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Abstract

Abstract

Semi-crystalline polymers are used in numerous products due to their advantageous characteristics. Howe-
ver, the material behaviour of the product is highly dependent on the processing conditions. To be able
to predict the material response, the influence of these conditions needs to be modelled. Since the semi-
crystalline polymer consists of two phases, the amorphous phase and the crystalline phase, these need
to be modelled separately. This is done using a micro-mechanical model called the Composite Inclusion
model (CIM). The CIM is a elasto-viscoplastic model, with the amorphous phase modelled by the EGP
model, and the crystalline phase by a crystal plasticity model.
Some semi-crystalline materials, under certain processing conditions, show voiding in the amorphous
phase during tensile loading. This has a large effect on the material response after yield. To be able to
model this effect, a Gurson model was incorporated in the EGP model. In this study the implementation is
explained and the effects on the material response for α i-PP are discussed. This is done by both looking
at a pure EGP model and the CIM. These results are compared to present experimental results.
The purely EGP model seems to be able to predict the right trends, while for the CIM some problems
were encountered. These problems seem to originate from a single inclusion, which shows large strain,
resulting in enormous voiding in this inclusion. A look at this problem was provided to be able to resolve
this problem for the complete CIM model.
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List of Symbols

Symbol Definition Unit
~n Interface normal []
~c Chain direction []
Gi,j Shear modulus GPa
Gr Hardening shear modulus GPa
ηi,j Viscosity Pa· s
τ Equivalent stress MPa
D Deformation rate s−1

σs Driving stress MPa
κ Bulk modulus MPa
J Volumetric change, det(F ) []
B Left Cauchy Green strain tensor []
µ Pressure dependancy parameter []
P Pressure MPa
Si Aging parameter []
F Deformation gradient []
L Velocity tensor s−1

γ̇ Equivalent shear rate s−1

~s0 Unit slip direction []
~n0 Unit slip plane normal []
∆U Activation energy of slip system kJ/mol
Vact Activation volume of slip system []
f Void volume fraction []
Φ Gurson potential []
C Right Cauchy Green strain tensor []
s standard deviation []

Notation

Symbol Definition
.h Hydrostatic part
.d Deviatoric part
.p Plastic part
.e Elastic part
.̃ Isochoric part
.i,j Phase i, mode j
.a Amorphous phase
.c Crystal phase
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Introduction

1 Introduction

Semi-Crystalline polymers are used in numerous products due to their advantageous characteristics. These
include low weight, low cost, they can be easily processed and they show good strength at high temper-
atures. These advantages allow for use in a wide range of products, including load-bearing products.
However, for these polymers, the processing conditions have a large influence on the material response.
These materials may be subjected to plastic deformations during processing. This causes orientation of
molecular chains, resulting in different mechanical behaviour. As these polymers are widely used, it is
important to be able to predict the resulting material response.
To understand these influences and simulate the polymer, to be able to predict the material characteristics,
a model has been made. The base for the current model was first developed by Lee et al [1]. It featured a
two phase model, as a semi-crystalline polymer consists of an amorphous phase and a crystalline phase.
This work was expanded to incorporate elasto-viscoplastic properties by van Dommelen et al [2]. To ac-
count for the anisotropic characteristics in the amorphous phase Poluektov et al. [3] implemented the EGP
model, first proposed by Tervoort et al. [4], in the elasto-viscoplastic model. This model is currently being
fitted to i-PP characteristics. i-PP shows a large dependence on phase composition, α, β or γ, and temper-
ature. During deformation of semi-crystalline materials voiding may also take place, as seen in Figure 1.1.
Voiding shows in the amorphous phase and has a large influence on the material response. The amount of
voids seems very dependent on the testing conditions [7]. First, an explanation is given about the origin
of this phenomenon in Section 2. Then, in Section 3 a way to incorporate this into a elasto-viscoplastic
framework is shown. This resulting model is called the Composite Inclusion Model, or CIM.

Figure 1.1: Voiding of polyamide 6 under ten-
sion. [5]

Figure 1.2: The difference in compression(1) and ten-
sion(2) for i-PP [6].

To quantify the voiding in the amorphous phase, a voiding model is added to the EGP part of the CIM.
In this case, a Gurson model [8, 9] was chosen for it’s micromechanical derivation and extendibility, due
to further work from numerous authors [10–23]. To do this, certain derivations were made to ensure
the convergence of the CIM. Certain constitutive relations will also had to be altered to account for the
hydrostatic contribution to the deformation, accompanied by voiding. These changes will be discussed in
Section 4.
In Section 5 the trends of the model including voiding will be shown. These results will be compared to the
limitted data available for the material under review, α-phase i-PP. The conclusions and recommendations
will be given in the last Section, 6.
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Semi-Crystalline polymers

2 Semi-Crystalline polymers

Semi-crystalline polymers are polymers which consist of two phases, an amorphous phase and a crys-
talline phase. These phases show different behaviour. The amorphous phases are regions where the
molecular chains do not show any order. The crystalline phase shows highly ordered chains. This results
in the amorphous phase showing an isotropic elasto-viscoplastic response and the crystalline phase an
anisotropic elasto-viscoplasitc response. The anisotropy of the crystalline phase is caused by the ordered
chains, resulting in yield dependent on the loading direction.
One advantage of this semi-crystalline structure in a product is the ability to use the polymer up to the
melting temperature, whereas amorphous polymers are subjected to the glass transition temperature [24].
The material that is currently being investigated is isotactic poly-propylene (iPP). The material character-
istics of this polymer are highly dependent on the processing conditions. There are several phases that
the polymer can consist from. The composition of the phases in the polymer are determined by the pro-
cessing conditions. The phases that can occur are α, β, γ and meso-phase. The conditions that determine
the growth of these crystals are the cooling rate from the melting point, the flow in the material and the
pressure during cooling. Using a fast cooling rate results in a mesophase structure. By inducing flow in
the material, the growth of α and β phase can be enhanced. γ growth responds to higher pressures. The
temperature and pressure dependence can be seen in Figure 2.1 [25].

Figure 2.1: Results for processing condition experiments for phase growth [25].

The phase composition of the polymer determines ultimately what the characteristics are. This is also
shown in the results of Caelers et al [7] , which show a different stress-strain response and also different
voiding behaviour. This will be discussed in Section 2.3.
Flow in the polymer will give rise to orientation in the direction of the flow. A material not subjected
to flow will have a spherulitic structure as shown in Figure 2.2. With increasing flow, a more oriented
structure will occur. If the polymer is oriented enough a so-called shish-kebab structure will be formed.
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Semi-Crystalline polymers

Figure 2.2: Orientation evolution due to flow from spherulitic (Lin & Argon [26]), oriented structure (Gohil [27])
and a shish-kebab structure (Barham & Keller [28]).

Regardless of the orientation the amorphous and crystalline layers will be stacked. This allows the mod-
elling of the material using stacked phases of a crystalline and amorphous phase, as will be discussed in
Section 3.3.
The orientation of this structure has a high influence on the characteristics of the polymer. With the molec-
ular chains located in the direction of the applied flow the material will show a different behaviour loading
in this direction compared to loaded perpendicular to the orientation. This was shown by van Erp [29] with
injection moulding i-PP. The yield stress showed dependence on the orientation of the sample compared
to the flow direction. These results are shown in Figure 2.3. It can be seen that the yield stress is highly
dependent on the orientation of the crystals in the samples.

Figure 2.3: A schematic representation of the injection moulding of the samples with the yield kinetics during tensile
testing [29].

These yield kinetics can be described by looking at the deformation characteristics of both phases. They
deform differently and with different mechanisms.

TU/e 6



Semi-Crystalline polymers

2.1 Crystalline phase deformation

The plastic deformation in the crystalline phase takes place due to crystallographic slip, mechanical twin-
ning and stress-induced martensitic transformation. However, the main deformation mechanism is crys-
tallographic slip [1, 26, 30–32]. Crystallographic slip is the sliding of chains over slip planes. Over these
slip planes there can be transverse slip, perpendicular to the chain direction, and chain slip, in the chain
direction. The slip systems are material dependent. For α phase i-PP these slip systems are shown in
Figure 2.4. α i-PP shows a monoclinic crystal structure [7].

Figure 2.4: The slip systems of i-PP with transverse slip [XX0] and chain slip [001].

Slip can be either fine slip or coarse slip. Fine slip is defined as equal deformation over a large amount of
slip planes. Coarse slip occurs at high strains which shows large slips over a small number of planes [26].
These forms of slip are shown in Figure 2.5.

Figure 2.5: Schematic representation of slips [2], after Young [30].

