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Abstract	
Condition Based Maintenance (CBM) is a maintenance program that determines when 
maintenance should be performed based on the condition of a part. The condition of the 
system is determined by monitoring continuous degradation signals. This research aims 
to determine how a CBM program can be created based on event data (error messages 
and warning messages) and usage data (usage counters and machine configuration 
parameters). This thesis uses a Random Forest machine learning model to find patterns 
in the event and usage data that can predict failures. Random oversampling is used to 
increase the performance of the Random Forest model. Three case studies have been 
conducted, and it is concluded that for these parts each failure has a unique pattern of 
event and usage data that cannot be used to predict other failures. The research did yield 
a Python program that can automatically create a CBM program and is easily adapted for 
different parts and even different machines.  
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Management	Summary	
This research presented in this thesis is conducted at Canon Production Printing (CPP) 
with the subject of Condition Based Maintenance (CBM).  

Problem	context	
CPP has a wide range of black & white cutsheet printers which that are currently 
maintained via usage-based maintenance and corrective maintenance (CM). CPP aims to 
implement a CBM program for black & white cutsheet printers. This research focusses on 
the VP6000 as it is responsible for the majority of maintenance cost of the black & white 
cutsheet printers. The VP6000 does not continuously register sensor data. Instead it 
registers event data that is based on sensor data and usage data. Event data is defined as 
error and warnings messages, while usage data is defined as production counters and 
machine configuration parameters. The errors and warnings are based on sensor data or 
on system faults. The main research question therefore is: 

“How can event and usage data be used to monitor the condition of the system and how 
can maintenance decisions be made based on this data?” 

Research	approach	
This research uses two methods to answer the main research question: 

• A selection procedure to time-efficiently find suitable candidates for this research. 
• A procedure to create a CBM program. A CBM program consists of three steps: 

data acquisition, data processing and maintenance decision making (Jardine, Lin, 
& Banjevic, 2006) 

To answer the main research question first a selection of parts is made that might be 
suitable for a CBM. The aim is to select three parts for this research. These parts are 
ideally selected based on the highest average yearly response time. However, the response 
time is not defined for the parts and has to be determined by manually examining visit 
logs. This is too time intensive for all parts. Therefore, first a selection of parts is made 
based on the maintenance funnel by Tiddens et al. (2018). The maintenance funnel first 
efficiently selects a number of parts that benefit from CBM based on two criteria. The 
criteria high part cost and low failure frequency as proposed by van Elderen (2016) are 
used.  CPP values these criteria the most in selecting parts for CBM, however these 
criteria do not guarantee that CBM is a feasible program for the selected parts. The 
maintenance funnel is therefore used as it has two more steps that determine if CBM is 
feasible for a part. Tiddens et al. (2018) first propose several criteria to filter out more 
parts for which CBM is not feasible. Then, the potential cost savings are determined based 
on a sensitivity analysis to conclude if it is economically feasible to implement CBM for 
the part.  

A CBM program consists of three steps. Firstly, the event and usage data that are relevant 
for predicting failures are collected. Secondly, the data is processed. There are many types 
of event and usage data per selected part. Any combination of these data types might be 
useful to predict failures. A machine learning model is therefore used as it can 
autonomously find patterns in for these large sets of data.  Finally, maintenance decisions 
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are made based on the costs of CM visit and CBM. A method is proposed to determine 
how many CM and CBM visits there based on how often the machine learning model 
makes correct predictions, false predictions or fails to predict a failure. Based on the 
number of visits and the cost of each visit it is determined how much cost can be saved if 
the CBM program is implemented. 

Results	
The first step of this research resulted in three parts that are used. These parts are the: 
Preheat 1,2 unit, Preheat 3 unit and the Printhead Seneca. It is concluded that there are 
large differences in the potential cost savings for each part. This is due to selecting the 
parts based on part cost and failure frequency instead of response time and failure 
frequency.  

For the selected parts it is concluded that a CBM program is not possible. It is concluded 
that each failure has its own unique pattern of event and usage data that cannot be used 
to predict other failures.  

This research built a Python program that can automatically process event and usage 
data to create a machine learning model that can predict failures for any part. 
Furthermore, a method is proposed that can be used to make maintenance decisions based 
on the performance of the machine learning model.  

Recommendations	
This thesis makes several recommendations for CPP. The most important 
recommendations are the following: 

Implementation plan 

An implementation plan is recommended so that the Python program can be applied to 
other parts. This implementation plan can be applied to any part. First, the available 
event and usage data has to be collected per part. Then the Python program should be 
applied. The results can then be used for maintenance decision making.  

Part selection 

A CBM program is not possible for the selected parts of this research. It is therefore 
recommended to use a different method for part selection and use the Python program to 
create a CBM program. Firstly, it is recommended that a selection of parts is made that 
are expected to have the highest average yearly response times. The expert knowledge of 
the field service technicians and the service product specialists should be used to find 
these parts. Secondly, it should be determined for which parts CBM based on event and 
usage data is possible. The event and usage data are used by the field service technician 
to determine which parts might be the cause of the customer’s issue and replace them. It 
is therefore expected that the field service technicians can give a good estimation of which 
parts can be used for CBM with event and usage data.     
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Additional recommendations 

• It is recommended that CPP investigates why the event and usage data the 
patterns of event and usage data cannot be used to predict failures. The triggers 
that cause the errors and warnings might be wrongly defined.  

• For optimal part selection the response time is needed per part. It is therefore 
recommended that CPP starts to collect the response time of parts.  

• The data is collected in seven-day intervals, however it is expected that the most 
significant errors occur closely to the failure. It is therefore recommended to collect 
the data continuously.  
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Failure 
frequency 
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predicted a failure when none occurred.  
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2012). 
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Machine 
Learning 

A computer program that learns autonomously and can make decision 
autonomously.  

Maintenance 
Categorization 
Matrix 
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Prediction 
Point 
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Prediction 
Window 
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Preventive 
Maintenance 

The maintenance strategies that are performed before the part 
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Prognostic 
Condition 
Based 
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Showstopper 
Analysis 

The second filter in the maintenance funnel. Used to determine if 
CBM is feasible for the selected part.  

Stratified cross 
validation 

A method to evaluate a ML model. It divides the data into groups and 
iterates over these groups to train and test the ML model. The 
stratification ensures there is an equal number of positive instances 
in each group. The instances can be either randomly assigned to each 
group or the dataset can be split into equal sized groups.  

True Positive Correct prediction made by the ML model. 
Usage Based 
Maintenance 

A maintenance policy that performs maintenance after a component 
has reached a predefined level of usage.  

Visit Costs The costs made to travel to the customer (includes the hourly wage of 
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Visit Log A log in which the FST describes what has been done during a 
maintenance visit  

Warning A warning is a message registered by the machine when an 
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1. Introduction	
This research is the result of a graduation project conducted at Canon Production Printing 
(CPP) B.V. in order to be awarded a master’s degree in Operations Management & 
Logistics at Eindhoven University of Technology. CPP is considered a world-wide leader 
in printing. CPP is an innovative company focusing on: “accelerating digital imaging 
technologies and developing high-tech printing products and services” (Canon Production 
Printing, 2019). The main subject of this research is condition based maintenance (CBM). 
This research is part of the pro-active service logistics for capital goods (ProSeLoNext) 
project. 

The remainder of this chapter is structured as follows. First, the research background is 
described in Section 1.1. This is followed by the research design in Section 1.2. Finally, 
Section 1.3 describes the outline of the remainder of this thesis.   

1.1 Research	background	
In this section the research background is described. The section deals with three topics: 
the company background, an introduction to maintenance and the problem context.  

1.1.1 Company	background	
Canon Production Printing is formerly known as Océ. Océ was acquired by Canon in 2010 
and in January 2020 the name was officially changed in Canon Production Printing CPP). 
CPP’s headquarters are in Venlo, the Netherlands. The company currently employs 
around 3000 people worldwide.  

CPP currently has three product categories, namely continuous feed, cut sheet and large 
format printers. Continuous feed printers are continuously fed via a roll of paper. Cut 
sheet printers are fed sheets of paper from a stack. Large format printers can handle large 
size paper inputs. These printers can be continuously fed or sheet fed. All three product 
categories have printers that can only print in black and white, or color. 

All these product categories have a service & support department that is responsible for 
the installation and maintenance of all the printers. This research focusses on the black 
& white group which is responsible for the service and support of the black & white cut 
sheet printers. 

This research is part of the pro-active service logistics for capital goods project. In this 
project a consortium of three universities and seven companies work together on several 
topics in after sales services. The three main topics are predictive maintenance and 
service logistics, service business models, and service control towers. This research falls 
within the predictive maintenance topic.   

1.1.2	Introduction	to	maintenance	
In general maintenance can be divided into three categories, namely modificative 
maintenance, preventive maintenance and corrective maintenance (Arts, 2017). Figure 1 
shows the different kinds of maintenance.  
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Figure 1 - Maintenance strategies (Arts, 2017) 

Corrective maintenance is aimed at repairing systems that have broken down. Preventive 
maintenance in comparison, is aimed at performing maintenance before the system 
breaks down. As can be seen in Figure 1 preventive maintenance is divided into two 
categories, namely usage based maintenance (UBM) and condition based maintenance 
(CBM). UBM performs maintenance actions after a certain threshold of usage has been 
reached; an example of UBM is replacing the brake discs on a car after driving 100,000 
kilometers. CBM measures the current condition of a part and performs maintenance 
when the current condition passes a threshold level. An example of CBM is replacing a 
break disc of a car after the thickness of the disc has been reduced to 80% of its original 
size. The measurements can be either continuous or periodical.  

Jardine et al. (2006) propose three steps to create a CBM program (Figure 2). Firstly, the 
data that might represent the health of the system is collected. In the second step the data 
is first cleaned and then processes. The data is processed so that the deterioration of the 
system can be analyzed. Finally, maintenance decisions rules are suggested to create an 
efficient CBM program. The authors differentiate between two types of maintenance 
decision making, namely diagnostic and prognostic. The first focusses on detecting faults 
in the system while the latter focusses on predicting when faults will occur in the system.  

 

Figure 2 - Three steps of a CBM program (Jardine, Lin, & Banjevic, 2006) 

1.1.2 Problem	context	
This research focusses on the service and support department of the B&W group at CPP. 
CPP aims to reduce the service costs and improve the uptime for the printers within this 
group. To achieve this goal, CPP has defined a proactive maintenance concept (Figure 3). 
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Figure 3 – Proactive maintenance concept (ten Have, 2019) 

As can be seen from Figure 3, CPP has defined three pillars within the proactive 
maintenance concepts, namely corrective maintenance (red), preventive maintenance 
(green) and improvements (blue). The final goal is to identify for every printer within the 
B&W group, which parts should receive corrective maintenance, operator maintenance, 
usage based maintenance, predictive maintenance or modificative maintenance. 
Currently, none of the printers have parts that are maintained based on their condition.  

CPP has defined scheduled service visits as uptime. Implementing CBM for a part might 
therefore result in higher uptime as these visits are scheduled with the customer. 
Furthermore, once a customer experiences a part failure the field service technician (FST) 
has to get to the customer’s location and diagnose the problem. During this time the 
printer is down. A CBM policy replaces the part before it fails and the FST knows which 
part to replace beforehand. As a result, the downtime is reduced and the uptime increases.  

Additionally, implementing CBM for parts might reduce maintenance costs as CPP loses 
income when the customer is unable to print as they do not use consumables during that 
time.  

CBM will therefore contribute to the goals of increasing uptime and reducing maintenance 
costs. However, it is currently unknown how to determine the condition of a part based 
on the available data. The printers register errors, warnings, usage counters and 
parameter values. CPP aims to implement CBM for parts based on this information.  

1.1.3	Problem	statement	
CPP aims to implement CBM for the black & white cut sheet printers to improve uptime 
and reduce maintenance costs. Within the B&W group, the VP6000 is responsible for 70% 
of the total maintenance costs. It is therefore expected that reducing the maintenance 
costs of the VP6000 will lead to the largest overall savings for the B&W group. 
Furthermore, the same is expected for the uptime. 

The printers are maintained by CPP at customer locations. A maintenance visit needs to 
be planned with the customer and the FST requires time to get to the customer location. 
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It is therefore necessary to know that a part is going to fail in advance. A prognostic CBM 
policy is better than a diagnostic CBM policy. 

These printers only register errors, warnings, usage counters and parameter values. 
Errors and warnings are defined as event data, while usage counters and parameter 
values are defined as usage data.  

Based on the above information the following problem statement is defined: 

“Currently it is unknown how event and usage data can be used to create CBM strategies 
for parts of the VP6000” 

1.2	Research	design	
The research design is described in this section. First, the research questions are 
described in Section 1.2.1. Then the scope of the research is described in Section 1.2.2. 
The deliverables for CPP are described in Section 1.2.3 and the academic deliverables are 
described in Section 1.2.4.  

1.2.1	Research	questions	
Considering the problem statement the following main research question is formulated: 

“How can event and usage data be used to monitor the condition of the system and how 
can maintenance decisions be made based on this data?” 

To answer the main research question, five research questions are defined. The first is 
aimed at finding a method to select suitable parts for this research. The second applies 
this method to reduce the number of parts to a selection that can be used for this research. 
The remaining three research questions are based on the steps to create a CBM program 
as proposed by Jardine et al. (2006). This section describes the general approach per 
research question. The detailed descriptions are provided in each chapter.  

1. How to determine which parts are suitable candidates for this research? 

First, it is determined how the parts should be selected for this research. For this the 
situation at CPP is discussed and the literature is reviewed for a best approach.  

2. Which parts of the VP6000 are suitable candidates for this research?	

A part is considered suitable for the research if it financially benefits from a CBM policy 
and if a CBM policy is a feasible solution. First a selection of parts is made based on high 
part costs and low failure frequency. Then a showstopper analysis is conducted to filter 
out parts for which CBM is not feasible. Finally, an economic feasibility study is conducted 
for the selected parts to see if a CBM policy would result in cost savings.  

The remainder of the research questions are based on the steps to create a CBM program 
as suggested by Jardine et al. (2006).  
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Figure 4 - Three steps of a CBM program (Jardine, Lin, & Banjevic, 2006) 

3. What event and usage data should be monitored to determine the condition of the 
selected parts?	

The second research question is based on the data acquisition step. To answer this 
research question all the available data is collected per part. 

4. How can the selected event and usage data per part be processed so that it can be 
used for maintenance decision making?	

This research question is based on the data processing step. The first step in this research 
question will be to clean the available data. This is followed by using literature to find a 
method to process the event and usage data so that it can be used to create a CBM 
program. A machine learning model is used as it can handle datasets with many different 
errors, warnings, usage counters and parameter values.  

5. How can maintenance decisions be made based on the processed data? 

The fourth research question is based on the final step in the methodology as proposed by 
Jardine et al (2006). In these case studies the optimal data processing parameters are 
determined per selected part to create a CBM program that yields the largest cost 
reduction compared to only a CM. 

1.2.2	Scope	
This section describes the scope of this research.  

• This research focusses only on the VP6000 as it is currently responsible for the 
majority (70%) of the maintenance costs of the B&W cut sheet printers. 
Improvements to the maintenance concept of this printer might therefore lead to 
the largest overall cost reductions.   

• Due to the time constraints of this research three parts are selected for RQ2, 3 and 
4. This decision has been made in consultation with the service product manager.  

• Expendables are excluded from the research. Expendables are parts CPP operates 
to failure.  

• This research is focused on predicting failures, as there is only data available about 
when a failure occurs.  

1.2.3	Deliverables	for	Canon	Production	Printing	
This research will have the following deliverables:	

• An internal report. This is the report for CPP which will contain the answers to 
the research questions and meet the criteria from the TU/e. This report will 
contain sensitive information. 
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• An external report. This report will not contain sensitive information. 
• A Python program that will process the data and train a machine learning model 

to predict the replacement of any part of the VP6000.  
• A guide on how to optimize the machine learning model so that the largest cost 

reduction can be achieved. 

1.2.4	Academic	Deliverables	
• A case study in which the maintenance funnel for selection of suitable candidates 

for CBM is applied. 
• A case study in which the steps to create a CBM program by Jardine et al. (2006) 

is applied. 
• A case study in which the methodology for processing event data proposed by Wang 

et al. (2017) is applied.   
• An addition of usage data to the methodology for processing event data by Wang 

et al. (2017). 
• An addition of the methodology by Wang et al. (2017) for imbalanced data. 
• An addition to the methodology by Wang et al. (2017) to optimize the method 

parameters based on potential cost savings for maintenance decision making. 

1.3	Thesis	Outline	
The remainder of this thesis is outlined as follows. Chapter 2 answers Research Question 
1 by selecting a methodology for parts selection. In Chapter 3 Research Question 2 is 
answered by applying this methodology to the parts at CPP. In Chapter 4 Research 
Question 3 is answered by collecting all event and usage data per selected part that might 
be used to create a CBM program. In Chapter 5 a methodology to process the data into a 
classification problem for machine learning is applied to answers Research Question 4. 
Chapter 6 answers Research Question 5 by optimizing the parameters of the data 
processing method to achieve the highest potential cost savings. Chapter 7 contains the 
conclusion and recommendations. 



 

 
 

7 

2. Parts	selection	methodology	
The VP6000 is a complex machine consisting of a large number of parts. It is therefore 
necessary to find a selection of parts that are suitable for this research. This chapter will 
therefore answer Research Question 1: 

“How to determine which parts are suitable candidates for this research?” 

In Section 2.1 the optimal maintenance policy selection criteria for CPP are described. 
Section 2.2 reviews the literature to find a method for parts selection for this research. 
Finally, in Section 2.3 a chapter conclusion is given.  

2.1	Maintenance	policy	selection	criteria	
In an integrated maintenance approach, effectiveness analysis (which parts to improve?) 
should always be performed before efficiency analysis (how to improve these parts?) (Lee 
et al., 2014; Seecharan, Labib, & Jardine, 2018). CPP has defined the proactive 
maintenance concept to reduce maintenance costs and improve uptime. The effectiveness 
analysis should be conducted to select parts that are likely to contribute the most to these 
goals. After data cleaning there are 1031 parts that have been registered for the VP6000 
(appendix A shows the data cleaning process). It is expected that most of these are not 
suitable candidates, so an efficient method is needed to find the suitable candidates.  

