (3.22) and Theorem 2
are combined to arrive at the definition of the optimal model order n∗x.

Definition 8. Model order selection rule. Given the robust-control-relevant model structure
PRCR according to Definition 7. Then the model order selection rule is defined as

n∗x = argmin
nx
W(nx). (3.24)

Where the cost function W(nx) is defined as

W(nx) = γ(nx) + φ̃nx. (3.25)

Combining the model structure, nominal model identification procedure and the model order
selection rule, constitutes a framework that enables the synthesis of low-order robust controllers
that achieve a high performance. The model order selection procedure extends to existing
methods regarding system identification for robust control where typically high model orders are
selected which hampers successful implementation in a real-time environment [60, 47].

3.5 Overview
The main contributions of this chapter are twofold, (i) developing a robust-control-relevant
model structure, (ii) developing a model order selection procedure. Regarding (i), to construct a
non-conservative model set, the dual-Youla-Kučera plays an important role. More specifically,
the freedom in the coprime factors that constitute the dual-Youla-Kučera model structure are
exploited in the second section to facilitate a transparent connection between the worst-case
performance, the nominal performance and the size of the model uncertainty. Based on the
proposed model structure in conjunction with the identification approach of the nominal model,
a tractable identification procedure is derived. Furthermore, the proposed model structure allows
the usage of an unstructured model uncertainty, which results in a non-conservative robust
controller synthesis. This is in contrast to existing methods regarding system identification for
control where structured perturbation blocks are considered which creates conservatism in the
robust controller synthesis [15, 60].
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Regarding (ii), a model order selection procedure is developed in the third section. To arrive at
a suitable model order selection procedure, a novel connection between the performance and
the selected model order is derived. In addition, the regularization term which accounts for the
addition of the model order is specified based on findings in the literature. The regularization term
in conjunction with the novel connection enables to break the tradeoff between model order and
the performance of the resulting robust controller. The model order selection procedure extends
to existing methods regarding system identification for robust control where typically high model
orders are selected which hampers successful implementation in a real-time environment [60, 47].



Chapter 4

Parametrization

In this chapter, a parametrization of the nominal model is developed that enables (i) the model
order selection procedure, (ii) numerically reliable synthesis of the nominal model. To enable
(i), the parametrization should, for a given model order, describe a rich class of mechanical
systems. Therefore, in the first section, the class of mechanical systems is investigated. In the
second section, a parametrization is developed that enables (i) and (ii). To indicate the class of
systems the proposed parametrization describes, an example will be given in the third section.
An overview of this chapter is given in the last section.

4.1 Mechanical System Class
The parametrization should enable the model selection procedure. Hence, for a given model
order, the parametrization should describe a sufficiently rich class of mechanical systems. For
this reason, the class of mechanical systems is investigated in this section.

4.1.1 Mechanical Systems
In order to come up with a parametrization that describes mechanical systems, the class of
mechanical systems needs to be defined first. Therefore, the dynamic behaviour of mechanical
systems is investigated using Newton’s second law,

Mq̈(t) +Dq̇(t) +Kq(t) = u(t). (4.1)

Herein, M ∈ Rnm×nm , D ∈ Rnm×nm and K ∈ Rnm×nm denote the mass-, damping- and stiffness-
matrix, where nm denotes the number of modal coordinates [16]. An essential step in the
analysis of mechanical systems is to evaluate its modal form. Therefore, consider the undamped
generalized eigenvalue problem, (

ω2
kM −K)uO,k = 0. (4.2)

Where ωk denotes the k-th undamped eigenfrequency and uO,k denotes the k-th undamped
eigenmode. The eigenvalues are nonnegative real numbers, i,e. ωk ≥ 0. Rigid-body modes
correspond to those eigenfrequencies equal to zero. The origin of these modes is found in the
rank deficiency of the stiffness matrix K, therefore, dim(ker(K)) = no. Physically, a rigid-body
mode can be interpreted as a free change in translation or rotation without deformation.

To arrive at the modal form, the undamped eigenmodes are stacked in the matrix UO and are
normalized with respect to the mass, hence, U>OMUO = I and U>OMUO = Ω2. Next, consider

17
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the generalized coordinates qm = U−1
O q and the corresponding generalized equations of motion,

q̈m + U>ODUO︸ ︷︷ ︸
Dm

q̇m + Ω2qm = U>Ou. (4.3)

For many motion system, the modal damping matrix is a full matrix, which results in a coupled
set of second-order differential equations. This type class of mechanical systems is also referred
to as the generally damped mechanical system class, which is formally defined as follows.

Definition 9. Generally damped mechanical system.

Φgd =


 O I o

−Ω2 −Dm R
L o


∣∣∣∣∣∣∣
L ∈ Rny×nm R ∈ Rnm×nu Dm ∈ Rnm×nm

Ω2 ∈ Rnm×nu

 (4.4)

High precision motion systems are typically lightly damped. This often results in a diagonal
modal damping matrix, Dm = diag(dm,i), resulting in a decoupled set of second-order differential
equations. This type of damping is referred to as proportionally damped which is formally
defined below.

Definition 10. Proportionally damped mechanical system.

Φpd = {φ ∈ Φgd|Dm = diag(dm,i), i ∈ {1, ..., nm}} (4.5)

Recent developments in the design of motion stages resulted in the proportional damping
assumption being invalid for motion stages [28, 63]. Therefore, in this research, a parametrization
is developed that encompasses both the generally damped and proportionally damped system
class.

4.1.2 Structural Properties
In this section, the structural properties of motion systems are investigated. This enables
the formulation of constraints on the parametrization which are particularly relevant for the
identification of mechanical systems.

Rigid-Body Mode

As discussed in Section 4.1.1, motion systems typically contain rigid-body modes. A rigid-body
mode is a free change in translation or rotation without deformation. These rigid-body modes
typically dominate the frequency response in the low-frequency range, whereas the flexible
dynamics are often more pronounced in the high-frequency region. Prescribing the number
of rigid-body modes is particularly relevant for the identification of mechanical systems. A
rigid-body mode is formally defined in the definition below.

Definition 11. rigid-body Mode. Given a generally damped mechanical system Σ ∈ Φgd.
A rigid-body mode is defined as the vector that spans the kernel of the stiffness matrix K,
span {v1, ..., vno} = ker (K). The number of rigid-body modes equals n0 = dim (ker (K)).

Order Increments

For successful and efficient order selection, determining the relevant orders for mechanical
systems is crucial. If a state-space realization is minimal, the McMillan degree is equal to the
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number of states. If a mechanical system is considered which uses position measurement and
force actuation, then the McMillan degree is defined as

nx = 2nm. (4.6)

As a result, for controllable and observable mechanical systems, the McMillan degree is an even
number and the order increment is therefore 2.

Relative Degree

An important input-output property of a system is the relative degree.

Definition 12. Relative degree. Given an input y ∈ Rny and an output u ∈ Rnu . Let κi be the
minimum order of the time derivative of output yi which is affected directly by input uj . Then
the relative degree of output yi is defined as κi [32].

Motion systems are often controlled using position sensors and acceleration-actuators, therefore,
the following constraint on the relative degree should be satisfied.

Theorem 3. Given a mechanical system Φ ∈ Φgd, then the following inequality holds for the
relative degree,

κi ≥ 2, for i = 1, ..., ny. (4.7)

A proof is given in Appendix B.2.

Therefore, the parametrization should be able to describe systems with at least a relative degree
of 2.

4.2 Parametrization
In system identification, often a common denominator parametrization is considered. This
approach is first introduced to SISO systems, and later extended to Multiple Input Multiple
Output (MIMO) systems [5]. A major drawback of the common denominator parametrization
is that for a given order, the parametrization can only describe a limited class of systems [65].
Another often used parametrization for MIMO systems is the full-Matrix Fraction Description
(MFD) [55]. For a given order, the full-MFD approach is able to describe a much richer class of
systems. In addition, numerical reliable synthesis methods are available for this parametrization.
However, the minimal order-increment with which the order of the full-MFD can be increased is
nu [65, Section 2.3.5]. As next-generation motion systems contain many inputs and outputs,
this increment is large which may result in unnecessarily large model orders. This is undesirable
in terms of numerical conditioning and the order of the resulting robust controller.

In this research, a parsimonious MFD parametrization is developed [17, 62]. Through the usage
of pseudo-canonical indices, a large class of systems can be parameterized for a given order of the
nominal model. In addition, the developed parametrization enables the usage of well-established
identification algorithms, including Sanathanan and Koerner (SK) and Gauss-Newton (GN).
To enhance numerical reliability, the number of parameters of the nominal model is kept to a
minimum by incorporating mechanical properties through trivial parameter constraints.
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4.2.1 Pseudo-Canonical Form
In this section, an MFD parametrization is developed that enables the parametrization of both
generally damped and proportionally damped systems. To arrive at a suitable parametrization,
first, consider the class of strictly proper systems,

Φp =
{[

A B

C

]∣∣∣∣∣
}
. (4.8)

Related to the state-space parametrization, the following matrices are defined [32],

O =


C

CA
...

CAnx−1

 , C =
[
B AB . . . Anx−1B

]
. (4.9)

Herein, O denotes the observability matrix and C denotes the controllability matrix. Next, a
system φ ∈ Φp is observable or controllable if O or C has full rank. An important concept for
the construction of the pseudo-canonical form is the similarity transformation.

Definition 13. Similarity transformation. Given a matrix T =
{
T ∈ Rnx×nx

∣∣rank(T ) = nx
}
.

Next, given the original coordinate frame x, and the transformed state coordinate frame x̃ = Tx

[29]. Then the transformed system equals,[
A B

C

]
T−→

[
TAT−1 TB

CT−1

]
. (4.10)

By selecting nx rows of the observability matrix, or nx columns of the controllability matrix that
constitute an invertible matrix, a similarity transformation matrix is obtained that is able to
transform a system into a pseudo-canonical form. This is a key concept in the parametrization
of MIMO systems with MFDs.

Next, the process of selecting the rows of O or the columns of C is formalized. Therefore, consider
the observability matrix with respect to the i-th row of C and the controllability matrix with
respect to the i-th column of B,

Oηi =


[C]i

[C]iA
...

[C]iAηi−1

 ∈ Rηi×nx , Cµi =
[
[B]i A[B]i . . . Aµi−1[B]i

]
∈ Rnx×µi . (4.11)

Herein, ηi and µi denote the pseudo-canonical observability (p.c.o.) and pseudo-canonical
controllability (p.c.c.) index respectively [53]. A similarity transformation matrix is constructed
by stacking the rows of Oηi and the columns of Cµi ,

Or =


Oη1
...

Oηny

 ∈ Rnx×nx , Cr =
[
Cµ1 . . . Cµny

]
∈ Rnx×nx . (4.12)
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An observable system can be transformed into a pseudo-canonical observable form using the
similarity transformation matrix Eq. (4.12),[

Ao Bo
Co

]
=
[
O−1
r AOr O−1

r B

COr

]
. (4.13)

Analogously, a controllable system can be transformed into a pseudo-canonical controllable form
using the similarity transformation matrix Eq. (4.12),[

Ac Bc
Cc

]
=
[
C−1
r ACr C−1

r B

CCr

]
. (4.14)

However, for a similarity transformation to be valid, the similarity matrix, Or or Cr, must be
invertible. Therefore, the rows of the observability and the columns of the controllability matrix
must be selected such that they constitute a set of linearly independent rows or columns. For
this reason, the p.c.o. and p.c.c. need to be admissible. The admissible set of p.c.o. and p.c.c.
indices are defined in the following definitions [10, 53, 21].

Definition 14. Admissible pseudo-canonical observability (p.c.o.) indices. The admissible set
of p.c.o. indices is given by

Γ =
{
γ =

[
η1 . . . ηny

] ∣∣∣∣∣
ny∑
i=1

ηi = nx, η1 ≥ . . . ≥ ηny ≥ 0, rank(Or) = nx

}
. (4.15)

Definition 15. Admissible pseudo-canonical controllability (p.c.c.) indices. The set of admissible
p.c.c. indices is given by

∆ =
{
δ =

[
µ1 . . . µnu

] ∣∣∣∣∣
nu∑
i=1

µi = nx, µ1 ≥ . . . ≥ µnu ≥ 0, rank(Cr) = nx

}
. (4.16)

4.2.2 Right Matrix Fraction Description Parametrization
In this subsection, a Right Matrix Fraction Description (RMFD) parametrization is defined
using the definition of the pseudo-canonical indices, that enables parametrization of generally
damped and proportionally damped systems. To arrive at the parametrization, first, consider
the formal definition of the RMFD.

