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Executive summary

Problem context

In the year 2000, more than 200,000 people were heavily injured and 40,000 people died in road
traffic in the European Union. In 2001, these numbers have led the European Commission to
define its new long term zero-vision, by setting a new goal to reduce all fatalities to a value close
to zero by 2050 [4]. In 2017, 25,300 people died and 135,00 people were heavily injured, which is
already a huge improvement [1]. In the last two decades, safer cars have been developed and new
Advanced Driver Assistance Systems (ADAS) systems have been implemented in production cars,
such as Autonomous Emergency Braking (AEB) and Adaptive Cruise Control (ACC), which have
led to less collisions. In current production cars, the AEB and ACC systems are below SAE level
3. The SAE level is a measure which shows the level of driving automation. For ADAS systems
below level 3, the driver is legally liable and has to adapt his driving style to the road conditions;
therefore the driver can adapt certain ADAS settings. For example, the distance to other vehicles
can be chosen in case of the ACC or the driver can set the intervention settings for an AEB system
corresponding to the current road conditions.

The ADAS systems that are in current vehicles must be developed to achieve SAE level 3. For
SAE level 3, the driver is not required to monitor the environment. Since the ADAS system will
automatically adapt its behavior to the environment, for example to the road condition. This
leads to the following problem statement for this research project:

Limited knowledge about the road conditions leads to a large amount of traffic accidents per year.
The current AEB and ACC systems are less effective on slippery roads, since information about
the road is not yet available to be included in the design.

Research goals and questions

In this research a practical goal is defined, which is derived from the problem statement and busi-
ness scope. Furthermore a scientific goal is derived which encompasses the scientific contribution.
The research practical goal is to provide an unified AEB and ACC system which is able to have
robust performance considering the variation of the road conditions as encountered in practice.
Therefore a non-linear tyre model which can simulate different road conditions must be modelled
and validated with a vehicle model from Siemens Simcenter Amesim. The scientific goal is to
provide scientific insights in the usage of a neural network to estimate the maximum road friction
coefficient during driving and provide decision algorithms for the AEB and ACC systems which
can use the estimated to improve the safety. This leads to a main research question:

How can we design an unified AEB and ACC system which is able to have robust performance
considering the variation of the road conditions?

In order to answer this research question a vehicle model which is able to capture the vehicle
behavior on different road surfaces is presented. Subsequently, a method to control the vehicle’s
acceleration with a slip controller by encompassing information about the road conditions is de-
veloped and discussed. Furthermore, a unified AEB and ACC system is developed which considers
information about the road condition. Lastly, a neural network is trained to estimate the maximum
road friction coefficient based on data obtained from a Pacejka tyre model.

Vehicle modelling

To test and validate the ADAS systems, a vehicle model is needed. A dynamic non-linear tyre
model is needed to capture the behavior of the car on different road conditions. In this research,
three different vehicle models are described. First, a model considering only longitudinal dynamics
is described based on the vehicle models from [40] and [54]; thereafter the longitudinal model is
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extended to a model considering longitudinal, lateral, roll and yaw dynamics based on the roll axis
vehicle model from [49] and [23] . Finally, the single-corner vehicle model from [54] is presented,
which is used to design a slip controller. To validate the vehicle behavior, the model is validated
with a vehicle model from Simcenter Amesim, which is a good model to validate against since that
model is validated with real vehicle measurements.

ADAS

In this research, an AEB and ACC system is developed which is able to have robust performance
considering the variation of the road conditions.

Autonomous Emergency Braking is braking that is applied automatically by the vehicle in response
to the detection of a likely collision. The primary goal of AEB technology is to prevent crashes
by detecting a potential conflict and alerting the driver, and, in many systems, aiding in brake
application or automatically applying the brakes [25]. A typical AEB system includes an envir-
onment perception system, an upper-level controller and a lower-level controller. The upper-level
controller is a threat-assessment and decision-making algorithm. The threat-assessment algorithm
decides if a situation is safe or unsafe, and can warn the driver or/and choose to perform an
automatic emergency brake in critical hazardous situations, where the lower-level system controls
the acceleration of the vehicle to the desired acceleration provided by the upper-level controller.

Adaptive Cruise Control originates from Cruise Control, which today is a widespread functionality
in modern vehicles. CC regulates the vehicle speed actuating the throttle only, via tracking of
speed v that is set by the driver. ACC automatically adapts the vehicle’s speed depending on a
predecessor’s behavior, actuating the throttle as well as the brake system. The goal of ACC is
partial automation of the longitudinal vehicle control and the reduction of the workload of the
driver with the aim to support and relieve the driver in a convenient manner.

In this research, Time-to-Collision (TTC) is used to asses the threat. The activation times for the
AEB are scaled proportionally with the road conditions. Therefore, the AEB system is braking
earlier on slippery roads compared to high friction dry roads. Since information about the road
conditions is needed, a maximum road friction estimator is designed. The unified AEB and ACC
system can be seen as two independent systems running simultaneously. However, the system
is optimized to work fluently by designing a smart state machine. Both systems have a positive
influence on each other. The ACC system is maintaining the desired relative distance Dref and
tracks the preceding vehicle’s speed vp, therefore the ACC system can be seen as another pre-
braking stage in some situations, which can lead to more comfort and less interventions from the
AEB system. On the other hand the AEB system leads to a safer experience. Since the maximum
deceleration of an ACC system is -2 [ms−2], an ACC system could not always avoid a collision. An
AEB system is aloud to brake with higher deceleration and, therefore, an AEB system increases
the probability to avoid a collision.

The lower-level controller controls the acceleration via controlling the wheel slips. First a PID-
controller is designed to control the linearized longitudinal vehicle dynamics with actuator dy-
namics and delay. It is concluded that the PID-controller can not ensure stability for all working
conditions (low velocities or high slips). Thereafter a Youla parameterized controller is used to
improve the stability and performance. This controller is able to stabilize the plant for low velocit-
ies, however the closed loop system is still not stable for high slip ratios. Therefore the maximum
slip setpoint is limited to ensure stability, however the stable region is varying for different road
conditions. It is concluded that a maximum road friction estimator could help to ensure stability.
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Road friction estimator

A neural network is trained to estimate the maximum road friction coefficient . The estimated
maximum road friction coefficient is later used in the upper-level controller and the lower-level
controller. Over-estimation leads to smaller activation times (AEB) than required to avoid a col-
lision and can also lead to unstable behavior, which is explained later. Under-estimation leads to
earlier activation times than required to avoid a collision and leads to a lower maximum decelera-
tion. The neural network is trained with simulation data obtained from a Pacejka tyre model. To
obtain the data, a scenario is designed for every road condition where the vehicle is accelerating
and decelerating with 600 random values on a straight road for a certain amount of time. The
goal is to minimize the mean squared error between the estimated maximum road friction coeffi-
cient and the real value of the maximum road friction coefficient. It is concluded that a certain
minimum deceleration or acceleration is needed to accurately estimate the maximum road friction
coefficient, therefore a state machine is designed to improve the accuracy of the estimate.

Conclusions

In this research an unified AEB and ACC system is constructed which is able to have robust per-
formance considering the variation of the road conditions in a simulation environment. Therefore a
non-linear tyre model which can simulate different road conditions is modelled and validated with
a vehicle model from Siemens Simcenter Amesim. Subsequently a slip controller which considers
the delayed actuator dynamics is designed to control the acceleration of the vehicle. Furthermore
a neural network is trained with simulation data to predict the maximum road friction coefficient.
The predicted value of the maximum road friction coefficient is used in the upper-level controller
of the AEB algorithm and is used in the slip control algorithm to determine a stable set point
for the slip controller. It is concluded that adding information about the road conditions in the
upper-level controller of the AEB has positive impact, since the brake actuators are activated
earlier, and therefore, the number of collisions on low friction surfaces is decreased.

This research has multiple limitations. The first limitation is that the ADAS systems and the
maximum road friction estimator are designed to work on straight roads only. The second limita-
tion is that the neural network is trained and validated with simulation data only. Future research
is needed to investigate if the estimator also work with real vehicle data. The third limitation is
that closed-loop stability of the Youla parameterized controller can only guarantee stability if the
accuracy of the maximum road friction estimator is high enough and the last limitation is that all
systems are validated without any sensor or parameter uncertainty.
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1. Introduction
With the development of intelligent techniques, autonomous vehicles have been studied a lot in
recent years. Many advanced driver assistance systems (ADAS) have been applied in production
cars, for example, the Anti Blocking System (ABS), Electronic Stability Control system (ESC),
Active Front Steering (AFS), Forward Collision Warning (FCW), Adaptive Cruise Control (ACC),
and Autonomous Emergency Brake (AEB). One of the key technologies of autonomous vehicles is
longitudinal collision-avoidance control which can avoid or soften vehicle collision effectively via
automated braking.

Siemens has developed PreScan, which is a physics-based simulation platform. PreScan is used
in the automotive industry for the development of Advanced Driver Assistance Systems (ADAS)
that are based on sensor technologies such as radar, laser/lidar, camera, and GPS. PreScan is
also used for designing and evaluating vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication applications as well as autonomous driving applications [57].

The engineering department of Siemens which is located in Helmond, is doing projects regarding
ADAS all around the globe. To attract new collaborations with companies Siemens is always
developing their current systems. Siemens desires an implementation of both a AEB and ACC
system in PreScan, which is able to have robust performance considering the variation of the road
conditions as encountered in practice.

1.1 Problem analysis

In the year 2000, more than 200,000 people were heavily injured and 40,000 people died in road
traffic in the European Union. In 2001, these numbers have led the European Commission to
define its new long term zero-vision, by setting a new goal to reduce all fatalities to a value close
to zero by 2050 [4]. In 2017, 25,300 people died and 135,00 people were heavily injured, which is
already a significant improvement [1]. In the last two decades, safer cars have been developed and
new ADAS systems have been implemented in production cars, such as AEB and ACC, which
have led to less collisions. In [3], a literature review was conducted on the causes of all traffic
accidents in Germany in the year 2011. It showed that 27 % of all accidents involving personal
injuries and passenger cars occurred on slippery roads, where ice was responsible for 5 % of all
cases. Poor road conditions lead to a reduced maximum road friction coefficient µmax between the
tyre and the road. In most cases, the road surface conditions were not the main accident cause.
However, improper driving in combination with a poor road condition was. Improper driving in
combination with a slippery road could often not be corrected in time which lead to the accident.
The studies show that accidents happen, since the longitudinal speed is not adequately adapted to
the road conditions. The driver must use haptic and optical signals to estimate the road surface
during driving since no direct measure is available. A robust and reliable estimate of the maximum
road friction could be effective in assisting the driver.

Another already proven crucial factor to improve road safety and reduce the number of fatalities
are ADAS systems, such as the AEB and ACC. The AEB system is one of the most efficient ways
to lower the social cost of traffic accidents. Most rear-end collisions are caused by the distraction of
drivers and can be prevented by warning for the danger of a collision and/or braking autonomously
if necessary. AEB systems can reduce about 43% rear-end crashes and 50% of rear-end injuries
at low-speed cases [14]. The AEB protocols released by Euro NCAP [25] are tested in average
conditions to achieve objectivity and convenience of the assessment. It is assumed that the road
friction coefficient is nearly 0.9, the road slope is less than 1% grade, and there are no objects
interfering with sensor detection. However, the system is less effective on slippery roads [38]. To
research this phenomenon, a vehicle model should be used, which includes the tyre-road friction
nonlinear dynamics.

In Figure 1.1, the different SAE levels which are a used to measure the level of automation are
shown.
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Figure 1.1: Different SAE levels.

In current production cars, the AEB and ACC systems are below SAE level 3. The SAE level is a
measure which shows the level of driving automation. For ADAS systems below SAE level 3, the
driver is legally liable and has to adapt his driving style to the road conditions; therefore the driver
can adapt certain ADAS settings. For example, the distance to other vehicles can be chosen in
case of the ACC or the driver can set the intervention settings for an AEB system corresponding
to the current road conditions.

The ADAS systems that are in current vehicles must be developed to achieve SAE level 3. For
SAE level 3 the driver is not required to monitor the environment, since the ADAS system will
automatically adapt its behavior to the environment, for example the road condition. To improve
the current AEB and ACC systems, a road friction estimator must be designed to estimate the
road conditions. Paper [41] showed that a rough but reliable resolution of classifying three different
road conditions is already valuable to improve the traffic safety.

1.1.1 Problem statement

As illustrated in the previous sections, there is a need to further develop the current AEB and
ACC systems. This leads to the following problem statement for this research project:

Limited knowledge about the road conditions leads to a large amount of traffic accidents per year.
The current AEB and ACC systems are less effective on slippery roads, since information about
the road is not yet available to be included in the design.

1.2 Research goals

1.2.1 Practical goal

The practical (business) goal of this research is derived directly from the problem statement and
business scope. The practical goal is formulated as follows:

The research should provide an AEB and ACC system which is able to have robust performance
considering the variation of the road conditions as encountered in practice. The vehicle model that
is used must be validated with a vehicle model from Siemens Simcenter Amesim.

From the literature study it is concluded that an unified AEB and ACC system could be beneficial.
The main advantages of this unified strategy include two aspects: The first advantage is that
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multiple driving modes can be introduced based on the level of danger. Each driving mode has
its maximum acceleration and, therefore, the vehicle longitudinal control can be more intelligent
and lead to a more comfortable experience.

The second potential advantage is the computational efficiency of the algorithm. For autonomous
vehicles, the computer needs to calculate and process a large number of data, including environ-
mental perception data, positioning data and vehicle driving data, etc. The unified framework
design of the longitudinal control algorithm should reduce the complexity of the code and improve
the efficiency of operation.

Therefore, the practical goal is extended with an extra preference namely, that the AEB and ACC
system should be designed in a unified framework.

1.2.2 Scientific goal

It is apparent that there are multiple research and solution directions that address the identified
practical goal. A first scientific goal is to develop a method to estimate the maximum road friction
coefficient. Since this is very broad, an elaborate literature review is conducted in Chapter 2 that
results in a more detailed explanation of the scientific contribution and relevance of the existing
literature. In short, it is concluded that the current proposed road friction estimators do not
manage to full-fill all the criteria. The criteria are stated in Table 1.1.

Criteria
No additional sensors needed
Applicability in ADAS
Active intervention not necessary for robust estimate
Online capability of the algorithm
Only longitudinal vehicle states must be used for the estimation
Must be able to detect the maximum road friction coefficient on low and high friction roads.

Table 1.1: Criteria for the maximum road friction estimator.

In [53] an artificial neural network is trained to estimate the maximum road friction coefficient
based on the side slip angle α. The neural network had promising results, however a steering input
was needed to accurately identify the maximum road friction coefficient. This makes us believe
that a neural network could be trained to estimate the maximum road friction coefficient based
on the longitudinal slip κ, therefore it is chosen as a further research topic.

Subsequently, the maximum road friction estimator could improve the robustness of the slip con-
troller which will be designed to control the vehicle on different road conditions. Normally an ABS
system will increase its braking torque on the wheels until the wheels starts to slip, thereafter the
braking torque is limited. If the maximum road friction coefficient estimator can estimate the road
friction coefficient accurately enough, the ABS could have a significant improvement in perform-
ance by the knowledge of the full vehicle states and operating conditions [58]. If the slip behavior
is known, the braking torque can be increased to an optimum, which will be further addressed in
Chapter 4.

Concluding, the practical goal can be addressed by estimating the maximum road friction coeffi-
cient, which eventually leads to a scientific goal:

Provide scientific insights in the usage of a neural network to estimate the maximum road friction
coefficient µmax during driving and provide decision algorithms for the AEB and ACC systems
which can use the estimated µmax to improve the safety.
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1.3 Research questions

Based on the above discussion a set of research questions are defined. The research questions
are both in line with the scientific and practical goal of this research. First, a primary research
question is defined to guide this research:

How can we design an unified AEB and ACC system which is able to have robust performance
considering the variation of the road conditions?

In support of the main research question, 6 sub-questions are identified.

• What controllers can be used to control the vehicle in order to satisfy our robustness, im-
plementation, performance, and the vehicle operational limit requirements?

• How can we systematically unify the AEB and ACC systems?

• How can we model the vehicle behavior on different road surfaces?

• How can we estimate the maximum road friction coefficient?

• How to prove the stability of the closed-loop system?

• What is the impact of implementing information about the road condition in the threat
assessment algorithm?

To complement these research questions, Figure 1.2 is introduced to provide the reader with an
outlook of the final deliverable of this research project, where κ, µmax, u̇ and Ti are, respectively,
the longitudinal slip ratio, the maximum road friction coefficient, the vehicle’s acceleration and
the input torques. Furthermore, the elements of the control loop that need to be developed are
shown.
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Unified ACC/AEB 
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Slip control
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Figure 1.2: Final deliverable of this research project.

1.4 Outline

The structure of the thesis is now introduced. In Chapter 2, a literature study is performed that
focuses on finding suitable approaches to control the vehicle, finding ways to simulate the vehicle
behavior on different road surfaces, finding approaches to asses the threat level during ADAS
scenarios and finally find a suitable method to estimate the maximum road friction coefficient.
This subsequently leads to answering the first, third and fourth sub-question posted above. The
chapter ends with a summarized explanation of the envisioned scientific contribution.

Chapter 3 describes three different vehicle models. A control-oriented vehicle model is presented
which includes a Pacejka tyre model. This model is used to design a slip controller which is used
to control the acceleration of the vehicle.
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The design an evaluation of this slip controller is presented in Chapter 4, which aids in answering
sub-question one. The roll axis vehicle model from [23] is used to validate the designed ADAS
systems. The process of designing these ADAS systems is shown in Chapter 3, where sub-question
two is answered.

The last sub-question is answered in Chapter 6 by evaluating the ADAS systems as discussed
in Chapter 3. The roll axis vehicle model is also used to obtain training data, which is used to
train a neural network for the estimation of the maximum road friction coefficient. The design
and validation of the maximum road friction estimator is shown in Chapter 5, thus answering the
fourth sub-question. Finally, the conclusions, the limitations of the current research and future
research are provided in Chapter 7.
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2. Literature study

2.1 AEB performance evaluation in literature

Autonomous Emergency Braking (AEB) is braking that is applied automatically by the vehicle in
response to the detection of a likely collision. The primary goal of AEB technology is to prevent
crashes by detecting a potential conflict and alerting the driver, and, in many systems, aiding in
brake application or automatically applying the brakes [25]. Figure 2.1 shows a typical AEB system
which includes an environment perception system, an upper-level controller and a lower-level
controller. The upper-level controller is a threat-assessment and decision-making algorithm, where
the lower-level system controls the acceleration of the vehicle to the desired acceleration provided
by the upper-level controller. The upper-level controller calculates the desired acceleration to keep
the host vehicle at a safe distance from an obstacle [38].
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Figure 2.1: A typical schematic diagram of an AEB system model

2.1.1 Upper-level controller

A threat-assessment algorithm decides if a situation is safe or unsafe, and can warn the driver
or/and choose to perform an automatic emergency brake in critical hazardous situations. In [17],
a literature study on threat-assessment techniques is conducted. Methods found in the literature
can be divided, on a higher level, into physical model-based methods and data-driven methods.
The main difference between the two classes is that for physical model-based methods, threat-
assessment and decision making is performed based on learning from real insights and models,
while data-driven methods rely on data-based learning, i.e., black-box modeling. Physical model-
based methods are divided into the following categories: Single Behavior Threat Metrics (SBTM),
optimization-based methods, formal methods, and probabilistic methods which are discussed in
the following sections.

Single Behavior Threat Metrics

In the presence of perfect measurements and comprehensive knowledge of the intention of each
participant (e.g., its destination), it can be possible to accurately predict the position and velocity
of a host and preceding car in order to assess the risk of collision. However, this is rarely the
case in reality and, therefore, simplifications are introduced in the problem formulation. By using
reasonable simplifications, one can specify the threat-assessment problem as being driven by threat
metrics based on single future behaviors of the different traffic participants. The most popular
SBTM methods are summarized in Figure 2.2 and discussed below.

(1) Time-to-Collision (TTC), which represents the time until a collision between two objects
occurs. In [61], the optimal TTC threshold is studied under certain sensor uncertainties. However,
TTC is not robust for every driving scenario. Let a situation consist of two vehicles traveling next
to each other with approximately the same velocity. If only TTC is used, the threat level will
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Figure 2.2: Summary of threat-assessment metrices.

be low even if the inter-vehicle distance decreases to a minimum. In [41] TTC is used as threat
assessment, however the activation times are scaled with the maximum road friction coefficient to
make the AEB system more robust for a variation in road conditions.

(2) Another related time-based measure is the time headway (th), which is calculated as the
distance between the two vehicles divided by the following host vehicle speed. Time headway is
essential because it specifies how much time the host vehicle’s driver has to react in case the lead
vehicle suddenly brakes at maximum deceleration level.

(3) Brake Threat Number (BTN) is defined as the ratio between the longitudinal acceleration
required to avoid a collision, and the maximum longitudinal acceleration, respectively. In [47],
they used BTN to investigate the fundamental limitations of collision-avoidance systems, subject
to systematic measurement errors and unexpected future object motion. Specifically, they include
the effects of sensor and actuator delays and derive closed-form expressions for performance with
an emphasis on early and unnecessary interventions. The dimensionality of the input state space
for collision avoidance functions is, in general, very large, making exhaustive evaluation by real
vehicle test driving unfeasible. By theoretically assessing the worst-case performance for scenario
subsets, the dimensionality of the input state space is efficiently handled. Recently, [35] proposed
the notion of Predictive Steering Threat Number (PSTN), using a bicycle model with a time-
varying lateral acceleration to represent the dynamics of the vehicle. The authors claimed to
have a more realistic model when compared to commonly used models in STN-related works since
earlier work consider the vehicle as a point mass. Also, in [11], it is mentioned that state-of-the-art
threat assessment algorithms do not adequately take steering and braking dynamics into account.
They proposed a so-called linear bicycle model, although they do not include sensor uncertainties.

