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Benchmarks for Radiation Heat Transfer

Problem Description

At ASML there is an increasing demand for thermal stability, in order to optimize the performance of
the high tech machines for the semiconductor industry. Many important design decisions are based on
computational models. This is due to the limited availability of experimental data and measurements
of the complex systems.
In the latest EXE machines, which make use of an extreme ultraviolet source, a large fraction of
the critical components and processes operate in a vacuum environment. In the NXT machines the
thermal behaviour of systems can be controlled by the use of gas �ows. However this is not an
option in the EXE machines. This increases the signi�cance of radiation heat transfer on the thermal
behaviour in systems.
Within ASML there is a need for accurate computational tools to model the in�uence radiation heat
transfer on the thermal behaviour. In order to assess the quality and performance of these tools,
benchmarks for complex radiation heat transfer are required. These benchmarks can be of analytical
or experimental results of radiation problems, where the in�uence of specular and angle dependent
re�ection is signi�cant.
The goal of this research is to formulate benchmarks and use them to validate the multiphysics
software package COMSOL.

Research Results

In literature both analytical as well as experimental results were found in literature for problems
where complex radiation is of in�uence. Two modules of in the software package COMSOL were used
to model the benchmark problems. The numerical results align very well with the analytical and
experimental results of the benchmark problems.

Three benchmarks are formulated that consist of analytical solutions of radiation problems including
specular re�ection. The concentric cylinder benchmark describes the total heat �ux between two
cylinders. This is a relatively simple problem, where the heat �ux for both specular and di�use
re�ection can be described using one equation [1]. The isothermal parallel plates benchmark consists
of an analytical solution for both the total heat �ux as well as the distribution of the heat �ux. An
analytical solution for both specular as di�use re�ection is presented [2-4]. The third benchmark
problem describes a wedge with conducting plates. Aside from the heat �ux, is the temperature
distribution along the plates calculated analytically as well [5]. This problem can be used to verify
the coupling between radiation and conduction in computational tools.
The Surface-to-Surface Radiation module of COMSOL is used to numerically evaluate the bench-
marks. By comparing numerical with the analytical results the models are veri�ed.

A fourth benchmark has been formulated which describes the in�uence of angle dependent re�ection
and polarization on the radiation heat transfer. The benchmark consists of an analytical approxima-
tion of the transmission through a square passage. This problem was �rst described by Edwards and
Tobin [6], however the results presented in the paper were not fully converged. By replicating the
model and improving the solution method, the results were evaluated with a higher accuracy.
The benchmark was replicated in COMSOL using the Ray Optics module, which uses a ray tracing
algorithm. The re�ection of the walls in the models is de�ned by the Fresnel equations. The results
of the numerical model approach the analytical results with a maximal error of 4.2%.

An experiment has been conducted by Miranda [7], which evaluates the transmission through a
metal tube. The re�ection of the tube walls depend on the angle of incidence, polarization state and
the wavelength of the radiation. The experiment is modeled in COMSOL using the same ray tracing
algorithm as for the square passage benchmark, only adding wavelength dependency. The transmis-
sion is evaluated for di�erent length to diameter ratios of the metal tube. The trend of the decrease
in transmission for longer tube lengths is accurately described by the numerical model. There is an
o�set between the numerical and experimental results of approximately 5%.
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In the semiconductor industry there is an increasing de-
mand for thermal stability to optimize the performance of
high tech machines. This results in a need for computational
tools that are able to accurately model radiation heat trans-
fer, with the ability to include specular and angle dependent
reflection and take the influence of the polarization into ac-
count. This paper presents three analytical solutions of ra-
diation problems that include specular reflecting surfaces.
These problems are used as benchmark problems to verify the
Ray Shooting algorithm of the multiphysics tool COMSOL.
An analytical approximation model of a square passage is
formulated that shows the impact of taking angle dependent
reflectivity and polarization into account. The converged re-
sults of this model are used to verify a model created with the
Ray Optics module of COMSOL. This verified tool is validat-
ed by replicating an experiment and comparing the numeri-
cal results with the experimental data.

Nomenclature
a Function defined in appendix B
A Surface area, m2

b Function defined in appendix B
c0 Speed of light in vacuum, 2.99792458 ·108 m/s
C1 Radiation constant, 0.59552138 ·10−16 W ·m2/sr
C2 Radiation constant, 0.014387752 m ·K
D Passage width, tube diameter, m
Di− j Rotation matrix

E Energy matrix
Eλb Emited blackbody energy flux, W/m2

fφ Function defined in appendix A
F View factor
Gφ Function defined in appendix A
h Distance between plates, m
I Intensity matrix
Jφ Function defined in appendix A
k Absorptive index
Kφ Function defined in appendix A
Ker Radiation Transfer Kernel
L Length, m
Mφ Function defined in appendix A
n Refraction index
ñ Complex refraction index
N Number of reflections
Nc Conduction parameter
p Unit vector parallel to plane of incidence
P Power measured in experiment, W
Pφ Function defined in appendix A
q Local heat flux, W/m2

Q Total heat flux, W/m
r Radius, m
rs,rp Reflection coefficient
re Electrical resistivity, ohm · cm
R Power reflection coefficient
s Distance from entrance to end plane, m
s Unit vector perpendicular to plane of incidence
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t Plate thickness, m
T Temperature, K
Tb Temperature at base of wedge, K
x Coordinate, m
y Coordinate, m
α Absorption coefficient
β(ξ) Dimensionless irradiation
β Rotation of the polarization planes, rad
δ Phase shift, rad
γ Experiment correction factor
γ Dimensionless distance between plates
ε Emission coefficient
ζ Dimensionless coördinate
κ Thermal conductivity, W/(m ·K)
λ0 Radiation wavelength through vacuum, m
µ0 Permeability of vacuum, 4π ·10−7 Wb/(A ·m)
θ Dimensionless temperature
θi Angle of incidence, rad
θt Angle of transmission, rad
ξ Dimensionless coördinate
ρ Reflection coefficient
σ Stefan-Boltzmann constant, W/(m2 ·K4)
τ Transmission
φ Wedge opening angle, rad
Subscripts
a Analytical
di f f Diffuse reflection
exp Experimental results
n Normal to the plane surface
num Numerical
p Parallel polarized component
pp,ss,uu,uv,vu,vv Reflection matrix elements
s Perpendicular polarized component
spec Specular reflection
u Third Stokes parameter
v Fourth Stokes parameter

1 Introduction
In the semiconductor industry high precision engineer-

ing is required to achieve high accuracy. Temperature and
thermal expansion need to be measured and controlled on
the nanometer and millikelvin scale, respectively. Due to the
high complexity of the systems and components, there is lim-
ited availability of measurements or experimental results. A
lot of decisions are made based on computational models and
simulations.
A number of critical components in lithography machines
operate in a vacuum environment. This means that the influ-
ence of convection decreases significantly and radiation heat
transfer is a more important factor in determining tempera-
tures and thermal expansion in systems. This requires ac-
curate computational tools for calculating the radiation heat
transfer. The most common computational methods make
use of gray surfaces, which means that a number of assump-
tions are employed to simplify the calculations and decrease
computation time. For gray surfaces, properties are indepen-
dent of the wavelength, direction and polarization state of the

irradiation.
Due to improved functionality of computational tools, it has
become possible to avoid the mentioned limitations. These
tools need to be of high quality to meet the requirements for
precision engineering. In order to assess the quality of these
tools, the tools need to be verified with the use of benchmark-
s.
This paper presents a number of analytical calculations and
results for radiation problems with different complexity of
the physics. An analytical calculation of a problem taking
angle dependent reflection and the influence of polarization
into account is provided. Results of the analytical calcula-
tions are presented that can be used to assess the quality of
computational tools.
Section 2 of this paper presents three analytical calculations
of radiation problems including specular reflecting surfaces
[1–5]. The results of these analytical calculations are used
as a benchmark to verify the Ray Shooting algorithm in the
Surface-to-Surface Radiation module of the software pack-
age COMSOL.
Edwards and Tobin [6] have formulated an analytical approx-
imation for a radiation problem, which includes angle depen-
dent reflection and takes the influence of polarization into
account. However the results of this calculation presented in
the paper [6], are not fully converged. In section 3 the con-
verged results of the analytical approximation are provided.
A ray tracing model is developed in COMSOL and the nu-
merical results are compared to the results of the analytical
approximation.
The analytical calculation presented in section 3 has been
used to investigate the impact of including the angle depen-
dent reflection and polarization in the models. It is found
that for a high aspect ratio the impact of both physics be-
comes more significant.
Section 4 describes the experiment conducted by Miranda [7]
and compares the experimental with numerical results ob-
tained using the ray tracing model, which is verified in sec-
tion 3. The numerical results replicate the influence of in-
creasing the aspect ratio very well.

2 Benchmarks including Specular and Diffuse Reflect-
ing Surfaces
For most of the tools used to calculate heat transfer prob-

lems the default way to model the reflection is diffusely.
However when the wavelength of the radiation is significant-
ly larger than the surface roughness a surface is considered
optically smooth, which means that the radiation is reflected
specularly [8]. In specular reflection the angle of reflection
(θr) is equal to the angle of incidence (θi), which can influ-
ence the heat flux [9].
Typical temperatures inside lithography machines range
from around 20oC to a couple of hundreds degrees. Ac-
cording to Wiens formula the wavelength of the majority of
the emitted radiation will be in the range of 3− 50µm. The
roughness of the surfaces in these machines is in general s-
maller than 3µm. This means a large number of surfaces re-
flect thermal radiation specularly.
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Fig. 1. A schematic representation of the concentric cylinder prob-
lem. The total heat flux, Q, between the cylinders is evaluated.

When only diffuse reflection is considered, the radiation heat
transfer can be calculated with the use of view factors. This
is not possible anymore when specular reflecting surfaces are
included in the models, since the direction of the radiation
becomes important.
In this section three benchmarks are described that can be
used to verify the functionality of computational tools that
include specular reflecting surfaces in the simulation. This
can be done by creating computational models of the bench-
marks and comparing the numerical results with the analyti-
cal solution.
For each of the benchmarks a 2D-model is created in the
Surface-to-Surface Radiation module of the software pack-
age COMSOL. The Ray Shooting algorithm is used to be
able to include specular reflecting surfaces [10].
The accuracy of the result is strongly dependent on the mesh
and settings used. The settings in COMSOL that influence
the accuracy are the ray resolution, tolerance and maximum
number of adaptations. The ray resolution is the amount of
rays emitted per element, the tolerance is the threshold of the
minimum intensity a ray must have to be included in the cal-
culation and the maximum number of adaptations describes
how many times the tiling can be adapted [10].
The three benchmark problems described in sections 2.1 un-
til 2.3 increase in complexity. In the concentric cylinders
benchmark the total heat flux between two cylinders is eval-
uated. The parallel plates benchmark also evaluates the heat
flux distribution along the plates. For the wedge benchmark
the temperature distribution is calculated as well.

2.1 Concentric Cylinders
The problem of the first benchmark is described in [1], it

consists of two infinitely long concentric cylinders, as shown
in figure 1. The inner and outer cylinder are both at a con-
stant temperature (T ) and have a constant emission coeffi-
cient (ε). The total heat flux (Q) between the cylinders can
be calculated analytically, as shown in the equations 1 and
2. Equation 1 holds when the surface of the outer cylinder
reflects radiation diffusely, equation 2 is valid when this sur-

Table 1. Analytical solution and numerical results of the concentric
cylinders problem for T1 = 500K, T2 = 300K and r1 = 0.1m. The
total heat flux from the inner to the outer cylinder is calculated both
analytically (Qa) and numerically (Qnum), for both diffuse and spec-
ular reflection of the outer cylinder. The results are shown for four
different parameter sets with different values for the outer cylinder
radius (r2) in meters and the emission coefficients of both cylinder
surfaces (ε). The percentage difference between numerical and an-
alytical results (∆Q) is also given.

Parameters Diffuse Specular

r2 ε1 ε2 Qa [W ] Qnum [W ] ∆Q [%] Qa [W ] Qnum [W ] ∆Q [%]

0.15 0.5 0.1 242.3 242.3 3.1e-3 176.2 176.6 0.25

0.15 0.9 0.8 1516.8 1516.8 1.2e-3 1424.0 1424.4 0.029

0.6 0.5 0.1 553.7 553.7 6.1e-3 176.2 178.1 1.1

0.6 0.9 0.8 1681.3 1681.3 1.3e-3 1424.0 1426.4 0.17

face reflects radiation specularly. The type of reflection of
the inner cylinder does not influence the calculation of the
heat flux.

Qdi f f =
A1σ(T 4

2 −T 4
1 )

1
ε1
+ A1

A2

(
1
ε2
−1
) (1)

Qspec =
A1σ(T 4

2 −T 4
1 )

1
ε1
+ 1

ε2
−1

(2)

with A = 2πrL.

In the software package COMSOL this problem is simulated
in 2D using the Surface-to-Surface Radiation module. The
problem is modeled with both a diffuse and specular outer
cylinder surface. In order to include specular surfaces in the
model the Ray Shooting algorithm is used.
The cylinder surfaces are subdivided into finite elements, to
create a mesh of a total of 1280 elements. The ray resolution
is equal to 512, the ray tolerance is 10−5 and the maximum
number of adaptations is 5.
Table 1 shows the total heat flux calculated analytically a-
longside the numerical results for four different parameter
sets. The results for diffuse reflection are in general more
accurate than these for specular reflection. The error increas-
es when the distance between the cylinders is increased and
when the emission coefficient is decreased, thus when more
reflections occur.
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Fig. 2. A schematic representation of the isothermal parallel plates
problem. Both the local as well as the total heat loss from the plates
to the surroundings is evaluated.

2.2 Isothermal Parallel Plates
For the second benchmark problem the local heat loss

along two isothermal parallel plates is calculated. This prob-
lem was fist described by Sparrow [2,3] for diffusely reflect-
ing surfaces. An analytical solution considering specular
reflecting surfaces was later described by Eckert and Spar-
row [4].
A schematic representation of the problem is given in figure
2. Both plates have the same temperature (T ) and emission
coefficient (ε), which means that the problem is symmetri-
cal. The heat is lost to the surroundings, which are the sides
of the geometry. The width of the plates is indicated by L
and the distance between the plates by h.
As shown in figure 2 the local coordinates along the plates

are described by x and y. In order to make the calculation
dimensionless, the dimensionless coordinates ξ and ζ are in-
troduced, as well as the height to width ratio γ.

ξ =
x
L
, ζ =

y
L
, γ =

h
L

(3)

In the paper by Sparrow et al. [3] an analytical expression is
derived that describes the dimensionless heat loss distribu-
tion along one of the plates when the reflection is considered
diffuse. Equation 4 describes the dimensionless heat loss a-
long the width of the plates, for diffuse reflecting surfaces.

q(ξ)
εσT 4 =

1−β(ξ)ε
1− ε

(4)

In this equation, β(ξ) is defined as the dimensionless com-
bined radiant flux, which is a sum of the emitted radiation
and the reflected incident radiation. An expression for the
dimensionless combined flux is shown in equation 5.

β(ξ) = 1+
ργ2

2

∫ 1

0
β(ζ)

1
[(ζ−ξ)2 + γ2]3/2 dζ (5)

The combined flux of the bottom plate is a function of the
combined flux of the top plate. Since the problem is sym-
metrical these distributions are equal: β(ξ) = β(ζ). Equation
5 can be solved numerically, through a process of iteration.

