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Abstract

The effectiveness of controlled order release and machine dispatching (workload control) is a well-studied topic
both in literature and in business. Work in progress reduction has been linked to an increase in effectiveness
by reducing the mental strain on employees. In this thesis, we further contribute to the body of workload
control literature by investigating the effectiveness of controlled order release and machine dispatching in
reducing work in progress through a case study at a high-mix-low-volume job shop.

In a number of iterations we develop an extended job shop simulation model. This model includes
the disturbing effects of yield loss, machine breakdowns, and external operations. We further include an
overtime mechanism to model the aggregate effects of human intervention that are typically not considered
in literature. This mechanism is triggered when the amount of arriving work or work in progress increases
and results in a temporary increase in service rates. We demonstrate that inclusion of the disturbances and
the overtime mechanism result in a model that is empirically valid, in the sense that typical simulations of
the resulting model are in line with observations for a real-life job shop.

Using the developed simulation model we test the effectiveness of three known machine dispatching rules
(earliest due date, least slack time, and critical ratio) and two order release rules (maximum number of
jobs and path based bottleneck). Our tests show that work in progress reduction is linked with throughput
reduction when the maximum number of jobs release mechanism is used, due to an increase in machine
idleness. This decrease in throughput is almost completely prevented with the path based bottleneck release
rule. For this rule large work in progress reductions are found with nearly no throughput loss, leading to a
strong case for the adoption of such path based bottleneck release rules in real-life job shops.
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Executive Summary

The dynamics of daily planning within the job shop of Parts are not fully understood which has led to little
control on production. In an attempt to improve control, Parts increased safety times and started expediting
delayed jobs by giving them priority over other jobs. The implementation of safety times increases work
in progress inventory and the expediting of jobs creates nervousness. As a result, Parts finds itself in a
downwards spiral with high work in progress inventory and low control on production. This high work in
progress results in, a high working capital, ineffectiveness due to a full work floor, regular re-planning, and
a high number of manual interventions. Also, research has shown that too high work in progress inventory
leads to reduced effectiveness as a result of mental strain on employees. This means that a reduction in work
in progress without a reduction in throughput would be beneficial for Parts. This research investigates how
controlled order release and machine dispatching can be used to reduce the work in progress at Parts with
little reduction in throughput.

To investigate the effectiveness of controlled order release and machine dispatching we build a simulation
model representing the production activities of Parts. This model combines the standard job shop simu-
lation model with extensions in the forms of yield loss, machine breakdowns, and external operations. In
addition this model includes an overtime mechanism. This mechanism aims to capture all interventions done
to increase productivity in case the available or planned work would exceed capacity by too much. The
simulation model is empirically validated and used to test the performance of different order release and
machine dispatching rules. In these tests, we change the dispatching and/or order release method in the
model and compare the performance of the new model on three main KPIs in the form of work in progress
reduction, throughput increase, and overtime reduction using the simulation model.

The three machine dispatching methods are earliest due date, least slack time, and critical ratio. For
earliest due date and least slack time, we find an increase in throughput and a decrease in work in progress.
This can be attributed to the fact that using these rules for machine dispatching will prioritize jobs with
shorter processing times. However, continuously prioritizing these jobs might not be a suitable strategy if
the profits of these jobs are included as well. For critical ratio, we also found an increase in throughput,
however, this time paired with an increase in work in progress, which is undesirable. We conclude that
although, smart machine dispatching can improve the performance of Parts the found benefits are small and
this should not get priority at the moment.

The first order release rule tested is maximum number of jobs which limits the work in progress on the
shop floor to a maximum. We found that this rule results in a decrease in work in progress paired with
a rather substantial decrease in throughput. We conclude that this decrease in throughput is the result of
machine idleness when work in progress at (temporary) bottlenecks stops order release. At Parts this effect
is magnified due to the fact that jobs could be separated based on the type of starting material and the
routings of these different types of jobs are unlikely to overlap significantly.

Aiming to reduce this idleness we test the effectiveness of the path based bottleneck release rule. The
path based bottleneck release rule only releases those jobs for which releasing them will not exceed a load
threshold for any machine in their routing. The results show that significant reductions in work in progress
are possible with very small reductions in throughput. Considering that past research showed that decreasing
the work in progress can lead to increases in effectiveness we believe that this reduction in throughput will
be nullified or even changed into an increase.

Implementing a pre-shop pool will lead to a very substantial reduction in work in progress inventory on
the shop floor, and thus a reduction in working capital. Moreover, by combining our insights with literature
we may expect that a pre-shop pool will increase the throughput of the shop, reduce the number of manual
interventions once parts are admitted on the shop floor, and improve worker satisfaction and retention.
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1 Introduction

This report presents the results of a master thesis project conducted by the Eindhoven University of Technol-
ogy in collaboration with VDL ETG Eindhoven (hereafter ETG). ETG is a supplier of original equipment
manufacturers (OEMs) and strives to get a better understanding into the effects of internal decisions on
their production process. We specifically focus on controlled order release and machine dispatching (work-
load control).

1.1 Company Description

ETG consists of multiple business units, the most important two are Parts and Systems. Parts is an internal
supplier for Systems and is a job shop, whereas Systems is responsible for assembly. This research focuses on
Parts. To get a better understanding of the role of Parts within ETG’s supply chain, planning and control
in the supply chain is discussed. Within the supply chain components are either produced internally at
Parts or purchased directly from the supplier. Parts is organised as a job shop with roughly fifty different
machines operated by specialists. Each specialist is trained to operate one or multiple machines. Parts
receives the raw materials directly from suppliers. Within Parts the planning is done by planning parts
which receives planning suggestions from integral planning. The components, either produced at Parts or
purchased directly from the supplier, go to Systems. Within Systems assembly of components is done based
on the planning of a production assistant who similarly to planning parts receives planning suggestions
from integral planning. Finished systems are sent to Expedition which, based on information from order
management, fulfils shipment to the customer.

Parts operates as a job shop producing a high-mix of products with low volumes. Therefore, Parts is
classified as a high-mix-low-volume job shop. Within this job shop jobs arrive as production orders. Each
job is for the production of one or more of the same stock-keeping units (SKUs). The production of a job
generally consists of multiple tasks which have to be completed on different machines. Information on what
tasks have to be completed in which sequence is stored in the job’s routing. The regular flow of a job is as
follows, first, a production map is made, whereafter it is checked whether the materials needed for production
are available. When this is the case the job enters the queue for the first task in the routing. On completion
of a task, the job enters the queue for the next task in the routing until the final task is done. Finally, the
job is send to the finished components stock which marks the end of the process for Parts.

1.2 Outline

This remainder of this thesis is divided into three parts: Part I discussing the context of the problem
discussed in this research, Part II introducing the model developed for analysis, and Part III analysing
possible solutions. Part I starts by introducing the current situation at Parts, formulating the problem
statement, and introducing the research framework used throughout this thesis in Chapter 2. Thereafter, we
present a survey of relevant literature in Chapter 3. Part II concerns the introduction of the model. First,
Chapter 4 introduces the conceptual model. Next, Chapter 5 introduces the computerized model. This
model is a discrete event simulation model and the result of multiple iterations of model building. Chapter
6 concludes Part II with a discussion of validation and verification of the computerized model. This thesis
continues in Part III with the analysis of workload control using the model build in Part II. In Chapter 7 we
present possible methods for order release and shop floor control and test these methods using our simulation
model. Chapter 8 continues by drawing conclusions based on these results. In addition to these conclusions
we reflect on our research, and end this thesis with recommendations for Parts.
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Part I

Research Context
In this Part, we introduce the context of the problem under investigation in this thesis. We start with the
current situation at Parts and investigate the disturbances in the production process. Afterwards, we discuss
how these disturbances arise and how Parts is trying to cope with them. Moreover, it is explained what we
believe to be the main disturbing factor of the production process. Based on this we formulate a problem
statement and corresponding research questions. Moreover, we review existing literature on job shop control
to identify workload control techniques that could be useful in tackling this problem.

This Part is organised as follows. Starting in Chapter 2, we first formulate the research problem in
Section 2.1, the research questions answered in this thesis are formulated in Section 2.2, and the framework
used for answering these questions in Section 2.3. Thereafter, in Chapter 3 we present a survey on literature
on order review and release in Section 3.1 and shop floor control in Section 3.2.
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2 Research Design

In this chapter, we first formulate the research problem in Section 2.1. The research questions answered in
this thesis are discussed in Section 2.2. Finally, Section 2.3 discusses the framework used for answering these
questions.

2.1 Problem Formulation

Within Parts the dynamics of daily planning are not fully understood and there is little control on production.
This little control and several disturbances lead to nervousness negatively influencing the production process.
Slightly modifying the definition of Fadil et al. (1997), this research defines a disturbance as: ”every event
which can harm the work of a work centre, for which control is already specified”. This research defines
control as the process of releasing and sequencing jobs to streamline production. This section discusses how
these disturbances arise and how Parts is trying to cope with them. Moreover, it is explained what we
believe to be the main disturbing factor of the production process.

2.1.1 Effects of disturbances

As mentioned there is little control within Parts. This little control resulted in a low delivery performance
as can be seen in Figure 2.1. To cope with the disturbances and the low delivery performance, safety times
are implemented, leading to an increase in waiting time. Moreover, for each task, a predetermined amount
of waiting days has been implemented in a response to the low delivery performance. As a result, jobs have
high cycle times consisting mostly of waiting. Figure 2.2 shows a Pareto of jobs based on their planned cycle
efficiency. As illustrated in this figure, more than 80% of the jobs have a planned cycle efficiency below 15%.
In other words, for over 80% of the jobs it is planned that these jobs are waiting more than five times as
long as they are in production.

Figure 2.1: Delivery performance in percentage of
jobs not tardy per week at Parts

Figure 2.2: Pareto of planned cycle efficiency at
Parts

These high waiting times have led to a work in progress inventory (WIP) equal to four and a half months
worth of time supply. Figure 2.3 shows how this WIP developed over the past three years. Subsection 2.1.2
discusses the effects of this high WIP in more detail. To ensure timely delivery despite this high WIP, Parts
implemented a priority system in which late jobs get expedited. At the moment, 32% of the orders are
classified into one of four priority levels, resulting in the delay of the other 68% of jobs.
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Figure 2.3: Average work in progress per week in
months time supply at Parts

Figure 2.4: Backlog per machine station in weeks
at Parts

The emerging nervousness from the expediting and delaying of jobs adds to the already existing ner-
vousness. The resulting backlogs are high (Figure 2.4) and there is even lower control on production. This
creates a downward spiral resembling the response time spiral (RTS) introduced by Suri (1998). Figure 2.5
shows a modified version of the RTS applicable to the situation at Parts.

Figure 2.5: Modified response time spiral adapted from Suri (1998)

2.1.2 Effects of high work in progress inventory

In recent years the relationship between work in progress and delivery performance has been a topic of
research. There appears to be a discrepancy between theoretical and empirical studies on this matter.
Van Ooijen (1996) argued that by restricting the work in progress based on the capacity utilisation of
machines, the delivery performance could be improved. This has been confirmed by earlier empirical studies
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(Bertrand and Wortmann, 1981; Fry and Smith, 1987). Moreover, a study into many different control policies
suggests that a reduction in Shop Floor Throughput time (STT) can be achieved by reducing WIP (Bertrand
and Van Ooijen, 2002). Note that SST is the time between a job’s release and its departure and thus does not
include its pre-shop pool throughput time (PTT). The Total Throughput Time (TTT) is the time between
arrival and departure of a job and therefore the sum of STT and PTT. Figure 2.6 gives a visual overview of
the types of throughput. The reduction in STT found in these studies is offset by an increase in PTT, often
leading to an increase in TTT. Based on this information, we conclude there is a discrepancy between the
empirical results, suggesting the control of workload can decrease TTT, and theoretical studies showing an
increase in TTT as a result of workload control.

Figure 2.6: Systematic representation of relationship between throughput KPIs adapted from Germs (2012)

Bertrand and Van Ooijen (2002) give an explanation for this discrepancy. They suggest that workstations
lose efficiency if the workload at that workstation is different from some optimal workload. This loss of
efficiency is consistent with the performance arousal curve proposed by Yerkes and Dodson (1908) and
shown in Figure 2.7. The performance arousal curve states that there is an inverted u-shape relationship
between performance and arousal when completing difficult tasks. Arousal can be caused by stressors like
the number of jobs to be completed at a certain work station. Thus, if we assume the tasks operators have
to complete at machines to be difficult, there is an inverted u-shape with the performance of these operators
and the number of jobs to be completed.

More support for the fact that increasing the WIP at a workstation could negatively influence the per-
formance at that workstation is found in the form of the job-demands-resources (JD-R) model (Demerouti
and Bakker, 2011). Similar to the performance arousal curve, this model links stressors (job demands) to
performance (organizational outcomes). This model also includes a buffering effect of job resources, meaning
that the effects of high job demands could be offset by boosting motivation and energy levels by adding
resources. The JD-R model thus states that reducing job demands while keeping job resources the same will
result in better performance. The performance arousal curve and the JD-R model both give a psychological
explanation that a reduction in WIP can lead to a increase in performance.
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Figure 2.7: Performance Arousal Curve adapted
from Diamond et al. (2007)

Figure 2.8: Job demands-resources model adapted
from Demerouti and Bakker (2011)

In addition to the psychological explanation given by the performance arousal curve and the JD-R model
there is a mathematical model explaining how a reduction in WIP could be beneficial. Little’s Law states
that the average number of jobs in a stable system (WIP) is equal to the average number of job arrivals to
the system (λ) times the average time a job spends in the system (TTT)(Whitt, 1992). Equation 1 shows
Little’s Law formally. Little’s Law shows that as long as the system is stable and the arrival rate constant, a
reduction in WIP would lead to a proportional reduction in TTT and thus increase the performance. While
Little’s Law shows that a reduction in WIP would lead to a reduction in TTT. A reduction in WIP can also
increase the systems idleness and thus reducing the total throughput of a system. This again suggests an
inverted u-shape relation between WIP and performance.

WIP = λ ∗ TTT (1)

For Parts the high WIP means a high working capital. An additional consequence of the high WIP, are
long and uncertain lead times, leading to regular re-planning (often multiple times for the same order) of
jobs. In the process of re-planning a new expected delivery date is communicated to the customer. Moreover,
the high WIP leads to full workstations and frequent transporting from and to warehouses all decreasing
efficiency.

The workload efficiency smiley, illustrated in Figure 2.9, shows all the aforementioned relationships
between WIP and performance in a simple way. From this model we can conclude that if it is possible to
reduce the WIP with little effect to other KPIs, the performance would increase.

Figure 2.9: Work efficiency smiley adopted from Zwartelé (2016)
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2.1.3 Problem statement

In Sections 2.1.1 and 2.1.2 we have shown how disturbances lead to high WIP at Parts. Furthermore, we
explained how this high WIP leads to an even higher WIP following an adjusted version of the RTS. Finally,
we discussed the negative effects of this high WIP and the possible benefits of reducing it. This can be
summarized in the following problem statement:

The effects of disturbances on production lead to high work in progress inventory. It seems that the current
methods of coping with this high WIP lead to an even higher WIP. As a result, there is little control on

production leading to frequent late deliveries.

As discussed, we believe reducing the WIP can break the RTS and thus improve the control of Parts.
However, to be beneficial, the reduction in WIP should not lead to high reductions in throughput. Section
2.2 formulates the research questions answered in this thesis.

2.2 Research Questions

Based on the problem statement given in Section 2.1 the following main research question (RQ) is formulated:

How to control order release and dispatching in a complex high-mix-low-volume job shop manufacturing
environment to reduce work in progress inventory without reducing throughput?

To answer the main RQ it is divided into three sub-research questions (SRQs). Firstly, SRQ1 focuses on model
development. SRQ2 and SRQ3 use the developed model to generate quantitative insights. The proposed
research aims to model production within Parts through simulation. Therefore the first sub-research question
follows logically:

1. How can a complex high-mix-low-volume job shop manufacturing environment be simulated?

After the simulation model is built it will be used to investigate what effect dispatching has on the control
of the system. Effectively this means, testing whether dispatching can reduce the WIP without disrupting
the throughput, resulting in RQ2. Similarly, the simulation model will be used to investigate the effect of
order release on the WIP and throughput of the system. RQ3 is formulated to answer this.

2. How can dispatching improve control of a complex high-mix-low-volume job shop manufacturing envi-
ronment by reducing work in progress inventory without reducing throughput?