(4) Minimal Safe Distance (MSD), defined as the minimum distance to be kept between the host
and the obstacle.

In complex scenarios, a single SBTM may not be enough to characterize a situation thoroughly
and, therefore, multiple SBTMs may be needed. The author of [48] proposed to use a combination
of TMs (-e.g., TTC,th, MSD) to reflect the real threat level better. In [68], a new, improved
multiple threat behavior method is proposed. Their goal was to improve algorithms in earlier
work, including the Mazda algorithm, the Honda algorithm, Berkeley Algorithm, and National
Highway Traffic Safety Administration’s (NHTSA) algorithm. Most threat assessment algorithms
used in automotive collision-avoidance systems are expressed in terms of range. The measured
current range R is compared with the warning range Rw or overriding range Ro to decide if
warning or braking is needed. It is difficult to clearly quantify the level of danger or threat from
the comparison result, since the range criteria vary non-linearly under different dynamic conditions.
Time-to-last-second-braking (Tlsb), is a new time-based measure proposed for rear-end collision
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threat assessment. It is defined as the time remaining for the driver or the control system at the
current situation to take the last extreme evasive action, e.g., braking at the maximum level, to
avoid a rear-end collision. The main advantage of this method is that the estimation of the Tlsb
measure takes into account all possible current information characteristics of the current dynamic
situation (i.e., velocity, acceleration, distance between host and preceding vehicle, relative velocity,
relative acceleration, max acceleration), while most previous algorithms only use partially updated
information and assume that the rest of the state variables remain constant.

Optimization-based methods

The most popular optimization method for threat-assessment is Model Predictive Control (MPC).
MPC consists of an optimization problem minimizing an objective cost function subject to con-
straints such as a dynamical model and constraints on the states and/or inputs. The optimization
is performed over a finite-time horizon, and the optimal solution yields the best control law for the
given cost function. MPC is of particular interest for safety-critical and time-critical constrained
applications such as automotive threat-assessment algorithms. The benefit of using MPC in the
upper-level controller is that safety and comfort constraints can easily be integrated within the
controller. In [20], the authors claim that the current MPC ACC focuses entirely on a onefold driv-
ing scene, such as tracking a desired spacing from a preceding vehicle or tracking a desired speed.
Current MPC systems cannot autonomously adapt to different driving scenes. In this paper, they
merge an AEB and ACC system in the upper-level controller. The Enhanced Adaptive Cruise
Control (EACC) system proposed in this paper, can realize conventional ACC, speed tracking,
and autonomous emergency braking (AEB). EACC does not merely combine three driver assist-
ant systems but is based on a unified model and algorithm framework. With the development of
autonomous vehicles, especially the in-depth research on the control of the autonomous vehicle, it
is essential to make a unified framework design for the longitudinal control of autonomous vehicles.

The main advantage of EACC include two aspects. Firstly, it can be applied to a variety of driving
scenes while meeting the driving requirements for different driving situations and, therefore, the
vehicle longitudinal control can be more intelligent. Secondly, the computational efficiency of the
algorithm. For autonomous vehicles, the computer needs to calculate and process a large number
of data, including environmental perception data, positioning data and vehicle driving data. The
unified framework design of the longitudinal control algorithm will reduce the complexity of the
code and improve the efficiency of operation.

The authors of [69] claim that earlier papers for AEB systems focus only on safety; however, in
this paper, the authors want to optimize safety and vehicle handling comfort. A non-linear model
predictive algorithm is used to satisfy the comfort requirements. This algorithm takes a multi-
performance evaluation function as the cost function to optimize the vehicle states according to
surroundings information and calculates the optimized brake force for the braking subsystem. A
limit on the vehicle deceleration is set to achieve more longitudinal comfort.

Formal methods

Optimization methods determine the optimal avoidance trajectory if and only if a collision is
avoidable. Therefore, it would be useful to have full information about what points on the road
can be reached by the evading car. In [28], [18] set-based approaches are used that use reachability
analysis to describe the complete set of future trajectories. These formal methods predict all the
future trajectories considering driver and vehicle constraints. If there exists no future path where
the driver can avoid a collision, the AEB system will be used.

In [6], combined braking and steering maneuvers are considered and, therefore, non-linear vehicle
dynamics need to be included. The problem is formulated as a constraint satisfaction problem.
For systems with non-linear dynamics and possibly non-linear, non-convex constraints, reachable
sets are more challenging to compute. The authors of [6] use interval techniques and, therefore,
the solution sets are represented by one or several intervals or boxes. By restricting the sets to
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this limited structure, the interval-based methods can be used to obtain approximate solutions to
non-convex constraint satisfaction problems, enabling the possibility to utilize non-linear models
and constraints.

Probabilistic methods

Generally speaking, a probabilistic threat-assessment method assigns probabilities to different
events, e.g., how likely it is to collide with another object in a near future given some assumptions
on uncertainties. In automotive applications, some of the significant sources of uncertainty include
dynamical modelling errors, measurement noise, and the misinterpretation of the drivers’ intention.
In [60], the question of how uncertainties affect the timely activation of a brake intervention is
addressed and how this varies among different scenarios. In [61], a new methodology for the
robust design of an AEB system considering sensor measurement errors is proposed, which is
capable of determining the optimal parameters of both the sensor and the threat-assessment
function by solving an optimization problem based on a stochastic model. The authors of [42]
aims to develop a systematic collision-avoidance reliability analysis framework for AVs equipped
with adaptive cruise control (ACC) and autonomous emergency braking (AEB) systems. The
developed framework consists of two main elements, namely, uncertainty modeling and reliability
analysis. In the uncertainty modeling module, a recently developed Gaussian mixture copula is
employed to model the uncertain traffic conditions such as vehicle speed and relative distance
based on the naturalistic driving data. A Gaussian mixture copula is a generalization of the usual
Gaussian mixture model. A Gaussian mixture copula model consists of a weighted sum of a finite
number of joint distributions, each of which contains a Gaussian copula. This copula model can
be used to study marginal distributions and their dependence structure separately. Furthermore
copulas can be calibrated to data sets that are sparse and unevenly distributed. The Gaussian
mixture copula allows for not only accurate modeling of the marginal distributions of various traffic
conditions but also gives a precise representation of the complicated dependence between different
variables. In the reliability analysis element, the adaptive surrogate modeling-based reliability
analysis method with active learning function is employed to perform collision-avoidance reliability
analysis efficiently. The synthesis of these two elements enables us to accurately and efficiently
evaluate the collision-avoidance reliability of an AV control system.

2.1.1.1 Conclusions upper-level controller

System performance SBTMs usually only consider the most likely state estimates, discarding
in many cases the associated distribution of the states. Instead, robustness concerning uncer-
tainties are gained by putting margins in the decision-making stage, that are typically tuned by
empirically testing to maximize the system performance [48]. Probabilistic methods, on the other
hand, tend to make use of the entire uncertainty model to estimate the probability of a colli-
sion. Nevertheless, it is generally not obvious how to derive the uncertainty model, especially in
cases of time-varying uncertainties [36]. This is, e.g., the case for uncertainties related to driver’s
intentions. From [17], it follows that probabilistic methods are preferred in scenarios where the
uncertainties can be modeled by a few random variables, or in cases where the prediction horizon
is sufficiently short. Regarding formal methods, the underlying objective is usually to verify and
formally guarantee whether a situation can evolve into an unavoidable dangerous situation. These
methods are best suited for applications where formal guarantees of performance are required, or
when the system is subject to complex combinations of safety, comfort, or logic requirements, for
example [17].

Implementation Generally speaking, SBTMs are computationally cheap by design. For set-
based approaches, the authors of [39] have proposed a toolbox that is able to compute set based
predictions in time frames smaller than 20 ms. Regarding optimization-based methods, their
computational complexity usually scales poorly with the size of the problem, which means that only
small problems can be efficiently solved in real-time. Unfortunately, constrained MPC-problems
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tend to be non-convex, which, together with long prediction horizons, usually yields prohibitive
complex problems [63]. Probabilistic methods may also lead to computational efficient solutions in
some exceptional cases where the noise is strictly Gaussian and the dynamics linear, for example,
in [61]. However, that is rarely the case in practice. Furthermore, the solution often needs to be
numerically approximated by Monte-Carlo simulations or particle filtering, which are known to be
accurate but computationally expensive.

Robustness Another essential aspect for any safety system is robustness, here defined as the
measure of the system’s ability to handle uncertainties due to, e.g., measurement noise and vari-
ation in road conditions. Formal methods have an intrinsic ability to guarantee robustness, where
the level of robustness can be adjusted by over- or underestimating the uncertainties in the set
definitions. SBTM and optimization-based methods, on the other hand, fall short in terms of ro-
bustness, as a result of over-simplifications made on the system modelling and problem statement
[29], [68]. To handle such issues, it is common practice to measure the state after some period and
to solve the dynamic optimization problem again starting from the new measured state. By using
feedback on the measurement information, this provides the whole procedure with a robustness
that is typical for closed-loop systems.

2.1.2 Lower-level controller

The lower-level controller controls the vehicle dynamics system to achieve the desired acceleration
based on the output of the upper-level controller. In other words, the lower-level controller is used
to calculate the throttle actuation (pedal position) and the brake pressure to generate an actual
acceleration to ensure that the desired acceleration is tracked. Usually, a lower-level controller
consists of two layers: a controller to track the desired acceleration with the desired and actual
acceleration as inputs and an inverse vehicle model with switching logic between the brake and
throttle controller. However, in some AEB systems, only the brake is controlled. In this section,
different lower-level controllers will be discussed. In the earlier mentioned paper [20], the lower-
level controller is modelled as a first-order system acon = K

τs+1ades, where K is the system gain,
and τ is the time constant. The pedal position and brake pressure are calculated with an unknown
inverse vehicle model.

In [5], the upper-level and lower-level controllers are modelled as one system. Therefore, it can be
compared with the earlier mentioned EACC system. A first-order system is used to represent the
deceleration exerted by the brakes; this system can be tuned to integrate factors such as driver
attention and braking efficiency. The parameters are estimated based on vehicle measurements.
Together with a one-dimensional constant acceleration model, the deceleration behavior can be
estimated. A fuzzy controller is used to calculate the brake input based on the vehicle speed and
the predicted stopping distance. The fuzzy controller adapts the braking force dynamically during
the AEB maneuver and, therefore, it is more comfortable in comparison with systems that always
use maximum braking.

The authors of [38] claim that the variation of road conditions must be considered in a robust
AEB system. The maximum deceleration depends on the road friction and slope. The real-time
information of the road slope angle and friction coefficient cannot be easily obtained from the
onboard sensors in passenger cars. Instead, the road slope angle and friction coefficient are estim-
ated with a Kalman filter. In this paper, only the deceleration is controlled. Since there is a time
delay and disturbance such as engine braking, drag force, and rolling resistance, the deceleration
controller is designed using a PI controller with a feedforward term. The PI controller is added to
compensate for the acceleration error. The feedforward term is included to consider the charac-
teristics of the brake actuator and contains the relationship between the master cylinder pressure
and the deceleration of the vehicle. The control gains are tuned for various road conditions.

The PID controller is a widely used technique in AEB systems because of its advantages of simple
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structure and strong robustness properties. However, the authors of [67] pointed out that due
to the complicated non-linear characteristics of control systems, and the time-varying features of
the real-world driving process, the conventional PID controller cannot control the AEB systems
effectively. In this paper, a back-propagation neural network is used to tune the PID parameters
in real-time and, therefore, the system is robust to external disturbance and model uncertainty.
Furthermore, an inverse vehicle model that considers air and rolling resistance is used. Similarly,
in paper [31], a single neuron adaptive intelligent PID controller is used for the lower-level con-
troller. However, they incorporated an ACC system in the upper-level controller to control the
relative distance and velocity. A sliding mode control methodology is used, which has the capa-
city to reject the effect of bounded uncertainty acting in the input channels, the so-called matched
uncertainty. Besides, the sliding mode control methodology has the advantage of producing low
complexity control laws, which appear particularly suitable to be implemented in an electronic
control unit (ECU) of a controlled vehicle. In order to enhance the robustness against unmatched
perturbations, a combination of the sliding mode technique with other robust strategies, such as
H-infinity control may be beneficial. Moreover, the controller in operation can compensate for
several physical effects that are neglected by the simple model of the vehicle to make the design of
the controller feasible. The same holds for disturbances of different types, as well as for parameter
variations.

An AEB control system requests the brake system to have the capacity of high-performance active
brake control. This new requirement is difficult for the conventional vehicular braking system.
Therefore, the authors of [34] are introducing a collision avoidance system with an integrated-
electro-hydraulic brake system which compared to an electro-hydraulic brake system can not only
achieve more accurate pressure control but also avoid the risk of leakage. This paper distinguishes
itself in the lower-level controller since it has an additional control layer. This control layer is
designed to track the optimal slip ratio, which enabled the controlled vehicle to generate the
highest possible deceleration. A neural network is used to control this tire slip ratio, and a pulse
width modulation control method is used to convert this information into a torque.

The authors of paper [69] implement a method to estimate the tyre friction and control the optimal
slip ratios to generate the highest possible deceleration with a non-singular, and fast Terminal
Sliding Mode algorithm (TSM) and therefore the brake controller is robust to variations in the
road surface parameters. Sliding mode control has been widely applied in non-linear systems.
TSM control has the advantage of convergence in a finite time. However, when the system is far
from the equilibrium point, TSM tends to converge quite slowly. Non-singularity fast TSM control
can increase the absolute value of the state derivative and effectively boost the convergence speed.

In [59] a wheel slip control system based on a Youla parameterization approach is proposed,
since they concluded from their literature study that a single PID controller could not provide
stability and performance at all operational conditions. The paper includes actuator dynamics
and therefore concluded that they designed a new wheel slip control method that was able to
stabilize the wheel slip in all working conditions. However later in this research is concluded that
the actuator dynamics as modelled in this paper were not modelled realistically enough, since the
dynamics were described without the use of a delay. The addition of a delay in the brake dynamics
leads to stability problems, however this is discussed later in this research.

2.1.3 Vehicle dynamics

Vehicle models can be classified as kinematic models and dynamic models. Kinematic models
simplify the vehicle to a single point in space, and therefore, forces and torques do not play a
role. Therefore, it is suitable to design the upper-level controller but not to design or assess the
lower-level controller. The kinematic model describes a vehicle’s motion based on the mathemat-
ical relationship between the parameters of the movement (e.g., position, velocity, acceleration),
without considering the forces that affect the motion. Such simple models are relevant for tra-
jectory prediction; however, for control-oriented applications, more complex models are needed.
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Dynamic models describe motion as a consequence of forces and torques acting on the vehicle,
such as the longitudinal and lateral tire forces, or effects due to the road angle. Cars are governed
by complex physics (effects of driver actions on the engine, transmission, wheels, etc.). Therefore,
dynamic models can become extremely large and involve many internal parameters of the vehicle.

In papers [61], [47], [60] kinematic models are used to describe the vehicle dynamics. These papers
focus on deriving closed-form expressions for robust avoidance scenarios, which are scenarios where
unnecessary interventions and collisions are guaranteed not to occur. These papers do not focus
on controlling the vehicle dynamics. The goal of [47] is to design an upper-level controller with
BTN as the threat-assessment, which is robust for sensor uncertainties in worst-case scenarios.
The authors of [61] investigate the probability of a collision varying two parameters: namely, the
standard deviation σ of the measurement error and the threshold τ in a TTC function at which
the emergency brake intervention is triggered. Future work includes the extension to a more
dynamic model with added sources of measurement errors, where, in general, computations in the
closed-form will not be possible.

Road variations such as different road conditions and road angles can influence the tire-road
friction and therefore adversely affect the function of AEB [43]. Dynamics models are most popular
when designing AEB systems since an emergency brake often has highly non-linear dynamics. To
research this phenomenon dynamic tyre models have to be used, which can simulate the tyre
road friction behavior. Different mathematical tyre models have been developed in the literature,
the most widely used model is the semi-emperical tyre model introduced by Pacejka [49], this
tyre model is well known as the Magic Formula. This model is often used since it is reasonable
accurate, easy to program and it solves quickly. Furthermore, there are a lot of Magic Formula
versions. The first version was developed in 1987, over the years improvements were made with
the addition of the overturning moment and improved combined slip equations [19]. A second well
know model is Dugoff’s tyre model, this model was developed in 1969 in [24]. Finally, another
widespread model is the Brush model [49] which can be analytically derived, however they tend
to be less accurate than the MF models.

2.1.3.1 Sensors

The most commonly used sensors for ADAS are camera, LIDAR, RADAR, and GPS. Several of
the sensors found in the current generation of production vehicles are typically of low cost and,
as a consequence, prone to time-varying offset and scale errors and may have a relatively low
signal-to-noise ratio. The sensors are known to have drift and noise in the sensor measurements.
Assuming that the dynamic parameters such as velocities or accelerations do not change during
the prediction interval a small noise power disturbs the prediction marginally, whereas a large
noise power can lead to a completely wrong prediction of how a scenario will develop in the future
[9]. Systematic sensor errors are regarded as compensable and, therefore, not taken into account.
Most of the papers that consider sensor uncertainty(velocity, vehicle distance) model those with
a Gaussian random distribution with a standard deviation σ and a mean µ [16]. The authors of
[21] used a distance-dependent standard deviation.

2.1.4 Discussion lower-level controller and vehicle dynamics

Many researchers are using a nonlinear vehicle model with tyre slip dynamics to validate their
AEB and ACC controllers; however, their controllers are based on a simplified vehicle model
without non-linear tyre slip dynamics. Moreover the robustness for road condition disturbances
is not addressed [50], [56]. Furthermore the actuator dynamics of the brakes should be modelled,
since many proposed methods concluded that they designed a wheel slip controller with good per-
formance and stability, however they ommitted the actuator dynamics which will lead to stability
problems. In order to achieve the higher-level goal the controller the following requirements are
set. The lower-level controller should
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• be easily implementable on an ECU of a vehicle,

• be robust to parameter and sensor uncertainties,

• guarantee stability for different road conditions,

• Consider actuator dynamics with delay.

Furthermore, in order to not over-complicate the design of an AEB system, only longitudinal
dynamics are used. A dynamic model must be used for the longitudinal vehicle dynamics. If all
is going well during this research steering dynamics are added to the system, therefore the used
vehicle dynamic model must be easily extendable. It is concluded that the Magic Formula from
[49] is used to model the non-linear tyre dynamics, since this model can simulate the tyre dynamics
on different road conditions the most accurately.

2.2 ACC

Adaptive Cruise Control (ACC) originates from Cruise Control (CC), which today is a widespread
functionality in modern vehicles. CC regulates the vehicle speed actuating the throttle only, via
tracking of speed v that is set by the driver. ACC automatically adapts the vehicle’s speed
depending on a predecessor’s behavior, actuating the throttle as well as the brake system.[45] The
goal of ACC is partial automation of the longitudinal vehicle control and the reduction of the
workload of the driver with the aim to support and relieve the driver in a convenient manner.
The ACC system not only provides the drivers with comfort and safety during driving as the
fundamental requirements but can also improve traffic capacity and reduce fuel consumption.
The control objective for ACC is to control a desired relative distance and velocity. ACC uses
information about: the distance from the ACC equipped vehicle to the preceding vehicle in the
same lane, the motion of the ACC equipped vehicle and the preceding vehicle and lastly the driver
commands.

In Figure 2.3, a schematic block diagram of an example of an ACC system, including the lower-level
controller, the upper-level controller, and the switching logic is shown. ut and ub are the inputs for
the throttle and brake actuators. From the figure, it can be seen that this ACC system controls
the velocity; however it is also possible to control the acceleration instead of the velocity. The
ACC upper-level controller focuses on comfort, which is different from the upper-level controller
for AEB, since primarily, the AEB upper-level controller focuses on safety.

2.2.1 Upper-level controller

Model Predictive Control (MPC) is extensively used in the design of ACC systems since it can
explicitly handle constraints. The literature shows how MPC allows managing fuel consumption,
safety, and comfort even for vehicle platooning. However, many solutions are not trivial to be
ported on an embedded microprocessor and are not practical. In [45] and [10], two ACC systems
based on the classical formulation of MPC are presented that optimizes the vehicle behavior
focusing on safety and riding comfort limiting the computed accelerations. However, in these
papers non-linear vehicle dynamics are not included. The main disadvantage of MPC is that the
calculation load becomes large since it needs to solve the optimization problem considering future
predictions in every sampling period. In [62], they successfully implemented an MPC-based ACC
running on an embedded microprocessor. They focused on decreasing the computational load for
the practical use of MPC by using a low-order prediction model. The paper includes disturbances
such as air drag, rolling resistance, road slope, and an acceleration resistance; these disturbances
are modelled linearly and, therefore, they can be built into the prediction model.