Eckert and Sparrow [4] defined an analytical calculation of
the heat loss for the same geometry for specular reflecting
surfaces. Equation 6 was derived for the dimensionless heat
flux along the width of the plate, for specular reflecting sur-
faces.

q(ξ)
εσT 4 = 1− α

2

∞

∑
N=0

(
ρN

[
ξ√

ξ2 +(N +1)2γ2

+
1−ξ√

(1−ξ)2 +(N +1)2γ2

]) (6)

In this equation α represents the absorption coefficient
and is equal to the emission coefficient, as prescribed by
Kirchhoff’s Law. In this equation the heat loss is defined as
1 minus the amount of heat received from the other plate.
The summation evaluates the heat received from the other
plate for zero until an infinite amount of reflections (N). For
larger values of N, the magnitude of the expression in the
summation becomes smaller. In order to solve the equation
a certain threshold value is chosen, when the term in the
summation becomes smaller than this threshold value the
calculation is stopped. The magnitude of the threshold value
determines the accuracy of the analytical solution.
The dimensionless heat flux for both diffuse and specular
reflection is calculated with equations 4 and 6 respectively.
The results are shown in the graph in figure 3 and table 2.
The values in the table are accurate up to three digits. The
difference between the results for diffuse or specular reflec-
tion becomes larger for smaller values of the emissivity.
The total heat loss of one plate is defined by integrating
the local heat flux over the width of the plate, as shown in
equation 7. The results for the total heat flux are also shown
in table 2.

Q =
∫ L

0
qdx (7)

This benchmark problem was also calculated numerically
with the Surface-to-Surface Radiation module in COMSOL,
using the Ray Shooting algorithm. Every plates is divided in
800 elements, the radiation resolution is equal to 2048, the
tolerance is 10−6 and the maximum number of adaptations is
6.
The results for the dimensionless local heat flux are shown in
the graph in figure 3 alongside the analytical results. In the
graph only a few points are shown for the numerical results,
in reality the resolution is a lot higher.
The error of the local heat flux between the numerical and
analytical results for the settings previously described is be-
low 0.02% for the whole domain. The error of the total heat
flux is even smaller. This means that the numerical results
are equal to the values shown in table 2.

4



Fig. 3. The dimensionless heat loss distribution along half of the
width of one of the plates for the height over width ratio: γ = 0.05.
The heat loss is shown for both diffuse and specular reflection and
different values for the emission coefficient. The heat loss increases
when the emission coefficient becomes smaller, and is largest close
to the sides of the plate. A lower emission coefficient increases the
impact of the specular versus diffuse reflection. The numerical re-
sults align with the analytical results.

Table 2. Results of the parallel plates problem of the total heat loss
(Q) and the local heat loss (q). The heat loss is evaluated for different
values of the height over width ratio (γ), the emission coefficient (ε)
and for both specular as well as diffuse reflection. Both the analytical
and numerical calculations result in the values shown in this table.

γ ε Reflectivity Q
LσT 4

q(0)
εσT 4

q(0.25)
εσT 4

q(0.5)
εσT 4

0.05 0.1 Diffuse 0.0252 0.764 0.180 0.102

Specular 0.0322 0.559 0.291 0.247

0.05 0.5 Diffuse 0.0413 0.587 0.0273 0.0116

Specular 0.0463 0.504 0.0468 0.0260

0.05 0.9 Diffuse 0.0476 0.514 0.0124 0.00562

Specular 0.0485 0.501 0.0142 0.00667

1 0.1 Diffuse 0.0934 0.944 0.933 0.928

Specular 0.0883 0.890 0.882 0.878

1 0.5 Diffuse 0.369 0.777 0.734 0.718

Specular 0.350 0.735 0.697 0.682

1 0.9 Diffuse 0.550 0.668 0.604 0.580

Specular 0.544 0.660 0.598 0.574

2.3 Wedge with Conducting Plates
The third benchmark problem consists of the calculation

of the heat loss and temperature distribution along two plates
shaped in a wedge, as formulated by Hering [5]. The prob-
lem is shown schematically in figure 4. The temperature at
the base of the plates is prescribed by the base temperature,
Tb. The angle between the plates is equal to φ and the plates

Fig. 4. A schematic representation of the wedge with conducting
plates problem. The total as well as the local heat loss from the
plates to the surrounding is evaluated. The temperature distribution
of both plates is also derived analytically.

have the same length (L) and emission coefficient (ε). Just
like the isothermal plates problem, this problem is symmet-
rical.
In order to evaluate the problem in the dimensionless for-
m, the coordinates and local temperature are defined in di-
mensionless form, as shown in equation 8. To describe the
thermal conduction of the plates, the conduction parameter
Nc is prescribed. This is shown in equation 8, where κ is
the thermal conductivity and t the thickness of the plate. A
high value of Nc represents a poorly conducting material, and
Nc = 0 represents a perfect conductor, resulting in a constant
temperature along the plate.

ξ =
x
L
, ζ =

y
L
, θ =

T
Tb

, Nc =
L2σT 3

b
κt

(8)

In equation 9 the boundary conditions of the problem are
shown. At ξ = 0 the temperature is equal to Tb and the heat
loss of the plate ends is assumed to be negligible.

θ(0) = 1,
dθ
dξ

∣∣∣∣
ξ=1

= 0 (9)

The temperature distribution along one of the plates can be
described by equation 10. Because the problem is symmet-
rical the temperature of the two plates is equal, θ(ξ) = θ(ζ).
The variable Kφ depends on the emission coefficient, the an-
gle between the plates and the two dimensionless coordi-
nates. The expression for Kφ can be found in appendix A.
The value of θ can be derived for every value of ξ, by means
of iteration.

θ(ξ) = 1+ εNc

(∫ ξ

0
θ4(ζ)(ξ−ζ)dζ−

∫ 1

0
θ4(ζ)Kφ(ξ,ζ)dζ

)

(10)
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Table 3. Analytically derived values for the wedge problem of the
total heat loss (Q), the local heat loss (q) and the local temperature
(T ) of the plate. The results are evaluated for different values of the
opening angle (φ), the emission coefficient (ε) and the conduction
parameter (Nc). The difference between the numerical results and
the results shown in this table is smaller than 1% except for q(0),
where the maximum error is slightly larger.

φ ε Nc
Q

LσT 4
q(0)
εσT 4

b

q(0.5)
εσT 4

b

q(1)
εσT 4

b

T (0.5)
Tb

T (1)
Tb

60 0.1 0.5 0.0884 0.903 0.878 0.886 0.984 0.978

60 0.1 4 0.0667 0.903 0.632 0.572 0.906 0.877

60 0.9 0.5 0.363 0.303 0.396 0.499 0.929 0.903

60 0.9 4 0.181 0.303 0.167 0.161 0.765 0.700

135 0.1 0.5 0.0933 0.985 0.926 0.908 0.983 0.977

135 0.1 4 0.0699 0.985 0.659 0.578 0.903 0.873

135 0.9 0.5 0.579 0.868 0.609 0.544 0.899 0.868

135 0.9 4 0.272 0.868 0.219 0.147 0.699 0.629

The local heat loss along the plates, q, is a function of the
temperature. When the temperature distribution is known the
dimensionless heat loss can be derived using equation 11.
The expression for Gφ is shown in appendix A.

q(ξ)
εσT 4

b
= θ4(ξ)− ε

∫ 1

0
θ4(ζ)Gφ(ξ,ζ)dζ (11)

From equations 33 and 34 can be derived that the expression
Gφ is not well defined for ξ = ζ = 0. To overcome this e-
quation 12 is defined. The expression for Lφ is presented in
appendix A.

q(0)
εσT 4

b
= 1− εLφ(ε) (12)

Equation 13 describes how the total heat loss of one plate,
Q, can be calculated. The expression of Mφ is provided in
appendix A.

Q
LσT 4

b
= ε

∫ 1

0
θ4(ζ)Mφ(ζ)dζ (13)

Analytical results for the local heat loss and temperature as
well as the total heat loss are provided in table 3. Figure 5
presents the heat loss and temperature distributions for var-
ious values of the emission coefficient and the conduction
parameter.

This benchmark problem was also calculated numerically
with the Surface-to-Surface Radiation module in COMSOL,
using the Ray Shooting algorithm. Each plate is divided into
400 elements, the radiation resolution is set to 512, a toler-
ance of 10−5 is chosen and the maximum number of adapta-
tions is equal to 5.

Fig. 5. The dimensionless temperature distribution (left) and the
heat loss distribution (right) of the wedge with an opening angle
φ = 60o. Both analytical and numerical results are shown for dif-
ferent values of the emission coefficient and conduction parameter.
A low value for the conduction parameter and emission coefficien-
t results in a more uniform temperature of the plate. The heat loss
becomes larger for a higher temperature and decreases for a higher
view factor, which is larger close to the base.

The resulting heat loss and temperature distribution are
shown in the graphs of figure 5 alongside the analytical re-
sults. The real resolution of the numerical results is much
higher than shown in the figure.
The evaluation of the element in the corner of the wedge
(ξ = 0) is quite sensitive in the numerical results, which re-
sults in a slightly larger error for the local heat flux. For the
rest of the domain the error in local heat flux is always below
1%. The error in the local temperature stays below 0.25%
for the whole domain.

3 Angle Dependent Reflecting Surfaces and the Effect
of Polarization
The influence of specular reflection with respect to d-

iffuse reflection is described in the previous section. The
magnitude of the reflection coefficient is considered constan-
t. However research shows that the reflection coefficient de-
pends on the angle of incidence and the polarization state of
the irradiation [6, 11, 12].
In section 3.1 the Fresnel equations are treated, which de-
scribe the angle dependent reflection of surfaces and in what
way this affects the polarization state of the radiation. Sec-
tion 3.2 describes an analytical calculation of the transmit-
tance of thermal radiation through a square passage that can
be used as a benchmark problem.
A numerical model of this benchmark is created in COM-
SOL using the Ray Optics module. The equations described
in section 3.1 are used to model the surfaces. The influence
of including the angle dependency and polarization in the
models is discussed in section 3.3.

6



3.1 Fresnel Equations
Equations 14 and 15 show the Fresnel equations, which

are derived from Electromagnetic Theory and describe the
reflection coefficients [1, 13].

rs =
cos(θi)− ñcos(θt)

cos(θi)+ ñcos(θt)
(14)

rp =
ñcos(θi)− cos(θt)

ñcos(θi)+ cos(θt)
(15)

In the above equations θi is the angle of incidence, θt the an-
gle of transmission and ñ the complex refractive index. The
angle of transmission can be derived by equation 16 and is
a function of the complex refractive index and the angle of
incidence. The complex refractive index consists of a real
and an imaginary part, which are described by the material’s
refractive index (n) and absorptive index (k) respectively, as
shown in 17.

θt = arcsin
(

1
ñsin(θi)

)
(16)

ñ = n− ik (17)

The fraction of energy that is reflected by a surface is de-
scribed by the power reflection coefficient R, derived by e-
quation 18.

Rs = |rs|2 Rp = |rp|2 (18)

The perpendicular (Rs) and parallel (Rp) components of
the reflection coefficient for varying angle of incidence are
shown in figure 6 for two different materials. For dielectrics
applies that k = 0 and for metals applies k = n, since it is
assumed that the Hagen-Ruebens relation holds [1, 14].
When considering unpolarized radiation the surface reflec-

tion coefficient is the average of the perpendicular and the
parllel component, as shown in equation 19.

R =
Rs +Rp

2
(19)

From figure 6 it can be seen that there is a significant dif-
ference between the reflection of perpendicular and parallel
polarized radiation, especially for larger angles of incidence.
The amount of reflection is thus not only dependent on the
angle of incidence but also depends on the state of polariza-
tion of the irradiation.
Due to the difference in reflectivity for perpendicular and
parallel polarized radiation, unpolarized radiation will be-
come partly polarized after a reflection. Radiation that is
reflected of a dielectric surface can become fully polarized
when the angle of incidence is equal to the Brewster’s angle.

Fig. 6. The angle dependent reflection coefficient for the parallel
and perpendicular polarized radiation. The distribution for two differ-
ent materials are shown: a dielectric with ρn = 0.36 and a metal with
ρn = 0.8. The reflection coefficient for the perpendicular polarized
radiation is larger than for parallel polarized radiation for all angles of
incidence.

3.2 Square Passage Benchmark

Edwards and Tobin [6] derived an analytical approxima-
tion to derive the transmittance of radiation through a square
passage, including the effect of angle dependent reflection
and polarization. In section 3.2.1 the analytical approxima-
tion is described. The results of this model are discussed in
section 3.2.2. A numerical model has been developed and
the analytical and numerical results are compared in section
3.2.3.

3.2.1 Analytical Approximation Model

Figure 7 shows a schematic representation of the prob-
lem. The width and height of the square passage is indicated
by D and the length of the passage by L. The walls of the pas-
sage are considered opaque and optically smooth. The pas-
sage contains a nonabsorbing, nonscattering medium. The
square at the front end is a black body that emits unpolarized
radiation in a Lambertian distribution. The amount of radia-
tion emitted at the front of the passage that reaches the end of
the tube, the transmittance (τ), is derived by using equations
20 until 27.
The amount and state of radiation is given by the intensity
vector,

[
I
]
. In this vector, Ip, represents the fraction of paral-

lel polarized radiation, Is is the fraction of perpendicular po-
larized radiation and Iu and Iv represent the third and fourth
Stokes coefficients. If the radiation undergoes a reflection
the next intensity vector can be determined by multiplying
the intensity vector with the reflection matrix,

[
ρ
]
, as shown
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Fig. 7. Schematic representation of the square duct benchmark in-
cluding the mirror images of the end planes. A radiation source is
situated at the front of the duct and the percentage of radiation that
reaches the end of the passage, the transmission τ, is evaluated.
The variable J represents the amount of reflections with the top and
bottom wall, M the amount of reflections with the side walls and N
represents the total amount of reflections.

in equation 20.

[
I2
]
=




Ip2
Is2
Iu2
Iv2


=




ρpp 0 0 0
0 ρss 0 0
0 0 ρuu ρuv
0 0 ρvu ρvv


 ·




Ip1
Is1
Iu1
Iv1


=

[
ρ
]
·
[
I1
]

(20)

The elements of the reflection matrix depend on the angle of
incidence, the wall’s refractive index and absorption coeffi-
cient. The expressions for the matrix elements are given in
appendix B.
The polarization state of the irradiation is determined with
respect to the surface it coincides. If the surfaces are parallel
to each other the orientation of the polarization planes does
not change. However when the next surface is at a different
angle than the first surface, the orientation of the polarization
planes changes. In the square duct this happens when the ra-
diation first reflects with the bottom or top surface and then
by with one of the sides, or the other way around. To take
this into account the intensity vector, I2, is multiplied by a
rotation matrix, D1−2, as shown in equation 21. The rotation
matrix is defined in equation 22.

[
I3
]
=
[
ρ2
]
·
[
D1−2

]
·
[
I2
]
=
[
ρ2
]
·
[
D1−2

]
·
[
ρ1
]
·
[
I1
]

(21)

[
D1−2

]
=




cos2(β) sin2(β) 1
2 sin(2β) 0

sin2(β) cos2(β) − 1
2 sin(2β) 0

−sin(2β) sin(2β) cos(2β) 0
0 0 0 1


 (22)

where the rotation of polarization planes (β) is defined as:

p1 ·p2 = cos(β)
p1 · s1 = sin(β)

(23)

The mirror-image technique of Sparrow and Eckert [15] is
used to calculate the transmittance. In figure 7 the mirror
images are shown for one fourth the end surface. In this fig-
ure, J corresponds with the number of reflections with the
top and bottom walls, M with the two side walls and N is the
total number of reflections. The front surface is subdivided
into smaller elements, dA1. The mirror images on the end
plane are also subdivided into smaller elements, dA2.
For each pair of elements the number of reflections is de-
termined and for each reflection the reflection and rotation
matrix are calculated.
The percentage of transmission through the tube is calculat-
ed, so the initial energy entering the tube is equal to 100%.
Since the initial radiation is unpolarized, half of the radiation
is parallel polarized and the other half is perpendicularly po-
larized. The energy matrix and initial intensity matrix can be
defined as:

[
E
]
=
[

dA1
A1
·100 dA1

A1
·100 0 0

]

[
I1
]
=




1/2
1/2

0
0




(24)

The equation for the power transfer between elements is:

dQdA1−dA2 =
∫ ∞

0

[
E
]
·
[
ρN
]
·
[
D(N−1)−N

]
· ··

· · ·
[
D1−2

]
·
[
ρ1
]
·
[
I1
]

KerdA1−dA2dA1dA2dλ
(25)

The complex refractive index of the wall material is depen-
dent of the wavelength (λ) of the incident radiation. The
complex refractive index is a chosen constant, thus the wave-
length dependency is not taken into account in this calcula-
tion. The radiation transfer kernel, Ker, describes the view
factor between two elements. The expression for the kernel
is shown in equation 26.