As is displayed in Figure 2.5 the interface normal, n, changes during fine slip while the chain direction
remains the same. This interface normal is the normal between the amorphous and crystalline phases. The
modelling of the crystal phase is further explained in Section 3.2.
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Semi-Crystalline polymers

2.2 Amorphous phase deformation

For α i-PP, with a crystallinity of 60%, the amorphous phase will transition to a glassy state at a temper-
ature of 15°C [7]. Above this temperature, the amorphous phase will be in the rubbery state. During the
plastic deformation of a semi-crystalline polymer, voiding may occur in the amorphous phase. Voiding
happens when the material is placed under a tensile stress, due to a negative hydrostatic stress. In com-
pression, there is no voiding due to a positive hydrostatic stress. When there are voids present, these can
shrink or collapse due to this positive stress. Voiding starts to show prior to yielding in i-PP [7]. This is
however found to be dependent on the phase and processing conditions of the material [32]. For example,
the temperature has a large influence on voiding [7, 32, 33]. This also shows in the reduced yield stress.
The voiding has a large impact on the stress-strain response of the material. This impact can easily be seen
when comparing a compression test and a tensile test. This is visualized in Figure 2.6. Prior to voiding, the
plastic deformation of the material is driven through the deviatoric stress, independent of the hydrostatic
stress [34].
As can be seen in Figure 2.6 there is an initial difference in material response between compression and
tension, while there is no sign of voiding yet. This is likely due to other damage mechanisms and while
the addition of voiding to the CIM will improve the tension response. This will likely show the same
difference as voiding in the model appears close to yield. This difference could however also be due to a
difference in experimental conditions.
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Figure 2.6: The experimental stress-strain response of α i-PP by Caelers [7] at 23°C, strain-rate 10−3 s−1.

It can be seen that there is a large decrease in yield stress and a large increase in softening. While this
is also caused by necking of the material, Chu et al. [33] found that β i-PP showed no necking at higher
temperatures, but did show voiding. Comparing this to the results of Caelers et al. [7], the β i-PP samples
showed an increased softening response and less hardening during tensile loading. Using SAXS, voiding
has been studied [6, 7, 32, 35, 36], see Figure 2.7. From these measurements the void shape evolution and
strains where voiding occurs can be seen. With increasing strain the voids will grow and new voids will
start to appear. At nucleation the voids will grow perpendicular to the tensile direction. After yielding these
voids will start to grow in the tensile direction. This is observed in multiple measurements [6, 7, 35, 37].
The matrix between the voids starts to thin during growth. This then leads to the coalescence of voids.
Coalescence results in fast breaking of the material, in the order of 10-15% void fraction for metals [10].
Voiding can sometimes also be seen as whitening near the yield point [5,32,37]. This whitening is caused
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Semi-Crystalline polymers

by numerous small voids.
Whether the nucleation of voids precedes or is caused by lamellar fragmentation is debatable [6, 35]. The
slip in crystalline lammellae does leave room for void growth in the amorphous phase, with thicker lamel-
lae causing higher void nucleation. However, Pawlak and Galeski [39] found that crystalline destruction
following voiding in the amorphous phase was more likely due to the stress release during crystal frag-
mentation, decreasing the local stress [6]. Selles found that voids appear in the equatorial plane and polar
fans of a spherulite while keeping the centre intact [40].

Figure 2.7: SAXS results found by Caelers [7].

There are however two forms of void forming. The first is the voiding around yield, as discussed. The
second voiding process is at larger strain due to disentanglement of the network [37]. These voiding
processes appear to be independent of each other and the molecular weight seems to be of high influence
on this mechanism. However, in this work the focus is on the void growth around yield, rather than
disentanglement.
Several works looked at cavitation in i-PP under tension [6,32,33,37–39]. These works, however, did not
show actual porosities of the material. While Chu et al. [33] did show porosity, these porosities were for β
i-PP samples and did not show the evolution during strain. Since the material under review is α i-PP, these
results can not readily be used. One work showing these porosities for different processing conditions,
including α i-PP, is Caelers et al [7]. While these results are not completely relatable, the porosities can
be compared.

TU/e 9



Semi-Crystalline polymers

2.3 Experimental Results

There is little experimental data available in literature for voiding in i-PP. Fortunately there was a study
done by Caelers et al. which tested the material behaviour in both tension and compression for i-PP.
They also looked at the differences between α, β and γ i-PP. Furthermore the influence of strain-rate and
temperature was investigated. Additionally, in tension also the porosity was measured. The results for the
tensile test measuring porosity are shown below:

(a) Tensile test α i-PP (b) Tensile test β i-PP

(c) Tensile test γ i-PP

Figure 2.8: The results found by Caelers [7], strain rate 8·10−4 s−1.

These results show the tensile response for α, β and γ i-PP’s. While only α i-PP is used currently, the
experimental results of the two other phases show a more fluent porosity evolution. This is likely due to
the voids in α i-PP growing too fast to the point where they can not be measured by SAXS (Small Angle
X-ray Scattering) measurements. The voids that become too big will therefore not be taken into account,
resulting in a decrease in the measured porosity. While there is an initial decrease the porosity remains
more or less constant afterwards. This could mean that there is a constant amount of nucleated voids. A
similar constant porosity is observed in β and γ i-PP. However, they remain constant at their respective
maximum levels of porosity. Collapsing of voids due to decreased hydrostatic stress could be a reason for
these drops in void growth according to Caelers.
While α i-PP is used the void growth in the other phase i-PP’s show better trends, since in α there is only
growth noticeable in the 25°C case. However, the other temperature cases still show a lot of softening and
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Semi-Crystalline polymers

no hardening after yield. This is probably due to voids. These might not be measured as the materials
resilience against stress at elevated temperatures decreases, giving possibility to faster growths. This could
render the voids undetectable by SAXS as discussed.
Another thing that should be taken into account when comparing results is the fact that these measure-
ments were done in a standard tensile test, clamping the sample at both ends, and measuring the force
and strain. However, in the CIM a material point is simulated, comparable to a point in the middle of the
sample where yield takes place, see Figure 2.9. This difference is caused by necking, resulting in a high
local stress. Therefore these results are not perfectly comparable, as the CIM will likely result in higher
stress and this will therefore also influence the voiding results.

Figure 2.9: Caelers tests vs the CIM.

TU/e 11



The Composite Inclusion Model

3 The Composite Inclusion Model

Modelling the characteristics of a semi-crystalline polymer is necessary to predict material properties un-
der different processing and loading conditions. As dicussed in Section 2, a semi-crystalline polymer
consists of two separate phases with both different deformation characteristics. The behaviour of these
phases should therefore also be modelled separately. To this extend the Composite Inclusion Model (CIM)
was made, which combines the different responses into a single model.

3.1 The Amorphous Phase

The amorphous phase shows an isotropic elasto-viscoplastic response. This response can be modelled
using the EGP model. This model was developed by Tervoort et al. [4], Govaert et al. [41], Klompen [42]
and van Breemen et al. [43]. The model uses multiple Maxwell models to model the elasto-viscoplastic
behaviour. The hardening of the material is modelled using a single hardening spring. This model is
shown in Figure 3.1a. Maxwell modes can be added with their respective parameters to describe the ma-
terial characteristic up to the yield point better. As semi-crystalline polymers can show α, β and γ phases
with different behaviours, multiple mechanism have to be modelled. These mechanisms can be added as
additional modes, as shown in Figure 3.1b.

(a) Single process model

(b) Multiple process model

Figure 3.1: Representations of the EGP model [44].

The EGP model uses a modified Eyring flow rule to describe the viscoplastic behaviour of the material.
In these Eyring equations, the viscosity was extended, to include the pressure dependence and the aging
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The Composite Inclusion Model

effect. This results in the following equation for the plastic deformation rate:

Dp =
σds
2η
. (3.1)

This overall plastic deformation rate is defined using the deviatoric driving stress, σds and viscosity η of
the mode with the highest viscosity. The plastic spin is set to zero, resulting in the plastic velocity gradient
being equal to the plastic deformation rate. The driving stress is defined by a hydrostatic and a deviatoric
part:

σs = σhs + σds = κ(Je − 1)I +
i=1∑
n

GiB̃
d
e,i, (3.2)

with n being the number of Maxwell modes, Je being the volumetric change of the material, κ the bulk
modulus and G the shear modulus. B̃de,i is the deviatoric part of the elastic isochoric left Cauchy-Green
strain tensor. The viscosity including the pressure and ageing influences is defined as:

ηi = η0,i,ref

τ

τ0

sinh(
τ

τ0
)

exp(
µP

τ0
) exp(SaR(γp)). (3.3)

η0,ref is defined as the viscosity in the rejuvenated state [42]. The pressure (P ) is defined as −κ(Je − 1),
Je being the elastic volumetric change of the first mode. τ0 is the characteristic stress, µ the pressure
dependancy parameter, Sa the aging parameter. R(γ̄p) is the softening function, which is fitted to describe
the softening of the material. This parameter reduces from 1 to 0 over γ̄p, decreasing the effect of the
aging parameter [43]. This softening function is defined as:

R(γ̄p) =
(1 + (r0 exp(γ̄p))

r1)(r2−1)/r1

(1 + rr10 )(r2−1)/r1
, (3.4)

where r0, r1 and r2 are fitting parameters. The equivalent stress τ is defined as

√
1

2
σds : σds and the

equivalent plastic strain rate ˙̄γp can be defined as
τ

η
. Both ˙̄γp and τ are defined over the mode with the

highest viscosity.
The hardening of the material is described using the deviatoric part of the total isochoric left Cauch-Green
strain tensor, B̃d, and a hardening modulus Gr:

σr = GrB̃
d
. (3.5)

The total stress is defined as an addition of the driving and hardening stress:

σ = σr + σs. (3.6)
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The Composite Inclusion Model