In [56] and [8], a cascade control strategy is used. An upper level control loop is used to determine
the desired velocity and the lower level controller is used to track this desired velocity. For the
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Figure 2.3: A schematic block diagram of an ACC system including the upper-level controller,
the lower-level controller and the switching logic [56].

upper level controller a simple control logic is used to determine the desired velocity to track the
desired relative distance to a preceding vehicle.

2.2.2 Lower-level controller

Earlier research on ACC systems varies in the types of lower-level controllers that are used; ex-
amples are classic PID control, LQR optimal synthesis approach, state feedback control, H-infinity
control, fuzzy logic and neural networks. However, most of the approaches have been limited to
analysis and simulations with good results, but generally, some practical issues like control satur-
ation, sensing error, and plant parameter variation were not considered. In this section, some of
the most recently used control techniques for ACC systems are discussed.

In [46], a robust H-infinity cruise control based on a feedforward and a feedback control design is
designed, which guarantees a precise velocity tracking in the presence of longitudinal disturbance
effects, such as road slopes, aerodynamic forces, rolling resistance, and mass parameter variations
of the vehicle. However, non-linear vehicle dynamics are not modelled. A considerable amount
of work has been carried out in the design of an advanced feedback controller to deal with non-
linear vehicle dynamics. In [13], they used a neural network. However, the author of [8] claimed
that stability in closed loop could never be guaranteed for neural network based controllers. In
[44], fuzzy logic and intelligent PI control are compared. The rationale behind the design of the
fuzzy controller is to select two errors (distance and speed) as inputs so that the controller can
emulate the behavior of a human driver who, in this situation, would control these two parameters.
Intelligent PI controllers are used in this work because they combine the well-known PI structure
with an “intelligent” term that compensates the effects of non-linear dynamics, disturbances, or
uncertainties in the parameters. As a consequence, the non-linear dynamics of the car at low speeds
become controllable. Since no parameters appear explicitly in the closed-form controller, classical
robust control tools cannot here be exploited to analyze the closed-loop system’s sensitivity to
disturbances or parameter uncertainty.

The authors of [50] aim to control the vehicle’s speed with the target of minimizing the amount
of required knowledge about the vehicle’s parameters while respecting comfort requirements and
achieving robustness to environmental variations. The application of Model Reference Adaptive
Control (MRAC) is investigated. MRAC is usually employed in aerospace rather than automotive
applications. This strategy employs a reference model to generate the desired output trajectory
and relies on one or many adjustable controller parameters and an adaptation mechanism. The
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MRAC approach is capable of making the controlled system stable while tracking the outputs
of the reference model system. Besides, it is very effective to handle the unknown parameter
variations and environmental changes.

2.2.3 Discussion on existing work on AEB and ACC

Although many research results on ACC and AEB systems have been published, little has been
published on the integrated design of an ACC system with an AEB. The authors of [20] claim
that a unified ACC and AEB system can be highly beneficial. Imagine a situation in which a
host car is following a preceding car with a desired spacing, and another vehicle is cutting in from
another lane. An ACC system can not avoid a collision in this situation, and therefore, an AEB
system needs to be incorporated. These two systems can be combined. However, it is better to
design a unified controller that can realize conventional ACC and AEB. The main advantages of
this unified strategy include two aspects: The first advantage is that multiple driving modes can
be introduced based on the level of danger. Each driving mode has its maximum acceleration and,
therefore, the vehicle longitudinal control can be more intelligent and lead to a more comfortable
experience.

The second potential advantage is the computational efficiency of the algorithm. For autonomous
vehicles, the computer needs to calculate and process a large number of data, including environ-
mental perception data, positioning data and vehicle driving data, etc. The unified framework
design of the longitudinal control algorithm should reduce the complexity of the code and improve
the efficiency of operation.

In order to achieve the higher level goal a cascade control system consisting an upper level controller
and a lower level controller is developed. For the upper level controller it is concluded that a simple
control rule with a good control logic could satisfy the higher level goal. The upper level controller
is used to determine an acceleration setpoint. For the lower level controller a slip controller is
developed to track the desired acceleration. Furthermore, an algorithm is developed to determine
what slip setpoint should be used based on an inversed non-linear Pacejka tyre model.

2.3 Maximum road friction estimator

In order to ensure safety of the AEB system on all road conditions, it is concluded that the threat
assessment algorithm should include information about the road conditions. In literature many
approaches for identifying the maximum road friction coefficient µmax are proposed, the different
approaches are shown in Figure 2.4.

Past European research projects such as FRICTI@N [27] have worked on cause-based methods to
design a sensor, which is able to detect the friction potential based on the presence of water, snow
and ice, the water depth, the road roughness and texture and lastly the precipitation density.
Among other methods, artificial neural networks (ANN) are used to relate sensor information
and friction potentials. The project concluded that they were not able to design a single cause
based sensor that can estimate the friction potential continuously in a moving vehicle. In contrast
to cause-based approaches, effect-based approaches observe parameters that are affected by the
friction potential. As can be seen from Figure 2.4, effect-based approaches can be tyre related
methods and vehicle-dynamics-based methods. In [64], in-tyre sensors are used to determine the
friction potential based on sensors that can estimate changes in the tyre thread. In [12], they tried
to relate the rolling sound of the tyre to the friction potential, it is concluded that tyre rolling
sound is too sensitive to factors other than from the friction potential.

Since vehicle-dynamics-based approaches has shown to give good results, many different ap-
proaches have already been studied. Since many methods have been published, some exemplary
methods are mentioned that are relevant for the method proposed in this work. In [32], is shown
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Figure 2.4: Classification of the vehicle-fixed methods for determining the maximum road friction
coefficient µmax (friction potential) [66].

that for small values of the wheel slip κ, the slip needed in order to transmit the same longitudinal
tyre force Fx is higher on roads with with lower µmax. Therefore it concluded that there is a
correlation between the initial slope dFx

dκ and the friction potential, which can be used to estimate
µmax for small values of the longitudinal slip κ. The paper also proposed a Kalman filter to estim-
ate the vehicle velocity from the wheel speed sensors. A look up table is used to estimate µmax for
different initial slopes. In [66], is shown that the variance between different initial slip slopes and
the corresponding maximum road friction coefficient µmax is very high. Therefore [66] estimated
µmax during hard braking manoeuvres. During hard braking manoeuvres it is difficult to calculate
the vehicle velocity; therefore, the authors designed a so-called optimal FIR derivative to estimate
the vehicle velocity during hard braking maneuvers. In [51], another method is proposed to estim-
ate the maximum road friction coefficient. This paper used a tyre model to calculate the expected
longitudinal Fx and Fy for different hypotheses of µmax. Also a Kalman filter is used to estimate
the longitudinal tyre forces Fx based on vehicle’s state measurements. A state observer model is
than used to compare the results of the Kalman filter and the expected longitudinal force Fx from
the tyre model. It is concluded that a good knowledge about the vehicle and tyre parameters is
needed to obtain the necessary vehicle states (longitudinal slip κ) with sufficient accuracy.

In [41], is concluded that the high amount of required knowledge of the vehicle and tyre parameters
can be partially circumvented by using an ANN. The ANN identify the patterns between the input
and output structures, therefore it is required to train the network before application. The neural
network in this paper is trained with data from the on-board vehicle sensors which recorded
the wheel speeds, the steering wheel angle, the vehicle’s velocity, the engine’s rotational speed,
the engine torque, the accelerator pedal position, the vehicle’s yaw rate and the environment
temperature. In [41] is shown that the friction estimation using Recurrent Neural Networks (RNN)
was accurate enough to use this information in the interventions strategy of an AEB system.
However, only a few scenarios were used to train the neural network. It concluded that the neural
network that was designed could not extrapolate to conditions where the neural network was not
trained for. In [53] a Time Delayed Neural Network (TDNN) is trained to estimate µmax based
on the side slip angle α, vertical force Fz and lateral force Fy. The simulation data is generated
with a Pacejka tyre model. This paper showed good results, however a limitation is that a steering
input is needed to estimate µmax
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2.3.1 Discussion

It is concluded that there is a dependency between the longitudinal tyre force Fx, the longitudinal
tyre slip κ and the maximum road friction coefficient µmax. Furthermore it is shown that neural
networks have the ability to predict the friction potential. The longitudinal tyre force Fx has a
direct relationship with the vehicle’s acceleration u̇ which can be measured by vehicle sensors.
Therefore the hypothesis is that we are able to train a neural network which can predict the
maximum road coefficient µmax based on simulation data which is obtained from a Pacejka tyre
model. The inputs which are feed to the neural network are the acceleration u̇ and the longitudinal
front and rear wheel slip κf and κr which are estimated by a kinematic model with the vehicle’s
velocity u and the front and rear rotational wheel velocity ωf and ωr as its inputs.

2.4 Envisioned scientific contribution

As shown in the literature study the practical goal can lead to a lot of research directions. The
literature review results in the conclusion that the field of estimating the maximum road friction
coefficient by training a neural network with longitudinal vehicle states is undiscovered. Since an
accurate road condition sensor is still an open challenge, the topic of including information about
the road conditions in ABS systems and threat assessment algorithms is also fairly undiscovered.
This research paper aims to fill these gaps.

The main contributions of this study can be summarized in the four following points:

1. A method to encompass information about the road conditions in threat assessment al-
gorithms.

2. The insights obtained, when developing and analyzing a neural network which is trained to
estimate the maximum road friction coefficient µmax based on data obtained from a Pacejka
tyre model.

3. The insights obtained, when encompassing information about the road conditions (µmax) in
the upper level controller which is designed to determine the desired acceleration.

4. The insights obtained, when developing and analyzing a method to control the vehicle’s accel-
eration with a slip controller (ABS) by encompassing information about the road conditions
(µmax) in the slip control algorithm.

5. A vehicle model which is able capture the vehicle behavior on different surfaces for all
velocities. The roll axis vehicle model from [23] is combined with a reset integrator friction
model to enable accurate behavior especially at low velocities.
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3. Vehicle modelling
To test and validate the ADAS systems, which will be explained later, a vehicle model is needed.
As discussed in the literature review, a dynamic non-linear tyre model is needed to capture the
behavior of the car on different road conditions. In this chapter, three different vehicle models
are described. First, a model considering only longitudinal dynamics is described based on the
vehicle models from [40] and [54], known as a double-corner model. This model is used to validate
the lower level controller, which is discussed in Chapter 4. Thereafter the longitudinal model is
extended to a model considering longitudinal, lateral, roll and yaw dynamics based on the roll
axis vehicle model from [49] and [23]. This model is used to validate the proposed ADAS systems
and to obtain measurements, which are used to train the neural network. Finally, the single-
corner vehicle model from [54] is presented, which is a simplified version of the double-corner
vehicle model. This model is used to design a slip controller. To validate the vehicle behavior, the
double-corner model and roll-axis vehicle model are validated with a vehicle model from Simcenter
Amesim, which is a high-quality model to validate against since that model is validated with real
vehicle measurements [2].

3.1 Longitudinal vehicle model

A double-corner model is used to describe the longitudinal vehicle dynamics. In Figure 3.1, a
schematic view of the vehicle model is given. The double-corner model can be regarded as a side
view of the vehicle, where one front and one rear wheel are modelled. It is similar in principle to
a half car model, which is commonly used to describe the heave dynamics for suspensions control.

Figure 3.1: Vehicle dynamics

3.1.1 Vehicle and wheel dynamics

The vehicle dynamics can be described with the following set of equations:


Jwf ω̇f = Tff − Tbf − Trollf −RFxf ,
Jwrω̇r = Tfr − Tbr − Trollr −RFxr,
Mu̇ = Fxf + Fxr − Faero −Mg sin θ,

(3.1)

where u is the longitudinal speed of the vehicle centre of mass. ωf and ωr are, respectively, the
angular speed of the front and rear wheels. Tbf and Tbr are the front and rear braking torques
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and Tff and Tfr are the engine torques. Trollf and Trollr are the front and rear rolling resistance
torques. Faero is the aerodynamic force and θ is the road inclination angle. Fxf and Fxr are
the front and rear longitudinal tyre-road contact forces. The parameters J, M, g and R are,
respectively, the moment of inertia of the wheel, the vehicle’s mass, the gravitational acceleration
and the wheel radius.

3.1.2 Longitudinal tyre model

The tires behaviour is highly characterized by non-linearity in complicated road conditions as
stated in [49]. In this paper, the Magic Formula is used to reflect the transient characteristics of
the tire. The Pacejka friction model is highly detailed, and it is the tyre–road friction description
most commonly used in commercial vehicle simulators. The longitudinal force model is a curve
characterization of the longitudinal force towards the longitudinal slip κ as shown in Figure 3.2.
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Figure 3.2: Pacejka curve characteristics.

The main curve characteristics from Pacejka 1989 tyre model are:

D The peak factor which is the maximum longitudinal force.
BCD The stiffness factor which is longitudinal slip stiffness (slope of Fx vs. κ curve at the origin).
E The curvature factor which enables to fix the longitudinal slip where the longitudinal force is maximum.
L The asymptotic factor which is the longitudinal force asymptote at high longitudinal slip.
Sh The horizontal shift which fix the anti-symmetry center of the curve.
Sv The vertical shift which fix the anti-symmetry center of the curve.

κD
The longitudinal slip peak antecedent which is the longitudinal slip related to the
maximum longitudinal force.

Table 3.1: Pacejka 1989 model parameters.

The Pacejka 1989 parameters are calculated through the following equations:

C = b0 · λcx
D = (b1 · Fz + b2) · Fz · λµx·
BCD = (b3 · Fz + b4) · Fz · e−b5Fz · λkx
E = ((b6 · Fz + b7) · Fz + b8) · λex
Sh = (b9 · Fz + b10) · λhx
Sv = (b11 · Fz + b12) · λvx · λµx

(3.2)
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where bi,(i=1,...,12), are constant parameters which are related to specific tyre properties, Fz is the
normal force, λi,(i=µx,...,vx), are scaling factors where λµx is the the scaling factor for the maximum
tyre-road friction coefficient µmax.

The longitudinal force can now be calculated with

B = BCD
C·D

ϕ = B · (κ+ Sh)− E(B · (κ+ Sh)− arctan(B · (κ+ Sh)))
Fx = D · sin(C · arctan(ϕ)) + Sv.

(3.3)

Summarizing, the longitudinal force relationship can be simplified to

Fx = Fzµ(κ, µmax). (3.4)

The longitudinal wheel slip κ is expressed in percent and defined between plus and minus hundred.
This longitudinal wheel slip is defined during braking as follows

κ = 100 ·
(
Rω−Vx
Vx

)
with |Vx| > Vcmin

κ = 100 ·
(
Rω−Vx
Vcmin

)
with |Vx| < Vcmin

, (3.5)

and during accelerating as follows

κ = 100 ·
(
Rω−Vx
Rω

)
with |Vx| > Vcmin

κ = 100 ·
(
Rω−Vx
Vcmin

)
with |Vx| < Vcmin.

(3.6)

where Vx is the vehicle velocity and ωR is the linear speed of the tyre at the road-tyre contact
point. Vcmin is the minimum velocity where the standard slip equation is valid. If the vehicle’s
velocity falls below Vcmin, the current vehicle velocity or the linear speed of the tyre is replaced
with Vcmin. This constraint is needed to deal with discontinuities handling at low speed.

3.1.3 Rolling resistance and aerodynamic forces

The rolling resistance torque can be computed by

Trolli = RFziRc, (3.7)

where R is the tyre rolling radius [m], Fz is the normal force on tyre [N] and Rc is the rolling
resistance coefficient [-].

The aerodynamic drage force is modelled as

Faero =
1

2
ρACdv

2, (3.8)

where ρ is the air density [kg/m2], Cd is the drag coefficient depending on the body shape [-], A
is the maximum vehicle cross area [m2] and v is the vehicle velocity.

3.1.4 Normal load force

To complete the model, only the expression for the vertical load has to be specified. To describe
the load transfer phenomena between front and rear axles, the force and torque balance is taken
at the projection of the centre of mass to the ground, which gives
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Fzf =
−Faeroh−mhu̇−mgh sin(θ) +mgb cos(θ)

b+ a

Fzr =
Faeroh+mhu̇+mgh sin(θ) +mga cos(θ)

b+ a

, (3.9)

where a is the distance from the center of gravity to the front wheel center, b is the distance from
the center of gravity to the rear wheel center and θ is the road inclination angle.

3.1.5 Reset integrator friction model

A reset integrator friction model computes the friction force between the tyre and the ground.
This friction model is used since this model was developed to reduce the computational time while
retaining its capacity to accurately represent the slip-stick friction phenomenon. Furthermore
the simulation results are validated with a Simcenter Amesim model which is also using a reset
integrator friction model. The reset friction integrator is modelled following the paper from [33].
The reset integrator friction model takes the stiction (Ts) and the Coulomb (dynamic) friction (Tc)
into account, see Figure 3.3. The input is the relative velocity between the contacting surfaces,
which is defined as the rotational wheel velocity and R times the tyre radius. Starting from a
position where there is no frictional torque, if the stick displacement p changes, a friction torque
Tfrict appears. This frictions torque consists of a torque which varies linearly with the stick
displacement until the full user specified stiction torque (Ts).

When the displacement exceeds a specified threshold p0, the friction torque is constant and equals
the Coulomb friction torque Tc. Figure 3.3 shows the friction torque as a function of relative
velocity for the reset integrator model.

�������������� ��������������������������

Figure 3.3: Friction torque as a function of the angular displacement for the reset integrator
model.

The model name comes from the fact that the model uses an internal state variable (the displace-
ment during stiction p) that implies the introduction of an integrator. The integrator input is
forced to zero (“reset” action) when sliding; when sticking it is set at the relative velocity (“integ-
rator” action). When the stick displacement threshold p0 is reached, macroscopic sliding starts
and the model changes from the sticking mode to the slipping mode. The stick displacement time
derivative is given by
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dp

dt
=

 0 if (ωR < 0 and p ≤ −p0)
0 if (ωR > 0 and p ≥ p0)
ωR otherwise

. (3.10)

The stiction domain is defined using a stick stiffness krel, the switch between the stiction and the
sliding is defined by a displacement threshold that is computed as

p0 =
Ts
krel

, (3.11)

where Ts is the stiction torque, which is computed from the braking input signal Tb.

The friction torque Tfrict can now be computed with

Tfrict =

{
krelp+ σ1ωR if |p| < p0

Tc · sgn(ωR) if |p| ≥ p0
(3.12)

where krel is the stick stiffness, ωR is the relative velocity between the surfaces, Tc is the Coulomb
friction torque and σ1 is the damping coefficient, tuned to avoid vibrations when the solids stick
together.

To illustrate this model a use-case is given: A vehicle is driving with a certain velocity and starts
to brake with a braking torque Tb as shown in Figures 3.4 and 3.5. In Figure 3.4, the brake input
signal Tb and the friction torque Tfrict of the front wheel is shown. In Figure 3.5, the front wheel
rotational velocity is shown and in Figure 3.6, the stick displacement is shown, together with its
displacement threshold. As can be seen from these figures, the friction torque will increase to Ts
until the stick displacement p is almost equal to p0, at that moment Tfrict = krel

Ts
krel + σ1ωR.

The stick displacement p is further increasing until its value is higher than p0. At this moment
Tfrict will switch to Tc · sgn(ωR) and dp

dt is reset to zero. The car will decrease its speed and

wheel velocity until the wheel velocity is negative and, therefore, dpdt is set to its integrator action.

However, dp
dt is now negative, since ωR is negative. This process is repeated a few times and,

therefore, ωR will damp out to zero angular velocity.
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Figure 3.4: The brake input signal Tb and the friction torque Tfrict of the front wheel.
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3.2 Roll axis vehicle model

The roll axis vehicle model from [49] and [23] is used in this project to validate the ADAS systems
in PreScan and to obtain data which is used to train a neural network based estimator to estimate
the maximum road friction coefficient. There are multiple reasons to use this model. The most
important reason originates from the requirement that Siemens wants a vehicle model which is
able to simulate the steering behavior of a car. The second reason is that this model is also using
the Magic Formula to calculate the tyre forces, only now the tyre forces are modelled in multiple
directions, since the tyre has now more degrees of freedom. Another benefit for using this model
is that the animation in PreScan looks more realistic, since the vehicle’s body has four degrees of
freedom: longitudinal, lateral, yaw and roll (u, v, r, ϕ).

A brief description of the equation of motion is presented in this section. For a thorough derivation
of these equations the reader is advised to read [55]. In Figure 3.7 the vehicle model with four
degrees of freedom is shown with the longitudinal velocity u, lateral velocity v, the yaw velocity r
and the roll angle ϕ as motion variables. Point A is located in the ground plane, where point B is
located on the roll axis. When the center of mass (CM) is above point A the roll angle ϕ is zero.
The distance from the center of mass to point B is given by h′. In the roll centers rc1 and rc2
torsional springs and dampers are modelled with roll stiffness cϕi and damping coefficient kϕi.

Figure 3.7: Roll axis vehicle model [55].