3. How can order release improve control of a complex high-mix-low-volume job shop manufacturing en-
vironment by reducing work in progress inventory without reducing throughput?

The remainder of this thesis is used to answer these research questions. Section 2.3 describes how the
research is set up to achieve this. Moreover, in Chapter 8 these research questions will be recapped and their
answers will be discussed.

2.3 Research Framework

To be able to answer the RQs as defined in Section 2.2 a research is designed as outlined in this chapter.
Figure 2.10 gives a systematic representation of the research design. As illustrated, a simulation model, able
to represent production within Parts, will be made. This modelling of the real world situation corresponds
to RQ1. Next, the effects of order release rules and dispatching rules will be tested using the simulation
model build to answer RQ2 and RQ3. Finally, all acquired insights will be combined into conclusions,
recommendations, and further research directions.
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Figure 2.10: Research design
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3 Literature Review

In this chapter we review existing literature on job shop control. Job shop control can be classified into
three different categories: Order Entry, Order Review and Release, and Shop Floor Control. Order Entry
concerns the decision to accept or decline a job, Order Review and Release manages the transition of jobs
from planning to production, and Shop Floor Control controls the sequence in which jobs are processed
(Bergamaschi et al., 1997). Order Entry is out of scope of this thesis and is therefore excluded from this
literature review. Hence, the remainder of this chapter focuses on Order Review and Release and Shop Floor
Control which will be discussed in Sections 3.1 and 3.2 respectively.

3.1 Order Review and Release

In this section, an overview of Order Review and Release (ORR) methods in the literature is given. The
objective of ORR is to manage the transition of jobs from planning to production (Bergamaschi et al., 1997).
ORR consists of two main phases, the pre-shop pool (PSP) phase, and the order release (OR) phase. In the
PSP phase the jobs are queued in the PSP in according to some sequence rule. For a complete overview
of sequence rules discussed in this thesis see Appendix A.2. In the OR phase jobs are released at specific
times and specific quantities based on release rules. The remainder of this section is structured as followed.
First, an overview of pre-shop pool sequence rules if given in Subsection 3.1.1. Next, Subsection 3.1.2 gives
an overview of release rules. Finally, Subsection 3.1.3 gives an classification of release rules.

3.1.1 Pre-Shop Pool phase

The most basic PSP load based queuing rule introduced is first come first serve (FCF) (Fredendall et al.,
2010). FCF simply queues all jobs based on the their time of arrival, with the job with the earliest arrival
time first. In contrast the earliest due date (EDD) rule sequences jobs based on their due-date with, as the
name suggests, the earliest first. This rule has among others been discussed in pre-shop pooling literature
by Ragatz and Mabert (1988); Melnyk and Ragatz (1989); Philipoom and Fry (1999); Philipoom and Steele
(2011). Bechte (1988) proposed to use the earliest release date (ERD), sometimes referred to as planned
release date, as sequencing rule for PSP. ERD sequences the jobs based on their planned release date with
the earliest planned release date first (Land and Gaalman, 1998; Perona and Portioli, 1996; Fredendall et al.,
2010; Thürer et al., 2011, 2012).

To balance between the due date and the processing time the critical ratio (MCR) rule was introduced.
MCR sorts the jobs based on increasing critical ratios. The critical ratio of an order is equal to the time
remaining until its due date divided by the remaining processing time (Bobrowski, 1989; Abu-Suleiman et al.,
2005). A system in which the PSP is sequenced according to the slack ratio each job has, minimum slack
ratio (MSR), was proposed by Philipoom et al. (1993) and later used by several others (Fredendall et al.,
2010; Malhotra et al., 1994). The slack ratio of a job is defined as the proportion of machine slack that would
be consumed by the release of the job, where machine slack is the difference between a predefined threshold
and the current work already committed to the machine. To correct the load of a job for the time the job is
actually at a machine Thürer et al. (2015) proposed the capacity slack corrected rule (CSCOR). The modified
capacity slack rule (MODCS) is a combination of ERD and CSCOR (Thürer et al., 2015). MODCS first
sorts all jobs in the PSP into two category levels, one for urgent jobs, (i.e. jobs with a release date within
of before the current release period) and regular jobs (all other jobs). Following MODCS the urgent jobs
always get priority over the regular jobs, consecutively the urgent jobs are sequenced based on CSCOR and
the regular jobs on ERD.

Finally, a combination of PSP sequencing decisions can be made. An innovative way of doing this was
proposed by Abu-Suleiman et al. (2005) in the form of the modified critical ratio (MODCR) rule. This rule
sequences the PSP based on the modified critical ratio which is equal to the critical ratio but the remaining
processing time is first raised to the power of z where 0 ≤ z ≤ 1. Which means that a z of 0 results in EDD
while a z of 1 results in CR. All other values of z result in new unique combinations of the two rules. This
method has also been used to combine other rules (e.g. (Hamidi, 2016; Kumar et al., 2017)).
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3.1.2 Order Release rules an overview

The most strait forward order release rule is Immediate release (IMM). This rule releases every job as soon
as it is available and ignoring all information on the job and the status of the shop (Ragatz and Mabert,
1988). Another rule is Backward infinite loading (BIL), which does not consider the shop status, however, it
does consider the job’s information. BIL releases a job based on the due date corrected for a fixed allowance
per operation (Moreira and Alves, 2009). Ragatz and Mabert (1988) introduced a modified version of BIL
which was expended on by Philipoom et al. (1993) the Modified infinite loading (MIL). MIL differs from BIL
in that it uses a modified allowance per operation. MIL does take shop staus into account, yet it does not
consider shop capacity. A rule which includes shop capacity is the Maximum number of jobs (MNJ). MNJ
releases jobs until either all jobs are released or a predetermined maximum number of jobs are on the shop
floor (Melnyk et al., 1992).

Moreira et al. (2006) introduced Planned input-output control rule (PIOC) to control for both the input
in the number of jobs on the floor and the output delivery performance. PIOC combines aspects of BIL and
MNJ as it releases a job either when it is its latest release date (as with BIL) or when the number of jobs
on the shop floor falls below a predetermined maximum (as with MNJ). PIOC is very similar to Due date
and load-based release (DLR) which has been introduced by Sabuncuoglu and Karapinar (2000). The key
difference between the two methods is that PIOC uses a continues timing convention whereas DLR uses a
discrete timing convention. Where PIOC and DLR aim to control both capacity and lateness Finite forward
loading (FFL) is a rule which aims to control both the capacity and job earliness. Jobs are first scheduled
in the first shift for which it would not exceed the machine’s capacity and if this shift would not result in
too much earliness the job is released Ahmed and Fisher (1992); Bobrowski (1989).

To better account for the different times at which released jobs arrive at different machines Backward
finite loading (BFL), was introduced. BFL divides the planning horizon in epochs and releases jobs such
that the expected capacity of a machine in each of these epochs does not exceed a predetermined maximum
(Ragatz and Mabert, 1988). Similarly to BFL Path based bottleneck (PBB) aims to restrict the load on each
machine. PBB first sorts the jobs in the pre-shop pool and evaluates the release of each job based on the
current shop state and the job’s characteristics. A job is released if the release of that job would not exceed
the capacity of a machine on which the job has to be operated (along its path) Philipoom et al. (1993).

3.1.3 Order Release rules a classification

Based on the framework proposed by (Bergamaschi et al., 1997), OR rules can be classified based on eight
distinct attributes. An overview of these attributes and possible values is given in Table 3.1 and a clas-
sification of the rules discussed in the previous section is given in Appendix A.3. The remainder of this
subsection discusses these attributes. The first attribute is the Order release mechanism used, which can
be either load limited or time phased. Load limited OR releases jobs form the PSP based on their impact
on the shop and the current shop workload. Contrary, time phased OR releases jobs at computed release
times regardless of the current shop workload. The second attribute by which OR is typically classified is
the timing convention. OR rules with a continuous timing convention can release jobs at any time during
which the system is active. Discrete timing convention, on the other hand, allows only for releases at periodic
intervals. Often load limited rules are using a discrete timing convention whereas time-phased approaches
use a continuous timing convention.

Workload measure is the third classification attribute for OR. Since OR usually aims to balance the
workload in a shop, the exact measure of workload is of importance. Two main ways to measure workload
identified in the literature are: number of jobs and work quantity. The number of jobs measure simply
uses the number of jobs, while work quantity uses the expected processing times as an input. Besides the
definition of the workload measure it is also relevant to define the aggregation of the workload measure.
Bergamaschi et al. (1997) define three different aggregation levels. At one extreme the total shop load, which
does not take the load distribution within the shop into account. At the other extreme the load by each
work-centre could be used. In between these two extremes is the bottleneck load aggregation level. Another
attribute concerns the decision on calculations of the expected workload on each work-centre. Bechte (1988)
identified three types of load effecing the total workload on each work-centre: load on hand, load in transit,
and released load. How OR deals with these contributes over time is the fifth classification attribute. In case
no indication of load distribution over time, an OR is classified as atemporal. On the other hand, when the
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load is distributed over time buckets (e.g. shifts) the OR is classified as using time bucketing. Lastly, there
is the probabilistic approach which calculates probabilities of load in transit and released load to arrive at a
particular workstation for a given time. The final workload related classification attribute is workload control
which defines what kind of approach the OR uses to control the workload. The most common approach is
using an upper workload bound to control the WIP inventory level. Also, a lower workload bound could be
used. In this case, the OR aims to prevent starvation of work-centres by ensuring a predefined minimum
of work to be present at each station. More common is the usage of both an upper and lower bound to
prevent starvation while still limiting the WIP inventory level. Finally, there are OR which aim to balance
the overloading of one workstation with the under-loading of another (or vice-versa). When this is the case
the approach is called workload balancing.

Furthermore OR can be classified based on how which they deal with capacity planning. The classical
manner in which OR react to changes is by adjusting input parameters of the OR at hand based on a feedback
loop. These OR are classified as passive. Contrary, are active OR, which adjust the machine capacity while
the system is active. The final attribute by which OR are classified is the schedule visibility. This attribute
considers the planning horizon taking into account by an OR, which can be either limited (e.g. only the
closest planning period) or extended. In case of extended schedule visibility, the OR tolerates local bad
performance if it leads to a good global state.

Table 3.1: Classification framework for Order Release adapted from Bergamaschi et al. (1997)

Attribute Options

Order release mechanism
Load limited
Time phased

Timing convention
Continuous
Discrete

Workload measure
Number of jobs
Work quantity

Aggregation of workload measure
Total shop load
Bottleneck load
Load by each work-centre

Workload accounting overtime
Atemporal
Time bucketing
Probabilistic

Workload control

Upper bound only
Lower bound only
Upper and lower bounds
Workload balancing

Capacity planning
Active
Passive

Schedule visibility
Limited
Extended

3.2 Shop Floor Control

Similarly to the pre-shop pool sequence decision, at each machine a dispatching decision has to be made.
Meaning it has to be decided in what sequence jobs in the machine’s queue are processed. These sequence
rules can vary greatly in complexity and information on job and shop characteristics used. There are simple
rules which do not consider job nor shop characteristics and rules that do. The remainder of this section
will discuss the different types of dispatching rules.
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3.2.1 Simple dispatching rules

The simplest dispatching rules are rules which do not take job characteristics nor machine and shop status
into account. First come first serve (FCF) rule gives priority to the job that arrived at the machine first
(Aggarwal et al., 1973; Bulkin et al., 1966; Baker and Dzielinski, 1960). A modified version earliest arrival
date (EAD) gives priority to the job that arrived at the shop first (Hollier, 1968; Conway, 1964; Conway
et al., 2003). Contrary to FCF and EAD, Last in first out (LIF) and Latest arrival date (LAD) give priority
to the jobs arriving latest at the machine and the shop respectively (Panwalkar and Iskander, 1977).

3.2.2 Job based dispatching rules

There are also rules which take job characteristics, for example due dates, into account. The simplest due
date based rule is Earliest Due Date (EDD) (Brown, 1968; Conway et al., 2003; Eilon and Cotterjll, 1968;
Jones, 1973), which gives priority to the job whose due date is earliest. A more sophisticated version of this
the Operational due-date (ODD) gives priority to the job with the earliest operational due date (Conway,
1964; Conway et al., 2003). Meaning the due date for the specific machine it is queuing for at the moment.
ODD can be further modified into the Modified operational due date (MOD). The modified operational due
date of a job is the maximum of the jobs operational due date and the earliest possible completion time of the
operation (Baker and Kanet, 1983). MOD gives priority to the job with the smallest modified operational
due date. In addition to only considering the due date of a job, the current time could also be taken into
account, for example, Maximum job tardiness (MJT). MJT gives priority to the job with the highest current
tardiness.

Other rules which take jobs characteristics into account are based on the processing times of jobs without
considering the due dates of the jobs. The two most basic versions of these types of rules are the Shortest
processing time (SPT) and the Longest processing time (LPT) (Fryer, 1973). Which, as the names suggest,
give priority to the jobs with the shortest and longest processing times at the current machine respectively.
Truncated shortest processing time (TSPT) is an extended version of SPT, which uses SPT for jobs with a
processing time below a threshold and FCF otherwise (Oral and Malouin, 1973).

An alternative would be to look at the total work remaining for each job, for example, the Maximum
work remaining (MWKR) and Least work remaining (LWKR). MWKR and LWKR look at the total pro-
cessing time remaining for each job and give priority to maximum and minimum processing time remaining
respectively (Cigolini et al., 1998). Instead of determining the amount of work remaining best on the ex-
pected processing times the amount of work remaining could be expressed in the number of operations. least
number of operations remaining (LOR) and highest number of operations remaining (HOR) are two rules
which incorporate this method (Baker and Dzielinski, 1960; Conway et al., 2003; Panwalkar and Iskander,
1977).

Moreover, job characteristic based rules exist which combine due date and processing time information.
Two main approaches here are slack based rules and critical ratio based rules. A job’s slack is the time until
a job is due minus the job’s remaining processing time. Whereas a job’s critical ratio is equal to time until a
job is due divided by the job’s remaining processing time. The simplest slack based rule is Least slack time
(LST) which gives priority to the job with the least slack (Conway et al., 2003; Panwalkar and Iskander,
1977). Two modifications on this rule are Least operational slack (LOS) and Slack per remaining operation
(SPO) (Aggarwal et al., 1973; Brown, 1968; Bulkin et al., 1966). LOS considers the current machine and
gives priority to the job which has the least operational slack, where operational slack it the time until
the operational due date at the current machine minus the processing time at the current machine. On
the other hand, SPO considers all remaining machine and gives priority to the job with the lowest slack to
operations remaining ratio. Finally, there are critical ratio based dispatching rules Lowest critical ratio (CR)
and Operational critical ratio (OCR). CR gives priority to the job with the lowest critical ratio whereas OCR
prioritizes jobs with low operational critical ratio (Berry et al., 1984; Panwalkar and Iskander, 1977; Baker,
1984).
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3.2.3 Shop based dispatching rules

Shop based dispatching rules, dispatch jobs based on the status of the shop instead of the characteristics of
the jobs. This kind of dispatching rules aims to reduce machine idleness Conway et al. (2003). Number in
next queue (NINQ) attempts to do this by giving priority to the jobs for which the queue of the machine
of the next operation contains the least jobs (Hollier, 1968). A slightly different approach is the Least work
in next queue (LWINQ) (Panwalkar and Iskander, 1977). Similarly to NINQ, it looks to the next queue
however, the priority is based on the sum of processing times in the queue of the next machine instead of
the number of jobs. These methods can be extended by taking the considering the queues of the machines
further in the routing as well and correcting for the number of operations until a job reaches that queue.
Finally, Look Ahead Job Demanding (LAJD) uses a dispatching rule for each machine but overwrites this
rule if a machine runs the risk of becoming idle (Holthaus and Ziegler, 1997).

3.3 Conclusion

In this chapter, a wide variety of job shop control methods has been discussed. First, methods for pre-shop
pool sequencing have been discussed, then an overview of order release mechanisms, and finally possible
machine dispatching rules were explored. As we have seen there is a large resemblance in pre-shop pool
sequencing and machine dispatching rules. These methods can separately or together improve the control
and performance of job shops. To investigate whether job shop control could be beneficial for Parts the next
Part of this thesis will introduce a simulation model.
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Part II

Model development
In this Part, we introduce a conceptual and a computerized model representing the production environment
at Parts. In doing so, we answer our first research question: how can a complex high-mix-low-volume job
shop manufacturing environment be simulated? The model introduced is the result of multiple iterations of
the model building process proposed by Sargent (1981). An overview of this model is given in Figure 3.1.

