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Abstract

Controllers are now commonly implemented digitally. In this context, when using periodic
sampling strategies, the achievable performance of the closed loop system is related to the
amount of data that can be processed. Hence, in applications with limited computational
or energy resources, traditional periodic sampling strategies might not meet the desired
performance criteria while satisfying these constraints. Event-triggered control aims to
solve this problem by only sampling when the system needs attention. Due to this aperiodic
sampling strategy, computational burden and communication bandwidth may be reduced
while preserving the desired stability and performance properties.

Event-triggered control algorithms often sample based on state information. Due to sensor
imperfections and limited precision, perfect state information is in reality often unavailable,
and an open problem in event-triggered control is how to deal with these measurement
noises. A known issue when dealing with measurement noise in event-triggered control
is the occurrence of Zeno behavior, which requires an infinite number of transmissions in
finite time. Some solutions for the measurement noise problem exists, however, these often
impose constraints such as, e.g., requiring “unnatural” assumptions, such as differentia-
bility, on the character of the measurement noise.

In this thesis, general conditions for set stabilization of (distributed) event-triggered con-
trol systems affected by measurement noises are presented. It is shown that, under these
conditions, both static and dynamic triggering conditions can be designed such that the
closed-loop system ensures an input-to-state practical set stability property. Additionally,
by proper choice of the tuning parameters, the system does not exhibit Zeno behavior.
Contrary to various results in the event-triggered control literature, the measurement
noises do not have to be differentiable in the proposed setup. The general results are
applied to point stabilization and consensus problems as particular cases. Simulations
illustrate the strengths of the results.
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Chapter 1

Introduction

For systems in which the communication energy consumption, communication bandwidth
or computation power is constrained, traditional periodic sampling and/or controller up-
dates might require resources that are not available to obtain the desired system perfor-
mance. To this end, event-triggered control (ETC) can be applied, see, e.g., [1] and the
references therein, to reduce computational burden and/or the communication bandwidth
of the control strategies, while preserving important stability and performance properties.
In ETC, the sampling instant is decided on the basis of a triggering condition, hence,
sampling instants are not necessarily periodic.

In general, most literature on ETC assumes that perfect state or output information is
available for control, even though in most physical systems, this is often not the case due
to sensor limitations. Since sensors are susceptible to measurement noises, exact state
or output information is therefore typically not available. It is known that under these
circumstances, the design of triggering conditions that do not require an infinite number of
controller updates in finite time, i.e., Zeno behavior, is in general a hard problem, see, e.g.,
[2]. Several solutions have been proposed in the literature to address this problem, see, e.g.,
[3, 4]. However, these require differentiability conditions on the noise, L∞-bounds on the
derivative of the noise and the ensured input-to-state stability (ISS) or Lp-stability of the
closed-loop system holds with respect to the noise and its time-derivative. When dealing
with real sensors, the differentiability condition and global boundedness of the derivative
of the noise may not be natural assumptions. The observer-based approaches, see, e.g., [5],
on the other hand, overcome this issue, but these results only apply to linear systems and
require multiple additional internal models, thereby requiring extra processing power and
energy to run. In [6], a periodic event-triggered controller (PETC) is run simultaneously
with a continuous event-triggered controller (CETC), and transmission occurs when the
triggering conditions of both controllers hold. The difference between PETC and CETC
is that for the former, the triggering condition is checked periodically while the triggering
condition for the latter has to be monitored constantly. The downside to this particular
method is that if the state is close to the origin, periodic sampling is obtained, hence,
the communication benefit of ETC is not preserved. This issue is even harder when
designing distributed event-triggered controllers for consensus [7]. We know of only one
paper dealing with measurement noise in this context, [8], where the control input is
integrated to estimate an upper-bound for the error. Since a conservative estimate is used
and due to the absolute triggering condition, the amount of controller updates (network
bandwidth) required is relatively large compared to other ETC consensus algorithms, see,
e.g., [9].

In this thesis, we present a general framework to address the measurement noise problem,
based on space-regularized (fixed threshold) ETC, in line with classical event generators,
such as [10, 11, 12]. For this, we present a new hybrid model, in which we use a hybrid
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2 Chapter 1. Introduction

system for which a jump models a transmission. The model does not involve the derivative
of the noise as opposed to [3, 4]. We then provide general prescriptive conditions, under
which both dynamic and static triggering rules are designed to ensure an input-to-state
practical stability property, while ruling out Zeno phenomena. In particular, we show that
applying space-regularization, i.e., artificially enlarging the “flow set” of the hybrid model,
needs to be done with care to ensure the existence of strictly positive minimum inter-event
times, which only requires that an upper-bound of the noise is known. The existence of
these strictly positive inter-event times are necessary to rule out Zeno phenomena. These
results are written for the general scenario where N plants, possibly interconnected, are
controlled by N event-triggered controllers, hence covering both classical point stabiliza-
tion problems as in, e.g., [10, 11, 12, 13] and consensus problems as in, e.g., [14] in a
unified way. We then demonstrate the relevance of our technique by showing that it can
be applied to design event-triggering strategies robust to measurement noise. In particu-
lar, we explain how to modify the triggering rules presented in [10, 11] to be applicable
in presence of measurement noise. We also apply it to consensus seeking problems, where
we show that we can maintain long inter-event times even in the presence of measurement
noise. We show this, for instance, in the methods of [9, 15]. Lastly, we use simulations to
show the effectiveness of our technique and to demonstrate the implications of applying
space-regularization.

This thesis is structured as follows. In Chapter 2 we present the necessary preliminaries
and notational conventions. Chapter 3 contains the problem statement. We present a
hybrid model and the framework, including the main results, in Chapter 4. We apply
our framework to several interesting case studies in Chapter 5. Finally, we illustrate the
obtained results by simulating some case studies in Chapter 6, and provide conclusions in
Chapter 7.

Part of this work has been submitted to the 59th IEEE Conference on Decision and Control.



Chapter 2

Preliminaries

2.1 Notation

The sets of all non-negative and positive integers are denoted N and N>0, respectively.
The field of all reals and all non-negative reals are indicated by R and R>0, respectively.
The identity matrix of size N×N is denoted by IN , and the vectors in RN whose elements
are all ones or zeros are denoted by 1N and 0N , respectively. For N vectors xi ∈ Rni , the
vector obtained by stacking all vectors into one column vector x ∈ Rn with n =

∑N
i=1 ni is

denoted as (x1, x2, . . . , xN ), i.e., (x1, x2, . . . , xN ) =
[
x>1 x>2 . . . x>N

]>
. By 〈·, ·〉 and | · |

we denote the usual inner product of real vectors and the Euclidean norm, respectively.
For a measurable signal w : R>0 → Rnw , we denote by ‖w‖∞ = ess supt∈R>0

|w(t)| its L∞-
norm, provided it exists and is finite, we then write w ∈ L∞. A function w : R>0 → Rnw
is said to be càdlàg, denoted by w ∈ PC, if there exists a sequence {ti}i∈N with ti+1 >
ti > t0 = 0 for all i ∈ N and ti →∞ when i→∞ such that w is a continuous function on
(ti, ti+1) where limt↑ti w(t) exists for all i ∈ N>0 and limt↓ti w(t) exists for all i ∈ N with
limt↓ti w(t) = w(ti), i.e., w is right-continuous and left limits exist for each i ∈ N>0. For
any x ∈ RN , the distance to a closed non-empty set A is denoted by |x|A := infy∈A |x−y|.
The closure of a set A is denoted by A.

A continuous function α : R>0 → R>0 is a class-K function if it is strictly increasing and
α(0) = 0 and it is a class-K∞ function if, in addition, α(r)→∞ as r →∞. A continuous
function β : R>0×R>0 → R>0 is a class-KL function if, for each fixed s > 0, the mapping
β(·, s) is a class-K function and, for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→∞.

2.2 Graph theory

A weighted graph G := (V, E , A) consists of a vertex set V := {1, 2, ..., N}, a set of edges
E ⊂ V × V and an adjacency matrix A ∈ RN×N . An ordered pair (i, j) ∈ E , with i, j ∈ V,
is an edge from i to j. For an edge (i, j) ∈ E , i is called the in-neighbor of j, and j is
called the out-neighbor of i. All (i, j) ∈ E have an associated weight, denoted wij ∈ R>0.
The adjacency matrix A := (ai,j), i, j ∈ V of a graph is defined as

ai,j :=

{
wij if (i, j) ∈ E ,
0 otherwise.

(2.1)

The set V in
i of the in-neighbors of i is defined as V in

i := {j ∈ V | (j, i) ∈ E} and the set
of out-neighbors as Vout

i := {j ∈ V | (i, j) ∈ E}. An undirected graph is a graph where,
for any edge (i, j) ∈ E , (j, i) is also in E . A sequence of edges (i, j) ∈ E connecting two
vertices is called a directed path. For a connected graph G, there exists a path between
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4 Chapter 2. Preliminaries

any two vertices in V. The in-degree is defined as din
i :=

∑
j∈V in

i
wji and the out-degree as

dout
i :=

∑
j∈Vout

i
wij . The in-degree matrix Din and out-degree matrix Dout are diagonal

matrices with din
i respectively dout

i as the ith diagonal element. A weight-balanced digraph
(directed graph) is a digraph where dout

i = din
i for all i. The Laplacian L of a graph G is

defined as L := Dout −A. For an undirected graph, Din := Dout.