KerdA1−dA2 =
cos(θdA1)cos(θdA2)

πr2
dA1−dA2

(26)

In this equation θdA1 and θdA2 are the angle of incidence at
the front and the end of the passage. Since these faces are
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Table 4. This table shows the derived values for the percentage of
transmission through the square passage for three dielectrics and t-
wo metals with different values for the reflection at normal incidence.
For every material three values for the transmission are shown: the
value derived by Edwards and Tobin [6] (τ[6]), the converged analyt-
ical value (τa) and numerical results derived using the Ray Optics
module in COMSOL (τnum).

Dielectric: k = 0

ρn = 0.04 ρn = 0.1111 ρn = 0.36

L/D τ[6] τa τnum τ[6] τa τnum τ[6] τa τnum

0 100 100 100 100 100 100 100 100 100

0.3 59.8 61.1 60.8 61.9 63.4 63.2 69.9 70.7 70.5

0.5 44.4 45.6 45.5 46.3 48.6 48.2 55.9 57.2 57.2

1 21.1 25.1 24.6 23.1 27.6 27.2 31.0 35.9 35.8

3 5.69 7.11 6.91 6.54 8.00 7.82 8.96 10.1 10.1

5 3.47 4.05 3.94 3.96 4.57 4.47 4.52 5.18 5.15

10 1.81 1.95 1.94 2.08 2.23 2.23 2.25 2.44 2.47

30 0.616 0.632 0.640 0.714 0.730 0.740 0.789 0.809 0.822

Metal: k = n

ρn = 0.5 ρn = 0.8

L/D τ[6] τa τnum τ[6] τa τnum

0 100 100 100 100 100 100

0.3 75.43 75.8 75.7 88.5 87.8 87.7

0.5 63.52 64.1 64.1 81.3 80.8 80.8

1 42.53 44.1 44.1 63.9 66.6 67.0

3 14.52 15.1 15.21 34.8 34.5 35.3

5 7.88 8.04 8.05 20.1 20.0 20.5

10 3.54 3.65 3.69 6.65 6.86 7.15

30 1.13 1.19 1.21 1.20 1.23 1.27

parallel to each other, these angles are always equal. The
variable rdA1−dA2 describes the distance between dA1 and
dA2.
The total transmittance through the passage can now be cal-
culated by summing the power transfer between elements
over all the elements at the front and end of the passage.
Due to the symmetry in the model only one fourth of the end
plane needs to be calculated and the result is then multiplied
by four, as shown in equation 27.

τ = 4 ·
A1

∑
A2

∑dQdA1−dA2 (27)

3.2.2 Analytical Model Results
The calculation described in this section is an analytical

approximation of the problem. The accuracy of the result
depends on the amount of reflections (N) taken into account
and the amount of subdivisions of the end planes 1 and 2
(dA1,dA2).
The results of the model calculated by Eckert and Tobin [6]
include at least the first 25 reflections. The areas 1 and 2

Fig. 8. The results for the analytically and numerically calculated
transmittance for ρn = 0.36 and L/D = 3. For each iteration of the
analytical calculation either the amount of reflections or discretiza-
tions is increased. The number of released rays is increased to
achieve more accurate numerical results. The analytical results show
good convergence, which is higher than the value described in the
paper of Edwards and Tobin. The numerical results show a good
approximation of the result, however are not fully converged.

were subdivided in 3× 3 for the first 5 reflections. The
areas were not subdivided for calculations with more than 5
reflections.
In order to obtain more accurate results a function is created
that gradually increases the amount of reflections and subdi-
visions taken into account. Another function is defined that
ensures that the number of subdivisions decreases gradually
with the amount of reflections. By increasing both number
of reflections and subdivisions the solution converges to a
final value. When the transmittance is accurate for three
digits, the calculation is stopped. Figure 8 shows how the
calculation converges to a result.

Table 4 shows the analytically derived percentage of
transmittance (τa) for different length over width ratios of
the square passage and five different materials.
The results are shown alongside the results from Edwards
and Tobin [6] (τ[6]). There is a significant difference between
the values especially for length to width ratios of 1,3 and
5. For these values the largest amount of subdivisions was
required to achieve convergence.

3.2.3 Ray Tracing Model
The square passage is also modeled in the software

package COMSOL using the Ray Optics module [10]. A
ray tracing method is used to describe the heat transfer. In
the simulation 60,000 rays are released at the front end in a
Lambertian distribution. When a ray is reflected from one of
the side walls, a fraction of its energy is transferred to this
wall. The transmittance is derived by evaluating the percent-
age of energy is transferred to the walls and subtracting this
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Fig. 9. The relative error between the numerical results and the re-
sults from the analytical approximation. The error for the values de-
rived by Edwards and Tobin are shown as well as the error for the
converged values. The maximum error between the numerical and
converged analytical results is equal to 4.2%. The difference be-
tween the converged results and the results from Edwards and To-
bin [6] can be clearly seen from this graph.

value from the initial energy at the beginning of the passage.
The reflection coefficient of the passage walls is defined as
described in equations 14 until 18.
The numerical results are shown alongside the analytical re-
sults in table 4. The error between the results from the sim-
ulation and the analytical model are shown in figure 9. The
results from the simulation correspond well with the analyt-
ical calculation. The maximum error is equal to 4.2% for
L/D = 10 and ρn = 0.8.
The error between the numerical results and the results de-
rived by Edwards and Tobin [6] are also shown in figure 9.
The improvement in the analytical results can be seen clear-
ly, since the relative error is consistently larger for the results
from Edwards and Tobin.

3.3 Effect of Polarization and Angle Dependent Reflec-
tion on the Transmittance

Including polarization and angle dependency to heat
transfer models significantly increases the complexity of the
calculation. It is thus interesting to know what their influence
is on the transmittance. Figure 10 shows the transmission for
varying length to width ratio of the passage for a dielectric
and a metal. Three cases are considered: 1. including both
angle dependency and polarization, 2. including angle de-
pendency only and 3. considering a constant reflection coef-
ficient.
It can be concluded that the influence of polarization increas-
es for higher length over width ratio. The influence of the
angle dependent reflection on the transmission increases for
higher values of ρn.

Fig. 10. The percentage of transmission through the square duct as
a function of the duct length to width ratio for a dielectric and a metal
wall. The different lines indicate which physics are included in the
calculation; for ρ(θi,P) both angle dependency and polarization are
included, for ρ(θi) only angle dependency is included and for ρn the
normal reflectivity is used. The effect of polarization increases for a
higher L/D ratio.

4 Experimental Validation for Models including Angle
Dependent Reflection and Polarization
Miranda [7] derived an analytical calculation for the

transmission of infrared radiation through a cylindrical metal
tube with specular internal surfaces. An experiment was con-
ducted to validate the analytical calculation. By considering
the reflection coefficients for the parallel and perpendicular
polarization states, ρ⊥ and ρ‖, the analytical model takes the
effect of polarization into account. However this analytical
model does not account for the rotation of the polarization
planes, described by the rotation matrix

[
D
]

in section 3.
After multiple reflections the radiation will become fully per-
pendicular polarized, despite the fact that the orientation of
the polarization planes rotates. This will result in an over-
estimation of the transmission that increases for longer tube
lengths [6, 11, 16]. This can also be seen in the results from
the model, which are presented in section 4.3.
Despite the fact that the analytical model is not an accurate
representation of the transmission the results from the exper-
iment can be compared to the verified model from COMSOL
described in section 3.
In section 4.1 a description of the conducted experiment by
Miranda is given. The experiment results are compared with
results from a numerical model, which is discussed in section
4.2.

4.1 Description of the Experiment
The experiment consists of a stainless steel tube with a

radius of R = 3.35cm, which is sealed on both ends to create
a vacuum inside. The tube is submerged into liquid nitro-
gen to keep the side walls at a temperature of 77K. At both
ends of the tubes a concentric copper disk with a radius of
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Fig. 11. Schematic representation of the experiment conducted by
Miranda (1996) [7]. Figure from Qu et al. (2007) [14]

r0 = 3.15cm is situated, which are kept at a uniform temper-
ature of 300K. Figure 11 shows a schematic representation
of the experiment.
The transmission of the thermal radiation through the tube

is calculated by equation 28. The amount of electrical power
(P) supplied to the heaters required to keep both disks at a u-
niform temperature is measured as a function of the distance,
L, between the disks. The amount of power that needs to be
supplied to the heaters when the distance between the disks
is zero is described by P0. When the disks are so far apart
that there is no heat transfer between the disks, a maximum
amount of power must be supplied, Pmax. The emission co-
efficient of the disks, ε, is determined experimentally by cal-
culating the ratio between the measured emitted power and
the theoretical black body emission.

τ′exp(L) =
Pmax−P(L)

γ(Pmax−P0− (1− ε)(P(L)−P0))
(28)

The factor γ in equation 28 accounts for the difference be-
tween the transmission through the whole tube and the trans-
mission received by the copper disk. This factor is intro-
duced by Miranda to match the experiment results with the
results from the analytical model, which can not take the s-
maller radius of the disk into account. This correction factor
is calculated by equation 29.

γ =
F

τ[6]
+

(
1− F

τ[6]

)( r0

R

)2
(29)

In equation 29, F is the view factor for the radiation leav-
ing one disk and that reaches the other disk directly. For
the values of τ[6] the estimates from the analytical model
from Miranda were taken. As mentioned before these an-
alytical results overestimate the transmission for high length
over width ratios.
In table 5 the experimental data as displayed by Miranda [7],
and calculated using equation 28 is shown in the column τ′exp.
The values of γ are shown in the next column. The radiation
heat transfer measured from disk to disk, τexp, is obtained by

Table 5. The experimental results alongside the numerical results
for the transmission of thermal radiation through a cylinder for differ-
ent length to diameter ratios of the tube (D= 6.7cm). The values for
the transmission through the tube as given by Miranda [7] are shown
in the column τ′exp. The correction factor γ is used to convert the
results from Miranda in such a way that the analytical model is not in-
cluded in the experiment data. The radiation heat transfer measured
from disk to disk, τexp, is obtained by multiplying the τ′exp with γ.
This is also calculated numerically and the numerical results, τnum,
are shown in the last column.

L/D τ′exp γ τexp τnum

0.0597 ± 0.015 99.2 ± 0.8 0.987 97.9 ± 0.8 93.2

0.157 ± 0.022 98.2 ± 0.8 0.969 95.1 ± 0.8 88.9

1.46 ± 0.03 90.0 ± 0.8 0.896 80.7 ± 0.8 75.8

3.79 ± 0.03 71.2 ± 0.9 0.887 63.1 ± 0.9 60.0

7.51 ± 0.03 51.5 ± 1.1 0.885 45.6 ± 1.1 43.5

11.91 ± 0.03 37.2 ± 1.1 0.885 32.9 ± 1.1 31.4

17.13 ± 0.03 26.8 ± 1.3 0.885 23.7 ± 1.3 22.5

multiplying the τ′exp with γ. This is also calculated numer-
ically and the numerical results, τnum, are shown in the last
column.

4.2 Numerical Model
This problem is also calculated numerically in COM-

SOL using the Ray Optics module [10]. The model uses
the same ray tracing method as described in section 3.2.3.
The geometry from figure 11 is replicated, where one disk is
modeled as the source of radiation and the other disk is the
receiver. At the source 100,000 rays are released and the ray
directions are distributed in a Lambertian distribution.
In contrast to the model from section 3.2.3 this model does
include wavelength dependency of the reflection. The re-
flection coefficient of the side wall of the cylindrical tube is
still calculated by equations 14 until 18. However the val-
ues for the extinction coefficient, k, and the refraction index,
n, depend on the wavelength of the irradiation, described by
the Maxwell’s equations. Since the electrical resistivity, re,
of metal is small and the wavelength of thermal radiation is
quite long, λ0 >∼ 5µm, the Hagen-Rubens equation can be
used in the numerical model.

k = n =

√
λ0µ0c0

4πre
=

√
0.003λ0

re
(30)

The electrical resistivity of the 316 stainless steel at 77K is
re = 5 · 10−5Ωcm. The speed of light and magnetic perme-
ability in vacuum, c0 and µ0, are physical constants. The
wavelength of the radiation, λ0, is assigned to each ray at the
release. In order to assign the wavelengths an inverse prob-
ability function that describes the emission of gray or black
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Fig. 12. The upper graph shows percentage of transmission
through a tube as function of the length to diameter ratio. The exper-
imental results are shown alongside the results from the numerical
model and the analytical model from Miranda [7]. The bottom graph
shows the relative error from the numerical model and the analytical
model by Miranda with respect to the experiment results.

bodies is used [1]. The wavelength is distributed conform the
Planck’s wavelength distribution.

4.3 Model Results and Comparison with Experiment
Table 5 and figure 12 show the results of the numerical

model alongside the experimental data. The heat transfer cal-
culated by the numerical model is between 4 and 7% lower
than the measured transmission from the experiment for all
measured lengths. The numerical model seems to replicate
the trend of the results very well.
In the paper by Miranda [7] various possible causes for errors
are mentioned. According to Miranda the error is dominat-
ed by the uncertainties associated with P0 and the average
disk temperature. An error in either one of these parameters
forms a systematic error, which means that the effect will not
change for different tube lengths. This means that the offset
between the experiment results and the numerical model re-
sults could be caused by these uncertainties.
In figure 12 the radiative heat transfer from disk to disk cal-
culated by the model described by Miranda [7] is also added.
The trend for this model is clearly different from the exper-
iment data. Since the effect of not taking the rotation of the
polarization planes into account is stronger for longer tube
lengths it is expected that the error between experiment and
model will increase for higher length to width ratios.

5 Discussion
As described in section 3, the results from the numerical

model constructed with the Ray Optics module in COMSOL
show good agreement with the analytical results, as can be

seen in table 4 and figure 9. However the error of the numer-
ical model increases when the reflection coefficient and the
length over width ratio increase. Problems including highly
reflecting surfaces with many reflections will require more
computational expensive models to reach the accuracy dis-
played in figure 9.
From the results of the experimental validation described in
section 4 is concluded that the trend of the transmission as
a function of the length to diameter ratio is modeled accu-
rately by the numerical model. However it is not known with
confidence what causes the offset of roughly 5% between the
experimental and numerical results. The offset can be caused
by numerical errors in the computation. It can also be caused
by the extrapolation conducted by Miranda to determine the
value of P0.

6 Conclusion

This paper describes benchmarks which can be used to
verify computational tools for modeling thermal radiation, in
which the direction and polarization state of the irradiation is
of importance.
The benchmarks in section 2 describe three problems with
increasing complexity including specular reflecting surfaces.
The function to model specular reflection with the Surface-
to-Surface Radiation module from COMSOL, was verified
by comparing the numerical and the analytical results. The
numerical results will converge to the analytical solution. For
the settings described in this paper the error is smaller than
1.5% for all results shown in section 2.
Section 3 describes a more complex problem including the
effect of angle dependent reflection and the polarization s-
tate of the irradiation. The accuracy of the results from the
analytical approximation, with respect to the results from the
paper of Edwards and Tobin [6], has been increased. The Ray
Optics module of COMSOL was used to model the problem
described in section 3. The error between the numerical and
analytical results is below 5% for all evaluated materials and
length ratios. This is a large improvement when comparing
the model to the results from Edwards and Tobin, which re-
sulted in a maximum error of more than 20%.
The impact of including of the angle dependent reflection
and polarization in the radiation transfer through a passage
is shown in section 3.3. Excluding polarization from the cal-
culation can lead to an error of more than a factor 2 for large
aspect ratios.
The ray tracing model verified in section 3 was used to mod-
el the experiment conducted by Miranda [7]. The numerical
results are approximately 5% lower than the experimental re-
sults for all aspect ratios. The developed model shows better
agreement with the experiment than the results from Miran-
da [7], for which the error varies between −7% and +8%.
This is due to the fact that the influence of the rotation of po-
larization planes is not taken into account by Miranda.
The 5% offset of the numerical model could be caused by the
uncertainty in the extrapolation to calculate P0.
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A Equations wedge model
This section shows the equations for the variables re-

quired to evaluate the analytical calculation of the wedge
benchmark described in section 2.3. The equations were de-
rived by Hering [5].