3.2 The Crystalline Phase

The crystalline phase also consists of an elastic part and a viscoplastic part. The elastic part can be
modelled using a linear relation between the elastic Green-Lagrange strain tensor Ee and the elastic second
Piola-Kirchhoff stress S. This is done using an anisotropic elastic modulus tensor 4C. This tensor is
anisotropic as the chain will have a higher modulus in the chain direction. This leads to the following
relation:

S =4 C : Ee, (3.7)

with S being defined as:
S = JeF−1p · σ · F−Te . (3.8)

Fe is defined as the elastic deformation gradient and the elastic volumetric change Je as its determinant.
Fp is then defined as the plastic deformation gradient. Ee is defined as:

Ee =
1

2
(FTe · Fe − I), (3.9)

with I being the second order identity tensor.
The majority of deformation in the viscoplastic part is due to crystallographic slip for moderate strains,
see Section 2.1. Therefore this is assumed as the main deformation mechanism in the crystalline phase.
In the model, currently only fine slip is included, while in reality also coarse slip may occur. Since coarse
slip becomes important at large strains it is assumed that the deformation comes from fine slip. In Figure
2.5, these slip mechanisms are shown schematically. With fine slip, the chain direction angle changes.
To model the crystallographic slip a rate dependent crystal plasticity model is used. The deformation in
every slip system is taken into account, leading to the following plastic velocity gradient:

Lp =
N∑
i=1

γ̇i~si0 ⊗ ~ni0, (3.10)

with N the amount of slip systems, 8 for iPP, ~s0 the unit slip direction and ~n0 the unit slip plane normal.
~s0 and ~n0 are also displayed in Figure 2.5. γ̇a is defined as the shear rate of the slip system. This shear
rate is defined using an Eyring flow rule [24]:

γ̇i = γ̇0
i exp(

−∆U i

RT
) sinh(

τ i

τ i0
) exp(

µaσin
τ i0

). (3.11)

Here γ̇0i is the reference shear rate, with τ i0 the reference shear strength. ∆U is the activation energy of
the slip system, with R; the gas constant, and T ; the temperature in Kelvin. σin is the normal stress of the
slip plane with µi its dependency parameter. τ i and σin can be calculated using the second Piola-Kirchhoff
stress, given in Equation 3.8. This results in the following relation for τ i:

τ i = S · Cc
e : (~si0 ⊗ ~ni0), (3.12)

with Cc
e the elastic right Cauchy-Green deformation tensor. σin is defined as:

σin = S : (~ni0 ⊗ ~ni0). (3.13)

Equation 3.11 describes the plastic deformation for a single relaxation mechanism. However, as a single
mechanism is not able to fully describe the deformation, another mechanism is present in the model.
These mechanisms can be added into a single term [24]. This was fist employed by Sedighiamiri for the
combination of mechanisms in both the crystalline and amorphous phase. Using a Ree-Eyring [45] flow
rule the shear stress was altered to take both mechanisms into account. In case two mechanisms are used
the following shear rate description is obtained:
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γ̇ =

γ̇0
a,I exp(

−∆Ua,I

RT
) sinh(

τ

τa,I0

)γ̇0 sinh(
τ

τa,I+II0

)

γ̇0
a,I exp(

−∆Ua,I

RT
) sinh(

τ

τa,I0

) + γ̇0
a,I+II sinh(

τ

τa,I+II0

)

exp(
µσn
τa0

), (3.14)

with
τa,I+II0 = τa,I0 + τa,II0 , (3.15)

and

γ̇0
a,I+II = 2 exp(−

τa,I0 ln(
2

γa,I0

exp(
∆Ua,I

RT
)) + τa,II0 ln(

2

γa,II0

exp(
∆Ua,II

RT
))

τa,I0 + τa,II0

). (3.16)

As mentioned, this was first employed by Sedighiamiri for the amorphous phase. This, however, was not
included yet in the model as the amorphous model allowed for separate modes, instead of combining them
into one.
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3.3 Combining the models

To model a semi-crystalline polymer these two phases have to be combined. Combining them into a
layered structure, results in a microscopic scale model. This is done to model the elasto-viscoplastic
deformation behaviour, which semi-crystalline polymers show. These models consist of one amorphous
phase and one crystalline phase, see Figure 3.2a. One of these coupled structures is called a ”Composite
Inclusion”. The model uses a mean field approach to determine the characteristics of the polymer. This is
done by using multiple inclusions, a collection of these inclusions is an aggregate, see Figure 3.2b. The
ratio of the amorphous to crystalline phase can be changed, depending on the material that is used. This
layered structure was first proposed by Lee et al. [1]. This model was then further extended by the addition
of several phenomena to be able to capture the semi-crystalline polymer under investigation.

(a) A Composite Inclusion

(b) An aggregate

Figure 3.2: A representation of the CI model for PE [46].

The phases are coupled at the interface. There is no mass flux over the phases and at the interface a traction
equilibrium is assumed, as well as kinematic compatibility. These last two conditions make sure that the
material deforms equaly at the boundary and that the stress is equal at the boundary. These conditions can
be described as follows:

Fc · ~xI0 = Fa · ~xI0 = FI · ~xI0, (3.17)

σc · ~nI = σa · ~nI = σI · ~nI , (3.18)

with ~xI0 being an arbitrary vector in the interface plane and ~nI0 the interface normal. Over the inclusion,
the stress and deformation are assumed homogeneous within each phase. The total stress and deformation
are therefore volume averaged over each inclusion. This is done using the volume fraction of each phase,
by calculating the average over the volume. For the stress, the elastic dilatation of the phases has to be
taken into account [2]. Taking this into account this leads to the following evolution of volume fractions:

fπ =
fπ0 J

π

fa0 J
a + f c0J

c
; π = a, c. (3.19)

Here J is defined as the determinant of F. Using this compensation the following expressions for defor-
mation and stress of the inclusions are obtained:

FI = fa0 Fa + f c0Fc, (3.20)

σI = faσa + f cσc. (3.21)
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Going from a microscopic to a mesoscopic scale an interaction law has to be formulated between the
inclusions. In the model a hybrid interaction law is used. This describes an interaction between the
upper bound Taylor and lower bound Sachs interactions [1, 2]. For this model six additional ”stretchlike”
variables are introduced. The interface conditions are then defined as follows:

4PI
i

x0 : Fc
i

=4 PI
i

x0 : Fa
i

= PI
i

x0 : FI
i

(3.22)

4PI
i

n : σc
i

=4 PI
i

n : σa
i

= PI
i

n : σI
i

(3.23)

The mesoscopic relations are then described using a Sachslike interaction law for the stretch, and a Tay-
lorlike relation for the stress:

4PI
i

x : σI
i

=4 PI
i

x : σ̄, (3.24)

4PI
i

n0
: UIi =4 PI

i

n0
: Û, (3.25)

RIi = R̄; i = 1 : NI . (3.26)

Here R̄ is the mesoscopic rotation, σ̄ the mesoscopic stress and Û are the ”stretchlike” unknowns. 4PIi

is the subspace projection of the inclusion-averaged variables on the mesoscopic result. The model can
be solved by imposing a set of boundary conditions, resulting in a set of unknowns. On this set certain
boundary conditions are imposed. For an uniaxial loading case, loaded in the e1 direction, which is under
consideration here, the conditions are obtained:

R̄ = I, (3.27)

Ū11 = λ(t), (3.28)

σ̄22 = σ̄33 = σ̄12 = σ̄13 = σ̄23 == 0. (3.29)

Here λ is the imposed stretch. This set of introduced ”stretchlike” unknowns in then solved using a
Newton-Raphson method.
Under deformation a texture evolution occurs. In the model this is incorporated through changes in crys-
talline lamellae orientation and morphological texture changes [24]. The morphological texture changes
are the changes in interface orientation between the crystal and amorphous phase. This morphological
texture is constant during the increment of calculation and is updated afterwards. This is done by updating
the interface normal.
The update of this normal is defined using two independent vectors in the interface, xIi1 and xIi2 . These are
defined using the same vectors, at t = 0:

xI
i

1 = Fi · xIi01, (3.30)

with xIi01 and xIi02 the vectors at t = 0. The interface normal nIi is then calculated as:

nI
i

=
xIi1 × xIi2
||xIi1 × xIi2 ||

. (3.31)

In the model, uniaxial tension or compression can be described on the aggregate. This is done by means
of a constant prescribed strain rate. A Newton-Raphson procedure is then utilised to calculate the defor-
mations and stresses.
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4 The Gurson model

As discussed, voiding occurs in iPP under a tensile stress, see Section 2. Voiding occurs in the amorphous
phase. Since this affects the load carrying ability of the amorphous phase, voiding is added by altering the
EGP part of the CIM. Incorporating the effects of voiding can be done by means of the Gurson model [8,9].
Gurson first developed this micromechanical approach for voiding in steel. However, the model has
numerous extensions to improve the response. Due to the extensibility and the ease of implementation
this work was chosen to model the voiding.