2.3 Hybrid systems

We model hybrid systems using the formalism of [16, 17]. As such, we consider systems
H(F, C, G,D) of the form {

ξ̇ ∈ F (ξ, w) (ξ, w) ∈ C,
ξ+ ∈ G(ξ, w) (ξ, w) ∈ D,

(2.2)

where ξ ∈ Rnξ denotes the state, w ∈ Rnw a disturbance, C ∈ Rnξ × Rnw the flow set,
D ∈ Rnξ×Rnw the jump set, F : Rnξ×Rnw ⇒ Rnξ the flow map and G : Rnξ×Rnw ⇒ Rnξ
the jump map, where the maps F and G are possibly set-valued. Loosely speaking, while
(ξ, w) ∈ C, the state can flow continuously according to ξ̇ ∈ F (ξ, w). If (ξ, w) ∈ D, the
state can jump as ξ+ ∈ G(ξ, w). If (ξ, w) ∈ C ∩ D, the system can either flow or jump,
flow is only allowed if flowing keeps the solution in C. See [16] for more details on the
adopted hybrid terminology. Given a hybrid system H, its solutions are hybrid arcs φ (see
[16, Def. 2.4] for a formal definition of hybrid arcs) that satisfy the following definition.

Definition 2.1. A hybrid arc φ is a solution to H for w ∈ PC, if (φ(0, 0), w(0)) ∈ C ∪D,
and

(S1) for all j ∈ N and almost all t such that (t, j) ∈ domφ, (φ(t, j), w(t)) ∈ C and
φ̇(t, j) ∈ F (φ(t, j), w(t));

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ, (φ(t, j), w(t)) ∈ D and (φ(t, j +
1), w(t)) ∈ G(φ(t, j), w(t)).

A solution φ is non-trivial if domφ contains at least two points.

Definition 2.2. For a ∈ R>0 define Sa : PC → PC for w ∈ PC by Sa(w) = w̃, where
w̃(t) = w(t + a) for all t > 0. Moreover, for W ⊂ PC and a ∈ R>0, we define Sa(W) :=
{Sa(w) | w ∈W}. W is called time-invariant if Sa(W) = W for all a ∈ R>0.

Loosely speaking, the set of time-invariant functions is a collection of functions where a
particular function at a specific time t > 0 can always be written as a different function
of the set at t = 0. For example, the set of the single function W = {sin(·)} is not time
invariant, since by applying the shift operator Sa, we obtain the set {w̃ ∈ PC | w̃(t) =
sin(t + a)}, t ∈ R>0, which only contains the same function as the original set if a is a
multiple of 2π, but not for all a > 0. We can extend W in a time-invariant set in this case
by using, for example, W = ∪φ∈[0,2π){w ∈ PC | w(t) ∈ sin(t + φ)}. Indeed, for this set it
holds that W = Sa(W) for all a > 0.

The following proposition provides conditions for the existence of non-trivial solutions for
hybrid system (2.2).

Proposition 2.1. Consider the hybrid system H with W ⊂ PC given. Consider ξ ∈ Rnξ
and w ∈W with (ξ, w(0)) ∈ C ∪ D. If (ξ, w(0)) ∈ D or

(VC) there exist ε > 0 and an absolutely continuous function z : [0, ε] → Rnξ such that
z(0) = ξ, ż(t) ∈ F (z(t), w(t)) and (z(t), w(t)) ∈ C for almost all t ∈ [0, ε],
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then there exists a non-trivial solution φ to H for w with φ(0, 0) = ξ. If (VC) holds for
every ξ ∈ Rnξ and w ∈ W with (ξ, w(0)) ∈ C \ D, then there exists a non-trivial solution
to H for every (ξ, w(0)) ∈ C ∪ D, and every maximal solution satisfies exactly one of the
following properties:

(a) φ is complete;

(b) domφ is bounded and, with J = supj domφ, the interval IJ := {t : (t, j) ∈ domφ}
has non-empty interior and is open to the right, and there does not exist an absolutely
continuous function z : [a, b] → Rnξ satisfying ż(t) ∈ F (z(t), w(t)) for almost all
t ∈ [a, b], (z(t), w(t)) ∈ C for almost all t ∈ (a, b), and such that IJ ⊂ [a, b) and
z(t) = φ(t, J) for all t ∈ IJ ;

(c) domφ is bounded and (φ(T, J), w(T )) 6∈ C ∪ D, where (T, J) = sup domφ.

Proof. The first statements regarding the existence of a non-trivial solution follows di-
rectly from the definition of a solution to H. For regarding the properties of maximal so-
lutions, suppose that φ is a maximal solution that is not complete, i.e., domφ is bounded.
Let (T, J) = sup domφ. If (T, J) ∈ domφ and (φ(T, J), w(T )) ∈ C ∪ D, then either
(φ(T, J), w(T )) ∈ D in which case φ can be extended via a jump, or (φ(T, J), w(T )) ∈ C\D
in which case φ can be extended via flow, thanks to (VC). Thus, either (c) holds or
(T, J) 6∈ domφ. If the latter holds, then the interior of IJ is non-empty, since we could
not get there via a jump as then (T, J) ∈ domφ, and (b) must hold to ensure maximality
of φ. Indeed, if (b) would fail, φ could be extended to a solution to H for w on domφ. �

Remark 2.1. Due to the use of the time-invariant set W ⊂ PC, (VC) does not depend
on the initial time. Consequently, (VC) only has to be proven for a single point in time
and not for all t ∈ R>0.

Remark 2.2. We would like to emphasize that we require some extra care for item (c)
above. In hybrid systems without inputs, it would be sufficient to prove that G(D) ⊂
C ∪ D to exclude (c), however, when dealing with discontinuous inputs as defined above,
discontinuities in w could also result in (c) occurring.

To illustrate the rationale behind our choice for w ∈ PC, suppose that we define w such
that w(t) = 0 for all t 6= 1, and w(t) = 1 for t = 1. In this case, verifying whether
(ξ, w(1)) ∈ C \ D is not a clear indication of whether (VC) holds. Indeed, by enforcing
that w is càdlàg, i.e., w ∈ PC, we can avoid such issues, and in this case point-wise
evaluation of (ξ, w) ∈ C \ D is an indication of the behavior for a (small) neighborhood
after the evaluated point due to right-continuity. Note that this implies that we only have
to check if (VC) holds for continuous inputs w, due to w being right-continuous and the
choice of {ti}i∈N, in the definition of PC.

We are mainly interested in systems H that are persistently flowing as defined below.

Definition 2.3. A hybrid system H is persistently flowing if, for any w ∈W, all maximal
solutions φ are unbounded in t-direction, i.e., supt domφ =∞.

We focus on the following stability definitions in this thesis.

Definition 2.4. When H is persistently flowing, we say that a non-empty closed set
A ⊂ Rnξ is input-to-state practically stable (ISpS) if there exist γ ∈ K, β ∈ KL and
d ∈ R>0 such that for any solution pair (ξ, w) with w ∈ L∞ ∩ PC

|ξ(t, j)|A 6 β(|ξ(0, 0)|A, t) + γ(‖w‖∞) + d, (2.3)
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for all (t, j) ∈ dom ξ. If (2.3) holds with d = 0, then A is said to be input-to-state stable
(ISS) for H.

To prove that a given non-empty closed set A is IS(p)S, we will use the following Lyapunov
conditions.

Proposition 2.2. Consider a persistently flowing system H and let A ⊂ Rnξ be a non-
empty closed set. If there exist a continuously differentiable V : Rnξ → R>0, α, α, α ∈ K∞,
γ ∈ K and c ∈ R>0 such that

1. for any (ξ, w) ∈ C ∪ D,
α(|ξ|A) 6 V (ξ) 6 α(|ξ|A),

2. for all (ξ, w) ∈ C and f ∈ F (ξ, w),

〈∇V (ξ), f〉 6 −α(|ξ|A) + γ(|w|) + c,

3. for all (ξ, w) ∈ D and any g ∈ G(ξ, w),

V (g)− V (ξ) 6 0,

then A is ISpS, and it is ISS if c = 0.

Sketch of proof. Let (ξ, w) be a hybrid solution to H, (t, j) ∈ dom ξ and 0 = t0 6 t1 6
. . . 6 tj+1 = t satisfy

dom ξ ∩ ([0, t]× {0, . . . , j}) =
⋃

i∈{0,...,j}

[ti, ti+1]× {i}. (2.4)

For each i ∈ {1, 2, . . . , j} and for almost all s ∈ [ti, ti+1], item 2) of Proposition 2 implies

that
〈
∇V (ξ(s, i)), ξ̇(s, i)

〉
6 −α(|ξ(s, i)|A) + γ(|w(s)|) + c. We can then invoke similar

arguments as in [18, Lemma 2.14] to obtain the desired result as: (i) V does not increase at
jumps according to item 3) of Proposition 2, (ii) item 1) holds, and (iii) H is persistently
flowing. �



Chapter 3

Problem formulation

We consider a collection of N ∈ N>0 interconnected plants P1, P2, . . . , PN . Each plant
Pi, i ∈ N := {1, 2, . . . , N}, is equipped with a sensor that communicates its state (with
measurement noise) to the controllers C1, C2, . . . , CN via a digital network. Plant Pi,
i ∈ N , has a state xi ∈ Rnix with dynamics

ẋi = fi(x, ui), (3.1)

where ui ∈ Rniu is the control input of Pi, x := (x1, x2, . . . , xN ) is the concatenated state
variable, and fi : Rn × Rniu → Rnix is a continuous function, with n =

∑
i∈N n

i
x. Note

that fi may depend on the states of other plants, i.e., physical couplings are allowed. The
controllers Ci, i ∈ N , take the form, in absence of noise,

ui = ki(x), (3.2)

with ki : Rn → Rniu a continuous map. We assume that plants P1, P2, . . . , PN in closed
loop with the controllers C1, C2, . . . , CN satisfy desired control objectives in the absence
of a network, as formalized in the following, see Section 4.2.

We investigate the scenario where the values of each state xi, i ∈ N , are broadcasted
by the corresponding sensors to the controllers C1, C2, . . . , CN , which depend on it, via a
digital network, as illustrated in Fig. 3.1. The corresponding transmissions occur at some
time instants tik, k ∈ N, which are generated by a local triggering condition. Moreover, the
measurements are affected by noise. To model the obtained feedback law in this context,
we introduce x̃i, the noisy measurement of xi, for i ∈ N , as

x̃i := xi + wi, (3.3)

where wi ∈ Rnix is an (additive) bounded piecewise continuous measurement noise, which
is assumed to satisfy the following assumption.