One of the major benefits of CBM over CM is the reduction of downtime. Each CBM visit 
is conducted before a part fails, as a result the printer is not down while it waits for the 
part to be repaired. Downtime is often used to select parts for a CBM policy (Labib, 1998; 
Scarf, 2007; Seecharan, Labib, & Jardine, 2018; Tiddens, Braaksma, & Tinga, 2018). The 
time the printer is down while waiting for repair is defined as the response time. CPP 
generates revenue when the printer is operational as the customer uses consumables sold 
by CPP, e.g. ink. When the printer is down CPP therefore loses income. Reducing the 
response time therefore contributes to both goals of CPP, as the uptime is increased, and 
the loss of income is reduced. Ideally, the parts for this research would be selected based 
on the highest average yearly response time, i.e. response time multiplied by the average 
number of failures per year.  However, CPP has not defined the response time per part. 

For this research, determining the response time has to be done by manually examining 
visit logs. As the reason for the response time of a service visit is noted in the visit logs by 
the FST. The service product specialist of the VP6000 has to estimate the response time 
of a part by finding several visits for which it is certain that the response time is caused 
by that part. This is too time consuming for all parts. The next section therefore reviews 
the literature to find a different method for parts selection. The response times are later 
determined for the selection of parts that are used for this research.    

2.2	Maintenance	policy	selection	in	literature	
One method to select parts to improve is by determining the critical parts of the system. 
The criticality of parts is commonly determined based on a dependability analysis 
(Brahimi et al., 2016). In this analysis the criticality is determined based on their 
availability, reliability, maintainability, safety and integrity (Avizienis et al., 2004). An 
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example of a dependability analysis is the failure mode, effects and criticality analysis 
(FMECA). Dependability analyses determine a score per part or per failure mode based 
on expert knowledge. This process is therefore considered too time consuming to select 
parts of the VP6000 for this research.  

Another popular approach for maintenance policy selection is multi-criteria decision 
making (MCDM) (Ding & Kamaruddin, 2015). The benefit of this method is that it can 
include multiple objectives. It can also include feasibility objectives to determine if the 
maintenance policy is feasible for the selected parts. The most widely used MCDM method 
is the analytical hierarchy process. For MCDM it is necessary to first determine the 
criteria, their relative weights and then determine the scores per part. This method is 
therefore considered too time consuming for this research. 

A more efficient method to determine the optimal maintenance policy per part is the 
classification diagram. In this diagram all the parts are plotted based on their failure 
frequency and downtime (Figure 5a). It can therefore be used for all 1031 parts of the 
VP6000. Parts with low failure frequency and high downtime are optimal candidates for 
CBM. Parts with high downtime and high failure frequency should be designed out of the 
machine. As stated in the previous section, downtime information (or response time) is 
not easily available at CPP. However, different factors can be used (Scarf, 2007; Tiddens, 
Braaksma, & Tinga, 2018). Van Elderen (2016) concludes based on interviews, that CPP 
finds failure frequency and part costs the most important factors for maintenance policy 
selection (Figure 5b). The author suggests the maintenance categorization matrix (Figure 
5b) in which the best parts CBM are in the monitor closely quadrant. These parts have 
high part cost and low failure frequency. Van Elderen determined these criteria based on 
what the stakeholders of his research valued the most. The research by van Elderen and 
this research share several stakeholders. The benefit of the maintenance categorization 
matrix is therefore that the selected parts are important to the stakeholders. The 
downside of the classification diagram is that it has no criteria to determine if CBM is 
feasible for a part.  

 

Figure 5 - Classification diagrams 
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Tiddens, Braaksma & Tinga (2018) add two more steps to the classification diagram to 
find parts for which CBM is feasible. Their approach is shown in Figure 6. The authors 
first use the classification diagram, with downtime and failure frequency, to find the most 
critical parts for CBM in the criticality classification. The authors then define eleven 
criteria, named showstoppers, to determine if CBM is a feasible policy for the remaining 
parts. If one or more of the eleven showstoppers are true then CBM is not feasible for the 
part. If after the showstopper analysis it is still uncertain whether CBM is feasible for a 
selected part, a focused feasibility study is conducted. It contains a technical and economic 
feasibility study to see if CBM is a feasible option. The technical feasibility study is similar 
to the steps to create a CBM program by Jardine et al. (2006). The economic feasibility 
determines if a CBM policy could result in a cost reduction. The benefit of the maintenance 
funnel is that it combines the efficiency of the classification diagram with a feasibility 
check for the parts. 

 

Figure 6 - Maintenance funnel (Tiddens, Braaksma, & Tinga, 2018) 

In conclusion, the maintenance funnel proposed by Tiddens et al. (2018) combines the 
efficiency of the classification diagram with two more steps to determine if a CBM policy 
is feasible for the selected parts. The maintenance funnel is therefore used in this 
research. Furthermore, the maintenance categorization matrix as proposed by van 
Elderen (2016) is used in the criticality classification. It is included as it contains the 
criteria valued the most by CPP, namely part cost and failure frequency. It is not expected 
that by using these criteria the parts with the largest potential cost savings are selected, 
as for this the response time is needed (Section 2.1). However, the economic feasibility 
study filters out the parts for which a CBM policy is not likely to result in cost savings. 
This ensures that even though not the parts with the high potential cost savings are 
selected, at least all selected parts will potentially result in cost savings. The technical 
feasibility study is not included as these questions are similar to the steps to create a 
CBM program which are answered in RQ2, RQ3 and RQ4.   

2.3	Conclusion	
The ideal parts for this research should have be selected based on the highest average 
yearly response times. As reducing the response time results in cost savings and higher 
uptime. However, the response time has to be estimated per part by manually examining 
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visit logs. As the reason for the response time is noted in the visit logs. This process is too 
time consuming for all parts.  

As an alternative the maintenance funnel approach as proposed by Tiddens et al. (2018) 
is used. This is an efficient method for part selection with steps to ensure CBM is a feasible 
policy for the selected parts. The first step of the maintenance funnel is the criticality 
classification based on downtime and failure frequency. As downtime is not available, the 
maintenance categorization matrix by van Elderen (2016) is used. This matrix is designed 
for CPP and selects the parts CPP values the most for CBM. The parts with high part cost 
and low failure frequency are selected for CBM. It is not expected that by using these 
criteria the parts with the largest potential cost savings are selected, as for this the 
response time is needed. However, the addition of the economic feasibility study in the 
maintenance funnel ensures that only parts are selected that potentially result in cost 
savings. In this last step of the maintenance funnel, the response times are determined 
per selected part as they are needed for the economic feasibility study. Furthermore, it is 
expected that only a few parts are left for the economic feasibility study. As a result, it is 
no longer too time consuming in this step.
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Chapter	3	Part	Selection	for	the	VP6000	
In this chapter the maintenance funnel approach as proposed by Tiddens et al. (2018) is 
applied to answer Research Question 2: 

“Which parts of the VP6000 are suitable candidates for this research?” 

Only the European event data is uploaded by the service mechanics and are accessible for 
CPP. For this reason, it has been decided that for the part usage data the focus will also 
be on Europe. The decision to use three years of data has been made after discussion with 
the service data analyst. Going farther back the data will contain failures of parts for 
which solutions have been implemented. A few modifications might be made for the parts 
in this period. The selected parts are therefore checked to see if these received 
modifications.    

The first step of the maintenance funnel as proposed by Tiddens et al. (2018) is the 
criticality classification. This step is conducted in Section 3.1. The second step in the 
maintenance funnel is the showstopper analysis (Section 3.2). For the last step of the 
maintenance funnel an economic feasibility study is conducted (Section 3.3). Finally, a 
chapter conclusion is given in Section 3.4. 

3.1	Criticality	classification	
The first step in the maintenance funnel by Tiddens et al. (2018) is the criticality filter. 
The authors apply the classification diagram to identify the most promising candidates 
for CBM. The authors determine these candidates based on downtime and failure 
frequency. Failures at CPP are defined as part breakdowns that result in replacements. 
As discussed in Section 2.1, retrieving the downtime for each part is too time intensive. 
Instead, the maintenance categorization matrix as proposed by van Elderen (2016) is 
used. This matrix is based on the criteria: part cost and failure frequency. Van Elderen 
(2016) determined that CPP finds these criteria the most important for maintenance 
policy selection. Figure 7 shows the parts of the VP6000 plotted in the maintenance 
categorization matrix.  

 

Figure 7 - Maintenance categorization matrix (van Elderen, 2016) for the VP6000 

A : Monitor Closely  
B : Calculated Failures  

C : PM Regulars 

D :KOM Potential & 
Customer Stock 
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Each variant of the classification diagram determines the boundaries in a different 
manner. Lee et al. (2014) state that the boundaries should be based on the user’s 
maintenance or production needs, while Scarf (2007) and van Elderen (2016) use the 
Pareto rule to determine the boundaries. Seecharan, Labib & Jardine (2018) state that if 
the parts are spread homogenously, i.e. there are no large discrepancies between the part 
locations, the boundaries can be placed at half of the highest value in each range. 
However, if there are large discrepancies in the range a clustering method might be a 
better approach to determine the boundaries. As can be seen from Figure 7, the parts are 
mostly centered in the bottom left corner of the matrix. The parts are therefore not spread 
homogenously in the matrix. Furthermore, there are large discrepancies between the 
values of the failure frequency. As can be seen from Figure 7, most failure frequencies are 
between 0 and 0.5. However, there are a some that are higher with two outliers around 
2.5. The same is true for part price as there are a few outliers. A clustering method is 
therefore the best approach.   

Clustering methods divide the population into several subsets or clusters. The population 
within a cluster is similar to each other, while the populations of different clusters are 
dissimilar (Han, Kamber, & Pei, 2012). The Jenks natural breaks optimization method as 
proposed by Jenks (1977) creates clusters with a similar in-cluster population by 
minimizing the in-cluster variance. This is the variance between the values in the cluster 
and the cluster mean. Variance is a measure of dissimilarity. It is therefore a good 
criterion for creating clusters. In addition, the Jenks natural breaks optimization 
maximizes the dissimilarity between clusters by maximizing the between-cluster 
variance. This is the variance of the values of one cluster with the mean of the other 
cluster.  

Using the Jenks natural breaks optimization, the boundary for the failure frequency is 
determined to be 0.63449 and the boundary for the part price is determined to be 
€1104.90. The Jenks natural breaks optimization is implemented in Microsoft Excel by 
using the Real Statistics Resource Pack (Real Statistics, 2019).  

All the parts that are in the monitor closely quadrant of the maintenance categorization 
matrix are in Appendix B. Table 1 shows the selection of parts in the monitor closely 
quadrant that constitute 79% of the total yearly part costs. The number of parts to 
consider further is reduces, as identifying the potential showstoppers is time consuming 
for the service product specialists.  
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Table 1 - Parts in the monitor closely quadrant 

 

3.2	Potential	showstopper	identification	
The second filter in the maintenance funnel is the showstopper identification. The 
showstopper identification for the parts is shown in Table 2. The goal of the showstopper 
identification is to filter out parts for which CBM is not possible. Table 3 shows the 
potential showstoppers (PSs). 

There are four categories of showstoppers, namely: clustering, technical feasibility, 
economic feasibility and organizational feasibility. If one of these showstoppers is rated 
“yes” for a part, then CBM is not a suitable option. If one or more showstoppers are rated 
“maybe” for a part, then a focused feasibility study is conducted. If all of the showstoppers 
are rated “no” then the part is immediately considered suitable for CBM. The 
showstoppers identification is conducted with the service product specialists of the 
VP6000. 

Table 2 - Showstopper identification 

 

 

Y : Yes 

M : Maybe 

N : No 
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Table 3 - Potential showstoppers based on (Tiddens, Braaksma, & Tinga, 2018) 

 

3.2.1	Clustering	showstoppers	
This section discusses the clustering showstoppers for the selected parts. 

c1: CBM Activity does not fit in production planning of the customer 

All the parts score “Maybe” on the PS-c1 (Table 2). Not all customers might be able to fit 
CBM activities into their production schedules. However, the assumption is made that 
most customers will be able to fit it into their production schedules and will prefer it to a 
CM visit. 

c2: CBM activity is part of a cluster of activities that are conducted together 

For the VP6000 there are no predetermined clusters of maintenance activities. The FST 
only goes to the customer on CM visits. During this visit the FST will only do CM activities 
and a few preventive maintenance activities. The preventive maintenance activities each 
have their own trigger and are not conducted in predetermined clusters. In conclusion, no 
parts are in predetermined clusters that would be impacted by implementing a CBM 
policy. The parts are therefore rated “No” on PS-c2 (Table 2). 

3.2.2	Technical	feasibility	showstoppers	
This section discusses the technical feasibility showstoppers for the selected parts.  

t1: Failure of the part cannot be predicted with existing technology within the company 
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The Printhead Seneca has a sensor that measures the temperature and a light intensity 
setting. The errors and warnings from the sensor and the setting might be used to predict 
a failure. The Printhead Seneca therefore receives a “Maybe” on PS-t1. The Printhead 
Cicero is comparable to the Printhead Seneca in sensors, thus also receives a “Maybe” on 
PS-t1. The Preheat 1,2 unit has sensors that measure the temperature of the preheat 
plates and sensors that measure the motor speed of the belts that transport the paper 
through the Preheat 1,2 unit. The errors and warnings registered by these sensors might 
be used to predict a failure. The Preheat 1,2 unit therefore receives a “Maybe” on PS-t1. 
The Preheat 3 unit is comparable in sensors to Preheat 1,2 unit. It therefore also receives 
a “Maybe” on t1. These sensors might register errors and warnings that would be useful 
in predicting a failure. The Powerunit, Industrial Controller 1 and the Main Node are 
industrial computers. There are no sensors that measure degradation signals for these 
parts, and it is thus not possible to predict a failure. These three parts therefore receive a 
“Yes” on PS-t1, thus are filtered out of the research. The User Interface is a computer 
screen that is as the interface of the printer. There are no sensors related to the interface, 
thus this part receives a “Yes” and is filtered out. Develop Unit 1 and Develop Unit 2 have 
sensors that register when a motor or roller has stopped running. This might be an 
indicator of degradation, however in practice both the develop units are hardly replaced 
on error or warning data. They are replaced, because the customer has issues with the 
print quality and the FST does not know what causes it. As a result, many of the 
replacements were not actual failures. Therefore, both the develop units receive a “Yes” 
on PS-t1. 

t2: Failure of the part cannot be predicted with additional research 

For every part additional research is conducted to find out whether this is possible. Event 
data is used to predict failures in literature (Sato, Morimoto, & Takata, 2017) (Wang, Li, 
Han, Sarkar, & Zhou, 2017). It is therefore concluded that it might be possible to predict 
failures based on event data. However, additional research is needed to determine if this 
is possible for the VP6000. All the parts that measure degradation signals therefore 
receive a “maybe” on PS-t2.  

3.2.3	Economic	feasibility	showstoppers	
This section discusses the economic feasibility showstoppers for the selected parts 

e1: Insufficient financial resources to cover possible investments 

PS-e1 is “No” for all parts (Table 2) as there are few additional investments required. The 
CBM monitoring is done with existing sensors in the printer and there is already an 
environment for maintenance planning. The CBM activities can be implemented in this 
environment. This implementation has to be done by a software engineer and this will 
incur some costs. There are sufficient financial resources to cover these costs and therefore 
all the parts receive “No”.  

e2: Part does not fail often enough for a positive business case 

The second showstopper in the economic feasibility category is PS-e2. All the parts in the 
monitor closely quadrant are expected to result in a positive business case. To ensure this 
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a lower bound has been implemented for the failure frequency in the maintenance 
categorization matrix (van Elderen, 2016). However, the Printhead Cicero is only used in 
the VP6000 Classic, the oldest model. CPP is actively trying to phase out the Classic by 
selling Titans to customers that currently own a Classic. The support for the Classic stops 
in 2023. It is therefore expected that the failures of the Printhead Cicero will reduce and 
the business case will not be positive. For this reason, the Printhead Cicero is rated “Yes” 
on PS-e2 (Table 2).  

3.2.4	Organizational	feasibility	showstoppers	
This section discusses the organizational feasibility showstoppers for the selected parts.  

o1: Maintenance personnel will not trust the CBM system 

CBM has already been successfully implemented for another product at CPP, the VPi300. 
The maintenance personnel are therefore familiar with the system and they have trust in 
the system. All the parts are thus rated “No” on PS-o1 (Table 2). 

o2: Maintenance personnel is not willing to adopt CBM 

The successful implementation of CBM for the VPi300 has already shown that the 
maintenance personnel is willing to adopt it. All parts are therefore rated “No” on PS-o2 
(Table 2). 

o3: CBM does not fit with the operational mission 

As CPP has defined the proactive maintenance concept it is part of their operational 
mission to implement CBM. PS-o3 is therefore not a showstopper for any of the parts. 

o4: CBM does not fit with the internal and external relations of the company 

Maintenance is never outsourced for the VP6000. Therefore, there are no external 
relations. The internal relations are with the regions that employ the FSTs worldwide. 
These regions are willing to work with CBM as the implementation of CBM for the VPi300 
showed. It therefore does fit with the internal relations of CPP. PS-04 is thus not a 
showstopper for any of the parts. 

o5: CBM does not fit with the availability of spare parts. 

The spare part management can be adapted to fit the new situation after the 
implementation of CBM for any of the parts. PS-o5 is therefore also not a showstopper. 

In conclusion, the Preheat 1,2 unit, Preheat 3 unit and the Printhead Seneca are selected 
for the economic feasibility study.  

3.3	Economic	feasibility	
Tiddens et al. (2018) state that it is difficult to accurately determine the financial benefits 
of implementing CBM for a part. The authors suggest that a detailed cost benefit analysis 
can only be conducted if a similar type of CBM has already been implemented. However, 
this is not the case in this research. It is unknown how well the model will be able to 
predict failures of the selected parts and there is no comparative case to use as a reference. 
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As an alternative the authors propose a balanced scorecard approach in this case with the 
areas: innovation and growth, maintenance, production, customer, society, financial. 
However, this approach does not really determine the economic feasibility of the selected 
parts.  

A sensitivity analysis to determine the potential cost savings is therefore proposed. The 
potential cost savings are based on the number of CBM visits and the cost of a CBM visit. 
This research applies a machine learning (ML) model to predict if a part will fail or not. 
Every time the ML model predicts a failure a CBM visit occurs. It is therefore necessary 
to determine the total number of predictions made by the ML model in different scenarios. 
Furthermore, the cost of a CM visit and a CBM visit are needed to determine the potential 
cost savings.  

First Section 3.3.1 describes the approach to determine the number of CBM visits in 
different scenarios. Section 3.3.2 describes the cost functions used. The cost factors are 
described in Section 3.3.3. The sensitivity analysis for Preheat 1,2 unit, Preheat 3 unit 
and Printhead Seneca are conducted in Section 3.3.4, Section 3.3.5 and Section 3.3.6 
respectively.  