Figure 3.1: Simplified Model Building Process adopted from Sargent (1981)

Part II is organised as follows. First, the development of the conceptual model is discussed in Chapter
4. In this chapter, the structure of the model, the underlying assumptions and validity of the model are
discussed. In Chapter 5 it is discussed how the conceptual model is translated into a computerized model.
Chapter 5 starts with the introduction of the simulation objects. Next, the simulation is explained and the
underlying distributions discussed. Thereafter, the role of sequence- and release rules is explained. Chapter
6 discusses the verification of the computerized model to the conceptual model and the operational validation
of the problem entity. The verification is among others done by comparison with known mathematical models
and known input output relations. The operational validation includes a reflection on the iterations of the
model building process, including an overview of how the model has developed between main iterations and
a reflection on the unsatisfactory earlier models.

We can roughly link the upcoming chapters to the model building process in the following manner.
Chapter 4 corresponds to the Analysis and Modeling step, Chapter 5 corresponds to the computer program-
ming and implementation step, and Chapter 6 to the Conceptual Model Validation, Computerized Model
Verification, and Operational Validation steps. The Experimentation step is done in Part III. All steps are
dependent on Data Validity, for a discussion on this we refer to Appendix D.
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4 Conceptual Model

In this chapter, the conceptual model of Parts is discussed. First, in Section 4.1 the model’s structure is
introduced. Next, in Section 4.2 the assumptions underlying the model are discussed. This chapter ends
with a discussion of the conceptual validity of the model in Section 4.3

4.1 Structure

Consider the flow of a job through a job shop as depicted in Figure 4.1. Jobs consist of several identical
items which have to go through a pre-determined sequence of operations. These operations can be either
internal on a machine or external and a sequence of operations is called a routing. The model starts with
jobs arriving at Parts. These jobs are stored in the PSP, where they wait to be released. Jobs from the
PSP are released to the shop at moments determined by a release rule and in a sequence determined by
a sequence rule. When a job is released it either goes to an external operation or it starts queuing for an
internal operation.

External operations are assumed to have infinite capacity. Internal operations, on the other hand, can
only work on one job at a time. Whenever a machine becomes available for an operation it starts working
on a job in its queue. The sequence in which the machine processes jobs is determined by a sequence rule.
It is assumed production can not be preempted (i.e. once a machine starts processing a certain job, it will
finish that job before starting on another).

Operations are subjected to yield loss, i.e. not every operation is successful on every item. If an operation
fails on one or more items of a job, all defect items are converted into a new rework job and will follow an
adjusted routing, while the other items continue the original routing. The adjustments made to a routing
are determined by a Rework Distribution.

After a job finished an operation, it is checked whether there are any operations left to be completed in
the jobs routing. If this is the case it starts queuing for the next internal operation or goes for an external
operation. However, if the job does not need to complete any other operations it departs the shop, which
is the last step a job can go through. Moreover, after each operation, there is a risk that a machine breaks
down. In this case, it will not start on the next job until it is repaired. To conclude, the rate at which the
machines process jobs can be temporarily increased if the amount of arriving work or the machine’s queue
pass a threshold. We call this mechanism the overtime mechanism and it is used to model all additional
human interventions.

Figure 4.1: Conceptual Job Shop Model
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4.2 Assumptions

The conceptual model as discussed in Section 4.1 is based on several assumptions. These assumptions are
stated below and each of these assumptions is discussed briefly. For a complete overview of assumptions and
a systematic representation of the model see Appendix B.

It is assumed that material is always available thus if a machine is available it can always start processing
the jobs in it’s queue. Also, it is assumed that all jobs that arrive at the job shop have fixed routings.
Meaning it is known beforehand which machines have to process the job in which sequence. With the
exception of a failed operation leading to rework, potentially imposing the routing of the rework job to
additional operations. Furthermore, it is assumed that each job can only be processed on one machine,
internal or external, at a time and each internal machine can only process one job at a time. Moreover,
external operations are assumed to have infinite capacity. Additionally, it is assumed that setup times are
not sequence-dependent. This means that the setup time of each job is independent of the job that came
before it. The model also assumes the shop is always open, i.e. if there is work for machines and they are not
down they run constantly. Differences between the working hours of machines is corrected by adjusting the
processing rates based on these differences. Operations are never preempted. So once an operation starts it
cannot be stopped until it is complete. Furthermore, items arriving at the shop are never cancelled. As a
result, all jobs stay in the system until they are finished. Finally, we assume breakdowns only occur after a
job is processed. Therefore, again, when an operation starts it will finish.

4.3 Validation

The combination of the structure and assumptions, introduced in Sections 4.1 and 4.2 respectively, results
in the full conceptual model. The basis of the conceptual model, jobs arriving with a predetermined routing
through a number of machines each with its own queue, is similar to other job shop simulation models in
the literature (see Ramasesh (1990) for a list of examples). Also, previous research into the effectiveness
of workload control uses the same method for modelling the PSP and order release as done in this model
(Weeks, 1974; Bertrand and Van Ooijen, 2002; Thürer et al., 2017). We did not find any previous job shop
simulation studies including all three disturbances, yield loss, machine breakdowns, and external operations,
in the same model. However, machine breakdowns (Holthaus, 1999) and external operations (Brown et al.,
2015) have been included in separate job shop simulation models before.

Moreover, the addition of all three the disturbances is the result of multiple iterations of model building,
testing, and validating. In each iteration a conceptual model was built based on weekly interviews with
team leaders of supply chain and logistics. Afterwards, a computerized model was made and this model has
been tested by comparing the model outcomes to the actual situation at Parts. When the results of the
model and the actual results did not sufficiently align, a revised conceptual and computerized model were
made. This iterative process was repeated until the conceptual model presented in this chapter resulted in
a computerized model yielding satisfactory results. Which aspects of the model changed throughout this
process is discussed in depth in Chapter 6.

Since the modelling methods used are common in literature and because the structure and assumptions
of the model are validated by the domain knowledge experts through interviews, we conclude that this
conceptual model is a valid representation of the job shop production process at Parts.
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5 Computerized Model

In the Chapter 4, the conceptual model has been introduced. This chapter explains how this conceptual
model is translated into a computerized model. The computerized model is made in Python using the
discrete event simulation library Simpy (Lünsdorf and Scherfke, 2013). In this simulation objects and events
interact with each other to simulate the behaviour described in the conceptual model. Moreover, events use
distributions and rules to determine their behaviour. Note that the model presented in this chapter is the
result of several iterations of the model building process shown in Figure 3.1.

This chapter is structured as follows, first, in Section 5.1, the objects within the simulation are explained.
Then, Section 5.2 describes how time flows in the simulation and how events can interact with these objects.
Next, Section 5.3 gives a detailed overview of each event in the simulation. Sections 5.4 and 5.5 explain
the structure of distributions and rules respectively. Thereafter, Section 5.6 describes the collection of key
performance indicators (KPIs) throughout the simulation. This chapter ends with a conclusion in Section
5.7.

5.1 Objects

The simulation uses three types of objects to model the system, jobs (Subsection 5.1.1), machines (Subsection
5.1.2), and the pre-shop pool (Subsection 5.1.3). Each of these objects is characterised by several attributes
and can have one or more states. In this section, an overview of these objects, their attributes, and states is
given.

5.1.1 Jobs

Each job j is characterised by the following attributes: size sj , arrival time aj , due time dj , priority pj , and
original routing OOG

j . In the simulation a routing is an ordered list of machines on which the job has to be

processed. Also, the remaining routing ORM
j (i.e. the routing steps still to be completed) and the finished

routing ODN
j (i.e. the routing steps already completed) are stored. The variable characterising jobs is a

Boolean variable (xj) describing whether the items in the job have been repaired or not. Table 5.1 gives an
overview of these attributes. Moreover, the model contains four distinct states for jobs, listed in Table 5.2,
indicating the status of the job. These states are: in the pre-shop pool (psp), in the queue for a machine
(que), being processed (pro), and left the shop (dep).

Table 5.1: Overview of job attributes

Attribute Notation Description
Size sj the number of items in the job
Priority pj the priority of the job
Arrival time aj time the job arrived at the shop
Due time dj time the job is due
Original routing OOG

j original routing of the job
Remaining routing ORM

j remaining routing of the job
Finished routing ODN

j finished routing of the job
Rework xj items of the job are repaired or not

Table 5.2: Overview of job states

Status Notation
In the pre-shop pool psp
In a machine queue qeu
In process pro
Departed dep
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5.1.2 Machines

Each machine m is characterized by the following attributes, also listed in Table 5.3 mean production time
µm, production time standard deviation σm, yield ym, down frequency νm, downtime λm, and queue qm.
The queue of a machine consists of jobs waiting to be processed on that specific machine. Similarly to jobs,
the model assigns distinct states to machines indicating its current status. These three states, also listed in
Table 5.4, are: idle (idl), processing (pro), and down (dwn).

Table 5.3: Overview of machine attributes

Attribute Notation Description
Process time mean µm the mean processing time of a job on this machine
Process time variation σm the standard deviation of processing time of a job on this machine
Yield ym the probability an operation on this machine is successful
Down frequency νm the probability this machine goes down
Down time λm the mean time this machine is down
Queue qm the jobs waiting for this machine

Table 5.4: Overview of machine states

Status Notation
Idle idl
Processing pro
Down dwn

5.1.3 Pre-shop pool

The pre-shop pool is an object as it has only one attribute queue q0. This queue consists of all jobs waiting
to be released to the shop floor. If the queue is empty the status of the pre-shop pool is also empty (emp)
and occupied (ocp) otherwise. Table 5.5 gives an overview of these states.

Status Notation
Empty emp
Occupied ocp

Table 5.5: Overview of pre-shop pool states

5.2 Simulation

Section 5.1 gave an overview of the objects used in the simulation. In this section we will introduce how the
simulation is set-up, time is progressed, and events are called. Algorithm 5.1 gives a systematic overview of
how this works while the remainder of this section gives a textual description.

The start of the simulation is the initialisation of the environment. For this initialisation, the simulation
time is set and objects are created. First, the simulation time is set to zero (tnow = 0). After which all
machines and the pre-shop pool (psp) are created. Note that Jobs are not created beforehand since they
enter and depart the shop throughout the simulation. Instead, the first order arrival event is scheduled at
t = 0, which creates the first job and schedules the next order arrival. How events schedule other events is
explained below and the exact dynamics of order arrival are explained in Section 5.3.

After all objects are created the simulation loop starts. This loop continues until the simulation time
reaches a specified end time (tend). During this simulation loop, time advances using the next-event time-
advance approach (Law et al., 2000). This approach utilises a set of scheduled events each consisting of
parts; the interactions with the simulation objects; and the events it schedules. This set of scheduled events
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is used as follows. The first scheduled event is taken from the set, then the simulation time advances to
the time at which this event is scheduled. Then interactions with the simulation objects are handled and
new events are scheduled. When the simulation end time is reached KPIs are calculated. How the KPIs are
calculated is explained in Section 5.6.

Algorithm 5.1 Simulation

1: tnow ← 0
2: for 1 to number of machines do
3: create machine
4: end for
5: create psp
6: schedule Order Arrival at t = 0
7: while tnow ≤ tend do
8: next event← first event from scheduled events
9: tnow ← time of next event

10: if type of next event is <type> then
11: do change objects based on <type> // (see: Section 5.3)
12: schedule events based on <type>

13: end if
14: end while
15: calculate KPIs // (see: Section 5.6)

Note that the simulation does not distinguish between work hours and closed hours or workdays and
holidays, but runs as if every machine in the shop runs constantly. This is done to streamline the simulation.
One time unit in the simulation corresponds to one working hour of an eight-hour workday. To facilitate
this all parameters have been converted to represent this continuous working system. How the parameters
are adjusted is discussed upon introduction of each parameter (mostly in Section 5.4).

5.3 Events

Section 5.2 provided an overview of the global behaviour of the simulation and the role of events. This
section describes each event in detail. Events use distributions and rules as input. These distributions and
rules are explained in Sections 5.4 and 5.5 respectively. An overview of events, their interactions with the
objects, and events they schedule is given in Appendix C.

5.3.1 Order Arrival

The event Order Arrival is used to create jobs and model their arrival. A systematic representation of the
event is given in Algorithm 5.2. It works as follows. First, the job’s routing, size, due date, and priority
are sampled from a routing-, size-, due date- and priority distribution respectively. These distributions are
explained in Subsections 5.4.2, 5.4.3, 5.4.4, and 5.4.5. Afterwards a new job with the sampled values as
parameters is created. Next, the job is added to the pre-shop pool and its state is set to psp. Then Order
Release is scheduled at the current simulation time. Finally, the next Order Arrival has to be scheduled.
This is done by sampling an inter-arrival time tarrival from an arrival distribution (Subsection 5.4.1) and
scheduling Order Arrival at the current simulation time plus the interarrival time.

5.3.2 Order Release

The event Order Release is used to release jobs from the pre-shop pool following a Sequence- and a Release
Rule. Sequence- and Release Rules are explained in Subsection 5.5.1. A systematic representation of the
Order Release is given in Algorithm 5.3. The Order Release event first checks whether the criteria for order
release are met. If this is the case the first job is taken from the pre-shop pool based on a Sequence Rule.
Then a Next Operation event is scheduled for this job at the current simulation time. Finally, a new Order
Release event is scheduled at the current simulation time.
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Algorithm 5.2 Order Arrival

1: sample r from Routing Distribution // (see: Section 5.4.4)
2: sample s from Size Distribution // (see: Section 5.4.2)
3: sample d from Due Date Distribution // (see: Section 5.4.5)
4: sample p from Priority Distribution // (see: Section 5.4.3)
5: job is new job with

original routing ← r
remaining routing ← r
size← s
due date← d
priority ← p

6: add job to psp
7: set state of job to psp
8: sample tarrival from Arrival Distribution // (see: Section 5.4.1)
9: schedule Order Arrival at tnow + tarrival

10: schedule Order Release at tnow

Algorithm 5.3 Order Release

1: if Release Criteria is True then // (see: Section 5.5.2)
2: j ← job from psp based on Sequence Rule // (see: Section 5.5.1)
3: schedule Next Operation at tnow with j
4: schedule Order Release at tnow
5: end if

5.3.3 Next Operation

The event Next Operation is used to determine what the next step for jobs will be. A systematic represen-
tation of the event is given in Algorithm 5.4. Next Operation is always scheduled for a specific job. First
it checks if there are any operations left in the routing of the job. If this is the case it is either an external
or internal operation. In case of an external operation, the event External is scheduled for the job at the
current simulation time. In case of an internal operation, the machine for that internal operation is called.
Next, the job is added to the queue of that machine and the job’s state is set to que. Thereafter, Check
Overtime Policy is scheduled for the machine at the current simulation time. If, there are no operations left
in the job’s routing, the job leaves the shop and its state is set to dep.

Algorithm 5.4 Next Operation

Require: job
1: if remaining routing of job is not empty then
2: next operation ← first operation from remaining routing
3: if next operation is external then
4: schedule External at tnow with job
5: else
6: next machine ← machine of next operation
7: add job to queue of next machine
8: set state of job to que
9: schedule Check Overtime Policy at tnow with next machine

10: end if
11: else
12: set state of job to dep
13: end if
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5.3.4 Check Overtime Policy

The event Check Overtime Policy is used to determine whether it is necessary to either stop or start running
overtime. Check Overtime Policy is always scheduled for a machine. The operation Check Overtime Policy
operates similar to thermostats and a systematic overview is given in Algorithm 5.5. First, it is checked
whether the machine is currently working overtime. If so, it is checked whether both the queue at the
machine and the work planned to arrive at the machine are both below the threshold for stopping with
running overtime. If this is the case the policy of the machine is switched to not running overtime. On the
other hand, in case the current policy of the machine is to not run overtime it is checked whether either the
queue at the machine or the work planned to arrive at the machine is above the threshold to start running
overtime. If this is true the machine’s policy is changed to running overtime. Note that it is only necessary
to exceed one of the upper limits to start working overtime while both the lower limits need to be met to
stop. Afterwards, the event Start Operation is scheduled for the machine at the current simulation time.