Definition 16. Right Matrix Fraction Description. Given B(s) ∈ Cny×nu and A(s) ∈ Cnu×nu ,
then

P (s) = B(s)A−1(s) (4.17)

For a more extensive definition and the definition of the Left Matrix Fraction Description
(LMFD), see [31].

Next, the RMFD parametrization is defined, based on the p.c.c. indices of Definition 15.

Definition 17. Strictly proper pseudo-canonical Right Matrix Fraction Description (RMFD)
parametrization. Given an admissible set of p.c.c. indices δ ∈ ∆, for which the following holds,

vj = max (µmax − 1, µj) , µi ≥ νi, i ∈ {1, ..., nu} . (4.18)
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Then, the parametrization is defined as

[A(s, θ)]ji =δijsµi −
µi∑
k=1

αjiks
k−1, for i, j ∈ {1, ..., nu}, (4.19)

[B(s, θ)]ji =
νj∑
k=1

βjiks
k−1, for

i ∈ {1, ..., ny},j ∈ {1, ..., nu}.
(4.20)

The parameter vector θ is defined as

θ =
[
θ1 . . . θnu

]>
θj =

[
αj
βj

]
(4.21)

αj =
[
αj11 . . . αj1µ1 αj21 . . . αj2µ2 . . . αjnu1 . . . αjnuµnu

]>
, (4.22)

βj =
[
βj11 . . . βj1νj βj21 . . . βj2νj . . . βjny1 . . . βjnyνj

]>
. (4.23)

This parametrization essentially is a dual parametrization to LMFD parametrization in [18,
Section 4.3.2]. The constraint on the p.c.c. indices, Eq. (4.18), ensures that the RMFD is strictly
proper without having to enforce nontrivial parameter constraints on the parameter vector θ
[25, 18]. To understand the proposed parametrization, consider the following example.

Example 1. Given nu = ny = 2 and an admissible set of p.c.c. indices δ = {3, 2}. The
corresponding parametrization is defined as

A(s, θ) =
[
s3 − α113s

2 − α112s− α111 −α213s
2 − α212s

1 − α211
−α122s− α121 s2 − α222s− α221

]
, (4.24)

B(s, θ) =
[
β112s+ β111 β212s+ β211
β122s+ β121 β222s+ β221

]
. (4.25)

4.2.3 Mechanical Properties
In this section, the relative degree and rigid-body modes, described in Section 4.1.1, will be
enforced through trivial parameter constraints. First, the relative degree constraint is investigated,
thereafter, enforcing the rigid-body modes is investigated.

Relative Degree

In this section, a relative degree greater than or equal to two is enforced by considering a
constraint on the p.c.c. indices. This is formally discussed in the following theorem.

Theorem 4. Relative Degree. Given an admissible set of p.c.c. indices, δ ∈ ∆. Then, a relative
degree, κi ≥ 2 is enforced by lowering the indices of the numerator matrix,

vi = max (µmax − 1, µi)− 1, µi ≥ νi. (4.26)

A proof in provided in Appendix B.3

Essentially, this theorem states that to enforce a relative degree greater than or equal to two,
the polynomial degree of the numerator matrix must be lowered by 1.
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Rigid-Body Modes

In this section, a parameter constraint is proposed to enforce rigid-body modes. The parameter
constraint is formally defined in the following theorem.

Theorem 5. Rigid-body modes constraint. Given µi ≥ 2, ∀i = 1, ..., nu and let the number
of rigid-body modes be defined as no = nu. Then, no rigid-body modes are enforced by the
following parameter constraint,

αijk = 0, ∀i = 1, ..., no, j = 1, ..., no, k = 1, 2. (4.27)

A proof is given in [18, Appendix E.12].

Using Theorem 5, rigid-body modes can be enforced by means of a trivial parameter constraint.
If the number of inputs exceeds the number of rigid-body modes, one might consider alternative
constraints as shown in [18, Theorem 11]. To elucidate the constraints regarding the number of
rigid-body modes and a relative degree larger than 1, consider the following example.

Example 2. Given nu = ny = 2, an admissible set of p.c.c. indices δ = {3, 2}, the number of
rigid-body modes no = 2 and a relative degree larger than 1. The corresponding parametrization
is defined as

A(s, θ) =
[
s3 − α113s

2 −α213s
2

0 s2

]
, (4.28)

B(s, θ) =
[
β111 β211
β121 β221

]
. (4.29)

4.2.4 Indices
In this subsection, the selection of a suitable p.c.c. index set is investigated. Ideally, the p.c.c.
indices should satisfy the relative degree constraint, Theorem 4. To arrive at a p.c.c. index set
that satisfies the relative degree constraint, first consider a set of admissible p.c.c. indices,

δ =
[
µmax µ1 . . . µny

]
. (4.30)

Next, using the relative degree constraint on the numerator, vi = max (µmax − 1, µi)− 1, the
numerator indices are defined as[

ν1 . . . νnu

]
=
[
µmax µmax − 1 . . . µmax − 1

]
. (4.31)

For the parametrization to have a relative degree greater than or equal to two, recall the following
constraint on the p.c.c. indices,

µi ≥ νi, for i = 1, ..., nu. (4.32)

For this reason, combining Eq. (4.30) and Eq. (4.31) with Eq. (4.32), results in the following
constraint on the p.c.c. indices,

µi ≥ µmax − 2. (4.33)

An index set that satisfies the relative degree constraint, Eq. (4.33), is the so-called generic
controllability index [23]. The generic controllability index is formally defined in the following
definition.
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Definition 18. Generic controllability index. The generic controllability index, δg, is defined as

δg = {δ ∈ ∆||µi − µj | = 0 ∨ 1, i, j ∈ {1, ..., nu}} . (4.34)

Observe that for generic indices, the similarity matrix, Cr is defined as the first nx columns of C.
As a result, the generic controllability indices are admissible if,

rank
(
Cg
)

= nx. (4.35)

In addition, the generic indices are also canonical indices, more specifically, Kronecker indices
[1]. The resulting parametrization is in literature also referred to as the polynomial Echelon
form or Popov canonical form, [23, 31, 65].

Example 3. Given ny = nu = 4, nx = 20, then the corresponding set of specific indices is
defined as

δg = {5, 5, 5, 5} . (4.36)

Example 4. Given ny = nu = 4, nx = 22, then the corresponding set of specific indices is
defined as

δg = {6, 6, 5, 5} . (4.37)

For generally damped systems it holds that generic indices are generically equivalent to generally
damped systems [18, Theorem 8]. However, this does not mean that all mechanical systems
can be described by means of generic indices. This will be shown by means of an example in
Section 4.3. First, consider the following theorem.

Theorem 6. Given nx
nu
∈ Z and Cg the generic observability matrix. Let C̄g be the generic

observability matrix based on a similarity, input or output transformation of Cg [29]. Then,

rank
(
C̄g
)

= rank (Cg) . (4.38)

A proof is given in Appendix B.4.

This theorem essentially states that given a state-space representation of a system φ ∈ Φgd for
which it holds that rank(Cg) < nx, the system φ cannot be described with generic indices.

An alternative to the generic controllability index set is the so-called specific controllability
index. This index is formally defined in the following definition.

Definition 19. Specific controllability index. The specific controllability index is defined as

δs = {δ ∈ ∆||µi − µj | = 0 ∨ 2, i, j ∈ {1, ..., nu}} . (4.39)

Next, consider the following examples.

Example 5. Given ny = nu = 4, nx = 20, then the corresponding set of specific indices is
defined as

δs = {6, 6, 4, 4} . (4.40)
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Example 6. Given ny = nu = 4, nx = 22, then the corresponding set of specific indices is
defined as

δs = {6, 6, 6, 4} . (4.41)

For a specific choice of p.c.c. indices, it is known that the resulting parametrization does not
cover each controllable system [21, 27]. For this reason, it is important to understand which
class of mechanical systems the RMFD parametrization covers using generic or specific indices.
To this end, consider the following theorem.

Theorem 7. Consider a MIMO system with the following decoupled structure,

P (s) =


P1(s) O

.. .

O Pnu(s)

 , (4.42)

where, Pi(s) denotes the i-th SISO with a McMillan degree nx,i. Next, the individual transfer
functions are ordered such that nx,1 ≥ nx,2 ≥ ... ≥ nx,nu . Then the following holds,

1. If, |nx,i − nx,j | = 0 ∨ 1, i, j ∈ {1, ..., nu}, then the system can be described using generic
indices.

2. If, |nx,i − nx,j | = 0 ∨ 2, i, j ∈ {1, ..., nu}, then the system can be described using specific
indices.

Therefore, from Theorem 7, it is concluded that there exist systems at which a description by
means of generic indices is more desirable than specific indices and vice versa. On the other
hand, there exist systems that can be described by means of generic and specific indices. This
will be investigated in the next section by means of an example.

4.3 Mechanical Example
In this subsection, a mechanical example will be given to clarify the choice between generic and
specific indices. Consider the mechanical system presented in Figure 4.1.

m1 m2

θ

F1

x1

x2

F2

k

d1
d2

Figure 4.1 Free body diagram of the mechanical system.

The system consists of two point masses, m1 and m2. These masses are connected through a
spring with stiffness k and a damper with a damping constant d1. The horizontal position of the
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first mass is indicated by x1. The vertical position of both masses is indicated by x2. The system
is actuated in the horizontal direction by a force F1 and in the vertical direction by a force F2.
A diagonal damper is connected to the mass m1 under an angle θ. In the next paragraph, the
selection of the p.c.c. indices will be investigated with and without the damper d2.

Proportional Damping

First, consider the mechanical system without a diagonal damper, e.i. d2 = 0. As a result, the
MIMO system is fully decoupled, therefore, the system is proportionally damped. Next, consider
the corresponding state-space parametrization,

A =



0 1 0 0 0 0
− k1
m1

− d1
m1

k1
m1

d1
m1

0 0
0 0 0 1 0 0
k1
m2

d1
m2

− k1
m2

− d1
m2

0 0
0 0 0 0 0 1
0 0 0 0 − k2

m1+m2
− d2
m1+m2


(4.43)

B =



0 0
1
m1

0
0 0
0 0
0 0
0 1

m1+m2


C =

[
1 0 0 0 0 0
0 0 0 0 1 0

]
(4.44)

First, consider the generic p.c.c. indices, δg = [3, 3] and the corresponding similarity transforma-
tion matrix,

Cg =
[

[B]1 A[B]1 A2[B]1 [B]2 A[B]1 A2[B]2
]

(4.45)

=



0 1
m1

− d1
m12 0 0 0

1
m1

− d1
m12

d12

m12−
k1
m1

+ d12
m1 m2

m1
0 0 0

0 0 d1
m1 m2

0 0 0

0 d1
m1 m2

−
d12

m22−
k1
m2

+ d12
m1 m2

m1
0 0 0

0 0 0 0 1
m1+m2

− d2
(m1+m2)2

0 0 0 1
m1+m2

− d2
(m1+m2)2 −

k2
m1+m2

− d22

(m1+m2)2

m1+m2


(4.46)

It can be seen that Cg is rank deficient as the sixth column is spanned by the fourth and fifth
column. Therefore, by virtue of Theorem 6, it is concluded that generic indices are not admissible
for this system. This is a result of the second-order SISO system being decoupled from the
fourth-order system. For this reason, adding a spring or damper to m2 which connects these
independent systems would result in the generic indices being admissible as shown in the next
paragraph.