Kφ(ξ,ζ)=





ξ+ ε[Jφ(ξ,ζ], 90o ≤ φ < 180o

ξ+ ε[Jφ(ξ,ζ)+(1− ε)J2φ(ξ,ζ)], 60o ≤ φ < 90o

ξ+ ε[Jφ(ξ,ζ)+(1− ε)J2φ(ξ,ζ)
+(1− ε)2J3φ(ξ,ζ)], 45o ≤ φ < 60o

(31)

Jφ(ξ,ζ) =
1
2

[
ξ(ζ− cos(φ))√

1−2φcos(φ)+ζ2

+cos(φ)
(√

ξ2−2ξζcos(φ)+ζ2−ζ
)

−ζsin2(φ)
[

ln
(

ξ−ζcos(φ)+
√

ξ2−2ξζcos(φ)+ζ2

)

−ln(ζ(1− cos(φ)))
]]

(32)

Gφ(ξ,ζ)=





fφ(ξ,ζ), 90o ≤ φ < 180o

fφ(ξ,ζ)+(1− ε) f2φ(ξ,ζ), 60o ≤ φ < 90o

fφ(ξ,ζ)+(1− ε) f2φ(ξ,ζ)
+(1− ε)2 f3φ(ξ,ζ), 45o ≤ φ < 60o

(33)

fφ(ξ,ζ) =
sin2(φ)

2
ξζ

(ξ2 +ζ2−2ξζcos(φ))3/2 (34)

Lφ(ε)=





1
2 (1+ cos(φ)), 90o ≤ φ < 180o

1
2 [(1+ cos(φ))

+(1− ε)(1+ cos(2φ))] , 60o ≤ φ < 90o

1
2 [(1+ cos(φ))+(1− ε)(1+ cos(2φ))

+(1− ε)2(1+ cos(3φ))
]
, 45o ≤ φ < 60o

(35)

Mφ(ζ)=





1− εPφ(ζ), 90o ≤ φ < 180o

1− ε[Pφ(ζ)+(1− ε)P2φ(ζ)], 60o ≤ φ < 90o

1− ε[Pφ(ζ)+(1− ε)P2φ(ζ)
+(1− ε)2P3φ(ζ)], 45o ≤ φ < 60o

(36)

Pφ(ζ) =
1
2

[
1+

cos(φ)−ζ
(1+ζ2−2ζcos(φ))1/2

]
(37)
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B Reflection Matrix equations
This section describes the expressions for the elements

of the reflection matrix for the analytical calculation of the
square passage benchmark described in section 3.2.1, and
first formulated by Edwards and Tobin [6].

ρss =
(cos(θi)−a)2 +b2

(cos(θi)+a)2 +b2 (38)

ρpp =
[(n2− k2)cos(θi)−a]2 +[2nk cos(θi)−b]2

[(n2− k2)cos(θi)+a]2 +[2nk cos(θi)+b]2
(39)

ρuu = ρvv =
√ρssρpp cos(δ) (40)

ρvu =−ρuv =
√ρssρpp sin(δ) (41)

δ = 2π+(δp−δs) (42)

tan(δp) =
2cos(θi)[(n2− k2)b−2nk a]
(n2 + k2)2 cos2(θi)− (a2 +b2)

(43)

tan(δs) =
2bcos(θi)

cos2(θi)−a2−b2 (44)

a2 =
1
2

[√
(n2− k2− sin2(θi))2 +4n2k2 +(n2− k2)− sin2(θi)

]

(45)

b2 =
1
2

[√
(n2− k2− sin2(θi))2 +4n2k2− (n2− k2)+ sin2(θi)

]

(46)
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A Specular Re�ection Benchmarks

A.1 Introduction

Appendix A contains details on the benchmarks on specular re�ection, described in section 2 of
the paper. Three benchmarks have been derived for the veri�cation of models including specular
re�ection.

� Concentric Cylinders - section A.2

� Isothermal Parallel Plates - section A.3

� Wedge with Conducting Plates - section A.4.2

From each of the benchmarks an analytical and a numerical model has been created. In this appendix
the MatLab models for all analytical calculations are shown, as well as the numerical models developed
in COMSOL.
The numerical model has been compared to the analytical model to assess the quality of the these
models. The results of this comparison are shown for each benchmark. By performing a number of
studies the in�uence of a number of settings are evaluated. Which studies are performed is explained
in section A.1.1.
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A.1.1 Study explanations

In order to know how well the numerical models in COMSOL calculate the problem, a mesh, setting
and parameter study are performed. This section explains how every study is performed.

Mesh Study

In the mesh study the number of elements on the relevant edges are doubled for every re�nement. It
is expected that for a �ner mesh the result will approach the analytical solution The error between
the model (sub m) and the analytical solution (sub a) is derived by equation A.1.

Error =
|V arm − V ara|

V ara
· 100 [%] (A.1)

For every benchmark the error will be plotted against the amount of elements in the mesh. The
increase in elements will also cause an increase in computation time, which will also be plotted.
However the mesh is not the only parameter that in�uences the quality of the result. This means
that the error may not approach zero but value slightly larger, which is then the most accurate result
for these settings. In order to make a good assumption of what the quality of the mesh should be,
the di�erence in error for every step is calculated. The di�erence for every step, is an indication of
how much the accuracy of the solution improves for that re�nement. It is expected that the solution
di�erence gets smaller after every step. This di�erence is plotted for every step.

Setting Study

There are three radiation settings which in�uence the quality of the solution: Ray resolution, Tol-
erance and Maximum number of adaptations. In the COMSOL Documentation the computation of
the Ray shooting algorithm and these settings is explained as followed:

"To compute the radiation intensity on surfaces, the ray shooting algorithm emits n rays in 2D and
n2 rays in 3D where n is the value selected for Radiation resolution. The trajectories of these rays
are computed as they are absorbed, re�ected or transmitted on the model surfaces until their intensity
becomes too small or if the rays go far away from the geometry. The threshold were the ray trajectory
is no longer computed is controlled by the Tolerance. During the rays trajectory computation the
tiling is adapted up to a numbers of time de�ned by the Maximum number of adaptations."

The in�uence of these settings on the quality of the solution and computation time is evaluated
in the same way as the number of elements.

Parameter Study

The mesh and setting study are performed for one set of parameters. It is important to know if the
quality of the solution is di�erent for certain parameter sets. This is done by computing the model
for di�erent sets of parameters and evaluate the quality of the solution and computational time.
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A.2 Concentric Cylinders

A.2.1 Re�nement and Parameter Studies

For the mesh and setting re�nement studies the parameters from the table below are used.

Parameter Value
ri 0.1 m
ro 0.3 m
L 1 m
Ti 500 K
To 300 K
εi 0.5
εo 0.1

When a setting is not changed it has the value stated in the table below.

Setting Value
Radiation Resolution (Mesh Study) 512 (1024)
Tolerance 1e-4
Maximum number of adaptations 6
Total number of elements 640

The total heat �ux is evaluated over the inner cylinder and over the outer cylinder. Both total �uxes
are plotted in the results plots.
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Mesh Study

From �gures A.1 and A.2 can be derived that the model converges to a solution for the total heat
�ux. The accuracy is at the cost of the computational time. The accuracy of the solution keeps
increasing for a higher number of elements. The ideal number of elements, depends strongly on the
computational resources available.

Figure A.1: Computation time and error in total heat �ux for mesh re�nement.

Figure A.2: Change in error for every re�nement step.
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Ray Resolution

From �gures A.3 and A.4 can be derived that the model converges to a solution for the total heat
�ux. The accuracy is at the cost of the computational time. When changing the ray resolution above
512 the change in error can be still above 10−1. It is seen that the value for the inner and outer
cylinder approach each other which is expected from energy conservation.

Figure A.3: Computation time and error in total heat �ux for ray resolution re�nement.

Figure A.4: Change in error for every re�nement step.
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Tolerance

From �gures A.5 and A.6 can be derived that for a tolerance equal to or lower than 10−2 the solution
is converged. The tolerance does have a large impact on the computational time.

Figure A.5: Computation time and error in total heat �ux for tolerance re�nement.

Figure A.6: Change in error for every re�nement step.
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Maximum number of adaptations

From �gures A.7 and A.8 can be derived that the model converges to a solution for the total heat
�ux. Increasing the maximum number of adaptations above 4 increases the computational time
signi�cantly, however there is no clear relation when increasing the value even more. At a value of 4
for the maximum number of adaptations the di�erence in error stabilizes.

Figure A.7: Computation time and error in total heat �ux for maximum number of adaptations re�nement.

Figure A.8: Change in error for every re�nement step.
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Parameter Study

The settings for the parameter study are shown in the table below. The values for these settings are
chosen based on the results from the mesh and setting study.

Setting Value
Ray Resolution 512
Tolerance 1e-5
Maximum number of adaptations 5
Total number of elements 1280

For the parameter study the outer cylinder radius, the emissivity of the inner and outer cylinder are
varied. The inner cylinder radius is not changed, because the di�erence in ratio between the two
cylinders changes when ro is changed. The table below shows the analytical value for the heat �ux
(Qanalytic) and the COMSOL results evaluated on the inner cylinder (QCOMi) and the outer cylinder
(QCOMo). The error between the COMSOL model and the analytical solution is shown for both cases
where the integration is performed over the inner and outer cylinder. The computation time (tcomp)is
also shown in the table.

From the results can be derived that the error increases when the distance between the cylinders
is larger and when there is a lot of re�ection, so a low emissivity. The error is larger when the �ux is
evaluated over the outer cylinder than when evaluated over the inner cylinder.

ro ε1 ε2 Qanalytic QCOMi
QCOMo Qerri [%] Qerro [%] tcomp [s]

0.15 0.5 0.1 176.19672 177.09931 178.77724 0.51226 1.4646 218
0.15 0.5 0.5 646.05464 646.62934 648.20507 0.088955 0.33286 6
0.15 0.5 0.8 861.40619 861.60328 862.26813 0.02288 0.10006 2
0.15 0.9 0.1 191.68654 192.75594 194.58213 0.55789 1.5106 245
0.15 0.9 0.5 918.07765 919.20843 921.53788 0.12317 0.3769 5
0.15 0.9 0.8 1423.9572 1424.5278 1425.5989 0.040075 0.11529 4
0.3 0.5 0.1 176.19672 178.68903 182.63325 1.4145 3.653 480
0.3 0.5 0.5 646.05464 648.04356 649.64417 0.30786 0.55561 7
0.3 0.5 0.8 861.40619 862.17606 862.63008 0.089373 0.14208 5
0.3 0.9 0.1 191.68654 194.63715 198.93687 1.5393 3.7824 303
0.3 0.9 0.5 918.07765 922.10538 924.39172 0.43871 0.68775 14
0.3 0.9 0.8 1423.9572 1426.0901 1426.8332 0.14979 0.20197 3
0.6 0.5 0.1 176.19672 181.58937 190.36324 3.0606 8.0402 343
0.6 0.5 0.5 646.05464 650.74039 652.86486 0.72529 1.0541 16
0.6 0.5 0.8 861.40619 862.95024 863.99587 0.17925 0.30063 6
0.6 0.9 0.1 191.68654 198.08251 207.65824 3.3367 8.3322 565
0.6 0.9 0.5 918.07765 927.56638 930.68782 1.0335 1.3735 11
0.6 0.9 0.8 1423.9572 1428.208 1429.9324 0.29852 0.41962 5
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A.2.2 Analytical Calculation

The analytical calculation of the concentric cylinder benchmark is calculated using the following
MatLab function::

% Function that calculates the heat flux from the inner to the outer

% cylinder in a concentric cylinder setup. The inputs are:

% r1 - Radius of inner cylinder [m]

% r2 - Radius of outer cylinder [m]

% L - Length of cylinders [m] (in 2D model choose L = 1)

% T1 - Temperature of inner cylinder [K]

% T2 - Temperature of outer cylinder [K]

% e1 - Emission coefficient of inner cylinder [-]

% e2 - Emission coefficient of outer cylinder [-]

% diffspec - State if the reflection of the outer cylinder is diffuse

or

% specular. Only accepts 'Diff ' or 'Spec '

function [Q12] = ConCylSim(r1 ,r2 ,L,T1 ,T2 ,e1 ,e2,diffspec)

sigma = 5.670374419e-8; % Stefan -Boltzmann constant [W m^-2 K^-4]

A1 = 2*pi*r1*L; % Inner cylinder area [m^2]

A2 = 2*pi*r2*L; % Outer cylinder area [m^2]

if diffspec == 'Diff' % Calculation for diffuse reflection of

outer cylinder

Q12 = A1*sigma*(T2^4-T1^4) /(1/e1+A1/A2*(1/e2 -1)); % Heat flux

from inner to outer cylinder [W]

elseif diffspec == 'Spec' % Calculation for specular reflection of

outer cylinder

Q12 = A1*sigma*(T2^4-T1^4) /(1/e1+1/e2 -1); % Heat flux

from inner to outer cylinder [W]

else

disp('Fill in Diff or Spec for diffspec ') % Error for

wrong input for diffspec

Q12 = 'error '

end
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A.2.3 Numerical Calculation

The numerical calculation of the concentric cylinder benchmark is performed using the Surface-
to-Surface Radiation module in COMSOL. The �gures in this section describe how the model is
developed.

Figure A.9: The parameter list used to describe the geom-
etry and the physics Figure A.10: The geometry of the model

Figure A.11: The opaque surface boundary condition applied at the inner and outer cylinder. The applied
values are shown in the parameter list

Figure A.12: Radiation Settings Figure A.13: Mesh Settings
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A.3 Isothermal Parallel Plates

A.3.1 Re�nement and Parameter Studies

For the mesh and setting re�nement studies the parameters from the table below are used. When a
setting is not changed it has the value as stated in the table.

Setting Value
γ 0.5
ε 0.1
Radiation Resolution 1024
Tolerance 1e-6
Maximum number of adaptations 6
Number of elements per plate 800

The total and local heat �ux are evaluated over one of the plates. The average and the maximum
error of the local heat �ux is evaluated.
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Mesh Study

From �gures A.14 and A.15 can be derived that the model converges to a solution for the heat �ux.
The accuracy is at the cost of the computational time. At 400 elements per plate the di�erence in
error is below 10−4.

Figure A.14: Computation time and errors in heat �ux for mesh re�nement.

Figure A.15: Change in error for every re�nement step.
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Ray Resolution

From �gures A.16 and A.17 can be derived that the model converges to a solution for the heat �ux.
The accuracy is at the cost of the computational time. At a ray resolution of 512, the di�erence in
error stays below 10−3.

Figure A.16: Computation time and errors in heat �ux for ray resolution re�nement.

Figure A.17: Change in error for every re�nement step.
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Tolerance

From �gures A.18 and A.19 can be derived that the model converges to a solution for the heat �ux.
The computational time is not signi�cantly in�uenced by decreasing the tolerance. At a tolerance of
10−7, the di�erence in error stays below 10−4.

Figure A.18: Computation time and errors in heat �ux for tolerance re�nement.

Figure A.19: Change in error for every re�nement step.
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Maximum number of adaptations

From �gures A.20 and A.21 can be derived that the model converges to a solution for the heat
�ux. The computational time is not signi�cantly in�uenced by decreasing the maximum number of
adaptations. For a maximum number of adaptations of 5, the di�erence in error stays below 10−3.