Algorithm 5.5 Check Overtime Policy

Require: machine
1: planned ← planned work of machine
2: queue ← queue of machine
3: maxQueue ← upper queue limit of machine
4: minQueue ← lower queue limit of machine
5: maxPlanned ← upper planned work limit of machine
6: minP lanned ← lower planned work limit of machine
7: if policy of machine is no overtime then
8: if queue ≥ maxQueue or plannedwork ≥ maxPlanned then
9: set policy of machine to overtime

10: end if
11: else
12: if queue ≥ minQueue and plannedwork ≤ minP lanned then
13: set policy of machine to no overtime
14: end if
15: end if
16: schedule Start Operation on tnow

5.3.5 Start Operation

The event Start Operation is used to determine if a machine can start processing a job and, if this is the
case, start the processing. A systematic representation of this event is given in Algorithm 5.6. Naturally,
Start Operation is always scheduled for a specific machine. First, we verify there are jobs in the queue for
the machine and whether the machine is available for processing (i.e. its state is idl). In case these criteria
are met, the first job is taken from the queue based on a Sequence Rule. Sequence Rules are explained in
Subsection 5.5.1. Next, the job’s state is set to pro. Subsequently, the state of the machine is also set to pro.
Finally, a processing time tprocess is sampled from a process distribution (Subsection 5.4.6) and the event
Finish Operation is scheduled for the job and the machine at the current time plus the processing time.
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Algorithm 5.6 Start Operation

Require: machine
1: queue ← queue of machine
2: if status of machine is idl then
3: if queue is not empty then
4: job← job from queue based on Sequence Rule // (see: Section 5.5.1)
5: set state of job to pro
6: set state of machine to pro
7: sample tprocess from process distribution // (see: Section 5.4.6)
8: schedule Finish Operation on tnow + tprocess with job, machine
9: end if

10: end if

5.3.6 External

The event External is used to model external operations on jobs. A systematic representation of the event
is given in Algorithm 5.7. External is scheduled for a specific job and works as follows. First, the state of
the job is set to pro. Next, the external processing time texternal is sampled from an external distribution.
Finally, the event Next Operation is scheduled for the job at the current simulation time plus the external
processing time.

Algorithm 5.7 External

Require: job
1: set status of job to pro
2: sample texternal from process distribution // (see: Section 5.4.6)
3: schedule Next Operation on tnow + texternal with job

5.3.7 End Processing

The event End Processing is used to model the end of an operation on a job. This includes potential yield
issues and machine failures. A systematic representation of the event is given in Algorithm 5.8. This event
handles the machine object first and thereafter the job object.

For the machine, first a downtime tdown is sampled from the Down Distribution. In case this downtime
is larger than zero the machine goes down. This is modelled by setting the machine’s state to dwn and
scheduling the Repaired event for the machine at the current simulation time plus the downtime. In case the
downtime is zero, the machine state is set to idl and Check Overtime Policy is scheduled for this machine
at the current simulation time.

Handling the job starts with checking the number of items on which the operation was successful and on
which the operation failed. If there are any failed operations a rework job is created including all items on
which the operation failed and the remaining items are clustered in a regular job. Next, the event Rework
is scheduled for the rework job at the current simulation time. If the operation was successful on any of the
items, Next Operation is scheduled for the job with these items (excluding the items now in the rework job)
at the current simulation time. If there are no successful items, the original job is deleted.
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Algorithm 5.8 End Processing

Require: job, machine
1: sample tdown from down distribution // (see: Section 5.4.7)
2: if tdown > 0 then
3: set state of machine to dwn
4: schedule Repaired at tnow + tdown with machine
5: else
6: set state of machine to idl
7: schedule Check Overtime Policy at tnow with machine
8: end if

9: size is size of job
10: sample failed from Yield Distribution // (see: Section 5.4.8)
11: success is size− failed
12: if failed > 0 then
13: rework job← copy job
14: size of rework job← failed
15: Schedule Rework at tnow with rework job
16: end if
17: if success > 0 then
18: size of job← success
19: Schedule Next Operation at tnow with job
20: else
21: delete job
22: end if

5.3.8 Repaired

The event Repaired is used to model the end of a machine’s down period. A systematic representation of
the event is given in Algorithm 5.9. This event handles a specific machine. First it changes the state of that
machine to idl. Finally, it schedules Check Overtime Policy for that machine at the current simulation time.

Algorithm 5.9 Repaired

Require: job
1: set status of machine to idl
2: schedule Check Overtime Policy at tnow with machine

5.3.9 Rework

The event Rework models how the routing of rework jobs are adjusted. A systematic representation of the
event is given in Algorithm 5.10. This event handles a job. First, it checks if the items already have been
repaired. If this is not the case, the last routing step has to be done over. This is done by copying this
step from the finished routing of the job to the remaining routing of the job. However, if the items already
have been repaired the items are scrapped. In this case the remaining routing is replaced with the original
routing. After the routing of the job has been changed the event Next Operation is scheduled for the job at
the current simulation time.
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Algorithm 5.10 Rework

Require: job
1: OOG ← original routing of job
2: ODN ← finished routing of job
3: ORM ← remaining routing of job
4: if repaired is False then
5: machine is last machine of ODN

6: add machine at start of ORM

7: else
8: clear ORM

9: copy OOG to ORM

10: end if
11: schedule Next Operation on tnow with job

5.4 Distributions

In Section 5.3 a detailed explanation of the events in the simulation was given. The exact behaviour of these
events is influenced greatly by the distributions used as their input. Nine different types of distributions
are used in the simulation. One is used to model times at which jobs arrive (Arrival Distribution), four
are used to generate new jobs (Size Distribution, Priority Distribution, Routing Distribution, and Due date
Distribution), and four are used to model the dynamics of internal operations (Process distribution, Down
distribution, Yield Distribution, and Rework Distribution).

These distributions are based on a data set of historic data obtained, and interviews conducted at Parts.
The historic data contains three years of job and machine information, including arrival times, routings,
priorities, due dates, waiting times, and process times. For details on the process of data collection, a
discussion on data quality, and the steps of data cleaning see Appendix D. The interviews consisted of
weekly interviews with team leaders of the supply chain engineering and logistics departments and several
interviews with employees from the maintenance- and production department. The remainder of this section
describes the distributions used in the simulation. For a complete overview of simulation parameters see
Appendix E.

5.4.1 Arrival Distribution

The Arrival Distribution determines how much time there is between the arrival of two separate jobs (i.e.
the interarrival time). It is common for jobs in job shop simulations to arrive according to a Poisson process
(Weeks, 1974; Bertrand and Van Ooijen, 2002; Thürer et al., 2017). Therefore the interarrival time is
modelled as an exponential distribution with rate λarrival. By taking the mean number of arrivals in a year
from the historic data and correcting for the work hours in a year the arrival parameter was estimated to be
λ = 2.62. This means that on average every simulation time unit 2.62 jobs arrive at the shop.

5.4.2 Size Distribution

Size Distributions are used to model the number of items in a job. The reason jobs are modelled to have
different sizes is so they can be split different times into rework and regular jobs in case of yield loss. This
effect is created in a sufficient amount by modelling the size of a job by a discrete uniform distribution on
the interval [1, 5].

5.4.3 Priority Distribution

Priority Distributions determine the priority of arriving jobs to the shop. Priorities are modelled by integers,
where the larger the number the higher the priority of the job. The fraction of jobs belonging to each priority
group in the historic data is tabulated in Table 5.6. Based on these fractions, intervals are created such that,
drawing from a uniform distribution on the interval [0, 1] and assigning a priority based on the interval the
resulting number falls in, results in a similar distribution of priorities.
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Table 5.6: Distribution of job priorities

Priority Level Fraction of jobs Corresponding interval

1 68.1% (0.000, 0.681)
2 3.2% (0.681, 0.731)
3 5.6% (0.731, 0.769)
4 13.3% (0.769, 0.902)
5 9.8% (0.902, 1.000)

5.4.4 Routing Distribution

Routing Distributions determine the routing of a job. Meaning it has to return an ordered list of integers
corresponding to machines. This is modelled as an empirical distribution, essentially drawing randomly
from a set of predetermined routings. This empirical distribution is made by collecting three years worth of
routing data and sampling with replacement from this distribution.

5.4.5 Due date Distribution

The due dates of jobs are determined by Due date Distributions. Our analysis of the historic data showed that
a relationship exists between a job’s expected processing time and the time until it is due. This relationship
is such that a job with a longer expected processing time has on average more slack upon arrival than a job
with shorter expected processing time.

To model this an empirical distribution is made of the ratio between the processing time of a job and
the time until that job is due. We call this ratio a jobs due-date tightness. The due date tightness of a job
is less then one if the time until it is due is less than the expected processing time, greater than one if the
time until it is due is greater than the expected processing time, and one otherwise. The due date of a job is
determined based on this distribution by multiplying a number drawn from this distribution by the expected
processing time of that job.

5.4.6 Process Distribution

The Process Distribution is used to determine the time needed for an operation of a job on a machine and
is build up from two parts. A basic part based on the historical process time and a factor to account for
overtime.

The distribution used for the basic part is determined by considering four common processing times
distributions: the uniform-, exponential-, normal-, and log-normal distribution (Baker and Trietsch, 2013).
The historical data of process times for each machine was used to test each of these process times distributions
using a Chi-squared test. For most machines, a log-normal distribution turned out to be the best fit.
Therefore, we decided to use a log-normal distribution for all machines. Based on the historical data we
estimated the mean and variation of process time at each machine.

As mentioned in Section 5.2 one unit of simulation time corresponds to one work hour in an eight-hour
workday. However, at Parts different machines work for a different number of hours per day. To account for
this the processing time mean and variation of each machine is corrected. This is done in similar to Brown
et al. (2015), by multiplying the processing time mean and variation of each machine by the ratio of actual
machine capacity to eight hours of machine capacity. The corrected mean and variation for each machine are
shown in Appendix E. In short, the basic part of the processing time is a number sampled from a log-normal
distribution with mean and variations obtained from historical data corrected for machine capacity.

The number obtained from this distribution is used directly in case the machine is not running overtime.
However, if the machine is running overtime the machine has additional capacity which should be accounted
for. This is done by multiplying the processing time by the inverse of the increase of capacity as the result of
overtime, which we call the overtime rate. The estimation of this overtime rate was made during interviews
with the team leader of the supply chain engineers and is 0.909.
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5.4.7 Down Distribution

The Down Distribution is used to determine two things, whether a machine goes down and how long it will
be down. This is done by first drawing from a Bernoulli distribution with parameter ν determining whether
the machine goes down or not. If the machine goes down the duration of the downtime is modelled by
an exponential distribution with parameter λm. If the machine does not go down, zero is returned. Data
on machine availability was scarce and therefore this distribution and its parameters are based on several
interviews with employees from the maintenance- and production department. The estimated downtime
parameter is ν = 0.1 and a machine is expected to be down for as long as it is expected for the machine to
complete one job λm = tprocess.

5.4.8 Yield Distribution

Yield Distributions determine the number of failed operations. This is modelled by a binomial distribution
with size parameter sj and probability parameter ym. sj is equal to the size of the job for which the yield
is determined. ym is based on the average machine yield of the past three years. Similar to the down
distribution, data on machine yield was scarce and therefore this distribution and its parameters are based
on several interviews with employees from the maintenance- and production department. The estimation for
the machine yield parameter is ym = 0.985.

5.4.9 External Distribution

External Distributions determine the duration of external operations. The process of determining this
distribution was the same as for the Process Time distribution. Meaning Chi-squared tests have been
used to test which of the four common processing times distributions fits best to the historical data of the
duration external operations. These tests showed that a log-normal distribution was the best fit. Moreover,
the mean and variation of the duration of external operations was determined based on the historical data
and subsequently transformed into simulation time units. As a result the duration of external operations is
modelled by a log-normal distribution with parameters µ = 87.47 and σ = 297.96.

5.5 Rules

The simulation uses two types of rules to model the decisions made in the system; Sequence Rules determine
in what sequence to release and process jobs, and Release Rules determine when to release jobs. In this
section these rules are explained and examples are given. Formal definitions used in this study of all rules
are given in Chapter 7.

5.5.1 Sequence Rule

Sequence Rules are used to determine in what sequence jobs should be released or processed depending on
whether they are applied to the pre-shop pool or machine queues. All sequence rules take a list of jobs as
input and return the job that has the highest priority based on the specific rule. The basic method used in
this thesis is the First Come First Serve rule, which sorts jobs based on their arrival time. Algorithm 5.11
shows how this works. The other sequence rules tested are formally introduced in Chapter 7.
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Algorithm 5.11 First Come First Serve

Require: jobs
1: current job is first job in jobs
2: current arrival time is arrival time of current job
3: for new job in jobs do
4: new arrival time is arrival time of new job
5: if new arrival time < current arrival time then
6: current job is new job
7: current arrival time is new arrival time
8: end if
9: end for

10: return current job

5.5.2 Release Rule

Release Rules determine whether a job can be released from the pre-shop pool onto the shop floor. Release
Rules take the current shop status as input and return True in case a job can be released and False in case
no job can be released. The current shop status is the collection of all objects. One example of a release
rule is IMM. IMM releases every job immediately upon arrival and thus corresponds to having no pre-shop
pool. A systematic representation is given in Algorithm 5.12. As can be seen this release rule returns True
as long as there is a job in the pre-shop pool.

Algorithm 5.12 Immediate release

Require: jobs
1: if length of jobs ≥ 1 then
2: return True
3: else
4: return False
5: end if

5.6 Monitoring

Sections 5.1, 5.3, and 5.4 explained how events and objects interact in the simulation model to model Parts.
In this section, we explain how this simulation is used to obtain KPIs on the shop performance for different
settings. Monitoring the simulation to obtain the relevant KPIs is done by tracking the shop status. As
mentioned before, the shop status is the collection of all objects in the system. Every time the shop status
changes the time of this change and the new shop status are saved. Additionally, the start and end times of
machine operations are stored. In doing so, all necessary information for calculating KPIs is stored.

5.7 Conclusion

In this chapter, the computerized model was introduced. This model consists of three types of objects, Jobs,
Machines and Pre-Shop Pool. These objects are modified by the events, which schedule new events to ensure
the continuation of the simulation. Additionally, distributions and rules were introduced. Distributions
are used to model the stochastic behaviour of the simulation whereas rules are used to model the decisions
made in the system. These objects, events, distributions and rules are used to collect KPIs via monitoring
functions. The model presented in this chapter is the result of an iterative process following the model
building process proposed by Sargent (1981) and introduced at the start of this Part.
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6 Validation and Verification

Chapter 5 discussed the computerized model. In this chapter, the verification and validation of the comput-
erized model are explained and the sensitivity of the model discussed. Also we provide the answer to the
first sub-research question:

• SRQ1: How can a complex high-mix-low-volume job shop manufacturing environment be simulated?

This chapter is organised as follows. Section 6.1 discusses the verification of the model, which is based
on determining whether the computerized model behaves according to the conceptual model. Next, the
operational validation or the relationship between the computerized model and the actual situation at Parts
is discussed in Section 6.2. We end this Chapter with a summary in Section 6.3.

6.1 Computerized Model Verification

The objective of computerized model verification is defined as: ”assuring that the computer programming
and implementation of the conceptual model are correct” (Sargent, 1981). The simulation model verification
is done by three different techniques: traces, face validity, and comparison with other models. Each of the
methods is discussed in the upcoming subsections.

6.1.1 Traces

Tracking and storing the behaviours of different types of specific entities in the model throughout time
results in traces. These traces are used to determine whether the model’s logic is correct and if it behaves
as intended. Examples of traces which have been checked are the operations an job goes through and
the machine queue throughout time. The traces obtained from the model all corresponded to behavior as
expected from the conceptual model.

6.1.2 Face Validity

The face validity of a model can be checked by using domain expert knowledge to check whether model
behaviour for certain settings is reasonable. We have tested whether the model adheres to 22 known input-
output relations from queuing theory. An overview of these relations is given in Appendix E.1. The com-
puterized model adheres to all of these relations.