3.3.1	Number	of	CBM	visits	
This research uses a ML model to predict if a part will fail or not. This section describes 
how to determine the number of CBM visits for different scenarios based on a ML model. 

When the ML model predicts a failure, a CBM visit is conducted. The ML model either 
correctly predicts a failure (true positive (TP)) or predicts a failure when there is none 
(false positive (FP)). The total number of CBM visits is therefore equal to all true and false 
positives combined. Furthermore, the ML model might not predict a failure when there is 
one (false negative (FN)), this would result in a CM visit. In addition, the ML model might 
correctly predict that there is no failure (true negative). There are no visits related to 
these and they are therefore not used for the economic feasibility study. For the sensitivity 
analysis it is assumed that the ML model is able to predict all failures, i.e. no false 
negatives, therefore the number of true positives is equal to the number of actual failures. 
As a result, there are only CBM visits. This assumption is made to show the maximum 
potential savings per part in the sensitivity analysis.  

In the ideal situation the ML model only makes correct predictions (TP) and no false 
predictions (FP). However, in reality this is likely not the case. ML models are therefore 
commonly evaluated based on the ratio of correct predictions to all predictions made. This 
ratio is called the precision (Han, Kamber, & Pei, 2012) and is shown in Equation 3.1.  

(3.1) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Given the assumption that the ML model can predict every failure, TP is equal to the 
number of failures. Then it is possible to determine the total number of CBM visits 
(TP+FP) given different precision scores by rewriting Equation 3.1 and the number of 
failures. The different scenarios in the sensitivity analysis therefore use different levels 
of precision.  
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3.3.2	Cost	functions	per	visit	
Van Elderen (2016) defined a cost function for a CM visit (Equation 3.2) and for a CBM 
visit (Equation 3.3) at CPP. Equation 3.4 shows the cost savings of a CBM visit over a CM 
visit. These cost functions always assume a replacement. The data at CPP only shows 
when replacements are made, these are therefore a good fit for this research. However, 
there might also be minimal repairs. These are conducted to get the printer up again, 
while the part is replaced at a later time. These visits can be prevented by a CBM policy 
as minimal repairs are conducted after the part has failed. As a result, the cost savings 
might be higher in reality. The author also defined loss of income due to required slack in 
the production planning for CM visits; however, after discussion with the Service Product 
Specialists this cost it is decided to not include this cost factor. The reason is that they 
could not provide a reasonable estimation of this number.  

𝐶!"# : The cost of one CBM visit 
𝐶!# : The cost of one CM visit 
B : The cost savings of one CBM visit compared to one CM visit.  
𝐶!$% : The consequence of failure cost per failure  

• A failure can potentially cause more damage to the printer than just to 
the part that failed. The further damage is defined as the consequence of 
failure cost.   

𝐶&$' : Cost of FST per hour 
𝐶()$$ : Cost due to loss of income per hour  

• CPP generates revenue per click by selling the customer consumables, 
e.g. ink.   

𝐶*+,' : Cost of part 
𝐶*-. : Penalty cost per visit  

• A penalty for customer dissatisfaction for an unscheduled visit (CM visit), 
as customers prefer a scheduled visit (CBM visit). 

𝐶/ : Setup costs per visit 
• The costs made in preparation of a service visit, i.e. preparation time of 

the FST and travel expenses (including FST salary). 
𝑇,-*+7, : Repair time 

• Time in hours needed to repair the system. 
𝑇,-$*).$- : Visit response time 

• The time between the moment when a system goes down and the actual 
repair starts.  

 
(3.2) 𝐶!# = 𝐶/ +	𝐶*-. + (𝐶()$$ + 	𝐶&$') ∗ 	𝑇,-*+7, +	𝐶()$$ ∗ 𝑇,-$*).$- +	𝐶*+,' +	𝐶!$% 

 
(3.3) 𝐶!"# = 𝐶/ + (𝐶()$$ + 	𝐶&$') ∗ 	𝑇,-*+7, +		𝐶*+,' 

 
(3.4) 𝐵 = 𝐶!# − 𝐶!"# 

 
The total costs in case of a CM policy are shown in Equation 3.5. The total costs in case of 
a CBM policy are defined in Equation 3.6. Every time the ML model makes a prediction 
(TP+FP) a CBM visit occurs. If the ML model fails to predict a failure (FN) then a CM 
visit occurs. Note that for the sensitivity analysis it is assumed that there are no FN.  
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𝐶')'+(89 : Total costs in case of a CM policy 
𝐶')'+(8:9 : Total costs in case of a CBM policy 

 

(3.5) 𝐶')'+(89 = failures ∗ 𝐶!# 
 

(3.6) 𝐶')'+(8:9 = (𝑇𝑃 + 𝐹𝑃) ∗ 𝐶!"# + 𝐹𝑁 ∗ 𝐶!# 
 

Finally, the cost savings of a CBM policy over a CM policy are described in Equation 3.7. 
Each time the ML model makes a correct prediction (TP) B is saved (Equation 3.4), while 
every time the ML model makes an incorrect prediction (FP) then an unnecessary CBM 
visit occurs (Ccbm).  

(3.7) 𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 𝑇𝑃 ∗ 𝐵 − 𝐹𝑃 ∗ 𝐶!"# 
 

As each TP saves B and each FP costs Ccbm it is concluded that the ratio of TP to FP 
determine if there are positive or negative savings, given that B and Ccbm remain the same. 
The precision shows the ratio of TP to TP+FP which can be used to determine the ratio of 
TP to FP. For example, if the precision (TP:(TP+FP)) is 4:5, then the ratio of TP:FP is 4:1. 
It is therefore concluded that the precision needs to be a certain level before costs are 
saved given that B and Ccbm remain the same. Furthermore, it is concluded that as the 
precision increases the cost savings also increase.  

3.3.3	Cost	factors	
Table 4 shows the cost factors per selected part. Equation 3.2 is used to determine the 
cost of a CM visit (Ccm), while Equation 3.3 is used to determine the cost of a CBM visit 
(Ccbm). Every failure always results in a part replacement as the dataset only contains 
information about parts consumption.  

Table 4 - Cost factors per selected part 

  



 

 
 

20 

 

B : Difference between each CM and CBM visit (Equation 3.3) 
𝐶!"# : The cost of one CBM visit based on Equation 3.2 
𝐶!# : The cost of one CM visit based on Equation 3.1 
𝐶!$% : None of selected parts have consequence of failure (Ccsq) costs.  
𝐶&$' : The cost of the FST is €87.10 per hour in Europe. 
𝐶()$$ : The loss of income cost is €88.35 per hour. Defined as the capacity of the printer 

multiplied by revenue per click. 
𝐶*+,' : Cost of part 
𝐶*-. : The penalty for customer dissatisfaction is determined by the Service Product 

Manager as €134.00 
𝐶/ : Average setup cost per visit. This estimated by the Service Product Specialists 

as €87.10.  
𝑇,-*+7, : The repair time is determined by the Service Product Specialists for each of the 

selected parts based on expert knowledge and the analysis of visit logs 
𝑇,-$*).$- : The response time is also determined by the Service Product Specialists for each 

of the selected parts based on expert knowledge and the analysis of visit logs 
 

Table 5 shows the costs for the parts based on only CM visits (Equation 3.5).  

Table 5 - Failures and maintenance costs 01-01-16 to 01-07-19 

 

3.3.4	Preheat	1,2	unit	economic	feasibility	
Table 6 shows the sensitivity analysis for Preheat 1,2 unit in relation to the precision and 
the corresponding cost savings. As can be seen from Table 6, as the level of precision 
increases the savings also increase. This is expected as increasing the precision reduces 
the number of false positives (FP) and every false positive results in an unnecessary CBM 
visit with cost Ccbm (Equation 3.7).  Table 6 shows that if the ML model has a precision of 
0.85 or higher then costs can be saved in relation to the current situation (CM visits). It 
is therefore concluded that for this part a CBM policy is economically feasible.  

Table 6 - Sensitivity analysis Preheat 1,2 unit (savings over period 01-01-16 to 01-07-19) 
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3.3.5	Preheat	3	unit	economic	feasibility	
As can be seen from Table 7, the required precision before Preheat 3 unit saves cost is 
0.70. This is lower than for the Preheat 1,2 unit. This is expected as B is higher for Preheat 
3 unit than for the Preheat 1,2 unit. As a result, every true positive of the Preheat 3 unit 
saves more costs compared to a true positive of the Preheat 1,2 unit. Furthermore, the 
Ccbm is lower for the Preheat 3 unit compared to the Preheat 1,2 unit. This means that 
every false positive cost less in comparison. If the benefits of a correct predictions are 
higher, while the costs of a wrong prediction are lower it is expected that the required 
level of precision before costs are saved is also lower. The Preheat 3 unit has the highest 
potential cost savings of the three parts. Furthermore, it requires the lowest precision 
level to save costs. It is therefore concluded that CBM is economically feasible for this 
part.   

Table 7 - Sensitivity analysis Preheat 3 unit (savings over period 01-01-16 to 01-07-19) 

 

3.3.6	Printhead	Seneca	economic	feasibility	
Table 8 shows the sensitivity analysis for the Printhead Seneca. This part requires the 
highest level of precision before it achieves cost savings when CBM is implemented, 
namely 0.95. This is expected as the Printhead Seneca has the lowest B and the highest 
Ccbm. This means that every true positive results in a small benefit compared to the other 
parts, while every false positive costs more compared to the other parts. As a result, a 
higher precision score is needed before CBM is economically feasible for the Printhead 
Seneca. It is therefore the least likely part to result in cost savings out of the selected 
parts. However, it might still reduce maintenance costs and it is therefore included in the 
research.   

Table 8 - Sensitivity analysis Printhead Seneca (savings over period 01-01-16 to 01-07-19) 
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3.4	Conclusion	
The first step in maintenance funnel is the criticality classification. In this step the 
maintenance categorization matrix is applied to find the parts CPP that CPP values the 
most for CBM. This results in 29 potential candidates for CBM. This selection is further 
reduced for the showstopper analysis as this is a time consuming process for the service 
product specialists. The parts are reduced based on a Pareto analysis of the average yearly 
part costs. This results in a selection of ten parts that are responsible for 79% of the 
average yearly part costs.  

In the second step of the maintenance funnel the showstopper analysis is conducted. In 
this step seven more parts are filtered out.  

In the last step of the maintenance funnel an economic feasibility study is conducted. For 
this step the response times are determined with the service product specialist based on 
the visit logs. It is concluded that CBM might result in cost savings for all three parts. 
However, there are large differences in the potential cost savings per part and the 
required precision to become economically feasible. The Preheat 1,2 unit, Preheat 3 unit, 
and Printhead Seneca require a precision of 0.85, 0.7 and 0.95 respectively to reduce costs. 
As expected, selecting parts based on high part price does not necessarily result in 
selecting the parts with large potential cost savings. This is a major limitation of selecting 
parts based on high part price and low failure frequency. However, it is concluded that 
the proposed sensitivity analysis for the economic feasibility study helps to determine if 
CBM.  
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4. Data	acquisition	for	the	CBM	program	
The parts selection resulted in three parts that might be candidates for CBM. In this 
chapter all the data is collected that might be used to predict a failure of the selected part. 
This chapter answers Research Question 3: 

“What event and usage data should be monitored to determine the condition of the 
selected parts?”	

Section 4.1 describes the available event and usage data types. In Section 4.2 the parts 
and their functions are described. In addition, the available event and usage data per part 
is described. Finally, Section 4.3 provides a chapter conclusion.  

4.1	Available	data	types	
The VP6000 collects event and usage data which might be used to predict a failure. The 
event data consists of error and warning messages. The usage data contains the usage 
counters and parameter values. 

The warnings are not visible to the customer and never result in downtime. The warnings 
contain information that is useful to the diagnostic process of the FST that is on-site with 
the customer. CPP. In contrast to the warnings, the error messages are visible to the 
customer. Error messages are shown when the printer has stopped working and explain 
the cause. Some error messages require a restart of the printer to solve it, while others 
require an action by the operator or the FST. This data is also used by the FST to diagnose 
problems with the printer. Furthermore, errors and warnings can be used by CPP the 
analyze the printer population to find possible issues. Lodewijks (2016) developed an early 
issue detection system based on the error data at CPP. Errors and warning messages are 
used in literature to predict when a part is going to fail (Wang, Li, Han, Sarkar, & Zhou, 
2017) (Sato, Morimoto, & Takata, 2017) (Alcorta, 2017). These might therefore be used as 
degradation signals. 

Furthermore, the VP6000 has counters and parameters. Counters keep count of how 
many clicks have been produced. There are counters on the entire printer level, however 
also on a part level. The part counters are reset after a part is replaced. Finally, the 
parameters are adjustable settings of the printer. An example is the print light value of 
the printhead. This value describes the light intensity of the LEDs in the printhead. 
Parameters and counters describe how the printer is used. This is defined as the usage 
data. The usage data has a major impact on the degradation of a part (Deloux, Fouladirad, 
& Berenguer, 2016). The counters and parameters of the parts might therefore be used as 
degradation signals.   

All data described in the previous two paragraphs is collected by the FST during a service 
visit. An FST will connect a laptop to the printer during a service visit, which will then 
download all the data. Furthermore, the data is automatically uploaded every seven days 
to CPP for the printers that are connected to the internet (20% of the population in 
Europe). The event and usage data are currently only available for Europe.  
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In Chapter 3 the Printhead Seneca, Preheat 1,2 unit, and Preheat 3 unit have been 
selected for the research. In the following section the function of each of these parts will 
be explained. Furthermore, all the error types, warnings types, counters and parameters 
that are available per part are collected.  

4.2	Available	data	per	part	
This section will describe the available data per part. A summary of the available data 
can be seen in Table 9.  

Table 9 – Summary of available data types per part 

 

4.2.2	Preheat	1,2	unit		
The Preheat 1, 2 unit consists of two identical preheating units that share a single motor 
and control. They are always replaced as a whole unit. The function of the Preheat 1,2 
unit is twofold. Firstly, it transports the paper to the Preheat 3 unit. Secondly, it heats 
the paper to the optimal temperature for printing.  

For the Preheat 1, 2 unit there are 24 error types available. In addition, there is one 
parameter and there are five counters. In total there are 30 possible degradation signals. 
In appendix D the function of the unit is explained in more detail as are the error types, 
parameters and counters.  

4.2.2	Preheat	3	unit	
The Preheat 3 unit is placed after the Preheat 1, 2 unit. It is separate from the Preheat 
1,2 since it has another function in addition to paper transportation and preheating. The 
Preheat 3 unit is responsible for the handoff of the paper to the TTF units. These transfer 
the image to the paper. This has to be timed precisely right to ensure that the image is 
printed on the paper in the right place. If the paper is sent to the TTF unit too early, then 
the image will be printed too low on the paper. If it is sent too late then the image will be 
printed too high on the paper.  

A total of 31 error types, one parameter and three counters are defined for the Preheat 3 
unit. In total there are 35 possible degradation signals to measure. In appendix E a 
detailed explanation of the Preheat 3 unit function is given. In addition, a more detailed 
overview of the error types, parameters and counters is given in this appendix.  

4.2.3	Printhead	Seneca	
The Printhead Seneca is present in both the primary and secondary printing process of 
the VP6000. The printheads are identical for these processes. The function of the 
printhead is to form the image that will be printed.  



 

 
 

25 

For each printhead the same errors types, counters and parameters are defined. The only 
difference is that they are registered for either the primary or secondary printhead. Table 
9 shows the total number of errors types, warning types, parameters and counters. There 
are six error types related to each printhead. Furthermore, one parameter and one 
counter are available for each printhead. Finally, there is an overall counter value. In 
total there are nine possible degradation signals that can be measured per printhead. In 
appendix C, a detailed explanation of the printhead function and the error types, 
parameters and counters can be found.  

4.3	Conclusion	
The VP6000 registers errors, warnings, counters and parameters. These might all be used 
to measure the degradation of a part. All the relevant errors, warnings, counters and 
parameters have therefore been determined per selected part. It is concluded that a large 
number of event and usage data types are available per part. For the Preheat 1,2 unit, 
Preheat 3 unit and the Printhead Seneca there are a total of 30, 35 and 19 event and 
usage data types respectively.  
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5. Data	processing	for	the	CBM	program	
In this chapter the Research Question 4 is answered: 

“How can the selected event and usage data per part be processed so that it can be used 
for maintenance decision making?” 

This chapter first describes how the data is cleaned in Section 5.1. In Section 5.2 methods 
to process the for CBM based on event data are discussed. Section 5.3 describes the steps 
to data processing that are required to prepare the data for machine learning. In Section 
5.4 the data is processed into instances and features for machine learning. In Section 5.5 
the dataset that resulted from the data processing is described. Feature selection methods 
from literature are discussed and selected in Section 5.6. This is followed by instance 
selection methods in 5.7. Section 5.8 describes different machine learning models and a 
selection is made for this research. How to evaluate a machine learning model’s 
performance is discussed in Section 5.9. In Section 5.10 an experimental setup is described 
in which several combination of machine learning models with instance and feature 
selection methods are tested to find the best combination for this research. The results 
are discussed in Section 5.11. Finally, a chapter conclusion is given in Section 5.12.   

5.1	Data	cleaning	
Figure 8 describes the data cleaning process.  

 

Figure 8 - Data cleaning before processing 
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• Maintenance action filter: These printers did not receive maintenance in the 
dataset containing all maintenance actions. This dataset also contains all the 
consumables. This means that these printers either did not print anything or their 
maintenance actions are never registered.  

• No counter filter: At least one of the counters selected in the previous chapter never 
appears in the dataset. These should be registered every service visit.  

• Discrepancies between error counters filter: Every time an error occurs it registers 
the level of the overall counter. If the error there is a negative difference between 
two consecutive errors, the printer is removed from the dataset. It is suspected 
that this is caused by installing a backup which causes the counter values to return 
to the level at the time of the backup. However, this is not clear and these printers 
are therefore removed.  

This section uses the event and usage data from the start of 2016 to the end of 2018. This 
period is expected to representative of the dataset. In addition, it is time consuming for 
the service data analyst to retrieve this data from the system. Therefore, it is decided to 
only use three years. Furthermore, only the event and usage data from Europe are 
available at CPP. This research therefore only uses data from Europe. 	