3.2.1 Vehicle body dynamics

The equations of motion of the system are presented in Equations (3.13), (3.14), (3.15) and (3.16).

mu̇−mrv −mh′ϕṙ − 2mh′rϕ̇ =
∑

Fx (3.13)

mv̇ +mru+mh′ϕ̈−mh′r2ϕ =
∑

Fy (3.14)

Izz ṙ + (Izzθr − Ixz) ϕ̈−mh′(u̇− rv)ϕ =
∑

MZ (3.15)
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(
Ixx +mh′2

)
ϕ̈+mh′(v̇ + ru) + (Izzθr − Ixz) ṙ

−
(
mh′2 + Iyy − Izz

)
r2ϕ+ (kϕ1 + kϕ2) ϕ̇

+ (cϕ1 + cϕ2 −mgh′)ϕ
= 0 (3.16)

in which Iii are the vehicle’s moments of inertia. The sum of the longitudinal and lateral forces
and moments can be found with respectively

∑
Fx = Fx1 + Fx2 − (Fy1 + Fy2) δ + Fx3 + Fx4, (3.17)

∑
Fy = (Fx1 + Fx2)δ + Fy1 + Fy2 + Fy3 + Fy4, (3.18)

and

∑
Mz = a (Fx1 + Fx2) δ
+a (Fy1 + Fy2) +Mz1 +Mz2 − b (Fy3 + Fy4) +Mz3 +Mz4

+Fx3s2 − Fx4s2 + (Fx1 − Fy1δ) s1 − (Fx2 − Fy2δ) s1,
(3.19)

where a is the distance from the center of gravity to the front wheel center, b is the distance from
the center of gravity to the rear wheel center, s1 and s2 are the vehicle half track widths and δ is
the steering angle. The dimensions of the vehicle are illustrated in Figure 3.8 together with the
longitudinal and lateral tyre forces and moments.

Figure 3.8: View from above of the roll axis vehicle model with dimensions [55].
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Figure 3.9: Magic Formula version 5.1: Inputs and Outputs.

3.2.2 Combined longitudinal and lateral dynamics tyre model

The Magic Formula model (Pacejka 1989) from Section 3.1.2 calculates the longitudinal tyres forces
depending on the vertical load Fz and longitudinal slip κ. This tyre model is now extended to a
combined slip model from Pacejka 1996 (MF 5.2) [49], which is able to calculate the longitudinal
force Fx, lateral force Fy and the the self aligning moment Mz as illustrated in Figure 3.9.

For steady-state rolling conditions the input variables are the inclination angle γ, the longitudinal
slip κ which can be calculated with Equations (3.5) and (3.6), the side slip angle which is calculated
with

α = arctan

(
Vsy
|Vx|

)
, (3.20)

where Vsy is the lateral slip velocity and Vx is the forward velocity. Furthermore the vertical force
Fz on each wheel which is calculated with the following equations:

Fz1 =
a2

2l
mg + ∆Fz1,roll −∆Fz,brake

Fz2 =
a2

2l
mg −∆Fz1,roll −∆Fz,brake

Fz3 =
a1

2l
mg + ∆Fz2,roll + ∆Fz,brake

Fz4 =
a1

2l
mg −∆Fz2,roll + ∆Fz,brake,

(3.21)

where the load transfer due to the vehicle body roll can be calculated with

∆Fz1,roll =
(Fy1 + Fy2)h1 − cϕ1ϕ− kϕ1ϕ̇

2s1

∆Fz2,roll =
(Fy3,chassis + Fy4)h2 − cϕ2ϕ− kϕ2ϕ̇

2s2

(3.22)

and the load transfer due to braking is calculated with

∆Fz,brake =
h

2l
mu̇. (3.23)

The Magic Formula equations and parameters are stated in Appendix B.2. In Figure 3.10 the
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influence of the inclination angle γ, the longitudinal slip κ and the side slip angle α on the Pacejka
curve characteristics is shown.

Figure 3.10: Influence of the inclination angle γ, the longitudinal slip κ and the side slip angle
α on the Pacejka curve characteristics.

3.3 Control-oriented vehicle model

For the preliminary design and testing of braking control algorithms, the model which is described
in Section 3.1 is simplified. This model is known as the single-corner model:

{
Jω̇ = RFzµ

(
v−ωR
v

)
− Tb

mu̇ = −Fzµ
(
v−ωR
v

) , (3.24)

where

ω [rad/s] is the angular speed of the wheel; u [m/s] is the longitudinal speed of the vehicle centre
of mass Tb [Nm] is the braking torque, Fz [N] is the vertical force; and J

[
kgm2

]
, m [kg] and R

[m] are the moment of inertia single-corner mass and the wheel radius, respectively.

In system (3.24), the state variables are u and ω. As κ, u and ω are linked by the algebraic
relationship κ = u−ωR

u it is possible to replace the state variable ω with the state variable κ.
Substituting

κ̇ = −R
u
ω̇ +

Rω

u2
u̇ (3.25)

and
ω =

u

R
(1− κ) (3.26)

into Equation (3.24), the following equation is obtained

{
κ̇ = − 1

u

(
(1−κ)
m + R2

J

)
Fzµ(κ) + R

JuTb

mu̇ = −Fzµ(κ)
. (3.27)
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The single-corner model relies on the following simplifications:

• The four wheels are treated as dynamically decoupled, which means that the dynamic load
transfer phenomena induced by pitch motion are neglected.

• The suspension dynamics are neglected.

• The wheel radius is assumed to be constant. As a matter of fact – during braking– as
consequence of the pitch motion is a dynamic change in the wheel radius, which is a function
of the instantaneous vertical load.

• There are no tyre relaxation dynamics considered.

• Straight-line braking is considered.

Since the velocity u can be considered as a slowly-varying parameter compared to the state variable
κ due to the large differences in inertia, the second equation of Equation (3.24) can be neglected,
so that the model reduces to a first-order model of the wheel slip dynamics:

Jω̇ = RFzµ

(
v − ωR

v

)
− Tb (3.28)

3.3.1 Model analysis

In this section, the single-corner model is analysed, its equilibrium points are computed and lastly
the model is linearized. Further, the transfer function from braking torque to wheel slip will be
determined and analysed to illustrate the dynamic dependency of the model on vehicle speed and
vertical load.

3.3.1.1 Equilibrium points

To compute the equilibrium points note that by setting u̇ = 0 and ω̇ = 0 in system (3.24), the
corresponding equilibrium is given by κ = 0 and Tb = 0. This corresponds to a constant-speed
condition without braking; this equilibrium condition is trivial and meaningless for the design of
a braking controller. For the design of a braking controller the interesting equilibrium points are
characterised by κ̇ = 0, which gives a constant longitudinal slip κ = κ̄. The first-order model of
the wheel slip dynamics is

κ̇ = − 1

u

(
(1− κ)

m
+
R2

J

)
Fzµ(κ) +

R

Ju
Tb (3.29)

.

Note that for any control input Tb ≥ 0, the wheel slip is non-negative since κ ∈ [0, 1]. The vehicle
is either braking or at constant speed. With u = ωR

1−κ and assuming that κ ∈ [0, 1), Equation
(3.29) can be rewritten as

κ̇ = −1− κ
Jω

((
R+

J

Rm
(1− κ)

)
Fzµ(κ)− Tb

)
. (3.30)

From Equation (3.30), it can be seen that the equilibrium points are characterised by:

T̄b =

(
R+

J

Rm
(1− κ̄)

)
Fzµ(κ̄). (3.31)

30 TU/e



In Figure 3.11 the equilibrium points are shown. It can be seen that the number of equilibrium
points is dependent on the value of the braking torque T̄b. The possible solutions are given below:

• If T̄b > max(
(
R+ J

Rm (1− κ̄)
)
Fzµ(κ̄)), the system has no equilibrium points.

• If T̄b ≤ max(
(
R+ J

Rm (1− κ̄)
)
Fzµ(κ̄)), the system has at most two equilibria, namely κ̄1

and κ̄2, where κ̄1 and κ̄2 coincide only if T̄b = max(
(
R+ J

Rm (1− κ̄)
)
Fzµ(κ̄)).

Since the nonlinear system is a first-order system, the stability properties of the equilibrium points
can be easily investigated. Figure 3.12 shows κ̇ as a function of κ for Tb = T̄b = 1000 Nm. As can
be seen from Figure 3.12, κ̄1 is a locally asymptotically stable equilibrium, while κ̄2 is unstable.
From this analysis it can be concluded that, for constant values of the braking torque, the equilibria
corresponding with slip values beyond the peak friction of the tyre-road friction curve are unstable.
A remark about model is due. If we remove the assumption that κ ∈ [0, 1), and consider also the
value κ = 1, which is a state where the wheels are completely locked, as an equilibrium point.
The stability properties cannot be directly investigated with the standard analysis tools used in
Lyapunov stability theory, as the concept of neighbourhood of the equilibrium point cannot be
properly defined. Moreover, for this model to hold one needs ω > 0, which in turn implies that κ
cannot be equal to 1, but can only approach 1 from the left.

Figure 3.11: Equilibrium points for the single-corner model in the (κ,Tb) plane (example with
Fz = mg and dry asphalt).

3.3.2 Model linearisation

Let us consider now the following variables, defined around an equilibrium point (characterised
by Tb and κ):

δTb = Tb − T̄b; δκ = κ− κ̄;

To carry out the linearisation of the system, a crucial issue is how to consider and manage the
dynamic dependency on the variable u. Since it is assumed that the rotational dynamics of the
wheel are much faster than the longitudinal dynamics of the vehicle, u is considered to be an slowly
varying parameter. Therefore u can be considered to be quasi constant, i.e., u = ū. To linearise
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Figure 3.12: κ̄ as a function of κ for T̄b = 1000.

the first-order model of the wheel dynamics (Equation (3.29)) first the slope of the friction curve
µ(κ) around an equilibrium point is defined as

µ1(κ̄) :=
∂µ

∂κ

∣∣∣∣
κ=κ̄

. (3.32)

which leads to the first-order Taylor expansion of the friction curve µ(κ):

µ(κ) ≈ µ(κ̄) + µ1(κ̄)δκ. (3.33)

Linearising system (3.29) with the assumption that the speed is constant (u = ū), the following
linearization is obtained

δκ̇ =
Fz
ū

[
µ(κ̄)

m
− µ1(κ̄)

(
(1− κ̄)

m
+
R2

J

)]
δκ+

R

Jū
δTb. (3.34)

The transfer function Gκ(s, ū) from δTb to δκ is than given by

Gκ(s) =
R
Jū

s+ Fz
mū

[
µ1(κ̄)

(
(1− κ̄) + mR2

J

)
− µ(κ̄)

] . (3.35)

having its single pole located at

sp = − Fz
mū

[
µ1(κ̄)

(
(1− κ̄) +

mR2

J

)
− µ(κ̄)

]
(3.36)

3.3.2.1 Stability analysis

The linearised single-corner model with transfer function Gκ(s) is asymptotically stable if and
only if
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µ1(κ̄)

[
(1− κ̄) +

mR2

J

]
> µ(κ̄).

Since µ(κ̄) ∈ [0, 1] and mR2

J >> µ(κ̄) it can be seen that the open-loop (locally) asymptotically
stable equilibrium points are found just before the peak of the friction curve and the unstable ones
are found at the peak of the friction curve where µ1(κ̄) = 0 and beyond.

3.3.2.2 Sensitivity analysis

In this section the effects that some specific system parameters have on the linearised single-corner
dynamics are analysed. First the vehicle speed is varied, thenn the vertical load, and lastly the
road condition. The analysis carried out in the previous section has shown that the vehicle speed
and vertical load does not affect the stability properties of the linearised braking dynamics.

In Figure 3.13 the magnitude and phase Bode plots of the frequency response associated with
Gκ(s) are displayed for four different values of ū, with Fz = mg, κ̄ around the peak friction on a
dry asphalt.
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Figure 3.13: Magnitude and phase Bode plots of the frequency response associated with Gκ(s)
are displayed for four different values of ū, with Fz = mg, κ̄ around the peak friction on a dry
asphalt.

From Figure 3.13 it can be seen that the angular frequency of the pole of the linearised wheel
dynamics for lower velocities is larger than that for higher velocities. This scaling effect could be
taken into account in the design of a braking controller.

During braking a load transfer occurs. The effects of vertical load variations should therefore
be investigated. In Figure 3.14 the magnitude and phase Bode plots of the frequency response
associated with Gκ(s) are displayed for three different values of Fz, with u = 25, κ̄ around the
peak friction on a dry asphalt. As can be seen the vertical load mainly effects the low frequency
behaviour of Gκ(s).
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Figure 3.14: Magnitude and phase Bode plots of the frequency response associated with Gκ(s)
are displayed for three different values of Fz, with u = 25[m/s], κ̄ around the peak friction on a
dry asphalt.

3.4 Conclusion

In Appendix A the simulation results of the double corner model are compared with the simulation
results of the Simcenter Amesim vehicle model. From this Appendix is concluded that the double
corner model accurately simulates the vehicle behavior. Therefore, this model can be used to
validate the proposed control and ADAS systems.

The roll-axis vehicle model is also validated against the Amesim model, however a different tyre
model was used. In the double corner model, the tyre model from Pacejka 1989 is used, where
the roll-axis vehicle model uses a tyre model based on Pacejka 1996 (MF 5.2). The longitudinal
behavior from the older model is fitted into the longitudinal behavior from the new model by a
parameter estimation by hand. The results are shown in Figure 3.15, where the longitudinal force
Fx is shown for different κ. At first it was concluded that the longitudinal behavior is estimated
accurately enough; however the small differences lead to large velocity errors as can be seen in
Figure 3.16.

In the rest of this research project the roll-axis vehicle model with these poorly estimated para-
meters is used to validate the proposed control and ADAS systems. The poor tyre parameter
estimation is not a problem, since the tyre parameters are based on a fictional tyre. The roll-axis
vehicle model is therefore simulating the tyre dynamics properly, but the tyre parameters do not
correspond with the particular tyre which has been used in Simcenter Amesim.

Summarizing, the single corner model is used to develop a wheel slip controller to control the
vehicle and the double corner model is used to validate this controller, which is discussed in
Chapter 4. Finally, the roll-axis vehicle model is used to validate the proposed ADAS systems and
to obtain the simulation data which is used to train a neural network to estimate the maximum
road friction coefficient.
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Figure 3.15: Longitudinal force Fx as function of κ for Fz = mg on a a dry asphalt for two
different tyre models.
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Figure 3.16: Velocity response from time simulation of double corner model and the roll axis
vehicle model with poorly estimated tyre parameters.
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4. Control system design
In Figure 4.1 the block diagram of the proposed unified AEB and ACC system is presented. In this
chapter multiple blocks of this diagram are explained in detail. A slip controller is used to control
the acceleration and deceleration of the vehicle. The control system should meet the following
requirements:

• The controller should be easily implementable on an ECU of a vehicle,

• The controller should guarantee stability for different road conditions and all admissible
speed values,

• The controller should have robust performance for different road conditions and all admissible
speed values,

• The controller should ensure asymptotic tracking of a constant wheel slip setpoint with a
maximum settling time of 1.5 seconds.

Therefore, the aim is to design a controller with a bandwidth between 1 to 10 Hz, with a maximum
overshoot of 15%. Furthermore the nominal robustness margins are used, which are a modulus
margin lower than 6 dB, a phase margin higher than 30 degrees and a gain margin higher than
6 dB. The motivation and implementation of the slip controller is discussed in Section 4.1.
From this section, it is concluded that a road condition estimator is needed to ensure robust
performance. The road condition estimator block is explained in Chapter 5. Furthermore the slip
control algorithm is presented in Section 4.2, the ACC system is discussed in Section 4.3.2 and
the AEB controller is explained in Section 4.3.1.
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Slip control
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Figure 4.1: The block diagram of full system.

4.1 Slip controller

In this section the slip controller is discussed. First the motivation for a slip controller is given
in Section 4.1.1. Multiple iterations of designing, testing and improving were needed to find the
final controller. In Section 4.1.2 a stability and uncertainty analysis is presented.

In Appendix A.2.2, a PI-controller is designed for an ideal situation, where no actuator dynamics
and delay are considered. To move to a more realistic situation the actuator dynamics with delay is
added to the control loop. It is concluded that a PI-controller can not ensure closed-loop stability
for all velocities in such a realistic situation. Therefore a new literature review was conducted
to find a solution. In [59] a new wheel slip control system based on a Youla parameterization
approach is proposed. The paper concluded that the proposed controller was able to stabilize the
system in all working conditions. The single Youla parameterized controller was based on a stable
nominal plant with actuator dynamics, however they did not add a delay to the system. In this
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research it is investigated if a Youla parameterized controller could stabilize the nomimal plant
dynamics with actuator dynamics and delay for all admissible speeds. The Youla parameterized
controller is introduced in Section 4.1.3. Finally, this controller is validated and compared with
an PID-controller in Section 4.1.4.

4.1.1 Motivation

In Appendix A.2.1 the results of an open-loop simulation are presented. It is concluded that a
brake controller is needed to prevent the wheels from slipping.

Figure 4.2 shows the longitudinal friction coefficient µ(κ) plotted against the longitudinal slip κ
for different road conditions. It can be seen that for a dry road the optimal longitudinal friction
coefficient is achieved with a longitudinal slip ratio of around 0.22. A high friction coefficient will
lead to a shorter stopping distance. For an AEB system it is important to decelerate the car with
its highest deceleration. The highest achievable deceleration occur at the peaks of the diagrams
which are plotted in Figure 4.2, therefore it would be beneficial to control the brake input.
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Figure 4.2: The friction coefficient µx(κ) plotted against the longitudinal slip κ for different road
conditions. The horizontal dashed line represents the setpoint κ.

In braking control systems, two output variables are normally considered for regulation purposes:
wheel slip and wheel deceleration. Traditionally the controlled variable is the wheel deceleration,
since the wheel deceleration can be easily measured with a simple wheel encoder. However, it
can be dynamically critical if the surface of the road is changing rapidly, which can be seen from
Figure 4.3, which shows a diagram where the normalised wheel deceleration as function of κ is
plotted against κ for different road conditions. The normalised wheel deceleration is expressed as
η = ω̇r

g , where η is the linear deceleration of the contact point of the tyre, normalised with respect
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to the gravitational acceleration g. From this figure it can be seen that it is impossible to find a
unique value of the setpoint-η that provides good performance in every road condition.

On the other hand, the control of the wheel slip is very robust from the dynamical point of view,
but then the slip measurement is critical, since it requires the estimation of the speed of the
vehicle. Noise sensitivity of slip control hence is a critical issue, especially at low speed. One of
the requirements for this project is that the control system should be robust for changes in road
condition and therefore wheel slip control is further investigated.
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Figure 4.3: The normalised wheel deceleration as function of κ for different road conditions.
The horizontal dashed line represents the setpoint η and the vertical dashed line represents the
setpoint κ.

4.1.2 Single-corner model stability and uncertainty analysis

In Figure 4.4 the wheel slip closed-loop system with actuator dynamics and sensor noise is shown.

Figure 4.4: Wheel slip closed-loop system with delay and sensor noise.
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4.1.2.1 Stability analysis plant without actuator dynamics

To analyse the dynamic properties of

Gκ(s, ū) =
R
Jū

s+ Fz
mū

[
µ1(κ̄)

(
(1− κ̄) + mR2

J

)
− µ(κ̄)

] , (4.1)

the system is first analysed without actuator dynamics and sensor noise. The characteristic poly-

nomial χκ(s) of the closed-loop system KGκ(s)
1+KGκ(s) is given by:

χκ(s) = s+
1

ū

[
Fz
m

(
µ1(κ̄)

(
(1− κ̄) +

mR2

J

)
− µ(κ̄)

)
+K

R

J

]
, (4.2)

where K(s, u) = K is a simple gain. From this equation a closed-loop stability condition can be
obtained and is given by

K > −FzJ
mR

[
µ1(κ̄)

(
(1− κ̄) +

mR2

J

)
− µ(κ̄)

]
. (4.3)

It can be seen that the stability does not depend on ū and that a simple proportional controller
K can stabilize the plant for all κ. So the closed-loop system is asymptotically stable in every
working condition, namely for all values of κ̄ and for every road, the closed-loop stability can be
guaranteed. From Figure 4.2 it can be seen that it is easy to find a setpoint κ that provides good
results for every road condition. However to always brake with an optimal friction coefficient the
road conditions should be identified online, see chapter 5.

4.1.2.2 Stability analysis plant with actuator dynamics

Now the system is analysed with the delayed actuator dynamics. The transfer function of the
brake actuator dynamics which is a first-order linear time-invariant system is given by

Gactuator (s) = Gact(s)Gd(s) =
ωact

s+ ωact
e−sτ (4.4)

with a pole at ωact and a pure delay of τ . Nominal values for these kind of brake actuators are
ωact=70 rad/s with a delay of τ=20 ms.

The transfer function of the system with actuator dynamics linearized around and unstable set-
point κ = 0.5 and quasi constant u with actuator dynamics and delay is now given by

Gdelay(s, ū) = Gκ(s)Gact(s)Gd(s) =
0.6
ū

(s− 259
ū )

70

(s+ 70)

−s+ 200

s+ 200
(4.5)

where Gd(s) is a first-order Pade approximation for the delay.

The characteristic polynomial χκ(s, ū) of the closed-loop system
KGdelay(s,ū,K)
1+KGdelay(s,ū) is given by:

χκ(s, ū,K) = (
−42Ks
ū + 8400K

ū

(s− 259
ū )(s+ 70)(s+ 200) + −42Ks

ū + 8400K
ū

(4.6)

where K is a simple proportional gain. The closed-loop poles are now calculated for different gain
and velocity. The stability analysis of the closed-loop system is shown in Figure 4.5, where the
blue surface represents the unstable region and the white surface the stable region.
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Figure 4.5: Stability analysis of closed loop system for different gain and velocities. Blue surface
is unstable region and white surface is stable region.