4.1 Defining the model

The original Gurson model was derived for the modelling voiding in ductile materials, more specifically
steel. It is derived using a micro-mechanical approach. Since the von Mises criterion assumes incompress-
ible material, which is not the case during voiding, hydrostatic dependence should be taken into account.
The Gurson model approximates the yield criterion while including hydrostatic stress. This approximation
is done by adapting the yield surface of the material. It, however, is based on spherical or cylindrical voids
and can only describe growth in already existing voids in isotropic materials, see Figure 4.1.

(a)
(b)

Figure 4.1: The voids as used in Gurson’s model [8]

Gurson formulated a potential for the model to adapt the yield surface. At yield this potential would be
zero. In this potential the effects of the porosity of the material, or void fraction, and the hydrostatic stress
were included. The void fraction is defined as:

f =
Vvoids
Vmatrix

. (4.1)

The potential proposed by Gurson for spherical voids is the following [9]:

Φ =
1

2

Σ2
eqv

σ2y
+ 2f cosh(

√
3

2

Σh

σy
)− (1 + f2) = 0. (4.2)

This potential is an upper bound yield criterion. The criterion given here is based on spherical voids and
is based on yield stress, σy, the equivalent macroscopic stress Σeqv and the hydrostatic stress Σh. This
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equivalent and hydrostatic stresses for the potential are defined as:

Σeqv =

√
3

2
σ̄d : σ̄d, (4.3)

Σh =
1

3
tr(σ̄), (4.4)

This potential is shown in Figure 4.2 for various porosities.

Figure 4.2: The yield surface for various porosities [8].

It can be seen that the maximum stress, both equivalent and hydrostatic decrease with increasing porosity.
Here Teqv and Thyd are Σeqv and Σh normalised with the yield stress σy, respectively.
One work incorporating the Gurson model for glassy polymers is Steenbrink [47]. Steenbrink introduced
a Gurson framework in a elasto-viscoplastic material. Following this work the following potential is used:

Φ =
1

2

σ̄d : σ̄d

τ2
+ 2f cosh(

√
3

2

1

3
tr(σ̄)

τ
)− (1 + f2) = 0. (4.5)

Here f is the porosity,
1

3
tr(σ̄) the hydrostatic stress and τ the equivalent shear stress rather than the yield

stress proposed by Gurson. τ is variable, calculated according to the potential. The implementation of this
will be discussed in Section 4.1.1. The plastic deformation rate is described as follows:

Dp = Λ̇
∂Φ

∂σ̄
. (4.6)

Λ̇ is found by setting the dissipation equal to the plastic work rate. This gives the following expression:

Λ̇ = (1− f)τ γ̇p(σ̄ :
∂Φ

∂σ̄
)−1, (4.7)

with γ̇p the equivalent plastic strain rate. The formulation presented here differs from the Steenbrink et
al. formulation. Steenbrink et al. defined Λ̇ with a factor

√
2, but due to a different formulation of γ̇ this

factor drops out. In the original EGP model, the plastic deformation rate is defined as:

Dp =
γ̇p
τ
σd. (4.8)
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Without voiding present in the model, the plastic deformation rate description should reduce to the old
form, shown above. With a porosity, f of 0, the equivalent stress remains defined as:

τ =

√
1

2
σd : σd, (4.9)

with σd the deviatoric stress. This indeed results in Equation 4.6 being equal to 4.8.

4.1.1 Implementation

To implement the defined model into the existing CIM some changes have to be made. These changes
were made to the EGP part, where voiding normally occurs. Implementing this in the EGP model is done
through the velocity gradient tensor. This is set equal to the plastic deformation rate as plastic rotation is
assumed to be zero.
The equivalent stress is defined such that the potential remains zero. This can be done using a Newton-
Raphson method. Altough both the CIM and the EGP model use Newton-Raphson methods to calculate
the stresses, the CIM Newton-Raphson remains the same.
The initial guess for the first increment of the model remains defined as equation 4.9. This is due to
the equivalent stress reducing to 4.9, and Dp resulting in 4.8, when the porosity is 0. In new increments
the equivalent stress of the previous increment is used as the initial guess. This reduces the amount of
iterations needed at rising void fractions, where the equivalent stress calculated to keep the potential zero
will increase over the old definition, Equation 4.9. The new Newton-Raphson procedure was defined as
follows:

Φ(τ) = 0, (4.10)

δτ = τnew − τcurrent = −δΦ
δτ

−1
Φ(τcurrent), (4.11)

τnew = τcurrent + δτ. (4.12)

The calculation of derivatives of tensors is defined here as:

dA
dB

=
dAi,j

dBl,k
ei ⊗ ej ⊗ ek ⊗ el. (4.13)

The partial derivative of the potential with respect to the equivalent stress can be derived straightforwardly:

∂Φ

∂τ
= − σ̄

d : σ̄d

τ3
−
√

3ftr(σ̄h)

τ2
sinh(

√
3

2

1

3
tr(σ̄)

τ
). (4.14)

The derivative used in Λ̇,
∂Φ

∂σ̄
is less straightforward. The complete derivation is shown in Appendix A.

The results is found as:

∂Φ

∂σ̄
=
σ̄d

τ2
+

f√
3τ

I sinh(

√
3

2

1

3
tr(σ̄)

τ
). (4.15)

In the model, the derivative
dF
dFe

is used to calculate the residual in the CI Newton-Raphson loop. This

derivative changes due to the change in Dp or in this case also Lp. The derivatives in the Newton-Raphson
loop should be updated to ensure an optimal convergence. As F is composed of an elastic part Fe and a
plastic part Fp, this derivative can be split as:

dF
dFe

= Fe ·
∂Fp
∂Fe

+
∂Fe
∂Fe
· Fp. (4.16)
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This can then be reduced to:

dF
dFe

=4 I · Fp + Fe ·
∂Fp
∂Dp

:
dDp

dσ̄
:
dσ̄

dFe
. (4.17)

With 4I the fourth order unit tensor. In the last term of Equation 4.17, dDp/dFe is split as the derivative
of the plastic deformation rate can be derived with respect to the stress. The derivative of the plastic
deformation gradient with respect to the velocity tensor is already present in the model and calculated
using an approximation, so does not have to be recalculated.

The easiest way to calculate
dDp

dσ̄
is to split it into seperate parts, as was done by van Dommelen et al [2].

This gives partial derivatives to all variables in Dp dependent on the stress:

dDp

dσ̄
=
∂Dp

∂σ̄
+
∂Dp

∂τ

dτ

dσ̄
+
∂Dp

∂γ̇p

dγ̇p
dσ̄

. (4.18)

The partial derivative of the plastic deformation rate to the stress can be calculated quite straightforward:

∂Dp

∂σ̄
= (1− f)γ̇pτ

[
∂Φ

∂σ̄
⊗
(
−(σ̄ :

∂Φ

∂σ̄
)−1(4I :

∂Φ

∂σ̄
+ σ̄ :

∂2Φ

∂σ̄2
)(σ̄ :

∂Φ

∂σ̄
)−1
)

+ (σ̄ :
∂Φ

∂σ̄
)−1

∂2Φ

∂σ̄2

]
.

(4.19)
The complete derivation can be found in Appendix A. This derivative requires yet another derivative,
∂2Φ

∂σ̄2
. This can be calculated by taking the derivative of the already calculated

∂Φ

∂σ̄
from Equation 4.15:

∂2Φ

∂σ̄2
=

1

τ2
(4I− 1

3τ
4I∗) +

f

6τ2
4I∗ cosh(

√
3

2

1

3
tr(σ̄)

τ
), (4.20)

with 4I∗ defined as I ⊗ I = ei ⊗ ei ⊗ ej ⊗ ej . As described in equation 4.18 there are four remaining

parts that need to be solved.
∂Dp

∂τ
and

∂Dp

∂γ̇p
are straightforward to calculate. The calculation of the other

two parts is explained here. To calculate
dτ

dσ̄
an additional derivative is introduced,

dΦ

dσ̄
. Since Φ should

remain 0,
dΦ

dσ̄
should also be 0. As was done before this derivative can be split into parts:

dΦ

dσ̄
=
∂Φ

∂τ

dτ

dσ̄
+
∂Φ

∂σ̄
= 0. (4.21)

As both partial derivatives were calculated in equations 4.14 and A.8, the needed derivative can be found
as follows:

dτ

dσ
= −(

∂Φ

∂τ
)−1

∂Φ

∂σ
. (4.22)

This leaves one part to still determine. As the plastic strain-rate is dependent on the equivalent stress and
the viscosity, which in turn are dependent on the stress, it can be split as was done previously:

dγ̇p
dσ̄

=
∂γ̇p
∂τ

dτ

dσ̄
+
∂γ̇p
∂η

dη

dσ̄
. (4.23)

As the viscosity η is defined as:

η = η0

τ

τ0
sinh(τ/τ0)

exp(
µP

τ0
) exp(Sa ·R(γp)), (4.24)
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the derivative
dη

dσ̄
can be split as:

dη

dσ
=
∂η

∂τ

dτ

dσ
+
∂η

∂P

dP

dσ
+
∂η

∂R

∂R

∂γp

dγp
dσ

. (4.25)

This leaves two derivatives which still needs to be determined. The first one is the derivative of the
equivalent stress with respect to the elastic deformation gradient. This part can also be split as it is
indirectly dependent on the elastic deformation, therefore leaving only one part to be determined:

dτ

dFe
=
dτ

dσ̄
:
dσ̄

dFe
. (4.26)

This leaves
dσ̄

dFe
to be determined, which is also needed for the derivative of

dF
dFe

4.17. The result is found
as:

dσ̄

dFe
= Ge((−

2

3
J−2/3e · (F−1e )T · Cd

e) + J−2/3e

dCe

dFe
(4I− 1/34I∗)) + κI(Je · (F−1e )T ). (4.27)

4.1.2 Void Growth

To have a full void model growth should be incorporated. This can be done according to Gurson’s void
growth model [9]. During plastic deformation voids will start to grow. The original model of Gurson
described this for incompressible material, so a constant volume. This gives the following equation [34]:

(1− f)V̇matrix − ḟVmatrix = 0. (4.28)

The volume change of the matrix, V̇matrix, can be defined as tr(Dp)V . Then the growth in void volume
fraction can be expressed as:

ḟ = (1− f)tr(Dp). (4.29)

This growth does not include direction of growth or coalescence. Also this model describes incompressible
material, whereas this is not true in this case. Therefore, some form of dilatation compensation should be
added. This is discussed in Section 4.1.4.
This void growth model describes void growth in existing voids. If there are no voids present in the
material there will be no growth. To get a good void growth description void nucleation should therefore
be taken into account.