Alternatively, specific indices can be used to describe the proportionally damped mechanical
system. Consider the specific indices δs = [4, 2] and the corresponding similarity transformation
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matrix

Cs =
[

[B]1 A[B]1 A2[B]1 A3[B]1 [B]2 A[B]2
]

(4.47)

=



0 1
m1

− d1
m12

d1
2 m1+d1

2 m2−k1 m1 m2
m13 m2

0 0
1
m1

− d1
m12

d1
2 m1+d1

2 m2−k1 m1 m2
m13 m2

− d1 (m1+m2) (d1
2 m1+d1

2 m2−2 k1 m1 m2)
m14 m22 0 0

0 0 d1
m1 m2

− d1
2 m1+d1

2 m2−k1 m1 m2
m12 m22 0 0

0 d1
m1 m2

− d1
2 m1+d1

2 m2−k1 m1 m2
m12 m22

d1 (m1+m2) (d1
2 m1+d1

2 m2−2 k1 m1 m2)
m13 m23 0 0

0 0 0 0 0 1
m1+m2

0 0 0 0 1
m1+m2

− d2
(m1+m2)2


(4.48)

The similarity transformation matrix has now full matrix rank. This is a result of the p.c.c.
indices being equal to the McMillan degrees of the individual SISO system, see Theorem 7.
Therefore, for the proportionally damped system considered in this example, specific indices are
admissible.

General Damping
In this paragraph, the damping constant d2 is set to an arbitrary positive value. Therefore,
the horizontal movement is no longer decoupled from the vertical movement which makes the
system inherently multivariable. Next, consider the following state-space representation of the
mechanical system as function of the angle θ,

A =



0 1 0 0 0 0
− k1
m1

− d1
m1
− d4 cos(θ)2

m1
k1
m1

d1
m1

0 − d4 cos(θ) sin(θ)
m2

0 0 0 1 0 0
k1
m2

d1
m2

− k1
m2

− d1
m2

0 0
0 0 0 0 0 1
0 − d4 cos(θ) sin(θ)

m1+m2
0 0 − k2

m1+m2
− d2
m1+m2

− d4 sin(θ)2

m1+m2

 (4.49)

B =


0 0
1
m1

0
0 0
0 0
0 0
0 1

m1+m2

 (4.50)

C =

[
0 0 0 0 d1

m1 m2
− d1

2 m1+d1
2 m2−k1 m1 m2+d1 d4 m2 cos(θ)2

m12 m22

0 0 0 1
m1+m2

− d4 sin(2 θ)
2m1 (m1+m2)

d4 cos(θ) sin(θ) (−d4 m2 sin(θ)2+d1 m1+d1 m2+d2 m1+d4 m1+d4 m2)
m12 (m1+m2)2

]
(4.51)

First, consider the generic p.c.c. indices δg = [3, 3] and the corresponding similarity transforma-
tion matrix,

Cg =
[

[B]1 A[B]1 A2[B]1 [B]2 A[B]1 A2[B]2
]

(4.52)

=



1 0 0 0 0 0
0 1 0 0 0 − k2

m1+m2

0 0 1 0 0 − d3 k1 m2 cos(θ) sin(θ)
(m1+m2) (k1 m2−d1 d3 cos(θ)2)

0 0 0 1 0 − d1 d2 d3−2 d2 k1 m2−d3 k1 m2+d1 d2 d3 cos(2 θ)+d3 k1 m2 cos(2 θ)
(m1+m2) (d1 d3−2 k1 m2+d1 d3 cos(2 θ))

0 0 0 0 1 − d1 d3 cos(θ) sin(θ)
k1 m2−d1 d3 cos(θ)2

0 0 0 0 0 − d3 m1 m2 cos(θ) sin(θ)
(m1+m2) (k1 m2−d1 d3 cos(θ)2)


(4.53)

Clearly, Cg has full matrix rank as long as the damper corresponding to d2 is not horizontal or
vertical, i.e.

θ 6= k
π

2 , k ∈ Z. (4.54)
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If the above condition is satisfied, the generic indices are admissible for this system. The key
reason for the generic indices being admissible is that the second order system G2 is now coupled
to the fourth order system G1 through a diagonal damper d2 which is connected to the mass m2.

Alternatively, specific indices can be used to describe the proportionally damped mechanical
system. Consider the specific indices δs = [4, 2] and the corresponding similarity transformation
matrix,

Cs =
[

[B]1 A[B]1 A2[B]1 A3[B]1 [B]2 A[B]2
]

(4.55)

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.56)

The similarity transformation matrix has now full matrix rank. Therefore, for both the propor-
tionally and generally damped system considered in this example, specific indices are admissible.

On the other hand, examples can be constructed in which generic indices are preferred over specific
indices. As a result, selecting either generic indices or specific indices cannot be recommended.
Instead, the choice in indices should be made based on the considered mechanical system and
the corresponding requirements on the model.

4.4 Overview
In this chapter, an RMFD parametrization is developed based on p.c.c. indices. The parametriza-
tion enables a tractable numerical identification through SK and GN iterations as will be shown
in Chapter 5. In addition, constraints are proposed to enforce rigid-body modes and a relative
degree larger than 1. To enforce rigid-body modes, a trivial parameter constraint is provided. A
relative degree is enforced by selecting generic indices or specific indices.

The parametrization enables the model order selection procedure since (i) it that allows an
arbitrary model order and (ii) for a given order of the nominal model, the parametrization using
generic and specific indices describes a rich class of mechanical systems. In view of (ii), it is
shown that a system described using generic indices, is generically equivalent to a mechanical
system φ ∈ Φgd. Although this is a very appealing property, it does not mean that all mechanical
systems φ ∈ Φgd can be described by a system described by means of generic indices µg. It
is shown by Theorem 7, that the choice between selecting generic indices and specific indices
should be made case-specific. This is also motivated by means of a mechanical example in the
third section.



Chapter 5

Numerical Synthesis of the
Robust-Control-Relevant Model Set

The aim of this chapter is to develop a numerical algorithm to identify the robust-control-relevant
model set. To construct the model set, a nominal model must be identified first. A second step
in the construction of the model set is the computation of the size of the model uncertainty.
Thereafter, based on the nominal model and the model uncertainty, the robust-control-relevant
model set is constructed.

In the first section, the coprime identification procedure developed in Chapter 3 is reformulated to
a frequency domain identification procedure. Next, based on the MFD parametrization proposed
in Chapter 4, a numerical procedure to estimate the parametric nominal model is developed.
In the last section, a numerical procedure to compute the size of the model uncertainty is
investigated.

5.1 Frequency Domain Coprime Factor Identification
In this section, a first step to arriving at a tractable numerical procedure to estimate robust-
control-relevant coprime factors is taken. Therefore, P̂ is parameterized as RMFD, P̂ =
B(θ)A−1(θ) as defined in Chapter 4. The RMFD parametrization results in the following
robust-control-relevant coprime factors,[

N̂(θ)
D̂(θ)

]
=
[
B(θ)
A(θ)

] (
D̃eA(θ) + Ñe,2V

−1
2 B(θ)

)−1
. (5.1)

The coprime factors of the true plant Po are not explicitly known. However, as the true system
Po is stabilized by the experimental controller Cexp, it is possible to determine an Frequency
Response Function (FRF) of the true system. Based on an FRF of the true system, the coprime
factors of the true system Po are estimated,[

Ño(ξk)
D̃o(ξk)

]
= T̃ (Po, Cexp)(ξk)V Ñ∗e (ξk). (5.2)

29
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Where ξk = jωk, where ωk denotes the k-th frequency. Next, the identification criterion proposed
in Theorem 1 is reformulated using the frequency domain definition of the H∞-norm,

min
θ

max
ωk∈Ω

σ̄

(
W

([
No(ξk)
Do(ξk)

]
−
[
N̂(ξk, θ)
D̂(ξk, θ)

]))
. (5.3)

To determine the optimal parameter vector θ̂, a numerical solver is developed. The numerical
procedure is explained in the next section.

5.2 Numerical Solver
In this section, a numerical procedure is developed to reliably identify the robust-control-relevant
coprime factors.

Observe that the identification criterion in Eq. (5.3) employs the `∞-norm, which means that
the optimization problem is not smooth. This means that gradient-based techniques are not
applicable. Secondly, the parameter vector appears nonlinearly in the parameters. As a result,
the problem is non-convex. Therefore, the optimization is split into two parts: i) approximating
the `∞-norm by the `2-norm. ii) Solving the nonlinear least-squares problem. In Figure 5.1,
an overview of the algorithm is depicted. It can be seen that Lawson’s algorithm is used to
approximate the `∞-norm and approximates it by a linear least-squares problem. Thereafter, the
resulting nonlinear least-squares problem is solved for the parameter vector θ using a two-stage
solver. The first stage consists of SK-iterations to provide an estimate of the optimal parameter
vector θ̂. In the second stage, the estimate is refined by GN iterations to approximate the
optimal parameter vector θ̂. Using the updated θ, a new Lawson-weight is computed and the
algorithm repeats itself until convergence.

Lawson

Approximating

‖.‖∞-norm

Solving the nonlinear

least squares for θproblem

Wh θ̂ θ̂
SK GN

Figure 5.1 Schematic overview of the algorithm used to find the robust-control-relevant nominal model.

5.2.1 Lawson Iterations
To arrive at a nonlinear least-squares problem, the `∞-norm is approximated through `2-norm
by Lawson’s algorithm. Consider Lawson’s algorithm [11, 48].

Algorithm 1. Given the initial parameter vector θ<0> and the initial Lawson-weight w<0>(ξk) =
1
Nω

, where Nw denotes the number of frequencies in Ωid and ξk = jωk, where ωk denotes the
k-th frequency. Iterate over the index < j > until convergence,

θ<j> = argmin
θ

Nw∑
k=1

w<j>(ξk) ‖ε(ξk, θ)‖2F . (5.4)
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Where the weight is defined as,

w<j>(ξk) = σ̄
(
ε(ξk, θ<j>)

)
w<j−1>(ξk)∑Nω

k=1 (σ̄ (ε(ξk, θ<j>))w<j−1>(ξk))
. (5.5)

Lawson’s algorithm essentially approximates the `∞-norm by the `2-norm with a weighting that
penalizes those frequency-bins with a high contribution in the `2-norm. Convergence of Lawson’s
algorithm is not guaranteed, however, numerical experience indicates that this algorithm works
well in practice [42]. Next, using the Lawson weighting, Eq. (5.3) is reformulated to,

Nω∑
k=1

∥∥∥∥∥W<j>
h (ξk) ◦

(
W

([
No(ξk)
Do(ξk)

]
−
[
N̂(ξk, θ)
D̂(ξk, θ)

]))∥∥∥∥∥
2

F

. (5.6)

Herein, ◦ denotes the Hadamard product, and W<j>
h ∈ R(nu+ny)×2nu denotes the Hadamard-

Weighting function. The elements of W<j>
h are equal to

√
w<j>(ξk). The resulting optimization

problem employs the Frobenius-norm. As a result, the Lawson weighting approximate the
`∞-norm is by a `2-type norm. In the next subsection, the resulting nonlinear least squares
problem is solved.

5.2.2 Nonlinear Least Squares Solver
In the previous section, Lawson’s algorithm is employed to approximate the `∞-norm by the
`2-type norm. This means that a nonlinear least-squares problem is obtained. In this section, a
numerical method is proposed to solve Eq. (5.6). Therefore, Eq. (5.6) is reformulated, in the
next theorem.

Theorem 8. Given the optimization problem Eq. (5.6), then the optimization problem can be
written as

V(θ) =
Nω∑
k=1
‖ε(ξk, θ)‖22 , (5.7)

=
Nω∑
k=1

∥∥∥∥∥W<j>
nl (ξk, θ)vec

([
B(ξk, θ)
A(ξk, θ)

])∥∥∥∥∥
2

2
, (5.8)

where,

W<j>
nl (ξk, θ) = diag

(
vec
(
W<j>
h (ξk)

))([(
D̃eA(θ) +Ne,2V

−1
2 B(θ)

)−1
]>
⊗
[
W

([
NoÑe,2V

−1
2 NoD̃e

D0Ñe,2V
−1

2 DoD̃e

]
− I
)])

.

(5.9)
A proof is given in Appendix B.5.

To arrive at a linear least-squares problem, the vectorized numerator- and denominator-matrix
of the RMFD structure are written as a linear matrix-vector product in terms of the parameter
vector θ in the next theorem.

Theorem 9. Given the RMFD structure of the nominal model {A(θ), B(θ)}. Then, vec
[
B̂(ξk, θ)
Â(ξk, θ)

]
may be written as a linear matrix-vector product in terms of the parameter vector θ,

vec
([
B̂(ξk, θ)
Â(ξk, θ)

])
= b(ξk)− Φ(ξk)θ. (5.10)
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Herein, Φ(ξk) = blockdiag(Φj(ξk)) for j = 1, ..., nu, where Φj(ξk) is defined as

Φj =



F (νj) O

O
.. .