5.2	CBM	based	on	event	logs	in	literature	
Alcorta (2017) uses a statistical approach for CBM based on errors and warnings. The 
author uses expert knowledge to determine which errors might indicate the failure of a 
certain part. A statistical process control (SPC) chart is created for the selected error 
types. The author determines one rule to indicate a CBM visit, namely when both SPC 
charts indicate that the errors are out of bounds then a CBM action is advised. Lodewijks 
(2016) also uses an SPC chart for issue detection for the VP6000 at CPP, however the 
author’s research focusses on finding faults in the whole population, e.g. due to a software 
update. The benefit of the SPC chart is that it is simple to implement. However, an SPC 
chart has to be created for each event and usage data type. Furthermore, the number of 
rules increase exponentially as the number of SPC charts increase. Jardine et al. (2006) 
warn for this limitation of rule-based reasoning as it can become too computationally 
intensive. However, not including all event and usage data types might result in the loss 
of valuable information. This approach is therefore not used.  

CBM based on log data is often implemented with machine learning (ML) models (Gutschi 
et al., 2018; Sipos et al., 2014; Wang et al., 2017). This is due to log data often being of a 
high dimensional nature, i.e. many different types of log messages. Han, Kamber & Pei 
(2012) define high dimensional data as data that has 10 or more different characteristics. 
In the case of this research the error types, warning types, counter codes and parameter 
types are the characteristics. The Preheat 3 unit, Preheat 1,2 unit and the Printhead 
Seneca have 35, 30 and 19 data characteristics respectively (Table 9). ML models are best 
suited to deal with this type of data (Susto et al., 2015). Wang et al. (2017) state that many 
ML models can be used if the data is processed into a format for Machine Learning. The 
difference between the research of Gutschi et al. (2018), Sipos et al. (2014) and Wang et 
al. (2017) is therefore mainly in how the data is processed before using the ML model.  
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Gutschi et al. (2018) and Sipos et al. (2014) both use system logs, which are different from 
event logs as these include all system messages, not just errors and warnings. An example 
of a system message is: “System warming up”. Gutschi et al. (2018) state that their data 
processing method does not use logs based on sensor data. This research uses event data 
that is based on sensor data. It is therefore expected that the data processing method 
proposed by Gutschi et al. (2018) cannot be applied to the data of this research. The 
approach of Sipos et al. (2014) can include sensor data. However, Gutschi et al. (2018) and 
Sipos et al (2014) both assume continuous data collection. This is not the case at CPP as 
data is collected every 7 days. The data processing methods of Gutschi et al. (2018) and 
Sipos et al. (2014) are therefore not used.  

The data processing method proposed by Wang et al. (2017) is created for periodical data 
collection. In addition, their data processing method is based on event logs. Furthermore, 
the data processing method proposed by Wang et al (2017) has five parameters so that it 
can easily be adapted for different systems. This makes it possible for CPP to apply the 
data processing method to more parts and different printers. The data processing method 
by Wang et al. (2017) is created for periodical data collection, easily customizable for 
different systems and based on event logs. It is therefore used for this research.  

5.3	Data	processing	steps	
The data processing method as proposed by Wang et al (2017) determines if a system is 
“likely to fail” or “not likely to fail” within a predefined time window. These are defined 
as classes. For the ML model these classes are described as 1 (“likely to fail”) or 0 (“not 
likely to fail”). This is therefore known as binary classification. To determine if a system 
is “likely to fail” or “not likely to fail”, instances and features are needed. An instance is a 
learning or testing object for the ML model (Kohavi & Provost, 1998). The features 
describe the instance for the ML model (Kohavi & Provost, 1998). Each instance receives 
a class label: “likely to fail” or “not likely to fail”. For example, CPP wants to predict if a 
part is going to fail the next day based on the total number of errors that occurred on this 
day. The classes are: “likely to fail the next day” (1) and “not likely to fail the next day” 
(0). Assume 30 days of data is available for one printer. Each day is an instance, while the 
total number of errors that occurred on that day is the feature. On day 29 a failure occurs. 
The instance of day 28 receives the class label: 1, as for this instance the part is “likely to 
fail the next day”, while the other instances receive the class label: 0.  

Figure 9 shows the steps that this research takes to process the data for classification 
machine learning. 

 

Figure 9 – Data processing steps for classification machine learning 
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5.3.1	Data	processing	into	instances	and	features	
The first step is to process the data into instances and features. Each instance receives a 
class label: “likely to fail” or “not likely to fail” in a predefined time window. The data 
processing method as proposed by Wang et al. (2017) is used for this step. 

5.3.2	Feature	selection	
Not all features that are generated based on the available data might be relevant to 
predict when a part is “likely to fail”. With feature selection, the set of relevant features 
are kept, and the irrelevant features are dropped from the dataset. For the example, 
assume that instead of the total number of errors, each error type is counted individually. 
If one of these error types never occurs before a failure it is irrelevant. Feature selection 
would then drop it from the dataset. 

5.3.3	Instance	selection	
It is also possible that the dataset is imbalanced. This means that the classes in the 
dataset are not evenly distributed. For the example, there is only one instance with label 
1 and the remaining instances are labeled 0. The classes are not evenly distributed, and 
the dataset is imbalanced. Instance selection is used to create more instances for the 
minority class or remove instances of the majority class to make the dataset more 
balanced.   

5.3.4	Model	creation	&	evaluation	
When the instances and relevant features are selected the ML model is built and 
evaluated. The ML model is built on a train set and evaluated on a test set. These sets 
are created by dividing the original dataset into two parts. For example: the original 
dataset of 30 instances could be divided in a train set of 15 instances and a test set of 15 
instances. The ML model is built on the train set and has to determine the class labels of 
the instances in the test set. As the actual label is known, it is possible to evaluate the 
ML model performance. 

The remainder of this chapter first explains the method to process data into instances and 
features (Section 5.4). This method is applied to the dataset in Section 5.5. Different 
feature selection methods are discussed in Section 5.6. This is followed by a discussion of 
different instance selection methods in Section 5.7. Different ML models for are discussed 
in Section 5.8 and different evaluation methods in Section 5.9. In Section 5.10 an 
experimental setup is explained in which several combinations of feature selection, 
instance selection and ML models are tested. The results of this experiment are explained 
in Section 5.11. Finally, Section 5.12 contains the chapter conclusion.  

5.4	Data	processing	into	instances	and	features	
Many ML models can be used to predict failures; however the challenge is processing the 
event data to instances, features and labels (Wang, Li, Han, Sarkar, & Zhou, 2017). Figure 
10 shows a simplified example of the data for one printer with one error type (E1) and one 
warning (W1) type. The time a part fails is defined as the moment the customer requests 
a service visit.  
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Figure 10 - Simplified example of the data 

Figure 11 shows an example of the data processing method as proposed by Wang et al. 
(2017). The authors create the instances based on days. However, the customers of CPP 
use the printer’s capacity differently. The service product specialists of the VP6000 state 
that degradation of the selected parts is mostly based on the usage and much less on age. 
It is therefore better to create the instances based on clicks.   

 

Figure 11 – Data processing example (X=3, M = 1 mil clicks, Z = 1 mil clicks, Y = 2 mil clicks N = 1 
mil clicks) 

The prediction point is at a moment in time (in clicks) where the prediction is made by 
the ML model (grey bar in Figure 11). At each prediction point an instance is generated. 
Before each prediction point there is an observation window (OW). The event data that 
occurs in this window is used for the creation of features. The observation window consists 
of X sub-windows (SW) to differentiate between errors and warnings that occur closely to 
the prediction point and further away. As it is expected that the moment an error or 
warning occurs closely to the prediction point, then it is more important in determining if 
a part is “likely to fail”. In Figure 11, the observation window consists of three sub-
windows (SW) (X = 3). Each SW has the size M.  X and M are determined based on the 
expectations of when the significant errors and warnings occur in relation to the 
prediction point.  

For each instance it is determined if a part is “likely to fail” or “not likely to fail” in the 
prediction window. If there is a failure in the prediction window the part is labeled: 1 
(“likely to fail”), otherwise it is labeled: 0 (“not likely to fail”). The prediction window size 
is defined as Y. Y is determined based on a business requirement.  
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The part can fail at any time in the prediction window. A buffer window is therefore 
implemented to allow CPP time to get to the customer. The size of the buffer window is 
defined as Z. Z is determined based on the time that is needed to get to the customer. 

The next instance is generated by moving the prediction point forward in time. The 
number of clicks that the prediction point is moved forward is defined as Z. The 
observation window, buffer window and prediction window are moved forward with the 
prediction point. The next instance is created based on the new observation window and 
the new prediction window. Finally, N represents how often predictions are made and this 
is based on how often the data is collected. It is assumed that every time the data is 
collected a prediction is made for every printer. N is therefore determined based on how 
often the data is collected.  X, M, Z, Y and N are defined as the data processing 
parameters. Wang et al. (2017) suggest that these data processing parameters need to be 
optimized. This is discussed in Chapter 6.   

The remainder of this section describes the feature sets that are generated for each 
instance and provides an example of how this process is conducted. Appendix F shows an 
explanation of all feature sets and their mathematical notations. 

5.4.1	Basic	statistical	features	
The number of errors and warnings in each sub-window are counted and added as the 
basic statistical features. This is done for all error types and warnings per SW. One 
feature based on Figure 11 is the number of times error type 1 occurs in SW 3 (E1-3). 
Error type 1 occurs 3 times in SW 3, so for this instance E1-3 is 3. The instance based on 
Figure 11 is shown in Table 10. To create the next instance the prediction point is moved 
N clicks forward.  

Table 10 - Instance 1 

 

Figure 12 shows the next instance. As can be seen from the figure, the prediction point is 
moved forward and the observation window, buffer window and prediction window are 
moved with it. For this instance, the failure is in the prediction window (Y) and it is 
therefore labeled 1.  

 

Figure 12 - Generating instance 2 
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The second instance is created and added to the dataset as can be seen in Table 11. This 
process is repeated over the entire timeline in clicks for every selected printer. 

Table 11 - Instance 2 

 

5.4.2	Pattern-based	features	
The pattern-based features are used by Wang et al. (2017) to show the relationship 
between certain types of event data. First, all patterns that occur in each instance are 
collected. A pattern is defined as the unique error sand warnings that occur in an instance 
and their combinations. For instance 1 in Table 11 the pattern is: <E1>, while for instance 
2 the patterns are: <E1>, <W1>, <E1,W1>.  It is expected that including the order in 
which errors occur would make the patterns too unique. As a result, each pattern would 
only occur in one instance making them useless for predicting failures of other instances. 
Therefore, the order of occurrence is not used for the creation of the patterns.  

Once the patterns of each instance are collected. The ratio of the pattern’s occurrence in 
positive instances to the occurrence in all instances is determined. A ratio below 0.5 means 
that the pattern occurs more often in the instances labeled 0. The goal is to predict 
instances with class label 1, so a threshold value is used to determine which patterns are 
included. The threshold is set on 0.8 as this ensure that only patterns are included that 
are most commonly seen in positive instances. It is not expected that there are patterns 
that only occur in positive instances. Setting the threshold higher therefore makes it 
unlikely that any patterns are included. Setting it lower increases the risk of adding 
features that are likely to result in the wrong prediction. The patterns that pass the 
threshold are included as features. If the selected pattern occurs in the instance the 
feature receives a 1, otherwise a 0.  

In the example, assume that pattern <E1,W1> is included as a feature (Table 12). 
Instance 1 has no W1, so this pattern does not occur, and it is marked. Instance 2 has E1 
and W1, so this pattern occurs, and this feature is marked 1. 

Table 12 - Pattern based features (marked grey) 

 

5.4.3	Failure	similarity	feature	
Two failures on the same printer might be preceded by similar event data. The failure 
similarity feature is added to account for this. First determine all the unique error and 
warning codes in both the observation windows. Count the number of error and warning 
types that occur in both instances and divide them by the total number of unique error 
and warning types from both instances. This is known as the Jaccard index, which is 
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defined in Equation 5.1 (Jaccard, 1912). There is only one failure in the example, so the 
failure similarity is 0 for both (Table 13). However, assume that a failure occurred on the 
same printer and only W1 occurred. The Failure similarity score can now be calculated as 
1 (due to W1 being in both sets) / 2 (W1 + E1), so it is 0.5.  

(5.1) 
																																																								𝐽𝑎𝑐𝑐𝑎𝑟𝑑	𝑖𝑛𝑑𝑒𝑥 = 	

|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

 
 

Table 13 - Failure similarity feature (marked grey) 

 

5.4.4	Profile	features	
For the profile features all the machine profile information is gathered. The profiles 
available for the VP6000 are the configuration type, the country where it is located and 
the software version. These are added to each instance. Most ML models cannot 
understand text, so these are added differently. Each country is added as a feature and 
the one that is true for this printer is marked as 1 the others as 0. This is the same for 
every software version and every printer model. Table 14 shows an example. Only one 
country, software version and printer model are included. They are the same as the 
instances are created for the same printer.   

Table 14 - Profile based features (marked grey) 

 

5.4.5	Advanced	statistical	features	
Wang et al. (2017) also propose advanced statistical features. These are based on the 
distance between two errors of the same type and the distance between each error to the 
prediction point. These do not match the data at CPP as there are few error and warning 
types that occur in every observation window. This results in empty fields in each instance 
as a distance for an error that does not occur cannot be calculated. Most ML models cannot 
handle empty fields, so these need to be filled. The normal methods to deal with empty 
fields are to remove the entire instance or to impute the missing value. The first solution 
will result in all the instances being removed from the dataset as every instance has at 
least one empty field. The second solution would place a value in a field that should be 
empty. An example of imputing is using the average of a feature and filling the empty 
fields with this average. As both solutions will not work for this research, the advanced 
statistical features are not included. 
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5.4.6	Counter	&	parameter	features	
The VP6000 also collects usage data that Wang et al. (2017) do not include in their data 
processing method. Therefore, this research adds the counter and parameter features. At 
the prediction point all the counter values are determined and added as a feature. The 
same applies for the parameter values. For the example, let’s assume one counter (C1) 
and one parameter (P1). Table 15 shows the addition of these features. The starting 
counter is 3,500,000 for the example and as N = 1,000,000 the next counter is 4,500,000. 
P1 is assumed to be 100 first, while it is adjusted to 200 the second instance. However, it 
can also remain on the same level.  

Table 15 - Counter and parameter features (marked grey) 

 

5.5	Data	processing	results	
The first step before processing the data is determining reasonable data processing 
parameters (Wang et al., 2017). These are later optimized in Chapter 6. The data 
processing parameters M, Z, N and Y are chosen in multiples of 36,000 clicks. This is the 
average number of clicks printed per eight-hour workday. This makes it easier to interpret 
the data processing parameters for the stakeholders as 30 days of average production is 
easier to interpret than 1,080,000 clicks. The service product specialist (SPS) expects that 
the most relevant event data for predicting failures occurs closely to the failure. The SPS 
therefore advises to first look at an observation window of 30 days of average production 
(30 * 36,000 clicks). It is expected that this window includes the most significant event 
data. Furthermore, it is expected that M is 3 allows for enough differentiation between 
the significant errors and warnings that occur closely to the prediction point and further 
away. 

The first Z is fixed on the minimum buffer window size, namely one. This allows CPP one 
day (average production) to get to the customer and replace the part. Furthermore, Y is 
fixed on 30. This is a business requirement by CPP. Finally, N is determined to be seven 
as this is the interval at which the event data is downloaded from the printers.  

Table 16 describes the dataset after processing it into instances and features. The positive 
instances are instances in which a failure occurred in the prediction window. The negative 
instances had no failure in the prediction window. 

Table 16 - Processed data description, parameters: X=10, (M=3, Z=1, Y=30, N=7) * 36,000 clicks 
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5.6	Feature	selection	methods	from	literature	
Applying feature selection to the dataset might help to remove irrelevant and redundant 
features (Khalid, Tehmina, & Shamila, 2014). Furthermore, it might improve the learning 
accuracy of the ML model and the learning speed (Khalid, Tehmina, & Shamila, 2014). 
Feature selection creates a subset of features that are the best for the classification; the 
features that are not in the subset are discarded. In the case of this research, many 
features are collected, and it is not known how relevant they are. It is therefore expected 
that the dataset contains irrelevant features. Feature selection is therefore used. 

A fast and straightforward approach to feature selection is to take a predefined number 
(k) of top-ranked features (Berthold, Borgelt, Höppner, & Klawonn, 2010). This method 
scores all the features based on an evaluation criterion and selects the k top-ranked 
features. Yang & Pedersen (1997) compared five feature selection criteria for a text 
classification problem and found that the Chi2 value provided the best classification 
results. The Chi2 test determines the dependability between two variables. Feature 
selection based on the Chi2 value therefore filters out features that are independent of the 
class label. The Chi2 test works with frequencies and categorical values, it does therefore 
not work well with the counter features. It is expected that it will filter out these features. 

More recently, Ibrahim & Osman (2014) applied feature selection based on the ANOVA 
F-test and found that it improved classification accuracy and reduced the false positive 
rate. A low false positive rate is important to CPP. Since, the Chi2 evaluation criterion 
outperformed four other criteria and the ANOVA F-test reduced the false positives. This 
test is based on variance. As such it does not work well with the profile features and it is 
expected that these are filtered out. 

Both feature selection methods are imperfect, however they work for most features. Both 
are therefore tested to determine which performs the best.  

5.7	Instance	selection	from	literature	
The number of positive instances in Table 16 compared to the number of negative 
instances shows that the dataset is highly imbalanced. Training a ML model on an 
imbalanced dataset might cause the ML model to only predict the most common class as 
this will give it very high accuracy. However, the ML model is useless as it only predicts 
one class.  

The imbalance in the dataset can be solved by either generating more failure instances or 
reducing the number of instances without a failure. The first approach is called over-
sampling while the latter is called under-sampling.  Over-sampling approaches are 
generally more accurate than under-sampling approaches (Batista, Prati, & Monard, 
2004). A basic method for over-sampling is random over-sampling. In this approach the 
instances from the minority class are randomly duplicated to solve the imbalance. The 
result is a set of instances that is larger than the original. This method produces good 
result even when compared to more complex methods (Batista, Prati, & Monard, 2004).  

However, the combination of over-sampling and under-sampling provided by SMOTE + 
ENN is better for highly imbalanced datasets. (Batista, Prati, & Monard, 2004).  SMOTE 
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+ ENN combines the synthetic minority over-sampling technique (SMOTE) with edited 
nearest neighbor under-sampling. The data is first oversampled by creating new instances 
that are similar to the instances in the minority class. These new instances are not the 
same as the original instances. After the dataset is balanced by oversampling it is then 
reduced via under-sampling resulting in a set of instances that is smaller than the original 
dataset and evenly balanced. SMOTE+ENN cannot be used with categorical values, i.e. 
the profile features in this research.  

In conclusion, random oversampling is a simple method that produces good results. As it 
duplicates instances it can be used with any type of data. SMOTE+ENN generates new 
instances that are closely related to the instances in the minority class. However, it cannot 
be used for all features. It is therefore decided that random oversampling is used for this 
research.  