4.1.3 Void Nucleation

Since there is no void fraction in a new sample, prior to deformation, voids should start to nucleate around
the yield point. If no nucleation would be taken into account, a starting porosity should be present to
show any growth. Therefore, an extension to the original Gurson model was used. This nucleation model
was first proposed by Needleman and Rice [22]. They proposed a stress controlled nucleation. Chu and
Needleman [23] proposed a strain-controlled nucleation. As can be seen in Figure 4.3a, regardless of
temperature, the nucleation will occur around the same strain. While the yield point changes due to strain-
rate, see Figure 4.3b, the model parameters have to be changed only once per strain-rate. For the stress
controlled nucleation this has to be done for every temperature as well as every strain-rate. Therefore the
strain controlled model was used.
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(a) Tensile test with different temperatures
(b) Tensile test with different strain-rates

Figure 4.3: The results found by Caelers [7]

As can be seen in Figure 4.3a the voids for α − iPP start to grow just before the yield point. The model
presented by Needleman and Chu was based on a standard distribution. The nucleation term was simply
added to the growth resulting in the following porosity evolution:

ḟ = ḟgrow + ḟnucl, (4.30)

ḟgrow being the growth described previously, and ḟnucl was defined as the nucleation contribution:

ḟnucleation = ˙̄γp
φ

s
√

2π
exp(−1

2
(
γ̄p − γN

s
)2), (4.31)

with φ being the fraction of nucleating material. γN is the strain at which half of the voids has nucleated.
s is the standard deviation, defining the strain span over which these voids will nucleate.
It should be noted that the nucleation is limited to tension via the condition that tr(Dp)>0. If the trace is
negative this would note compression of the material and when zero there is a stress free state, where no
nucleation is present.

4.1.4 Dilatational Compensation

As was discussed in Section 4.1.2, the Gurson model assumes incompressible matrix material around the
voids. This is not true. As the material deforms there will also be an elastic contribution. Therefore the
voids will grow more than they in reality do as the volume of the matrix is not constant. To compensate
for this, the total void fraction is recalculated after every increment.
The void fraction (Equation 4.1) can be written as follows:

f =
Vvoid

JeVm,0 + Vvoid
, (4.32)

with Vm,0 the initial matrix volume. This can be rewritten:

1

f
= Je

Vm,0 + Vvoid
Vvoid

− Je + 1. (4.33)

The void volume fraction not accounting for volume change can then be defined as:

f0 =
Vvoid

Vm + Vvoid
. (4.34)

TU/e 23



The Gurson model

This results in the following actual void fraction:

factual =
f0

Je − Jef0 + f0
, (4.35)

with f0 being the uncompensated void fraction and Je = det(Fe) the elastic volume change ratio.

4.1.5 The extended modified yield surface

To increase the accuracy of the Gurson model, numerous extensions have been made. One of these ex-
tensions was made by Tvergaard and Needleman [11]. This extension is widely used. The extension is
a phenomenological model, rather than a micro-mechanical model like the original Gurson model. How-
ever, this model allows an increased porosity and hydrostatic influence on the response. This is done by
introducing two variables, q1 and q2. These are introduced in the potential:

Φ =
1

2

σ̄d : σ̄d

τ2
+ 2fq1 cosh(

√
3

2
q2

1

3
tr(σ̄)

τ
)− (1− (fq1)

2) = 0. (4.36)

If there is a porosity and q1 and q2 are larger than 1, the yield surface will decrease, resulting in a shift
in the stress-strain response. As can be seen in Equation 4.36, q1 has an influence on the effect of the
porosity. With increasing q1 the porosity will have an increased effect on the potential. Similarly there can
be seen that q2 will affect the hydrostatic stress influence on the potential. These variables can be tuned to
experimental results to give a better material response.
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5 Results

The previously proposed Gurson model was first implemented in a purely EGP framework to see the influ-
ence of the different parameters. These results are used to see the trends of the model including voiding.
Afterwards the model is used in the Composite Inclusion Model itself. These results are compared to
experimental results obtained by Caelers et al. [7] with experiments on isotactic-Polypropylene.

5.1 Purely EGP Model

A purely glassy polymer framework was first used to check the Gurson model. This was done using
a material description with a single mechanism and a single mode. This is therefore merely to see the
influence of certain parameters included in the Gurson model.

5.1.1 Gurson Potential influence

First the standard Gurson model was implemented. This model does not include void growth or nucleation
yet. To see the influence of the model a starting porosity was therefore introduced. The model was imple-
mented as was described in Section 4. This EGP framework is similar to the CIM but does not include the
crystalline part.
As was stated this model uses a single mode, single mechanism description. While a multi mode model
would show a better approximation prior to yield, this should not influence the results of voiding signifi-
cantly as this occurs at or slightly before the yield point. The use of a single mode description can easily
be seen in the results due to the nearly linear stress-strain response before the yield point. While a multi
mode description would be preferential, this posed a problem due to the added hydrostatic stress influ-
ence. Since the plastic deformation rate now includes hydrostatic stress, the volumetric change should be
included in the stress for all modes. The original formulation used the volumetric change of the first mode
only, making use of an overall pressure. To include this, a pressure should be defined for every mode.
Currently, however, the CIM for a multi mode model uses a deformation gradient calculated in the previ-
ous increment per mode. In the next increment, the new viscosity is calculated and used to define the new
deformation gradient. By adding a hydrostatic dependence, the volumetric change should be included in
the viscosity per mode. To calculate the volumetric change, Je = det(Fe), the new deformation gradient
is needed, while only the deformation gradient of the previous increment is present. Since resolving this
problem would be too time consuming and not needed at this stage, the single mode model was used. The
parameters used in the purely EGP model are given in table 5.1, with the aging parameters shown in table
5.2.

η0 [MPa s] G [MPa] Gr [MPa] κ [GPa] ∆U [kJ/mol] Vact Tref [◦K] µ

4.8861*1015 324 1.2 1.66 2.74*105 3.35*10−27 296.15 0.017

Table 5.1

Sa r0 r1 r2
5.2 0.955 2 -1

Table 5.2

To see what the influence was of the Gurson model on the stress-strain response multiple initial porosities
were used. These results are shown in Figure 5.1. This Figure shows the results for a tensile test at 23°C
and a strain-rate of 10−2 s−1. It shows an expected result of a downward shift of the stress-strain curve.
This downward shift can be logically explained by the fact that with a porosity present in the material there
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will be less material to cope with the stress. This can also be seen through the potential (Equation 4.2).
As the porosity increases the equivalent stress will increase through the Newton-Raphson calculations to
keep the potential at zero.
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Figure 5.1: The purely EGP results, true stress, including a constant porosity, tension case for 23°C, strain-rate
10−2 s−1.

5.1.2 Growth

The next step is to implement the growth of voids in the model. As stated in Section 4.1.2 a porosity should
be present for the Gurson growth model to show any growth. Therefore three cases were considered. One
with a porosity of zero, a 2% porosity and a 10% porosity. The porosity evolution is included to see the
behaviour of the model. The results shown in Figure 5.2 were simulated using again a 23°C temperature
and a 10−2 s−1 strain-rate.
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Figure 5.2: The purely EGP results, true stress, including growth, tension case for 23°C, strain-rate 10−2 s−1.
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To get a clear view on the growth impact the model without growth but with a constant porosity is also
included for all three cases. As can be seen the results of the zero initial porosity case is equal for both the
non growth model and the growth model. This should be expected as there should be no growth without
existing voids due to tr(Dp) being 0 for the Gurson model to be incompressible.
For the other cases, it can be seen that the growth in porosity causes a decrease in the stress response. It
can also be noted that a larger starting porosity will have an increased effect on the growth response. This
can be expected since the volume of voids that can grow is larger, than with a smaller initial porosity.
An increased softening of the material can also be observed after yielding, due to the increased void size.
While the increase of softening is rather small, this effect should be enhanced by including nucleation,
which can result in a higher porosity.
The effect of this growth model can also be checked in a compression test. When in compression there
should be a decrease in porosity, caused by the shrinking and collapsing of the voids due to the pressure.
Using the same temperature and strain-rate of 23°C and 10−2 s−1 respectively the results displayed in
Figure 5.3 were obtained:
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Figure 5.3: The purely EGP results, true stress, including growth, compression case for 23°C, strain-rate 10−2 s−1.