Assumption 3.1. For each i ∈ N , wi ∈ PC and wi(t) ∈ Wi for all t ∈ domw, where

Wi :=
{
wi ∈ Rnix

∣∣ |wi| 6 wi} for some wi ∈ R>0.

Note that Assumption 1 constrains the signals wi ∈ PC, i ∈ N , such that the norm of
its range is bounded for all t. Since we do not restrict ourselves to a specific class of
functions, and since the bound on the norm is constant, this subset of PC-functions is
time-invariant. To illustrate this, suppose that wi ∈ R. Then, wi(t) ∈ [−wi, wi] for all
t ∈ R>0. If we apply the shift operator we obtain wi(t+ a) ∈ [−wi, wi] for all t, a ∈ R>0.
Since these sets are equivalent, we indeed conclude that {W} = {W}a and, consequently,
W is time-invariant.

7
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P1 EG 1 . . . PN EG N

u1

x̃1

̂̃x, u1 uN

x̃N

̂̃x, uN
Network

C1 . . . CN

̂̃x u1 ̂̃x uN

Figure 3.1: Networked control setup with event generators (EG). EG i determines when
the current state x̃i is transmitted over the network.

Because of the packet-based communication over the network, the controllers, which de-
pend on the state of Pi, do not have continuous access to x̃i in (3.3), but only to its discrete

networked version, ̂̃xi := x̂i + ŵi, where

x̂i(t) = xi(t
i
k) for t ∈ [tik, t

i
k+1), k ∈ N,

ŵi(t) = wi(t
i
k) for t ∈ [tik, t

i
k+1), k ∈ N.

(3.4)

To keep the definitions consistent with the existing literature, we define the network-
induced error e = (e1, e2, . . . , eN ) as the difference between the sampled state x̂ :=
(x̂1, x̂2, . . . , x̂N ) without the measurement noise and the current state without measure-
ment noise, i.e.,

e := x̂− x. (3.5)

We also introduce the measured network-induced error ẽ = (ẽ1, ẽ2, . . . , ẽN ) as the difference
between the most recently transmitted state and the currently measured state, which are
both affected by noise, i.e.,

ẽ := x̂+ ŵ − x− w = e+ ŵ − w. (3.6)

Note that ei is not known by event generator i, and therefore, cannot be used by the
corresponding local triggering condition for determining tik, k ∈ N. However, the event
generators do have access to ẽi.

Due to the network and the noisy measured states, the feedback law in Ci applied to plant
Pi is, for i ∈ N ,

ui = ki(x+ e+ ŵ). (3.7)

Our objective is to determine the transmission times tik, k ∈ N, for any i ∈ N , to ensure
that:

(i) the combined closed-loop system (3.1), (3.7) satisfies an input-to-state practical sta-
bility property in the presence of measurement noise;

(ii) there exists a strictly positive time between any two transmissions generated by the
triggering condition of plant Pi, i.e., for any initial condition there exists a Ti > 0
such that tik+1 − tik > Ti for all k ∈ N, i ∈ N .



Chapter 4

General results

4.1 Hybrid model

We model the overall system as a hybrid system H for which a jump corresponds to the
broadcasting of one of the noisy states x̃i, i ∈ N , over the network. We allow the local
triggering conditions to depend on a local variable denoted ηi ∈ R>0, i ∈ N , as in the
dynamic triggering of [11, 13]. We also consider static triggering conditions in the sequel.
We define η := (η1, η2, . . . , ηN ) ∈ RN>0, and stack the “physical” variables in χ := (x, e, ŵ).
The full state for H becomes ξ := (χ, η) = (x, e, ŵ, η) and is defined as

ξ̇ = F (ξ, w), (ξ, w) ∈ C,
ξ+ ∈ G(ξ, w), (ξ, w) ∈ D,

(4.1)

where the flow map is given, for all (ξ, w) ∈ X × W, where X := Rn × Rn × W × RN>0,
W :=W1 ×W2 × . . .×WN and Wi comes from Assumption 1, by

F (ξ, w) := (Fχ(χ),Ψ(o)), (4.2)

with Ψ(o) := (Ψ1,Ψ2, . . . ,ΨN ) the to-be-designed dynamics of the dynamic variables η
and o := (o1, o2, . . . , oN ) collects oi ∈ Rnio , i ∈ N , being the information locally available
to plant i. In (4.2),

Fχ(χ) := (f(x, k(x+ e+ ŵ)),−f(x, k(x+ e+ ŵ)),0n), (4.3)

for χ ∈ Rn × Rn ×W. Let, for i ∈ N ,

Ci := {(ξ, w) ∈ X×W | ηi + θiΨi(oi) > 0} (4.4)

with θi ∈ R>0 a design parameter. The flow set for the overall system is given by

C :=
⋂
i∈N
Ci. (4.5)

The jump set corresponding to a transmission of x̃i generated by triggering condition
i ∈ N is defined as

Di :=
{

(ξ, w) ∈ X×W | ηi + θiΨi(oi) 6 0 and Ψi(oi) 6 0
}
. (4.6)

Note that, with respect to [11], we require the additional condition Ψi(oi) 6 0 to ensure
that Zeno behavior does not occur when θi = 0. By selecting a θi > 0, we trigger
earlier than the “pure” dynamic case (i.e., when θi = 0). Generally, this results in faster
convergence but shorter inter-event times, which allows us to tune bandwidth usage versus

9
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performance, see [11] for more details. The jump set for the overall system is defined as

D :=
⋃
i∈N
Di. (4.7)

Note that both C and D are closed sets. The jump map for triggering condition i is now
defined as

Gi(ξ, w) :=

{
{(Gχ,i(χ,w), η)} , if (ξ, w) ∈ Di
∅, if (ξ, w) 6∈ Di,

(4.8)

where
Gχ,i(χ,w) := (x,Γie,Γiŵ + Γiw), (4.9)

with Γi the block diagonal matrix where the i-th block is Inix and all other blocks are

0
njx×njx , j ∈ N \ {i}, and Γi := In − Γi. Map (4.8) simply means that a jump due to

triggering condition i resets ei to 0 and ŵi to wi (essentially, ŵ+
i ∈ Wi), leaving the other

variables unchanged. The complete jump map is given by

G(ξ, w) :=
⋃
i∈N

Gi(ξ, w). (4.10)

For future use we also define the jump map for (χ,w) ∈ Rn × Rn ×W ×W as

Gχ(χ,w) :=
⋃
i∈N

Gχ,i(χ,w). (4.11)

Because of the selected state variables, system (4.1) does not depend on the time-derivative
of w as in [3, 4], which allows us to work under more general and more natural assumptions
on the measurement noise.

The goal is to design the dynamics of ηi, Ci and Di, i.e., the functions Ψi, for all i ∈ N ,
such that a given set A is ISpS, see Definition 2.4. To formalize objective (ii) stated at
the end of Chapter 3, we introduce, for any solution ξ to H for w ∈ W and i ∈ N , the set

Ti(ξ, w) :=
{

(t, j) ∈ dom ξ | (ξ(t, j), w(t)) ∈ Di and

(ξ(t, j + 1), w(t)) ∈ Gi(ξ(t, j), w(t))
}
.

(4.12)

Hence, T i(ξ, w) contains all hybrid times belonging to the hybrid time domain of a solution
ξ to H for w ∈ W at which a jump occurs due to triggering condition i (Di and Gi). We
introduce the following definition.

Definition 4.1. Given a closed set A ⊂ R2n × W, system (4.1) has a semi-global in-
dividual minimum inter-event time (SGiMIET) with respect to A, if, for all ∆ > 0 and
all i ∈ N , there exists a τ iMIET > 0 such that ξ is a solution of H for any w ∈ W with
|ξ(0, 0)|A 6 ∆, for all (t, j), (t′, j′) ∈ Ti(ξ, w),

t+ j < t′ + j′ ⇒ t− t′ > τ iMIET. (4.13)

If τ iMIET can be chosen independently of ∆ for all i ∈ N , then we say that H has a global
individual minimum inter-event time (GiMIET).

Definition 3 means that the (continuous) time between two successive transmission instants
due to a trigger of condition i are spaced by at least τ iMIET units of time, and that τ iMIET

depends on the size of the initial conditions. Hence, the problem formulation at the end
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of Section II can be formally stated as for a given set A, synthesize the sets Ci and Di,
i ∈ N such that A is ISpS and H has a SGiMIET w.r.t. A.

4.2 Design and analysis

We assume that controllers Ci, i ∈ N , are designed such that Assumption 4.1 below holds.
We show in Chapter 5 how this assumption is naturally obtained for specific scenarios.

Assumption 4.1. There exist α, α, α ∈ K∞, γ ∈ K, βi ∈ K and δi : Rnio → R>0

continuous for all i ∈ N , a closed non-empty set A and a continuously differentiable
function V : R2n ×W → R>0 such that

i) for any χ ∈ R2n ×W
α(|χ|A) 6 V (χ) 6 α(|χ|A), (4.14)

ii) for all χ ∈ R2n ×W and w ∈ W,

〈∇V (χ), Fχ(χ))〉 6 −α(|χ|A) + γ(|w|) +
∑
i∈N

βi(|ẽi|)− δi(oi), (4.15)

iii) for any χ ∈ R2n ×W, w ∈ W and g ∈ Gχ(χ,w),

V (g)− V (χ) 6 0, (4.16)

iv) for any ∆ > 0, there exists M∆ > 0 such that for any χ ∈ R2n × W satisfying
|χ|A 6 ∆,

|Fχ(χ)| 6M∆. (4.17)

Assumption 4.1 imposes Lyapunov conditions on the χ-system. Item i) means that V is
positive definite and radially unbounded with respect to A. Item (ii) is an input-to-state
stability property of set A for the flow dynamics, but not the desired one as it involves
the error ẽi. Item iii) implies that the Lyapunov function does not increase at jumps and
item iv) imposes boundedness conditions on fi and ki. Assumption 4.1 implies that, in
the absence of a digital network (and thus, ẽi = 0 and ŵ = w), the set A is input-to-state
stable with respect to input w. Again, examples of systems verifying Assumption 4.1 are
provided in Chapter 5.