5.8	Machine	learning	models	from	literature	
As stated in Section 5.2, once the data has been converted into a machine learning format 
it becomes possible to use many different machine learning models.  

5.8.1	Random	Forest	
Fernández-Delgado, Cernadas and Barro (2014) compared 179 ML models for 
classification on 121 datasets. They concluded that the Random Forest model is the most 
likely to perform the best. The basic idea of the Random Forest is to create many different 
uncorrelated decision trees that together can make an accurate prediction. The standard 
version of the Random Forest creates 100 decision trees (Scikit-learn, 2020) and uses a 
majority vote for classification. It is called random as each tree is build based on a random 
sample with replacement from the dataset. This process is used to prevent correlation 
between the trees. Random Forests employ another technique to reduce correlation 
between trees as a random selection of features is used at each node instead of all features. 
From this random selection the split is based on the feature that best separates the data 
at the split.  

The benefits of Random Forest are its ability to handle a variety of data inputs (nominal, 
categorical and ordinal data), its ability to handle large feature sets, its prevention of 
overfitting and its high accuracy (Qi, 2012). Furthermore, they are fast as they can 
efficiently handle large datasets (Han, Kamber, & Pei, 2012, p. 383). The Random Forest 
is a decision tree learner, as such it does not require the data the be scaled before use, i.e. 
normalization or standardization of the data. Furthermore, it can be used for binary 
classification. As it can handle high dimensional data, different data inputs and does not 
need scaling, it can directly be applied on the processed dataset. It is therefore included 
in the research. Wang et al. (2017) and Gutschi et al. (2018) use the Random Forest model 
for CBM based on log data.  

5.8.2	Support	Vector	Machines	
The second-best classifier is the Support Vector Machine (SVM) with a Gaussian kernel 
according to Fernández-Delgado, Cernadas and Barro (2014). SVMs are considered highly 
accurate, and also prevent overfitting (Han, Kamber, & Pei, 2012, p. 408). They can be 
used for both linear and non-linear data. However, their major downside is that they are 
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extremely slow (Han, Kamber, & Pei, 2012, p. 408). They are therefore not used in this 
research. 

5.8.3	AdaBoost	
AdaBoost is another popular ML model (Han, Kamber, & Pei, 2012, p. 380). Wang et al. 
(2017) also include this ML model in their research. It is also based on a boosting principle, 
which combine many weak learners to create an accurate prediction. A weak learner 
performs slightly better than a random guess (50% change in binary classification). 
AdaBoost gives every instance in the dataset the same weight to start. It then samples a 
new dataset based on selection with replacement. It builds a classifier on this set and tries 
to classify the same set. If an instance is correctly classified its weight is decreased, while 
if it is incorrectly classified its weight is increased. The weights are used to sample 
another new set the next round, in which higher weights are favored. Higher weights are 
the instances that are more difficult to classify. The next classifier is therefore built on 
the more difficult instances. This way a set of classifiers are build that complement each 
other and can provide accurate predictions together (Han, Kamber, & Pei, 2012, p. 380).  

A disadvantage of AdaBoost is that it is sensitive to outliers and overfitting. Wang et al. 
(2017) also found that AdaBoost performs worse than XGBoost (explained in the next 
section) and the Random Forest in predicting failures. It will therefore not be included in 
this research.   

5.8.4	XGBoost	
Since the research by Fernández-Delgado, Cernadas and Barro (2014) another ML model 
has been rising in popularity. This ML model is called XGBoost. XGBoost is outperforming 
many other ML models in ML contests (Chen & Guestrin, 2016). It can be used for binary 
classification. Like AdaBoost it combines many weak learners to give an accurate 
prediction. The difference is that the new learner is trained to predict the residuals of the 
previous learner.   

Its major benefit over other ML models is its speed. It is extremely fast and can handle 
datasets of hundred million of instances on a desktop (Chen & Guestrin, 2016). 
Furthermore, it is a decision tree learner and does not require data scaling before use. It 
can handle different data types and large feature sets. XGBoost can therefore be 
immediately applied on the processed dataset. Wang et al. (2017) tested multiple machine 
learning models and found that XGBoost outperformed Random Forest, SVM, and 
AdaBoost. It is therefore also used in this research.  

5.8.6	Selected	models	for	this	research	
For this research the Random Forest ML model and XGBoost are selected. Both of these 
models can efficiently handle large datasets, are considered fast. This is important as a 
number of ML models needs to be trained for the data processing parameter optimization 
in Chapter 6. The SVMs are considered extremely slow and are therefore not included. 
AdaBoost is not included as it is sensitive to overfitting. Furthermore, XGBoost and 
Random Forest are found to outperform AdaBoost in predicting part failures. In addition, 
Random Forest and XGBoost can handle large feature sets. This is useful as the feature 
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sets grow based on the data processing parameters as for each error and warning type X 
features are generated.  

5.9	Model	evaluation	
To determine the ML model’s performance the dataset is divided into a train and test set. 
The train set is used to build the ML model. The ML model then has to determine the 
class label (“likely to fail” or “not likely to fail”) for each instance in the test set. These 
class labels are known and can thus be used to evaluate the model’s performance. The test 
set is unseen by the ML model and no feature or instance selection is applied to this set 
so that it best represents the real-world situation. 

In appendix G, three methods to create train and test sets are explained and compared. 
It is decided that tenfold randomized stratified cross validation (SCV) is used for this 
research. This method divides the dataset randomly into ten groups and uses nine groups 
for training the ML model and one for testing it. This process is repeated ten times so that 
every group of the dataset is used for the testing process once. Witten et al. (2011) state 
that numerous tests on different datasets have shown that using ten folds gets the best 
estimate of performance. This research therefore also uses ten folds. The stratification 
ensures that each class is equally represented in each of the ten groups.  

In Section 3.3.1 it is discussed that a ML model can make a correct prediction (true 
positive (TP)), a prediction that is wrong (false positive (FP)) and it can fail to predict a 
failure that does occur false negative (FN)). Furthermore, the ML model can correctly 
predict that there is no failure (true negative). The positive predictions result in a CBM 
visit as the ML model classifies the instance as “likely to fail”. The false negatives result 
in a CM visit as the ML model classifies the instance as “not likely to fail”, while in reality 
a failure occurs. The true negatives do not result in a visit and in reality, no failure occurs. 
There are no costs related to these and they are therefore not included in the evaluation 
of the ML model.   

In Section 3.3.1 it is assumed that there are no false negatives. The performance is 
therefore evaluated based on the precision of the ML model. The precision is the ratio of 
the number of correct predictions to all predictions made by the ML model (Equation 5.2). 
However, in reality this assumption will not hold. Another performance measure is 
therefore used, namely recall. Recall is the percentage of the actual failures that the ML 
model is able predict (Equation 5.3). Based on these two scores the ML model is evaluated. 
However, to evaluate a model’s performance based on two scores is a multi-criteria 
decision-making problem. In Section 5.10 an experiment is conducted to determine the 
best combination of a feature selection method, instance selection method and a ML 
model. The goal of this experiment is to find the best combination that can be used for all 
parts. The relative importance of precision is part specific as can be seen in Section 3.3 as 
different levels of precision are needed to save costs. As a result, the relative importance 
of recall is also part specific. Therefore, it is decided that to determine the best 
combination for all parts the importance of precision and recall are valued equally. For 
this the F1-score is used, which is the harmonic mean of the precision and recall (Equation 
5.4). Harmonic means are used to determine the average of rates. It is therefore the 
average of the precision and recall score.  
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(5.2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

  
(5.3) 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 
 

(5.4) 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

5.10	Experimental	setup	
There are different ML models, feature selection and instance selection methods that 
might work to predict failures. It is hard to determine the best options based on literature. 
The goal is therefore to find the combination of a feature selection method, an instance 
selection method and a ML model that can be used for all parts. An experiment is 
therefore conducted. The setup of the experiment is shown in Figure 13. All instance 
selection, feature selection, stratified cross validation (SCV), and the Random Forest are 
implemented with the SKlearn package for Python (Scikit-learn, 2020). The XGBoost 
model is implemented with the XGBoost package (XGBoost, 2020).  

The feature selection methods are implemented to select the 150 best features. Wang et 
al. (2017) found that to be the optimal number. This dataset is based on their data 
processing method and as such 150 is also used for the test. Setting k as 150 features is 
large enough to ensure all the most important features are selected, yet small enough to 
see if feature selection provides better performance. The value for the number of features 
(k) will be optimized if the tests show that it provides better performance with feature 
selection than without.  

 

Figure 13 - Experiment setup 
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Figure 13 shows that there are five paths defined. Each of these paths is tested to 
determine which ML model, with or without instance and feature selection, performs the 
best before the data processing method parameter optimization. The feature and instance 
selection paths are be tried with the selected methods. The best performing methods are 
used in the combined feature and instance selection scenario. Finally, for every path both 
ML models are trained and tested to find the best performing ML model.  

5.11	Experiment	results	
The best experiment results (based on the F1-score) are shown in Table 17. The results of 
all the experiments can be found in appendix H. All of the experiments are performed 
with X = 10, M = 3 *36,000 clicks, Z = 1 * 36,000 clicks, Y = 30 * 36,000 clicks and N = 7 * 
36,000 clicks. These are reasonable first values determined with the service product 
specialists in Section 5.5. All are multiplied by 36,000 as that is the average number of 
clicks produced per day. This made it easier for the service product specialists to come up 
with reasonable values and improves the understandability of the parameters.  

Table 17 – Best experiment results randomized SCV (RO = Random Oversampling) 

 

As can be seen from Table 17 the best performance is always achieved by the Random 
Forest (RF) model combined with random oversampling. Appendix H shows that the 
random oversampling with the RF model increases the F1-score for the Preheat 1,2 unit 
by 25.39%, Preheat 3 unit by 18.59% and the Printhead Seneca by 2.67% compared to a 
RF model without instance or feature selection. It has to be noted that the F1-score of the 
Printhead Seneca was already high.  

Another conclusion that can be drawn from Table 17 is that the Random Forest performs 
significantly better than XGBoost on the precision score. The Random Forest is a decision 
tree learner that creates 100 decision trees (default setting) and uses a majority vote to 
classify an instance. It might be that the Random Forest is able to recognize patterns that 
are printer specific and would hold little value in the real world. Each instance is created 
by moving the prediction point N clicks forward. The prediction window is 30 * 36,000 
while N = 7 *36,000 as a result on average four positive instances are created for the same 
failure. These are not the same as the observation window is also moved N clicks forward, 
however it might be that the RF model is able to recognize these patterns and make a 
prediction based on the information learned from the instances related to the same 
failure. Due to the randomization performed when applying the randomized stratified 
cross validation (SCV) the instances related to the same failure most likely end up in 
different groups. The test set will therefore most likely only contain one positive instance 
related to the failure while the train set will contain the other three. This would not be a 
problem if as expected the failure share similar patterns in their feature set, however if 
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every failure has a unique feature set that does not relate to other failures then this would 
be a problem. It is therefore hypothesized that the RF only performs well because it can 
recognize patterns within instances related to the same failure and not due to patterns 
that are shared between instances related to different failures. This hypothesis is tested 
by applying normal SCV. As a result, the positive instances related to the same failure 
are placed in the same group and the RF model has to predict failures on printers from 
which it has not seen any features. The results are shown in Table 18. 

Table 18 - Best experiment results normal SCV (RO = Random Oversampling) 

 

As can be seen from Table 18, all the ML models perform significantly worse compared to 
the results in Table 17. The hypothesis is therefore considered true.  It is concluded that 
the failures have a relatively unique feature set. As the positive instances of the same 
failure are similar, however they are not the same. Still these instances are dissimilar 
enough to the other instances for the RF to be able to identify a failure based on these 
features. The data processing method as proposed by Wang et al (2017) should therefore 
not be combined with random SCV. Instead, SCV without randomization should be used. 
This is defined as normal SCV.   

The results of all combinations of feature selection, instance selection and ML models are 
poor. These performance scores are so low that no meaningful conclusions can be drawn 
about the best combination of feature selection, instance selection and ML models. The 
Random Forest performed slightly better than the XGBoost model. It is therefore decided 
to use it for the remainder of this research. As the dataset is imbalanced, it is expected 
that random oversampling will improve the Random Forest’s performance if a better set 
of data processing parameters is found. Based on the results of the random SCV it is 
concluded that random oversampling significantly improves performance of the Random 
Forest model if there are patterns in the dataset. It is therefore also used for the 
remainder of this research. In the next chapter the data processing parameters and the 
Random Forest model’s parameters are optimized to see if better performance can be 
achieved.  

5.12	Conclusion	
The available data per part is of a high dimensional nature due to the many available 
error types, warning types, counters and parameters. ML models are best suited to deal 
with this type of data and are therefore used for this research. It is concluded that the 
data processing method as proposed by Wang et al. (2017) best fits the available data 
types and the periodical data collection. It is therefore used for this research.   
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There are few positive instances compared to the large set of negative instances, therefore 
the dataset is imbalanced. The standard method to evaluate a ML model given 
imbalanced is randomized SCV. However, it is concluded that the randomized SCV is not 
compatible with the combination of the data processing method as proposed by Wang et 
al. (2017) and the Random Forest model. This is due to the fact that there are several 
positive instances created per failure. These have similar feature sets and the Random 
Forest is able recognize these patterns and predict a failure based on the positive 
instances related to the same failure. To ensure that the positive instances related to the 
same failure are always together in the train or test set, the SCV method without 
randomization is used.  

The experimental results are considered too poor to draw meaningful conclusions on 
which combination of feature selection, instance selection and ML model performs the 
best. For the remainder of this research the Random Forest with random oversampling is 
used. It has the highest F1-score. Furthermore, due to the imbalance in the dataset it is 
expected that random oversampling improves the result if a better combination of data 
processing parameters is found.  
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6. Maintenance	decision	making	for	the	CBM	program	
This chapter will answer the final research question: 

“How can maintenance decisions be made based on the processed data? 

Each set of data processing parameters is evaluated to determine the best performing one. 
Section 6.1 discusses this evaluation process. In Section 6.2, the heuristic to determine 
the best performing parameters is described. Section 6.3 provides the results of the data 
processing parameter optimization for all parts. Furthermore, the section provides an 
example of the process for the Preheat 3 unit. In Section 6.4 the Random Forest 
parameters are optimized. Finally, Section 6.4 provides the chapter conclusion.  

6.1	Data	processing	parameter	evaluation		
This chapter optimizes the different parameters of the data processing method as 
proposed by Wang et al. (2017). Each combination of the data processing parameters 
results in a different set of instances and features. A Random Forest model with random 
oversampling is built on each set. The best combination of data processing parameters is 
then determined based on the performance of the Random Forest models. As stated in 
Section 5.9 the performance of the Random Forest model is evaluated based on the 
precision and recall scores. The precision is the percentage of correct predictions made by 
a ML model in relation to all predictions made. The recall score is the percentage of 
failures a ML model is able to predict. The best combination of data processing parameters 
is selected based on the precision and recall scores from the corresponding Random Forest 
model.   

In Section 5.10 the F1-score is used to determine the ML model with the best possible 
combination of the precision and recall scores. However, the F1-score assumes that the 
precision and recall are equally important. As is concluded in Section 3.3, each part needs 
a different level of precision before it can save costs. The importance of the precision and 
recall is therefore part specific.  

It is proposed to evaluate the precision and recall scores based on the cost savings function 
(Equation 3.7). The best combination of the scores is then determined based on the highest 
cost savings. Equation 3.7 requires the number of correct predictions (true positives (TP)) 
and the number of wrong predictions (false positives (FP)). The TP and FP can be 
determined based on the precision and recall scores. For each of the selected parts it is 
known how many replacements there were in the dataset. It is therefore possible to 
determine how many correct predictions the Random Forest model made (true positive), 
how many times it was wrong (false positive) and how many failures it did not predict 
(false negative). The total number of actual failures (rep) is equal to TP plus FN (Equation 
6.1). The TP (Equation 6.2), FP (Equation 6.3) and FN (Equation 6.4) are determined by 
rewriting the equations for precision and recall from Section 5.9. 

(6.1) 𝑟𝑒𝑝 = 𝑇𝑃 + 𝐹𝑁 
(6.2) 𝑇𝑃 = 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ r𝑒𝑝 
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(6.3) 𝐹𝑃 =
𝑇𝑃

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
− 𝑇𝑃 

(6.4) 𝐹𝑁 = r𝑒𝑝 − 𝑇𝑃 
 

The major benefit of this approach over the F1-score is that the best combination of 
precision and recall scores are determined based on their cost savings. As the goal of CPP 
is reducing maintenance costs this approach ensures that the final Random Forest model 
is selected based on the highest cost savings. Another benefit is that the cost functions 
are part specific, so the selection of the best performing Random Forest model is also part 
specific. Furthermore, savings are more easily interpretable for the stakeholders than the 
F1-score. One limitation of this approach occurs in the case where there are only Random 
Forest models that result in negative savings to select from. Selecting the Random Forest 
model with the least negative savings is expected to result in selecting the model that 
makes less predictions, thus fewer wrong predictions, in favor of a model that has higher 
precision and recall. This prevents the Random Forest model from potentially gaining 
positive savings as worse Random Forest models are preferred to minimize the negative 
savings. In this case it is proposed to use the F1-score until one option with positive 
savings can be selected.  

6.2	Data	processing	method	parameter	optimization	heuristic	
The data processing parameters are: X, M, Z, Y and N. The parameters: M, Z, Y, N and 
OW should all be multiplied by 36,000 clicks which is the average production per day on 
a VP6000. To improve readability these are given as day values. Each combination of data 
processing parameters is evaluated by training a Random Forest model with random 
oversampling based on tenfold stratified cross validation. The best combination in each 
step is determined based on the approach described in Section 6.1.  

Wang et al. (2017) propose the following five steps to find the optimal data processing 
parameters: 

1. Determine the OW. Fix M, Z, Y and N with reasonable values and change X. 

First the reasonable values are determined as follows: 

• M = 5, this allows for easy steps to increase the OW. It also makes it possible to 
make the OW a size that can be divided into multiple combinations of X and M in 
step 3. Wang et al. (2017) also use M = 5.  

• Z = 1, this is the minimum value for the buffer window and provides CPP one day 
to get to the customer.  

• Y = 30, this is a business requirement. CPP does not want the PW to be larger than 
30 days of average production. 

• N = 7, as this is the frequency with which CPP downloads the information of the 
printers. 

Table 19 shows the selected observation windows for the parameter optimization. X is also 
shown as M is fixed so changing the OW is based on X.  
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Table 19 - X and OW for parameter optimization 

 

The Service Product Specialist expects that significant errors and warnings happen 
closely to the failure. The first observation window is therefore determined to be 15. 
However, the observation window is increased to determine if there are significant errors 
and warnings further before a failure.  