The shrinkage in void volume fraction can be seen as well as a simultaneous increase in stress. As can be
seen this porosity will reduce to zero. At a porosity of zero there are no voids able to shrink, automatically
limiting the porosity to zero.

5.1.3 Nucleation

To get the increase in void fraction without an initial porosity nucleation should be added. This was done
with a strain controlled nucleation, as discussed in Section 4.1.3. The parameters of this model can be
tuned to increase the speed of nucleation and the amount of nucleating voids. Using the same simulation
conditions as described before, the results as shown in Figure 5.4a were obtained.
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(a) The results with a large strain.
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(b) The results around the yield point.

Figure 5.4: The purely EGP results, true stress, including nucleation, tension case for 23°C, strain-rate 10−2 s−1.

It can be seen that voids start to appear in the model when there is plastic deformation. This is shown
in Figure 5.4b more clearly. This is in-line with the experimental observations of Caelers which showed
voids at yielding. Around the yield point, there is little difference between the model containing only
nucleation and the model containing only growth. This is due to the small porosity, showing little growth.
When looking at larger strains, a clear difference can be observed between the models. As can be seen
in the experimental results shown in Figure 2.8, the hardening after yield is negated by the void growth.
This effect can also be seen in Figure 5.4a. It can also be seen that the void evolution levels off, similar to
experimental results found by Caelers et al. Whether this is due to the voids being undetectably large or
collapsing of the voids is rather important in the argument whether the levelling off is correct and should
be looked into. From the results found by Caelers et al., an increased softening was also observed between
compression and tension. While the addition of void growth shows increased softening, this effect can be
further enhanced by adding nucleation. This also shows in the results of Figures 5.5a and 5.5b, where the
nucleation parameters show a large influence on the post yield behaviour.
The nucleation model introduces two parameters which can be fitted to experimental results. As was
discussed in Section 4.1.3, these are the standard deviation and the nucleation strain where half of the
total nucleation has occurred. Increasing the standard deviation should allow for the adjustment of the
slope of the nucleation around the nucleation strain. The nucleation strain can be used to shift the point of
nucleation.
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(a) The influence of γN on the nucleation of voids, s=0.3.
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(b) The influence of s on the nucleation of voids, γN=1.0.

Figure 5.5: The results for different nucleation parameters, 23°C, strain-rate 10−2 s−1.

As can be seen in Figures 5.5a and 5.5b the standard deviation indeed changes the slope of the nucleation.
From Figure 5.5a it can be seen that γN indeed shifts the nucleation point while keeping the same slope in
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the function, as would be expected from the normal distribution it is based on. Figure 5.5b also shows the
increase of the nucleation span with increasing s, while keeping the total void fraction at γN equal. These
parameters can be tuned to experimental results to show the right voiding response of the material.

5.1.4 Dilatation

The dilatation compensation described in Section 4.1.4 should decrease the porosity when applying a
tensile stress due to the elastic stretching of the matrix. The results for a cases with and without the
adjusted porosity are shown in Figure 5.6. This is done using a strain-rate of 10−2 for 23°C.
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Figure 5.6: The results of the EGP model including and excluding dilatation compensation, for 23°C, strain rate γ̇
10−2.

As can be seen in the Figure the dilatation is very small in the purely EGP model. This is due to the high
elastic resistance of the purely amorphous material. The influence of elasticity will be much larger when
incorporating the crystalline phase, as in the CIM the elastic resistance of the amorphous phase is lower.

5.1.5 Extension Tvergaard & Needleman

As was discussed in Section 4.1.5 the two variables introduced by Tvergaard and Needleman increase the
porosity influence and the hydrostatic stress influence. These relations can also be seen in Figures 5.7a
and 5.7b, with the influence of parameter q1 and the second of q2 respectively. From these Figures there
can be concluded that the parameters show the desired effects. q1 increases the porosity influence, leading
to a difference in yield surface, hence the decrease in stress for increasing values.
q2 shows an increased porosity at increasing strains. Due to the increased hydrostatic stress dependence
the porosity will rise, as this drives the porosity. These parameters can be used to tune the results to
experimental values.
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(a) The influence of the introduced parameter q1.
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(b) The influence of the introduced parameter q2.

Figure 5.7: The results for the EGP model for different q1 and q2.

5.1.6 Temperature and strain-rate influence

Several experimental studies [6,7,32,33,37] have shown that the amount of voiding under tension is related
to the conditions of the experiment. In these experiments the strain-rate and temperature were found to
influence the voiding of the polymer. With increasing temperature there was less voiding showing. With
increasing strain-rate the voiding increased. In Figure 5.8a the model for 23°C and 73°C are shown. The
strain-rates for both cases are 10−2 and 10−3.

0 0.2 0.4 0.6 0.8
Strain [-]

0

10

20

30

40

50

60

T
ru

e 
st

re
ss

 [M
P

a]

0

0.2

0.4

0.6

0.8

1

P
or

os
ity

 [-
]

(a) The influence of temperature and strain-rate for the
EGP model, including voiding and growth.
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(b) The influence of temperature and strain-rate for the
EGP model, around the yield point.

Figure 5.8: The results for the EGP model for different strain rates and temperatures.

For all cases the same nucleation parameters were used, γN = 0.5 and s = 1. As can be seen the resulting
porosities are quite similar. This shows a very small influence of strain-rate and temperature on the poros-
ity. When looking closer around the yield point, see Figure 5.8b, there can however be seen that the void
nucleation starts around the yield point, which is at a lower strain for lower temperatures and lower strain
rates. The slopes for the porosity evolution, however, are similar, while a difference was observed in the
experimental results from Caelers et al [7] for different temperatures. This could note that the nucleation
parameters do have to be changed according to the test case, whereas in Section 4.1.3 the assumption was
made that only one set was needed.
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5.2 Composite Inclusion Model

The purely EGP Gurson model can be implemented in the CI pretty straightforward as the CI uses an EGP
model for the amorphous phase description. The parameters used in this case remain single mechanism,
single mode descriptions for the EGP model. The crystalline phase features a multi mechanism model.
Due to the single mechanism, single mode EGP model different material parameters have to be used,
depending on the temperature.

5.2.1 Gurson Potential influence

In the CI model the same model as described for the purely EGP phase was used. Therefore first the model
was implemented using a constant porosity, to see the influence on the complete material response. These
results are shown in Figure 5.10. Since Caelers et al. did tensile bar measurements the results that were
found can not be used to verify the results found using the Gurson model, as discussed in Section 2.3. The
trends of the model should represent the results found by Caelers et al., but the stress found in the experi-
ments will be lower than the stress in the middle of the sample, where the porosity is measured. Therefore
at the same stress the model will show less void growth. As the porosity in Caelers’ measurement did
not show a significant value for α i-PP above 23°C these higher temperature porosities are not displayed.
Since the results from Caelers et al. will differ from the CIM results, only the trends of Caelers’ findings
can be used for comparison. The results shown in Figure 5.10 are in engineering stress and strain, as the
results obtained by Caelers et al. were in these terms.
For the implementation in the CIM the same orientation distribution was used for all separate implemen-
tation, so a good comparison can be made. This distribution for all principal directions is shown in Figure
5.9. The parameters used in the simulations of the EGP part of the CIM are given in table 5.3. In the test
cases 100 inclusions were used with a 60% crystallinity. The aging parameters are given in table 5.4.
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Figure 5.9: The initial orientation used in the CIM for all test cases, 100 inclusions.

η0 [MPa s] G [MPa] Gr [MPa] κ [GPa] ∆U [kJ/mol] Vact Tref [◦K] µ

5.6*1013 70 0.6 1.1 105 3.25*10−27 296.15 0

Table 5.3

Sa r0 r1 r2
8 0.95 2 -3

Table 5.4
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The elastic parameters for the crystalline phase are from Tashiro et al [48]. The rest of the parameters
needed for the crystalline phase are given in table 5.5.

Slip system γ̇0,Tref [s−1] Vact ∆U [kJ/mol] µ [-]
(010)[001] 0.4212*10−5 2.8*10−27 2.8*105 0.05
(100)[001] 0.0611*10−5 3.08*10−27 2.5*105 0.15
(110)[001] 0.0035*10−5 4.2*10−27 2.3*105 0.15
(1-10)[001] 0.0035*10−5 4.2*10−27 2.3*105 0.15
(010)[100] 0.0122*10−5 3.36*10−27 2.3*105 0.15
(100)[010] 0.0012*10−5 3.36*10−27 2.3*105 0.15
(110)[1-10] 0.0035*10−5 4.2*10−27 2.3*105 0.15
(1-10)[110] 0.0035*10−5 4.2*10−27 2.3*105 0.15

Table 5.5
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Figure 5.10: The Composite Inclusion model results with a constant porosity, 23°C, strain-rate of 10−3 s−1.