O F (νj)
F (µ1) O

.. . O

O F (µnu)


∈ C(nu+ny)×(nx+nyνj). (5.11)

Where,
F (κ) =

[
1 ξk . . . ξκ−1

k

]
∈ Cκ×1 (5.12)

and

[b]i =



0
...

0
δi1ξ

µ1
k
...

δinuξ
µnu
k


∈ C(nu+ny)×1 (5.13)

A proof is given in Appendix B.6.

In the following paragraphs, a two-stage numerical solver is proposed. First, a nonlinear least
squares problem is formulated on the basis of SK iterations. Although this algorithm does not
necessarily converge to a global minimum, in practice it is often close to it [67]. In the second
paragraph, the second solver stage is explained, GN iterations.

Sanathanan-Koerner Iterations

In this section, the SK algorithm for the identification of the control-relevant-coprime factors is
derived. To arrive at the algorithm, observe that for a parameter vector θ to be a minimum to
Eq. (5.7), it should be a stationary point. Therefore, the following condition should be satisfied,(

∂V
∂θ>

)H
=

Nω∑
k=1

2 Re
{(
W<j>
nl (ξk, θ)Φ(ξk)

)H(
b(ξk)− Φ(ξk)θ

)}
= 0. (5.14)

To arrive at the nonlinear least-squares problem, the summation is omitted by stacking over the
frequency grid,

[Xs]k = W<j>
nl (ξk, θ)Φ(ξk), for k = 1, ..., Nω, (5.15)

[Zs]k = W<j>
nl (ξk, θ)b(ξk), for k = 1, ..., Nω. (5.16)

Next, using the matrices Xs and Zs, a matrix-vector product is derived,

Re
(
XH
s

(
Zs −Xsθ

))
= 0. (5.17)

The Re-operator is omitted by incorporating it within the following matrices,

X =
[
Re(Xs)
Im(Xs)

]
Z =

[
Re(Zs)
Im(Zs)

]
. (5.18)
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This results in the following matrix-vector product,(
XH(Z −Xθ)) = 0, (5.19)

To solve Eq. (5.19) for the parameter vector θ, observe that also the matrices X and Z depend
on the parameter vector θ. A key aspect of the SK algorithm is to iteratively solve Eq. (5.19)
by approximating the matrices X and Z based on the previously calculated θ [49]. Therefore,
given an initial estimate of the parameter vector θ<0>, the matrices X and Z are constructed
based on θ<0>. Then, a refined parameter vector is computed by solving Eq. (5.19) for θ<1>.
By continuing this procedure over the index i, a refined solution can be found. This procedure
is formally defined as follows.

Algorithm 2. SK-iterations.

1. Given the j-th Lawson weight according to Eq. (5.5), the initial estimate of the parameter
vector θ and the matrices Φ and b according to Theorem 9.

2. Construct the matrices X and Z based on the i-th parameter vector, θ<i>.

3. Solve Eq. (5.19) for the refined solution θ<i+1>.

4. Continue iterating over the index i until convergence or the maximum number of SK
iterations is reached.

The SK-algorithm need not converge, however, in practice, the SK algorithm has shown to
provide solutions of the parameter vector θ close to the global minimum [67]. Therefore, SK
iterations are suitable for providing an initial estimate for GN iterations [66].

Gauss-Newton Iterations

In the previous paragraph, SK iterations are performed to provide a coarse estimate of the
global minimum. To refine the solution, the cost function is locally approximated, resulting in a
quadratic cost function. The quadratic cost function is solved by considering a gradient-based
optimization scheme. This scheme may lead to convergence to the global minimum. In this
research, GN iterations are considered [6].

Given a perturbation δθ around a fixed parameter vector θ<f>. Next, consider the stationary
condition applied to Eq. (5.7) evaluated at θ<f> + δθ,

(
∂V(θ<f> + δθ)

∂δθ>

)H
=

N∑
k=1
−2 Re

{(
∂ε(ξk, θ<f> + δθ)

∂δθ>

)H
ε(ξk, θ<f> + δθ)

}
, (5.20)

=0. (5.21)

Now, consider a first order Taylor expansion on the weighted error ε(ξk, θ + δθ),

ε(ξk, θ<f> + δθ) ≈ ε(ξk, θ<f>)−W<j>
nl (ξk, θ<f>)Φ(ξk)δθ. (5.22)

Combining Eq. (5.20) and (5.22) gives,(
∂V(θ<f> + δθ)

∂δθ>

)H
=

N∑
k=1

2 Re

{(
W<j>
nl (ξk, θ<f>)Φ(ξk)

)H(
ε(ξk, θ<f>)−W<j>

nl (ξk, θ<f>)Φ(ξk)δθ

}
, (5.23)

=0. (5.24)
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To arrive at the nonlinear least squares problem, the summation is omitted by stacking over the
frequency grid,

[Xs]k = W<j>
nl (ξk, θ<f>)Φ(ξk), for k = 1, ..., Nω, (5.25)

[Zs]k = ε(ξk, θ<f>), for k = 1, ..., Nω. (5.26)

Next, using the matrices Xs and Zs, a matrix vector product is derived,

Re
(
XH
s

(
Zs −Xsδθ

))
= 0. (5.27)

The Re-operator is omitted by incorporating it within the following matrices

X =
[
Re(Xs)
Im(Xs)

]
Z =

[
Re(Zs)
Re(Zs)

]
. (5.28)

Using these matrices, Eq. (5.27) is rewritten to(
X̃H
GN

(
Z̃GN − X̃GNδθ

))
= 0. (5.29)

The linear system of equations in Eq. (5.29) can be solved for the perturbation δθ. The key aspect
of the GN algorithm is to compute an updated parameter vector by taking θ<f+1> = θ<f> + δθ

and to iterate over the index < f >. Although this algorithm may not converge to the local
minimum, in practice, it has shown to provide appropriate solutions. Now consider the formal
algorithm of GN iterations.

Algorithm 3. GN-iterations.

1. Given the j-th Lawson weight according to Eq. (5.5), the initial estimate of the parameter
vector θ<0> = θ<i> and the matrices Φ and b according to Theorem 9.

2. Construct the matrices X and Z based on the f -th parameter vector, θ<f>.

3. Solve Eq. (5.29) for the perturbation δθ, and compute the updated parameter vector
θ<f+1> = θ<f> + δθ.

4. Continue iterating over the index < f > until convergence or the maximum number of GN
iterations is reached.

5.2.3 Iteration Scheme
In the previous paragraphs, the numerical steps to identify the robust-control-relevant nominal
model are discussed. In this subsection, a short overview is given of the numerical algorithm to
identify the robust-control-relevant nominal model. Consider the following algorithm.

Algorithm 4. Numerical algorithm for robust-control-relevant identification of the nominal
model.

1. Lawson. Compute the j-th Lawson-weight according to Eq. (5.5).

2. Sanathanan and Koerner (SK). Solve the nonlinear least-squares problem according to
Algorithm 2 by iterating over the index < i > until convergence or if the maximum number
of iterations is reached.
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3. Gauss-Newton (GN). Solve the nonlinear least-squares problem according to Algorithm 3
by iterating over the index < f > until convergence or if the maximum number of iterations
is reached.

4. If the maximum number of Lawson-iterations is reached or if convergence is achieved, stop
iterations. Else, continue Lawson-iterations over < j > by j ← j + 1.

5.3 Robust-Control-Relevant Model Set
The robust-control-relevant is constructed based on a nominal model, and the size of the model
uncertainty. In the previous sections, an algorithm to compute the nominal model is developed.
In this section, a method to determine the size of the model uncertainty is investigated. To arrive
at this method, consider Figure 5.2. In this figure, a block diagram of the dual-Youla-Kučera
uncertainty structure is depicted.

NC DC

D̂−1 N̂

∆o
u y

∆u

∆y

Figure 5.2 Block diagram of the dual Youla Kučera model structure for the true system Po.

A key aspect of the dual-Youla-Kučera model structure is that it parameterizes all systems
stabilized by the experimental controller Cexp. As a result, there exists a perturbation ∆o such
that the dual-Youla-Kučera model structure represents the true model Po [45]. This is formally
written as,

∃∆o ∈ RH∞, s.t. Fu(Ĥ,∆o) = Po. (5.30)

To find a ∆o, first, recall that the model structure is given by,

Po =
(
N̂ +DC∆o

) (
D̂ −NC∆o

)−1
. (5.31)

The ∆o that satisfies Eq. (5.30), is found by rewriting Eq. (5.31) to,

∆o = D−1
C (I + PoC)−1

(
Po − P̂

)
D̂. (5.32)

The smallest size of the model uncertainty, γ, such that Po ∈ PRCR is therefore given by,

γ = ‖∆o‖∞. (5.33)

However, the true system Po and, as a consequence, the true uncertainty ∆o are not known
explicitly. To approximate the true uncertainty ∆o, an FRF of the true system is used. Next,
using the approximation of the true system, the size of the model uncertainty may be computed
by considering the frequency domain definition of Eq. (5.33),

γ = max
ω

∆o(jω), ω ∈ Ωid. (5.34)

Where Ωid denotes the set of frequencies at which the FRF of the true system is performed.



Chapter 6

Controller Synthesis

The aim of this chapter is to investigate the synthesis of the robust controller based on the
robust-control-relevant model set. A key element of a robust controller is that it is optimal with
respect the performance criterion. For this reason, specifying the weighting filters is crucial.
The weighting filter design is investigated in the first section. Thereafter, the robust controller
synthesis algorithm considered in this research is discussed.

6.1 Weighting Filter Design
In this section, the weighting filter design is investigated. To come up with a relevant weighting
filter design, first, the controller objectives are discussed. Second, the controller objectives are
translated into the weighting filter design.

6.1.1 Control Objectives
To synthesis a robust controller, it is essential to formulate the control objective. For the
formulation of the control objectives, the closed-loop bandwidth is a crucial concept. Consider
the definition of the closed-loop bandwidth.

Definition 20. Closed-loop bandwidth. Given the singular values of the open-loop, qi = σi(PC).
Then, the i-th closed-loop bandwidth is defined as the smallest frequency fbw,i for which the
following equality holds,

qi(2πfbw,i) = 1. (6.1)

Often, motion systems are decoupled such that the plant P is approximately diagonal. Therefore,
diagonal controllers are used. As a result, the i-th bandwidth fbw,i is defined as the smallest
frequency at which the i-th diagonal component equals one, i.e. |Pii(2πfbw,i)Cii(2πfbw,i)| = 1.

For many motion systems, it is desired to perform tracking with high accuracy. Regarding the
tracking performance, the following relation is crucial,

σ̄(So) '
1

σ(PoC) , So = (I + PoC)−1, (6.2)

when σ(PoC)� 1. Next, observe that in terms of tracking performance, it is desired to have
a small output sensitivity. This is achieved by having a high loop gain, i.e. σ(PC)� 1. This
motivates the choice of a high gain for low frequencies and a high bandwidth.

36
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On the other hand, for mechanical systems, it is desired to have sufficient sensor noise suppression
at high frequencies. Related to the noise suppression, observe that the following relation holds
for the complementary sensitivity function,

σ̄(To) ' σ̄(PoC), To = PoC(I + PoC)−1, (6.3)

if σ̄(PoC)� 1. Next, in terms of noise suppression, observe that σ̄(To) should be made small.
This motivates the use of roll-off to keep σ̄(PoC) small at high frequencies.

6.1.2 Weighting Filter Design
The synthesis of a robust controller requires the design of the closed-loop weighting filters W
and V , see Definition 1. In this research, loop-shaping-based weighting filters are used to specify
the robust control objectives. This approach is based on the approach proposed in [37, 64]. The
key reason for choosing open-loop weighting filters is that they allow integral action and roll-off.
Secondly, since the design is loop-shaping based the design intuitive.