The next theorem explains how to design Ψi, i ∈ N , arising in the flow map, and the flow
and jump set definitions to ensure the desired objectives are met.

Theorem 4.1. Consider system (4.1) and suppose Assumptions 3.1 and 4.1 hold. We
define for all i ∈ N , ξ ∈ X and w ∈ W

Ψi(oi) := δi(oi)− βi(|ẽi|)− εiηi + ci, (4.18)

with ci > βi(2wi) and εi ∈ R>0 tuning parameters. The set Ad := {ξ : χ ∈ A and η = 0}
is ISpS and system (4.1) has a SGiMIET.

Theorem 4.1 provides the expressions of Ψi, i ∈ N , which ensure that ISS of set A
guaranteed by Assumption 4.1 in the absence of network is approximately preserved in
the presence of the digital network. Moreover, the existence of a strictly positive lower-
bound on the inter-event time of each triggering mechanism is guaranteed. The interest
of Theorem 4.1 lies in its simplicity, generality and in revealing the main concepts as a
“prescriptive framework.”
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The expression of Ψi in (4.18) is based on so-called space-regularization, as by introducing
ci, we enlarge the flow set to ensure the existence of a SGiMIET. While space-regularization
is well known in the hybrid systems literature and has been used under different forms in
event-triggered control [2, 12, 19, 20], we have to be careful when designing ci, because a
priori the non-Zenoness only holds if ci satisfies the condition mentioned in Theorem 4.1.

Remark 4.1. We would like to note that in [2, Remark V.3], the same lower-bound for
the space-regularization constant has been derived based on their trigger style, however, the
results that we obtain here are more general. Indeed if βi is the identity function as in [2],
we recover the lower-bound ci > 2wi.

The consequence of ci > βi(2wi) is that we obtain practical stability, i.e., the constant d in
(2.3) will be non-zero, see Remark 4.3 below for more details. On the other hand, Theorem
4.1 does not require to make assumptions on the differentiability of wi, and a fortiori on
boundedness properties of ẇi, as in various works in ETC considering measurement noise,
see, e.g., [3, 4]. Additionally, we may exploit the structure present in specific scenarios or
ETC mechanisms to obtain less conservative bounds for the parameters ci and, in some
cases, a GiMIET, as opposed to semi-global one in Theorem 4.1, as will be illustrated in
Chapter 5.

Proof of Theorem 4.1. The first part of the proof consists of showing that the conditions
of Proposition 2.2 hold. To this end, we introduce a Lyapunov candidate U , defined for
all ξ ∈ X as

U(ξ) := V (χ) +
∑
i∈N

ηi. (4.19)

Lyapunov conditions. Due to item i) of Assumption 4.1, there exist class-K∞ functions
α1, α2 such that α1(|ξ|Ad) 6 U(ξ) 6 α2(|ξ|Ad) for all ξ ∈ C ∪ D, and thus item 1) of
Proposition 2.2 holds. Next, let (ξ, w) ∈ C, in view of (4.15) and (4.18),

〈∇U(ξ), F (ξ, w))〉 = 〈∇V (χ), Fχ(χ))〉+
∑
i∈N

Ψi(oi)

6 −α(|χ|A) + γ(|w|) +
∑
i∈N

βi(|ẽi|)− δi(oi) + Ψi(oi)

= −α(|χ|A) + γ(|w|) +
∑
i∈N

ci − εiηi

6 −αd(|ξ|Ad) + γ(|w|) + c

(4.20)

with c :=
∑

i∈N ci and for some αd ∈ K∞. Hence, item 2) holds. Since η+ = η and due to
item iii) of Assumption 4.1, we note that for any (ξ, w) ∈ D and all g ∈ G(ξ, w),

U(g)− U(ξ) 6 0, (4.21)

thus, item 3) also holds. Hence, we are left with proving that H is persistently flowing.

Completeness of maximal solutions. To prove that all maximal solutions are complete
we will use Proposition 2.1. To this end, we first have to prove that there exists a non-
trivial solution by showing that (VC) holds for all (ξ, w) ∈ C \ D. Note that due to C
being closed, C = C. Let t1 > t0 = 0 denote the time at which the next discontinuity in w
occurs. By definition, w is continuous on [0, t1). Suppose that (ξ, w(0)) is in the interior of
C \D. Then, due to the continuity of both w and ξ, we have suitable continuity properties
on z for local existence of solutions such that (VC) is satisfied.
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In view of (4.4) and (4.6), for any (ξ, w(0)) not in the interior of C \D, we can distinguish
four cases, which may or may not hold simultaneously:

1) |ŵi| = wi for some i ∈ N ,

2) ηi + θiΨi(oi) = 0 and Ψi(oi) > 0 for some i ∈ N ,

3) ηi = 0 for some i ∈ N ,

4) |w(0)| = wi for some i ∈ N .

For item 1), we note that, in view of (4.3), d
dt ŵi = 0, and (VC) holds for this case. For

item 2), we note that (ξ, w) ∈ C \D implies that ξ ∈ X, which implies ηi > 0. Hence, item
2) can only hold if ηi = 0 and θi = 0. In view of (4.4), we note that η̇i = Ψi(oi) > 0.
Due to continuity of ξ and w, (VC) holds. For item 3), we can follow a similar argument
as before since, if (ξ, w) ∈ C \ D, Ψi(oi) has to be strictly positive if ηi = 0. Hence, due
to η̇i = Ψi(oi) > 0 and due to the continuity of both w and ξ, (VC) holds for this case.
For item 4), (VC) holds trivially due to Assumption 3.1. Thus, there exists a non-trivial
solution ξ to H for all w ∈ W such that (ξ, w) ∈ C ∪ D, and all maximal solutions satisfy
exactly one of three cases (a), (b) or (c) in Proposition 2.1.

Item (b) cannot occur for the following reason. Suppose that for a maximal solution,
dom ξ is bounded. As items 1)-3) of Proposition 2.2 hold, there exist θ ∈ KL and γ ∈ K∞
such that |ξ(t, j)|A 6 θ(|ξ(0, 0)|A, t) + γ(c) for all (t, j) ∈ dom ξ. Let µ > 0, and suppose
ξ(0, 0) satisfies |ξ(0, 0)|A 6 µ. Then, for all (t, j) ∈ dom ξ, |ξ(t, j)|A 6 β(µ, 0) + γ(c) =: ∆
and |Fχ(χ(t, j))| 6 M∆ for some M∆ > 0 in view of item iv) of Assumption 4.1. Since
the dynamics of x, e and ŵ are bounded (i.e. Fχ is bounded), the dynamics of η are
also bounded. Consequently, since ξ is bounded and does not have a finite escape time,
we can close the right-open interval. Item (c) only occurs if either G(D) 6⊂ C ∪ D or if
(ξ, w) 6∈ C ∪ D due to a discontinuity in w. For the former, we note that C ∪ D = X×W.
In view of (4.9), we note that ŵ+

i = wi if i broadcasts its state and ŵ+
i = ŵi otherwise.

Additionally, η+
i = ηi. Consequently, G(D) ⊂ C ∪ D. Furthermore, since C ∪ D = X×W,

item (c) cannot occur due to a discontinuity in signal w, since by Assumption 3.1, w ∈ W.
Thus we deduce that all maximal solutions ξ to the hybrid system H are complete for any
w ∈ W. Now that we have proved that any maximal solution is complete, we show that
maximal solutions are also t-complete.

Semi-global individual minimum inter-event time. We prove t-completeness by
showing that system (4.1) has the SGiMIET property. To this end, we examine the time
between two successive jumps generated by triggering condition i ∈ N . Recall that we
trigger when ηi + θiΨi(oi) 6 0 and Ψi(oi) 6 0. By [11, Prop. 2.3], we know that, after a
first triggering instant has occurred,

δi(oi) + ci − βi(|ẽi|) 6 0 and ηi > 0 (4.22)

is always satisfied before ηi+θiΨi(oi) 6 0, Ψi(oi) 6 0 and ηi > 0 is. Hence, we can analyze
when (4.22) holds to obtain a lower-bound for the inter-event times. Since δi takes non-
negative values, we can under-estimate the inter-event times for triggering condition i by
analyzing when

ci = βi(|ẽi|). (4.23)

Rewriting this, we obtain the condition

β−1
i (ci) = |ẽi|. (4.24)
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Note that we can upper-bound the right-hand side of (4.24) as, in view of Assumption 1,

β−1
i (ci) = |ẽi| 6 |ei|+ |ŵi|+ |wi| 6 |ei|+ 2wi. (4.25)

Hence, we can under-estimate the triggering times by analyzing when

β−1
i (ci)− 2wi = |ei|. (4.26)

Recall that, by the condition on ci in Theorem 4.1, we have ci > βi(2wi), thus, the
left-hand side of (4.26) is always positive. In view of (4.26), we define

ci := β−1
i (ci)− 2wi > 0. (4.27)

Since |ei| is 0 after a transmission due to triggering rule i, the inter-event time for triggering
rule i is lower bounded by the time it takes for |ei| to grow from 0 to ci in view of (4.26).
Note that the bound in (4.27) is not dependent on actual values of wi, only on the upper-
bounds presented in wi ∈ Wi, i ∈ N . In the following, we provide a lower-bound on this
inter-event time. Let µ > 0 and consider (ξ, w) such that |ξ(0, 0)|Ad 6 µ. Note that by
(4.20), (4.21) and the satisfaction of item (i) of Assumption 4.1, |ξ(t, j)|Ad 6 ∆ for some
∆ > 0 (dependent on µ but not on |ξ(0, 0)|Ad) and any (t, j) ∈ dom ξ. Hence, in view of
item iv) of Assumption 4.1, |Fχ(χ(t, j))| 6M∆. Thus, for almost all j ∈ N>0 and almost

all t ∈ Ij where Ij = {t : (t, j) ∈ dom ξ}, d|ei(t)|
dt 6 M∆. Consequently, the time between

any two transmissions generated by triggering rule i is larger than or equal to ci/M∆.
Hence, H has the SGiMIET property and thus solutions are persistently flowing.