The basic statistical features (Section 5.4.1) increase linearly as X increases. As for each 
error and warning, X features are generated. In combination with the number of instances 
(around 100,000 in case of N=7) this can become too memory intensive. A maximum of X 
= 20 is therefore used as increasing X further resulted in memory errors for the Preheat 
3 unit. Furthermore, it is not expected that significant errors and warnings occur outside 
of 100 days of average production.  

As stated before, the observation windows are determined by X*M with M = 5. As a result, 
the observation window sizes between 15 and 100 are multiples of 5 that can be divided 
into multiple combinations of X and M.   

2. Determine the prediction window. Fix X, M, Z and N with the best values from the 
previous step and change Y. 

Wang et al. (2017) conclude that increasing Y leads to better model performance. Even 
though Y is fixed on 30, different values are therefore tried to see the effect on the model 
performance. Additionally, Y = 45, 60, 90 and 120 are therefore tested. Y = 45 and 60 are 
tried to see if smaller increases to Y can have a significant impact on the model’s 
performance. Then Y is increased to 90 and 120 to see if these large prediction windows 
increase the model’s performance.  

3. Determine the best combination of X and M. Fix Y, Z, N and OW with the best 
values from the previous step and change X and M. 

The OW is fixed on the optimal value in step 1. Now several combinations of X and M are 
tried to find the optimal values. As stated in step 1, X used as larger than 20, as it becomes 
too memory intensive.  

4. Determine the best buffer window. Fix X, M, Y and N with the best values from 
the previous step and change Z.  
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Increasing Z always reduces model performance (Wang, Li, Han, Sarkar, & Zhou, 2017). 
Z is therefore fixed on the minimum value of 1. This provides CPP the one day of average 
production to get to the customer.    

5. Determine the best N. Fix X, M, Z and Y with the best values from the previous 
step and change N. 

Since CPP retrieves the information every 7 days for the connected printers, N is also 
fixed on 7 to represent the current situation at CPP.  

6.3	Data	processing	method	parameter	optimization	results	
The best results from the data processing parameter optimization for the selected parts 
are shown in Table 20.   

Table 20 - Best results of data processing parameter optimization  

  

As can be seen from Table 20, the precision and recall values are low for each part. As a 
result, the savings for all the parts are negative. It is therefore concluded that for these 
parts CBM policy based on event and usage data is not possible.   

Table 21 shows the steps in optimizing the data processing parameters for Preheat 3 unit. 
All steps in the data processing parameter optimization for the other selected parts can 
be found in Appendix I. Appendix J shows the potential of the method based on the results 
from the random SCV. This appendix shows how to data processing parameter 
optimization should be conducted based on the proposed evaluation method in Section 6.1.   
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Table 21 – Data processing parameter optimization Preheat 3 unit based on the F1-score 

 

In Section 5.1 it is proposed that in case of only negative savings the best combination of 
data processing parameters is selected based on the F1-score. As it is expected that the 
least negative savings are often caused by the model that makes the least predictions. As 
a result, the data processing parameters that are selected might have lower precision and 
recall than other sets with higher negative savings. It then becomes more unlikely that 
improvements can be on the performance in the next optimization steps. Therefore, the 
F1-score is used. The first part of Table 21 shows an example where this is true. In the 
first part the OW is optimized. Based on the lowest negative savings OW is 60 should be 
selected. However, OW is 80 has a higher precision and recall score. Selecting OW is 80 
instead of 60 therefore increases the likelyhood that in the next optimization steps the 
performance increases and positive savings might be achieved.  

In the second step, different values of Y are tried. It can be concluded that increasing Y 
does not lead to better model performance in this case.  

Finally, in the last step the optimal combination of X and M is found to be 16 and 5*36,000. 
The final RF model results in a loss of €22,878.15.  

6.4	Random	Forest’s	parameter	optimization	
The Random Forest model has three important parameters that can be optimized to 
improve the model’s performance (Liu, Chamberlain, & Cardosa, 2017). These parameters 
are: the number of trees in the forest, the depth of each tree, and the sample size used to 
create each tree. Optimizing Random Forest’s parameters can increase the model 
performance by a small amount (Probst, Wright, & Boulesteix, 2019). However, it should 
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perform well with the default values (Probst, Wright, & Boulesteix, 2019) (Fernández-
Delgado, Cernadas, & Barro, 2015). Even though the Random Forest is resistant to 
overfitting, it can still overfit. It is decided to apply the Random Forest parameter 
optimization as a test to determine if it has overfitted on the data. A selection of values is 
made for each Random Forest parameter. All possible combinations of the selected 
parameters are tested with tenfold normal stratified cross validation. Appendix K shows 
the all the optimization results for the Preheat 1,2 unit, Preheat 3 unit and Printhead 
Seneca.  

Section 6.4.1 describes what the number of trees parameter and which values are used 
for the optimization. Section 6.4.2 describes the depth of each tree and Section 6.4.3 
describes the sample size. Section 6.4.4 shows the results of the Random Forest parameter 
optimization.  

6.4.1	The	number	of	trees	
A Random Forest models by default builds 100 decision trees (Scikit-learn, 2020). Each 
tree makes a prediction and a majority vote is used to determine the final prediction. The 
number of trees can influence the model’s performance. The Random Forest model is 
based on the assumption that the combined prediction of many trees is better than the 
prediction of a single tree. It is therefore expected that increasing the number of trees 
allows for better predictions. One downside of increasing the number of trees it becomes 
more computationally intensive. It is decided to one test one set of fewer trees to see if the 
results remain the similar and computational time might be reduced. Then the number is 
trees is increased in large steps. The number of trees used for the parameter optimization 
are: 50, 100, 250, 500 and 1000. Increasing it to a higher number is expected to become 
too computationally intensive and it is expected that it will not further improve the 
performance. 

6.4.2	The	depth	of	the	tree	
The depth of the tree determines the number of splits there are in each tree. The higher 
the depth the larger the tree becomes. The Random Forest by default allows the tree to 
grow to the maximum depth, i.e. when there are no more splits possible. By reducing this 
parameter, the chances of overfitting are reduced. It might therefore improve the 
performance. The depths used for optimization are: 5, 10 and 20. A lower depth is expected 
to result in underfitting, while higher depth is expected to result in the same performance 
as the default feature. Three options are used to reduce the time needed for the Random 
Forest parameter optimization.  

6.4.3	The	number	of	samples	used	to	create	the	tree	
Each tree is built based on a sample from the training dataset. By reducing this sample, 
the chances of overfitting are reduced. Reducing it too much increases the chances of 
underfitting. The number of samples used for the optimization are: 20%, 40%, 60%, 80% 
and 100% of the total sample size. It is decided to use large steps to see the potential 
effects.  
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6.4.4	Random	Forest	parameter	optimization	results	
The results from the Random Forest parameter optimization are shown in Table 22. 

 

Table 22 - Random Forest parameter optimization best results based on the F1-score 

It is concluded that the results after the Random Forest parameter optimization are still 
poor (Table 22). As expected, the results only increased slightly compared to the F1-score 
of the parts after the data processing parameter optimization (Table 20). One important 
conclusion that can be drawn based on the results is that overfitting was not the reason 
the Random Forest performed so poorly. Furthermore, it is concluded that a CBM policy 
should not be implemented for the selected parts.  

6.5	Conclusion	
This chapter proposes a method to optimize the data processing parameters based on the 
cost savings function. The best combination of data processing parameters can therefore 
be determined based on the cost savings. One limitation of this method occurs when all 
the combinations to select from have negative savings. The lowest cost might be related 
to a combination of data processing parameters that do not have the highest precision and 
recall values. Instead, it might select the option with lower values as it makes fewer 
predictions and therefore fewer wrong predictions. As a result, it becomes less likely that 
further optimization of the data processing parameters will result in cost savings. It is 
therefore concluded that the F1-score is a better alternative in case a selection needs to 
be made based on only negative savings.  

It is concluded that different sets of data processing parameters did not result in cost 
savings for any of the parts. Furthermore, the Random Forest parameter optimization 
also did not improve the model’s precision to the levels required for cost savings (Section 
3.5). The precision and recall scores are still considered poor. It is therefore concluded that 
a CBM policy is not possible for the selected parts based on event and usage data.  
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7. Conclusion	&	recommendations	
This chapter contains the conclusion, limitations, future research and recommendations 
of this research. 

7.1	Conclusion	
This section answers the main research question by first answered the five research 
questions defined for this research.  

Research Question 1 is: How to determine which parts are suitable candidates for this 
research? CPP loses income during the time the printer is not operational due to the 
customer not using consumables. Therefore, parts are ideally selected based on the 
highest average yearly response time. However, the response time has to be manually 
determined by analyzing visit logs. It is too time consuming to determine the response 
time for all parts, therefore it is only done for a selection of parts. The selection is first 
made based on high part costs and low failure frequency. These are the criteria CPP 
values the most in selecting parts for CBM. It is expected that selecting parts based on 
their price gives no indication of the potential cost savings. A further study is therefore 
conducted for these parts to determine if they are suitable for CBM. It is concluded that 
this approach allows for an efficient selection of parts for this research.   

Research Question 2 is: Which parts of the VP6000 are suitable candidates for this 
research? To answer this research question, the method for parts selection from Research 
Question 1 is applied. The first selection of parts is made based on high part price and low 
failure frequency. These are further filtered based on a showstopper analysis. It is 
concluded that the majority of the parts is filtered out as it is not technically feasible to 
implement a CBM policy for these parts. Finally, a sensitivity analysis is proposed to 
determine the economic feasibility for the selected parts. Based on this sensitivity 
analysis it is concluded that there is a large difference in the potential cost savings for 
each part. As expected, the criteria high part costs and low failure frequency do not help 
in selecting parts that can result in large cost savings. This is a major limitation of 
selecting parts based on these criteria. However, the economic feasibility study ensures 
that only parts that might potentially save costs are included in the research.  

Research Question 3 is: What event and usage data should be monitored to determine the 
condition of the selected parts? All the errors, warnings, counters and parameters that are 
related to the selected parts are collected. For the Preheat 1,2 unit, Preheat 3 and 
Printhead Seneca are 30, 35 and 19 event and usage data types respectively. 	

Research Question 4 is: How can the selected event and usage data per part be processed 
so that it can be used for maintenance decision making?  The event and usage data types 
collected to answer the previous research question might all be relevant in predicting if a 
part is going to fail. Furthermore, there might be combinations between these data types 
that are useful in predicting part failures. A machine learning model is therefore used as 
it efficiently finds patterns for these combinations of data types. A method is therefore 
used to process the data so that it can be used for machine learning.  
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After the data processing it is concluded that the dataset is imbalanced, as there are far 
more instances without a failure than with a failure. This is expected as parts with low 
failure frequency are selected for this research. Randomized stratified cross validation is 
used to evaluate the machine learning model with an imbalanced dataset. However, it is 
concluded that this evaluation method cannot be combined with the data processing 
method used. Instead, stratified cross validation without randomization is used for this 
research. This is due to the method of instance generation. Several positive instances are 
generated per failure and the model was able to recognize the similarity of these 
instances. Based on the results of the randomized stratified cross validation it is 
concluded that each failure has a unique pattern that can be used to identify instances of 
related to the same failure, however not instances related to other failures. In addition, 
an experiment is conducted to determine the best combination of a feature selection 
method, an instance selection method and ML models. The results of this experiment were 
too poor to draw meaningful conclusions on. For the remainder of the research it is decided 
to use Random Forest with random oversampling.   

Research Question 5 is: How can maintenance decisions be made based on the processed 
data? To answers this research question, the data processing method parameters are 
optimized to find the combination that results in the largest cost savings. If the cost 
savings are positive, then CBM policy based on the best performing machine learning 
model can be implemented. Otherwise CM is a better policy for the part. It is concluded 
that for the selected parts different data processing parameters do not increase 
performance. Furthermore, the same conclusion is drawn for the optimization of the 
Random Forest’s parameters. For the selected parts a CBM policy is therefore not possible 
based on event and usage data.  

The main research question is: How can event and usage data be used to monitor the 
condition of the system and how can maintenance decisions be made based on this data? 
Event and usage data can be used to monitor the condition of a part by processing it for 
machine learning. The data processing and the evaluation of the ML model are automated 
in a Python program. The maintenance decisions are made based on the potential cost 
savings of the ML model.  

This research contributes to academia in several ways. Firstly, a case study is conducted 
in which the data processing method as proposed by Wang et al. (2017) is applied. 
Secondly, this research proposes random oversampling to improve the performance of a 
Random Forest model in case of imbalanced data. Imbalanced data is often the case when 
creating a CBM program as the ideal parts for CBM have high downtime and low failure 
frequency. This research found that random stratified cross validation cannot be used in 
combination with the data processing method as proposed by Wang et al. (2017). Instead, 
normal stratified cross validation should be used to evaluate the ML model. Finally, the 
data processing parameter optimization is adapted to make decisions based on the highest 
potential savings by implementing a CBM policy. Furthermore, in the case of negative 
savings it can also be decided that a CBM policy is not optimal even though the ML model 
has high precision and recall scores. Maintenance decision making is therefore added to 
the data processing method as proposed by Wang et al. (2017). Finally, the usage data 
features are added to the feature sets proposed by Wang et al. (2017).  
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7.2	Limitations	and	future	research	
Several limitations of the research are described in this section.  

A major limitation of this research is that the model did not work for the selected parts. 
It can therefore not be concluded if it will work for other parts. There are many 
combinations of the features that might predict a failure. These cannot be checked 
beforehand. For example, a failure might be predicted by the combination of a certain 
error type occurring, combined with a usage counter that is at least a certain level and a 
certain model type of the printer. There are any number of combinations of the features 
that might predict a failure and it is difficult to see these beforehand. That is why Machine 
Learning is used. However, the data processing is automated, and it can be tried for other 
parts.    

Another limitation is that this research used two feature selection methods that do not 
work for all features in the dataset. At the time these decisions were made. A better 
feature selection method is mutual information gain, which can be used for all the 
features. Furthermore, due to the time constraints of this research the number of features 
to include in the dataset are not optimized.  

In addition, a limitation is that the data processing parameters are optimized via heuristic 
approach. Furthermore, as the parameter X increases the number of features increases 
and it causes memory errors. However, if a computer is used with more processing power 
and more memory then more combinations of method parameters can be tested, and a 
better solution might be found.  

Future research should be conducted to find out if the data of other parts has as little 
predictive value as the data used for this research. The model can be adapted to other 
parts and could be used to determine if the data for these parts is better. Section 7.3 
discusses how these parts are best selected.   

Furthermore, research should be conducted as to why the errors and warnings have so 
little predictive value. The errors and warnings might be wrongly defined. These are 
based on sensor signals, however they are only triggered if a certain threshold is passed. 
If these thresholds are too low, then the errors and warning would occur too often and not 
just before a failure. If they are too high, then they might not be triggered often enough.  

7.3	Recommendations	
In this section several recommendations are made.  

Implementation plan 

Figure 14 shows the steps CPP has to take to use the Python program. 

 

Figure 14 - Steps to use the program 
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The first step is to select a part and collect all event and usage data. This can then be 
processed by the Python program.  

The second step, processing, requires reasonable values for the method by Wang et al. 
(2017). The most important is the size of the of the observation window. The size should 
be the period in which it is expected that significant errors and warnings for predicting a 
failure occur.  

In the third step the experiment can be conducted to see which combination of feature 
selection, instance selection and ML models performs best. This combination should then 
be used for the maintenance decision making. 

In the fourth and final step, the heuristic approach has to be used to optimize the method 
parameters. If the potential cost savings are at least positive, then the model can be used.   

If CPP wants to implement a model for any part, then the model should be fitted on all 
the available data. The model should then be exported and imported into their 
maintenance planning tool. Furthermore, as more data becomes available the model 
should be refitted. If this process can be automated, then it should be conducted every 
week when the data is retrieved. Otherwise, it should be trained at least every time there 
is a new failure of the selected part. Furthermore, it is recommended that if a modification 
is made to a part for which a model has been implemented then it should be assumed that 
the model is no longer capable of making accurate predictions. Modifications to a part 
might change how it degrades, i.e. when errors and warnings are generated. In this case 
the model’s predictions cannot be trusted anymore.  

Part selection 

The parts for this research are selected based on the maintenance categorization matrix 
as proposed by van Elderen (2016) combined with the maintenance funnel by Tiddens et 
al. (2018). The parts selected for this research did not work nor would they have resulted 
in the highest potential cost savings. It is therefore recommended that the parts are 
selected based on expert knowledge of the field service technicians (FST) and the service 
product specialists (SPS). First a selection of parts should be made that are expected to 
have the highest average yearly response time. Then for these parts, the expert knowledge 
of the FSTs should be used to determine if they are often replaced by the FST based on 
the event and or usage data. As all replacements are performed by the FSTs it is expected 
that this can provide a good approximation if CBM based on event and usage is possible 
for the selected parts.  

Additional recommendations 

• For optimal part selection the response time is needed per part. It is therefore 
recommended that CPP starts to collect the response time of parts.  

• The data is collected in seven-day intervals, however it is expected that the most 
significant errors occur closely to the failure. It is therefore recommended to collect 
the data continuously.  
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Appendix	A:	part	usage	cleaning	
The data cleaning process is shown in Figure 15.  

 

Figure 15 - Data cleaning process 

In the period between the start of August 2016 and the end of July 2019, a total of 3,224 
unique service parts have been registered for the VP6000 in Europe. Only the European 
event data is uploaded by the service mechanics and are accessible for CPP. For this 
reason, it has been decided that for the part usage data the focus will also be on Europe. 
The decision to use three years of data has been made after discussion with the service 
data analyst. Going farther back the data will contain failures of parts for which solutions 
have been implemented. This set contains everything that has been registered on the 
VP6000. The filters in Figure 15 are explained below.  

• TSM filter: The parts that are not in the technical service manual are removed. 
These parts should not have been registered on the VP6000, however due to human 
errors they were. A large amount of part numbers is filtered out (54.68%), however 
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mostly there is only one part used per part number. It is therefore not expected 
that many parts of the VP6000 are registered on other printers. 

• Mods and blanks filter: All modifications and parts with blank fields are removed. 
The modification parts are removed, because these are only installed once on a 
printer and thus not fit for the research.  

• Update part numbers: Parts can receive an update and consequently a new part 
number. This update is usually the addition of standardized packing to the part. 
The information of the parts with a changed part number is summarized into their 
latest part number and the old part number is removed from the dataset. The 
selected parts for this research are checked to see if they received updates other 
than packaging, since doing this for every part will be too time consuming. 