Figure A.20: Computation time and errors in heat �ux for maximum number of adaptations re�nement.

Figure A.21: Change in error for every re�nement step.

TU/e 32



Benchmarks for Radiation Heat Transfer

Parameter Study

The parameter study is performed with the following settings:

Setting Value
Radiation Resolution 2048
Tolerance 1e-6
Maximum number of adaptations 6
Number of elements per plate 800

The table below shows the error made in the total heat �ux, the maximum and average error in the
local heat �ux, all in percentages.

γ ε Qan [W/m] QCOM [W/m] Qerr avg(qerr(x)) max(qerr(x)) tcomp

0.05 0.1 14.787 14.787 8.0066e-07 0.0010555 0.27824 107
0.05 0.5 21.268 21.267 2.2702e-06 8.2623e-05 0.010833 45
0.05 0.9 22.265 22.264 1.9584e-06 5.6612e-05 0.0028777 23
0.5 0.1 36.503 36.502 7.8296e-07 0.0053083 0.86004 32
0.5 0.5 120.41 120.41 1.877e-06 0.00034715 0.055134 17
0.5 0.9 166.81 166.81 1.0847e-07 0.00018971 0.01523 13
1 0.1 40.536 40.536 7.0846e-07 0.015922 1.1841 30
1 0.5 160.87 160.87 1.9618e-06 0.00066786 0.093367 13
1 0.9 249.83 249.83 4.8075e-07 0.00033217 0.027702 15

The error in the local heat �ux on a loglog-scale:
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A.3.2 Analytcial Calculation

The MatLab function shown on this pages shows the calculation of the total heat loss and the
distribution of the heat loss for di�use re�ecting plates.

% This script calculates the total and local heat loss over the

length of two diffuse isothermal parallel plates. The inputs are:

% epsilon: Emission coefficient of plates [-]

% gamma: Height over width ratio of the geometry [-]

% N: Number of evaluation points along the plates [-]

function [q,Q] = Diff_fun(epsilon ,gamma ,N)

%% Input parameters

rho = 1-epsilon; % [-] Reflectivity (diffuse)

%% Geometry parameters

X = linspace (0,1,N);% [-] Lower plate x/L

Y = linspace (0,1,N);% [-] Upper plate x/L

%% Initial values while loop

beta_y = 9*ones(1,N);

difference = 10;

count = 0;

%% While loop to calculate beta for every X

while difference > 0.000001 % Tolerance

for i = 1: length(X)

beta_int(i,:) = beta_y ./((Y-X(i)).^2 + gamma ^2) .^(3/2); %

The vector that needs to be integrated

beta_x(i,:) = 1 + rho*gamma ^2/2* trapz(Y,beta_int(i,:)); %

Calculation of beta

end

difference = max(abs(beta_x '-beta_y)); % Difference

between the new and previous beta

beta_y = beta_x '; % The new beta is

the input for the next calculation

count = count + 1; % Counter to

check the amount of iterations

end

%% Calculate the fluxes

H = (beta_x '-1)/rho; % Total flux arriving at a certain point

on the plate

q = (1-beta_x '* epsilon)/rho; % Heat loss at a certain point on the

plate

B = H+q; % Flux leaving a certain point on the

plate

Q_dl = trapz(X,q)*epsilon; % Total dimensionless heat loss

sigma = 5.670367e-8; % Stefan -Boltzmann constant

T = 300; % Plate temperature

Q = Q_dl*sigma*T^4; % Total heat loss

end
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The MatLab function shown on this pages shows the calculation of the total heat loss and the
distribution of the heat loss for specular re�ecting plates.

% This script calculates the heat loss over the length of two

specular

% isothermal parallel plates. Input values are:

% epsilon: Emissivion coefficient of the plates

% gamma: Height over width ratio of the plates

% mesh: Number of points along the plates

function [hl_spec ,HL_dl] = ParPlat_spec_fun(epsilon ,gamma ,mesh)

% Constants

T = 300; % Isothermal plates temperature [K]

L = 1; % Plate length [m]

Tamb = 0; % Ambient temperature [K]

sigma = 5.670367e-8; % Stefan -Boltzmann constant [W?m?2?K?4]

alpha = epsilon; % Absorptivity [-]

h = gamma*L; % Height between plates [m]

eb = sigma*T^4; % Black body plate emission [W.m-2]

% View Factor calculation for No reflections

x = linspace(0,L,mesh); % x-coordinate along plate [m]

X = x/L; % normalized x-coordinate [-]

% View Factor calculation for k reflections

j = 1: length(X); % Vector along plate coordinates

for i = 1: length(epsilon) % Loop over multiple emissivities

rho(i) = 1-epsilon(i); % Reflectivity [-]

k = 0; % Starting value for no. of

reflections

hl_k(i,j) = ones(1,length(X)); % Initial vector value

hl_sum(i,j) = zeros(1,length(X)); % Initial vector values

while hl_k(i,j) > 1e-8 % Set accuracy of calculation

hl_k(i,j) = rho(i)^k*(X./sqrt(X.^2 + (k+1)^2* gamma ^2) + (1-X)

./sqrt((1-X).^2 + (k+1)^2* gamma ^2)); % Local heat loss

for k reflections

hl_sum(i,j) = hl_sum(i,j) + hl_k(i,j); % Summation of

local heat loss over all reflections

k = k + 1; % Number of reflections [-]

end

hl_spec(i,j) = 1 - alpha(i)/2* hl_sum(i,j); % Final value for

local heat loss

q_spec(i,j) = hl_spec(i,j) .* epsilon(i) * sigma * T^4; % Local

heat loss [W]

HL_sum(i) = 0; % Initial value

HL_k(i) = 1; % Initial value

k=0; % Initial value

while HL_k(i) > 0.00001 % Set accuracy for total heat loss

HL_k(i) = rho(i)^k*(sqrt (1+(k+1)^2* gamma ^2) - (k+1)*gamma); %

Total heat loss for k reflections

HL_sum(i) = HL_sum(i) + HL_k(i); % Summation of total heat

loss over all reflections

k = k + 1; % Number of reflections [-]

end

HL_dl(i) = epsilon(i)*(1 - alpha(i)*HL_sum(i)); % Final value for

total heat loss

HL(i) = HL_dl(i)*sigma*T^4; % Total heat loss [W]

end

end
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A.3.3 Numerical Calculation

The numerical calculation of the isothermal parallel plates benchmark is performed using the Surface-
to-Surface Radiation module in COMSOL. The �gures in this section describe how the model is
developed.

Figure A.22: The parameter list used to describe
the geometry and the physics Figure A.23: The geometry of the model

Figure A.24: The opaque surface boundary condi-
tion describing the re�ecting plates

Figure A.25: Di�use surface that has a tempera-
ture of 0K and an emission coe�-
cient of 1, which means all irradia-
tion is absorbed and there is no emis-
sion.

Figure A.26: Radiation Settings Figure A.27: Mesh Settings
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A.4 Wedge with Conducting Plates

A.4.1 Analytical solution accuracy

The analytical solution of the Wedge benchmark is used to analyze the quality of the COMSOL
models. It is important to know the accuracy of this solution. The analytical calculation is modeled
in MatLab. In order to create the heat �ux and temperature distributions, the domain consists of
discrete measuring points. The dimensionless temperature distribution is derived by the following
equation:

θ(ξ) = 1 + εNc

(∫ ξ

0

θ4(ζ)(ξ − ζ)dζ −
∫ 1

0

θ4(ζ)Kγ(ξ, ζ)dζ

)
(A.2)

In this equation the integral is taken from 0 to ξ, this means that for the �rst few points there is an
error in the solution. This error can be minimized by taking as many measuring points as possible.
However this takes a long time to compute, since the solution needs to converge.
The dimensionless local heat �ux is a function of the dimensionless temperature distribution. De-
scribed by the equation below. Since the temperature distribution is to the power of 4, the error
made in the dimensionless temperature is enlarged in the dimensionless local heat �ux.

q(ξ)

εσT 4
b

= θ(ξ)− ε
∫ 1

0

θ4(ζ)Gγ(ξ, ζ)dζ (A.3)

A study is performed where the amount of measuring points is increased by doubling the amount of
points for every step. Figure A.28 shows the analytical solution for the local heat �ux. In the zoomed
in �gure can clearly be seen that there is an error in the �rst measuring points of the analytical
solution. For increasing the measuring points, the location of the peak moves towards ξ = 0.

Figure A.28: Analytical solution for the dimensionless local heat �ux for di�erent amount of measuring
points. The �gure on the right is a zoomed in image of the left �gure.

Figure A.29 shows the percentage di�erence in local heat �ux and temperature for every step where
the amount of measuring points is doubled. For every step the percentage di�erence gets smaller over
the total domain. However for values very close to ξ = 0 the error is still relatively large for the local
heat �ux.
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Figure A.29: Percentage change for the local heat �ux (left) and temperature (right), for doubling the amount
of measuring points in the analytical model.

The analytical solution that consists of 4801 measuring points is used as a reference for the mesh,
setting and parameter study. From �gure A.29, it can be concluded that the accuracy of the analytical
temperature over the whole domain is at least 10−6. For the local heat �ux the accuracy is at least
10−3 for the domain ξ > 0.01. In the other studies described in this report, when deciding the
maximum error of the heat �ux, measuring points of the local heat �ux for ξ < 0.01 are omitted.
This is done, because the analytical solution is not accurate in this domain.

A.4.2 Re�nement and Parameter Studies

For the mesh and setting re�nement studies the parameters from the table below are used. When
the setting is not changed it has the value as stated in the table below.

Parameter/ Setting Value
γ 60o

ε 0.1
Nc 4
Radiation Resolution (Mesh Study) 512 (1024)
Tolerance 1e-5
Maximum number of adaptations 5
Number of elements per plate 400

The heat �ux depends on the temperature to the power of 4, it is thus expected that the error is
largest for the local heat �ux.
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Mesh Study

From �gures A.30 and A.31 can be derived that the model converges to a solution for both heat �ux
and temperature. The accuracy is at the cost of the computational time. At 400 elements per plate
the error does not change signi�cantly for any of the results.

Figure A.30: Computation time and errors in heat �ux and temperature for mesh re�nement.

Figure A.31: Change in error for every re�nement step.
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Ray Resolution

From �gures A.32 and A.33 can be derived that the model converges to a solution for both heat �ux
and temperature. The accuracy is at the cost of the computational time. At a ray resolution of 512
the di�erence in error is below 10−3.

Figure A.32: Computation time and errors in heat �ux and temperature for ray resolution re�nement.

Figure A.33: Change in error for every re�nement step.
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Tolerance

From �gures A.34 and A.35 can be derived that the model converges to a solution for both heat
�ux and temperature. There is no clear relation between the tolerance and the computational time.
The result changes signi�cantly when decreasing the tolerance until a value of 10−4. Decreasing the
tolerance further does not seem to improve the result much.

Figure A.34: Computation time and errors in heat �ux and temperature for tolerance re�nement.

Figure A.35: Change in error for every re�nement step.
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Max No Adaptations

From �gures A.36 and A.37 can be derived that the model converges to a solution for both heat �ux
and temperature. There is no clear relation between the maximum number of adaptations and the
computational time. The in�uence of the maximum number of adaptations does not seem to have a
very large in�uence on the result. Above a value of 4, the di�erence in error stays below 10−4.

Figure A.36: Computation time and errors in heat �ux and temperature for increasing the maximum number
of adaptations.

Figure A.37: Change in error for every re�nement step.
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Parameter Study

The parameter study is performed for the following settings:

Setting Value
Radiation Resolution 512
Tolerance 1e-5
Maximum number of adaptations 5
Number of elements per plate 400

The table below shows the error made in the total heat �ux, the maximum and average error in
the local heat �ux and temperature, all in percentages. The error in the heat �ux is larger than
in the temperature. The error is larger for a larger value of the emissivity and a larger conduction
parameter.

γ ε Nc Qerr avg(qerr) max(qerr) avg(Terr) max(Terr) tcomp

60 0.1 0.5 0.0139 0.0140 0.0212 0.0034 0.0036 22
60 0.1 1.5 0.0354 0.0354 0.0519 0.0088 0.0107 37
60 0.1 4 0.0730 0.0730 0.124 0.0176 0.0274 30
60 0.5 0.5 0.0410 0.0410 0.123 0.0102 0.0115 24
60 0.5 1.5 0.0856 0.0856 0.258 0.0209 0.0333 28
60 0.5 4 0.1631 0.163 0.531 0.0350 0.0854 28
60 0.9 0.5 0.0501 0.0696 0.315 0.0123 0.0147 20
60 0.9 1.5 0.0934 0.105 0.578 0.0234 0.0361 24
60 0.9 4 0.1696 0.147 0.981 0.0384 0.0950 27
135 0.1 0.5 0.0147 0.0371 0.0177 0.0036 0.0040 13
135 0.1 1.5 0.0372 0.0371 0.0485 0.0092 0.0116 17
135 0.1 4 0.0778 0.0748 0.121 0.0186 0.0296 19
135 0.5 0.5 0.0536 0.0530 0.0850 0.0132 0.0180 12
135 0.5 1.5 0.1135 0.102 0.223 0.0256 0.0511 15
135 0.5 4 0.2250 0.155 0.539 0.0397 0.1275 16
135 0.9 0.5 0.0773 0.0744 0.150 0.0186 0.0299 12
135 0.9 1.5 0.1613 0.129 0.383 0.0328 0.0844 15
135 0.9 4 0.218 0.220 0.901 0.0538 0.2086 15
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A.4.3 Analytcial Calculation

The MatLab script shown below is used to calculate the total heat loss and the distributions for the
heat loss and temperature analytically for the wedge with conducting plates benchmark.