Since the system is persistently flowing, we also have that H is ISpS w.r.t. the set Ad. �

We can derive similar results when the triggering conditions are static, i.e., when no
variable ηi is introduced to define the transmission instants. In this case, we obtain the
hybrid system Hs defined as

χ̇ = Fχ(χ), (χ,w) ∈ Cs,
χ+ ∈ Gχ(χ,w), (χ,w) ∈ Ds,

(4.28)

where
Cs :=

⋂
i∈N
Csi , Ds :=

⋃
i∈N
Dsi (4.29)

with the sets Csi ,Dsi as

Dsi := {(χ,w) ∈ R2n ×W ×W | Ψs
i (oi) 6 0},

Csi := {(χ,w) ∈ R2n ×W ×W | Ψs
i (oi) > 0},

(4.30)

where Ψs
i (oi) is a static triggering condition, which is designed according to the next result.

Corollary 4.1. Consider system (4.28) and suppose Assumptions 1 and 2 hold. We define
for all i ∈ N , χ ∈ R2n ×W and w ∈ W

Ψs
i (oi) := δi(oi) + ci − βi(|ẽi|) (4.31)

with ci > βi(2wi) tuning parameters. The set A is ISpS and system (4.28) has a SGiMIET.

The proof of Corollary 4.1 follows similar steps as the proof of Theorem 4.1, and is therefore
omitted.
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Remark 4.2. Assumption 4.1 and Corollary 4.1 allow us to consider the case where any
δi is equal to zero. In this case, Ψs

i is given by Ψs
i (oi) := ci − βi(|ẽi|), with ci > βi(2wi)

tuning parameters. Note that triggering conditions of this form are often called absolute
triggering conditions in the event-triggered control literature, see e.g. [2, 19, 20].

Remark 4.3. The parameters ci in Theorem 4.1 and Corollary 4.1 are directly related to
the constant d in the ISpS definition (2.3). Note that (2.3) holds with d = θ(c) for some
θ ∈ K∞, where c =

∑
i∈N ci. Hence, for a tighter ultimate bound on |ξ(t, j)|Ad, we require

that ci is as small as possible. Note, however, that due to Theorem 4.1, ci is lower-bounded
by βi(2wi), and thus the minimum value of d is dmin = θ(

∑
i∈N βi(2w̄i)) to ensure proper

SGiMIET and ISpS properties. On the other hand, selecting a small ci implies a small
lower-bound on the SGiMIET in view of (4.27). Hence, there exists a trade-off between
large lower-bounds on the inter-event times and “asymptotic closeness” to Ad in terms of
d, which is tunable through selection of ci, i ∈ N .





Chapter 5

Case studies

In this section, we investigate several existing event-triggering techniques in the literature
and show how to modify these to handle measurement noise. We want to stress that we
just took a non-exhaustive sample of a few well-known techniques, but many more can
be handled by our general framework. We prove for this purpose that Assumption 4.1 is
verified, which allows to directly apply Theorem 4.1 or Corollary 4.1.

5.1 Stabilization of a single system

In this section we aim to stabilize a single system, similarly to [10, 11]. First we treat
the general non-linear case, and hereafter we will provide some additional insights for the
linear case, which are not necessarily true in the general setting.

5.1.1 Non-linear stabilization of the origin

A single plant P and a single controller C are considered here. In particular, the plant is
given by

ẋ = f(x, u) (5.1)

and the feedback controller by
u = k(x). (5.2)

As in [10, 11], we assume that the following properties hold.

Assumption 5.1. Maps f and k are Lipschitz continuous on compacts. Additionally,
there exist α, α, α, γ ∈ K∞ and a continuously differentiable Lyapunov function V : Rn →
R satisfying, for any x, v ∈ Rn,

α(|x|) 6 V (x) 6 α(|x|),
〈∇V (x), f(x, k(x+ v))〉 6 −α(|x|) + γ(|v|),

(5.3)

implying that the origin of ẋ = f(x, k(x+ v)) is ISS with respect to v.

We derive the following result from Assumption 5.1.

Proposition 5.1. Consider system (5.1) with controller (5.2) and suppose Assumption
5.1 holds. Then all conditions of Assumption 4.1 are met for A = {χ : x = 0} with
β(s) = γ(2s) for any s > 0, δ(o) = σα(1

2 |x̃|) for any x̃ ∈ Rn and V as in Assumption 5.1,
with σ ∈ (0, 1) a tuning parameter.

Proposition 5.1 implies that, for any bounded measurement noise as defined by Assumption
3.1, the triggers defined in Theorem 4.1 and Corollary 4.1 render the origin of the closed-
loop system ISpS with the SGiMIET property.

17
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As a result, we have redesigned the triggering conditions of [10, 11] to be applicable in
presence of measurement noises.

Proof. By Assumption 5.1, item i) of Assumption 4.1 holds trivially. Let x, e, ŵ ∈ R2n×W.
In view of Assumption 3, by substituting v with e+ ŵ, we obtain

〈∇V (x), f(x, k(x+ e+ ŵ))〉 6 −α(|x|) + γ(|e+ ŵ|). (5.4)

By using (3.6), i.e., e+ ŵ = ẽ+ w, we obtain

〈∇V (x), f(x, k(x+ e+ ŵ))〉 6 −α(|x|) + γ(|ẽ+ w|). (5.5)

Next, we use the weak triangle inequality, γ(a+ b) 6 γ(2a) + γ(2b), see [21], to obtain

〈∇V (x), f(x, k(x+ e+ ŵ))〉 6 −α(|x|) + γ(2|ẽ|) + γ(2|w|).

Then, for any σ ∈ (0, 1),

〈∇V (x), f(x, k(x+ e+ ŵ))〉 6 −(1− σ)α(|x|)− σα(|x|)− σα(|w|) + σα(|w|)
+ γ(2|ẽ|) + γ(2|w|)

6 −(1− σ)α(|x|)− σα
(

1
2(|x|+ |w|)

)
+ γ(2|ẽ|)

+ γ(2|w|) + σα(|w|)
6 −(1− σ)α(|x|)− σα

(
1
2 |x̃|

)
+ γ(2|ẽ|)

+ γ(2|w|) + σα(|w|)
6 −(1− σ)α(|x|) + ζ(|w|) + γ(2|ẽ|)− σα(1

2 |x̃|),

(5.6)

for some ζ ∈ K, hence item ii) of Assumption 4.1 holds. Since the Lyapunov function V
does not depend on e or ŵ, for all (ξ, w) ∈ D and g ∈ G(ξ, w), V (g) − V (ξ) = 0, and
item iii) holds. Since f and k are Lipschitz continuous on compacts, for any |ξ| 6 ∆ there
exists a constant L > 0 such that |f(x, k(x+e+ ŵ))| 6 L|ξ| = L∆ and item iv) holds. �

5.1.2 The linear single-system case

If the results are tailored to linear dynamics, we can assume stronger properties with
respect to the MIET. In particular, we obtain a GiMIET for any linear system.

Consider any linear system with dynamics

ẋ = Ax+Bu, (5.7)

with x ∈ Rn, u ∈ Rm and matrices A, B of appropriate dimensions, and with a linear
feedback

u = Kx, (5.8)

with K of appropriate dimensions. We assume the linear feedback renders the closed-loop
system globally asymptotically stable in the absence of a network. In this case, there exists
a quadratic ISS-Lyapunov function with respect to additive measurement errors v ∈ Rn.
For such a quadratic Lyapunov function, there exist constant a, a, a, b ∈ R>0 such that,
for any x, v ∈ Rn,

a|x|2 6 V (x) 6 a|x|2,
〈∇V (x), (A+BK)x+BKv〉 6 −a|x|2 + b|v||x|.

(5.9)



5.1. Stabilization of a single system 19

The following result will illustrate the stronger properties with respect to the general,
non-linear case.

Proposition 5.2. Consider system (5.7) with a stabilizing controller (5.8). For this
system, all conditions of Assumption 4.1 are met with β(s) = 1

2dbs
2 for any s > 0 and

δ(o) = 1
2σ(a − bd)|x̃|2 where d ∈ (0, ab ) and σ ∈ (0, 1) are tuning parameters. Moreover,

for c > 1
2σ(a − bd)|w|2 + 1

d |2w|
2, the hybrid system H has a global minimum inter-event

time τMIET.

Proof. Due to (5.9), item i) of Assumption 4.1 directly holds. By substituting v = e+ ŵ =
ẽ+ w and by applying Young’s inequality, we obtain

〈∇V (x),K(x+ e+ ŵ)〉 6 −a|x|2 + b|e+ ŵ||x| = −a|x|2 + b|ẽ+ w||x|
6 −a|x|2 + b|ẽ||x|+ b|w||x|

6 −(a− bd)|x|2 +
1

2d
b|ẽ|2 +

1

2d
b|w|2,

(5.10)

for any d ∈ (0, ab ). Note that, due to Young’s inequality, for any p, q ∈ R it holds that

1
2(p+ q)2 6 1

2(p2 + q2) + |p||q| 6 p2 + q2, (5.11)

hence, for any σ ∈ (0, 1), we have

〈∇V (x),K(x+ e+ ŵ)〉 6 −(1− σ)(a− bd)|x|2 − σ(a− bd)|x|2

− σ(a− bd)|w|2 + σ(a− bd)|w|2 +
1

2d
b|ẽ|2 +

1

2d
b|w|2

6 −(1− σ)(a− bd)|x|2 − 1
2σ(a− bd)(|x|+ |w|)2

+ σ(a− bd)|w|2 +
1

2d
b|ẽ|2 +

1

2d
b|w|2

6 −(1− σ)(a− bd)|x|2 + σ(a− bd)|w|2 +
1

2d
b|w|2

− 1
2σ(a− bd)|x̃|2 +

1

2d
b|ẽ|2

6 −α(|x|) + γ(|w|)− 1
2σ(a− bd)|x̃|2 +

1

2d
b|ẽ|2

(5.12)

for some α ∈ K∞ and γ ∈ K, hence, item ii) of Assumption 4.1 holds. Since V (x) does
not depend on e or ŵ, item iii) holds trivially. Additionally, due to the linear dynamics,
item iv) also holds trivially.