• Quantity filter: Parts that fail less than once a year are removed from the dataset. 
The financial benefit of CBM for these parts is considered too low.  In discussion 
with a service product manager it has been decided that if a part is used less than 
one time on average per year it is also removed from the dataset.  

• Expendable filter: These are parts that CPP operates to failure.  
 

After the data cleaning 1031 parts are left in the dataset. 
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Appendix	B:	Monitor	Closely	Quadrant	
Table 23 shows all the parts in the Monitor Closely Quadrant. The parts that are not 
included for further research are made unrecognizable as per request of CPP.  

Table 23 - All parts Monitor Closely Quadrant 
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Appendix	C:	Printhead	Seneca	
The printhead Seneca is part of the print engine. The print engine uses a statically 
charged belt that attracts toner which can then be transferred to TTF Unit. However, if 
the entire belt was statically charged then the printer would only print black images. The 
printhead consists of many small LED lights. The light from these LEDs is used to remove 
the static charge on the belt in specific locations. By removing the static charge the belt 
does not attract toner in these places, which allows images to be formed on the belt which 
can be transferred to TTF Unit. Since, the VP6000 has two mirrored printing processes 
located in the engine there are also two printheads. The location of these printheads is 
shown in Figure 16. The primary and the secondary printhead are exactly the same 
component, the only difference being their location in the printer.  

 

Figure 16 - VP6000 inside view with printhead locations (marked with circles) 

For both the printheads individual error types, parameters and counters have been 
defined. There are twelve error types defined for the printheads, that might indicate 
degradation however these can be divided into six error types for the primary and six 
error types for the secondary printhead. These error types are shown in Table 24. 
Furthermore, there are two warnings defined (Table 25), one per printhead. In addition 
to the error types and warnings, three parameters have been defined for the printheads 
(Table 26) and two counters (Table 27).  

Table 24 – Error types printhead Seneca 

Error Code Description 

4511 Primary LPH communication error 

4512 Primary LPH NTC 04R01 short circuit 

4513 Primary LPH NTC 04R01 open circuit 

4514 Primary LPH temperature too high 

4516 Primary LPH logical connection lost 

4517 Primary LPH data error 



 

 
 

63 

4551 Secondary LPH communication error 

4552 Secondary LPH NTC 04R11 short circuit 

4553 Secondary LPH NTC 04R11 open circuit 

4554 Secondary LPH temperature too high 

4556 Secondary LPH logical connection lost 

4557 Secondary LPH data error 

 

Table 25 - Warnings Printhead Seneca 

Warning Code Description 

4914 Primary LPH temperature high 

4954 Secondary LPH temperature high 

 

Table 26 - Parameters Printhead Seneca 

Parameter Code Description 

41103 Print counter 

41110 Print Light Value Primary Process [0.1%] 

41210 Print Light Value Secondary Process [0.1%] 

 

Table 27 - Counters printhead Seneca 

Counter 
Code Description 

48101 Prints made with primary LED printhead [prints] 

48201 Prints made with secondary LED printhead [prints] 
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Appendix	D:	Preheat	1,	2	unit	
The Preheat 1, 2 unit has two functions, namely transporting the paper to the TTF Units 
and heating the paper to the temperature required for optimal transfusion. Figure 17 
shows the location of the Preheat 1, 2 unit in the VP6000. The Preheat 1, 2 Unit consists 
of two identical preheating units, hence the name Preheat 1, 2 unit.   

 

Figure 17 - VP6000 inside view with Preheat 1,2 unit locations (marked with blue circle) 

For the Preheat 1, 2 Unit 20 error types are found that might indicate degradation. (Table 
28). In addition, there are four warning types (Table 29). There is only one parameter 
defined (Table 30) and there are five counters (Table 31).  

Table 28 - Error types Preheat 1,2 unit 

Error 
Code Description 

13123 
LWM: Remove sheets from Print Engine Module Preheat unit, Output unit 
and spiral cleaners 

15151 
Remove sheets from Print Engine Module Preheat unit, Output unit and 
TTF cleaners 

15501 Preheater plate 1 temperature too low 

15502 Preheater plate 1 temperature too high 

15504 Preheater plate 1 NTC 15R1 short circuit 

15505 Preheater plate 1 NTC 15R1 open circuit 

15507 Warming up timeout preheater plate 1 

15508 Preheater plate 1 clixon 15S1 open circuit 

15511 Preheater plate 2 temperature too low 

15512 Preheater plate 2 temperature too high 
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15514 Preheater plate 2 NTC 15R2 short circuit 

15515 Preheater plate 2 NTC 15R2 open circuit 

15517 Warming up timeout preheater plate 2 

15518 Preheater plate 2 clixon 15S2 open circuit 

15551 Sheet error in preheat trajectory 

15564 Powerdown detected at local node preheat 

2210001 
Remove sheets from Print Engine Module Preheat unit, Output unit and 
TTF cleaners 

2250024 Configuration error Preheat node 

2250036 Communication error Preheat node 

15519 PRE2MO 15M2 speed error 

 

Table 29 - Warning types Preheat 1,2 unit 

Warning 
Code Description 

15904 Preheater fan 15M3 speed error 

15905 Preheater moisture fan 15M13 speed error 

2290109 Inconsistent embedded software Preheat node 

2290133 CAN BUS error detected by Preheat node 

 

Table 30 - Parameter Preheat 1,2 unit 

Parameter Code Description 

141003 Registration Sensor PWM Value [0.1%] 

 

Table 31 - Counters Preheat 1,2 unit 

Counter 
Code Description 

158011 Sheets made with preheater belt 1 [prints] 
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158012 Sheets made with preheater plate 1 [prints] 

158013 Sheets made with preheat 1-2 rolls [prints] 

158021 Sheets made with preheater belt 2 [prints] 

158022 Sheets made with preheater plate 2 [prints] 
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Appendix	E:	Preheat	3	unit	
The Preheat 3 unit is located after Preheat 1,2 unit. It has a similar function to the 
Preheat 1,2 unit as it heats the paper to the optimal temperature for transfusion and 
transports it to the TTF units. However, the Preheat 3 unit actually hands the paper over 
to the TTF units. The TTF units transfer the image to the paper. The paper has to be sent 
to the TTF units at exactly the right time otherwise the image will not be transferred to 
the paper at the right position. This process is called alignment. If the paper is sent to the 
TTF units too early, then the image will be printed lower on the paper than intended and 
sending it too late will result in the image being printed higher than intended. In both 
cases a part of the image might not even be printed on the paper.  

 

Figure 18 - VP6000 inside view with Preheat 3 unit location (marked with blue circle) 

For the Preheat 3 Unit there are 22 error types that might indicate degradation (Table 
32). In addition there are nine warning types (Table 33), one parameter (Table 34) and 
three counters (Table 35). 

Table 32 - Error types Preheat 3 

Error 
Code Description 

13123 
LWM: Remove sheets from Print Engine Module Preheat unit, Output unit 
and spiral cleaners 

15151 
Remove sheets from Print Engine Module Preheat unit, Output unit and 
TTF cleaners 

15521 Preheater plate 3 temperature too low 

15522 Preheater plate 3 temperature too high 

15524 Preheater plate 3 NTC 15R10 short circuit 

15525 Preheater plate 3 NTC 15R10 open circuit 

15527 Warming up timeout preheater plate 3 
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15528 Preheater plate 3 clixon 15S10 open circuit 

15529 PRE3REGMO 15M11 speed error 

15530 PRE3MO 15M10 speed error 

15551 Sheet error in preheat trajectory 

15560 Primary SOP sync warning 

15561 Secondary SOP sync warning 

15562 Primary synchronization speed too low 

15563 Secondary synchronization speed too low 

15564 Power down detected at local node preheat 

15721 PRE3REGSE 15B3 Too Late Free 

15722 Unexpected sheet at PRE3REGSE 15B13 

15723 Sheet too late at PRE3REGSE 15B13 

2210001 
Remove sheets from Print Engine Module Preheat unit, Output unit and 
TTF cleaners 

2250024 Configuration error Preheat node 

2250036 Communication error Preheat node 

 

Table 33 - Warning types Preheat 3 

Warning 
Code Description 

15901 Led current PRE3REGSELED 15B12 too high. 

15902 PRE3REGSELED 15B12 / PRE3REGSE 15B13 polluted. 

15903 PRE3REGSE 15B13 read error 

15904 Preheater fan 15M3 speed error 

15905 Preheater moisture fan 15M13 speed error 

15912 Preheater 3 drive motor 15M11 speed too low 

15913 Preheater 3 drive motor 15M11 speed too high 

2290109 Inconsistent embedded software Preheat node 



 

 
 

69 

2290133 CAN BUS error detected by Preheat node 

 

Table 34 - Parameter Preheat 3 

Parameter 
Code Description 

141003 Registration Sensor PWM Value [0.1%] 

 

Table 35 - Counters Preheat 3 

Counter 
Code Description 

158031 Sheets made with preheater belt 3 [prints] 

158032 Sheets made with preheater plate 3 [prints] 

158033 Sheets made with preheat 3 rolls [prints] 
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Appendix	F:	Feature	sets	
A ML model is trained with instances and features. An instance is learning or testing 
object for the model (Kohavi & Provost, 1998). The features describe the instance for the 
machine learning model (Kohavi & Provost, 1998). Wang et al. (2017) propose five feature 
sets, namely: basic statistical features, advanced statistical features, pattern features, 
failure similarity features and profile features. 

(F.1) 𝐵 = M𝑐;< , 𝑖	 ∈ 	 [1, 𝑇], 𝑗	 ∈ 		 [1, 𝑋]T 
The authors propose a basic statistical feature set B (Equation F.1). In this set the 
occurrences per error type per sub-window are counted. This results in feature set B with 
T error types and X sub-windows.  

(F.2) 𝐴 = {min(𝐷;) ,max(𝐷;) ,𝑚𝑒𝑎𝑛(𝐷;),𝑚𝑒𝑎𝑛(𝑉;), 𝑠𝑡𝑑𝐷𝑒𝑣(𝑉;), 𝑖	 ∈ [1, 𝑇]} 
 

The next set proposed by Wang et al. (2017) are the advanced statistical features A 
(Equation F.2). For these features the distance of each error per error type i to the 
prediction point is calculated. The minimum, maximum and mean of the set D per error 
type i are used as features. In addition, for each error type i the intervals between all the 
consecutive error occurrences are determined. The mean and standard deviation of this 
set V per error type T are used as features of the instance. These do not match the data 
at CPP as there are few errors that occur in every observation window. This results in 
empty fields in each instance as a distance for an error that does not occur cannot be 
calculated. Machine Learning models cannot handle empty fields, so these need to be 
filled. The normal method to deal with empty fields is to remove the entire instance or to 
impute the missing value. The first solution will result in all the instances being removed 
from the dataset as every instance has at least one empty field. The second method would 
place a value in a field that should be empty. An example of imputing is using the average 
of a feature and filling the empty fields with this average. In this case a distance that does 
not exist cannot be filled with the average distance of that feature. This would train the 
model with false information. Consequently, this feature set is not included. 

(F.3) 𝑃 = {𝑝; , 𝑖	 ∈ 	 [1, 𝑄]} 
 

The authors also incorporated patterns as features P (Equation F.3). An apriori algorithm 
is used to mine for frequently occurring patterns and determine their confidence in 
predicting a failure (Wang, Li, Han, Sarkar, & Zhou, 2017). Patterns that pass a certain 
threshold for confidence are selected. The selected patterns are gathered in set Q. If a 
pattern of set Q is in the observation window then pi is one, otherwise pi is 0.  

Failure similarity features 

(F.4) 
																																																								𝐽𝑎𝑐𝑐𝑎𝑟𝑑	𝑖𝑛𝑑𝑒𝑥 = 	

|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

 
Furthermore, the authors propose failure similarity feature F. The set of error and 
warning types that occur in the observation window is compared the set from the 
observation window of the most recent failure of the same printer. The Jaccard index 
between these two sets is used as feature F (Wang, Li, Han, Sarkar, & Zhou, 2017). The 
Jaccard index is defined in Equation F.4 (Jaccard, 1912).  
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Profile features 

In the feature set R all the machine profile information is gathered. The profiles available 
for the VP6000 are the configuration type, the country where it is located and the software 
version. 

(F.5) 𝑆 = {𝐵, 𝐴, 𝑃, 𝐹, 𝑅, 𝐿} 
 
Each instance S (Equation F.5) consists of all the features described before and has a label 
L. The label indicates whether there was a failure in the instance’s prediction window or 
not.  

The authors based their features on error and warning messages. However, the VP6000 
also collects parameters and counters. Consequently, more features can be added to the 
features proposed by Wang et al. (2017).  

(F.6) 𝐶 = {𝑐𝑜; , 𝑖	 ∈ 	 [1, 𝐾]} 
 
Firstly, the counter features C (Equation F.6) are added to the instance. For all the 
counters in K the value at the end of the observation window is included. These counters 
are for subparts of the part or the part itself and they have the same increase in clicks as 
the overall counter for the selected parts. The observation window is based on the overall 
counter, so all the counters will have the same increase in clicks. Including the increase 
in clicks for these counters will therefore not result in more information for the model, 
thus they are not included. Finally, the overall counter value at the end of the observation 
window is included.    

(F.7) 𝑊 = {𝑤; , 𝑖	 ∈ [1, 𝑈]} 
 

Secondly, the set of parameter features W (Equation F.7) is added to the instance. The set 
U includes all the parameter types. Their current level is included as a feature.  
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Appendix	G:	Model	evaluation	
Each combination of ML models with feature selection and or instance selection has to be 
evaluated. Furthermore, each combination of method parameters has to be evaluated. 
This is the only way to compare the different scenarios and draw conclusions which 
performs the best. There are three methods commonly used for model evaluation. These 
are: the hold-out method, k-fold cross validation (CV) and stratified k-fold cross validation 
(SCV). This appendix explains the differences between these model evaluation methods. 
All of these methods divide the data into a train and a test set. The train set is used to 
train the model, while the test set is used to test the model performance on unseen data. 
The test set is never altered in any way by for example feature or instance selection. The 
dataset is created by generating each instance per printer. As a result the dataset is 
ordered chronologically per printer based on overall counter of the printer at the end of 
the observation window.   

 

 

 

Table 36 - The hold-out method (based on Preheat 1,2 unit) 

 

Table 36 shows an example of the hold-out method with a 70 – 30 split for train and test 
data. model is thus trained based on the blue part of Table 36 and tested on the green 
part. The major drawback is that you cannot be certain if the train set and test are 
representative of the total dataset (Witten, Frank, & Hall, Data mining: Practical 
machine learning tools and techniques, 2011, p. 152). As can be seen in Table 36, the 
dataset is divided into ten groups of equal size and the positive instances per group are 
counted. This is done to illustrate that fewer positive instances occurred in the last 30% 
of the data when compared to the first 70%. It can therefore be concluded that this split 
is not representative of the entire dataset. Wang et al. (2017) apply this method, however 
in the case of this research it is not a good fit.  

Table 37 - Tenfold cross validation first three iterations of ten (based on Preheat 1,2 unit) 

 

Train set : Marked in blue 

Test set : Marked in green 



 

 
 

73 

An alternative to the hold-out method is cross validation. This method makes sure that 
every instance is used for testing once and all the other iterations it is used for training. 
As can be seen from Table 37 the dataset is divided into ten groups. Each iteration (fold) 
of the tenfold CV method uses nine of the groups for training data and one of the groups 
to test the model. The evaluation scores of each iteration are averaged to provide the final 
evaluation scores. This method ensures that all the data is used for training and testing 
and thus it is more representative of the dataset. The drawbacks of this approach are that 
it is more computationally intensive than the hold-out method as a model is trained ten 
times instead of once. Furthermore, as can be seen from Table 37 a group might not be a 
good representation of the dataset. For example, group 8 only has 28 positive instances. 
Given the data available for this research this approach is not optimal as the test set 
might return very different evaluation scores each iteration. This approach will therefore 
also not be used.  

Table 38 - Stratified tenfold cross validation first three iterations of ten (based on Preheat 1,2) 

 

Stratified tenfold cross validation operates in a similar manner as normal CV. However, 
the major difference is that it places an equal number of positive instances in each group 
(Table 38). The standard approach to model evaluation is tenfold SCV where the data is 
randomly divided into ten parts (Witten, Frank, & Hall, Data mining: Practical machine 
learning tools and techniques, 2011, p. 153). The stratification combined with the 
randomization increases the likelihood that the train and test sets are representative of 
the total dataset. This dataset is ordered on serial numbers and then on the click counter 
of the prediction point. Randomization will ensure that each group contains a combination 
of instances from different serial numbers and at different clicks for the prediction point. 
In case of limited data (few positive instances) this method is preferred over standard CV. 
It will therefore be used for this research.   
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Appendix	H:	Experiment	results	
This appendix shows the experiment results for the selected parts with randomized 
stratified cross validation and normal stratified cross validation. 

Experiment	results	randomized	stratified	cross	validation	
C : Chi2 
F : ANOVA F-val 
RO : Random Oversampling 

Table 39 - Experiment results Preheat 1,2 unit random SCV 

 

The best results based on the F1-score are achieved by scenario 4 with the Random Forest 
model for the Preheat 1,2 unit (Table 39). The Random Forest in scenario 2 has 0.030 
higher precision, however the recall is much lower. Random Forest combined with random 
oversampling therefore performs the best. The random oversampling method increases 
the F1-score with 25.39% for the RF model without feature or instance selection (scenario 
1).  

Table 40 - Experiment results Preheat 3 unit random SCV 

 

As can be seen from Table 40, the Random Forest ML model outperforms the other ML 
models on the F1-score in every scenario. The Random Forest model combined with 
random oversampling has the best performance on the initial set. It has the highest F1-
score, the second highest precision and the highest recall. The difference with the highest 
precision (scenario 1) is just 0.007, while the recall is 0.083 higher than this scenario. It 
can be concluded that the F1-score is increased by 18.59% by random oversampling for 
the RF model compared to RF without feature or instance selection.   
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Table 41 - Experiment results Printhead Seneca random SCV 

 

It can be concluded from Table 41 that scenario four with the Random Forest Model again 
performs the best based on the F1-score. The precision is 0.01 lower than in scenario 1, 
however the recall is 0.038 higher than scenario 1 for the Random Forest model. 

In conclusion, the Random Forest model has the highest performance compared to 
XGBoost. Furthermore, the random oversampling significantly improved the F1-scores 
for Preheat 1,2 and Preheat 3. It also provided a small increase of the F1-score for the 
Printhead Seneca. As a result, it is concluded that random oversampling improves the 
performance of ML model for this imbalanced dataset.   