% This function calculates the heat loss and temperature distribution

along

% the lenght of the plates of the wedge with conducting plates. The

inputs:

% gammad: Opening angle of the wedge [45 -180^o]

% epsilon: Emission coefficient of the plates [-]

% N_c: Conduction parameter [-]

% mesh: Number of points along the plate

function [thetax ,qnor ,Qnor] = wedge_fun(gammad ,epsilon ,N_c ,mesh)

%% Solver parameters

countdiv = 4; % Amount of iterations before taking

the middle [-]

accuracy = 0.00001; % Difference for which the while loop

will end [-]

%% Create the plots for the N_c values

gamma = gammad /180* pi; % Angle between the plates [rad]

zeta = 0:1/( mesh -1) :1; % Dimensionless coordinate along

plate [-] x/L

thetaz = ones(1,length(zeta))*0.9; % Initial values for

dimensionless temperature along plate to initiate the iteration

[-]

difference = 1; % Initial value for difference [-]

count = 1; % First count for iteration [-]

counttot = 0; % Start of total counter (only for

postprocessing to check if iteration converges) [-]

%% Calculation of the temperature distribution theta

while difference > accuracy % While loop to calculate

dimensionless temperature distribution

belowzero = 0; % Initial state

aboveone = 0; % Initial state

for i = 1: length(zeta) % Loop over the length of the plate

xi = (i-1)/( length(zeta) -1); % Dimensionless coordinate

over the plate (0-1)

if xi == 0 % Predescribed temperature at xi = 0

thetax(i) = 1;

else % This section calculates the values for K(J)

which is used to calculate theta

J(i-1,1) = 0; % Prescribed because calculation

results in NaN

J(i-1,2: length(zeta)) = 0.5.*(( xi.*( zeta (2: length(zeta))-

cos(gamma)))./sqrt (1 -2.* zeta (2: length(zeta)).*cos(

gamma) + zeta (2: length(zeta)).^2) + cos(gamma).*( sqrt(

xi^2-2*xi.*zeta (2: length(zeta))*cos(gamma) + zeta (2:

length(zeta)).^2) - zeta (2: length(zeta))) - zeta (2:

length(zeta)).*sin(gamma)^2 .*( log(xi-zeta (2: length(

zeta)).*cos(gamma) + sqrt(xi^2 - 2*xi.*zeta (2: length(

zeta)).*cos(gamma) + zeta (2: length(zeta)).^2)) - log(

zeta (2: length(zeta)).*(1-cos(gamma))))); % Equation

(17)
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if gammad < 60

J2(i-1,1) = 0; % Prescribed because calculation

results in NaN

J2(i-1,2: length(zeta)) = 0.5.*(( xi.*( zeta (2: length(

zeta))-cos(2* gamma)))./sqrt (1 -2.* zeta (2: length(

zeta)).*cos(2* gamma) + zeta (2: length(zeta)).^2) +

cos(2* gamma).*( sqrt(xi^2-2*xi.*zeta (2: length(zeta)

)*cos(2* gamma) + zeta (2: length(zeta)).^2) - zeta

(2: length(zeta))) - zeta (2: length(zeta)).*sin (2*

gamma)^2 .*(log(xi-zeta (2: length(zeta)).*cos(2*

gamma) + sqrt(xi^2 - 2*xi.*zeta (2: length(zeta)).*

cos(2* gamma) + zeta (2: length(zeta)).^2)) - log(

zeta (2: length(zeta)).*(1-cos (2* gamma))))); %

Equation (17)

J3(i-1,1) = 0; % Prescribed because calculation

results in NaN

J3(i-1,2: length(zeta)) = 0.5.*(( xi.*( zeta (2: length(

zeta))-cos(3* gamma)))./sqrt (1 -2.* zeta (2: length(

zeta)).*cos(3* gamma) + zeta (2: length(zeta)).^2) +

cos(3* gamma).*( sqrt(xi^2-2*xi.*zeta (2: length(zeta)

)*cos(3* gamma) + zeta (2: length(zeta)).^2) - zeta

(2: length(zeta))) - zeta (2: length(zeta)).*sin (3*

gamma)^2 .*(log(xi-zeta (2: length(zeta)).*cos(3*

gamma) + sqrt(xi^2 - 2*xi.*zeta (2: length(zeta)).*

cos(3* gamma) + zeta (2: length(zeta)).^2)) - log(

zeta (2: length(zeta)).*(1-cos (3* gamma))))); %

Equation (17)

K(i-1,:) = xi + epsilon .*(J(i-1,:) + (1-epsilon).*J2(

i-1,:) + (1-epsilon)^2.*J3(i-1,:)); % Equation

(16)

elseif gammad < 90

J2(i-1,1) = 0; % Prescribed because calculation

results in NaN

J2(i-1,2: length(zeta)) = 0.5.*(( xi.*( zeta (2: length(

zeta))-cos(2* gamma)))./sqrt (1 -2.* zeta (2: length(

zeta)).*cos(2* gamma) + zeta (2: length(zeta)).^2) +

cos(2* gamma).*( sqrt(xi^2-2*xi.*zeta (2: length(zeta)

)*cos(2* gamma) + zeta (2: length(zeta)).^2) - zeta

(2: length(zeta))) - zeta (2: length(zeta)).*sin (2*

gamma)^2 .*(log(xi-zeta (2: length(zeta)).*cos(2*

gamma) + sqrt(xi^2 - 2*xi.*zeta (2: length(zeta)).*

cos(2* gamma) + zeta (2: length(zeta)).^2)) - log(

zeta (2: length(zeta)).*(1-cos (2* gamma))))); %

Equation (17)

K(i-1,:) = xi + epsilon .*(J(i-1,:) + (1-epsilon).*J2(

i-1,:)); % Equation (16)

elseif gammad < 180

K(i-1,:) = xi + epsilon .*J(i-1,:); % Equation (16)

end

thetax(i) = 1 + epsilon*N_c*( trapz(zeta (1:i),thetaz (1:i)

.^4.*(xi -zeta (1:i))) - trapz(zeta ,thetaz .^4.*K(i-1,:))

); % Dimensionless temperature distribution;

equation (15)

if thetax(i) < 0 % Changes the state in order to

make sure that the dimensionless temperature is
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between 0 and 1 and does not converge to values which

are impossible

belowzero = 1;

elseif thetax(i) > 1

aboveone = 1;

end

end

end

if belowzero == 1 % Puts the value of theta between

0 and 1, a value below 0 or above 1 is physically impossible

and the model could converge to a physically infeasable

solution.

thetax = (thetax + 1)./2;

elseif aboveone == 1

thetax = 1 - (thetax - 1);

end

count = count +1; % Counter for converging

counttot = counttot + 1 % Total counter

difference = max(abs(thetax - thetaz)); % Maximal difference

between the current and previous dimensionless temperature

distribution

if count == countdiv % After countdiv iterations theta is

chosen in the middle of the previous two distributions for

faster convergence

thetaz = (thetax+thetaz)./2;

count = 1; % Reset counter

else

thetaz = thetax; % Current distribution is kept for

calculating difference in next iteration

end

end

%% Calculation of the normalized heat flux qnor

for i = 1: length(zeta) % For -loop which loops over

the length of the plate

xi = (i-1)/( length(zeta) -1); % Dimensionless coordinate of

the plate x/L

if xi == 0 % At xi = 0 the equation (21)

is used

if gammad < 60

L = 0.5*((1 + cos(gamma)) + (1-epsilon)*(1+ cos (2* gamma))

+ (1-epsilon)^2*(1+ cos (3* gamma)));

elseif gammad < 90

L = 0.5*((1 + cos(gamma)) + (1-epsilon)*(1+ cos (2* gamma)))

;

elseif gammad < 180

L = 0.5*(1+ cos(gamma));

end

qnor(i) = 1-epsilon*L; % Normalized heat flux at xi

= 0; equation (20)

else

if gammad < 60

f(i,:) = sin(gamma)^2/2*( xi.*zeta)./(xi^2 + zeta .^2 - 2*

xi.*zeta.*cos(gamma)).^1.5; % Equation (13)

f2(i,:) = sin (2* gamma)^2/2*( xi.*zeta)./(xi^2 + zeta .^2 -

2*xi.*zeta.*cos(2* gamma)).^1.5; % Equation (13)
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f3(i,:) = sin (3* gamma)^2/2*( xi.*zeta)./(xi^2 + zeta .^2 -

2*xi.*zeta.*cos(3* gamma)).^1.5; % Equation (13)

G(i,:) = f(i,:) + (1-epsilon).*f2(i,:) + (1-epsilon)^2.*

f3(i,:); % Equation (12)

P = 0.5*(1 + (cos(gamma) - zeta)./(1 + zeta .^2 - 2.* zeta

.*cos(gamma)).^0.5); % Equation (26)

P2 = 0.5*(1 + (cos (2* gamma) - zeta)./(1 + zeta .^2 - 2.*

zeta.*cos(2* gamma)).^0.5); % Equation (26)

P3 = 0.5*(1 + (cos (3* gamma) - zeta)./(1 + zeta .^2 - 2.*

zeta.*cos(3* gamma)).^0.5); % Equation (26)

M = 1 - epsilon .*(P + (1-epsilon).*P2 + (1-epsilon)^2.*P3

); % Equation (25)

elseif gammad < 90

f(i,:) = sin(gamma)^2/2*( xi.*zeta)./(xi^2 + zeta .^2 - 2*

xi.*zeta.*cos(gamma)).^1.5; % Equation (13)

f2(i,:) = sin (2* gamma)^2/2*( xi.*zeta)./(xi^2 + zeta .^2 -

2*xi.*zeta.*cos(2* gamma)).^1.5; % Equation (13)

G(i,:) = f(i,:) + (1-epsilon).*f2(i,:);

%

Equation (12)

P = 0.5*(1 + (cos(gamma) - zeta)./(1 + zeta .^2 - 2.* zeta

.*cos(gamma)).^0.5); % Equation (26)

P2 = 0.5*(1 + (cos (2* gamma) - zeta)./(1 + zeta .^2 - 2.*

zeta.*cos(2* gamma)).^0.5); % Equation (26)

M = 1 - epsilon .*(P + (1-epsilon).*P2);

%

Equation (25)

elseif gammad < 180

f(i,:) = sin(gamma)^2/2*( xi.*zeta)./(xi^2 + zeta .^2 - 2*

xi.*zeta.*cos(gamma)).^1.5; % Equation (13)

G(i,:) = f(i,:);

% Equation (12)

P = 0.5*(1 + (cos(gamma) - zeta)./(1 + zeta .^2 - 2.* zeta

.*cos(gamma)).^0.5); % Equation (26)

M = 1 - epsilon .*P;

% Equation (25)

end

qnor(i) = thetax(i)^4 - epsilon*trapz(zeta ,thetax .^4.*G(i,:))

; % Normalized heat flux; Equation (19)

Qnor = epsilon*trapz(zeta ,thetax .^4.*M);

% Normalized total heat flux;

Equation (24)

end

end
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A.4.4 Numerical Calculation

The numerical calculation of the wedge with conducting plates benchmark is performed using the
Surface-to-Surface Radiation and the Heat transfer in Solids modules in COMSOL. The �gures in
this section describe how the model is developed.

Figure A.38: The parameter list used to describe
the geometry and the physics Figure A.39: The geometry of the model

Figure A.40: The adiabatic boundary condition for
the Heat Transfer in Solids module,
prescribing a heat �ux of 0W through
these surfaces.

Figure A.41: The temperature boundary condition
for the Heat Transfer in Solids mod-
ule, prescribing the temperature of Tb
of these surfaces. This temperature
is de�ned in the parameter list as

Tb =
(
κtNc
Lσ

)1/3
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Figure A.42: Boundary condition for the Surface-
to-Surface Radiation module pre-
scribing radiation emitted or received
on these surfaces.

Figure A.43: Boundary condition for the Surface-
to-Surface Radiation module describ-
ing opaques surfaces with specular re-
�ection.

Figure A.44: Radiation Settings Figure A.45: The mesh of the geometry

Figure A.46: Mesh settings
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B Square Passage including Angle Dependent Re�ection and

Polarization

This appendix contains details on the square passage benchmark. Section B.1 describes several studies
conducted on the analytical and numerical models. The fact that the results for both models converge
is shown in this section. In section B.2 the MatLab model for the analytical approximation is shown.
The way the numerical model is constructed is displayed in section B.3.

B.1 Re�nement studies

Analytical approximation convergence

In order to derive the converged value of the analytical approximation function of the square passage
benchmark, the number of re�ections and number of subdivisions was increased. To prove that the
function converges, three contour plots are shown in �gure B.1, where the in�uence of increasing the
re�ections and subdivisions is shown.
The value for the transmission at 10 subdivisions and 10 re�ections is taken as the reference: τ = 1.
From the contour plots can be derived that the approximation becomes more accurate when increasing
both parameters. Which of the two parameters is restricting the convergence depends on the length
to width ratio. For a short passage, the number of subdivisions is restricting, where the number of
re�ections is the restricting parameter for long passages.

Figure B.1: These three contour plots show the in�uence of increasing the number of re�ections and sub-
divisions on the results of the analytical approximation. The di�erent plots represent di�erent
length to width ratios. When increasing both the number of re�ections and subdivisions, the
result will converge. However the length to width ratio strongly in�uences which parameter is
the restricting factor. For short passages the number of subdivisions is of a larger in�uence and
for long passages the number of re�ections is the main restriction.
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Numerical Model

The quality of the numerical result is strongly dependent on the settings used. Three settings are
varied for the numerical model to evaluate the in�uence on the results: (1) the ratio of the number
of bundles and the amount of rays per bundle, (2) the mesh and (3) the number of rays released at
the inlet.
In the ray tracing model it is possible to in�uence in what way the rays are released. On the surface a
number of ray bundles (N) is released. Each bundle contains a number of rays (Nw) and the direction
of these rays is randomly distributed.
The in�uence of the ratio between the amount of bundles and the amount of rays per bundle on the
transmission is evaluated by calculating the relative error between the analytical and numerical result
for the transmission. This is shown in �gure B.2 for a normal re�ection coe�cient ρn = 0.8.
The graph on the left shows the relative error for each length over width ratio. The error is higher for
larger lengths of the passage. In order to determine which N/Nw-ratio is most favorable the minimal
error for each L/D-ratio is evaluated and subtracted from the relative error. The result is shown in
the graph on the right.
For every L/D-ratio an N/Nw-ratio of 1.5 results in the smallest error. This ratio is used for the rest
of the models.

Figure B.2: These graphs shown the in�uence of the ratio between the amount of bundles released (N) and
the amount of rays per bundle (Nw), by evaluating the relative error between the numerical and
analytical results for ρn = 0.8. The graph on the right is obtained by subtracting the minimal
error for every L/D-ratio from the error in the graph on the left. For N/Nw = 1.5 the error is
the smallest for all L/D-ratios.
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The second model parameter that has been evaluated is the amount of mesh elements. In general it
holds for Finite Element Models that the result is more accurate for a higher number of elements.
However this model is an exception.
The amount of energy lost to the side walls depends on the angle of incidence and the polarization
state of the radiation. These are determined by calculating the dot product between the ray direction
vector and the normal vector of the wall. Since the walls are �at, the normal vector does not become
more accurate for a �ner mesh, this would be the case for curved walls.
Figure B.3 shows the conducted study, where the in�uence of the mesh size is evaluated for ρn = 0.8
and di�erent length to width ratios. The mean value for each length to width ratio is evaluated and
subtracted from each evaluation (equation B.1). This results in a certain deviation of the transmission
for di�erent mesh sizes.
From �gure B.3 can be derived that the in�uence of di�erent mesh sizes is less than 0.5%.

Dev(L/D, ref)[%] =
τ(L/D, ref)− τavg(L/D)

τavg(L/D)
· 100[%] (B.1)

Figure B.3: This graph shows the percentage of
deviation of the transmission through
the square passage for changing the
mesh size for ρn = 0.8 and various
L/D-ratios. The deviation is less than
0.5%, from this can be concluded that
the mesh has a very small in�uence on
the transmission.

Figure B.4: This graph shows the percentage of
deviation of the transmission through
the square passage for increasing the
number of released rays for ρn = 0.8
and various L/D-ratios. The result-
ing transmission converges to a value
when increasing the number of rays.

The third model parameter that has been evaluated is the amount of rays released at the inlet (N ·Nw).
Increasing the amount of rays released will increase the accuracy of the calculated transmission. This
is shown in �gure B.4 where the deviation calculated by equation B.1 is plotted for increasing number
of rays. The normal re�ection coe�cient is equal to ρn = 0.8 and various length to width ratios are
evaluated. The resulting transmission stabilizes when increasing the number of rays, which means
that the result converges.
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B.2 Analytical Approximation

The function in the following script calculates the transmission through a square passage. The type
of re�ection taken into account can be changed by choosing which expression for rhoDmat is used.