In the figure, it can be seen that a constant porosity has a similar effect on the stress-strain response as
was seen in the amorphous model 5.1.1. The porosities of the models are defined in the amorphous phase.
In the figure, the volume averaged porosity is shown and as the crystallinity is approximately 60%, this
value is significantly lower than in the amorphous phase itself. This volume averaged porosity, here noted
as fvoid for clarity, is calculated as:

f̄void =
1

N

N∑
i=1

(fafvoid). (5.1)

The experimental porosity shown in the Figure are the porosity results from Caelers et al. for α i-PP at
23°C with a strain-rate of 10−3 s−1. The experimental stress-strain curve is a tension measurement from
Caelers et al. at 23°C.
Additionally, the absolute normalised average strain-rate of the crystalline slip systems and the amorphous
can be plotted. In Figure 5.11, the active slip systems can be seen for the case without voiding. It shows
a large increase of amorphous strain-rate at the yield point and the most active slip system, (010)[100].
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The dips in the stress-strain results from the model are caused by the sudden activation of slip systems.
Simultaneously to the slip system activation a strain-rate increase in the amorphous phase is caused, also
showing in Figure 5.11. These peaks are also present in the model without the Gurson implementation.
The peaks show at the same strain as the yield point, where the stress decreases. For reference these results
are also plotted in engineering strain.

0 0.05 0.1 0.15 0.2
Strain [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(010)[001]
(100)[001]
(110)[001]
(1-10)[001]
(010)[100]
(100)[010]
(110)[1-10]
(1-10)[110]
Amorphous

Figure 5.11: The absolute normalised average strain-rate vs. the engineering strain for a no voiding case, 23°C,
strain-rate of 10−3 s−1.

To get a microscopic picture of the results, pole figures were used. In Figure 5.12 the strain-rate per in-
clusion is shown with its orientation of the interface normal, chain direction of the crystals and transverse
directions. The pole figures are taken at a strain of 0.2, which is after yielding. The results for 100 in-
clusions, without and with a porosity of 0.02 are shown in Figures 5.12 and Figure 5.13 respectively. As
can be seen the interface normals of the inclusions showing the largest deformation are oriented nearly
perpendicular to the tensile axis. Since the chain direction of the crystals is nearly perpendicular to the
interface these are also oriented the same way as the interface normals. At larger strains they will start to
diverge. When plotting the strain-rate, it can be seen that the inclusions showing very large deformations
are oriented similarly.
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Figure 5.12: Pole figures for the no voiding case with from left to right: [100], [010], [001] and interface normal
directions. The colour indicates the absolute strain-rate in the amorphous phase.
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Figure 5.13: Pole figures for the f = 0.02 case with from left to right: [100], [010], [001] and interface normal
directions. The colour indicates the absolute strain-rate in the amorphous phase.

Overall the two cases show very similar results, which would be expected as the porosity is constant. This
can also be seen by looking at the most active slip system, (010)[100], for which pole figures indicating
the strain-rate of the (010)[100] slip system are shown in Figures 5.14 and 5.15. The same inclusions are
active in this slip system.

3

2

3

2

3

2

3

2

0

0.002

0.004

0.006

0.008

0.01

Figure 5.14: Pole figures for the case without voids, with from left to right: [100], [010], [001] and interface normal
directions. The colour indicates the absolute shear-rate in the most active slipsystem (010)[100].
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Figure 5.15: Pole figures for the f = 0.02 case with from left to right: [100], [010], [001] and interface normal
directions. The colour indicates the absolute shear-rate in the most active slipsystem (010)[100].

5.2.2 Growth

Growth was incorporated in the same manner as described for the pure EGP model, see Section 4.1.2.
Like discussed a porosity has to be present to see any growth in the model. Therefore a small porosity
was chosen at f = 0.02 of the amorphous phase. Similarly as the constant porosity here a temperature of
23°C was used, with a strain-rate of 10−3 s−1. The results from Caelers et al. will be shown as reference.
At an engineering strain of 0.15 for these conditions, there is a sudden increase in void volume, showing
in merely one inclusion. This increase is so significant that the void fraction becomes too big, resulting
in failure of the model. This increase is caused by the peaks in strain-rate response as was shown for the
constant porosity case. These peaks show in the same inclusion that show these large growths. As the
growth is linked to the trace of the plastic deformation rate this gives rise to large growths. This problem
clearly shows in Figure 5.17. The normalised strain-rate goes to enormous values due to the blowing up
of an inclusion. The inclusions that are blowing up and displaying a large void fraction are the inclusions
that already show very large deformations without void growth, or even voids at all. This can be seen in
the pole figures in Figure 5.18.
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Figure 5.16: The Composite Inclusion model stress-strain response with void growth, 23°C, strain-rate 10−3 s−1.
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Figure 5.17: The absolute normalised strain-rate vs. the strain for void growth with a starting porosity of 0.02,
23°C, strain-rate 10−3 s−1.
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Figure 5.18: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions. The colour indicates the porosity in the amorphous
phase.

As shown in Figure 5.18 the porosity is concentrated in one inclusion. The colour spectrum was set to a
maximum of 0.1 to show the large difference to the rest, while in reality the porosity of this inclusions
amorphous phase exceeded 0.55. One thing that stands out is the fact that this inclusion is not the inclusion
showing the largest plastic strain-rate without growth, see Figure 5.12.
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Figure 5.19: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions. The colour indicates the absolute strain-rate in the
amorphous phase.
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Figure 5.20: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions. The colour indicates the absolute shear-rate in the most
active slipsystem (010)[100].

Looking at Figures 5.19 and 5.20 it can be seen that the amorphous phase shows similar strain-rates as the
non growth model, Figures 5.12 and 5.13. The strain-rate in slip system (010)[100] however shows fewer
high strain-rate inclusions, see Figure 5.14.
This problem was tried to resolve using a hydrostatic hardening. This hardening would result from the
hardening of the material around the void, due to the stretching of the chains around the void. Unfortu-
nately this did not have a significant effect as the strain-rate in certain voids was simply too high. This
hydrostatic hardening was defined using the volumetric change of the amorphous phase, instead of the
elastic volumetric change, as defined in the hardening stress. This was done as the void influence was
included in the plastic deformation rate to stop the ”blowing up of an inclusion”. This resulted in the
following hardening equation:

σr = Gr(J
−2/3
e )Bdr + κa

Gr
Ge

(Je − 1)I, (5.2)

with F the complete deformation gradient. The factor
Gr
Ge

was added to keep the balance between the

hardening and driving stress. Je is defined as the elastic volumetric change det(Fe). As the assumption in
the model was made that the volumetric change is completely elastic, Je defines the complete volumetric
change.
Another way to solve this problem could be to limit the strain-rate of the inclusion. This can be done
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by setting a maximum value for γ̇p and letting the equivalent stress increase. The best way to do this
would be to have smooth transition between the current formulation of the plastic strain-rate, τ/η, and the
limit. When limiting the strain-rate the deformation will be more equally distributed over the inclusions.
It should also limit the growth from massively increasing due to enormous strain-rates. When doing this
the derivatives in Equation 4.23 will also have to change, according to the new function. While this is
a rather un-physical solution it should allow for proper void growth and reduces the large differences
between similar oriented inclusions. This can be done by using an activation function, like a hyperbolic
tangent. This function will have to be scaled between 0 and 1 and should activate the maximum value
and deactivate the normal plastic strain-rate description. To keep the strain-rate profile as close to reality
as possible the activation should be set close to the maximum. However, due to the time spectrum of this
project, this could not yet be completed.

5.2.3 Nucleation

As the implementation of the growth mechanism posed some problems, here the nucleation implementa-
tion is shown excluding growth. The same case was used as before, 23°C and a strain-rate of 10−3 s−1.
To show the influence of the nucleation parameters γN and s, these are varied. These results are shown in
Figure 5.21.
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(a) Influence of γN , s=0.5.
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(b) Influence of s, γN = 0.5.

Figure 5.21: The influence of the nucleation parameters on the void fraction, 23°C, strain-rate 10−3 s−1.

In this case, the void nucleation starts slightly after the maximum stress is reached. Following the de-
scription of nucleation, see Equation 4.31, this would mean that there is plastic deformation only after
this point, as the nucleation is only present during plastic strain. Seeing that plastic deformation should
start prior to yield this would have to be looked into. Additionally a non smooth stress-strain response
after yielding is obtained. This also shows in the strain-rate of the slip systems and the amorphous phase.
These results are shown in Figure 5.22a. The response shows more strain-rate peaks than the growth and
standard model, while the profile between these outliers is smooth. In Figure 5.22b the other slip systems
also start to activate simultaneously to the (010)[100] system and amorphous phase.
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(a) The complete normalised strain-rate response.
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(b) The zoomed in normalised strain-rate response.

Figure 5.22: The Composite Inclusion results for the nucleation model (γN=0.5, s=0.8).