Experiment	results	normal	stratified	cross	validation	
C : Chi2 
F : ANOVA F-val 
RO : Random Oversampling 

Table 42 - Experiment results Preheat 1,2 normal SCV 

 

As can be seen from Table 42, the results with normal SCV are much worse for the Preheat 
1,2 unit compared to randomized SCV. It can be observed that highest F1-score is 0.027 
is achieved by the Random Forest combined with random oversampling. These also have 
the highest precision, which is most valued by CPP. It has to be noted that although it is 
the highest it is still low.  
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Table 43 – Experiment results Preheat 3 normal SCV 

 

Table 43 shows the experiment results for Preheat 3 based on normal SCV. The highest 
F1-score is again achieved by the Random Forest combined with the random 
oversampling. Furthermore, it also achieves the highest precision.  

Table 44 - Experiment results Printhead Seneca normal SCV 

 

Table 44 shows the experiment results based for the Printhead Seneca based on normal 
SCV. The highest F1-score is achieved by the RF model combined with random 
oversampling. 
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Appendix	I:	Parameter	optimization	based	on	normal	SCV	
This appendix shows the results of the parameter optimization for the parts based on 
normal SCV. These results do represent the model performance fairly. The parameter 
optimization is conducted based on the F1-score. Due to the model performance selecting 
the best parameters on savings would result in selecting the lowest recall to reduce the 
FP. However, the goal is now to see how well the model can perform. 

Preheat	1,2	unit	
In the dataset there have been 204 failures of the Preheat 1,2 unit. All of these were CM 
visits with a total cost of €674,759.66 (204 * €3,307.65 (Table 4)). The results for the 
combinations of the different parameters are shown in Table 45. The savings are in 
relation to the total cost of a CM policy.  

Table 45 - Parameter optimization Preheat 1,2 unit normal SCV (M, Z, Y, N) * 36,000 clicks 

 

The best results are achieved based on X = 1, M = 30 * 36,000, Z = 1 *36,000, Y = 30* 
36,000 and N =7 * 36,000. However, the results are very poor as the negative savings 
show.  

Printhead	Seneca	
A total of 190 failures of the Printhead Seneca occurred in the dataset. The costs for only 
CM visits are determined to be €594,251.66 (190 * €3,095.06 (Table 4)). The results of the 
different combinations of the parameters are shown in Table 46. The savings are in 
relation to the CM only policy. 
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Table 46 - Parameter optimization Printhead Seneca normal SCV, (M, Z, Y, N) * 36,000 clicks 

The best combination of parameters is X = 6, M =10*36,000, Z = 1*36,000, Y = 30*36,000 
and Z = 7 * 36,000. However, these results are very poor.  
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Appendix	J:	results	based	on	randomized	SCV	
This appendix shows the results of parameter tuning for the parts based on the 
randomized SCV model evaluation. These results do not fairly represent the ML model’s 
performance due to the random SCV. However, these are included to show the potential 
of the methods if there were recognizable patterns in the dataset.  

Since, the increasing Y always leads to better model performance according to Wang et 
al. (2017) and the models perform well it has been decided to fix Y on 30 * 36,000.  

Preheat	1,2	unit	
In the dataset there have been 204 failures of the Preheat 1,2 unit. All of these were CM 
visits with a total cost of €674,759.66 (204 * €3,307.65 (Table 4)). The results for the 
combinations of the different parameters are shown in Table 47. The savings are in 
relation to only CM visits.  

Table 47 - Method parameters Preheat 1,2 random SCV (M, Z, Y, N) * 36,000 clicks 

 

The first section of Table 47 shows that X and OW are changed (marked in red). The best 
OW size is 60 * 36,000 clicks. In the second section of Table 47 the optimal combination 
of X and M (marked in red) with Z, Y, N and OW fixed is determined. It is found that X = 
1 and M = 60 * 36,000 clicks result in the highest potential savings.  

In conclusion, X =1, M = 60 * 36,000, Z = 1 * 36,000, Y = 30 * 36,000 and N = 7 * 36,000 is 
found to give the best results with a precision score of 0.882 and recall of 0.552. This 
results in the potential savings of €25,366.25, a reduction of 3.76%.  

Preheat	3	unit	
The Preheat 3 unit is fails 237 times in the dataset. The total costs without CBM are 
€651,024.16 (237 * €2,746.94 (Table 4)). The results of different combination of the method 
parameters are shown in Table 48. 

Table 48 - Method parameters Preheat 3 unit random SCV (M, Z, Y, N) * 36,000 clicks 
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The first section of Table 48 shows that the optimal OW is 80 * 36,000 clicks. It is found 
by changing X (marked in red). In the second section the optima combination of X and M 
is found by trying multiple combinations (marked in red). It can be observed that X =1 
and M = 80 * 36,000 clicks are optimal.  

In conclusion the optimal X = 1, M = 80 * 36,000 clicks, Z = 1 * 36,000 clicks, Y = 30 * 
36,000 and N = 7 * 36,000. This resulted in the potential savings of €98,355.27, a reduction 
of 15.14%, based on a precision of 0.863 and recall of 0.692.   

Printhead	Seneca	
A total of 190 failures of the Printhead Seneca occurred in the dataset. The costs are 
determined to be €594,251.66 (190 * €3,095.06 (Table 4)). The results of the different 
combinations of the parameters are shown in Table 49. 

Table 49 - Method parameters Printhead Seneca (M, Z, Y, N) * 36,000 clicks 
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As can be seen from Table 49, implementing CBM would result in large losses compared 
to the current CM policy. It can be concluded that the method and ML model work well, 
since the precision score is 0.864 and recall is 0.707. However, since the difference in costs 
for the CBM visit and the CM visit are too small; each false positive results in a large 
amount of extra costs, while a true positive only results in a small cost reduction. CBM is 
not a good policy for this part based on this ML model    
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Appendix	K:	Random	Forest	parameter	optimization	results	
This appendix shows all the results from the Random Forest parameter optimization per 
part. These scores are based on tenfold normal stratified cross validation. 

K.1	Preheat	1,2	unit	Random	Forest	parameter	optimization	
 

 
Depth Number 

of trees 
Sample 

size Precison Recall F1 

0 5 50 20% 0.012 0.453 0.024 
1 5 50 40% 0.013 0.459 0.025 
2 5 50 60% 0.013 0.450 0.026 
3 5 50 80% 0.013 0.447 0.026 
4 5 50 100% 0.013 0.469 0.026 
5 5 100 20% 0.013 0.470 0.026 
6 5 100 40% 0.013 0.457 0.026 
7 5 100 60% 0.014 0.455 0.027 
8 5 100 80% 0.014 0.461 0.026 
9 5 100 100% 0.013 0.458 0.026 

10 5 250 20% 0.014 0.467 0.027 
11 5 250 40% 0.014 0.475 0.027 
12 5 250 60% 0.013 0.462 0.026 
13 5 250 80% 0.013 0.457 0.025 
14 5 250 100% 0.012 0.445 0.024 
15 5 500 20% 0.014 0.469 0.028 
16 5 500 40% 0.014 0.469 0.028 
17 5 500 60% 0.014 0.470 0.028 
18 5 500 80% 0.014 0.467 0.027 
19 5 500 100% 0.014 0.463 0.027 
20 5 1000 20% 0.013 0.463 0.026 
21 5 1000 40% 0.014 0.466 0.027 
22 5 1000 60% 0.014 0.467 0.026 
23 5 1000 80% 0.014 0.469 0.026 
24 5 1000 100% 0.014 0.470 0.027 
25 10 50 20% 0.013 0.284 0.025 
26 10 50 40% 0.013 0.276 0.025 
27 10 50 60% 0.014 0.304 0.026 
28 10 50 80% 0.014 0.310 0.026 
29 10 50 100% 0.014 0.313 0.027 
30 10 100 20% 0.013 0.270 0.024 
31 10 100 40% 0.013 0.269 0.024 
32 10 100 60% 0.014 0.296 0.026 
33 10 100 80% 0.014 0.305 0.027 
34 10 100 100% 0.014 0.288 0.026 
35 10 250 20% 0.014 0.282 0.026 
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36 10 250 40% 0.014 0.285 0.026 
37 10 250 60% 0.013 0.278 0.026 
38 10 250 80% 0.014 0.281 0.026 
39 10 250 100% 0.014 0.304 0.028 
40 10 500 20% 0.014 0.285 0.026 
41 10 500 40% 0.014 0.277 0.026 
42 10 500 60% 0.014 0.276 0.026 
43 10 500 80% 0.014 0.282 0.026 
44 10 500 100% 0.014 0.282 0.026 
45 10 1000 20% 0.013 0.281 0.026 
46 10 1000 40% 0.013 0.277 0.025 
47 10 1000 60% 0.014 0.288 0.026 
48 10 1000 80% 0.014 0.280 0.026 
49 10 1000 100% 0.014 0.285 0.026 
50 20 50 20% 0.017 0.093 0.028 
51 20 50 40% 0.018 0.080 0.030 
52 20 50 60% 0.016 0.076 0.026 
53 20 50 80% 0.015 0.071 0.025 
54 20 50 100% 0.015 0.075 0.025 
55 20 100 20% 0.019 0.081 0.031 
56 20 100 40% 0.023 0.087 0.036 
57 20 100 60% 0.013 0.069 0.022 
58 20 100 80% 0.020 0.077 0.032 
59 20 100 100% 0.012 0.055 0.020 
60 20 250 20% 0.019 0.076 0.030 
61 20 250 40% 0.020 0.080 0.032 
62 20 250 60% 0.018 0.068 0.029 
63 20 250 80% 0.021 0.075 0.032 
64 20 250 100% 0.017 0.063 0.027 
65 20 500 20% 0.020 0.077 0.031 
66 20 500 40% 0.019 0.076 0.030 
67 20 500 60% 0.017 0.065 0.027 
68 20 500 80% 0.019 0.073 0.030 
69 20 500 100% 0.018 0.068 0.028 
70 20 1000 20% 0.020 0.076 0.032 
71 20 1000 40% 0.019 0.077 0.031 
72 20 1000 60% 0.018 0.069 0.029 
73 20 1000 80% 0.018 0.072 0.029 
74 20 1000 100% 0.017 0.069 0.027 
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K.2	Preheat	3	unit	Random	Forest	parameter	optimization	

	

 
Depth Number 

of trees 
Sample 

size Precision Recall F1 

0 5 50 20% 0.013 0.479 0.025 
1 5 50 40% 0.013 0.457 0.025 
2 5 50 60% 0.013 0.460 0.026 
3 5 50 80% 0.013 0.466 0.026 
4 5 50 100% 0.013 0.456 0.026 
5 5 100 20% 0.013 0.476 0.025 
6 5 100 40% 0.013 0.465 0.025 
7 5 100 60% 0.013 0.462 0.025 
8 5 100 80% 0.013 0.464 0.025 
9 5 100 100% 0.013 0.456 0.026 

10 5 250 20% 0.012 0.464 0.024 
11 5 250 40% 0.013 0.461 0.025 
12 5 250 60% 0.013 0.458 0.025 
13 5 250 80% 0.013 0.458 0.025 
14 5 250 100% 0.013 0.456 0.025 
15 5 500 20% 0.012 0.460 0.024 
16 5 500 40% 0.013 0.466 0.025 
17 5 500 60% 0.013 0.462 0.024 
18 5 500 80% 0.013 0.466 0.025 
19 5 500 100% 0.013 0.467 0.025 
20 5 1000 20% 0.012 0.458 0.024 
21 5 1000 40% 0.012 0.461 0.024 
22 5 1000 60% 0.013 0.469 0.025 
23 5 1000 80% 0.013 0.463 0.024 
24 5 1000 100% 0.013 0.469 0.025 
25 10 50 20% 0.012 0.250 0.022 
26 10 50 40% 0.012 0.237 0.022 
27 10 50 60% 0.011 0.230 0.021 
28 10 50 80% 0.013 0.261 0.024 
29 10 50 100% 0.012 0.250 0.024 
30 10 100 20% 0.011 0.235 0.022 
31 10 100 40% 0.012 0.227 0.023 
32 10 100 60% 0.012 0.234 0.023 
33 10 100 80% 0.012 0.234 0.024 
34 10 100 100% 0.013 0.233 0.024 
35 10 250 20% 0.011 0.231 0.022 
36 10 250 40% 0.013 0.236 0.025 
37 10 250 60% 0.012 0.223 0.022 
38 10 250 80% 0.012 0.212 0.022 
39 10 250 100% 0.012 0.208 0.022 
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40 10 500 20% 0.012 0.244 0.023 
41 10 500 40% 0.012 0.228 0.023 
42 10 500 60% 0.012 0.228 0.023 
43 10 500 80% 0.012 0.219 0.022 
44 10 500 100% 0.012 0.212 0.022 
45 10 1000 20% 0.012 0.235 0.022 
46 10 1000 40% 0.011 0.216 0.021 
47 10 1000 60% 0.012 0.219 0.022 
48 10 1000 80% 0.012 0.223 0.023 
49 10 1000 100% 0.011 0.216 0.022 
50 20 50 20% 0.011 0.027 0.016 
51 20 50 40% 0.109 0.030 0.047 
52 20 50 60% 0.021 0.027 0.023 
53 20 50 80% 0.038 0.035 0.036 
54 20 50 100% 0.017 0.032 0.022 
55 20 100 20% 0.025 0.033 0.028 
56 20 100 40% 0.035 0.026 0.030 
57 20 100 60% 0.008 0.018 0.011 
58 20 100 80% 0.044 0.030 0.035 
59 20 100 100% 0.027 0.030 0.028 
60 20 250 20% 0.059 0.026 0.036 
61 20 250 40% 0.043 0.024 0.031 
62 20 250 60% 0.061 0.024 0.035 
63 20 250 80% 0.064 0.027 0.038 
64 20 250 100% 0.049 0.030 0.037 
65 20 500 20% 0.047 0.031 0.037 
66 20 500 40% 0.047 0.031 0.037 
67 20 500 60% 0.048 0.031 0.038 
68 20 500 80% 0.049 0.027 0.035 
69 20 500 100% 0.050 0.030 0.037 
70 20 1000 20% 0.063 0.031 0.041 
71 20 1000 40% 0.047 0.027 0.034 
72 20 1000 60% 0.049 0.031 0.038 
73 20 1000 80% 0.065 0.027 0.038 
74 20 1000 100% 0.116 0.031 0.049 
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K.3	Printhead	Seneca	unit	Random	Forest	parameter	optimization	
 

 
Depth Number 

of trees 
Sample 

size 
Precision Recall F1 

0 5 50 20% 0.026 0.525 0.050 
1 5 50 40% 0.031 0.523 0.059 
2 5 50 60% 0.026 0.542 0.050 
3 5 50 80% 0.041 0.515 0.076 
4 5 50 100% 0.041 0.524 0.076 
5 5 100 20% 0.072 0.520 0.127 
6 5 100 40% 0.054 0.528 0.098 
7 5 100 60% 0.056 0.542 0.102 
8 5 100 80% 0.054 0.554 0.099 
9 5 100 100% 0.046 0.565 0.086 

10 5 250 20% 0.064 0.510 0.114 
11 5 250 40% 0.068 0.513 0.121 
12 5 250 60% 0.046 0.542 0.085 
13 5 250 80% 0.053 0.525 0.097 
14 5 250 100% 0.044 0.542 0.082 
15 5 500 20% 0.072 0.535 0.127 
16 5 500 40% 0.065 0.523 0.116 
17 5 500 60% 0.065 0.544 0.116 
18 5 500 80% 0.050 0.541 0.092 
19 5 500 100% 0.046 0.545 0.085 
20 5 1000 20% 0.075 0.535 0.132 
21 5 1000 40% 0.071 0.530 0.125 
22 5 1000 60% 0.074 0.541 0.131 
23 5 1000 80% 0.076 0.541 0.133 
24 5 1000 100% 0.075 0.544 0.132 
25 10 50 20% 0.033 0.310 0.060 
26 10 50 40% 0.032 0.318 0.058 
27 10 50 60% 0.030 0.296 0.054 
28 10 50 80% 0.043 0.299 0.074 
29 10 50 100% 0.041 0.292 0.071 
30 10 100 20% 0.047 0.287 0.080 
31 10 100 40% 0.039 0.311 0.070 
32 10 100 60% 0.060 0.282 0.100 
33 10 100 80% 0.052 0.297 0.088 
34 10 100 100% 0.059 0.294 0.098 
35 10 250 20% 0.059 0.286 0.097 
36 10 250 40% 0.037 0.287 0.065 
37 10 250 60% 0.058 0.292 0.097 
38 10 250 80% 0.052 0.290 0.089 
39 10 250 100% 0.052 0.293 0.089 
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40 10 500 20% 0.056 0.289 0.093 
41 10 500 40% 0.044 0.286 0.077 
42 10 500 60% 0.069 0.285 0.111 
43 10 500 80% 0.052 0.282 0.087 
44 10 500 100% 0.058 0.280 0.097 
45 10 1000 20% 0.052 0.287 0.088 
46 10 1000 40% 0.045 0.276 0.078 
47 10 1000 60% 0.066 0.277 0.107 
48 10 1000 80% 0.053 0.280 0.090 
49 10 1000 100% 0.060 0.275 0.099 
50 20 50 20% 0.068 0.039 0.050 
51 20 50 40% 0.110 0.042 0.061 
52 20 50 60% 0.112 0.055 0.074 
53 20 50 80% 0.112 0.058 0.076 
54 20 50 100% 0.118 0.048 0.068 
55 20 100 20% 0.110 0.039 0.058 
56 20 100 40% 0.111 0.041 0.060 
57 20 100 60% 0.111 0.042 0.061 
58 20 100 80% 0.111 0.039 0.058 
59 20 100 100% 0.112 0.051 0.070 
60 20 250 20% 0.111 0.041 0.060 
61 20 250 40% 0.111 0.038 0.057 
62 20 250 60% 0.111 0.041 0.060 
63 20 250 80% 0.112 0.044 0.063 
64 20 250 100% 0.111 0.044 0.063 
65 20 500 20% 0.111 0.042 0.061 
66 20 500 40% 0.111 0.041 0.060 
67 20 500 60% 0.111 0.042 0.061 
68 20 500 80% 0.111 0.042 0.061 
69 20 500 100% 0.112 0.039 0.058 
70 20 1000 20% 0.011 0.037 0.017 
71 20 1000 40% 0.111 0.041 0.060 
72 20 1000 60% 0.011 0.035 0.017 
73 20 1000 80% 0.111 0.039 0.058 
74 20 1000 100% 0.111 0.039 0.057 

 

 

 