6.1.3 Comparison to Other Models

By simplifying the simulation model we can compare the model with other valid (mathematical) models.
Here we discuss the mathematical models used the verify the simplified computerized model. For comparison
of the mathematical and simulation results see Appendix F

m/m/1 By simplifying the simulation model to a situation with a Poisson arrival process, first come first
serve (FCFS) processing, and one machine with exponential processing time we end up with a m/m/1 queue
(Sztrik, 2012). Let ρ be the server utilisation, µ the service rate, and λ the arrival rate. Then it is easily
shown that for a m/m/1 queue the expected number of customers in the system in steady-state is:

N̄ =
ρ

1− ρ
(2)

The expected waiting time of a customer is:

W̄ =
ρ

µ(1− ρ)
(3)

Finally, the expected total time a customer spends in the system is:

T̄ =
1

µ(1− ρ)
(4)
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m/m/1 with priority Again consider a simplified version of our simulation model with an arrival rate
λi for jobs of priority type i. Jobs are processed FCFS, however jobs with a lower priority level have non-
preemptive priority (e.g. when a new job can start an job with priority i gets picked over an job with priority
j > i, but processing of jobs is not interrupted). Let ρi be the fraction of the time the machine is busy on
jobs with priority i. Then it is known from queuing theory that in the case of two priority levels the expected
steady-state number of customers of type 1 and type 2 is equal to (Sztrik, 2012):

N̄1 =
(1 + ρ2)ρ1

1− ρ1
(5)

N̄2 =
(1− ρ1(1− ρ1 − ρ2))ρ2
(1− ρ1)(1− ρ1 − ρ2)

(6)

Moreover, it is known that the expected waiting time of jobs of type 1 and type 2 is equal to:

W̄1 =
(1 + ρ2)µ

1− ρ1
(7)

W̄2 =
(1− ρ1(1− ρ1 − ρ2))µ

(1− ρ1)(1− ρ1 − ρ2)
(8)

Jackson Network Consider a Jackson network with n machines each capable of processing one job at
the time with service rate µi for machine i (for more information on Jackson networks see (Boucherie and
Van Dijk, 2010)). Let jobs arrive from outside at machine i with rates λ′i. Let the probability of an job
processed on machine i going to machine j be transition rate pi,j . When the transition rates do not add up
to 1 jobs also leave the system. Arrival rates λi at each machine can be determined by solving the set of
balance equations:

λi = λ′i +

n∑
j=1

pi,jλj (9)

Then by treating each machine as a m/m/1 server, it can be shown that the expected number of customers
in the system is

N̄ =

n∑
i=1

ρi
1− ρi

(10)

As a result, the expected waiting time of a customer is equal to

W̄ = N̄

n∑
i=1

1

λ′i
(11)

Yield with Scrapping Consider the situation in which an operation is successful with probability α.
Each time an operation fails the semi-finished product is scrapped and the job has to start over from the
beginning. Let n be the expected initial routing length of an job then the expected number of operations
needed before an job is finished is equal to:

N =
1

α
+

1

α2
+ ...+

1

αn
=

1− αn

αn(1− α)
(12)
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Yield with a Single Repair Step and Scrapping Consider this situation slightly adjusted from the
one above. If an operation fails the semi-finished product is repaired. However, when an operation fails on
a repaired semi-finished product, the product is scrapped and the job has to start over from the beginning.
In this situation three things can occur: an job can finish after n operations without any failures, an job can
finish after n+1 operations with just one failure or an job is scraped and has to start over after 1 < x < n+1
operations. The probability an job finishes without any failures is equal to:

P0 = αn (13)

The probability an job finishes with exactly one failed operation is equal to:

P1 = nαn(1− α) (14)

The probability an job being scrapped after x operations is equal to (x − 1)αx−2(1 − α)2 and therefore
the probability an job gets scrapped:

P2 =

n+1∑
x=2

(x− 1)αx−2(1− α)2 (15)

The expectation of additional steps a job has to go through after being scrapped are equal to the
expectation of the number of steps a job has to go through at the start; N . Using equations 13, 14, and 15
then by definition the expected number of operations a job undergoes before finishing is equal to:

N = nαn + (n+ 1)nαn(1− α) +

n+1∑
x=2

(x+N)(x− 1)αx−2(1− α)2 (16)

Which can be rewritten into:

N =
nαn + n(n+ 1)αn(1− α) + (1− α)2

∑n
x=1(x+ 1)xαx−1

1− (1− α)2
∑n

x=1 xα
x−1 (17)

The simplified computerized models resulted in similar values as the m/m/1, m/m/1 with priority,
Jackson Networks, and yield formulas. Therefore we conclude that verification by comparison to other
models provides evidence for the verification of the model. In short, traces, face validity and comparison to
other models all provide evidence for the positive verification of the model, and therefore we conclude the
model is positively verified.

6.1.4 Sensitivity analysis

We evaluate the models sensitivity to parameter estimations and design decisions. To test the models
sensitivity to parameter estimations we slightly adjusted eight parameters up and down and evaluated the
resulting change in WIP and effective throughput. For a full overview of results of the tests see Appendix G.
These tests show that the WIP changes more than the throughput to adjustments in the input parameters.
The model is sensitive to are the arrival rate and the processing time mean. This is explained by the fact
that Parts operates at a high utilization and thus relative small changes in arrival rate or processing rate
have a high impact on the model. The model is also sensitive to changes in the external operation time
mean, which is the time it takes for a job to return after going for an external operation. This time includes
potential waiting and transport time. Consequently, a one percent increase or decrease constitutes to a large
absolute change in necessary time.

6.2 Operational Validation

In Section 6.1 the verification of the computerized model, which checks the relation between the conceptual
and the computerized model, has been discussed. This section discusses the operational validation. When
attempting to create an operationally valid computerized model two aspects are particularly important to
consider. The first is the difference between long term average behavior of a system versus the typical
behavior of a system. And secondly, the realisation that in modeling inherently assumptions are made and
aggregation is done, this section discusses both these aspects.
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6.2.1 Empirical Validation

In this subsection we discuss the empirical validity of the model by comparing the values of KPIs obtained
though simulation with the three year averages obtained from Parts. Moreover, we discuss the the model
building process more in depth and reflect on the main iterations made in this process.

The KPIs we verify the empirical validity of the model on are: delivery performance, production time,
and work in progress. Based on historical data collected we calculated the three year averages for these
KPIs. The delivery performance was 14.1%, production time was to 113.26 hours, and work in progress was
1562 jobs on average. Note that these three-year averages are the result of an array of decisions made by
professionals, fluctuations in supply and demand, absenteeism and overtime of employees, and much more.
These events can not be completely predicted nor replicated and thus we do not know how likely they were
to happen, we only know that they did. Moreover, the performance of Parts at any moment in time is not
independent of the performance of the moments before. As a result, we effectively only have one run to
which we can compare our simulation results. We do not know how likely the occurrence of the run was,
however since it is our only observation we should treat it like it is a typical run. Thus, the aim of the
operational validation of our model is to find a model for which the KPIs of a typical run are equal to the
three year averages from the historical data.

6.2.2 Model iterations

The simulation model is the result of an iterative model building process. In each iteration the conceptual
and operational validity of the model were checked. Until the final iteration the operational validity turned
out to be satisfactory. For each iteration of the model 25 runs with a duration of 30000 simulation time
units (roughly 73000 jobs) were done. In each iterations assumptions had to be added, relaxed or combined.
The first main iteration resulted in a base model of a job shop, in which jobs arrive at the shop, are released
to the floor, are processed on one or more machines and depart. This is modeled similar to Algorithms 5.2,
5.3, 5.4, 5.6, and a basic version of Algorithm 5.8 from the final model.

However, when checking this iteration it became clear that a lot of hidden dynamics disturbed the regular
flow of operations. The base model was not able to capture these dynamics and was therefore not suitable
for further analysis. Therefore, disturbances were added to the model in the form of yield loss, machine
breakdowns and external operations. These dynamics are mainly modeled in Algorithms 5.8, 5.9, 5.7, and
5.10 from the final model.

However, the addition of these disturbances resulted in a system in which some machines had an effective
utilisation greater than one. After more analysis it became clear that overtime is one of the measures used to
correct this. To model this, we implemented an overtime dynamic in third iteration. This overtime dynamic
was based on the current queue length of a machine and an overtime rate based on the historic data and
modelled by a basic version of Algorithm 5.5.

The model from the third iteration resulted in an average WIP closer to that observed at Parts. However,
the WIP varied highly between the runs as well as during the runs. These fluctuations between the runs mean
that it is hard to identify a typical run to compare to the empirical data. Also the high WIP fluctuations
within the runs is something we do not observe in the historical data. We believe this arises from the fact
that in reality an array of response time options is used by professionals to correct for high WIP. Trying to
capture all of these interventions separately would not be mathematically tractable (de Kok et al., 2018).
To solve this we changed the already implemented overtime mechanism such that it represents the aggregate
effect of all separate interventions. This mechanism aims to captures all interventions done to increase
productivity in case the available or planned work would exceed capacity by too much. This resulted in the
final version of the model which differs from iteration three mostly in Algorithm 5.5.

Table 6.1 gives a brief overview of the four iterations, the main changes made in each iteration, and
typical values for the KPIs of these iterations. This table illustrates that the KPI values changed between the
different iterations and that the KPI values of the final iteration are close to the historical data. Additionally,
the final model results in runs with less fluctuation in WIP similar to what we observed at Parts. Furthermore,
the average value of the runs and the value of a typical runs with this model are very similar. Therefore we
evaluate interventions tested with the model based on the average KPI values of multiple runs.
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Table 6.1: Overview of model iterations

Key Performance Indicators

Iteration Additions
Delivery

Performance
Production

Time
Work in
Progress

1. Base 0.275 111.1 789
2. Disturbed Yield loss and machine failures 0.115 115.5 2062
3. Basic overtime Overtime based on queue length 0.126 114.1 1806
4. Advanced overtime Overtime based on arriving work 0.145 114.4 1554
Actual situation 0.141 113.3 1562

Overview of additions made in key model iterations and the scores on key performance indicators in these
iterations. Units of the key performance indicators are as follows: delivery performance is in percentage of jobs
not tardy, production time is in simulation time units, and work in progress is in number of jobs.

6.3 Summary

This chapter discussed the validation and verification of the simulation model. The validation and verification
consists of conceptual model validation, computerized model verification, and operational validation. The
conceptual validation of the model was done by intensively discussing the conceptual model with domain
experts. Next, the verification of the computerized model was done using traces, face validity, and comparison
to other models. The results of these verification methods were positive and we were able to verify the
computerized model. Finally, the operational validity of the model was checked by comparing important
KPIs of the problem system with the results from the model. These comparisons were also positive, therefore
it was concluded that the model is operationally valid.

Since we validated and verified the computerized model and have therefore presented a simulation model
capable of representing the situation at Parts, we conclude that real-life high-mix low-volume job shops can
be simulated by extending a basic job shop simulation model with disturbances and an aggregate mechanism
modeling human interventions.
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Part III

Solution design
In this Part, we present our analysis of the effectiveness of controlled order release and dispatching using the
simulation model developed in Part II. This analysis includes the answers to SRQ2 and SRQ3. We introduce
three main KPIs in the form of work in progress reduction, throughput increase, and overtime reduction and
test the performance of different order release and machine dispatching rules using the simulation model.

Part III is organised as follows. In Chapter 7, we present the results of using different order release and
dispatching methods starting by introducing the KPIs in Section 7.1. In Subsection 7.2.1 we present the
results of machine dispatching rules while using the same release rule, IMM, as in the base model. Next,
in Subsection 7.2.2, we again test these machine dispatching rules, now using MNJ as release rule. We
continue by testing the PBB release rule in Subsection 7.2.3. Thereafter conclusions based on these results
are presented in Chapter 8 which starts with a discussion of these results in Section 8.1. Afterwards we
reflect on the research in this thesis in Section 8.2. Finally, recommendations for Parts based on the findings
of this thesis are given in Section 8.3.
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7 Results

In this chapter the effectiveness of shop floor control and order release measures are discussed. The simulation
model as described in Chapter 5 is used to test different combinations of machine dispatching, pre-shop pool
sequencing, and order release rules. This chapter starts with the introduction of the KPIs used in the
evaluating of the measures in Section 7.1. Section 7.2 presents the results for these KPIs when using order
release and shop floor control. This chapter ends with a summary in Section 7.3.

7.1 Key performance indicators

This chapter presents results to serve as evidence for the answers to the second and third sub research
questions under investigation in this thesis and this section introduces the KPIs necessary to do this. Recall
that these sub research questions are:

• SRQ2: How can dispatching improve control of a complex high-mix-low-volume job shop manufactur-
ing environment by reducing work in progress inventory without reducing throughput?

• SRQ3: How can order release improve control of a complex high-mix-low-volume job shop manufac-
turing environment by reducing work in progress inventory without reducing throughput?

To successfully answer these SRQs it is necessary to know the resulting WIP and throughput for the
different dispatching and order release rules. Therefore the first two KPI’s reported in this section concern
the average WIP on the shop floor and the average throughput. Since this throughput could be realized by
varying amounts of overtime, we also report a third KPI concerning the time that was available to realize
this throughput. Moreover, we are interested in how the different dispatching and release rules perform
compared to the base model. For this reason, the KPIs are expressed relative to the base model. Each time
these KPIs are tabulated, the absolute value of the underlying KPI is shown in round brackets for reference.

Note that a decrease in WIP and overtime are beneficial for performance while a decrease in throughput
is disadvantageous for performance. For clarity reasons, we define our KPIs such that an increase in the
KPI contributes to a positive effect on performance. Therefore we consider the following three KPIs in our
study: WIP reduction compared to the base model in average number of jobs on the shop floor per time
unit, throughput increase compared to the base model in average number of jobs per time unit, and available
time reduction compared to the base model in time units. Where the base model uses immediate release
(IMM) with first come first serve (FCFS) machine dispatching. All analyses are based on a time period
corresponding to three years for which 25 replications have been done.

7.2 Order release and machine dispatching

This section presents the results of using order release and shop floor control using the simulation model.
Subsection 7.2.1 presents the results of continuing with IMM in combination with different machine dis-
patching rules. The results of using maximum number of jobs and path based bottleneck as release rule
are discussed in Subsections 7.2.2 and 7.2.3 respectively. In Subsection 7.2.4 we evaluate results under the
assumption that a decrease in workload would increase efficiency.

7.2.1 Immediate release

In this section three sequence rules from the literature used in this thesis are formally introduced and their
performance as machine dispatching rules are tested. Recall that all rules are compared to the base model,
which uses IMM as release rule and FCF as machine dispatching rule. The first sequence rule EDD uses only
information on the characteristics of the job. EDD sequences jobs based on their due date giving priority to
the job with the earliest due date. Algorithm 7.1 gives a systematic representation.
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Algorithm 7.1 Earliest due date

Require: jobs
1: jobcurrent is first job in jobs
2: duecurrent is due date of jobcurrent
3: for jobnew in jobs do
4: duenew is due date of jobnew
5: if duenew < jobnew then
6: jobcurrent is jobnew
7: duecurrent is duenew
8: end if
9: end for

10: return jobcurrent

The second and third sequencing rules tested are LST and MCR, both rules consider job characteristics
and the current simulation time. LST gives priority to the job with the least slack time, where slack time
is the time until a job is due minus the processing time remaining for that job. MCR gives priority to the
job with the minimum critical ratio, where the critical ratio is the time until a job is due divided by the
processing time remaining for that job (see: Section 3.2). Equation 18 and Algorithm 7.2 and Equation 19
and Algorithm 7.3 show the calculations and systematic representations for LST and MCR respectively.

Sj = tnow − dj −
n∑

m=1

Pmj (18)

CRj =
tnow − dj∑n

m=1 Pmj
(19)

where
Sj = Slack of job j,
CRj = Critical ratio of job j,
tnow = Current time,
dj = Due date of job j,
Pmj = Processing time of job j at machine m,
n = Number of machines in the shop

Algorithm 7.2 Least Slack Time

Require: jobs
1: timenow is current simulation time
2: jobcurrent is first job in jobs
3: duecurrent is due date of jobcurrent
4: processcurrent is remaining process time of jcurrent
5: slackcurrent ← duecurrent − timenow − processcurrent
6: for jobnew in jobs do
7: jobnew is first job in jobs
8: duenew is due date of jobnew
9: processnew is remaining process time of jobnew

10: slacknew ← duenew − timenow − processnew
11: if slacknew < slackcurrent then
12: jobcurrent is jobnew
13: slackcurrent is slacknew
14: end if
15: end for
16: return jobcurrent
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Algorithm 7.3 Critical Ratio

Require: jobs
1: timenow is current simulation time
2: jobcurrent is first job in jobs
3: duecurrent is due date of jobcurrent
4: processcurrent is remaining process time of jcurrent
5: crcurrent ← (duecurrent − timenow)/processcurrent
6: for jobnew in jobs do
7: jobnew is first job in jobs
8: duenew is due date of jobnew
9: processnew is remaining process time of jobnew

10: crnew ← (duenew − timenow)/processnew
11: if crnew < crcurrent then
12: jobcurrent is jobnew
13: crcurrent is crnew
14: end if
15: end for
16: return jobcurrent

The three introduced sequence rules, EDD, LST, and MCR, are tested as machine dispatching rules with
IMM. Table 7.1 illustrates how the three dispatching rules perform compared to the base model. Note the
big difference in WIP reduction between the three machine dispatching rules. This can be explained by the
expected processing times of the jobs each rule prioritizes. As explained in Subsection 5.4.5, the time until
a job is due upon arrival is positively correlated to the expected processing time of that job (i.e. on average
jobs with shorter expected processing times have less time until they are due upon arrival than jobs with
longer expected processing times). As a result EDD is a little biased towards jobs with shorter expected
processing times, similar to the shortest processing time sequence rule (SPT). It is known that using SPT as
machine dispatching rule minimizes the total WIP, and it is therefore unsurprising that in this case EDD as
machine dispatching rule also leads to a large WIP reduction. LST prioritizes the jobs with the least slack
and we know that the slack of jobs upon arrival is positively correlated to the expected processing time of
that job (i.e. on average jobs with shorter expected processing times have less slack upon arrival than jobs
with longer expected processing times). Therefore, LST is also biased towards shorter jobs and reduces WIP
as well decreasing the expected WIP. The opposite is true for MCR, since the larger the processing time
of a job, the lower the job’s critical ratio (i.e. for two jobs with the same arrival time and due date MCR
prioritizes the job with the largest expected processing time). As a result, MCR is biased towards jobs with
high expected processing times increasing the expected WIP.