Next we prove the existence of a global minimum inter-event time. Note that the system
is ISpS for any disturbance w ∈ W, and we know that for every solution ξ to H for any
w ∈ W there exists a forward invariant set I := {ξ ∈ R2n ×W | V (x) 6 µ}. Hence, if
at some time (t, j) ∈ dom ξ, ξ(t, j) ∈ I, then for all (t′, j′) ∈ dom ξ with t + j 6 t′ + j′,
ξ(t′, j′) ∈ I. We pick the smallest µ for which the forward invariance condition holds.
Recall from (4.22) that we can under-estimate the inter-event times by analyzing when

1

2
σ(a− bd)|x̃|2 + c− 1

2d
|ẽ|2 = 0. (5.13)

Due to Young’s inequality, for any p, q ∈ R it holds that

(p+ q)2 = p2 + q2 + 2pq > p2 + q2 − 2|p||q|

> p2 + q2 − εp2 − 1

ε
q2

(5.14)
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for any ε > 0. By picking ε = 1
2 , we obtain (p+q)2 > 1

2p
2−q2. By using (5.11) and (5.14),

for two vectors r, s ∈ Rn it holds that

|r + s|2 =

n∑
i=1

(ri + si)
2 >

n∑
i=1

1

2
r2
i − s2

i =
1

2
|r|2 − |s|2,

|r + s|2 =

n∑
i=1

(ri + si)
2 6

n∑
i=1

2r2
i + 2s2

i = 2|r|2 + 2|s|2.
(5.15)

With these inequalities, we can bound |x̃|2 and |ẽ|2 as

1

2
|x|2 − |w|2 6 1

2
|x|2 − |w|2 6 |x+ w|2 = |x̃|2,

−2|e|2 − 2|2w|2 6 −2|e|2 − 2|ŵ − w|2 6 −|e+ ŵ − w|2 = |ẽ|2.
(5.16)

We then obtain by substitution of (5.16) in (5.13) that

1

4
σ(a− bd)|x|2 − 1

d
|e|2 + c− 1

2
σ(a− bd)|w|2 − 1

d
|2w|2 6 1

2
σ(a− bd)|x̃|2 + c− 1

2d
|ẽ|2.
(5.17)

By selecting c such that

c >
1

2
σ(a− bd)|w|2 +

1

d
|2w|2, (5.18)

we can under-estimate the inter-event times by analyzing when

1

4
σ(a− bd)|x|2 − 1

d
|e|2 = 0. (5.19)

We split the global minimum inter-event time analysis in two parts. Let ξ be a hybrid
solution to H for some w, (t, j) ∈ dom ξ and 0 = t0 6 t1 < . . . < tj+1 = t satisfy

dom ξ ∩ ([0, t]× {0, . . . , j}) =
⋃

i∈{0,...,j}

[ti, ti+1]× {i}. (5.20)

First, we analyze the inter-event times when ξ(t, j) is not in I, i.e., the restriction of ξ to
the domain φ1 defined as

φ1 :=
⋃

i∈{0,...,j}

{[ti, ti+1]× {i}} if ξ(ti+1, i) 6∈ I. (5.21)

For any solution ξ to the hybrid system H for some w, we consider ti, ti+1 such that
(ti, i), (ti+1, i+ 1) ∈ φ1 with i > 1. We can under-estimate the inter-event times ti+1 − ti
by checking when (5.19) holds. Note that this condition can be rewritten to

d

4
σ(a− bd) =

|e|2

|x|2
, (5.22)

which, since the left-hand side is positive, can be reformulated as√
d

4
σ(a− bd) =

|e|
|x|

(5.23)
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Following the reasoning of [10], we have that for all (t, j) ∈ φ1 it holds that V (x) > µ,
and, in view of the first item of (5.9), |x|2 > a−1V (x) > a−1µ.

d

dt

|e|
|x|
6

(
1 +
|e|
|x|

)
|ẋ|
|x|

6

(
1 +
|e|
|x|

)
|A+BK||x|+ |BK||e|+ |BK||ŵ|

|x|

=

(
1 +
|e|
|x|

)(
|A+BK|+ |BK| |e|

|x|
+ |BK| |ŵ|

|x|

)
6

(
1 +
|e|
|x|

)(
|A+BK|+ |BK| |e|

|x|
+ |BK|w

√
a

µ

)
6 α+ βγ + (α+ β (1 + γ))

|e|
|x|

+ β

(
|e|
|x|

)2

(5.24)

with α := |A+BK|, β := |BK| and γ := w
√

a
µ . Then, for all (ti, i), (ti+1, i+ 1) ∈ φ1, the

inter-event times ti+1 − ti are lower-bounded by the time τMIET,1 satisfying

ψ(τMIET,1, 0) =

√
d

4
σ(a− bd) (5.25)

where ψ(t, ψ0) is the solution to

ψ̇ = α+ βγ + (α+ β (1 + γ))ψ + βψ2. (5.26)

Next, we analyze all (ti, i), (ti+1, i+ 1) ∈ φ2 with i > 1, where φ2 is defined as

φ2 :=
⋃

i∈{0,...,j}

{[ti, ti+1]× {i}} if ξ(ti+1, i) ∈ I. (5.27)

Note that I is a compact set, and hence, by extension and due to the triggering condition,
there exists a compact set J such that for all (t, j) ∈ φ2, χ(t, j) ∈ J . Due to the
compactness of the set J , we can use the results of Theorem 4.1 to obtain a MIET for all
(t, j) ∈ φ2, i.e., τMIET,2 := c/M∆. We take the minimal inter-event time for φ1 ∪ φ2 as

τMIET := min(τMIET,1, τMIET,2). (5.28)

Then, for any (t, j) ∈ domφ1 ∪ φ2, it holds that ti+1 − ti > τMIET for all i > 1. By noting
that domφ1 ∪ φ2 = dom ξ, we prove that τMIET is a global minimum-inter event time for
any solution ξ to the hybrid system H for some w. �

5.2 Consensus for multi-agent systems

A specific field of interest for ETC is consensus of multi-agent systems. We study several
event-triggering control schemes in this context next. We focus here on single integrator
systems, where each plant Pi, which we call agent in this section, has single integrator
dynamics, i.e., ẋi = ui, with xi, ui ∈ R. However, the ideas of this work apply in more
general settings.
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For a network topology described by a connected weight-balanced digraph G with Lapla-
cian L, it is known that agents achieve consensus when the control law

ui =
∑
j∈Vout

i

(xi − xj), (5.29)

with Vout
i the out-neighbors of agent i, is applied, see [22]. In vector notation, this is

written as u = −Lx, where u = (u1, u2, . . . , uN ). We use the noisy sampled states for each
agent instead of the actual states, resulting in the control law

u = −L(x+ e+ ŵ). (5.30)

Hence, the closed-loop system dynamics are

ẋ = −Lx− Le− Lŵ, (5.31)

which results in the dynamics for the hybrid system as

Fχ(χ) = (−Lx− Le− Lŵ, Lx+ Le+ Lŵ,0N ). (5.32)

We are interested in stability properties of the consensus set

A :=
{
χ ∈ R2n ×W | x1 = x2 = . . . = xN

}
. (5.33)

We show that our results extend the works of [15] and [9], to render the ETC schemes
robust to measurement noise.

5.2.1 Decentralized strategy for undirected graphs

We consider a similar triggering style as in [15] first. For this case we consider an undi-
rected, connected graph. This event generator is of particular interest, since the original
paper does not have a non-Zeno proof, as also noted in [7]. By applying our results, we can
design two robust triggers, one static and one dynamic, that have the SGiMIET property
and thus no Zeno behavior.

The proposition below contains the functions required to design a trigger for (5.31) such
that Assumption 4.1 holds.

Proposition 5.3. Assumption 4.1 holds for Fχ defined as in (5.32) and Gχ as in (4.11)
with βi(s) = 1

aNis
2 and δi(oi) = σi(1−2aNi)u

2
i , where Ni denotes the number of neighbors

of agent i and a ∈ (0, 1
2Ni

), σi ∈ (0, 1) are tuning parameters.

Proposition 5.3 implies that, for any bounded measurement noise as defined by Assumption
1, the triggers defined in Theorem 4.1 and Corollary 4.1 render the hybrid system (4.1)
ISpS w.r.t. Ad with the SGiMIET property.

Proof. First we note that due to the undirected graph, L> = L. We introduce the Lya-
punov function V (χ) = x>Lx for any χ ∈ R2n ×W. For this Lyapunov function, item i)
of Assumption 4.1 holds (see [9, Lemma 1]). Additionally, items iii) and iv) hold trivially
(the latter because the dynamics are linear). We are left with proving that we can obtain
the form of item ii). To this end, note that we can write the derivative of V along flow as,
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for any χ ∈ R2n ×W,

〈∇V (χ), Fχ(χ)〉 = −(x+ e+ ŵ)>L>Lx

= −(x+ e+ ŵ)>L>L(x+ e+ ŵ − e− ŵ)

= −u>u− u>Le− u>Lŵ = −u>u− u>Lẽ− u>Lw,
(5.34)

where we use (3.6) to substitute e+ ŵ by ẽ+w. Following [15], using Young’s inequality,
we obtain for any a ∈ (0, 1

2Ni
)

〈∇V (χ), Fχ(χ)〉 6
∑

i∈N −(1− 2aNi)u
2
i + 1

aNi

(
ẽ2
i + w2

i

)
.