The approach consists of the weighting filters W1 and W2. Using these weighting filters, the
desired loop-shape is constructed,

Ps = W2PoW1. (6.4)

It must be noted that the loop-shaping-based approach weighting filter design approach originally
used the nominal model for the weighting filter design. However, for the joint identification and
robust controller synthesis framework developed in this research, this is not possible. Instead, a
FRF of the true system is used for the weighting filter design. The loop-shaping based weighting
filters are related to the closed-loop weighting filters as follows,

W =
[
W2 0
0 W−1

1

]
, V =

[
W−1

2 0
0 W1

]
. (6.5)

In view of Eq. (6.2), the desired loop shape is made large at low frequencies. This is achieved
by enforcing integral action through the weighting filter W1. On the other hand, in view of
Eq. (6.3), it is desired to shape Ps such that at high frequencies, the magnitude of the open-loop
is small. Therefore, controller roll-off is enforced by adding roll-off to the weighting filter W2.
Although the robust controller synthesis only constructs stabilizing controllers, the shaped plant
should be designed such that it is not unnecessarily hard to construct a stabilizing controller.
Therefore, controller roll-off is enforced sufficiently far away from the desired bandwidth. In
addition, a ’+1’ slope can be enforced around the desired bandwidth if large phase margins are
desired. The desired bandwidth is enforced by adjusting the gain of W1 or W2. In this research,
the gain is equally distributed about the weighting filter for numerical conditioning, for details
see [58].

6.1.3 Procedure
A key aspect of the open-loop weighting filters considered in this research is that the weighting
filters are absorbed in the closed-loop during the robust controller synthesis. This is shown in
the block diagram in Figure 6.1.
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PW1 W2
Cs

Ps

Figure 6.1 Block diagram of the closed-loop system with loop-shaping-based weighting filters.

In Figure 6.1, Cs denotes the shaped controller which is related to the true controller as follows,

C = W2CsW1. (6.6)

As the loop-shaping-based weighting filters are absorbed in the closed-loop, the cost function
Eq. (2.2) is reformulated in the next definition.

Definition 21. Cost function for open-loop weighting filters. Given the loop-shaping-based
weighting filters, Eq. (6.5), then Eq. (2.2) is equal to,

J = ‖T (Ps, Cs)‖∞. (6.7)

Where Ps is in accordance with Eq. (6.4) and Cs is defined as Eq. (6.6).

The controller synthesis for the loop-shaping-based weighting filters is formulated as

CRPs = argmin
Cs

(
JWC

(
PRCR(P̂s, Cexps ), Cs

))
. (6.8)

6.2 Controller Synthesis
In this section, the synthesis of the optimal controller is discussed. The synthesis procedure
is also valid for open-loop and closed-loop weighting filters. Since closed-loop weighting filters
encompass open-loop weighting filters, the procedure is derived for closed-loop weighting filters.

Given the general formulation for the robust controller synthesis,

CRP = argmin
C

(
JWC

(
PRCR, C

))
. (6.9)

The computation of the optimal controller is split into two parts. The first part encompasses
the computation of JWC

(
PRCR, C

)
for an arbitrary stabilizing controller C. The second part

encompasses the minimization in Eq. (6.9). In the first section, the computation of the worst-case
performance is investigated. In the second section, the optimization procedure is discussed.

6.2.1 Computation of worst-case performance

To compute JWC

(
PRCR, C

)
for an arbitrary stabilizing controller C, observe that JWC

(
PRCR, C

)
is equal to,

JWC

(
PRCR, C

)
= sup
‖∆u‖∞≤γ

∥∥∥Fu (M̃RCR(PRCR, C),∆u

)∥∥∥
∞
. (6.10)

Herein, M̃RCR(PRCR, C) denotes the weighted closed-loop. To compute the weighted closed-loop,
consider the block diagram in Figure 6.2.
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∆u

G

C
M̃

RCR

Figure 6.2 Block diagram indicating the M∆-structure.

In this figure, the weighted closed-loop is defined as the lower LFT of G in combination with
the stabilizing controller C,

M̃RCR = Fl (G,C) . (6.11)

Herein, the transfer matrix G is defined as [47],

G =


γD̂−1NC 0 γD̂−1V1 γD̂−1

Wy

(
DC + P̂NC

)
0 WyP̂ V1 WyP̂

0 0 WuV1 Wu

−DC − P̂NC V2 −P̂ V1 −P̂

 . (6.12)

For the computation of the worst-case performance, the SSV plays a crucial role. Therefore, the
following definition is essential.

Definition 22. Structured Singular Value (SSV). Given a complex transfer matrix M and the
perturbation ∆. Then the structured singular value is defined as,

µ∆(M(jω) =
{

min
∆
{σ̄(∆)|det (I −M∆) = 0}

}−1
. (6.13)

The value of the SSV depends on the structure of the uncertainty block ∆. If ∆ is unstructured,
the structured singular value is given by µ (∆)) = σ̄ (∆). Furthermore, given the peak-µ of
M∆-structure, supω µ∆(M(jω) = β. The peak-value means that the uncertainty block may be
increased by a factor 1

β , before instability is reached.

To compute the supremum in Eq. (6.9), consider Figure 6.3. In this figure, a fictitious unstructured
performance uncertainty block, ∆p is placed between the input and output. The maximum
allowable magnitude ‖∆p‖ is directly related to the worst-case performance.
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C
M̃

RCR

∆

Figure 6.3 Block diagram indicating the M∆-structure.

Next, the model uncertainty and the fictitious performance block are lumped into a single
uncertainty block,

∆ =
[
∆u

∆p

]
. (6.14)

To compute the maximum allowable magnitude of the fictitious performance block, the SSV is
unsuitable, as the magnitude of ∆u is fixed, while the magnitude of the fictitious performance
block is to be optimized. Therefore, consider the definition of the skewed-µ.

Definition 23. Skewed-µ. Given the complex matrix M and the perturbation ∆u. Then the
skewed-µ-value is defined as,

µs (M(jω)) = max
‖∆u‖∞≤γ

{‖Fu (M(jω),∆u)‖∞} . (6.15)

To find µs, consider the lumped the perturbation ∆ = diag (∆u,∆p). Then, µs is the value to
results in,

µ∆ (KmM) = γ, Km =
[
I 0
0 1

µs

]
. (6.16)

In this research, a bisection algorithm is used to find µs [54].

Next, using the definition of the skewed-µ, the worst-case performance is calculated as,

JWC

(
PRCR, C

)
= max

ω
µs
(
M̃RCR(jω)

)
, ω ∈ Ωwc (6.17)

Herein, Ωwc denotes the set of frequencies at which the skewed-µ analysis is performed.

6.2.2 DK-Iterations
Currently, there does not exist a method to synthesizes a robust controller that minimizes
Eq. (6.9) directly. However, to approximate the minimization in Eq. (6.9), DK-iterations may
be used. This method combines the synthesis of a H∞-controller with the value of the skewed-µ
analysis.

The DK iterations are based on an upper bound of the SSV, which is defined in the following
definition.
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Definition 24. Consider the set of matrices D that commute with the lumped uncertainty
block ∆, i.e. ∆D = D∆. Then the following bound on the SSV holds [54],

µ(M) ≤ min
D∈D

σ̄(DMD−1). (6.18)

In this research, a skewed-µ optimal controller is synthesized. Therefore, Eq. (6.18) and Eq. (6.16)
are combined.

µ(KmM) ≤ min
D∈D

σ̄(DKmMD−1). (6.19)

As the lumped perturbation block contains two unstructured perturbation blocks, the bound in
Eq. (6.19) is tight [54]. This means, that the structured singular value is determined without
conservatism. Next, Eq. (6.19) is used to synthesis the robust controller,

CRP = argmin
C

(
min
D

∥∥∥DKmM(C)D−1
∥∥∥
∞

)
. (6.20)

The key idea of DK-iterations is to alternate the minimization of
∥∥DKmM(C)D−1∥∥

∞ with respect
to the controller C and the matrix D. DK-iterations involves two convex optimization problems.
However, the combined problem, the robust controller synthesis, is a non-convex optimization
problem. Therefore, the DK-algorithm does not necessarily converge to the optimal robust
controller. However, the algorithm works well in practice. Next, consider the DK-algorithm.

Algorithm 5. DK-iterations.

1. Initial conditions. Select an appropriate initial stable and rational transfer function D(s).

2. K-Step. Synthesize a controller ĈRP that minimizes
∥∥DKmM(C)D−1∥∥

∞.

3. D-step.

(a) Compute D(jω) that minimizes DKmM(ĈRP )D−1 at each frequency ω ∈ ΩDK .
(b) Fit an appropriate stable and minimum phase transfer D(s) to the data obtained in

(a).

4. Skewed-µ synthesis. Compute the value of the skewed-µ analysis, µs(M) and construct
the matrix Km. Next, continue to the K-step.

The iterations may be canceled if a sufficient amount of convergence is achieved or if the
maximum number of iterations is reached.



Chapter 7

Simulation Example

In this chapter, the joint identification and robust controller synthesis framework with model
order selection procedure developed in this research is applied in a simulation example which is
representative for many motion systems. First, the mechanical system considered in this case
study is discussed. Thereafter, the initial controller and the weighting filter design are explained.
Next, the robust-control-relevant identification procedure with optimal model order selection is
executed for various bandwidths. Lastly, using the robust-control-relevant model sets with their
corresponding optimal model orders, the robust controllers are synthesized in the last section.

7.1 Mechanical System
In this subsection, the mechanical system considered in this chapter is explained. Although
the entire framework is valid for MIMO systems, it is applied to a SISO example due to time
limitations.

Figure 7.1 depicts the three-mass-spring-damper-system considered in this chapter. Herein,
F denotes the actuator force, x1 denotes the collocated position of the first mass, m1. The
parameter ki denote the i-th spring constant and di denotes the i-th damping constant. It can
easily be seen that this system contains one rigid-body mode and two flexible modes.

m1 m2 m3

x1

k1 k2

d1 d2

F

Figure 7.1 Free body diagram of the collocated plant.

The Bode diagram of parameterized system is depicted in Figure 7.2. The system contains two
flexible modes, there are two anti-resonances, f = 8.5 Hz and f = 26 Hz and two resonances at
f = 12 Hz and f = 28.4 Hz. In this chapter, the true system Po is explicitly known, however, it
is emphasized that joint identification and robust controller synthesis framework developed in
this research only requires an FRF estimate of the true system Po(jω).
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Figure 7.2 Bode diagram of the true plant Po.

7.2 Order Selection Procedure
Recall from Eq. (3.24) that for the selection of model order, the following cost function is
considered,

W(nx) = γ(nx) + φ̃nx. (7.1)
Next, the optimal model order n∗x is computed according to,

n∗x = argmin
nx
W(nx). (7.2)

To arrive at the selection of the tuning parameter φ̃, let nx,i be the i-th model order at which
the order selection procedure is evaluated. Then, the corresponding uncertainty magnitude
is γ(nx,i). Next, the worst-case performance with respect to the i-th iteration of the order
selection procedure is approximated as J (Po, Cexp) + 2γ(nx,i) by considering the upper bound
of the worst-case performance proposed in Theorem 2. Now, assume that at least 0 ≤ α ≤ 1
performance increase is required before it is allowed to increase the model order from nx,0 to
nx,1. In other words, increasing the model order is allowed if the following inequality is satisfied,

(1− α)(J(Po, Cexp) + 2γ(nx,0)) ≥ J(Po, Cexp) + 2γ(nx,1)). (7.3)

The resulting tuning parameter φ is defined as

φ̃ = α(J(Po, Cexp) + 2γ(nx,0))
nx,1 − nx,0

. (7.4)

In this example, the parameter is defined as α = 0.05. Hence, at least 5% performance increase
is required before it is allowed to enlarge the initial order from nx,0 to nx,1. It is emphasized
that the value of the tuning parameter φ̃ depends on the desired bandwidth via the experimental
controller Cexp and the weighting filters.

For successful computation of the optimal order, the parametrization of the nominal model
P̂ (nx) must be defined. In this chapter, the RMFD parametrization based on p.c.c. indices
developed in Chapter 4 is used. Since a SISO system is considered, the p.c.c. index is equal to
the considered model order nx. Moreover, since the system is controlled through force actuation
and position measurement, the minimal order at which the order selection procedure is executed
is nx,0 = 2 and the order increment is 2.
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7.3 Weighting filter design
In this subsection, the weighting filters are designed. As indicated in Chapter 6, loop-shaping-
based weighting filters W1 and W2 are used. This type of filters allows shaping the open-loop
response, i.e. W2PoW1, hence, it allows to specify a desired bandwidth. Furthermore, as
the weighting filters can be incorporated into the closed-loop during controller synthesis, the
weighting filters are allowed to contain integrators.