Figure 4.5 shows that single classical controller could not stabilize the plant for velocities lower
than 5 ms−1. Therefore, a single classical controller could not guarantee stability for all velocities.

4.1.2.3 Uncertainty analysis

The control-oriented linear plant model that is derived in Section 3.3.2 depends on the tyre normal
Fz, the vehicle velocity ū and the road conditions (which is reflected on µ1(κ) and µ(κ)) during
braking. To investigate the variation of plant dynamics, the maximum and minimum values of
these variables are derived.

The normal force range limit is:

0 ≤ Fz,i ≤
1500g

4
kN (4.7)

with the i the index for front wheels and rear wheels. The velocity range is

1 ≤ Vx ≤ 35m/s. (4.8)

By investigating different road surfaces at different slips, the maximum and minimum values of
u1(κ) occur on dry asphalt. Therefore the slip slope limit is:

− 0.4 ≤ µ1(κ) ≤ 10.1. (4.9)
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And finally the slip κ is bounded between 0 and 1. The maximum and minimum values of gain
and pole of the plant can now be obtained. With this information an uncertainty model can be
obtained. Consider the family of plant transfer functions for the stable region as follows

P (s) =
b

s+ a
, (4.10)

where 0.017 ≤ a ≤ 0.6 and a is expressed as Fz
mū

[
µ1(κ̄)

(
(1− κ̄) + mR2

J

)
− µ(κ̄)

]
. Moreover

1 ≤ b ≤ 6720 and b is expressed as R
Jū . The family can be expressed as

P (s)(1 + ∆W1)

1 + ∆W2P (s)
, −1 ≤ ∆ ≤ 1, (4.11)

where

P (s) :=
0.3085

s+ 3360
, W1 := 0.95, W2 := 3350. (4.12)

It is concluded that the plant dynamics are highly sensitive to its operating points. A proper
selection of nominal operating points is very important for the design of the control system.

4.1.3 Youla parameterization

In this subsection the idea of a Youla parameterization controller is first explained thereafter this
idea is implemented. Let us consider a unity-feedback system with block diagram as shown in
Figure 4.6.

Figure 4.6: Unity-feedback system.

Here the plant P is assumed strictly proper and the controller is assumed C proper. A proper
transfer function is a transfer function in which the degree of the numerator does not exceed the
degree of the denominator. A strictly proper transfer function is a transfer function where the
degree of the numerator is less than the degree of the denominator.

A Youla parameterization is a method to parametrize all C(s) for which the feedback system is
internally stable, and then see if there exists a parameter for which an additional desired property
can be acquired. For example, the output y asymptotically tracks a step input r. According to
[22] the feedback system is internally stable iff the nine transfer functions
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1

1 + PC

 1 −P −1
C 1 −C

PC P 1

 (4.13)

are all proper and stable. The theorem from [22] is as follows .

Theorem 1 Assume that P is stable and P ∈ S. Then the set of all C for which the feedback
system is internally stable equals {

Q

1− PQ : Q ∈ S
}
. (4.14)

where S is a symbol to introduce the family of all stable, proper, real rational functions.

Equation (4.14) can be substituted in Equation (4.13) which leads to 1− PQ −P (1− PQ) −(1− PQ)
Q 1− PQ −Q
PQ P (1− PQ) 1− PQ

 .
As can be seen these nine entries belong to S, since all nine transfer functions above are affine
fuctions of the free parameter Q; each is of the form A1 +A2Q for some A1, A2 in S.

4.1.3.1 Implementation

The plant dynamics consists of two first-order transfer functions and a first-order Pade approx-
imation of the delay. As explained before, the stability and dynamics of the plant are highly
dependent on the nominal linearization parameters. To obtain an appropriate plant, the nominal
operating points are chosen such that µ(κ) is near to its peak value but still in its stable region.
Therefore µ1(κ) > 0. The nominal operating points are chosen to be u = 15 m/s and κ = 0.2
and the car is driven on dry asphalt. The plant is linearized around these operating points which
leads to the stable plant

Gdelay(s) = Gκ(s)Gact(s)Gd(s) =
0.04

(s+ 24.86)

70

(s+ 70)

−s+ 200

s+ 200
. (4.15)

The Youla parameter Q is chosen to be:

Q =
1

Gd(s)

[
(−s+ 200)

(τ1s+ 1) (τ2s+ 1) (s+ 200)

]
, τ1, τ2 > 0 (4.16)

where τ1 and τ2 are tunable parameters to tune the sensitivity and complementary sensitivity
transfer functions S and T . τ1 and τ2 are tuned to ensure robust performance considering plant
dynamics uncertainties at low frequencies and attenuate sensor noise at high frequencies. Therefore
a modulus margin lower than 6 dB, a phase margin higher than 30 degrees and a gain margin
higher than 6 dB must be guaranteed.

Since Gdelay(s) is a stable plant the proposed Youla transfer function is stable (and minimum
phase), therefore, internal stability of the feedback system is guaranteed.

The complementary sensitivity T and sensitivity S transfer functions are:

T = QGdelay(s) =
−s+ 200

(τ1s+ 1) (τ2s+ 1) (s+ 200)
(4.17)

S = 1− T =
(s− 200) + (τ1s+ 1) (τ2s+ 1) (s+ 200)

(τ1s+ 1) (τ2s+ 1) (s+ 200)
(4.18)
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The controller transfer function K, can be derived as:

K =
Q

S
=

(−s+ 200)

Gdelay(s) [(s− 200) + (τ1s+ 1) (τ2s+ 1) (s+ 200)]
(4.19)

and the open loop transfer function L is:

L = KGdelay(s) =
(−s+ 200)

[(s− 200) + (τ1s+ 1) (τ2s+ 1) (s+ 200)]
. (4.20)

the closed loop transfer function L
1+L for τ1 = 1

35 and τ2 = 1
500 becomes

L

1 + L
=

−17500(s− 200)

(s+ 500)(s+ 200)(s+ 35)
, (4.21)

which is stable.

The magnitude Bode plots of T and S are shown in Figure 4.7. Figure 4.7 shows that the peak
values of S and T are less than 2 dB so a gain margin higher than 6 dB is guaranteed. The
Bode plots of transfer function Gdelay and open loop transfer function L are shown in Figure 4.8
which shows that the bandwidth is 4 Hz and that a minimum of 30 degrees phase margin is also
guaranteed, which means that a good control performance is met. In Section 4.1.4 the behaviour
of the control system in time domain is investigated.

Figure 4.7: Magnitude Bode plots of complementary sensitivity T and sensitivity S.
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Figure 4.8: Bode plots of transfer function Gdelay and open loop transfer function L.

4.1.4 Validation

In this section the designed controllers are validated. To investigate the behaviour of the control
system in time domain, the response of the closed-loop control system subject to unit step input
at different operating points is simulated. In Figure 4.9 the block diagram of the wheel slip
closed-loop system with delay is shown.

Figure 4.9: Wheel slip closed-loop system with delay.

As can be seen the linearized plant Gκ is now replaced with the non linear double corner vehicle
model. The proposed Youla controller is based on the linearized plant transfer function with
nominal operating points as discussed before. However, the plant is highly sensitive to variation of
parameters as shown in Equation (4.12), where the uncertainty model of the stable region of the
plant is shown. The varying parameters are the vehicle velocity, the tyre normal forces, the tyre
slip and the road condition. Moreover if the tyre slip κ is increased the plant can even become
unstable. As discussed before the goal of the Youla parameterized controller is to stabilize the
plant with delay on a broader range of operating points compared to the PI-controller.

To investigate the robustness and stability of the control system at the entire range of operating
points, the response of closed loop brake control system subject to slip step input at different
operational conditions and surfaces are simulated. Figure 4.10 shows the friction coefficient µ as
function of κ for different road conditions. A dry surface corresponds to µmax = 1, a wet surface
corresponds to µmax = 0.8 and a snow surface corresponds to µmax = 0.2.
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Figure 4.10: The friction coefficient µ as function of κ for different road conditions.

In all simulations the wheel slip setpoint κ is set to 20 after 5 seconds, since this will cover
multiple stability regions. On a dry surface the plant dynamics are stable. A wet surface leads to
unstable dynamics, however these dynamics are near to its stability boundary and lastly the snow
surface leads to unstable plant dynamics. Furthermore, the the performance and robustness of the
controllers is tested on a dry surface for different initial velocities. Four different controllers are
developed and based on the analysis the best controller is chosen. The first controller K1 is a PID
controller which is optimized for a stable linearized plant with actuator dynamics and delay. The
plant is linearized around ū = 15 and κ̄ = 20 on a dry surface. The second controller K2 is also a
PID controller optimized for an unstable linearized plant with actuator dynamics and delay. The
plant is linearized around ū = 5 and κ̄ = 20 on a snow surface. Thereafter, a Youla controller K3

is designed based on a stable plant with actuator dynamics and delay as discussed in the previous
section. τ1 and τ2 are optimized for robustness. Lastly, a second Youla controller K4 is designed
with τ1 and τ2 optimized for performance. In this section the simulation results of controller K1

and K4 are analysed. If the reader is interested in controller K2 and K3, the reader is referred to
Appendix A.2.3.
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Figure 4.11: The velocity for different road conditions with initial velocity uinit = 40. Controller:
K1. Slip setpoint κ = 20.
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In Figure 4.11, the velocity simulation results for K1 on different road surfaces (different µmax) are
shown. As can be seen from Figure 4.11, the maximum achievable deceleration is higher on high
friction roads, which will lead to a shorter braking distance. The difference in maximum achievable
deceleration is caused by a lower road friction coefficient. The velocity simulation results are only
shown for controller K1, since the velocity simulation results for K4 do not deviate much from it.

In Figure 4.12, the wheel slip simulation results for K1 on different road surfaces (different µmax)
are shown, in Figure 4.13 a zoomed version of Figure 4.12 is shown.

As can be seen from Figure 4.12 the controller is able to stabilize the unstable dynamics for velocit-
ies higher than a certain value. However, undesirable oscillations can be seen at low velocities. The
undesirable oscillations occur at different moments in time for different road conditions, since the
maximum vehicle’s deceleration is different for different road conditions as shown earlier in Figure
4.11. From Figure 4.13, it can be seen that settling time is around 0.4 seconds and the overshoot
varies from 15% to 30%. The best control performance can be seen on a road with µmax = 1. In
Figure 4.14, the initial velocity is varied for a simulation on a dry surface (µmax = 1). The purple
line from Figure 4.12 corresponds to the green line in Figure 4.14. Again undesired oscillations
can be seen at low velocities.

It is concluded that the controller K1 is not stable for all admissible velocities, and therefore, K4

is designed.
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Figure 4.12: The controlled front and rear wheel slip κf and κr for different road conditions
with initial velocity uinit = 40. Controller: K1. Slip setpoint κ = 20.
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Figure 4.13: A zoomed version of Figure 4.12.
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Figure 4.14: The controlled front and rear wheel slip κf and κr for different initial velocities on
dry surface µmax = 1. Controller: K1. Slip setpoint κ = 20.

In Figure 4.15 and 4.16 the simulation results for K4 are shown. The purple line in Figure 4.15
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corresponds to the green line in Figure 4.15. It can be seen that K4 is not able to stabilize κ for
unstable setpoints (µmax < 0.8). However, the purple line shows that K4 is able to stabilize κ.
To clarify, for a road with maximum road friction coefficient µmax = 1 the stable slip setpoint
is bounded between 0 and 20 and for a road with maximum road friction coefficient µmax = 0.2
the stable slip setpoint is bounded between 0 and 6. From Figure 4.15, can be concluded that
controller K4 is able to stabilize the plant with delayed actuator dynamics at low velocities.

To show that K4 is also able to stabilize the plant at different initial velocities. A simulation is
performed on a road with maximum road friction µmax = 1, where the initial velocity is varied.
The results are shown in Figure 4.16. The results confirms the hypothesis that a Youla controller
is able to stabilize the plant with actuator dynamics and delay for all velocities. The mean settling
time is 0.6 seconds and the overshoot is between zero and 15%, therefore it is concluded that the
requirements are met.

4.1.5 Conclusion

It is concluded that a controller that is able to stabilize the plant for all working conditions could
not be designed. However, the Youla controller made it possible to control the slip for all velocities
for stable setpoints.

To ensure stability a stable setpoint must be selected anytime. In current ABS systems the brake
input is increased until unstable dynamics are detected, thereafter the brake input is limited to
go back to the stable region. However, if the stability boundary is known before the brakes are
actuated, there is no need to go into the unstable region. Therefore it is highly beneficial to know
the stability boundary, which is only possible if the tyre dynamics and road conditions are known.
Part of this research will study if it is possible to estimate the road conditions by estimating the
maximum road friction coefficient µmax. For now it is assumed that the maximum road friction
coefficient µmax is known and therefore a stable setpoint could always be selected. Therefore, it
is concluded that the controller could guarantee stability.
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Figure 4.15: The controlled front and rear wheel slip κf and κr for different road conditions
with initial velocity uinit = 40. Controller: K4. Slip setpoint κ = 20.
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Figure 4.16: The controlled front and rear wheel slip κf and κr for different initial velocities on
dry surface µmax = 1. Controller: K4. Slip setpoint κ = 20.

4.2 Slip control algorithm

In this section the slip control algorithm is presented. The goal of this algorithm is to determine a
stable wheel-slip setpoint corresponding to the desired acceleration. In Figure 4.17 the slip control
algorithm architecture is shown.

Slip control
algorithm

�

����

�����

�̇�������

Figure 4.17: A slip control algorithm to determine a stable wheel-slip setpoint corresponding to
the desired acceleration.

As discussed in Section 3.1, the longitudinal acceleration is calculated with

Mu̇ = Fxf + Fxr − Faero −Mg sin θ. (4.22)

The longitudinal tyre force is calculated with a Pacejka model as shown in Equations (3.2) and
(3.3).

As shown before the longitudinal force can be calculated with

B = BCD
C·D

ϕ = B · (κ+ Sh)− E(B · (κ+ Sh)− arctan(B · (κ+ Sh)))
Fx = D · sin(C · arctan(ϕ)) + Sv.

. (4.23)

If the tyre parameters are well known, this relationship could be inversed to determine what wheel-
slip setpoint κ is needed for a certain acceleration. It is assumed that the vehicle is driving on a
straight road. Therefore, the road inclination angle is assumed to be zero. For the tyre parameters
as expressed in Appendix B.1, the inverse of Equation 3.3 is given as
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κ = 16µmax tan(
5

8
sin−1(

Mu̇desired + Faero
14715µmax

)) (4.24)

As can be seen the desired wheel-slip setpoint depends on the desired acceleration u̇, the drag
force Faero and the maximum road friction coefficient µmax. A maximum road friction estimator
is proposed in Chapter 5. If the estimated maximum road friction coefficient can be estimated
with a good accuracy, a stable wheel-slip setpoint can be selected. However, if the accuracy is not
good enough a robustness margin needs to be added to this design. This can be done by scaling
the desired acceleration to a lower value.

4.3 Upper level controller

In this section the upper level controller for the AEB system is explained in subsection 4.3.1 and
the upper level controller for the ACC system is explained in subsection 4.3.2. The upper level
controller is an algorithm which controls the desired acceleration based on information from the
sensors. Autonomous Emergency Braking (AEB) is braking that is applied automatically by the
vehicle in response to the detection of a likely collision. From the literature study it is concluded
that current AEB may fail in avoiding rear-end collision on low frictions surfaces. The AEB system
is able to reduce the speed on impact, but cannot always avoid accidents under these conditions.
In current vehicles with automated driving functions below SAE level 3, the driver can adapt
certain ADAS settings. For example the distance to other vehicles can be chosen in case of the
ACC or the driver can set the intervention settings corresponding to the current road conditions.
To improve the current AEB and ACC systems the road condition information is included in the
upper level controller for these systems. Therefore a maximum road friction estimator is needed,
which is designed in Chapter 5.

The AEB and ACC systems are designed based on the Euro NCAP [25] requirements which are
stated in Appendix C together with some extra requirements to improve the current systems that
are used in vehicles.

One of these requirements is to include road condition information in the threat assessment al-
gorithm. Another requirement from the literature analysis is to unify the AEB and ACC system,
which can lead to a more comfortable experience. In Figure 4.18 the states and transitions of the
unified AEB and ACC system are shown. It can be seen that the ACC system can be activated
manually, however the AEB threat assessment algorithm is always running simultaneously with
the ACC. Furthermore the AEB system will always overrule the ACC system.
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The evaluation of the performance of the AEB and ACC controller is done in Chapter 6. In this
chapter the AEB and ACC system which considers road information is compared to these same
sytems without road information.

4.3.1 Autonomous emergency braking

As shown in Figure 4.1 the proposed AEB system includes an environment perception system,
an upper-level controller and a slip controller. The environment perception system consists of
different sensor systems including a wheel speed encoders to measure the wheel speeds ω and a
radar system to measure the distance D to a preceding vehicle and the velocity vp of that preceding
vehicle. Furthermore a GPS and accelerometer can be used to measure the host vehicle speed vh
and acceleration.

The upper-level controller controls the desired acceleration based on a threat assessment algorithm.
The literature analysis shows that many threat assessment algorithms could be used to asses the
threat with each their arguments. The most commonly used algorithm is time-to-collision [17],
which is described by

TTC =
D

(vh − vp)
. (4.25)

Based on the TTC the upper level controller decides what action to perform. In Figure 4.19 the
different control actions for the proposed AEB system can be seen.

52 TU/e



Threat stage Desired deceleration (ms2 )
Pre-braking phase one −µmax
Pre-braking phase two -5µmax
Fully braking -10µmax

Table 4.1: The desired deceleration for the different threat stages.

Figure 4.19: Schematic side view of AEB system with inputs.

Different phases of the AEB system are activated after certain flags, which can be seen in Figure
4.18. First a Forward Collision Warning (FCW) is given to the driver to give the driver a possibility
to correct its velocity and distance to the preceding vehicle. Thereafter two partial braking phases
are activated with each their own deceleration profile to avoid a collision without the need to
decelerate with its maximum deceleration, which leads to a more comfortable experience. Under
certain conditions the control system is switching fast between FCW and pre-braking phase one or
between pre-braking phase one and phase two which leads to chattering in the desired acceleration
profile, therefore an extra requirement is added to prevent this behavior which can be seen in Figure
4.18. The requirement is that the control system will only switch back to a lower threat stage if
the host vehicle is not closing in on the preceding vehicle for half a second.

If the TTC is still decreasing to a point where the TTC is lower than the last warning flag F4,
the car will exert its brake with its maximum deceleration until standstill.

The values of these warning flags must be optimized to prevent false interventions or accidents
with the notion that both variables which are measured to calculate the TTC are subject to
measurement uncertainties.

As discussed before these warning flags are optimized by the supplier based on their measurements
and sometimes they can be adjusted by the driver to compensate for their driving style and weather
conditions. Therefore the current AEB sytems will decrease the speed on impact on low friction
roads but not always avoid a collision. To improve the robustness of the AEB system for different
road conditions the activation times F1 to F4 can be described as a function of the maximum
friction coefficient µmax which is given by

Fi(µmax) =
Fi
µmax

, (4.26)

where i is the index 1 to 4 corresponding to the different threat stages. The desired deceleration
for the different threat stages are given in Table 4.1. The maximum road friction estimator is
designed in Chapter 5 and the AEB performance is evaluated in Chapter 6.
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4.3.2 Adaptive cruise control

In contrast to an autonomous emergency braking system, a adaptive cruise control system aims
on comfort. As can be seen in Figure 4.18 an adaptive cruise control system can switch between
speed control and following control. Adaptive Cruise Control originates from Cruise Control,
which today is a widespread functionality in modern vehicles. CC regulates the vehicle speed
actuating the throttle only, via tracking of speed v that is set by the driver. ACC automatically
adapts the vehicle’s speed depending on a predecessor’s behavior, actuating the throttle as well
as the brake system. The aim of the proposed ACC system is to maintain a certain relative
distance Dref with the preceding vehicle and track its speed vp taken into account certain comfort
requirements. All the ACC requirements are stated in Appendix C. However the most important
comfort requirements are that when the ACC is active the acceleration is limited by [-2, 2] ms2 and
the jerk is limited by [-2, 2] m

s3 . The control rule which is used to control the vehicle speed and
relative distance is described by

adesired = k1(vp − vh)− k2(Dref −D), (4.27)

where vp, vh and D are the measured host vehicle’s speed, the preceding vehicle’s speed and relative
distance respectively. Furthermore k1 and k2 are proportional gains to tune the performance. In
current similar ACC systems the desired relative distance is defined with the Constant-Time
Headway policy [56]:

Dref = ds + Thvh, (4.28)

where ds is a distance buffer between two vehicles in order to avoid a collision, Th is the constant-
time headway that approximates the human reaction time. To unify the AEB and ACC system
the constant-time headway is chosen to be the same value as F1 corresponding to the TTC flag
of the forward collision warning system. Therefore the ACC system is autonomously adapting its
desired distance for different road conditions. Moreover, the distance buffer ds ensures that the
host vehicle is following the preceding vehicle just before the boundary of switching to FCW.

The unified AEB and ACC system as shown in Figure 4.18 can be seen as two independent systems
running simultaneously. However the system is optimized to work fluently by setting the constant-
time headway to f1 the TTC flag of the forward collision warning system. Both systems have
a positive influence on each other. The ACC system is maintaining the desired relative distance
Dref and tracks the preceding vehicle’s speed vp, therefore the ACC system can be seen as another
pre-braking stage in some situations, which can lead to more comfort and less interventions from
the AEB system. On the other hand the AEB system leads to a safer experience.