Note that ui is a quantity we have access to locally, since it includes the sampled mea-
surement noise. Then, for any σi ∈ (0, 1), it holds that

〈∇V (χ), Fχ(χ)〉 6
∑

i∈N −(1− σi)(1− 2aNi)u
2
i + 1

aNiw
2
i − σi(1− 2aNi)u

2
i + 1

aNiẽ
2
i

6 −α(|u|) + γ(|w|) +
∑

i∈N σi(1− 2aNi)u
2
i + 1

aNiẽ
2
i

for some α ∈ K∞ and γ ∈ K. Hence, item ii) holds. �

5.2.2 Decentralized strategy including time-regularization for undirected
graphs

Next we analyze the trigger designed in [9] without transmission delays to avoid blurring
the exposition with too many technicalities. For this case we consider an undirected,
connected graph. For the scheme of [9] we require that each agent has an internal clock,
τi ∈ R>0, such that τ̇i = 1 on flows and τ+

i = 0 at any triggering instant of agent i, i.e., we
reset the clock if agent i transmits its state. We denote the hybrid system in which these
clocks are integrated in H (4.1)-(4.11) with Hclock. Hence, the state for the hybrid system
can be written as ξ = (χ, τ, η) where χ = (x, e, ŵ) is unchanged and τ := (τ1, τ2, . . . , τN ).

The proposition below contains the functions required to design a trigger for system (5.31)
such that Assumption 4.1 holds.

Proposition 5.4. Assumption 4.1 holds for (4.11) and (5.32) with A ={
χ ∈ R2n ×W | xi = xj for all i, j ∈ N , e = 0

}
, βi(ẽi, τi) = (1−ωi(τi))γ2

i

(
1

αiσi
λ2
i + 1

)
ẽ2
i

and δi(oi) = (1−αi)σiu2
i , where σi := (1−%)(1−2aNi), γi :=

√
1
aNi + µi, di := %(1−2aNi),

ωi(τi) :=


{1}, when τi ∈ [0, τ iMIET),

[0, 1], when τi = τ iMIET,

{0}, when τi > τ iMIET,

τ iMIET := −
√
αiσi
γi

arctan

(
(λ2
i − 1)

√
αiσi

λi(αiσi + 1)

)
,

with αi ∈ (0, 1), % ∈ (0, 1), µi ∈ R>0 and λi ∈ (0, 1) tuning parameters.

Proposition 5.4 implies that, for any bounded measurement noise as defined by Assumption
1, the triggers defined in Theorem 4.1 and Corollary 4.1 render the hybrid system (4.1)
ISpS w.r.t. Adclock := {( ξ, τ) : ξ ∈ Ad and τ ∈ RN>0}. Let us note that, due to the inclusion
of the timer-dependent function ωi in the triggers, the system has a GiMIET (instead of
a SGiMIET) in this particular case. Additionally, there is no requirement (i.e., no lower
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bound) on the space-regularization constants ci, and, in fact, if ci = 0 for all i ∈ N , we
obtain ISS w.r.t. Ad (instead of ISpS).

Proof. We analyze the Lyapunov function candidate V (x) = 1
2x
>Lx. Using (5.31), the

derivative of V along flow can be written as

〈∇V (x), F (ξ, w)〉 = −x>LL(x+ e+ ŵ) = −x>LLx− x>LLe− x>LLŵ, (5.35)

or as (5.34). Using Young’s inequality, we obtain for some a ∈ (0, 1
2Ni

)

〈∇V (x), F (ξ, w)〉 6
∑
i∈N
−(1− 2aNi)z

2
i +

1

a
Ni

(
e2
i + ŵ2

i

)
,

〈∇V (x), F (ξ, w)〉 6
∑
i∈N
−(1− 2aNi)u

2
i +

1

a
Ni

(
e2
i + ŵ2

i

)
,

(5.36)

where zi = (Lx)i. Combining these two inequalities results in

〈∇V (x), F (ξ, w)〉 6
∑
i∈N
−diz2

i − σiu2
i + (γ2

i − µi)e2
i +

1

a
Niŵ

2
i , (5.37)

with σi := (1 − %)(1 − 2aNi), γi :=
√

1
aNi + µi and di := %(1 − 2aNi) and where αi,

% ∈ (0, 1) and µi ∈ R>0 are tuning parameters. Additionally, we define

ωi(τi) :=


{1}, when τi ∈ [0, τ iMIET),

[0, 1], when τi = τ iMIET,

{0}, when τi > τ iMIET,

(5.38)

with constant τ iMIET as

τ iMIET = −
√
αiσi
γi

arctan

(
(λ2
i − 1)

√
αiσi

λi(αiσi + 1)

)
(5.39)

where λi ∈ (0, 1) is a tuning parameter. We are interested in the stability of the set

A = {ξ ∈ X | xi = xj for all i, j ∈ N , e = 0} . (5.40)

To this end, we analyze the Lyapunov function

U(ξ) = V (x) +
∑
i∈N

γiφi(τi)e
2
i (5.41)

with
dφi
dτi

= −ωi(τi)γi
(

1

αiσi
φ2
i (τi) + 1

)
. (5.42)

As stated in [9], for this Lyapunov function, there exist K∞-functions α1, α2 such that
α1(|ξ|A) 6 U(ξ) 6 α2(|ξ|A), hence, item i) of Assumption 4.1 holds. We can upper-bound
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the derivative of U along flow as, for any (ξ, w) ∈ C,

〈∇U(ξ), F (ξ, w)〉 6 〈∇V (x), F (ξ, w)〉+
∑
i∈N

γi
dφi
dτi

e2
i + 2γiφieiui

6
∑
i∈N
−diz2

i − σiu2
i + (γ2

i − µi)e2
i +

1

a
Niŵ

2
i

+ γi
dφi
dτi

e2
i + γ2

i

1

αiσi
φ2
i e

2
i + αiσiu

2
i

6
∑
i∈N
−diz2

i − µie2
i +

1

a
Niŵ

2
i

− (1− αi)σiu2
i + (1− ωi(τi))γ2

i

(
1

αiσi
λ2
i + 1

)
e2
i .

(5.43)

Note that, due to (3.6), we can upper-bound e2
i as

e2
i = (ẽi − ŵi + wi)

2 = ẽ2
i + ŵ2

i + w2
i − 2ẽiŵi + 2ẽiwi − 2ŵiwi

= ẽ2
i + ŵ2

i + w2
i − 2(ei + ŵi − wi)ŵi + 2(ei + ŵi − wi)wi − 2ŵiwi

= ẽ2
i − ŵ2

i − w2
i + 2ŵiwi − 2eiŵi + 2eiwi

6 ẽ2
i − ŵ2

i − w2
i + ŵ2

i + w2
i + 2κie

2
i +

1

κi

(
ŵ2
i + w2

i

)
= ẽ2

i + 2κie
2
i +

1

κi

(
ŵ2
i + w2

i

)
(5.44)

for any κi ∈ R>0. Note that we do not use Young’s inequality directly on 2ẽiŵi and 2ẽiwi
because that would result in a more conservative trigger. Then, we chose κi such that

κi :=
θiµi

2

(
γ2
i

(
1

αiσi
λ2
i + 1

))−1

(5.45)

for any θi ∈ (0, 1). With this, we can upper-bound U during flow as

〈∇U,F (ξ, w)〉 6
∑
i∈N
−diz2

i − µie2
i +

1

a
Niŵ

2
i − (1− αi)σiu2

i

+ (1− ωi(τi))γ2
i

(
1

αiσi
λ2
i + 1

)
e2
i

6
∑
i∈N
−diz2

i − (1− θi)µie2
i +

1

a
Niŵ

2
i +

1

κi

(
ŵ2
i + w2

i

)
− (1− αi)σiu2

i + (1− ωi(τi))γ2
i

(
1

αiσi
λ2
i + 1

)
ẽ2
i

6 α(|ξ|A) + γ(|w|) +
∑
i∈N
−(1− αi)σiu2

i + (1− ωi(τi))γ2
i

(
1

αiσi
λ2
i + 1

)
ẽ2
i .

(5.46)
and indeed, item ii) holds. Additionally, for any (ξ, w) ∈ D and g ∈ G(ξ, w),

U(g)− U(ξ) = −γiλie2
i 6 0, (5.47)

and item iii) also holds. Note that, for dynamic triggers, this implies that we can modify
the reset of ηi. We design the trigger reset function such that

η+
i (oi) := ηi + γiλi (max [|ẽi| − 2w, 0])2 . (5.48)
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Note that the trigger reset η+
i is designed such that we use an estimated lower bound for

ei, i.e.,
ηi(oi)

+ 6 ηi + γiλie
2
i , (5.49)

so that item iii) still holds, and that it only uses locally available information (i.e. ẽi
and not ei). Additionally, due to the linear dynamics, item iv) holds trivially. Thus, we
satisfy all criteria of Assumption 4.1, and for dynamic triggers we then obtain the trigger
dynamics

Ψi(oi) =(1− αi)σiu2
i − (1− ωi(τi))γ2

i

(
1 +

1

αiσi
λ2
i

)
ẽ2
i − εiηi + ci, (5.50)

with ci ∈ R>0 the space-regularization constant. �

5.2.3 Decentralized strategy for weight-balanced digraphs

Lastly we analyze the triggers designed in [23]. In this case, we consider a network topology
described by weight-balanced digraphs. Hence, this scheme requires a less restrictive
network topology.