For all three machine dispatching rules an increase in throughput is found, however, the explanation for
this increase in the case of EDD and LST is different from the explanation in case of MCR. As explained above
EDD and LST are biased towards jobs with shorter processing times and hence resemble SPT. Therefore it
is unsurprising that the expected throughput increases compared to the base situation in which FCF is used.
The increase in throughput using MCR as machine dispatching rule has two different possible explanations,
both a result of the increase in WIP when using MCR. Firstly, this increase in WIP can lead to higher
machine utilisation and therefore an increased throughput and secondly, this increase in WIP can lead to a
more overtime and therefore a higher throughput.

The final KPI under consideration is overtime, for which we see only small differences. EDD and LST
result in a small reduction of overtime relative to the base model, while MCR results in the usage of a bit
more overtime. This increase in overtime for MCR is very small, and therefore we conclude that the increase
in throughput in case MCR is used it mostly due to the reduction of machine idleness.

After correcting for overtime the effective changes in throughput are 0.69%, 0.49%, and 1.10% for using
EDD, LST and MCR as machine dispatching rule respectively. Thus using EDD and LST both reduce the
WIP as well as increase the effective throughput. However, the constant prioritization of jobs with shorter
processing times could be unsatisfactory if job profits are taken into account. Moreover, the WIP reductions
from these dispatching rules are not high. Therefore, we conclude that although smart machine dispatching
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may improve the performance of Parts, currently these improvements are small and should not get priority.

Table 7.1: Immediate Release

EDD LST MCR

Work in progress reduction 7.40% (1439.13) 1.22% (1535.24) -15.7% (1797.48)
Throughput increase 0.69% (7.30) 0.49% (7.28) 1.12% (7.33)
Overtime reduction 0.00% (417.66) 0.01% (417.65) -0.01% (417.73)

Percentage changes with respect to the base model when using immediate release for different
machine dispatching rules with absolute values between round brackets for reference.

7.2.2 Maximum number of jobs

In this subsection we formally introduce the maximum number of jobs (MNJ) release rule and the perfor-
mance of this rule is compared to the performance of the base rule, IMM. MNJ checks the number of jobs on
the shop floor and releases a job in case this number is below a threshold. In the model this is implemented
by checking for every job in the system whether it is currently queuing (its status is que) or being processed
(its status is pro). If this is the case, this job is part of the current work in progress on the shop floor. In case
this work in progress on the shop floor does not exceed a threshold a new job can be released. A systematic
representation of this rule is given in Algorithm 7.4.

Algorithm 7.4 Maximum number of jobs

Require: jobs
1: wip← 0
2: for job in jobs do
3: if state of job is que or pro then
4: wip = wip+ 1
5: end if
6: end for
7: if wip < threshold then
8: return True
9: else

10: return False
11: end if

MNJ can be used with a wide variety of pre-shop pool sequencing rules. Here we test the performance
of MNJ using the three sequence rules introduced in Subsection 7.2.1 and the basic sequence rule FCF as
pre-shop pool sequencing rules. Also we test every pre-shop pool sequence rule in combination with the same
four sequence rules as machine dispatching rules. The maximum number of jobs threshold is set to 1250,
which is 20% lower than the current average. Tables 7.2, 7.3, and 7.4 show the results of each combination of
sequence and dispatch decision for work in progress reduction, throughput increase, and overtime reduction
respectively.

Consider the decrease in WIP for different combinations of pre-shop pool sequence and machine dispatch-
ing rules presented in Table 7.2. For each combination of pre-shop pool sequence and machine dispatching
rules the work in progress is reduced significantly, with a minimum reduction (25.15%) realised in WIP for
the combination of EDD as pre-shop pool sequence and MCR as machine dispatching rules respectively. In
this situation, two subsequent jobs are expected to have similar due dates as a result of the EDD pre-shop
pool sequencing rule. When these two jobs are compared on the shop floor priority will be given based on
the MCR machine dispatching rule. The critical ratio of two jobs with the same due date is lowest for the
job with the highest processing time and as a result the decrease in WIP as a result of MNJ release rules is
smaller.

The largest decrease in WIP (30.74%) is realized in the situation where the pre-shop pool is sequenced
according to LST and machine dispatching is done by EDD. Here two subsequent released jobs are expected
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to have similar slack as a result of the LST pre-shop pool sequence rule. In case these two jobs are compared
on the shop floor according to the EDD machine dispatching rule, priority thus will be given to the job with
the lowest expected processing time. As a result the WIP is further reduced utilizing this combination of
pre-shop pool sequence and machine dispatch rules.

The average WIP decrease for each distinct pre-shop pool sequencing method is maximum for LST and
minimum for MCR. However, the difference between these two averages is only 1.8%. Moreover, the average
WIP decrease for each distinct machine dispatching method is maximum for EDD and minimum for FCF
with a difference between these two averages of 0.8%. Meaning that the combination of the sequence rules
that perform best on average as pre-shop pool sequencing and the machine dispatching rule, also yields the
highest overall WIP reduction.

It is not unexpected that machine dispatching following EDD results in the largest reduction of WIP due
to the relationship between jobs due dates and expected processing times explained in Subsection 7.2.1. The
time until a job is due upon arrival is positively correlated to the expected processing time of that job (i.e.
on average jobs with shorter expected processing times have less time until they are due upon arrival than
jobs with longer expected processing times). As a result EDD is a little biased towards jobs with shorter
expected processing times, similar to SPT. It is know that SPT minimizes the total WIP, and it is therefore
unsurprising that in this case EDD as machine dispatching again results in the largest WIP reduction.

Table 7.2: Maximum Number of Jobs - Work in progress reduction

Machine dispatching
FCF EDD LST MCR

Pre-shop
pool
sequencing

FCF 26.16% (1147) 28.18% (1116) 28.72% (1107) 29.81% (1091)
EDD 28.80% (1106) 27.64% (1124) 27.81% (1121) 25.15% (1163)
LST 28.05% (1118) 30.74% (1076) 28.60% (1109) 29.02% (1103)
MCR 26.83% (1137) 26.64% (1140) 27.68% (1124) 27.94% (1119)

Percentage work in progress reduction with respect to the base model when using maximum number of jobs
for different machine dispatching rules and pre-shop pool sequencing rules with absolute values between round
brackets for reference.

The second KPI under consideration is the throughput increase. Note that each combination of pre-shop
pool sequence and machine dispatching rule with MNJ order release results in a negative increase and thus
a decrease of the throughput. This is expected, since using MNJ the maximum work in progress is limited
increasing the probability a machine becomes idle. Hence, the utilisation of the machines could go down
leading to a decrease in throughput. The pre-shop pool sequencing rule and machine dispatching rules which
on average lead to the smallest throughput reduction are FCF and MCR respectively. Also, the combination
of these two rules leads to the smallest overall reduction in throughput. The fact that MCR as machine
dispatching rule performs this well can be linked to the small reduction in WIP this rule on average yields
as explained above. However, as pre-shop pool sequence rule MCR performs the worst of all sequence rules
tested.

Table 7.3: Maximum Number of Jobs - Throughput increase

Machine dispatching
FCF EDD LST MCR

Pre-shop
pool
sequencing

FCF -4.01% (6.96) -2.35% (7.08) -2.38% (7.08) -1.08% (7.17)
EDD -2.46% (7.07) -2.55% (7.06) -2.47% (7.07) -4.42% (6.93)
LST -2.27% (7.08) -3.00% (7.03) -3.44% (7.00) -2.92% (7.04)
MCR -4.97% (6.89) -5.19% (6.87) -5.47% (6.85) -4.10% (6.95)

Percentage throughput increase with respect to the base model when using maximum number of jobs for different
machine dispatching rules and pre-shop pool sequencing rules with absolute values between round brackets for
reference.
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The final KPI under consideration is the reduction in overtime used. Table 7.4 shows a decrease in
overtime used for all combinations of pre-shop pool sequence and machine dispatching rules. On average
the best performing pre-shop pool sequencing rule is LST and the best performing machine dispatching rule
EDD. Recall that this is also the case for WIP reduction. For this KPI however the combination of the
on average best performing pre-shop pool sequence and machine dispatching rules does not yield the best
overall result. In this case the best overall result is achieved by combining MCR and EDD as pre-shop pool
sequence and machine dispatching rule respectively.

The changes in throughput and overtime should not be seen as independent since the increase (decrease)
of overtime for the same throughput corresponds to a decrease (increase) in effective throughput. Where
effective throughput is the throughput corrected for the change in available time as a result of overtime. The
effective throughput increased for all combinations of pre-shop pool sequencing and machine dispatching are
tabulated in Table 7.5.

Note the effective throughput decreases for all combinations of pre-shop pool sequencing and machine
dispatching when using MNJ. This most likely is due to the fact that the MNJ stops releasing all jobs in
case the WIP exceeds the threshold which could lead to high WIP at some machines and idleness of others.
At Parts this effect is magnified due to the fact that jobs could be separated based on the type of starting
material and the routings of these two types of jobs are unlikely to overlap significantly. Also, since MNJ does
not take detailed information on the shop into account, the observed decrease in throughput is in line with
the conclusion of Betrand and Van Ooijen (2008). They noted that when there are no workload dependent
server rates TTT can only reduce if a release rule takes detailed information about the shop status into
account.

Table 7.4: Maximum Number of Jobs - Overtime decrease

Machine dispatching
FCF EDD LST MCR

Pre-shop
pool
sequencing

FCF 0.27% (416.56) 0.11% (417.21) 0.07% (417.36) 0.08% (417.32)
EDD 0.14% (417.10) 0.06% (417.40) 0.01% (417.63) 0.14% (417.10)
EDD 0.11% (417.22) 0.17% (416.97) 0.16% (417.00) 0.16% (417.00)
MCR 0.11% (417.19) 0.30% (416.40) 0.11% (417.19) 0.01% (417.63)

Percentage overtime reduction with respect to the base model when using maximum number of jobs for different
machine dispatching rules and pre-shop pool sequencing rules with absolute values between round brackets for
reference.

Table 7.5: Maximum Number of Jobs - Effective throughput increase

Machine dispatching
FCF EDD LST MCR

Pre-shop
pool
sequencing

FCF -3.76% -2.24% -2.30% -1.00%
EDD -2.33% -2.49% -4.46% -4.29%
EDD -2.17% -2.84% -3.29% -2.76%
MCR -4.87% -4.91% -5.36% -4.09%

Percentage effective throughput increase with respect to the base model when using maxi-
mum number of jobs for different machine dispatching rules and pre-shop pool sequencing
rules.

7.2.3 Path based bottleneck

The second release rule compared to IMM is the PBB (Path based bottleneck see: Section 3.1). PBB only
releases those jobs for which releasing them will not exceed a load threshold for any machine in their routing.
Where the load of a machine is the sum of expected processing times on a machine for all jobs released. Thus
for each machine in the routing of a job it is checked whether the current load plus the load the job would

39



add is below the load threshold for that machine. If so, the job is eligible for release. PBB checks whether
the first job could be released without exceeding the load threshold of of all machines on that job’s routing.
If this is possible the job is released and otherwise the next job is checked. A systematic representation is
given in Algorithm 7.5. Since this release rule checks the load of all machines separately opposed to MNJ
which considers the shop as a whole, this rule should result in less utilisation loss and thus less throughput
loss.

Algorithm 7.5 Path based bottleneck

Require: jobs, threshold
1: for job in jobs do
2: routing is routing of job
3: for operation in routing do
4: process is process time of operation
5: machine is machine of operation
6: load is current load of machine
7: if load− process ≤ threshold then
8: return job
9: end if

10: end for
11: end for
12: return False

PBB takes a list of jobs sorted by the minimum slack ratio (MSR) sequence rule as input. MSR prioritizes
the job with the minimum slack ratio. The slack ratio aims to find the average proportion of slack of all the
machines visited by a job which the job would consume upon release (Philipoom et al., 1993). The slack
ratio for a job can be calculated as shown in Equation 20. This is implemented in the simulation model as
illustrated systematically in Algorithm 7.6.

SRj =

∑n
i=1

Pmj

T−Lm

Nj
(20)

where

SRj = Slack ratio of job j,
Pmj = Processing time of job j at machine m,
T = Capacity threshold,
Lm = Current total load at machine m,
Nj = Number of operations required by job j, and
n = Number of machines in the shop
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Algorithm 7.6 Slack Ratio

Require: jobs, capacity
1: jobcurrent is first job in jobs
2: routingcurrent is routing of jobcurrent
3: numbercurrent is length of routingcurrent
4: for operation in routingcurrent do
5: process is process time of operation
6: machine is machine of operation
7: load is current load of machine
8: ratiocurrent ← ratiocurrent + process/(capacity − load)
9: end for

10: ratiocurrent ← ratiocurrent/numbercurrent
11: for jobnew in jobs do
12: jobnew is first job in jobs
13: routingnew is routing of jobnew
14: numbernew is length of routingnew
15: for operation in routingnew do
16: process is process time of operation
17: machine is machine of operation
18: load is current load of machine
19: rationew ← rationew + process/(capacity − load)
20: end for
21: rationew ← rationew/numbernew
22: if rationew < ratiocurrent then
23: jobcurrent is jobnew
24: ratiocurrent is rationew
25: end if
26: end for
27: return jobcurrent

PBB can be combined with with a wide variety of pre-shop pool sequencing rules. Similar to the analysis
for MNJ, we test the performance of PBB using the three sequence rules introduced in Subsection 7.2.1
and the basic sequence rule FCF as machine dispatching rules. To compare the performance of PBB in
combination with different machine dispatching rules we test each combination when the PBB threshold is
set to 350. This threshold is set after several short exploratory simulation runs. Table 7.6 reports how the
four dispatching rules perform compared to the base model.

When using PBB a reduction in WIP, throughput, and overtime is achieved regardless of the machine
dispatching rule used. The largest WIP and smallest throughput reductions are achieved when using LST
as machine dispatching rule and the largest overtime reduction when MCR is used.

Table 7.6: Path Based Bottleneck

FCF EDD LST MCR

Work in progress reduction 34.48% (1021) 35.54% (1001) 38.63% (953) 25.06% (1164)
Throughput increase -1.86% (7.11) -0.94% (7.18) -0.69% (7.20) -1.18% (7.16)
Overtime reduction 0.06% (417.4) -0.06% (417.4) 0.09% (417.3) 0.11% (417.2)

Percentage changes with respect to the base model when using path based bottleneck for different machine dis-
patching rules with absolute values between round brackets for reference.

To further investigate the effectiveness of PBB on the KPIs we test PBB for different threshold values.
Since LST and MCR were the best performing machine dispatching rules for a threshold of 350, we use
these rules also for this test. Figures 7.1 and 7.2 show how PBB performs for different threshold values
with MCR and LST as machine dispatching rules respectively. These figures illustrate that a trade-off
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between maximizing the decrease in WIP and overtime and minimizing the decrease in throughput. We do
not model the increase in effectiveness resulting form decreasing WIP (workload dependent service rates).
Consequently, it is logical the results show this trade-off. By means of comparing the results (illustrated in
the figures below) we noted that combining PBB with LST machine dispatching rule results in a greater
decrease in WIP for a smaller decrease in throughput than combining PBB with MCR as machine dispatching
rule.