4.4 Conclusions

In this chapter, the lower-level controller and upper-level controller are described. For the lower-
level controller it is concluded that a PID-controller was not able to stabilize the plant with actuator
dynamics at low velocities. Therefore this chapter focused on finding a method to stabilize the
plant. It is concluded that a Youla parameterized controller is able to stabilize the plant at low
velocities, however as shown in the results the controller is not able to stabilize the unstable
dynamics which occur after the maximum peak friction. One solution could be to design a control
logic which lowers the setpoint κ when unstable dynamics are seen. Another solution which is
further researched is to design a maximum road friction estimator. If the maximum road friction
coefficient is known, the optimal slip setpoint κ could be determined.

In the second section of this chapter the upper-level controller is described. The threat assessment
algorithm assesses the threat with the TTC. The activation times are scaled proportionally with
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the road conditions.

Finally, it is concluded that the unified AEB and ACC system as shown in Figure 4.18 can be seen
as two independent systems running simultaneously. However the system is optimized to work
fluently by setting the constant-time headway to f1 the TTC flag of the forward collision warning
system. Both systems have a positive influence on each other. The ACC system is maintaining
the desired relative distance Dref and tracks the preceding vehicle’s speed vp, therefore the ACC
system can be seen as another pre-braking stage in some situations, which can lead to more comfort
and less interventions from the AEB system. On the other hand the AEB system leads to a safer
experience.
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5. Road friction estimator
In Chapter 4 is concluded that a maximum road friction estimator could be used to guarantee the
stability of the proposed slip controller, since the maximum road friction estimator could determine
a suitable slip κ setpoint for different road conditions. Furthermore in Section 4.3 is concluded
that a maximum road friction estimator can also improve the robustness of the AEB and ACC
system for different road conditions. In the literature analysis which is conducted in Section 2.3
multiple ways of designing a maximum road friction estimator are discussed with each their own
arguments. Some researches concluded that a well-trained Neural Network is able to estimate
the road conditions. The main benefits of using a neural network is that a neural network can
establish relationships between input and output instead of storing an entire complex tyre model
in the controller, which can reduce the computational time significantly, avoid model errors due to
model discrepancy and lastly guarantee real-time performance by accurately capture the hidden
structure in the measured data [53]. In this section it is investigated how well a Neural Network
trained by simulation data can estimate the maximum road friction coefficient on straight roads.
The simulation data is captured from a non linear vehicle model with a Pacejka tyre model as
explained in Section B.2. Paper [41] researched what the accuracy of a maximum road friction
estimator must be to not exceed a certain impact speed when approaching a standstill object. The
following cases can occur:

• ˆµmax > µmax (over-estimation): Over-estimation leads to smaller activation times than
required to avoid an accident.

• ˆµmax < µmax (under-estimation): Under estimation leads to false interventions.

Current AEB systems assume dry roads. It can be assumed that the current systems over-estimate
the road condition in order to minimize false interventions on dry roads. If the driver fails to react
an AEB is supposed to react at the latest moment possible. Therefore the AEB system will fail in
avoiding a collision on surfaces with lower friction. In Figure 5.1 the relation between the tolerable
deviation ∆µmax and µmax is shown in order to not exceed a certain impact speed for different
initial velocities.

Figure 5.1: Tolerable deviation ∆µmax in dependence on the real value µmax of the maximum
road friction coefficient for different initial longitudinal speeds [41].

In this research the maximum road friction coefficient µmax is also used to determine the set point
of the wheel slip which is sent to the slip controller. The following cases can occur:

• ˆµmax > µmax (over-estimation): Over-estimation can lead to unstable behavior.

• ˆµmax < µmax (under-estimation): Under estimation leads to a lower maximum deceleration,
since the slip control algorithm selects a lower slip setpoint.
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Over-estimation is certainly not desired since that will lead to unstable behavior. However the
slip control algorithm which decides on what slip setpoint must be used could be optimized based
on the performance of the maximum road friction estimator. If for example the estimation is poor
on low friction surfaces a robustness margin can be added to the slip control algorithm, this leads
to a lower maximum deceleration for that surface.

5.1 Neural Network

A general workflow for the design of a Neural Network adapted for our use case is shown in Figure
5.2. In this section all these steps will be elaborated.

Figure 5.2: A general workflow for the design of a Neural Network adapted for our use case.

5.1.1 Data generation

As the analytical models from Chapter 3 show, the longitudinal force Fx on straight roads is
dependent of the vertical force Fz, the longitudinal slip κ, the tyre parameters and the maximum
road friction coefficient µmax. As can be seen from Equation (3.13) the main contribution of the
acceleration u̇ is the longitudinal force Fx. The longitudinal slip κ can be estimated from the
wheel velocity ω and vehicle velocity u which can be measured with sensors. Furthermore the
tyre parameters and the total vertical force acting on the vehicle’s center of mass stay constant.
Therefore the longitudinal slip κ and the acceleration u̇ are selected as input to feed the neural
network. The overall structure to estimate µmax is shown in Figure 5.3.

Figure 5.3: Block diagram of the proposed estimator.
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Inputs parameter Variation
Maximum friction coefficient µmax 0.1 to 1.0 at intervals of 0.1
Simulation time 9000 s
Velocity [1 35] m

s

Acceleration [-4 4] m
s2

κ [-1 1]
Table 5.1: Data training parameters and space dimensions.
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Figure 5.4: Simulation results of the acceleration u̇ and the front wheel slip κf for two different
values of µmax over time.

The dataset is created from MATLAB Simulink simulations. The roll-axis vehicle model is simu-
lated for 9000 seconds for every simulation at a 100 Hz sampling rate with a different maximum
road friction coefficient. A range from 0.1 to 1.0 of the maximum friction coefficient is considered
with increments of 0.1. The vehicle of the simulation is first controlled with the slip controller
with random input of acceleration and deceleration on dry road surface with a maximum road
friction coefficient of 1.0. These reference inputs are generated by differentiating a randomly cre-
ated velocity profile with 600 data points over a certain time step. This time step is chosen such
that the acceleration and deceleration stay between the desired limits. The acceleration limit is
chosen to be [-4 4] ms2 , since the estimator should be capable to estimate the maximum road friction
coefficient under normal driving conditions.

The wheel and braking torque time responses are saved from the simulation and thereafter these
random torques are used for the other simulations corresponding to different road conditions. The
range of inputs and the simulation environment are denoted in Table 5.1. Since the simulation time
is 9000 seconds and the sampling rate is 100 Hz, a dataset with 900000 data points is generated
for every output (µmax). To feed the data in a neural network this data must be re-sampled.

5.1.2 Data interpretation

To better understand the data which is generated, the simulation results of the acceleration u̇ and
the front wheel slip κf for two different values of µmax over time are shown in Figure 5.4. From
this figure, it can be seen that for the same constant acceleration a different wheel slip is measured,
also this difference is increasing with higher accelerations. Furthermore, during a transition from
one acceleration to another no difference in slip can be seen.

In Figure 5.5 a scatter plot is shown which is taken from the acceleration for different wheel slips
for two different values of µmax. The Pacejka curve characteristics can be recognized in this plot,

TU/e 59



however the data has a lot of variation. Feeding this data to a neural network will certainly
not lead to any good results. As discussed before the data should be re-sampled and since it is
concluded that the data during a transition from one acceleration to another acceleration is not
any useful, this data is filtered out.

The results are shown in Figure ??.

Figure 5.5: A scatter plot is shown which is taken from the acceleration for different wheel slips
for two different values of µmax

As discussed before there is no variation for low accelerations. Since it is impossible for the neural
network to estimate the road friction coefficient at constant speed a new requirement is created,
which is that the road friction estimator should only estimate the road friction if the acceleration
is higher than 0.05 or lower than -0.05 m

s2 . The training data with all the unwanted data filtered
out is shown in Figure 5.6. The training data is divided in 70 % training data, 15 % validation
data an 15 % test data. The training data will be used to train the neural network, the simulation
data is used to not over fit the neural network and the test data is used to test the neural network.
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Figure 5.6: The training data with all the unwanted data filtered out.

5.1.3 Network architecture

In Figure 5.7 the neural network architecture is presented. One input layer with three inputs
namely the acceleration u̇ and the front and rear wheel slips κf and κr is used. Thereafter
two hidden layers with each 15 neurons are used, where Wi is the composition of the weights
associated to each neuron. Finally one output layer with the estimated maximum road friction
µmax as output.

Figure 5.7: Neural network architecture [52].

The training is carried out using the Matlab Neural Network Toolbox [37]. A back-propagation
Levenberg-Marquardt algorithm is used with 1000 epochs of training iterations. The neural network
is trained to minimize the mean squared error calculated with

MSE =
1

n

n∑
i=1

(µmaxi − ˆµmaxi)
2
. (5.1)
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All the other training parameters can be found in Appendix B.

5.1.4 Analysis of training statistics

In this section the trained network is analysed. To optimize the performance of the Neural Network,
multiple configurations of the network are tested. For example the number of hidden layers
and the number of neurons in each layer is varied. Since training a Neural Network with the
same configuration can lead to different results the training is performed multiple times and the
best performance for each configuration is selected. The performance of the models is primarily
measured through their root mean squared error (RMSE), which is the standard deviation of
the prediction errors. This is a well-known method to validate regression prediction models [65].
Considering the ANN, the RMSE is not used as the Loss function that the Levenberg-Marquardt
algorithm tries to minimize during training. Next to the RMSE, the mean absolute error (MAE)
is computed to get a better understanding of these evaluation metrics the corresponding formulas
are:

RMSE =

√√√√ 1

n

n∑
t=1

e2
i MAE =

1

n

n∑
t=1

|ei| ,

in which ei is µmaxi − ˆµmax and n is the number of samples.

Finally it is concluded that the best performance is achieved with 2 hidden layers with each 15
neurons. The results of other settings are shown in Appendix A.3. In Figure 5.8 the performance
during training is shown, it can be seen that the best performance is achieved at epoch 889 with
a Mean Squared Error of 0.0035. In Figure 5.9 the regression plot is shown for the training data,
validation data, test data and all the data, where R is the Correlation Coefficient. A high value of
R means that the Neural Network has successfully managed to model most of the variation in the
input to target transformation [65]. In Figure 5.10 an error histogram is shown, from this figure it
can be seen that most of the predicted values of µmax have an error of 0.00951 or lower however
in some cases the absolute error is almost 0.35. Another test data set is feed to the trained neural
network and the estimated ˆµmax and real values of µmax can be seen in Figure 5.11. From these
two figures can be concluded that the estimator is working well enough for further validation.

As discussed before the large errors that sometimes occur leads to over-estimation and under-
estimation, which is not desired. Multiple causes can lead to these poor estimates. The most
obvious cause is that the bad estimate occur at low accelerations, since the variation is very low
at these data points. Another cause could be that the test data is still too noisy after filtering the
re-sampled data. The Neural Network is implemented in real time simulations in the next section.
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Figure 5.9: Regression plot which shows the target and output values of µmax for the training,
simulation and test data.
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Figure 5.10: A histogram which shows the error of the estimated µmax for all samples.
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Figure 5.11: A simulation with a test data set which is not used during training of the neural
network.
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5.2 Analysis of real-time results

To analyse the Neural Network in real time, the input data should be supplied to the Neural Net-
work in the same way as it was supplied to train the network. The Neural Network is trained with
data from constant accelerations higher than 0.05 or lower than -0.05 m

s2 . Therefore a state ma-
chine must be designed to ensure that the estimator is only estimating the road friction coefficient
under certain conditions. To illustrate the need of such a machine, first a real time estimation is
performed without this algorithm. The results are presented below. In Figure 5.12 the measured
acceleration is plotted and Figure 5.13 shows the estimated and real values of µmax. The estimates
during constant acceleration are marked with black lines. It can be seen that the estimation out-
puts exceed its limits [0.1 1] and the estimate is quite bad half of the time, however the estimates
for constant accelerations higher and lower than a certain value are quite accurate.
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Figure 5.12: Acceleration during a scenario simulation to validate the neural network.

It is concluded that a state machine must be designed with the following requirements:

• The estimator should only estimate if the acceleration 0.05 < u̇ < 4 and −4 < u̇ < −0.05.

• The estimator should only estimate if the jerk is between −0.1 < jerk < 0.1.

• The estimator should only estimate driving on straight road (no steering input).

• The estimator should remember its previous estimation when it is not aloud to estimate.

The state machine is designed and the new estimation results are shown in Figure 5.14.
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Figure 5.13: The estimated and real values of µmax during a scenario as shown in Figure 5.12.
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Figure 5.14: The estimated and real values of µmax during a scenario as shown in Figure 5.12
with the inclusion of a state machine.
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5.3 Discussion

In this chapter, a neural network is trained to estimate the maximum road friction coefficient µmax
The estimation algorithm is evaluated on varying road surfaces and shows a good accuracy. It is
concluded that the maximum road friction estimator is able to accurately predict the maximum
road friction coefficient µmax if the vehicle is driving on a straight road with a nonzero constant
acceleration or deceleration. The predicted µmax can be used in the upper level controller of
the ADAS systems to improve the performance on different road conditions. However it is not
recommended to use this information in the design of a slip controller, since it is very important to
always be able to have full control of the vehicle. If the estimation fails to detect µmax for example
during a sensor fail, the well-trained neural network may not be able to accurately estimate and
therefore, which can lead to unstable control behavior. Furthermore as can be seen in Figure 5.14,
the estimator sometimes still give poor estimates.

Furthermore it is concluded that a good knowledge about the tyre dynamics is needed. The trained
data is now obtained from a mathematical tyre model. The proposed method is only analyzed
theoretically and validated via simulation and therefore subsequent work is needed to validate the
ANN with real-world tyre data.
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6. Validation of ADAS systems
In this chapter the designed ADAS systems are validated. First the AEB system is validated
according to the performance tests from Euro NCAP [25]. In [25] is stated that the tests are
conducted in dry conditions with ambient temperature above 5◦C and below 40◦C and the test
track shall have a so called peak braking coefficient of 0.9. This coefficient is called the maximum
road friction coefficient µmax in this research. To rate the AEB system for different road conditions
the Euro NCAP test procedure must be adapted. In Section 6.1.1 the adapted Euro NCAP test
procedure is validated for different maximum road friction coefficients. The standard AEB system
without information is compared with the AEB system with road information.

6.1 Euro NCAP AEB performance

In this section the AEB system is validated according to the performance tests from Euro NCAP
[25]. Euro NCAP rates AEB systems of cars based on their performance on their test scenarios.
There are three scenarios namely CCRs, CCRm and CCRb:

Car-to-Car Rear Stationary (CCRs) – a collision in which a vehicle travels forwards towards
another stationary vehicle and the frontal structure of the vehicle strikes the rear structure of the
other.
Car-to-Car Rear Moving (CCRm) – a collision in which a vehicle travels forwards towards
another vehicle that is travelling at constant speed and the frontal structure of the vehicle strikes
the rear structure of the other.
Car-to-Car Rear Braking (CCRb) – a collision in which a vehicle travels forwards towards
another vehicle that is travelling at constant speed and then decelerates, and the frontal structure
of the vehicle strikes the rear structure of the other.

All three scenarios are illustrated in Figure 6.1. The vehicle sponsor will fund 10 verification
tests per scenario, where applicable. For AEB City, 10 tests in CCRs (10-50km/h). For AEB
Inter-Urban, 10 tests for AEB (CCRm). The end of a test is considered when one of the following
occurs:

• Velocity subject vehicle is 0 km/h.

• Velocity subject vehicle is lower than preceding vehicle.

• A collision between subject vehicle and preceding vehicle.

When a collision occurs the relative velocity is measured which is defined as velocity at impact.
Based on these measurements the performance is rated.

6.1.1 Car-to-Car Rear Stationary performance

Normally there is a distinction between AEB City and AEB Inter-Urban. The AEB City should
only work in the range 10-50 km/h and the AEB Inter-Urban should work in the range 30-80
km/h. In this research only one AEB system is designed which is tested in the range 10-80 km/h
with increments of 5 km/h. Another difference between the proposed test procedure and the the
Euro NCAP test procedure is that the AEB is only validated with zero overlap. Normally the
sensor system of the car is validated by overlapping the car from -50% to 50% with increments of
25% as can be seen in Figure 6.4. Since our sensor is an ideal sensor this test is not necessary.
Multiple simulations are performed for different initial velocities and different road conditions. If
the host vehicle collide with the standstill vehicle, the relative velocity at impact denoted as ur is
measured. If the AEB system accomplish to avoid a collision the relative distance at standstill is
given denoted denoted as Dr.
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Figure 6.1: Test scenarios [26].

In Table 6.1, the results for an AEB system without road information is shown and compared
to the results for an AEB system with road information which are presented in Table 6.2. In
Figure 6.2, the acceptable performance for every initial velocity according to Euro NCAP for
CCRs scenarios is shown.

The overall performance of the AEB system is good on dry surfaces according to Euro NCAP.
The main conclusions from these results is that an AEB with road information succeeds to avoid a
collision in more operational working conditions compared to the AEB without road information.
The proposed AEB system seems to benefit the most on roads where the maximum road friction
coefficient is low which corresponds to snow and wet roads. The collisions can be avoided since
the AEB system is activated earlier, however as can be seen in the upper plot from Figure 6.3,
due to the pre-braking phases the AEB system is not activated at the last possible moment. The
pre-braking phases are added to improve the comfort of the AEB system, however for scenarios on
low friction roads the maximum achievable deceleration is already low therefore it is decided to do
the simulations on the road with a maximum road friction coefficient µmax = 0.3 again without
the pre-braking phases.

Figure 6.3 shows two CCRs scenario on a snowy road with an initial velocity of 40 km/h. In the
upper plot an AEB with pre-braking phases is used and in the lower plot an AEB system without
pre-braking phases is used. It can be seen that the AEB system without pre-braking states starts
to brake 5 seconds later. Furthermore the brakes are activated at nearly the last possible moment.
This behavior is desired and therefore it is concluded to remove the first and second pre-braking
phase for roads with a maximum road friction coefficient lower than 0.3 and remove only the
second pre-braking phase for roads with maximum road friction coefficient between 0.3 and 0.6.

6.1.2 Car-to-Car Rear Braking performance

To test the Car-to-Car rear braking performance only four scenarios have to be tested according
to Euro NCAP. The initial velocities for both the preceding and host vehicle is 50 km/h in all
four scenarios, furthermore the simulations are performed on a road with a maximum road friction
coefficient of 0.9. The initial distance and the preceding vehicle’s acceleration is varied for the
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AEB without road information

Initial velocity
[km/h]

Friction coefficient
0.3 0.5 0.7 0.9 1

Dr ur Dr ur Dr ur Dr ur Dr ur
[m] [km/h] [m] [km/h] [m] [km/h] [m] [km/h] [m] [km/h]

10 1.2184 - 1.0869 - 1.0555 - 1.0428 - 1.0395 -
15 1.4175 - 1.1181 - 1.0463 - 1.0177 - 1.0097 -
20 0.2432 - 2.5399 - 3.9254 - 3.9676 - 3.9724 -
25 0.4120 - 1.4468 - 0.8381 - 0.6448 - 0.5926 -
30 2.2703 - 1.9496 - 1.1776 - 0.8311 - 0.7362 -
35 0.4405 - 1.4880 - 0.7023 - 0.2205 - 0.0904 -
40 - 12.4092 0.00982 - 4.7019 - 4.5369 - 4.4840 -
45 - 19.7710 3.7513 - 3.7854 - 3.5247 - 3.4515 -
50 - 26.0301 2.2620 - 2.3706 - 2.0714 - 1.9872 -
55 - 31.8423 0.3602 - 1.0861 - 1.1310 - 1.54 -
60 - 37.4139 - 15.4772 - 4.7030 0.7090 - 1.0446 -
65 - 42.8355 - 23.9350 - 17.5206 - 9.0092 0.1710
70 - 48.1577 - 30.9154 - 25.4595 - 19.5332 - 15.3991
75 - 53.4100 - 37.2553 - 32.2934 - 27.1598 - 23.9524
80 - 58.6082 - 43.2320 - 38.5886 - 33.8702 - 31.0599

Table 6.1: Results CCRs scenarios of AEB without road information.

AEB with road information

Initial velocity
[km/h]

Friction coefficient
0.3 0.5 0.7 0.9 1

Dr ur Dr ur Dr ur Dr ur Dr ur
[m] [km/h] [m] [km/h] [m] [km/h] [m] [km/h] [m] [km/h]

10 0.2259 - 0.9717 - 0.6946 - 1.5004 - 1.0395 -
15 1.9656 - 1.6538 - 0.9651 - 1.5466 - 1.0097 -
20 1.2971 - 1.8986 - 1.5970 - 0.2134 - 3.9724 -
25 0.1970 - 1.3835 - 1.2106 - 1.4025 - 0.5926 -
30 0.5006 - 0.9398 - 1.7037 - 1.6541 - 0.7362 -
35 0.5332 - 1.3375 - 1.4180 - 1.1172 - 0.0904 -
40 1.8270 - 1.6955 - 0.1755 - 5.0282 - 4.4840 -
45 1.5825 - 1.7616 - 0.0596 - 4.0446 - 3.4515 -
50 0.6980 - 0.2313 - 3.8043 - 2.4559 - 1.9872 -
55 0.2058 - 2.8738 - 1.2886 - 1.7360 - 1.5400 -
60 5.4821 - 3.0457 - 1.9336 - 1.2827 - 1.0446 -
65 3.7768 - 1.7379 - 0.8555 - 0.3530 - 0.1710 -
70 0.7817 - - 5.1716 - 10.4745 - 13.9274 - 15.3991
75 - 15.1208 - 18.1515 - 20.6561 - 22.8918 - 23.9524
80 - 23.9257 - 26.2408 - 28.2638 - 30.1426 - 31.0599

Table 6.2: Results CCRs scenarios of AEB with road information.
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Figure 6.2: Performance rating for every initial velocity for CCRs scenarios [26].