% This function evaluates the transmission through the square passage

. The

% inputs are:

% nreal: Refractive index of the wall [-]

% k: Absorptive index of the wall [-]

% x: Length over width ratio of the passage [-]

% maxN: Maximum number of reflection taken into account [-]

% Idisc: Number of subdivisions of the end surfaces for the first

% reflection = Idisc ^2 [-]

function [Qtot] = Polarization_fun(nreal ,k,x,maxN ,Idisc)

%% Input variables

D = 0.2; % Width of the

passage [m]

rhon = ((nreal -1) ^2+k^2)/(( nreal +1)^2+k^2); % Normal reflectivity

of the wall [-]

L = x*D; % Length of the

passage [m]

%% Define end plane and number of reflections

surf = 0; % Initial value

QF = 0; % Initial value

QKer = 0; % Initial value

for N = 0:maxN % Loop over the number of reflections

for M = 0:N % Loop over the end planes per reflection

J = N-M; % Determine plane J for chosen plane M

%% Discretization grid

if N == 0 || N == 1 % Create the grid for 0 and 1 reflections

Im1 = Idisc;

Ij1 = Idisc;

Im2 = Idisc;

Ij2 = Idisc;

else

Im2 = ceil (2* Idisc/N); % Function defined to decrease the

number of subdivisions for a higher number of reflections

Ij2 = Im2;

Im1 = ceil (2* Idisc/N);

Ij1 = Im1;

end

%% Assign begin and end surf aces

for j1 = 1:Ij1 % Loop over all subdivisions of the end plane

for m1 = 1:Im1

for j2 = 1:Ij2

for m2 = 1:Im2

surf = surf + 1; % Count surface subdivision

%% Kernel calculation

x1 = [0;D/Ij1*j1 -D/(Ij1*2);D/Im1*m1-D/(Im1 *2)]; % Starting

coordinate of ray vector

[x2,Fxi1 ,Fxi2 ,Feta1 ,Feta2] = x2_fun(D,L,M,J,Im2 ,Ij2 ,m2,j2); % End

coordinate and help variables for ray vector

A2 = (Fxi2 -Fxi1)*(Feta2 -Feta1); % Surface area of end

subdivision

r = x2 - x1; % Ray direction vector
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rlength = norm(r); % Length traveled by ray

theta_release = acos(dot(r/norm(r) ,[1;0;0])); % Angle of

incidence

Ker = cos(theta_release)*cos(theta_release)/(pi*rlength ^2)*A2; %

Radiation Kernel

%% Heat flux calculation

E = [100/( Im1*Ij1) 100/( Im1*Ij1) 0 0]; % Energy matrix

I = [1/2;1/2;0;0]; % Intensity matrix

% rhoDmat = diag ([1 1 1 1])*rhon^N; % Constant

reflectivity

% rhoDmat = rho_adep(nreal ,k,D,N,x1 ,r); % Only angle

dependent reflection - no polarization

rhoDmat = rhoD_matrix(nreal ,k,D,N,x1,r); % Multiplication of

the rotation and reflection matrix

dQKer(surf) = E*rhoDmat*I*Ker; % Heat flux from one

subdivision of the start plane to one subdivision of the end

plane

QKer = QKer + dQKer(surf); % Summation for all

surface combinations

end

end

end

end

end

end

Qtot = real(QKer *4); % Heat flux multiplied by 4 due to

symmetry

This function is used in the Polarization_fun to determine the coordinates of the end point of the
ray vector for a given subdivision of the end plane.

% This function derives the coordinate of the end point of the ray

vector

% on the end plane. It also derives help variables to calculate the

surface

% area of the subdivision

function [x2,Fxi1 ,Fxi2 ,Feta1 ,Feta2] = x2_fun(D,L,M,J,Im2 ,Ij2 ,m2 ,j2)

if J == 0 % Due to the smaller end planes at 0 reflections a

slightly different calculation is required

x2_2 = D/2 + D/(Ij2 *2)*j2 - D/(Ij2 *4); % y-component of the

end point of the ray vector

Fxi1 = x2_2 - D/(Ij2 *4); % Help variable for area

calculation

Fxi2 = x2_2 + D/(Ij2 *4);

else

x2_2 = D*J + D/Ij2*j2 - D/(Ij2 *2);

Fxi1 = x2_2 - D/(Ij2 *2);

Fxi2 = x2_2 + D/(Ij2 *2);

end

if M == 0 % Due to the smaller end planes at 0 reflections a

slightly different calculation is required

x2_3 = D/2 + D/(Im2 *2)*m2 - D/(Im2 *4); % z-component of the

end point of the ray vector

Feta1 = x2_3 - D/(Im2*4);

Feta2 = x2_3 + D/(Im2*4);

else

x2_3 = D*M + D/Im2*m2 - D/(Im2 *2);
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Feta1 = x2_3 - D/(Im2*2);

Feta2 = x2_3 + D/(Im2*2);

end

x2 = [L;x2_2;x2_3]; % Coordinates of the end of the ray

vector

This function is used in the Polarization_fun to determine the re�ection and rotation matrix for
a ray vector. This includes the in�uence of angle-dependency, polarization and the rotation of the
polarization planes.

%% Description

% This function derives two 4x4 matrices: the rho -matrix and the D-

matrix.

% The result of this function is the multiplication of these two

matrices.

% And is used in the Polarization_fun. The rho -matrix describes the

% reflectivity at a certain angle of incidence for polarized

radiation. The

% D-matrix describes the rotation of the polarization planes after

one

% reflection.

%% Input

% nreal - the refractive index (>0) of the material of the duct

% k - the extinction coefficient (>=0) of the material of the duct

% D - the width and height of the square duct

% N - number of reflections with the duct wall

% x1 - center of the surface at the entrance of the duct

% r - vector from the entrance to the end of the duct

function [rhoDmat] = rhoD_matrix(nreal ,k,D,N,x1,r)

Dmat (:,:,1) = diag ([1 1 1 1]); % Initial rotation matrix (

unity)

miter = 1; % Initial iteration for left/

right (set to 1)

jiter = 1; % Initial iteration for top/

bottom (set to 1)

rn_loc (:,1) = r/norm(r); % Initial normalized local

direction vector

if N == 0 % No reflections returns the

unity matrix

rhoDmat = Dmat (:,:,1);

else % If there are reflections the

calculation loops over all reflections

for i = 1:N

Ay(i) = abs(( jiter*D - x1(2))/r(2)); % Multiplication

constant for the relative distance towards the side of the

duct

Az(i) = abs(( miter*D - x1(3))/r(3)); % Multiplication

constant for the relative distance towards the top/bottom

of the duct

if Ay(i) < Az(i) % The smallest multiplication

constant is chosen since that is where the ray will bounce

first left/right or top/bottom

A(i) = Ay(i); % Multiplication constant

left/right

if mod(jiter ,2) == 0 % If the iteration is even

the ray bounces with the left wall and otherwise with
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the right wall

n(:,i) = [0;1;0]; % Normal vector

else

n(:,i) = [0; -1;0]; % Normal vector

end

jiter = jiter +1; % Add 1 to change direction

of next bounce

else

A(i) = Az(i); % Multiplication constant top

/bottom

if mod(miter ,2) == 0 % If the iteration is even

the ray bounces with the bottom wall and otherwise

with the top wall

n(:,i) = [0;0;1]; % Normal vector

else

n(:,i) = [0;0; -1]; % Normal vector

end

miter = miter +1; % Add 1 to change direction

of next bounce

end

s_in(:,i) = cross(rn_loc(:,i),n(:,i))./norm(cross(rn_loc(:,i)

,n(:,i))); % Unit vector perpendicular to plane of

incidence for incoming ray

p_in(:,i) = cross(s_in(:,i),rn_loc(:,i));

% Unit vector parallel

to plane of incidence and perpendicular to ray for

incoming ray

thetai(i) = acos(abs(dot(n(:,i),rn_loc(:,i))));

% Angle of incidence

rn_loc(:,i+1) = -dot(rn_loc(:,i),n(:,i)).*n(:,i) + dot(rn_loc

(:,i),cross(n(:,i),s_in(:,i))).*cross(n(:,i),s_in(:,i));

% Local ray direction vector

s_em(:,i) = s_in(:,i);

%

Unit vector perpendicular to plane of incidence for

emitted ray

p_em(:,i) = cross(s_em(:,i),rn_loc(:,i+1));

% Unit vector parallel to

plane of incidence and perpendicular to ray for emitted

ray

a2 = 0.5*( sqrt(( nreal^2-k^2 - sin(thetai(i)).^2) .^2 + 4*nreal

^2*k^2) + (nreal^2-k^2)-sin(thetai(i)).^2); % Help

variable for rho calculation

b2 = 0.5*( sqrt(( nreal^2-k^2 - sin(thetai(i)).^2) .^2 + 4*nreal

^2*k^2) - (nreal^2-k^2)+sin(thetai(i)).^2); % Help

variable for rho calculation

a = sqrt(a2);

% Help variable for rho calculation

b = sqrt(b2);

% Help variable for rho calculation

deltap(i) = atan ((2* cos(thetai(i))*(( nreal^2-k^2)*b - (2*

nreal*k)*a))/(( nreal ^2+k^2)^2*cos(thetai(i))^2 - (a^2+b^2)

)); % Phase change for p-polarized radiation
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deltas(i) = atan (2*b*cos(thetai(i))/(cos(thetai(i)).^2 - a^2

- b^2));

% Phase

change for s-polarized radiation

delta(i) = 2*pi + (deltap(i) - deltas(i));

% Difference in phase change upon reflection

rhoss(i) = ((cos(thetai(i)) - a).^2+b.^2) ./(( cos(thetai(i)) +

a).^2+b.^2); % Perpendicular component of reflectivity

matrix

rhopp(i) = ((( nreal^2-k^2).*cos(thetai(i))-a).^2 + (2* nreal*k

.*cos(thetai(i)) - b).^2) ./((( nreal^2-k^2).*cos(thetai(i))

+a).^2 + (2* nreal*k.*cos(thetai(i)) + b).^2); %

Parallel component of reflectivity matrix

rhouu(i) = sqrt(rhoss(i)*rhopp(i))*cos(delta(i));

% Matrix element reflectivity

matrix

rhovv(i) = rhouu(i);

%

Matrix element reflectivity matrix

rhovu(i) = sqrt(rhoss(i)*rhopp(i))*sin(delta(i));

% Matrix element reflectivity

matrix

rhouv(i) = -rhovu(i);

%

Matrix element reflectivity matrix

rhomat(:,:,i) = [rhoss(i) 0 0 0; 0 rhopp(i) 0 0; 0 0 rhouu(i)

rhouv(i); 0 0 rhovu(i) rhovv(i)]; % Reflectivity

matrix

if i == 1 % If this is

the first reflection rhoDmat does not exist yet so needs

to be created from rhomat and Dmat

rhoDmat (:,:,i) = rhomat(:,:,i)*Dmat(:,:,i);

else

beta_poss = [acos(dot(p_em(:,i-1),p_in(:,i))), 2*pi-acos(

dot(p_em(:,i-1),p_in(:,i))), asin(-dot(p_em(:,i-1),

s_in(:,i))), asin(-dot(p_em(:,i-1),s_in(:,i)))+pi];

% Calculate beta with two equations which give 4

values

beta_diff = [beta_poss (1) - beta_poss (3),beta_poss (2) -

beta_poss (4),beta_poss (3) - beta_poss (2),beta_poss (4)

- beta_poss (1)]; % A vector with the difference

between the four values is created

for search = 1: length(beta_diff) % By looking

which two of the four values are equal the value of

beta is determined

if beta_diff(search) < 1e-10

beta(i) = beta_poss(search);

end

end

Dmat(:,:,i) = [cos(beta(i))^2 sin(beta(i))^2 0.5* sin (2*

beta(i)) 0; sin(beta(i))^2 cos(beta(i))^2 -0.5*sin (2*

beta(i)) 0; -sin (2* beta(i)) sin(2* beta(i)) cos(2* beta(

i)) 0; 0 0 0 1]; % Rotation matrix

rhoDmat (:,:,i) = rhomat(:,:,i)*Dmat(:,:,i)*rhoDmat (:,:,i
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-1); % rho -matrix multiplied by the rotation

matrix and then multiplied by the previous rhoDmatrix

end

end

rhoDmat = rhoDmat (:,:,N); % Resulting matrix is the

rhoDmatrix after the last reflection.

end

This function is used in the Polarization_fun to determine the re�ection when only angle dependent
re�ection is taken into account.

%% Description

% This function derives one 4x4 matrix: the rho -matrix. The matrix is

used

% in the Polarization_fun. The rho -matrix describes the reflectivity

at a

% certain angle of incidence without taking polarization state into

account

%% Input

% nreal - the refractive index (>0) of the material of the duct

% k - the extinction coefficient (>=0) of the material of the duct

% D - the width and height of the square duct

% N - number of reflections with the duct wall

% x1 - center of the surface at the entrance of the duct

% r - vector from the entrance to the end of the duct

function [rho_adep ,thetai ,n] = rho_adep(nreal ,k,D,N,x1,r)

miter = 1; % Initial iteration for left/

right (set to 1)

jiter = 1; % Initial iteration for top/

bottom (set to 1)

rn_loc (:,1) = r/norm(r); % Initial normalized local

direction vector

if N == 0 % No reflections returns the

unity matrix

rho_adep = 1;

else % If there are reflections the

calculation loops over all reflections

for i = 1:N

Ay(i) = abs(( miter*D - x1(2))/r(2)); % Multiplication

constant for the relative distance towards the side of the

duct

Az(i) = abs(( jiter*D - x1(3))/r(3)); % Multiplication

constant for the relative distance towards the top/bottom

of the duct

if Ay(i) < Az(i) % The smallest multiplication

constant is chosen since that is where the ray will bounce

first left/right or top/bottom

A(i) = Ay(i); % Multiplication constant

left/right

if mod(miter ,2) == 0 % If the iteration is even

the ray bounces with the left wall and otherwise with

the right wall

n(:,i) = [0;1;0]; % Normal vector

else

n(:,i) = [0; -1;0]; % Normal vector

end

miter = miter +1; % Add 1 to change direction
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of next bounce

else

A(i) = Az(i); % Multiplication constant top

/bottom

if mod(jiter ,2) == 0 % If the iteration is even

the ray bounces with the bottom wall and otherwise

with the top wall

n(:,i) = [0;0;1]; % Normal vector

else

n(:,i) = [0;0; -1]; % Normal vector

end

jiter = jiter +1; % Add 1 to change direction

of next bounce

end

s_in(:,i) = cross(rn_loc(:,i),n(:,i))./norm(cross(rn_loc(:,i)

,n(:,i))); % Unit vector perpendicular to plane of

incidence for incoming ray

thetai(i) = acos(abs(dot(n(:,i),rn_loc(:,i)))) ;

% Angle of incidence

rn_loc(:,i+1) = -dot(rn_loc(:,i),n(:,i)).*n(:,i) + dot(rn_loc

(:,i),cross(n(:,i),s_in(:,i))).*cross(n(:,i),s_in(:,i));

% Local ray direction vector

a2 = 0.5*( sqrt(( nreal^2-k^2 - sin(thetai(i)).^2) .^2 + 4*nreal

^2*k^2) + (nreal^2-k^2)-sin(thetai(i)).^2); % Help

variable for rho calculation

b2 = 0.5*( sqrt(( nreal^2-k^2 - sin(thetai(i)).^2) .^2 + 4*nreal

^2*k^2) - (nreal^2-k^2)+sin(thetai(i)).^2); % Help

variable for rho calculation

a = sqrt(a2);

% Help variable for rho calculation

b = sqrt(b2);

% Help variable for rho calculation

rhoss(i) = ((cos(thetai(i)) - a).^2+b.^2) ./(( cos(thetai(i)) +

a).^2+b.^2); % Perpendicular component of reflectivity

matrix

rhopp(i) = ((( nreal^2-k^2).*cos(thetai(i))-a).^2 + (2* nreal*k

.*cos(thetai(i)) - b).^2) ./((( nreal^2-k^2).*cos(thetai(i))

+a).^2 + (2* nreal*k.*cos(thetai(i)) + b).^2); %

Parallel component of reflectivity matrix

if i == 1 % If this is

the first reflection rhoDmat does not exist yet so needs

to be created from rhomat and Dmat

rho_adep(i) = (rhoss(i)+rhopp(i))/2;

else

rho_adep(i) = (rhoss(i)+rhopp(i))/2* rho_adep(i-1);

% rho -matrix multiplied by the rotation matrix

and then multiplied by the previous rhoDmatrix

end

end

rho_adep = rho_adep(N); % Resulting matrix is the

rhoDmatrix after the last reflection.

end
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This function is used to evaluate Polarization_fun by gradually increasing the number of re�ections
and subdivisions. The accuracy of the converged answer is given as an input. The amount of
re�ections and subdivisions are increased separately, to determine if the result still changes for one
of the two.

%% Description

% This function helps in evaluating the Polarization_fun , by

automatically

% choosing the appropriate values for the maximum number of

reflections (N)

% and the discretization to evaluate , to achieve a prescribed

accuracy of

% the solution.