In Figures 5.23, 5.24 and 5.25 the polar plots are shown with the porosity, amorphous strain-rate and
the strain-rate in slip system (010)[100]. Although the other slip systems show deformations, system
(010)[100] remains the most active, therefore this systems strain-rate was used. Regarding the amorphous
strain-rate and porosity they show similar patterns to the ones found previously, with growth and without
growth.
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Figure 5.23: Pole figures for the case including nucleation with from left to right: [100], [010], [001] and interface
normal directions. The colour indicates the porosity in the amorphous phase.
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Figure 5.24: Pole figures for the case including nucleation with from left to right: (100), (010), (001) and interface
normal directions. The colour indicates the absolute strain-rate in the amorphous phase.

Looking at the strain-rate over the slip system, only one inclusion shows large strain-rates. This is however
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a different inclusion compared to the growth case, where also only one inclusion showed this large strain-
rate. This difference could very well be caused by the strain-rate over the other slip systems, which did
not show large influences without nucleation.
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Figure 5.25: Pole figures for the case including nucleation with from left to right: [100], [010], [001] and inter-
face normal directions. The colour indicates the absolute shear-rate in the most active slipsystem
(010)[100].

In Figure 5.26 the results for the model including nucleation and growth are shown. These results show
an even faster porosity growth, compared to just growth. This is due to added porosity of the nucleation.
As the nucleation is based on the strain-rate, due to the large rate in one inclusion, the nucleation in this
inclusion also increases.
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Figure 5.26: The Composite Inclusion results for the nucleation model including and excluding growth, 23°C,
strain-rate 10−3, γN = 0.5, s = 0.8.

5.2.4 The origin of the problem

To get a better understanding of the large strain-rates in a single inclusion, a better look at this inclusion
is provided here. First the orientation of the inclusion is examined. This is done using the pole figure in
Figure 5.18, 5.27 and 5.28.
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Figure 5.27: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions, viewing direction 2. The colour indicates the porosity
in the amorphous phase, .
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Figure 5.28: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions, viewing direction 3. The colour indicates the porosity
in the amorphous phase.

These Figures show that the [100] direction, or the ~a direction in Figure 2.4, is oriented towards the tensile
direction (1 direction). The normal of the interface is oriented in the 3 direction, nearly perpendicular to
the tensile direction. The crystal direction, normally close to perpendicular to the interface, also shows a
similar orientation as the interface normal. The orientation of the ~a direction is favourable for the most
active slip system, (010)[100], as derived from Figure 5.17. To take a look at the interactions inside the
inclusion, the strain-rates for the slip systems and amorphous phase for just this inclusion are shown in
Figure 5.29. It can be seen that, when comparing the macroscopic strain rates of the growth case, Figure
5.17, the strain-rates in this inclusion are much higher. This single inclusion also shows the same peak in
strain-rate at the same strain as the macroscopic result. Seeing that this inclusions strain-rate at this point
is several times higher, this has a large effect on the macroscopic result. Looking at the stress shown in
Figure 5.30, it can be seen that at the strain where the strain-rate increase occurs, the amorphous phase
shifts from a negative stress in the 11 direction, to a positive. After a stress decrease in the crystalline
phase occurs, the amorphous phase shows a very large hydrostatic stress increase and σ11 decrease. This
indicated that the large void increase is driven by the crystalline phase.
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Figure 5.30: The stress in the ’problem’ inclusion over the strain. 23°C, strain-rate 10−3 s−1.

Looking at the orientations of the other inclusions, see Figures 5.19, 5.31 and 5.32, it can be seen that
’problem’ inclusion interface normal is aligned close to the positive 3 direction. The other inclusions
showing large deformations, also show alignment with their respective interface normals perpendicular to
the loading axis. However, the ’problem’ inclusion is the only inclusion aligned to this positive direction.
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Figure 5.31: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions, viewing direction 2. The colour indicates the porosity
in the amorphous phase.
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Figure 5.32: Pole figures for the case including growth, starting porosity f = 0.02, with from left to right: [100],
[010], [001] and interface normal directions, viewing direction 3. The colour indicates the strain-rate
in the amorphous phase.
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6 Conclusion & Recommendations

For the improvement of the mechanical response of semi-crystalline polymers in tension a Gurson model
was implemented in the existing Composite Inclusion model. To include this certain adjustments have
been made to the EGP implementation. The model showed good results in the purely EGP model. In
the EGP model the parameters of the Gurson model showed the expected results and no problems were
encountered. The model can be tuned to show more or less voiding and the influence of voids and pressure
can be changed to show a better stress-strain response.
However, while the implementation in the CIM was straightforward, as the EGP framework resembles the
CIM, some problems were encountered. First of all, the way the CIM is described now does not support
mulitple modes or mechanisms additional to voiding. To show a good response prior to yield multiple
modes will be needed. Since the idea is to use one material model, in this case α-iPP, for a temperature
range multiple mechanisms are required. This addition is currently not possible due to the fact that the
pressure of the first mode is set as an overall pressure, whereas with the Gurson model, each mode requires
an individual pressure.
Secondly, the α-iPP model itself shows some unexpected behaviour with large deformations concentrated
in a few inclusions. While the model shows a macroscopically fitting result, this problem shows when in-
corporating voiding. The behaviour is dominated by these few inclusions, resulting in large void fractions
and increased strain-rates of the inclusion. An attempt was made to resolve this problem, however as of
yet unsuccessful. A proposition for this problem was given, by limiting the strain rate.
To compare the results of the CIM model to experimental results the data available from Caelers et al. [7]
is not sufficient. This is due to the difference between the material point modelling of the CIM and the
tensile experiments done by Caelers. While it should be possible to describe the correct macroscopic re-
sponse in tension, by tuning the models parameters, the void fraction of the model might not resemble the
actual porosity in a tensile test.
The first and most important recommendation would be to have a more gradual deformation pattern over
the inclusions, as the domination of the macroscopic behaviour by very few inclusions leads to large void
growths. While the best way to do this would be to find the reason for this unexpected behaviour, the
faster and easier way would be to limit the strain-rate. This can be done as proposed in Section 5.2.2. This
should limit the extreme cases and let most inclusions move freely.
The hydrostatic hardening component might also require more insight. The influence of this component
is rather insignificant currently. This is probably due to the concentration of the deformation to certain
inclusions. If this problem is resolved hydrostatic hardening might however still be needed to limit expan-
sion of an inclusion.
Furthermore, a model supporting multiple modes and mechanisms should allow for a better response us-
ing a single parameter set. In the case of a single mode and mechanism model a parameter set is needed
for every temperature and the mechanical response prior to yield is less accurate. In Section 3.2 a multi-
mechanism description for the crystalline phase was given. This mechanism can also be used for the
amorphous phase [24].
Lastly to get a good voiding response additional measurements are needed. While the trends of the readily
available results from Caelers can be used, the actual void fraction and according stress can not be tuned
accurately. A better result would be obtained by measuring the true stress and the void fraction. Further-
more the SAXS measurement done by Caelers showed no voiding for temperatures above 23°C for a 10−3

s−1 strain-rate, while differences in intensity hinted at voiding. Looking at other techniques to get clear
image of voiding in iPP would be beneficial.
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Appendices

A Gurson model derivation

Here the derivations for the tangents of the EGP model including the Gurson model are described. Since

the derivation of Equation 4.14 is straightforward, this will not be discussed. The next derivative,
∂Φ

∂σ̄
is a

little less straightforward. Given the potential as:

Φ =
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τ
)− (1 + f2) = 0, (A.1)

the partial derivative with respect to the driving stress σ̄ has to be calculated. This can be done by first
rewriting the potential given that A : B = tr(A · B) and A · A = A2, leading to the following expression:
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σ̄d and σ̄h can both be rewritten:
σ̄d = σ̄ − 1

3
tr(σ̄)I, (A.3)
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This results in the following expression for
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Using the fact that tr(tr(X) · Y) = tr(X) · tr(Y), with X and Y being two tensors, tr(tr(σ̄) · σ̄) can be
written as tr(σ̄)2. With the trace of the identity tensor being 3 the following expression can be found:
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The following rules for derivatives of traces are needed [49]:

∂

∂X
tr(X)2 = 2tr(X)I, (A.9)

∂

∂X
tr(F(X)) = F′(X)T . (A.10)
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With σ̄ being symmetric, applying these rules to equation A.8 leads to the following result:
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Rewriting (2σ̄ − 4
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tr(σ̄)I +
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tr(σ̄)I) utilizing A.3 to leads to:
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The next derivative that needs some clarification is the partial derivative of the plastic deformation rate
with respect to the driving stress, see Equation 4.18. This partial derivative can be written as follows:
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For ease of calculation the derivative can be split in 2 parts, as shown in A.14. Using the relation [50],
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the derivative can be derived as follows:
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This leads to the following:
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Combining the parts as described in Equation A.14 leads to:
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This derivative leads to another derivative,
∂2Φ

∂σ̄2
. With

∂Φ

∂σ̄
defined in A.12 the following expression is

obtained:
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The derivative of
∂σ̄

∂σ̄
can be given here as a fourth order identity tensor:

4I = ei ⊗ ej ⊗ ej ⊗ ei, (A.20)
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The derivative of
∂

∂σ̄
(tr(σ̄)I) is given as:

∂

∂σ̄
(tr(σ̄)I) = ei ⊗ ei ⊗ ej ⊗ ej , (A.21)

for convenience given as 4I∗. Combining this then into Equation A.19 leads to:
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