Initial distance D (m) Deceleration preceding vehicle u̇p (ms2 )
Scenario 1 40 2
Scenario 2 40 6
Scenario 3 12 2
Scenario 4 12 6

Table 6.3: CCR Braking scenarios.

four scenarios as shown in Table 6.3.

In Figure 6.5, 6.6, 6.7 and 6.8 the results are shown. In these figures the velocity of both the
preceding and host vehicle and their relative distance is shown. From Figure 6.5, it can be
concluded that the AEB is working as designed, since the two pre-braking phases and the fully
braking phase is clearly visible. To overcome chattering from the AEB algorithm the transition
from pre-braking phase two to pre-braking phase one or the transition from pre-braking phase one
to FCW is only allowed if the relative distance is increasing and the warning flag corresponding to
each state is not active anymore for at least 0.5 seconds. From Figure 6.7, it can be concluded that
the designed state machine is working well. Furthermore, as can be seen from Figure 6.8 the AEB
system fails to avoid a collision in the fourth scenario, the speed at impact is around 20 km/h.
As stated in Table 6.3, the preceding vehicle decelerates with a very high deceleration of 6 m

s2 ,
the maximum achievable deceleration on a road with a maximum road friction coefficient of 0.9 is
theoretically around 9 m

s2 . However, the slip control algorithm limited the maximum deceleration
to around 8.5 m

s2 to ensure stable behavior.

As discussed in the literature study, TTC is not the best threat assessment algorithm, since it
is only assessing the threat based on the relative distance and relative velocity. Scenario four
confirms this hypothesis. As discussed before the second pre braking phase leads to a deceleration
of 5 m

s2 and since the preceding vehicle decelerates with 6 m
s2 the change in relative velocity is quite
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Figure 6.3: Two CCRs scenario on a snowy road with an initial velocity of 40 km/h. In the
upper plot an AEB with pre-braking phases is used and in the lower plot an AEB system without
pre-braking phases is used.

low and therefore TTC is not changing fast enough. As discussed in this research unifying an
AEB and ACC can improve safety and comfort. Scenario four is now validated with the unified
AEB and ACC system. In Figure 6.9, the results of this simulation are shown. The main goal of
an ACC system is not safety, however from the comparison between Figure 6.9 and Figure 6.8, it
can be concluded that an ACC system can improve the overall safety of the AEB system. In the
AEB scenario the speed at impact is 20 km/h where the speed at impact is halved in case of the
unified AEB and ACC scenerio.
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Figure 6.4: CCR test scenario according to Euro NCAP [26].
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Figure 6.5: Simulation results CCR braking Scenario 1.
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Figure 6.6: Simulation results CCR braking Scenario 2.
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Figure 6.7: Simulation results CCR braking Scenario 3.
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Figure 6.8: Simulation results CCR braking Scenario 4.
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Figure 6.9: Simulation results of unified AEB and ACC CCR braking Scenario 4.
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6.2 ACC performance

In order to evaluate the functionality of the ACC controller a scenario is designed with a set of 6
distinct situations to encompass the total envelope of working conditions. The six situations with
their respective performance criteria are described below.

1. Accelerating at a traffic light S1

This situation is defined as a fast drive away of the preceding vehicle from standstill.

Performance criteria: The host vehicle should reach the desired relative distance Dref and
desired velocity with a comfortable acceleration v̇h and jerk jh.

2. Decelerating to standstill S2

The host vehicle is following the preceding vehicle with the desired velocity and distance.
At a certain moment in time, the preceding vehicle starts decelerating till standstill.

Performance criteria: At standstill the error in the desired relative distance should be as low
as possible, therefore no overshoot is allowed.

3. Traffic jam velocity profile S3

In this situation the preceding vehicle is decelerating and accelerating at a low level with a
sinusoidal movement.

Performance criteria: Low level of acceleration v̇h and jerk jh, it is also desirable if the host
vehicle is not copying the sinusoidal behavior of the preceding vehicle.

4. Cut-in of preceding vehicle with a negative velocity difference S4

In this situation the vehicle is following a preceding vehicle with a certain velocity. At a
certain moment in time, another vehicle is cutting in between the two vehicles. The new
preceding vehicle has a lower velocity than the host vehicle.

Performance criteria: The maximum deceleration which is limited for the ACC system to
-2 m

s2 must be achieved quickly to avoid a collision and to reach the desired distance and
desired velocity as quickly as possible.

5. Cut-in of preceding vehicle with a positive velocity difference S5

In this situation the vehicle is following a preceding vehicle with a certain velocity. At a
certain moment in time, another vehicle is cutting in between the two vehicles. The new
preceding vehicle has a higher velocity than the host vehicle.

Performance criteria: Since the velocity of the cut-in vehicle it is desired to reach the desired
distance without the of a braking input.

6. Cut-out of preceding vehicle which lead to an ACC to CC switch S6

In this situation the vehicle is following a preceding vehicle with a certain velocity. At a
certain moment in time, the preceding vehicle is switching lanes which will lead to an ACC
to CC switch.

Performance criteria: The cruise control velocity vCC should be achieved in a comfortable
manner. Therefore the acceleration v̇h and jerk jh should be low.

A test scenario is designed which includes the six situations S1 to S6. This test scenario is simulated
and the results are evaluated in this section.

The desired velocity and the actual velocity are shown in Figure 6.10, the corresponding acceler-
ation and jerk is shown in Figure 6.11. The desired distance and actual distance is depicted in
Figure 6.12.
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Figure 6.10: The desired velocity and the actual velocity during the simulation scenario.
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Figure 6.12: The desired distance and actual distance during the simulation scenario.

In the following list, the presented results are shortly discussed.

6.2.1 Situation 1

Accelerating at a traffic light: As can be seen from the results the initial distance between the
host and preceding vehicle is 1 meter. The distance buffer between two vehicles in order to avoid
a collision which is used in Constant-Time headway definition is set to 3 meters therefore the
initial desired distance is 3 meters. The preceding vehicle starts to accelerate with 2 [ms2 ] when
the traffic lights turn green. It is concluded that the performance of the distance and velocity
tracking controller is very good. Furthermore it can be seen that the ACC did stay between its
operational limits as defined in section C.2.1.3. The acceleration during ACC scenarios should be
between [-2 2] [ms−2] for comfort reasons. Furthermore the average negative jerk measured over 1
second shall not exceed 2.5 [ms−3]. The maximum positive jerk is around 4 [ms−3], however the
average over one second is around 2, which is acceptable.
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Figure 6.11: The acceleration and jerk during the simulation scenario.

6.2.2 Situation 2

Decelerating to standstill: It can be seen that the desired distance is tracked very well. The
performance criteria for this scenario is that there should be no overshoot in the desired distance
tracking. It can be concluded that the performance is good enough to avoid a collision. However
the preceding vehicle decelerated with -2 [ms−2], if a higher deceleration is used the ACC could
not avoid a collision anymore, since the ACC deceleration is limited to -2 [ms−2].

6.2.3 Situation 3

Traffic jam: The results show that the behavior is quite comfortable since both the jerk and
acceleration levels are low, however this scenario could still be improved. The sinusoidal behavior
is copied. A more advanced path planning method could overcome this problem.

6.2.4 Situation 4

Cut-in with a negative velocity difference: This scenario showed a situation where the host vehicle
is following the preceding vehicle with a desired distance of approx. 32 meters. A vehicle cut in
with a velocity of 30 km/h at a distance of 20 meters from the host vehicle. As can be seen the
ACC system ensures safe behavior, the difference in velocity disappeared very quickly, however as
can be seen the velocity tracking controller has some overshoot. The overshoot is caused by the
desired distance error, therefore it is concluded that this is overshoot is desirable.

6.2.5 Situation 5

Cut-in with a negative velocity difference: This scenario showed a situation where the host vehicle
is following the preceding vehicle with a desired distance of approx. 28 meters. A vehicle cut in
with a velocity of 40 [km/h] at a distance of 3 meters from the host vehicle. The ACC system
decides that this is a dangerous situation and start to brake, however this is not desirable, since
the velocity of the preceding vehicle is already higher than the velocity of the host. This problem
could be solved by using a control logic which ensures no deceleration if the relative velocity is
positive.
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6.2.6 Situation 6

Cut-out of preceding vehicle which lead to an ACC to CC switch: This scenario showed a situation
where the preceding vehicle switched lanes and therefore the sensors detected a free lane. The
vehicle is accelerated to the cruise control velocity which is set to 60 [km/h]. The results show
that the ACC stayed between its operational limits and therefore its comfort requirements. No
overshoot is seen in the velocity tracking controller. Therefore it is concluded that the performance
of the ACC for this scenario is very good.

6.3 Discussion

In this chapter, a quantitative evaluation is conducted to research the impact of implementing
information about the road conditions in the upper-level controller.

It is concluded that the number of collisions on low friction surfaces is clearly decreased. AEB
systems without information were able to avoid a collision with standstill objects on a snowy
road until starting velocities up to 35 km/h, while the AEB system with road information is able
to avoid a collision with speeds up to 70 km/h. A collision is unavoidable with the current AEB
settings for an initial velocity of 80 km/h; however the speed at impact is still acceptable according
to Euro NCAP [26]. Furthermore, it is concluded that the ACC system is working well. However,
some details could be improved. The ACC system does not benefit as much from the added
road information as the AEB system. The only difference is that the host vehicle is following the
preceding vehicle at larger relative distances on lower friction surfaces compared to high friction
surfaces.

In this research, a maximum road friction estimator is developed which is able to monitor the road
conditions in a virtual environment. Future research is needed with real vehicle measurements to
conclude if the method as described in this research is practical feasible. Concluding, it is believed
that enabling road information in the upper-level controller can have positive impact on safety.
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7. Conclusions and recommendations
In this research a unified AEB and ACC system is developed which is able to have robust perform-
ance considering the variation of the road conditions in a simulation environment. Therefore a
non-linear tyre model which can simulate different road conditions is employed and validated with
a vehicle model from Siemens Simcenter Amesim. Subsequently, an overall control architecture is
proposed to control the acceleration of the vehicle including the following elements: a slip control-
ler which considers delayed actuator dynamics. A neural network, which is trained with simulation
data to predict the maximum road friction coefficient and a slip control algorithm which is used
to determine a stable setpoint for the slip controller based on the desired acceleration and the
maximum road friction coefficient.

The predicted value of the maximum road friction coefficient is also used in the upper-level con-
troller of the AEB algorithm.

In this section, the main findings and answers to the research questions as introduced in section
1.3 are provided. The five sub-questions are addressed individually which lead to the answer of
the main research question:

How can we design an unified AEB and ACC system which is able to have robust performance
considering the variation of the road conditions?

The answer to this main research questions lies directly in the answer to the sub-questions. First
the summarized answers to the sub-questions are provided in Section 7.1.6, thereafter a recom-
mendation for Siemens and the limitations of this research are provided in Section 7.2 and finally
possible directions for future research is suggested in Section 7.3.

7.1 Research questions

7.1.1 Vehicle model

The first sub-question aimed at constructing a vehicle model that is able simulate the vehicle
behavior on different road surfaces. Furthermore the vehicle model should govern the complex
physics of a vehicle. Road variations such as different road conditions can influence the tyre-road
friction and therefore adversely affect the function of an AEB system. An elaborate literature
study is conducted in Chapter 2 to identify the different vehicle models that are used in the design
of ADAS systems. It is concluded that a dynamic model with a non-linear tyre model should be
used to model the vehicle dynamics. In Chapter 3 three vehicle models are described. At first the
double-corner vehicle model from [54] is adapted to fit a vehicle model from Amesim. This model
is used since it can simulate the longitudinal dynamics with a non-linear Pacejka tyre model known
as the Magic Formula from 1989 and it had the same components as the model from Amesim.
The model from [54] is expanded with a reset integrator friction model to have good behavior for
low velocities. Thereafter this model is simplified to a control oriented vehicle model, which is still
able to simulate the non linear tyre behavior, however this model is easier to linearize, since it is
neglecting some dynamics such as the rolling resistance and aerodynamic forces. Finally, the roll
axis vehicle model from [49] is adapted by expanding this model with a reset friction integrator
model to be able to simulate the lateral (steering) dynamics of the vehicle.

7.1.2 Vehicle control

The seconds sub-question focused on identifying current methods to control the vehicle. As long
as wheeled vehicles have , skidding and slipping has been a problem. Its effect is usually a total or
partial loss of control of the vehicle. These problems can be prevented by means of active braking
control systems. Most modern road vehicles are equipped with electronic ABS. An ABS could
improve the safety of a vehicle in severe circumstances. An ABS ensures a maximum longitud-
inal tyre-road friction while keeping large lateral forces. The braking system characteristics and
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actuator performance have a great influence on the design of automatic braking control systems.
From the literature study is concluded that classical ABS systems use rule-based control logics to
control vehicles equipped with traditional hydraulic actuators. Recent technologies lead to new
braking systems, such as electro-hydraulic and electro-mechanical braking systems, which enabled
a continuous modulation of the braking torque.

In this research is chosen to control a vehicle with a electro-mechanical brake with a Youla para-
meterized controller by using information about the road conditions. The Youla parameterization
approach provided stability and performance for a broader range of operational conditions com-
pared to a single linear PID controller. The maximum road friction coefficient µmax is used in the
slip control algorithm to define a stable set point for the slip controller. The slip controller is used
for both the acceleration and deceleration. The limitations of this proposed method are described
in section 7.2.

7.1.3 Unification of the AEB and ACC system

The third sub-question aims to unify the AEB and ACC system. It is concluded that the unified
AEB and ACC system as shown in Figure 4.18 can be seen as two independent systems running
simultaneously. However the system is optimized to work fluently by setting the constant-time
headway to f1 the TTC flag of the forward collision warning system. Both systems have a positive
influence on each other. The ACC system is maintaining the desired relative distance Dref and
tracks the preceding vehicle’s speed vp, therefore the ACC system can be seen as another pre-
braking stage in some situations as is concluded in Chapter 6, which can lead to more comfort
and less interventions from the AEB system. On the other hand the AEB system improves the
safety of the driver by avoiding collision that can not be prevented by a standalone ACC.

7.1.4 Maximum road friction estimator

The fourth sub-question aimed at designing a maximum road friction estimator. From the lit-
erature study is concluded that a neural network could be a suitable approach to estimate the
maximum road friction coefficient. In this study an ANN is trained with data that is obtained
from the roll axis vehicle model in combination with a Pacejka tyre model.

The estimation algorithm is evaluated in Chapter 5 on varying road surfaces and shows a good
accuracy. It is concluded that the maximum road friction estimator is able to accurately predict
the maximum road friction coefficient µmax if the vehicle is driving on a straight road with a
nonzero constant acceleration or deceleration. The predicted µmax can be used in the upper level
controller of the ADAS systems to improve the performance on different road conditions. However
it is not recommended to use this information in the design of a slip controller, since it is very
important to always be able to have full control of the vehicle. If the estimation fails to detect µmax
for example during a sensor fail, the well-trained neural network may not be able to accurately
estimate and therefore, which can lead to unstable control behavior.

Furthermore it is concluded that a very good knowledge about the tyre dynamics is needed. The
trained data is now obtained from a mathematical tyre model. The proposed method is only
analyzed theoretically and validated via simulation and therefore subsequent work is needed to
validate the ANN with real world tyre data.

7.1.5 Stability

The fifth sub-question concerned the stability of the closed loop system as shown in Figure 4.1.
In Chapter 4 a stability analysis is presented. It is concluded that the closed loop stability
depends on the prediction accuracy of the maximum road friction µmax. The results in Chapter
5 show a good overall accuracy, however in some scenarios the accuracy is not good enough.
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If you know the maximum error of the estimator a robustness margin can be built into the
slip control algorithm which limits the maximum deceleration and acceleration for different road
conditions. This will prevent the system from going unstable. A drawback of this method is that
the maximum deceleration can therefore not be achieved. As discussed before the estimator can
also fail because of failing sensors. It is concluded that the stability can be guaranteed in the
ideal simulation environment, however future research is needed to conclude on the stability in
real world simulations.

7.1.6 Impact

The last sub-question focused on determining the expected impact of implementing information
about the road conditions in the upper level controller of the AEB system. A quantitative eval-
uation is conducted in Chapter 6. The number of collisions on low friction surfaces is clearly
decreased. AEB systems without information were able to avoid a collision with standstill ob-
jects on a snowy road until starting velocities up to 35 km/h, while the AEB system with road
information is able to avoid a collision with speeds up to 70 km/h. A collision is unavoidable with
the current AEB settings for an initial velocity of 80 km/h, however the speed at impact is still
acceptable according to Euro NCAP [26]. As discussed in Chapter 1 to improve the SAE level 2
AEB system to an SAE level 3 AEB system, the environment such as the road condition should
be monitored by the system. In this research a maximum road friction estimator is developed
which is able to monitor the road conditions in a virtual environment. Future research is needed
with real vehicle measurements to conclude if the method as described in this research is practical
feasible. Concluding, it is believed that enabling road information in the upper level controller of
an AEB system can have positive impact.

7.2 Recommendations and limitations

A practical (business) goal for Siemens was introduced in Section 1.2.1. This goal stated that this
research should provide an unified AEB and ACC system which is able to have robust performance
considering the variation of the road conditions as encountered in practice, furthermore a vehicle
model which can simulate the different road conditions should be provided. The insights that
were found indicate that the unified AEB and ACC system is able to have robust performance
on different road conditions, however the model has a big limitation. The roll axis vehicle model
was modelled very late in this research. The roll axis vehicle model was added to include lateral
dynamics and enable the possibility to validate our designed ADAS in PreScan. The double corner
model can also be used to validate our designed ADAS in PreScan, however the implementation
of the roll axis vehicle model in PreScan is easier, since the current vehicle models that are used
in PreScan demos have the same degrees of freedom as the roll axis vehicle model. Furthermore
for demo purposes it is better to use a vehicle model which can simulate steering behavior. Since
the roll axis vehicle model was modelled very late in this research all the other components in
this research are based on longitudinal dynamics only. First the slip controller is based on tyre
dynamics where the side slip angle α = 0, therefore higher side slip angles can lead to unstable
behavior. Secondly the maximum road friction estimator is trained with longitudinal data only, a
state machine is designed to only estimate the µmax on straight roads and lastly the TTC which
is used to determine the threat level is calculated for straight roads only.

A second limitation is that the neural network is trained with data which is obtained from the
Pacejka tyre model. A Pacejka tyre model can simulate tyre behavior quite accurately, however
tyre dynamics are highly non linear. Further research is needed to conclude if the Pacejka tyre
model can simulate a tyre accurate enough to be able to estimate the maximum road friction
coefficient. It is also possible to directly train the neural network with real vehicle data which can
also be a goal for a future research project.
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A third limitation is that the closed loop stability of the Youla parameterized controller can only
be guaranteed if the accuracy of the maximum road friction estimator is high enough. Surely this
control problem can be solved in multiple other ways, however one of the contributions of this
research is that it showed that knowing the road conditions could be beneficial in the design of
ABS systems.

The last limitation is that all systems are validated without any sensor uncertainty or parameter
uncertainty. The systems are validated for different operational working conditions, however it is
expected that sensor and parameter uncertainty can also have a big influence. Both the Youla
parameterized controller and the maximum road friction estimator are designed for a specific tyre,
very good knowledge of the parameters is needed. The wheel slip κ is estimated with a kinematic
model with the vehicle velocity u and the rotational wheel velocity ω as input. Wheel encoders
give in general quite accurate results, however to measure the vehicle’s velocity with good accuracy
a good sensor fusion is needed.

7.3 Future research

The scientific goal of the research entailed providing insights in the usage of a neural network
to estimate the maximum road friction coefficient µmax. From the limitations several research
directions were found that can be explored in the future.

During development of the neural network only longitudinal inputs are used. Future research
could expand the estimator with lateral dynamics. Moreover, the neural network is trained with
simulated data obtained from a Pacejka tyre model. Future research could be in the direction of
determining if a neural network could be trained directly with real simulation data. Furthermore
it can be validated if the current trained neural network is robust enough to estimate µmax during
real vehicle tests.

Subsequently, both the slip controller and the maximum road friction estimator are validated
without any sensor uncertainty or parameter uncertainty. Future research must conclude if both
these systems are suitable for real vehicle implementation by encompassing parameter and sensor
uncertainty in the design and validation of these systems.

Finally, a goal of this research is to implement and validate the designed systems in PreScan.
The results of this validation are not shown in this report, however some results may be included
during the presentation.
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A. Simulation results

A.1 Amesim validation

In this section the simulation results of the double corner model are compared with the simulation
results of the Amesim model. The simulation results are shown in Appendix A. The vehicle is
accelerated with a front wheel torque input, the rear wheel torque input is zero. After 12 seconds
the vehicle is decelerated with a brake input on both the front and rear wheel, which can be seen
in Figures A.1 and A.3. Figure A.1 shows the input torques, where Figure A.3 shows the velocity
outputs. In Figure A.4 the front and rear wheel velocities are compared. In Figure A.5 and A.8
the front and rear longitudinal forces and the front and rear vertical forces are compared.