%% Output

% Qfin - The final value for the transmission through the tube

% dQ - The resulting relative accuracy [%]

% N - The amount of reflections that are taken into account

% Idisc - The amount of discretizations the model undergoes

%% Input

% nreal - the refractive index (>0) of the material of the duct

% k - the extinction coefficient (>=0) of the material of the duct

% x - The relative length of the duct: x = L/D

% acc - The requested relative accuracy for the solution

function [Qfin ,dQ ,N,Idisc ,Q] = Eval_Polfun(nreal ,k,x,acc)

maxcount = 30; % The maximum

number of evaluations - to prevent the script from running forever

N(1) = 3; % Initial

number of reflections taken into account

Idisc (1) = 3; % Initial discretizations the model undergoes

%% The function is evaluated 3 times to have initial values of the

result

count = 1 % Initiate

counter

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count)); %

Transmission for initial values

count = count + 1 % Counter

N(count) = N(count -1) + 1; %

Increase the number of reflections by 1

Idisc(count) = Idisc(count -1); %

Thee discretizations does not change

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count)); %

Transmission

DQN = abs(Q(count)-Q(count -1)); % Relative difference for

increasing the number of reflections by 1

count = count + 1

N(count) = N(count -1); % The

number of reflections does not change

Idisc(count) = Idisc(count -1) + 1; %

Increase the discretizations by 1

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count)); %

Transmission

DQI = abs(Q(count)-Q(count -1)); % Relative difference for
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increasing the discretizations by 1

%% If the difference for both the reflections and discretizations is

above acc both N and Idisc are increased

while DQN > acc && DQI > acc && count < maxcount

count = count + 1

N(count) = N(count -1) + 1;

Idisc(count) = Idisc(count -1);

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count));

DQN = abs(Q(count)-Q(count -1));

count = count + 1

N(count) = N(count -1);

Idisc(count) = Idisc(count -1) + 1;

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count));

DQI = abs(Q(count)-Q(count -1));

end

%% If the difference for the discretizations is met only the number

of reflections is increased

while DQN > acc && count < maxcount

count = count + 1

N(count) = N(count -1) + 1;

Idisc(count) = Idisc(count -1);

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count));

DQN = abs(Q(count)-Q(count -1));

end

%% If the difference for the number of reflections is met only the

discretizations is increased

while DQI > acc && count < maxcount

count = count + 1

N(count) = N(count -1);

Idisc(count) = Idisc(count -1) + 1;

Q(count) = Polarization_fun(nreal ,k,x,N(count),Idisc(count));

DQI = abs(Q(count)-Q(count -1));

end

%% If both conditions are met the function returns the last evaluated

values of Q and DQ

N = N(count);

Idisc = Idisc(count);

Qfin = Q(count);

dQ = max(DQI ,DQN);
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B.3 Numerical Model

The numerical calculation of the square passage benchmark is performed using the Ray Optics module
in COMSOL. The �gures in this section describe how the model is developed.

Figure B.5: The parameter list used to describe the geometry and the physics

Figure B.6: Geometry of the model

Figure B.7: De�nitions used to de�ne the re�ection coe�cients of the side walls of the geometry using the
Fresnel equations
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Figure B.8: The inlet boundary condition prescribing the emission of the source unpolarized power in a
Lambertian distribution

Figure B.9: The boundary condition of the specular side walls, with the absorption coe�cient de�ned as 1
minus the re�ection coe�cient. The deposited ray power is evaluated from the side walls for
the di�erent lengths, which is the pupose of the partitions.

Figure B.10: In the variables of the wall boundary condition the re�ection coe�cients are overruled by the
Fresnel re�ection de�ned in the de�nitions
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Figure B.11: At the end surface all rays are frozen
Figure B.12: The mesh assigned to the geometry

using Quads for the side walls

Figure B.13: Mesh settings Figure B.14: Study settings

Figure B.15: After the last evaluation there are still rays that did not reach the end of the passage. The
study is stopped when all rays are below the threshold value. The amount of energy that is not
yet transferred to the side walls is such a small fraction that it can be neglected.
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C Experimental Validation

This section of the appendix describes the experiment model in more detail. Section C.1 describeb
the analytical model of Miranda. Section C.2 shows the MatLab model that is used to solve this
analytical model and then derive the values for the correction factor γ which is used to calculate the
original raw data from the experiment. The �nal section C.3 shows the ray tracing model developed
in COMSOL.

C.1 Analytical Model Transmission Metal Tube

The analytical model described by Miranda in A Calculation and Experimental Veri�cation of the
Infrared Transmission Coe�cient of Straight Cylindrical Metal Tubes (1996) is solved using the Mat-
Lab model described in C.2. This chapter describes which equations are used.
The model derives the transmission through the tube by calculating the fraction of transmission of
one single ray and then integrating over all the possible release conditions.
The fraction of transmission of one ray (t) is calculated by the following equation:

t =
ρN⊥ + ρN‖

2
(C.1)

In this equation ρ⊥ and ρ‖ represent the re�ection coe�cients for perpendicular and parallel polarized
radiation. The number of re�ections of the ray with the side walls is indicated by N . Since the
perpendicular and parallel component are considered separately it can be concluded that polarization
is taken into account. However the rotation of the polarization planes is not taken into account and
this is an important factor in calculating the fraction of transmission.
The re�ection coe�cients are calculated by the following equations, which are derived from the Fresnel
equations:

ρ‖(Φ) =
(n cos(Φ)− 1)2 + (κ cos(Φ))2

(n cos(Φ) + 1)2 + (κ cos(Φ))2
(C.2)

ρ⊥(Φ) =
(n− cos(Φ))2 + κ2

(n+ cos(Φ))2 + κ2
(C.3)

In this equation Φ indicates the angle of incidence of the radiation with respect to the metal wall.
Due to the cylindrical geometry, this is the same for all bounces of a single ray. The variable n
represents the refraction index and κ the absorption index of the metal wall. These are calculated
using the Hagen-Ruebens equation:

κ = n =

√
λ0µ0c0
4πre

=

√
0.003λ0
re

(C.4)

In this equation λ0 is the wavelength of the radiation, µ0 is the permeability of vacuum, c0 is the
speed of light in vacuum and re is the electrical resistivity of the metal wall.
In order to derive equation C.1 the number of re�ections of the ray needs to be calculated. This is
done by evaluating the following equation:

N = ceil

(
L− d0
d

)
(C.5)

Here L is the length of the tube, d0 is the distance the ray travels along the z-axis before the �rst
re�ection and d is the distance between re�ections. The ceil-function takes the �rst integer greater
than the value of the fraction.
The values of d, d0 and Φ depend on the entrance conditions of the ray and the radius of the metal
tube, R. The entrance conditions are: r the distance from the origin at which the ray crosses the
entrance plane, θ the angle that the ray's projection makes onto this plane with r, and α is the angle
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the ray makes with the z-axis. Figure C.1 shows a schematic representation of the tube, including
the parameters stated below.

d = 2

√
R2 − r2 sin(θ)

tan(α)
(C.6)

d0 =

√
R2 − r2 sin2(θ)− r cos(θ)

tan(α)
(C.7)

cos(Φ) =

√
R2 − r2 sin2(θ)

R
sin(α) (C.8)

Figure C.1: Schematic representation of the metal tube of the analytical model of Miranda (1996). The
angle of incidence with the wall, Φ, the distance between re�ections, d and the distance before
�rst re�ection d0 are visualized.

The total transmission through the tube is calculated with the following expression:

ttotal =

∫ ∫ ∫ ∫
t(r, θ, α, λ)w(r, α, λ)drdθdαdλ∫ ∫ ∫

w(r, α, λ)drdαdλ
(C.9)

Here w is a weighting function:

w = r sin(2α)Eb(λ, T ) (C.10)

The black body emission is approximated by the Wien's Formula:

Eb(λ, T ) =
2πC1

n2λ5
[
exp

(
C2

nλT

)
− 1
] (C.11)
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C.2 Calculation of Correction Factor γ

This function evaluates the analytical calculation formulated by Miranda in A Calculation and Ex-
perimental Veri�cation of the Infrared Transmission Coe�cient of Straight Cylindrical Metal Tubes
(1996), to calculate the transmission through a metal tube. The resulting transmission is used in the
calculation of the correction factor γ.

% Analytical model as described by Miranda.

clear all; close all; clc;

%% Optical constants

sigma = 5.6704e-8; % Stefan Boltzmann constant

C1 = 0.59552138 e8; % Constant [W um^4 / (m^2 sr)]

C2 = 14387.752; % Constant [um K]

%% Geometry parameters

Lvec = [0.4 1.05 9.8 25.4 50.3 79.8 114.8 150]; % Length of tube

R = 3.35; % Tube radius

re = 5e-5; % Electrical resistivity tube wall

T = 300; % Temperature source

nvac = 1; % Refractive index vacuum

%% Range of the variables

rmin = 0; % Radius of the disk

rmax = 3.15;

alphamin = 0; % Angle with z-axis at entrance

alphamax = pi/2;

lambdamin = 3; % Wavelength of radiation

lambdamax = 250;

thetamin = 0; % Angle of projection onto entrance plane

thetamax = pi;

%% Solution of the bottom of the calculation

% Does not depend on the length of the pipe

Eyb = @( lambda) (2*pi*C1)./( nvac .^2.* lambda .^5.*( exp(C2./( nvac.*

lambda .*T)) -1)); % Black body emission as function of

wavelength

w = @(r,alpha ,lambda) r.*sin (2.* alpha).*Eyb(lambda); % Weighting

function

tbot = integral3(w,rmin ,rmax ,alphamin ,alphamax ,lambdamin ,lambdamax)*

thetamax; % Denominator of the total transmission integral

%% Solution of the top part of the fraction

% For different pipe lengths

for count = 1: length(Lvec) % Loop over all tube lengths

L(count) = Lvec(count); % Length for this iteration

n = @( lambda) sqrt (0.003* lambda/re); % Refractive index as

function of wavelength

k = @( lambda) n(lambda); % Absorptive index

d = @(r,theta ,alpha) 2.* sqrt(R^2 - r.^2.* sin(theta).^2)./tan(

alpha); % Distance in z-direction between reflections

d0 = @(r,theta ,alpha) (sqrt(R^2 - r.^2.* sin(theta).^2)-r.*cos(

theta))./tan(alpha); % Distance in z-direction before first

reflection

cosphi = @(r,theta ,alpha) sqrt(R^2 - r.^2.* sin(theta).^2)./R.*sin

(alpha); % Angle of incidence at tube wall

N = @(r,theta ,alpha) ceil((L(count)-d0(r,theta ,alpha))./d(r,theta

,alpha)); % Number of reflections

rhopar = @(r,theta ,alpha ,lambda) ((n(lambda).* cosphi(r,theta ,

alpha) - 1).^2 + (k(lambda).* cosphi(r,theta ,alpha)).^2) ./ ((n

(lambda).* cosphi(r,theta ,alpha) + 1).^2 + (k(lambda).* cosphi(r
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,theta ,alpha)).^2); % Reflection coefficient for parallel

polarized radiation

rhoper = @(r,theta ,alpha ,lambda) ((n(lambda) - cosphi(r,theta ,

alpha)).^2 + k(lambda).^2) ./ ((n(lambda) + cosphi(r,theta ,

alpha)).^2 + k(lambda).^2); % Reflection coefficient for

perpendicular polarized radiation

t = @(r,theta ,alpha ,lambda) (rhopar(r,theta ,alpha ,lambda).^N(r,

theta ,alpha) + rhoper(r,theta ,alpha ,lambda).^N(r,theta ,alpha))

./2; % Function for the transmission of one ray

ttopvar = @(r,theta ,alpha ,lambda) t(r,theta ,alpha ,lambda).*w(r,

alpha ,lambda); % Function inside the numerator of the total

trasmission integral

ATol = 4e-3; % Absolute tolerance for the integral

RTol = ATol; % Relative tolerance for the integral

ttop = integral4(ttopvar ,rmin ,rmax ,thetamin ,thetamax ,alphamin ,

alphamax ,lambdamin ,lambdamax ,'AbsTol ',ATol ,'RelTol ',ATol);

% Numerator of the total transmission integral

tcoef(count) = ttop/tbot *100 % Percentage of transmission

through the tube

end

This script calculates the correction factor γ which is used to convert the experimental results from
the paper. The results from the previous script are used in the calculation.

clear all; close all; clc;

% Radii of the disk and tube

r = 3.15;

R = 3.35;

% Function for the view factor calculation

X = @(L) 1 + (1 + (r./L).^2) ./(r./L).^2;

F = @(L) 0.5.*(X(L) - sqrt(X(L).^2 - 4));

% Length to diameter ratios

x = [0.4 1.05 9.8 25.4 50.3 79.8 114.8];

% Result of the analytical model

t_mod = [99.445001122990600 ,98.063652035308440 ,83.246120719938970 ,...

66.049240776618300 ,49.309597422073340 ,37.505443289180120 ,...

28.964379307464778];

% Calculation of gamma

for i = 1: length(x)

gamma(i) = F(x(i))./( t_mod(i).*0.01) + (1 - F(x(i))./( t_mod(i)

.*0.01)).*(r/R)^2;

end
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C.3 Numerical Model

The numerical calculation of the square passage benchmark is performed using the Ray Optics module
in COMSOL. The �gures in this section describe how the model is developed.

Figure C.2: The parameter list used to describe the
geometry and the physics Figure C.3: Geometry of the model

Figure C.4: De�nitions used to de�ne the re�ection coe�cients of the side walls of the geometry using the
Fresnel equations. The dependency of the re�ection on the wavelength is also de�ned.

Figure C.5: The inlet boundary condition prescribing the emission of the source unpolarized power in a
Lambertian distribution and 20 values for wavelengths
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Figure C.6: The boundary condition of the specular
side walls

Figure C.7: All rays are frozen at the end of the
tube. The deposited ray power is eval-
uated on the copper disk

Figure C.8: Mesh settings Figure C.9: Study settings

Figure C.10: After the last evaluation there are still rays that did not reach the end of the passage. The
study is stopped when all rays are below the threshold value. The amount of energy that is not
yet transferred to the side walls is such a small fraction that it can be neglected.
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D Proof of Concept Experiment

A proof of concept experiment is conducted to evaluate if it is possible to measure thermal radiation
using a simple experiment set up. The re�ected radiation from di�erent surfaces is measured using
an infrared camera. A black radiation source is used, which is able to reach a maximum temperature
of 150oC. The infrared camera used in this experiment is a FLIR T425. The re�ected radiation is
measured for di�erent angles of incidence, as shown in the schematic �gure below.

Figure D.1: Schematic �gure of the experiment, which measures the re�ective properties of the examined
sample using a black radiation source and an infrared camera.

In order to e�ectively assess the re�ected radiation it is important to know the emitted radiation from
the black radiation source. This is also used to calibrate the camera, since the emission coe�cient
of the source is ε = 1. The �gure below shows the measured temperatures of the source with the
infrared camera at di�erent angles. The results from the measurements are displayed in the graph
below that shows the emission of the source as a function of the angle. It can be concluded that the
radiation is emitted in a conical shape.

Figure D.2: Measurements of the black radiation source for di�erent angles
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Figure D.3: The emission of the source as a function of the angle.

For the proof of concept two samples are examined. Both samples are metallic surfaces, but one
re�ects radiation di�usely and the other re�ects specularly.
For the di�use re�ecting surface, a piece of aluminum foil is wrinkled which makes sure the irradi-
ation is re�ected in all directions. This can be seen from the measurements, where the measured
temperature is between 22oC and 24.5oC.
For the second measurement a �at metal surface is examined. The radiation is clearly re�ected spec-
ularly. The shape of the radiation source can be seen clearly in the infrared images. The measured
intensity is also higher than for the di�use re�ection. There seems to be angle dependency in the
re�ection. However to be able to compare this angle dependency with the theory more accurate
measurements are required.

Figure D.4: Measurements of the re�ected radiation for wrinkled aluminum foil that shows di�use re�ection.

Figure D.5: Measurements of the re�ected radiation for a �at metal surface that shows specular re�ection.
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