The open-loop should be shaped such that before the bandwidth fBW , there is sufficient integral
action. This is achieved by designing W1 as follows,

W1(s) = K
s+ 2πfI

s
, fI = fBW

5 . (7.5)

To enforce controller roll-off, the weighting filter W2 is designed as

W2(s) = K
1

1
2πfR s+ 1

, fR = 4fBW . (7.6)

The gain K is chosen such that the bandwidth of W2Po(jω)W1 is fBW .

7.4 Controller
The experimental controller consists of integrator, lead-lag-filter and a low-pass filter. To avoid
iterative identification and robust controller synthesis, the experimental controller is designed
such that it is close to the optimal controller. Therefore, the experimental controller is designed
with a bandwidth 15% under the desired bandwidth, i.e. f̃BW = 0.85fBW . The controller blocks
are then designed according to Table 7.1.

Table 7.1 Table indicating the pole-zero location of each controller block.

Integrator Lead-Lag Lowpass
Pole 0 2f̃BW 10f̃BW
Zero f̃BW

10
f̃BW

2

7.5 Robust-Control-Relevant Model Set
The optimal model order highly depends on the specified bandwidth. Namely, a desired bandwidth
sufficiently far away from the flexible dynamic behaviour means that accurate modelling of the
flexible dynamic behaviour is less important for achieving robust performance. On the other
hand, a desired bandwidth close to the flexible dynamic behaviour implies an increased model
order, as in this case, accurate modelling of the flexible dynamic behaviour is important for
achieving robust performance. Therefore, the framework developed in this research is applied in
a simulation example for a large series of bandwidth-scenarios.

The robust-control-relevant model set identification with the order selection procedure is executed
for a large variety of bandwidths, fBW = 10−2 Hz to fBW = 103 Hz. The resulting optimal
model orders are depicted in Figure 7.3. If the bandwidth is specified sufficiently far away from
the resonant behaviour, the order selection criterion consistently selects a second-order nominal
model. Therefore, only modelling the rigid-body behaviour results in a sufficiently tight model
set PRCR(n∗x) in the frequency region which is relevant for control.
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A larger model order is required if a bandwidth is selected near flexible dynamic behaviour, i.e.
0.6 < fBW < 5 Hz. In this case, only modelling the rigid-body behaviour is no longer sufficient,
i.e. the first mode becomes performance limiting. As a result, the order selection criterion selects
a fourth-order nominal model. This results in the robust-control-relevant model set PRCR being
sufficiently tight around the bandwidth.

If a bandwidth is specified within the flexible dynamic behaviour, 5 < fBW < 250 Hz, a fourth
order nominal model is no longer sufficient, i.e. the second mode becomes performance limiting.
For this reason, the order selection criterion consistently selects a sixth-order model. Therefore,
a narrow model set PRCR(n∗x) in the control-relevant frequency region is only achieved by a
high-order nominal model.

In the next subsections, the identification and order selection process will be elaborated for three
bandwidth categories. That is, well before, just before the first mode and well after the last
mode.

Figure 7.3 Optimal model order n∗
x as function of the desired bandwidth fBW .

7.5.1 Pre Resonance
In this section, the identification of the model set PRCR(nx) and the order selection process is
investigated for a desired bandwidth of fBW = 4.5 · 10−1 Hz. To arrive at the robust-control-
relevant model set, the coprime factors of the true system are computed using the FRF estimate
of the true system Po according to Eq. (5.2). The estimate is depicted in Figure 7.4.
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(a) (b)

Figure 7.4 Bode magnitude diagram of the robust-control-relevant coprime factors: true system No, Do

(- -) and the nominal model N̂ , D̂ (−) for nx = 2.

Using the coprime factors of the true system, the coprime factorization of the nominal model
P̂ (nx) is computed by the algorithm proposed in Chapter 5. The resulting coprime factors are
depicted in Figure 7.4. For conciseness, only a model order of nx = 2 is shown. For frequencies
in the vicinity of the target bandwidth, the coprime factors have a high gain. For frequencies far
beyond the target bandwidth, the magnitude of the coprime factors is relatively low. Therefore,
the dynamics which are relevant for control result in a high gain in the coprime factor domain.

A second step in the identification of the robust-control-relevant model set is the estimation of
the size of the model uncertainty γ(nx). In this research, γ(nx) is determined by the approach
discussed in Chapter 5. Based on the identified nominal model P̂ (nx) and the corresponding
uncertainty magnitude γ(nx), the robust-control-relevant model is constructed,

PRCR(nx) = {P |P according to Definition 7, ‖∆u‖∞ ≤ γ(nx)} . (7.7)

To provide insight into the structure of the identified model set, the visualisation procedure
proposed in [44] is adopted. The corresponding Bode diagrams of the model set PRCR(nx) for
nx = 2, 4, 6 are depicted in Figure 7.5. Around the target bandwidth, the model set is narrow
and the nominal model accurately models the rigid-body independent of the selected model
order. For a model order nx = 2, the flexible dynamic behaviour is not modelled, hence, the
uncertainty is large around the resonances. If a model order nx = 4 is selected, the nominal
model matches the true system quite well around the first mode. As a result, the model set is
relatively small around the first mode. Due to the internal structure of the model set, i.e. the
specific choice of coprime factors, the uncertainty is large at higher frequencies. If a model order
nx = 6 is selected, the nominal model matches the true system accurately, hence, the model set
is narrow for all frequencies.
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(a) nx = 2 (b) nx = 4

(c) nx = 6

Figure 7.5 Bode magnitude diagram of the nominal model P̂ (nx) (–), the true system Po(nx) (- -) and
the model set PRCR(nx)( ) for a model order nx = 2, 4, 6. The desired bandwidth is indicated by (◦).

Next, the worst-case performance is investigated with respect to the model set PRCR(nx). The
performance of the robust-control-relevant model set PRCR(nx) in Table 7.2. Next, recall the
important inequality for the construction of a robust-control-relevant model set,

J (PRCR(nx), Cexp) ≤ J (P̂ (nx), Cexp) + γ(nx). (7.8)

It is verified that the inequality, Eq. (7.8), holds and is tight for all model orders. This shows
that the model set is robust-control-relevant.

Table 7.2 Analysis of the robust-control-relevant model set for various model orders.

γ(nx) J (Po, Cexp) J (P̂ (nx), Cexp) J (PRCR(nx), Cexp)
nx = 2 4.0 · 10−2 6.476 6.476 6.515
nx = 4 6.5 · 10−4 6.476 6.476 6.476
nx = 6 7.0 · 10−10 6.476 6.476 6.476

For the investigation of the optimal model order, the bound proposed in Theorem 2 is crucial,

JWC(PRCR(nx), Cexp) ≤ J (Po, Cexp) + 2γ(nx). (7.9)
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When evaluating the worst-case performance, see Table 7.2, it is verified that Eq. (7.9) holds
and is tight. This indicates that the order selection criterion is proposed in this research is
nonconservative. Next, the optimal model order is investigated. The cost regarding the order
selection criterion is calculated for nx = 2, 4, 6. In Figure 7.6, the resulting cost evolution as
function of the selected model order is depicted. Clearly, the minimum cost is achieved for
a model order nx = 2. Therefore, enlarging the model order does not result in a significant
performance increase of the resulting robust controller. The key reason is that the desired
bandwidth is far away from the flexible dynamic behaviour. As a result, the model set is
sufficiently narrow in the frequency region which is relevant for control.

Figure 7.6 Cost function W(nx).

7.5.2 Near Resonance
In this section, the optimal model order is investigated for a desired bandwidth of fBW = 3.5
Hz. The investigation is concisely discussed, for an elaborate discussion on the order selection,
the reader is referred to Section 7.5.1.

The cost regarding the order selection procedure W(nx) is depicted for nx = 2, 4, 6 in Figure 7.7.
A minimal cost is achieved for nx = 4. Therefore, if a bandwidth is selected near the resonant
behaviour of the mechanical system, the first flexible mode becomes performance-limiting, hence
a nominal model that only encompasses the rigid-body behaviour no longer suffices.

To provide insight into the structure of the robust-control-relevant model set with the optimal
model order, the visualisation procedure proposed in [44] is adopted. The corresponding Bode
diagram of the model set PRCR(n∗x = 4) is depicted in Figure 7.8. For frequencies near the
target bandwidth, the nominal model P̂ matches the true system Po and the model set PRCR
is narrow. Secondly, the nominal model incorporates both the rigid-body behaviour and the
first mode, therefore, the nominal model matches the true system accurately up to the second
resonant mode. For frequencies beyond the first resonance, the model set is large. The same
holds for frequencies below the target bandwidth. This particular shape is the result of the
internal structure of the model set, i.e. the specific choice of coprime factors.
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Figure 7.7 The cost regarding the model
order selection W(nx) for nx = 2, 4, 6.

Figure 7.8 Bode magnitude diagram of the
nominal model P̂ (n∗

x) (–), the true system Po

(- -) and the model set PRCR(n∗
x = 4)( ). The

desired bandwidth is indicated by (◦).

7.5.3 Post Resonance
In this section, the optimal model order is investigated for a desired bandwidth of fBW = 345 Hz.
The investigation will be concisely discussed, for an elaborate discussion on the order selection,
the reader is referred to Section 7.5.1.

The cost regarding the order selection procedure W(nx) is depicted for nx = 2, 4, 6 in Figure 7.9.
A model order of nx = 2 achieves the minimal cost, hence the optimal model order n∗x = 2.
Therefore, incorporating the flexible dynamic in the nominal model does not result in a significant
performance increase of the resulting robust controller. Hence, the selected bandwidth is
sufficiently far away from the resonant behaviour, therefore, modelling only the rigid-body
behaviour suffices for controller synthesize.

To provide insight into the structure of the robust-control-relevant model set with the optimal
model order, the visualisation procedure proposed in [44] is adopted. The corresponding Bode
diagram of the model set PRCR(n∗x = 2) is depicted in Figure 7.10. As a result of the control-
relevant identification procedure, the nominal model accurately describes the post-resonant
behaviour of the true system. As a result, in the vicinity and beyond of the bandwidth, the
model set PRCR is narrow. Before and during the flexible dynamic behaviour, the model set is
large. This particular shape is the result of the internal structure of the model set.
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Figure 7.9 The cost regarding the model
order selection W(nx) for nx = 2, 4, 6.

Figure 7.10 Bode magnitude diagram of the
nominal model P̂ (n∗

x) (–), the true system Po

(- -) and the model set PRCR(n∗
x = 2)( ). The

desired bandwidth is indicated by (◦).

7.6 Robust Controller Synthesis
In this section, the robust controller is synthesized by using the robust-control-relevant model
set with optimal model order PRCR(n∗x) discussed in the previous section. The synthesize of
the robust controller is performed for the three bandwidth cases as discussed in Sections 7.5.1
to 7.5.3. The robust controller synthesis procedure is in accordance with Chapter 6.

7.6.1 Pre-Resonance
In this section, a robust controller is synthesized with a specified bandwidth of fBW = 4.5 · 10−1

Hz using the model set with optimal model order PRCR(n∗x = 2) as discussed in Section 7.5.1.

The performance of the initial experimental controller Cexp and the robust controller CRP is
shown in Table 7.3. Clearly, the robust controller outperforms the experimental controller as
the worst-case performance is significantly lower. Moreover, the robust controller enables a
bandwidth equal to the specified bandwidth. It is emphasized that performance measures of
Table 7.3 cannot be compared to the performance measures of the previous sections as different
weighting filters are considered.

Table 7.3 Performance of the experimental and the robust controller.

fBW [Hz] J (Po, C) J (P̂ (n∗x), C) J (PRCR(n∗x), C)
Cexp 3.7 · 10−1 6.476 6.476 6.515
CRP 4.4 · 10−1 3.434 3.434 3.454

Figure 7.11, depicts the Bode diagram of the experimental controller Cexp and the robust
controller CRP . Clearly, the open-loop weighting filters successfully enforce controller roll-off and
integral action. Interestingly, although a first-order low-pass filter is specified in the weighting
filter design in Section 7.3, the robust controller contains a second-order low-pass filter. In
Figure 7.12, the Bode diagram of the open-loop PCRP and the shaped nominal plant W1P̂W2
are depicted. The open-loop system indeed contains integral action and roll-off. However, around
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the cross-over frequency, the open-loop system deviates significantly from the shaped system.
This is explained by the phase of the shaped system being approximately −200◦ around the
cross-over frequency. As this leads to an unstable closed-loop system, the robust controller
creates phase lead in the vicinity of the bandwidth which results in a decent phase margin.