Figure 7.1: Path based bottleneck with critical ra-
tio dispatching for different threshold values

Figure 7.2: Path based bottleneck with least slack
dispatching for different threshold values

7.2.4 Increased effectiveness

In our model we did not include the effects of workload dependent service rates. However, in Subsection 2.1.2
we provided evidence from literature for the existence of such an effect. In the situation where PBB with a
machine load threshold of 350 is combined with LST machine dispatching we observed a decrease in WIP of
37%. This type of WIP reduction should lead to an increase in efficiency following the work efficiency smiley
introduced in Section 2.1, therefore we test how this combination of order release and machine dispatching
rules would perform under the assumption that the efficiency would increase as a result of the WIP reduc-
tion. Empirical results showed a 10% decrease in WIP resulted in a 1.0% efficiency increase after a year
(Bertrand and Van Ooijen, 2002). We therefore assume that the 38% reduction of WIP would result in a
efficiency increase between 1.0% and 3.7%. The WIP and effective throughput values when using PBB with
a load threshold of 350 and LST machine dispatching for overall efficiency increases of 1.0% and 3.7% are
tabulated in Table 7.7. These results show that using PBB order release in combination with LST machine
dispatching can lead to a WIP decrease between 40.65% and 45.16% and a throughput increase between
0.19% and 0.93%. Therefore, we conclude that order release can improve shop performance by reducing WIP
levels at machines while preventing large increased in idleness if there is an efficiency gain from the reduced
work in progress.

Table 7.7: Path Based Bottleneck with increased efficiency

1.0% efficiency increase 3.7% efficiency increase

Work in progress reduction 40.65% 45.16%
Effective throughput increase 0.19% 0.93%

Percentage changes with respect to the base model when using PBB with a load threshold
of 350 and LST machine dispatching for overall efficiency increases of 1.0% and 3.7%.
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7.3 Summary

This chapter presented the results of using workload control through controlled order release and dispatching.
We introduced three main KPIs in the form of work in progress reduction, throughput increase, and overtime
reduction and tested the performance of different order release and machine dispatching rules using the
simulation model. We concluded that although smart machine dispatching can improve the performance
of Parts, currently these improvements are small and should not get priority. However, with workload
control through controlled order release it is possible to strongly decrease WIP while only slightly decreasing
throughput even when the efficiency gains of this decreased WIP are not considered. Finally, we included
the expected efficiency gain resulting for reducing the work in progress into our tests. The performed tests
showed that a high reduction of work in progress can be realised while increasing throughput by using
controlled order release in the form of path based bottleneck.
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8 Conclusion

The objective of this thesis was to investigate the possible improvement of production performance of Parts
through implementing controlled order release and machine dispatching. For this purpose, current disturbing
factors at Parts were identified, and thereafter possible machine dispatching and order release rules tested
using an empirically valid simulation model. This final chapter draws conclusions on the insights obtained in
this thesis and reflects on the research conducted. Section 8.1 summarizes the conclusions of this thesis. After
which, we formulate directions for further research based on insights obtained from this thesis and possible
improvements to the research in Section 8.2.2. This thesis ends with an overview of recommendations for
Parts in Section 8.3.

8.1 Conclusions

Prior to the start of this research the dynamics of daily planning within the job shop of Parts were not
fully understood which led to little control on production. In an attempt to improve control, Parts increased
safety times and started expediting delayed jobs by giving them priority over other jobs. The implementation
of safety times increases work in progress inventory and the expediting of jobs creates additional nervousness.
As a result, Parts finds itself in a downwards spiral with high work in progress inventory and low control on
production.

We identified reducing the work in progress as a possible method to break this spiral and hopefully
improve the performance of Parts. We provided evidence from literature suggesting a negative relation
between high work in progress and performance, further strengthening the proposition that reducing work
in progress is a suitable method to improve the performance of Parts. However, reducing work in progress
inventory can lead to machine idleness resulting in a reduction in throughput. Thus we formulated the
following research question aiming to improve the performance of Parts by reducing the work in progress
without reducing the throughput:

How to control order release and dispatching in a complex high-mix-low-volume job shop manufacturing
environment to reduce work in progress inventory without reducing throughput?

To answer this (main) research question a simulation study was set-up and three sub research questions have
been formulated. Combining the answers to these sub research questions provides the necessary insights for
answering the main research question. Recall the first sub research question:

• SRQ1: How can a complex high-mix-low-volume job shop manufacturing environment be simulated?

In this thesis we presented a model which is the result of iterative model building process. This process
consisted of redefining, testing, and validating both conceptual and computerized models on the basis of
weekly interviews and empirical data. The model extends the basic structure of a job shop simulation model
with three disturbances (yield loss, machine breakdowns, and external operations). In addition to this, we
included an overtime mechanism to model the aggregate effects of human interventions that are typically not
considered in literature. We demonstrated that inclusion of the disturbances and the overtime mechanism
resulted in an empirically valid model, in the sense that typical simulations of the resulting model are in line
with historical data from Parts. We therefore concluded that real-life high-mix low-volume job shops can be
simulated by extending a basic job shop simulation model with disturbances and an aggregate mechanism
modeling human interventions. The second sub research question concerns the effectiveness of machine
dispatching on increasing shop performance.

• SRQ2: How can dispatching improve control of a complex high-mix-low-volume job shop manufactur-
ing environment by reducing work in progress inventory without reducing throughput?

In this thesis we compared the performance of three machine dispatching methods to that of first come first
serve used in the base model. The three machine dispatching methods are: earliest due date, least slack
time, and critical ratio. For earliest due date and least slack time we found an increase in throughput and a
decrease in work in progress. This can be attributed to the fact that using these rules for machine dispatching
will prioritize jobs with shorter processing times. However, continuously prioritizing these jobs might not be
a suitable strategy in case the profits of these jobs are included as well. For critical ratio we also found an
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increase in throughput, however this time paired with a increase in work in progress. Critical ratio increased
work in progress by prioritizing working on the jobs with longer processing times. This increase in work
in progress reduces the expected idleness making up for the throughput lost by prioritizing these jobs. We
concluded that although smart machine dispatching can improve the performance of Parts, currently these
improvements are small and should not get priority. The third, and final, sub research question concerns the
effectiveness of controlled order release on shop performance.

• SRQ3: How can order release improve control of a complex high-mix-low-volume job shop manufac-
turing environment by reducing work in progress inventory without reducing throughput?

We tested the effectiveness of two order release rules discussed in the literature using our simulation model.
The first order release rule tested is maximum number of jobs which limits the work in progress on the shop
floor to a maximum. We found that this rule results in a decrease in work in progress. However this decrease
in work in progress leads to increased idleness of machines resulting in a significant decrease in throughput.

Aiming to reduce the increase in idleness as a consequence of limiting the work in progress, we tested the
effectiveness of the path based bottleneck release rule. The path based bottleneck release rule only releases
those jobs for which releasing them will not exceed a load threshold for any machine in their routing. The
results of these tests showed that large work in progress reductions with only small reductions in throughput
can be achieved by path based bottleneck controlled order release. These results are achieved without
considering the increased effectiveness as a result of decreasing work in progress. As illustration of the
additional potential benefits when considering the expected efficiency gain resulting for reducing the work
in progress, we include this effect into our final tests. These tests showed that a high reduction of work in
progress can be realised while simultaneously increasing throughput by using controlled order release in the
form of path based bottleneck.

In short, we showed that real-life high-mix low-volume job shops can be simulated by extending a basic
job shop simulation model with disturbances and an aggregate mechanism modeling human interventions.
And showed that implementing a pre-shop pool will lead to a very substantial reduction in work in progress
inventory on the shop floor, and thus to a reduction in working capital. Moreover, by combining our insights
with literature we may expect that a pre-shop pool will increase the throughput of the shop, reduce the
number of manual interventions once parts are released onto the shop floor, and improve worker satisfaction
and retention.

8.2 Reflection

In this section we reflect on the research in this thesis. First, we describe several contributions of this thesis
to the literature. Thereafter, several limitations of this study are discussed. Finally, we propose future
research directions to investigate the effects of these limitations and to build further upon the findings of
this thesis.

8.2.1 Contribution to literature

This thesis contributes to the literature in two ways. The developed job shop simulation model extends the
basic simulation model in several aspects. The model includes the disturbing effects of yield loss, machine
breakdowns, and external operations. Also, it includes a mechanism to model the aggregate effects of human
intervention that are typically not considered in literature. We showed the model is empirically valid, in the
sense that typical simulations of the resulting model are in line with observations for a real-life job shop.

Furthermore, we tested the path based bottleneck release rule in a simulation model of a real-life job shop.
We provide evidence that this rule can lead to large work in progress reductions with nearly no throughput
loss. Earlier research only provided such evidence using simulation models of fictional job shops.

8.2.2 Limitations

The research in this thesis is subject to several limitations. Firstly, we conducted a literature study with
the objective to identify machine dispatching and order release rules (control mechanisms) discussed in
the literature. It turned out that a wide variety of control mechanisms have been introduced and both
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empirically tested and investigated through simulation. Given the large amount of methods available we
cannot be certain that all have been included.

Furthermore, the results obtained with respect to machine dispatching rules are not easy to interpret
in the context of this study since key job characteristics are out of scope. The profit of a job is such a
characteristic, since this can strongly influence whether it is profitable to delay one job in favour of others
or not. Since this is left out of scope, interpreting the effects of machine dispatching rules on business value
is difficult.

Finally, our simulation model assumes a continuously working job shop (i.e. one that does not distinguish
between working and closing hours or workdays and holidays). In order to still model the difference between
the working hours available to the different machines, machine service rates have been adjusted in line with
earlier studies. In the final iterations of the model it became clear that for a precise modeling of Parts it
was also needed to incorporate an overtime mechanism. Due the the design choice of modeling differences
in available working hours by adjusting the service rates on an individual machine bases, this also had to
be modeled by further adjusting the service rates. Due to the inclusion of this types of overtime adjusted
service rates, we were not able to include workload dependent service rates. As a result, the precise internal
dynamics between machine specific workload and throughput could not be determined and we had to make
job shop wide conclusions.

8.2.3 Future research

Several directions for future research follow from this study either by improving on the current limitations
or by building upon the findings of this thesis. As mentioned more release rules have been introduced in
literature than tested in this thesis. It would be interesting to see how other rules perform compared to
the base model and the extensions we tested. For release rules specifically, it would be interesting to see
how rules with probabilistic or time bucketing workload accounting would perform as they might reduce the
probability of idleness even further.

Furthermore, it would be interesting to model the difference in available hours to machines and the
difference between working and closing hours more accurately to analyse the internal dynamics between
local workload decreases and throughput more precisely.

Moreover, sequence dependent setup times could be included into the model. Within Parts there are
machines for which the setup times are strongly dependent on the sequence in which jobs are processed and
investigating how this could be included in the order release rule would be very interesting. Earlier research
has been conducted on this relation, however these studies did not include the disturbances this thesis did.

The expected effects of the work efficiency smiley in this thesis are based on empirical evidence from the
literature. However, as seen from the JD-R model the effects of job demands on performance is buffered
by job resources. Hence the precise effects of work load on efficiency can vary greatly across situations.
Therefore, it would be interesting to further investigate this relation in different situations. The goal of
these studies would be the development of a robust model linking the effects of work in progress to efficiency
possibly including the effects of buffers.

Finally, the model in this thesis is developed to represent the situation at Parts. However, it would
be interesting to see of the model parameters could be tuned in such a way to accurately represent other
job shops as well. If this is the case, standard extensions (disturbances and aggregate human intervention
mechanisms) on basic job shop simulation models to be able to quickly create a model for each new job shop.

8.3 Recommendations

We end this thesis with a number of recommendations to VDL ETG to improve performance and create
business value. These recommendations are based on the results of the research in this thesis and insights
obtained during the project.

• Implement a pre-shop pool to regulate the flow of incoming jobs to the shop floor. This study showed
that large work in progress reductions are possible with little decrease in throughput by using path
based bottleneck workload control when not considering the effectiveness gains of the workload reduc-
tion and even increase in throughput when these effectiveness gains are considered. Therefore our first
recommendation is to start using workload control to reduce the workload within and thus improve
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the performance of Parts. However, we saw that using maximum number of jobs as order release rule
increased machine idleness due to the distinct types of routings for jobs of different starting materials.
Therefore, it is important to implement an order release rule which considers the capacity of machines
separately instead of the capacity of the shop floor as a whole, path based bottleneck is such a rule.

• Use the the simulation model build in this thesis as basis for future research. The simulation model
build in this study is a valid and verified model of Parts. Therefore it can be in the investigation into
the effectiveness of interventions other than workload control as well. However, it is important to note
that the model was build with the aim to test workload control and could be unsuitable to test very
different interventions. We trust on the critical mind set of future researches to make well-advised
decisions with regard to this. To assist future research the simulation model will be made available for
VDL ETG including a manual and overview of assumptions and modeling decisions.

• Capture and collect more reliable data on all business processes. The more accurate and reliable data is
available, the more accurate and precise the predictions based on this data are. Unfortunately reliable
data was not always available and estimations had to be made based on interviews. More and preciser
collection and storage of data can make more precise predictions possible.

• Investigate the effects of workload on efficiency for different machines. Based on the literature we
established that a relation between workload and efficiency exists in the form of an inverted u-shape.
However the workload corresponding to optimal efficiency (optimal workload) and the precise manner
in which efficiency decreases when deviating from this optimum can vary greatly across situations. To
improve the effectiveness of workload control in the form of order release it is necessary to know more
on the optimal workload across machines. Therefore a research should be set up to further investigate
this.

• Investigate the maximum fraction of jobs to expedite. To improve delivery performance Parts assigns
priorities to jobs, giving, on average, precedence to 32% jobs at any moment in time. By trying
to expedite this many jobs, other jobs are delayed. In the current situation these delayed are often
expedited later on. This results in a lot of nervousness which is detrimental to the performance. VDL
ETG should investigate this process of expediting jobs and create a formal data driven policy for
prioritizing.

To conclude, this thesis showed that although a job shop manufacturing environment can be complex,
it is possible to make data driven models to identify improvement possibilities. Specifically, we identified
that implementation of controlled order release is likely to improve performance by significantly reducing
the work in progress. We are glad that VDT ETG is acting on this insight and has created a project
team to investigate the implementation of such a mechanism. We believe that by continuing to use a data
driven approach with respect to this implementation, the implementation will be successfully and result in
a substantial increase in business value.
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A Overview of sequence and release rules

A.1 Overview of notation

j job index
m machine index
o operation index
t time index
t0 current time
oj current operation of job j
oj,i the i-th next operation of job j
mo machine of operation o
qm queue of machine m
lm current load of machine m
Lm load threshold of machine m
dj due date of job j
dj,o due date of job j on operation o
aj arrival date of job j
aj,o arrival date of job j at operation o
rj release date of job j
pj,o processing time of the o-th operation of job j
Oj number of remaining operations of job j
Qm number of jobs in the queue of machine m
Jshop number of jobs on the shop floor
Jpsp number of jobs in the pre-shop pool
Ushop shop utilisation at time
RU,V a random variable, drawn from a uniform distribution between U and V
Fi weighting factors and constants
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A.2 Overview of sequence rules

Table A.1: Overview of sequence rules

Name Abbreviation Priority measure

First Come First Serve FCFS aj
Last Come First Serve LCFS aj
Earliest Due Date EDD dj
Latest Due Date LDD dj
Operational Due Date ODD dj,o
Modified Operational Due Date MOD max(dj,o, t0 + pj,o)
Maximum Job Tardiness MJT max(t0 − dj , 0)
Shortest Processing Time SPT pj,o
Longest Processing Time LPT pj,o
Maximum Work Remaining MWR

∑
pj,o

Least Work Remaining LWR
∑
pj,o

Maximum Number of Operations Remaining MOR Oj

Lowest Number of Operations Remaining LOR Oj

Least Slack Time LST dj − t0 −
∑
pj,o

Least Operational Slack Time LOS dj,o − t0 − pj,o
Least Slack per Remaining Operation SPO

dj,o−t0−pj,o

Oj

Least Critical Ratio LCR
dj−t0∑

pj,o

Least Operational Critical Ratio OCR
dj,o−t0
pj,o

Least Number In Next Queue LNINQ Qx, where x = moj,1

Least Work In Next Queue LWINQ
∑Qx

j=1 pj,o, where x = moj,1

Minimum Slack Ratio MSR 1
Oj

∑Oj

o=1
pj,o

Tmo−lmo
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A.3 Overview of release rules and their classification

Table A.2: Release rules and their classification

B
IL

M
IL

M
IL

P
IO

C

D
L

F

B
F

L

F
F

L

P
B

B

Order release mechanism
Load limited X X X X X
Time phased X X X

Timing convention
Continuous X X
Discrete X X X X X X

Workload measure
Number of jobs X X X X
Work quantity X X X X

Aggregation of workload measure
Total shop load X
Bottleneck load
Load by each work-centre X X X X X X X

Workload accounting overtime
Atemporal X X X X X
Time bucketing X X
Probabilistic

Workload control

Upper bound only X X X X
Lower bound only X X
Upper and lower bounds
Workload balancing

Capacity planning
Active X X
Passive X X X X X X

Schedule visibility
Limited X X X X X X X
Extended
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B Conceptual model

B.1 Conceptual model systematic representation

Figure B.1: Conceptual Job Shop Model

B.2 Conceptual model assumptions

1. Material is always available

2. An order is never cancelled

3. An operation cannot be preempted, so once processing begins it cannot be stopped until complete

4. There are no flexible routings

5. Each job can be processed on one and only one machine at a time

6. Setup times are non-sequence dependent

7. Re-entrant jobs are permitted, that is two or more operations of a job may be processed on the same
machine

8. Each machine can only be process one job at a time

9. External operations have infinite capacity

10. A machine only breaks-down after finishing a job

11. Each job can only be processed on one machine at a time

12. The shop is open continuously
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C Overview of events
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D Data sets

D.1 Data collection

Data on job arrival times, routings, priorities, due dates, waiting times, and process times is collected from
a few sources. Each of the datasets obtained from the ERP system BaaN were retrieved using SQL in
combination with the iQBS system of VDL ETG Eindhoven.