Proposition 5.5. Assumption 4.1 holds for Fχ defined as in (5.32) and Gχ as in (4.11)

with βi(s) =
(
d2i
2θi

+ γi

)
s2 and δi(oi) = σi(1− 2θi)u

2
i , where di denotes the degree of agent

i, θi :=
∑

j∈Vout
i
wijαij, γi :=

∑
j∈V in

i

wji
αji

, and with αij > 0 (chosen such that θi ∈ (0, 1
2))

and σi ∈ (0, 1) tuning parameters.

Proof. We start by analyzing the Lyapunov function V (x) = 1
2x
>L>x. Due to the prop-

erties of L respectively L>, item i) of Assumption 4.1 holds. Additionally, items iii) and
iv) hold trivially. Note that from [23], we know that for some additive error v, for any
x, v ∈ RN , it holds that

〈∇V (x),−Lx− Lv〉 6
∑
i∈N
−(1− 1

2
θi)u

2
i − diviui +

1

2
γiv

2
i (5.51)

with θi :=
∑

j∈Vout
i
wijαij , di the degree of agent i, γi :=

∑
j∈V in

i

wji
αji

and where αij > 0

are tuning parameters. To avoid confusion, we want to note that wij denotes the weights
corresponding to the graph. By substitution of v = e+ ŵ = ẽ+ w we obtain

〈∇V (x),−Lx− Lv〉 6
∑
i∈N
−(1− θi)u2

i − di(ẽi + wi)ui +
1

2
γi(ẽi + wi)

2. (5.52)

By using Young’s inequality and (5.11) we obtain

〈∇V (x),−Lx− Lv〉 6
∑
i∈N
−(1− 2θi)u

2
i +

(
d2
i

2θi
+ γi

)
ẽ2
i +

(
d2
i

2θi
+ γi

)
w2
i . (5.53)

Note that the constants αij should be chosen such that θi ∈ (0, 1
2). Then, for any σi ∈

(0, 1), it holds that

〈∇V (x),−Lx− Le− Lŵ〉 6
∑
i∈N
−(1− σi)(1− 2θi)u

2
i +

(
d2
i

2θi
+ γi

)
w2
i

− σi(1− 2θi)u
2
i +

(
d2
i

2θi
+ γi

)
ẽ2
i ,

(5.54)
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and item ii) also holds. �





Chapter 6

Numerical Examples

In this section, we illustrate the results of Section 5.2 with N = 8 agents that are connected
as described by a graph G with undirected edges (1, 2), (1, 8), (2, 3), (2, 7), (3, 4), (3, 6),
(4, 5), (5, 6), (5, 8) and (7, 8). See Figure 6.1 for a graphical representation of the network
topology. We simulate the results of Sections 5.2.1 and 5.2.2. In both cases we include
uniformly distributed noise in the interval [−1 ·10−4, 1 ·10−4] as measurement noise, hence,
wi = 1·10−4 for all i ∈ N . The noise is sampled at a rate of 1·104Hz and a zero-order-hold
is applied between samples. Note that this signal indeed satisfies the piecewise continuous
requirement.

1

2

3

4

5

6

7

8

Figure 6.1: The undirected communication topology used in the numerical examples.

6.1 Decentralized static trigger of Proposition 5.3

For the simulation of Proposition 5.3, we use the tuning parameters σi = 0.5 for all
i ∈ N and a = 0.1. Note that, for these parameters, maxi(βi(2wi)) = 1.2 · 10−6, hence
we should pick ci > 1.2 · 10−6 to guarantee non-Zenoness. We demonstrate the results of
Corollary 4.1, i.e., we apply static triggering. Two cases are simulated, first with no space-
regularization for all i ∈ N (i.e. ci = 0), to demonstrate that we indeed obtain Zeno-like
behavior if ci is not sufficiently large, and second with ci = 2 · 10−6 > maxi(βi(2wi)).
In Figure 6.2, the evolution of the states xi, i ∈ N and the corresponding inter-event
times for ci = 0 are shown for the initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−6,−8),
e(0, 0) = 0N , ŵ(0, 0) = w(0) and η(0, 0) = 0N . Figure 6.3 depicts the same simulations
for ci = 2 · 10−6.

We note that if ci = 0 for all i ∈ N , we indeed obtain “Zeno-like” behavior, i.e., the inter-
event times converge to the sample rate of the noise. Due to the fact that we employ a ZOH
between samples (i.e. wi is constant between samples), each agent can flow for at least
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Figure 6.2: Evolution of the states (top) and inter-event times (bottom) of the MAS using the dynamic
trigger obtained by applying Corollary 4.1 to Proposition 5.3 with ci = 0 and initial condition x(0, 0) =
(8, 6, 4, 2,−2,−4,−8).
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Figure 6.3: Evolution of the states (top) and inter-event times (bottom) of the MAS using the dynamic
trigger obtained by applying Corollary 4.1 to Proposition 5.3 with ci = 2 · 10−6 and initial condition
x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

1 · 10−4 seconds before triggering an event. Even though the system is not truly Zeno,
any continuous non-constant function between samples would result in Zeno behavior.
However, even though the system does not have Zeno behavior, it has undesirable inter-
event time characteristics. If the space-regularization constant ci is designed properly (e.g.
as in Figure 6.3), we can see that indeed the inter-event times close to the consensus set
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remain relatively large, and desirable behavior for the overall system is obtained.

6.2 Decentralized dynamic trigger of Proposition 5.4

For the simulation of Proposition 5.4, the tuning parameters of [9] are used, i.e., δ = µi =
εη,i = 0.05, a = 0.1 and αi = 0.5 for all i ∈ N . Given these tuning parameters, we obtain
γi = 4.478 and σi = 0.76 for agents i ∈ N with two neighbors (i.e., Ni = 2, thus agents
P1, P4, P6 and P7) and γi = 5.482 and σi = 0.665 for agents i ∈ N with three neighbors
(i.e., Ni = 3, thus agents P2, P3, P5 and P8). We choose λi = 0.2 for all agents. For these
values, we obtain τ iMIET = 0.1562 for agents i ∈ N for which Ni = 2 and τ iMIET = 0.1180
for agents i ∈ N for which Ni = 3.

We demonstrate the results of Theorem 4.1, i.e., we apply dynamic triggering. Two cases
are simulated, first with no space-regularization for all i ∈ N , for which we obtain ISS
w.r.t. the consensus set, second with space-regularization constant ci = 1 · 10−5 for all
i ∈ N , for which we have ISpS w.r.t. the consensus set. To compare the results to [9] (not
considering measurement noise), in all cases we select θi = 0. In Figure 6.4, the evolution
of the states xi, i ∈ N , with ci = 0 and the corresponding inter-event times are shown
for the initial condition x(0, 0) = (8, 6, 4, 2,−2,−4,−6,−8), e(0, 0) = 0N , ŵ(0, 0) = w(0),
τ(0, 0) = 0N and η(0, 0) = 0N . Figure 6.5 depicts the same simulations for ci = 1 · 10−7.
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Figure 6.4: Evolution of the states (top) and inter-event times (bottom) of the MAS using the dynamic
trigger obtained by applying Theorem 4.1 to Proposition 5.4 with ci = 0 and initial condition x(0, 0) =
(8, 6, 4, 2,−2,−4,−8).

From the simulations we can make a few observations. Note that, for ci = 0, close to the
consensus set the inter-event times are generally close to τ iMIET. This can be explained from
the observation that, in these cases, η+

i = 0 and ui is generally small, and consequently,
the increase in ηi for τ ∈ [0, τ iMIET) is limited. Additionally, we observe that by selecting a
ci > 0, the inter-event times are generally significantly larger than the enforced minimum
inter-event time. Moreover, because there is no lower-bound on ci, a relatively small ci is
often sufficient to obtain desirable average inter-event times. We want to stress that this
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Figure 6.5: Evolution of the states (top) and inter-event times (bottom) of the MAS using the dynamic
trigger obtained by applying Theorem 4.1 to Proposition 5.4 with ci = 1 · 10−7 and initial condition
x(0, 0) = (8, 6, 4, 2,−2,−4,−8).

is a beneficial aspect of this particular scheme, since in general there are constraints on
the minimum size of the space-regularization constants ci to ensure non-Zenoness.

Even though the inclusion of ci leads to ISpS instead of ISS properties, applying space-
regularization leads to triggering conditions that are not only robust to measurement noise,
but also have, on average, larger inter-event times. Since ISS only leads to asymptotic
behavior of the consensus set for vanishing noise, and since most measurement noise is non-
vanishing, practical stability or ISpS with larger inter-event times may be more desirable
when having communication limitations in mind.
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Figure 6.6: Distance of agents to the consensus set A.

In Figure 6.6, the distance to the consensus set, i.e., |x|A, is depicted. We note that
even though the inter-event times are more favorable if we apply space-regularization, the
remaining distance to the consensus set has the same order of magnitude, which underlines
the effectiveness of applying both space- and time-regularization at the same time.



Chapter 7

Conclusions

In this thesis, we presented a general “prescriptive” framework for set stabilization of
event-triggered control systems affected by measurement noise. It is shown that, by careful
design, we obtain both dynamic and static triggering conditions that render the closed
loop or a set input-to-state (practically) stable with a guaranteed positive (semi-)global
individual minimum inter-event time. Key to obtaining this framework is a novel hybrid
model that describes the behavior of event-triggered control systems and the application
of space-regularization. Due to this model and the space-regularization, differentiability
conditions are not required on the measurement noises, as opposed to many works in the
literature. The strengths and generality of the framework are demonstrated on several
interesting event-triggered control problems, such as the stabilization of the origin for
single-plant systems and consensus problems for multi-agent systems, robustifying them
for measurement noise.

The framework laid down in this thesis will be extended in future research. We aim to
include output-feedback control, dynamic controllers, more general dissipative functions
and other holding-functions for the transmitted states in the future. The listed extensions
will be the subject of a journal submission.
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