Figure 7.11 Bode diagram of the experimental
controller Cexp (- -) and the robust controller
CRP (–).

Figure 7.12 Bode diagram of the weighted
nominal model W1P̂W2 (- -) and the open-loop
P̂CRP (–).

Next, the performance of the robust controller CRP is further evaluated by considering the
Nyquist diagram for both the nominal and true system in Figure 7.17. The loop-gains do
not encircle the point −1, hence according to Nyquist’s theorem, the system is closed-loop
stable [54]. Next, consider the sensitivity (1 + PoC)−1 and (1 + P̂C)−1 for Cexp and CRP in
Figure 7.14. Observe that the nominal and true sensitivity are approximately equal. Second,
enforcing integral action and the increase in bandwidth from Cexp to CRP result in enhanced
disturbance suppression properties for low frequencies.

Figure 7.13 Nyquist diagram for the robust
controller CRP with the nominal model P̂ (n∗

x)
(–) and the true system Po (- -).

Figure 7.14 Bode magnitude diagram of the
sensitivity (1 + PC)−1. Top: sensitivity for
the true system with CRP (–) and Cexp (- -).
Bottom: sensitivity for the nominal system with
CRP (–) and Cexp (- -).
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7.6.2 Near-Resonance
In this section, a robust controller is synthesized with a specified bandwidth of fBW = 3.5 Hz
using the model set with optimal model order PRCR(n∗x = 4) as discussed in Section 7.5.2.

The performance of the initial experimental controller Cexp and the robust controller CRP is
depicted in Table 7.4. The worst-case performance with respect to the robust controller is
significantly reduced. Moreover, the robust controller increases the bandwidth significantly
compared to the experimental controller Cexp. However, to be robust against modelling errors,
the controller does not achieve the specified bandwidth of fBW = 3.5 Hz.

Table 7.4 Performance of the experimental and the robust controller.

fBW [Hz] J (Po, C) J (P̂ (n∗x), C) J (PRCR(n∗x), C)
Cexp 3.0 8.511 8.513 8.733
CRP 3.4 4.816 4.869 5.566

Figure 7.15 depicts the Bode diagram of the experimental controller Cexp and the robust controller
CRP . The open-loop weighting filters successfully enforce controller roll-off and integral action.
The bode diagram of the open-loop PCRP and the shaped nominal plant W1P̂W2 is depicted in
Figure 7.16. Observe that the shaped system leads to an unstable closed-loop system as at the
cross-over frequency, the phase is approximately −200◦. For this reason, the robust controller
creates phase lead in the vicinity of the bandwidth which results in a decent phase margin.
Second, around the first resonance, the robust controller mitigates the effect of the first resonance
to ensure stability for the complete model set.

Figure 7.15 Bode diagram of the experimental
controller Cexp (- -) and the robust controller
CRP (–).

Figure 7.16 Bode diagram of the weighted
nominal model W1P̂W2 (- -) and the open-loop
P̂CRP (–).

Next, the performance of the robust controller CRP is further evaluated by considering the
Nyquist diagram for both the nominal and true system in Figure 7.17. In the vicinity of the
resonance phenomena, the magnitude of the of PoCRP and P̂CRP is larger than one. However,
the phase of the loop-gains is such that the loop-gains do not encircle the point −1. Therefore,
according to Nyquist’s theorem, the system is closed-loop stable [54]. Next, consider the
sensitivity (1 +PoC)−1 and (1 + P̂C)−1 for Cexp and CRP . First of all, observe that the nominal
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and true sensitivity are approximately equal. Second, enforcing integral action and the increase
in bandwidth from Cexp to CRP results in enhanced disturbance suppression properties for low
frequencies.

Figure 7.17 Nyquist diagram for the robust
controller CRP with the nominal model P̂ (n∗

x)
(–) and the true system Po (- -).

Figure 7.18 Bode magnitude diagram of the
sensitivity (1 + PC)−1. Top: sensitivity for
the true system with CRP (–) and Cexp (- -).
Bottom: sensitivity for the nominal system with
CRP (–) and Cexp (- -).

7.6.3 Post-Resonance
In this section, a robust controller is synthesized with a specified bandwidth of fBW = 345 Hz
using the model set with optimal model order PRCR(n∗x = 2) as discussed in Section 7.5.3.

The performance of the initial experimental controller Cexp and the robust controller CRP are
depicted in Table 7.5. The worst-case performance concerning the robust controller is significantly
lower than the performance with respect to the initial experimental controller. Moreover, the
robust controller enables a bandwidth equal to the specified bandwidth. It is emphasized that
the bandwidth is determined with respect to the true system Po.

Table 7.5 Performance of the experimental and the robust controller.

fBW [Hz] J (Po, C) J (P̂ (n∗x), C) J (PRCR(n∗x), C)
Cexp 293 6.662 6.662 6.771
CRP 345 3.889 3.897 4.065

Figure 7.19 depicts the Bode diagram of the experimental controller Cexp and the robust controller
CRP . The open-loop weighting filters successfully enforce controller roll-off and integral action.
The bode diagram of the open-loop PCRP and the shaped nominal plant W1P̂W2 is depicted
in Figure 7.20. At the cross-over frequency, the phase of W1P̂W2 is approximately −200◦.
Therefore, to enables a stable closed-loop, the robust controller creates phase lead in the vicinity
of the bandwidth which results in a decent phase margin.
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Figure 7.19 Bode diagram of the experimental
controller Cexp (- -) and the robust controller
CRP (–).

Figure 7.20 Bode diagram of the weighted
nominal model W1P̂W2 (- -) and the open-loop
P̂CRP (–).

The performance of the robust controller CRP is further evaluated by considering the Nyquist
diagram for both the nominal and true system in Figure 7.17. As the bandwidth is far beyond
the resonance phenomena and there is sufficient phase margin, the loop-gains do not encircle the
point −1. Therefore, according to Nyquist’s theorem, the system is closed-loop stable [54]. Next,
consider the sensitivity (1 + PoC)−1 and (1 + P̂C)−1 for Cexp and CRP . As the nominal model
does not incorporate the resonance phenomena, the sensitivity with respect to the nominal model
deviates from the true sensitivity for frequencies near the resonance phenomena. For frequencies
beyond and below the resonance phenomena, the sensitivity with respect to the nominal model
mimics the true sensitivity quite well. Next, observe that enforcing integral action and the
increase in bandwidth from Cexp to CRP result in enhanced disturbance suppression properties
for low frequencies.

Figure 7.21 Nyquist diagram for the robust
controller CRP with the nominal model P̂ (n∗

x)
(–) and the true system Po (- -).

Figure 7.22 Bode magnitude diagram of the
sensitivity (1 + PC)−1. Top: sensitivity for
the true system with CRP (–) and Cexp (- -).
Bottom: sensitivity for the nominal system with
CRP (–) and Cexp (- -).
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7.7 Overview
In this chapter, a SISO mechanical system is considered to which the joint identification and
robust controller synthesis framework with model order selection is successfully applied.

First, the identification of the robust-control-relevant model set is executed with the model
order selection proposed in this research for various bandwidth scenarios. It is shown that if
a bandwidth is selected well ahead or well after the flexible dynamic behaviour, a nominal
model describing only the rigid-body behaviour is sufficient for achieving high performance. If
bandwidth is selected just before the flexible dynamic behaviour, the first flexible mode becomes
performance limiting. Therefore, using a robust-control-relevant model set with a low order is
sufficient for achieving a high performance. The usage of model order selection procedure for
robust-control-relevant model sets extends to existing methods for the identification for robust
control purposes where typically high model orders are considered which hampers successful
implementation in a real-time environment [60, 47].

In the second part, using the robust-control-relevant model set with optimal model order, the
robust controllers are successfully synthesized. It is shown that robust controllers in conjunction
with the robust-control-relevant model set achieve high performance. For future work, it is
recommended to consider a MIMO system, as an even larger performance increase is expected
as robust control is able to deal with inherently multivariable systems.



Chapter 8

Conclusion & Recommendation

8.1 Conclusion
In this research, a framework is developed for control of next-generation motion stages. The
developed framework is specifically suitable for next-generation motion systems which are
envisioned to contain many inputs and outputs. In addition, it is expected that the flexible
dynamic behaviour is present within the control bandwidth resulting in an inherently multivariable
system. The developed framework contains all steps from model set identification to robust
controller synthesis.

For the synthesis of a robust controller that leads to a high performance, the identification of a
nonconservative model set is crucial. To enable the construction of a nonconservative model set,
the dual-Youla-Kučera model structure is adopted. More specifically, the freedom in the coprime
factorizations that constitute the dual-Youla-Kučera uncertainty structure are exploited in
Chapter 3. This specific factorization enables tractable identification of a robust-control-relevant
model set. In addition, the factorization allows the usage of unstructured perturbations which
leads to a nonconservative synthesis of the robust controller in Chapter 6. This is in contrast to
existing methods, which use structured uncertainty blocks, and result in conservatism in the
synthesis of the robust controller.

To facilitate robust feedback control with low computational complexity, the order of the
controller should be small. Consequently, a low-order model should be identified. This is
accomplished by the introduction of a regularization term which penalizes the model order of
the nominal model in Chapters 2 and 3. By exploiting the freedom of the coprime factors, a
novel connection between the performance and the selected model order is derived in Chapter 3.
This connection in combination with the regularization term enables to efficiently manage the
tradeoff between model order and the performance of the resulting robust controller.

To enable a model order selection procedure, an RMFD parametrization is adopted that enables
the parametrization of a rich class of mechanical systems through the usage of pseudo-canonical
indices in Chapter 4. To enable successful numerical estimation of the model set, a numerical
routine is developed in Chapter 5.

The framework for next-generation motion control is successfully applied to a simulation example

56
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in Chapter 7. The simulation proved the usefulness of the model order selection procedure, as for
a bandwidth far or close to the flexible dynamic behaviour, a low-order nominal model suffices
for synthesising a robust controller that leads to a high performance. The usage of the model
order selection procedure extends to existing methods regarding system identification for robust
control where typically high model orders are selected which hampers successful implementation
in a real-time environment [60, 47].

8.2 Recommendation
For future research, some additional topics can be addressed.

• The joint identification and robust controller synthesis framework with model order selection
is tailored towards systems with many inputs and outputs. Therefore, in future research,
it is recommended to extend the simulation discussed in Chapter 7 to a MIMO system. As
robust controllers can effectively deal with inherently multivariable systems, it is expected
that the robust control strategy outperforms conventional loop-shaping-based controllers.
The simulations can be used to experimentally prove this hypothesis. It is emphasized
that the proposed framework is particularly suitable for MIMO systems and that only the
simulations need to be extended towards a MIMO case.

• Also, if the joint identification and robust controller synthesis framework is applied to a
MIMO simulation, the RMFD parametrization with respect to the generic controllability
index and the specific controllability index can be compared to see which index is preferable
in an experimental setting.

• Regarding the experimental FFR-setup, it is recommended to perform FRF measurements
and to apply the framework for next-generation motion control to the FFR setup. This
could give experimental evidence of the performance increase of the robust controller with
respect to a conventional loop-shaping-based controller.

• In addition, the rigid-body decoupled FFR setup does not show the typical collocated
behaviour, i.e. the Bode diagram indicates that the first resonance occurs before the first
anti-resonance. Therefore, the simulations performed in Chapter 7, can be repeated for
a system where resonance occurs before the anti-resonance. By comparing the optimal
model order as function of the bandwidth, new insights can be generated on the relevance
of modelling flexible dynamic behaviour.



Appendix A

Reticle Stage Setup

A.1 General
In Figure A.1, the FFR is schematically shown with its main components. The setup consists of
two independently controlled systems. The first system is the active vibration isolation system.
It consists of a base frame which is mounted to the floor. On top of the base frame, a metrology
frame is mounted which is weakly suspended by air mounds. To enhance vibration isolation
properties, also Lorentz actuators are mounted to actively suppress disturbances. For more
details on this part of the setup, see [9]. The second system is the reticle stage. The position of
the reticle stage is measured with respect to the metrology frame. The actuation is performed
relative to the base frame.