The first data set, containing the machine routings of all jobs in the shop for the years 2017, 2018, and
2019, and the second data set, containing data on job arrival times and due dates, were obtained from BaaN
on January 4’th 2020. Data sets of the priorities of jobs at Parts were also obtained from BaaN, these
data sets were retrieved on nineteen days in February, March and April 2020. The last data set which was
obtained from BaaN, contained data on process times and waiting times for finished operations and was also
retrieved on January 4’th 2020. An overview of these data sets and the data on which the data was retrieved
is tabulated in Table D.1.

Table D.1: Overview of data sets

Data set Information Retrieved on

Routing Planned routings January 4’th 2020
Arrival and due Arrival dates, requested and confirmed due-dates January 4’th 2020
Priorities Current distribution of priorities in the shop 19 days in quarter 1 2020
Finished operations Start and end dates of finished operations January 4’th 2020
External operations Start and end dates of external operations January 4’th 2020

Since no data was available on the development of the WIP over time the Finished operations data set
was used to deduce information on this. This was done by counting the total number of job for which the
start date of the first operation was before and the end date of the last operation was after each date in
2017, 2018 and 2019.

D.2 Data quality

In this subsection the quality of part of the Finished operations data set is discussed. The relevant data
discussed has the structure as shown in Table D.2. SFCorder is the id number of an order, volgnummer is
the id of an specific step in the production of an order, taak is an task number combined with an description
of the task, voorgaande gereed is the date on which the previous task was finished or the order entered the
system in case of the first step, and bewerking gereed is the date on which the current task was finished.

Here we checked whether the data for each order adheres to three forms of internal consistency. Horizontal
consistency, meaning that for each volgnummer voorgaande gereed is not larger than bewerking gereed, vertical
consistency i.e. are bewerking gereed within a SFCorder for subsequent volgnummer non-decreasing, And
diagonal consistency is within a SFCorder the bewerking gereed equal to the next voorgaande bewerking.

Table D.2: Example data finished operations

SFCorder Volgnummer Taak Voorgaande gereed Bewerking gereed
123456 10 1234 - do something 01-01-2019 01-02-2019

20 5678 - do something else 01-02-2019 01-02-2019
30 9123 - do even more 01-02-2019 01-04-2019

First check is whether the finish date of the previous operation is smaller than or equal to the finish date
of the operation at hand. This is the case for operations in 11 out of orders. Of all the cases this is not true
except 1 it is regarding “non-value adding operations” (e.g. “Controle Parts” or “Pluskosten Mechanisch”).
Considering the small percentage of faulty values deleting the orders whit these operations should not skew
the data.
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Secondly it is checked whether following operations have non-decreasing finish times. There is 1 order in
which subsequent operations have decreasing finish times. This again is such a small number the deletion of
this should not matter.

Thirdly it is checked whether the operation finished date of an operation is equal to the previous operation
finished of subsequent operations. This is not the case for 23348 out of 256346 operations or 9.11%. These
data irregularities seem to occur in a number of situations. Firstly we see that in 10387 out of the 51924
faulty operations the difference occurs due to external operations. Moreover taking a closer look at the
involved operations we see that for the ending operation over 80% of the faults concerns non-value adding
operations (e.g. control or blocked) the same is found for starting operations. Further analysis showed that
diagonal inconsistency occurs when the same operation spans multiple “Volgnummers”. This is the case for
6863 operations out of the 23348 faulty operations. Further analyses revealed that this happens for one of
two reasons. First it happens because batches are split up to prevent idleness. Secondly external operations
are not included in this data set and are always followed by one of these ”non-value adding” tasks.

D.3 Data inclusion rules

Since we are selecting three years of data from all the data available, the cut off point of this data had to
be determined. There are four ways (inclusion rules) of determining which data points are part of the three
year sample and which are not. Rule 1 includes all orders that started before the end of the scope and are
not finished before the start of the scope, rule 2 includes all orders that were finished during the scope, rule
3 includes all orders that were started during the scope, and rule 4 includes all orders that were started
and finished during the scope. Figure D.1 illustrates these four rules systematically. In case the inclusion
of data is cut off at either end of there is a change the remaining jobs will be biased towards jobs, with
shorter throughput times and if the data is not cut off there is a change the data is biased towards long
jobs. Therefore, the empirical probability density functions for the routing length of jobs for each of the four
inclusion rules were compared. From this comparison no clear bias was discovered. Since, it is preferred to
analyse jobs which have been finished we decided to use inclusion rule 2 to select the data.

Figure D.1: Data inclusion rules

D.4 Data consolidation

Within the information system of Parts operations are called tasks and tasks are associated with machines.
Most of these machines are physical machines, however some are just concepts within the information
system. These machines are divided into 42 distinct departments, also called work stations. Moreover tasks
on machines can be executed manned, partly manned, or unmanned. Within this study the decision has
been made to consolidate all different types of task belong to a machine to that single machine, and further
consolidating all machines into the 42 work stations. As a result, each time we refer to a machine from the
data in this thesis (with the exclusion of this appendix), we actually refer to a workstation.
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E Overview of simulation parameters

E.1 Distributions used

Table E.1: Overview of distributions used

Distribution Type

Inter arrival time Exponential distribution
Job size Discrete uniform distribution
Job priority Empirical distribution
Routing Empirical distribution
Job due date Empirical distribution
Process time Log normal distribution
Machine breakdown Bernoulli distribution
Down time Exponential distribution
Machine yield Binomial distribution
External time Log normal distribution

E.2 Overall parameters

Table E.2: Overview of overall simulation parameters

Parameter Value

Arrival rate 2.620
Maximum job size 5.000
Overtime rate 0.909
Break down probability 0.100
Machine yield 0.985
External processing time mean 87.470
External processing time variation 297.960

E.3 Priority parameters

Table E.3: Distribution of job priorities

Priority Level Fraction of jobs Corresponding interval

1 68.1% (0.000, 0.681)
2 3.2% (0.681, 0.731)
3 5.6% (0.731, 0.769)
4 13.3% (0.769, 0.902)
5 9.8% (0.902, 1.000)
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E.4 Due date parameters

Table E.4: Distribution of job priorities

Due date tightness Fraction of jobs Corresponding interval

0.0 0.2% (0.000 , 0.002)
0.1 0.6% (0.002 , 0.008)
0.2 0.8% (0.008 , 0.016)
0.3 1.0% (0.016 , 0.026)
0.4 1.5% (0.026 , 0.041)
0.5 2.2% (0.041 , 0.063)
0.6 2.9% (0.063 , 0.091)
0.7 3.7% (0.091 , 0.129)
0.8 4.3% (0.129 , 0.172)
0.9 5.0% (0.172 , 0.222)
1.0 5.3% (0.222 , 0.275)
1.1 6.0% (0.275 , 0.336)
1.2 6.8% (0.336 , 0.405)
1.3 7.4% (0.405 , 0.479)
1.4 8.1% (0.479 , 0.560)
1.5 7.9% (0.560 , 0.640)
1.6 6.6% (0.640 , 0.707)
1.7 4.9% (0.707 , 0.756)
1.8 3.7% (0.756 , 0.794)
1.9 2.9% (0.794 , 0.823)
2.0 2.5% (0.823 , 0.848)
2.1 1.9% (0.848 , 0.868)
2.2 1.5% (0.868 , 0.883)
2.3 1.5% (0.883 , 0.898)
2.4 1.3% (0.898 , 0.911)
2.5 1.1% (0.911 , 0.921)
2.6 1.0% (0.921 , 0.931)
2.7 0.8% (0.931 , 0.939)
2.8 0.7% (0.939 , 0.947)
2.9 0.7% (0.947 , 0.953)
3.0 0.6% (0.953 , 0.959)
3.1 0.5% (0.959 , 0.964)
3.2 0.4% (0.964 , 0.968)
3.3 0.4% (0.968 , 0.971)
3.4 0.3% (0.971 , 0.975)
3.5 0.3% (0.975 , 0.978)
3.6 0.3% (0.978 , 0.981)
3.7 0.3% (0.981 , 0.984)
3.8 0.3% (0.984 , 0.987)
3.9 0.3% (0.987 , 0.990)
4.0 0.2% (0.990 , 0.992)
4.1 0.2% (0.992 , 0.995)
4.2 0.2% (0.995 , 0.996)
4.3 0.1% (0.996 , 0.998)
4.4 0.1% (0.998 , 0.998)
4.5 0.2% (0.998 , 1.000)
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E.5 Machine parameters

Table E.5: Machine process times

Machine
Process Time

Mean Variation

1 1.94 3.98
2 83.21 61.83
3 5.63 4.53
4 10.83 10.61
5 48.98 21.69
6 2.60 6.34
7 3.19 3.97
8 7.31 11.49
9 1.34 3.28
10 7.47 7.67
11 1.70 6.28
12 0.93 3.29
13 5.24 5.58
14 4.00 6.52
15 4.18 10.08
16 0.24 1.02
17 3.66 4.33
18 12.73 18.98
19 2.41 6.54
20 1.79 8.46
21 1.28 5.48
22 1.49 9.39
23 2.73 6.84
24 9.29 13.94
25 10.15 14.36
26 4.03 6.92
27 5.07 9.52
28 10.37 10.98
29 21.43 46.92
30 3.04 5.54
31 7.06 13.17
32 0.43 1.46
33 0.15 1.27
34 1.45 4.11
35 4.29 2.99
36 0.32 1.72
37 0.20 0.62
38 1.12 8.17
39 1.53 4.71
40 0.50 1.72
41 1.24 3.79
42 87.47 297.96
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F Validation and verification tables and overviews

F.1 Overview of face validation relations

1. As arrival rate goes up work in progress goes up and to infinity as utilization goes to 1

2. As arrival rate goes up waiting time goes up and to infinity as utilization goes to 1

3. As arrival rate goes up delivery performance goes down and to 0 as utilization goes to 1

4. As service rate goes down work in progress goes up and to infinity as utilization goes to 1

5. As service rate goes down waiting time goes up and to infinity as utilization goes to 1

6. As service rate goes down delivery performance goes down and to 0 as utilization goes to 1

7. As yield goes down work in progress goes up and to infinity as utilization goes to 1

8. As yield goes down waiting time goes up and to infinity as utilization goes to 1

9. As yield goes down delivery performance goes down and to 0 as utilization goes to 1

10. As downtime goes up work in progress goes up and to infinity as utilization goes to 1

11. As downtime goes up waiting time goes up and to infinity as utilization goes to 1

12. As downtime goes up delivery performance goes down and to 0 as utilization goes to 1

13. As breakdown frequency goes up work in progress goes up and to infinity as utilization goes to 1

14. As breakdown frequency goes up waiting time goes up and to infinity as utilization goes to 1

15. As breakdown frequency goes up delivery performance goes down and to 0 as utilization goes to 1

16. As routing length goes up work in progress goes up and to infinity as utilization goes to 1

17. As routing length goes up waiting time goes up and to infinity as utilization goes to 1

18. As routing length goes up delivery performance goes down and to 0 as utilization goes to 1

19. As variations increase work in progress goes up

20. As variations increase waiting time goes up

21. As variations increase delivery performance goes down

22. As due date tightness goes up delivery performance goes down
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F.2 Comparison to queuing models

Table F.1 illustrates the mathematical and simulation results for a m/m/1 queue with parameters µ = 5 and
λ = 3. Table F.2 illustrates the mathematical and simulation results for a m/m/1 queue with priority and
parameters µ = 3, λ1 = 1.5, and λ2 = 1.5. Jobs of type 1 have priority over jobs with type 2.

Table F.1: Comparison to m/m/1 queue

Work in progress Waiting time Throughput time

Calculated 1.5 0.3 0.5
Simulated 1.492 0.298 0.498

Mathematical and simulation results for a m/m/1 queue with parame-
ters µ = 5 and λ = 3.

Table F.2: Comparison to m/m/1 priority queue

Work in progress Throughput time

Type 1
Calculated 0.557 0.371
Simulated 0.558 0.372

Type 2
Calculated 0.943 0.629
Simulated 0.945 0.630

Mathematical and simulation results for a m/m/1 queue with
priority and parameters µ = 3, λ1 = 1.5, and λ2 = 1.5 where
jobs of type 1 have priority over jobs with type 2.

F.3 Comparison to Jackson Networks

Table F.3 illustrates the mathematical and simulation results for a Jackson Network with the structure as
illustrated in Figure F.1, parameters λ = 3, and µA = µB = µC = µD = 5 and transition rates pA,A = 1

9 ,
pA,B = 6

9 , pA,C = 1
9 , pB,C = 1

9 , pB,D = 8
9 , pC,B = 1

9 , and pC,D = 8
9 .

Figure F.1: Structure of Jackson Network for comparison
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Table F.3: Comparison to Jackson Network

Work in progress Waiting time
Utilisation

A B C D

Calculated 4.727 1.546 0.675 0.203 0.476 0.600
Simulated 4.666 1.556 0.674 0.202 0.472 0.599

Mathematical and simulation results for a Jackson Network with parameters λ = 3,
and µA = µB = µC = µD = 5 and transition rates pA,A = 1

9
, pA,B = 6

9
, pA,C = 1

9
,

pB,C = 1
9
, pB,D = 8

9
, pC,B = 1

9
, pC,D = 8

9
, and where jobs leave after operation D.

F.4 Comparison to yield formulas

Table F.4 illustrate the expected number of operations needed before finishing a job for different yield
percentages and an initial routing length equal to ten where a job is scrapped upon failure or a job is
repaired once before scrapping on the second failure.

Table F.4: Comparison to extended yield formula

Yield
1.00 0.95 0.90 0.85

Simple yield
Calculated 10.00 13.40 18.83 27.53
Simulated 10.00 13.38 18.83 27.53

Extended yield
Calculated 10.00 11.20 13.68 17.76
Simulated 10.00 11.21 13.75 17.64

Expected number of operations needed before finishing a job for
different yield percentages and rework types.

64



G Model sensitivity

G.1 Model sensitivity with respect to work in progress

Table G.1: Model sensitivity with respect to work in progress

Parameter changed Increase Decrease

Arrival rate -10.9% 10.0%
Processing time mean -10.6% 17.2%
Processing time variation -6.0% 3.0%
External operation time mean -20.9% 15.9%
External operation time variation -1.8% 2.1%
Machine downtime mean -0.6% 2.2%
Machine downtime frequency -7.9% 1.6%
Yield 2.6% -20.0%

G.2 Model sensitivity with respect to effective yield

Table G.2: Model sensitivity with respect to effective throughput

Parameter changed Increase Decrease

Arrival rate 0.1% -0.3%
Processing time mean -0.1% 0.9%
Processing time variation -0.1% 0.6%
External operation time mean -0.9% 1.0%
External operation time variation -0.1% 0.7%
Machine downtime mean 0.0% 0.2%
Machine downtime frequency 0.0% 0.3%
Yield 0.1% -0.1%
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