From Figures A.3 and A.4 it can be seen that the vehicle velocity and angular wheel velocities
yield almost similar results as Amesim. Around 13.2 seconds, the front and rear wheel rotational
velocities are slightly different. It is suspected that this difference is caused by a discontinuity in
the longitudinal force from the Amesim simulation, which can be seen in Figure A.7.

From Figures A.5 , it can be seen that during acceleration the front wheel slip from the Simulink
model is different compared with Amesim. The reason for this is that Amesim does not make a
distinction between slip calculation during braking or accelerating.

The normal force comparison is shown in Figures A.8. It can be seen that during braking and
steady state, the behavior is similar, however during the acceleration stage there is a static dif-
ference in force. The normal force is derived from three components: an aerodynamic moment,
an acceleration moment and the gravitational force. The gravitational force is matching and the
aerodynamic moment is neglectable. The difference during the acceleration stage originates from
the acceleration moment (mhu̇). However, the acceleration, the mass and the height of the cen-
ter of gravity are similar between Amesim and the Simulink model. It seems that Amesim has
an extra unexplained component for the normal force derivation. Another explanation could be
that Amesim is changing the height where the acceleration force acts during acceleration and
deceleration. In the end this difference does not affect the important vehicle dynamics (velocity
characteristics) for an ACC and AEB system, since the acceleration is a function of the sum of
the longitudinal forces with Fx = Fzµ(κ).

The difference in longitudinal force which is shown in Figures A.6 is neglectable apart from the
difference which is caused by the discontinuities as discussed before.
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Figure A.1: Input signal for a Amesim and Simulink validation.
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Figure A.2: Comparison of braking torque after friction model between Amesim and Simulink
model.
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Figure A.3: Comparison of velocity between Amesim and Simulink model.
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Figure A.4: Comparison of front and rear wheel rotational velocity ωf and ωr between Amesim
and Simulink model.
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Figure A.5: Comparison of front and rear wheel slips κf and κr between Amesim and Simulink
model.
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Figure A.6: Comparison of front and rear longitudinal forces Fxf and Fxr between Amesim and
Simulink model.
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Figure A.7: A zoomed plot from Figure A.5
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Figure A.8: Comparison of front and rear vertical forces Fzf and Fzr between Amesim and
Simulink model.
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A.2 Control

A.2.1 Open loop simulation

To investigate if a brake controller is needed an open-loop simulation is performed with different
braking inputs. In Figures A.9, A.10, A.11 and A.12 the most important outputs of this simulation
are presented. The brake force is distributed evenly over the front and rear axles. It can be seen
that an input of 3500 Nm leads to the shortest stopping distance. When the input force is further
increased the front wheel is slipping, which is not beneficial.
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Figure A.9: Input torque of open loop simulation without controller on dry asphalt.
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Figure A.10: Velocity result of open loop simulation without controller on dry asphalt for
different input torques.
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Figure A.11: Slip ratio result of open loop simulation without controller on dry asphalt for
different input torques.
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Figure A.12: Acceleration result of open loop simulation without controller on dry asphalt for
different input torques.

A.2.2 PI control

Now a slip controller is designed that can achieve good dynamic performance, to be as follows:
ensure asymptotic tracking of a constant wheel slip set-point for all admissible speed values. The
aim is to design a controller with a bandwidth between 1 to 10 Hz, with a maximum overshoot of
15%. Furthermore the nominal robustness margins are used, which are a modulus margin lower
than 6 dB, a phase margin higher than 30 degrees and a gain margin higher than 6 dB. For
controller design we will work with linearized plant model Gκ(s, ū), linearized around a vertical
load of of Fz = mg and a wheel slip ratio of κ = 0.5. The transfer function is given by

Gκ(s, ū) =
0.6
ū

s− 259
ū

. (A.1)
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Before moving to the design of a dynamic controller, first recall that it is shown that with an
appropriate choice of the controller gain value, a proportional controller which guarantees closed-
loop stability for all working conditions can be found. To ensure, asymptotic tracking of a constant
set-point an integral control action is added to the proportional controller. The PI-controller that
is designed is given by

RPI(s) = K
(τs+ 1)

s
(A.2)

with a gain value K of 1750 and τ is 5. This controller is validated on the nonlinear vehicle model
which is described in Section 3.1. In Figures A.13 and A.14 the simulation results are shown.
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Figure A.13: Slip ratio result of closed loop simulation with controller on dry asphalt for different
velocities.
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Figure A.14: Slip ratio result of closed loop simulation with controller on different road condi-
tions.

The wheel slip set-point is, without controller, an unstable equilibrium, however it can be seen
that a single controller controller is able to stabilize the wheel slip for different velocities and for
different road conditions. The performance is dependent on ū and κ̄, however the performance is
satisfactory under all possible conditions. A situation where it is possible to control the system
with a single controller with this performance would be an ideal situation, however to move toward
a more realistic situation, the actuator dynamics of the brakes should be considered. The transfer
function of the brake actuator dynamics which is a first-order linear time-invariant system is given
by

Gactuator (s) = Gact(s)Gd(s) =
ωact

s+ ωact
e−sτ (A.3)

with a pole at ωact and a pure delay of τ . Nominal values for these kind of brake actuators are
ωact=70 rad/s with a delay of τ=20 ms. In the more realistic situation where a delay is added
to the actuator dynamics, it is impossible to ensure closed-loop stability with good performance
margins with a single controller for all velocities, since the system dynamics become faster as speed
decreases. To show this, the controller as discussed before is now validated with the delay. In
Figure A.15 the Nyquist diagram of K(s)Gactuator(s)Gκ(s, u) is shown for a velocity of 25 [m/s].
It can be seen that the closed loop is now unstable, since there are two RHP closed-loop poles due
to one RHP open-loop pole and one positive encirclement’s around the point -1 in the Nyquist
plot.
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Figure A.15: Nyquist diagram of K(s)Gactuator(s)Gκ(s, u).

A.2.3 Validation

The simulation results for K2 are shown in Figure A.16 and A.17. It can be seen that the
controller is less robust for different road conditions, since the performance is worsened. However,
from Figure A.17 it can be seen that the stability region (the velocity where the dynamics become
unstable) is slightly improved for a stable setpoint.
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Figure A.16: The controlled front and rear wheel slip κf and κr for different road conditions
with initial velocity uinit = 40. Controller: K2. Slip setpoint κ = 20.

5 6 7 8 9 10 11 12

-80

-60

-40

-20

0
u init=5

u init=10

u init=20

u init=30

u init=40

5 6 7 8 9 10 11 12

-80

-60

-40

-20

0

Front wheel slip 

Rear wheel slip

Figure A.17: The controlled front and rear wheel slip κf and κr for different initial velocities on
dry surface µmax = 1. Controller: K2. Slip setpoint κ = 20.
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In Figure A.18 and A.19 the simulation results for K3 are shown. The purple line in Figure A.18
corresponds to the green line in Figure 4.15. It can be seen that K3 is also able to stabilize κ
in the unstable region (µmax < 0.8), however for low velocities the dynamics are still unstable.
However, in Figure A.19 the results are shown for a stable setpoint, these results confirms the
hypothesis that a Youla controller is able to stabilize the plant with actuator dynamics and delay
for all velocities.
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Figure A.18: The controlled front and rear wheel slip κf and κr for different road conditions
with initial velocity uinit = 40. Controller: K3. Slip setpoint κ = 20.
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Figure A.19: The controlled front and rear wheel slip κf and κr for different initial velocities on
dry surface µmax = 1. Controller: K3. Slip setpoint κ = 20.

A.3 Neural network
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One hidden layer Two hidden layers Three hidden layers
5 Neurons 0.1615 0.1015 0.1152
10 Neurons 0.1010 0.0631 0.1683
13 Neurons 0.0980 0.0616 0.1808
14 Neurons 0.0954 0.0601 0.1765
15 Neurons 0.0932 0.0592 0.1582
16 Neurons 0.0921 0.0598 0.1893
17 Neurons 0.0889 0.0621 0.1921
20 Neurons 0.0758 0.0645 0.1363
25 Neurons 0.0915 0.0721 0.1533

Table A.1: Root mean squared error for different configurations.
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B. Parameters

B.1 Magic formula 1989
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Parameter Value
b0 1.6
b1 0
b2 1000
b3 0
b4 100
b5 0
b6 0
b7 0
b8 0
b9 0
b10 0
b11 0
b12 0
λcx 1
λkx 1
λhx 1
λcx 1
λex 1

Table B.1: Magic formula 1989 parameters.

B.2 Magic formula 2002

B.2.1 Longitudinal force Fx

Fx = (Dx sin(Cx arctan(Bxκx − Ex(Bxκx − arctan(Bxκx)))) + SIx) ·Gxα

with pure slip coefficients

Cx = pCx1 · λCx
Dx = µx · Fz
µx = (pDx1 + pDx2dfz) · λµx
Ex =

(
pEx1 + pEx2dfz + pEx3df

2
z

)
≤ 1

Kx = Fz · (pKx1 + pKx2dfz) · exp (pKx3dfz) · λKx

Bx =
Kx

CxDx

and combined slip coefficients

Gxα = cos(Cxα arctan(Bxαα))
Bxα = rBx1 cos(arctan(rBx2κ))
Cxα = rCx1

B.2.2 Longitudinal force Fy

Fy = GyκFyz

with pure slip coefficients
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Fyp = Dy sin(Cy arctan(Byαy − Ey(Byαy − arctan(Byαy)))) + SV yγ

SHy = pHy3 · γ
SV yγ = Fz (pV y3 + pV y4df) · γ · λµy
αy = α+ SHy

By =
Kyα

CyDy

Cy = pCy1λCy

Dy = µy · Fz·
µy = (pDy1 + pDy2dfz) ·

(
1− pDy3γ

2
)
· λµy

Ey = (pEy1 + pEy2dfz) · (1− pEy4γ) sgn (αy))λEy ≤ 1

Kyα = pKy1 · Fz0 · sin
[
pKy4 arctan

{
Fz

(pKy2 + pKy5γ2)Fz0

}]
· (1− pKy3|γ|) · λKyα

and combined slip coefficients

Gyκ = cos(Cyκ · arctan(Byκκ))
Cyκ = rCy1

Byκ = rBy1 · cos(arctan(rBy2α))

B.2.3 Self aligning moment Mz

Mz = −t · (Fy − Siyx) +Mzr + s · Fx
where the pneumatic trail t can be calculated with

t = Dt cos [Ct arctan {Btαt,eq − Et (Btαt,eq − arctan (Btαt,eq))}] · cos (αM )

Bt =
(
qBz1 + qBz2dfz + qBzzdf

2
z

)
· (1 + qBz4γ + qBzs|γ|) · λKyαλµy

Ct = qCz1
Dt = Fz · (qDz1 + qDz2dfz) ·

(
1 + qDz3γ + qDz4γ

2
)
· R0

Fz0
· λt

Et =
(
qEz1 + qEz2dfz + qEz3df

2
z

)
·
(
1 + (qEz4 + qEz5γ) ·

(
2
π

)
· arctan (BtCtαt)

)
≤ 1

for combined slip:

αt,eq = arctan

√
tan2 (αt) +

(
Kxx

Kyα

)2

κ2 sgn (αt)

αr,eq = arctan

√
tan2 (αr) +

(
Kxκ

Kyα

)2

κ2 sgn (αr)

s =

(
ssz2

(
Fy
Fz0

)
+ (ssz3 + ssz4dfz) γ

)
R0λs

with

αt = αM + SHt
αr = αF + SHy +

SV yγ
Kyα

SHt = qHz1 + qHz2dfz + (qHz3 + qHz4dfz) · γ

The residual moment Mzr
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Mzr = Dr cos [arctan (Brαr,eq)]
Dr = FzR0cos(α)(qDz8 + qDz9dfz · γ) · λKzy) · λµy
Br = qBz9 · λKyαλµy

+ qBz10 ·By · Cy
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C. requirements

C.1 AEB

Autonomous Emergency Braking (AEB) is braking that is applied automatically by the vehicle in
response to the detection of a likely collision. The primary goal of AEB technology is to prevent
crashes by detecting a potential conflict and alerting the driver, and, in many systems, aiding in
brake application or automatically applying the brakes. Systems that work mostly at lower speed
are referred to as AEB City systems, those that function at higher speeds, AEB Inter-Urban
systems. [25]

C.1.1 Requirements

In [30] the characteristics of AEB systems that were identified as being in current production
vehicles at the time the literature review and industry surveys were carried out are identified.
The requirements are derived from these characteristics. A distinction is made between different
requirement categories. The control strategy requirements, general requirements, operational limit
requirements and the sensor system are given respectively in Sections C.1.1.1, C.1.1.2, C.1.1.3 and
C.1.1.4.

C.1.1.1 Control strategy requirements

The AEB system can be toggled on and of manually. However the system is automatically deac-
tivated when;

• The sensor view is ’blinded’ during periods of heavy rain, snow etc.

• The sensor head is impaired because of debris build-up.

• A system fault is detected.

The system is ineffective under the following circumstances:

• There is a sudden encounter such as a vehicle cutting immediately in front.

• Sudden acceleration is applied and the preceding vehicle is becoming too close.

• The distance between vehicles is extremely short.

• The overlap with the preceding vehicle is small.

It can be seen that the circumstances in which an AEB system is fully effective is quite limited.
Effectively, the AEB system is only fully functional in front to rear collisions on straight roads in
good weather conditions, where both vehicles are in the same lane.

C.1.1.2 General requirements

An AEB shall satisfy the following general requirements:

• The AEB system is able to identify a front to rear shunt collision on a straight road.

• Collision risk judgment algorithm update frequency is approximately 50 Hz.

• The AEB system is able to identify all moving and stationary vehicles, including motorcycles
travelling centrally in lane; excluding pedestrians and smaller two wheeled vehicles travelling
in edge of lane.
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C.1.1.3 Operational limit requirements

• Operative velocity range is between 10 and 180 km/h, or ≤ 70 km/h if approaching a
stationary obstacle.

• Relative velocity between preceding vehicle and subject vehicle for activation AEB is > 10
km/h.

• Maximum achievable deceleration depending on surface conditions for light vehicle are ap-
proximately: Dry surface 1g; Wet surface 0.65g and icy surface 0.20g.

• Brake system reaction time 0.2 to 0.3 seconds.

C.1.1.4 Sensor system

The allowed sensors camera, LIDAR and RADAR should satisfy the following requirements:

• Sensor range ahead of vehicle(m): short range 30; long range 200;

• Horizontal field of view: 16.9 ± 3.8 degrees

• Vertical field of view: 4 ± 1.5 degrees

• Sensor scanning rate: 10 Hz

C.1.1.5 Performance

Euro NCAP rates AEB systems of cars based on their performance on their test scenarios. There
are three scenarios namely CCRs, CCRm and CCRb:

Car-to-Car Rear Stationary (CCRs) – a collision in which a vehicle travels forwards towards
another stationary vehicle and the frontal structure of the vehicle strikes the rear structure of the
other.
Car-to-Car Rear Moving (CCRm) – a collision in which a vehicle travels forwards towards
another vehicle that is travelling at constant speed and the frontal structure of the vehicle strikes
the rear structure of the other.
Car-to-Car Rear Braking (CCRb) – a collision in which a vehicle travels forwards towards
another vehicle that is travelling at constant speed and then decelerates, and the frontal structure
of the vehicle strikes the rear structure of the other.

All three scenarios are illustrated in Figure C.1. The vehicle sponsor will fund 10 verification
tests per scenario, where applicable. For AEB City, 10 tests in CCRs (10-50km/h). For AEB
Inter-Urban, 10 tests for AEB (CCRm). The end of a test is considered when one of the following
occurs:

• Velocity subject vehicle is 0 km/h.

• Velocity subject vehicle is lower than preceding vehicle.

• A collision between subject vehicle and preceding vehicle.

When a collision occurs the relative velocity is measured. Based on these measurements the
performance is rated.
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CCRs scenario 

CCRm scenario 

CCRb scenario 

Figure C.1: Test scenarios. [26]

C.2 ACC

Adaptive cruise control(ACC) originates from Cruise Control(CC), which today is a widespread
functionality in modern vehicles. CC controls the vehicle speed actuating the throttle only, via
tracking of speed v that is set by the driver. ACC automatically adapts the vehicle’s speed
depending on a predecessor’s behavior, actuating the throttle as well as the brake system.[45] The
goal of ACC is a partial automation of the longitudinal vehicle control and the reduction of the
workload of the driver with the aim of supporting and relieving the driver in a convenient manner.
The main system function of Adaptive Cruise Control is to control vehicle speed adaptively to a
preceding vehicle by using information about: the distance from the ACC equipped vehicle to the
preceding vehicle in the same lane, the motion of the ACC equipped vehicle and the preceding
vehicle and lastly the driver commands (see Figure C.2). Based upon the information acquired,
the controller sends commands to actuators for carrying out its longitudinal control strategy and
it also sends status information to the driver.
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Figure C.2: Functional ACC elements[15]
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C.2.1 Requirements

In this section all requirements for an ”Adapative Cruise Control” system following the ISO 15622
[15] are presented. A distinction is made between different requirement categories. The control
strategy, following capability and operational limit requirements are given respectively in Sections
C.2.1.1, C.2.1.2 and C.2.1.3.

C.2.1.1 Control strategy requirements

An ACC system shall, as a minimum, provide the following control strategy and state transitions
shown in Figure C.3. The following requirements constitutes the fundamental behaviour of ACC
systems:

• When the ACC is active, the vehicle speed shall be controlled automatically either to main-
tain a clearance (distance from the preceding vehicle to the subject vehicle), or to maintain
the set speed, whichever speed is lower. The change between these two control modes is
made automatically by the ACC system.

• The steady-state clearance may be either self-adjusting by the system or adjustable by the
driver.

• The transition from “ACC stand-by” to “ACC active” shall be inhibited if the subject
vehicle’s speed is below a minimum operational speed, vlow. Additionally, if the vehicle’s
speed drops below vlow while the system is in the “ACC active” state, automatic acceleration
shall be inhibited. Optionally, the ACC system may drop from “ACC active” to “ACC
stand-by”

• If there is more than one forward vehicle, the one to be followed shall be selected automat-
ically.

Figure C.3: ACC states and transitions. a is manual switching [15]

The decision which mode to use based on real-time radar measurements shall be made automat-
ically by the ACC system . For example, if the lead car is too close, the ACC system switches
from speed control to spacing control. Similarly, if the lead car is further away, the ACC system
switches from spacing control to speed control. In other words, the ACC system makes the ego
car travel at a driver-set speed as long as it maintains a safe distance.[7]
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C.2.1.2 Following capability requirements

• τmin shall be the minimum selectable time gap for following control mode under steady-state
conditions for all speeds v. τmin shall be > 0,8 s. The time gap is calculated from vehicle
speed v and clearance c by: τ = c

v .

Figure C.4: Illustration of clearance. [15]

• At least one time gap setting τ in the range of 1,5 s to 2,2 s shall be provided.

• Under steady-state conditions the minimum clearance shall be τmin times v.

• Under transient conditions, the clearance may temporarily fall below the minimum clear-
ance. If such a situation occurs, the system shall adjust the clearance to attain the desired
clearance.

The ACC shall have detection range, target discrimination and curve capabilities as specified in
the following sections:

Detection range

• If a forward vehicle is present within the distance range d1 to dmax which is illustrated
in Figure C.5, the ACC system shall measure the range between the forward and subject
vehicles.

• If a forward vehicle is present within the distance range d0 to d1, the ACC system shall
detect the presence of the vehicle but is not required to measure the range to the vehicle nor
the relative speed between the forward and subject vehicles.

• If a forward vehicle is present at a distance less than d0, the ACC system is not required to
detect the presence of the vehicle.

a cb

1 2d0 d1 dmax

Figure C.5: Zones of detection. zone a: Detection not required, zone b: Detection of vehicles
required and zone c: Determination of range required. [15]

Curve capability The ACC system shall enable a steady-state vehicle following with a time
gap of τmax(vcircle), on straight roads and curves with a radius down to Rmin = 125m. There-
fore the system shall be capable of following a preceding vehicle with the steady-state time gap
τmax(vcircle), if the preceding vehicle cruises on a constant curve radius Rmin with a constant
speed vcircle.
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Target discrimination If there is more than one preceding vehicle on straight or steady state
curved roads, the preceding vehicle(red) in the subject vehicle’s(green) path as shown in Figure
C.6 shall be selected for ACC control.

 

Figure C.6: Target detection. [15]

C.2.1.3 Operational limit requirements

• Automatic positive acceleration of ACC requires a vehicle speed vlow of at least 5 m/s.

• There shall not be a sudden brake force release in the case of an automatic deactivation of
the ACC system below vlow.

• The minimum set speed shall be vsetmin ≥ 7m/s and vsetmin ≥ vlow.

• The average automatic deceleration of ACC systems shall not exceed 3,5 m/s2 (average over
2 s).

• The average rate of change of automatic deceleration (negative jerk) shall not exceed 2,5
m/s3 (average over 1 s).

• Automatic acceleration of ACC systems shall not exceed amax ≤ 2,0 m/s2.

• If a forward vehicle is detected within the distance range d0 to d1 and the distance cannot
be determined, the system shall inhibit automatic acceleration.
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