Recticle Stage

Metrology Frame

Base Frame

Actuators

Position
Measurement

Figure A.1 Figure indicating a schematic overview of the FFR setup.
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(a) (b)

Figure A.2 (a) Over view of the FFR setup. (b) Figure showing the reticle stage.

The goal of the FFR setup is to accurately position the reticle stage in 6 DOFs. The reticle
stage consists of two so-called actuator bodies which can be controlled independently of each
other. Originally, the actuator bodies were coupled through a reticle, however, for practical
reasons, these are now coupled by two stiff aluminum beams. The current solid actuator body
can be positioned in 6 DOFs using 14 actuators and 14 sensors. four sensors and actuators in
the x-directions, two sensors and actuators in the y direction and 8 in the z-direction of which
four actuators are equipped with a permanent magnet to compensate for the gravitational force
of the reticle stage. In Figure A.3 the position of each actuator and sensor in the reticle stage is
shown.

Figure A.3 Figure indicating a schematic overview of the FFR setup [36].

The actuators used to position the reticle are so-called Lorentz actuators. It consists of two coils
above and below a permanent magnet. The coils are fixed to the base frame and the permanent
magnet is attached to the reticle stage. The control input for the actuators should be between
U = {U ∈ R| − 10 ≤ U ≤ 10} V.

The position in the z-direction is measured with capacitive sensors of PI. The position in x- and
y-direction is measured by Renishaw encoders.
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An FRF measurement of the rigid-body-decoupled for the z, Rx, Ry -direction is given in
Figure A.4. Interestingly, the frequency response function indicates that the resonance occurs
before the anti-resonance. Therefore, it deviates from the classical collocated behaviour. The
collocated behaviour might be lost because of the rigid-body decoupling which reduces 14 inputs
and outputs to 6 inputs and 6 outputs.

Figure A.4 Bode magnitude diagram of FRF of the z, Rx and Ry of the FFR setup [59].

A.2 Calibration
To measure the position from a relevant coordinate frame, the position-sensors must be calibrated.
First, the calibration of z-direction is discussed, thereafter, the x- and y-direction calibration is
discussed.

A.2.1 z-position
The position in the z-direction is measured using capacitive sensors of PI. These sensors are
absolute, i.e. they do not require an offset to be compensated in the software. However, these
sensors require mechanical calibration. Each sensor is equipped with a manipulator with which
the height of each sensor can be adjusted. This is shown in figure Figure A.5. The height
should be adjusted such that all z-sensors are in the same plane. However, these manipulators
are not accurate enough, therefore, they are approximately within the same plane. Then, a
homing procedure is executed. The actuators pull the reticle stage downwards then based on this
position values of the sensor the offset of each z-sensors is computed. This homing procedure is
executed before each experiment.
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Sensor

Manipulator

Figure A.5 Figure indicating the capacitive sensors with a manipulator.

A.2.2 xy-position
The position in x- and y-direction is measured using Renishaw encoders. These sensors essentially
count the number of increments with which the position is determined. Therefore, they require
a homing procedure. This homing procedure essentially follows the following steps. (1) The
z-direction is controlled and the reticle stage is floating. (2) The x- and y -actuators push the
reticle stage in the corner. (3) Determine the offset. The homing procedure is executed before
each experiment.

The quality the sensor output is determined by the so-called sin-cos signals, see [35, 33] for a
detailed explanation. The quality of the signal is determined by distance and angle between the
encoder readhead and the increments. For this reason, correct z-calibration is essential. The
quality of the encoder signal can be seen on the encoder plug. Currently, a quality of 3 out 5
can be reached. Although this is certainly not optimal, the reticle stage can be controlled using
this sensor signal quality.

A.2.3 Reparations
In previous research, two sensors and three actuators were broken. In this research, the broken
sensors are replaced and the actuators are repaired. The malfunctioning of the actuators has
to do with a design issue. This resulted in broken wires and short circuits. To prevent this
from happening again, each actuator is equipped with a so-called strain relief. This is shown in
Figure A.6.

Strain relief

Power cable

Coil

Figure A.6 Figure indicating the actuator-coil and strain relief.
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A.2.4 Actuators
The actuators are steered through two wires. However, during the assembling of the setup, some
of these wires are connected in the opposite manner which means that the actuation is performed
in the wrong direction. Therefore, the direction of each actuator is checked and compensated
through a minus-sign in the software if necessary.

A.2.5 Experimental Controller
For experiments, an experimental controller must be designed. As the plant contains 14 sensor-
actuator pairs, finding an initial controller for this is difficult. Therefore, a rigid-body decoupling
is performed, to reduce the amount of control input-output pairs to 6. In this research, the
rigid-body decoupling and initial controller found in is used, see [59].

A.3 Simulink Implementation
In Figure A.7, the Simulink model is presented. From this figure, it can be seen that the model
consists of two parts. The first part is the control of the active vibration isolation part, see [9].
This part is implemented in a consistent and sustainable manner, therefore, this part is reused
in this work. The second part is the control of the reticle stage see [36, 59, 65]. This part is
implemented in an inconsistent manner. Therefore, in this research, this part is programmed
again, resulting in a sustainable and modular Simulink model.

Figure A.7 Simulink implementation of the FFR control architecture.



Appendix B

Proofs

B.1 Proof: Theorem 2
Proof. Recall the worst case performance bound of Eq. (3.21),

JWC(PRCR, Cexp) ≤ J(P̂ , Cexp) + γ. (B.1)

Next, consider the triangular inequality [51, 3],

J (P̂ , Cexp) ≤ J(Po, Cexp) + γ (B.2)

Combining Eq. (B.1) and (B.2) proves Theorem 2.

B.2 Proof: Theorem 3
Proof. To proof Theorem 3, recall that the state space representation of a generally damped
system equals, [

A B

C 0

]
=

 O I o

−Ω2 −Dm R
L o

 (B.3)

Next, consider the zeroth order derivative of the output,

y = Cx (B.4)

It can be seen that the expression above does not depend on the output u. Therefore, consider
the first order derivative,

ẏ =Cẋ (B.5)
ẏ =CAx+ CBu (B.6)
ẏ =CAx (B.7)

Herein, CB = 0 because of the specific structure of a mechanical system, Eq. (B.3). Next,
consider the second order derivative,

ÿ =Cẍ (B.8)
ÿ =CA2x+ CABu (B.9)

(B.10)
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Where CAB is defined as,
CAB = LR (B.11)

This matrix is nonzero if each DOF is actuated and measured, e.g. collocated control. This
proves Theorem 3.

B.3 Proof: Theorem 4
Proof. Note that generic controllability indices have the following structure δ = [φ, ..., φ, φ− 1, ..., φ− 1].
Then the corresponding numerator indices are νi ∈ {φ− 1, ..., φ− 1, φ− 2, ..., φ− 2}. As it holds
that µi ≥ νi∀i ∈ {1, ..., nu}, the transformation from pseudo canonical state space to RMFD is
valid. Next, consider the degree structure for N and D,

deg(D(s, θ)) =



φ φ− 1
. . . φ− 1

φ− 1 φ

φ− 1 φ− 2

φ− 2 . . .

φ− 2 φ− 1


(B.12)

deg(N(s, θ)) =
[
φ− 2 φ− 3

]
(B.13)

As Eq. (B.12) and (B.13) are column reduced, the relative degree can be obtained by comparing
the column degrees. It can easily be seen that the relative degree is larger than two for all
columns [65]. For the specific indices, the proof is similar and left to the reader.

B.4 Proof: Theorem 6
The proof is split into two parts, first consider the proof for the input transformation

Proof. Given the mechanical system Σ, nx
ny
∈ N and let C ∈ Rnunx×nx be the controllability

matrix with δg the corresponding generic controllability indices. The controllability matrix can
be partitioned according to C =

[
Cg Ch

]
with Cg =

{
Cg ∈ Rnx×nx

∣∣rank(Cg) = n ≤ nx
}
. Next,

consider the input transformation: y = Dȳ, with det (D) 6= 0. Since nx
ny
∈ N, the transformation

matrix D is a block diagonal matrix with equal diagonal blocks. For this reason, the following
holds

rank(C̄g) = rank(CgD) = rank(Cg) = n. (B.14)

Hence, if for Σ holds that rank(Og) < nx, this also holds for the output transformed system.

Now, consider the second part, the proof for the state transformation.

Proof. Given the mechanical system Σ, nx
ny
∈ N and let C ∈ Rnunx×nx be the controllability

matrix with δg the corresponding generic controllability indices. The controllability matrix can
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be partitioned according to C =
[
Cg Ch

]
with Cg =

{
Cg ∈ Rnx×nx

∣∣rank(Cg) = n ≤ nx
}
. Next,

consider the state transformation: x = T x̄, with det (T ) 6= 0.

rank(C̄g) = rank(T−1Cg) = rank(Cg) = n. (B.15)

Hence, if for Σ holds that rank(Og) < nx, this also holds for the state transformed system.

B.5 Proof: Theorem 8
Proof. For the frobenius-norm, the following holds,

‖Φ‖F = ‖vec(Φ)‖2. (B.16)

Applying this equality to Eq. (5.6), leads to,

Nω∑
k=1

∥∥∥∥∥vec
(
W<j>
h (ξk) ◦

(
W

([
No(ξk)
Do(ξk)

]
−
[
N̂(ξk, θ)
D̂(ξk, θ)

])))∥∥∥∥∥
2
. (B.17)

Applying the vectorization equality, vec(A ◦B) = diag(vec(A))vec(B),

Nω∑
k=1

∥∥∥∥∥W̃<j>
h vec

(
W

([
No(ξk)
Do(ξk)

]
−
[
N̂(ξk, θ)
D̂(ξk, θ)

]))∥∥∥∥∥
2
, (B.18)

where, W̃<j>
h = diag(vec(W<j>

h )). Next, substituting Eq. (5.1) into the equation gives the
following result,

Nω∑
k=1

∥∥∥∥∥W̃<j>
h vec

(
W

([
No(ξk)
Do(ξk)

]
−
[
B(θ)
A(θ)

] (
D̃eA(θ) + Ñe,2V

−1
2 B(θ)

)−1
))∥∥∥∥∥

2
(B.19)

Rearranging gives,
Nω∑
k=1

∥∥∥∥W̃<j>
h vec

(
W

([
NoÑe,2V

−1
2 NoD̃e

D0Ñe,2V
−1

2 DoD̃e

]
− I
)[

B(θ)
A(θ)

] (
D̃eA(θ) + Ñe,2V

−1
2 B(θ)

)−1
)∥∥∥∥

2
(B.20)

Next, using the vectorization equality, vec(ABC) = (C>⊗A)vec(B) the following can be derived,
Nω∑
k=1

∥∥∥∥W̃<j>
h

([(
D̃eA(θ) +Ne,2V

−1
2 B(θ)

)−1
]>
⊗
[
W

([
NoÑe,2V

−1
2 NoD̃e

D0Ñe,2V
−1

2 DoD̃e

]
− I
)])

vec
[
B(θ)
A(θ)

]∥∥∥∥
2
. (B.21)

Thereby proving Theorem 8.

B.6 Proof: Theorem 9
Proof. The elements of D̂ can be written as

[A(ξk, θ)]ji = δ(i, j)ξµik −
[

1 ξk . . . ξ
µi−1
k

]

αji1
αji2
...

αjiµi

 , (B.22)
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[B(ξk, θ)]ji = −
[

1 ξk . . . ξ
νj−1
k

]

βji1
βji2
...

βjiνj

 (B.23)

The elements of the polynomial matrices can also be grouped with respect to the columns


[
B(ξk, θ)

]j[
A(ξk, θ)

]j
 =



0
...

0
δi1ξ

µ1
k
...

δinuξ
µnu
k


︸ ︷︷ ︸

[b]i

−



F (νj) O

O
.. .

O F (νj)
F (µ1) O

.. . O

O F (µnu)


︸ ︷︷ ︸

Φj

[
αj
βj

]
︸ ︷︷ ︸
θj

(B.24)

As the vectorization operator essentially stacks the columns of
[
B(ξk, θ)
A(ξk, θ)

]
, the proof of Theorem 9

is finished.
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