
 Eindhoven University of Technology

MASTER

Automating balancing and sequencing of assembly lines in an automotive manufacturing
plant

Didden, J.B.H.C.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4f1b7252-b93a-4d84-a684-55fb11b88c3b

Automating balancing and sequencing of
assembly lines in an automotive manufacturing

plant

VDL Nedcar
Master Thesis

2019 - 2020

J.B.H.C Didden

DC 2020.031

TU/e Coach: dr.ir A.A.J Lefeber
TU/e Supervisor: Prof. dr. ir. I.J.B.F Adan
Company Supervisor: I. Panhuijzen MSc

Manufacturing Systems Engineering
Department of Mechanical Engineering
Dynamics and Control (D&C) group
Eindhoven University of Technology

Eindhoven, April 2, 2020

Master Thesis

TU/e Page ii

Master Thesis

Abstract

An important and highly complex process in the automotive industry is the balancing and se-
quencing of the assembly lines. Optimally distributing jobs among the lines in order to obtain the
highest e�ciency, and deciding the sequence of the car models in the line is a continuous process,
mostly done manually. This thesis aims at automating both processes. Automotive assembly lines
are highly complex, and multiple factors have to be considered while balancing the lines. All rele-
vant factors that are found within the lines at VDL Nedcar are considered, namely: Mixed-Model
production, sequence dependent setup times and variable workplaces with multiple operators. A
MILP model is formulated for both the balancing and sequencing problem, taking all factors into
account. The sequencing problem is solved optimally through a branch-and-bound method. A
Genetic Algorithm (GA) is proposed to solve the formulated balancing problem. Results show
that the proposed GA is e�ective in balancing a real world assembly line, and, can increase the
e�ciency of the line compared to the current balance. To the best of our knowledge, this is the �rst
time all these factors have been taken into account simultaneously in a model used for automating
the line balancing, and has been tested for a real world case.

TU/e Page iii

Master Thesis

TU/e Page iv

Master Thesis

Preface

This thesis concludes my �nal project for the master Mechanical Engineering at the Eindhoven
University of Technology. During my six years of being a student I have gained a lot of knowl-
edge and have been presented with amazing opportunities. From doing an exchange semester in
Singapore, to doing projects for the only automotive factory in the Netherlands (which I presume
countless other students would also love to do), I will always happily look back at my student days.

During this project I had a chance to take a look at automating a key process at VDL Nedcar.
I enjoyed every single moment I got to work on this project, and even did not mind getting up
early in the morning to travel more than an hour to get to work. Besides my main projects, I also
had the opportunity to sit in on countless meetings and help with other smaller projects at VDL.
This gave me a great insight in the workings of the entire factory and also helped me with my own
project. I would like to thank a few people for all their help and support throughout this project.

Firstly, I would like to thank Erjen Lefeber who coached me during my project. His advice dur-
ing our weekly meetings has always been of great help. His feedback taught me a lot of how to
setup and conduct research, structure and write a report and various other things that will certainly
help me during the rest of my career. I am thankful for the opportunity to work together with him.

Next, I would also like to thank Ivo Adan for setting me up at Nedcar. Even though we did not
have a lot of meetings, the meetings we did have gave me new insights into the project and always
steered me in a new direction that I have not explored before.

Of course I would like to thank all my colleagues at Nedcar. Everytime I had a question everyone
was always willing to help immediately. I especially would like to thank my supervisor, Ivo Pan-
huijzen, for the great guidance during this project. Our weekly monday afternoon meetings helped
tremendously with the progression of the project, and without them I would never have gotten the
same results. I would also like to thank a fellow intern, Koen, for all the endless discussions we
had regarding the project and for all the insights he gave me. Lastly, I would also like to thank
Marc and Marijke for all their help.

Last but not least, a special thanks to my parents and brother for all their support (and making
sure dinner was ready when I got home) and to my friends and girlfriend for all their support and
fun distractions.

Jeroen Didden
Born, April 2, 2020

TU/e Page v

Master Thesis

TU/e Page vi

Master Thesis CONTENTS

Contents

Page

Abstract iii

Preface v

List of Figures x

List of Acronyms xi

1 Introduction 1
1.1 Company Background . 1
1.2 Project Background . 2
1.3 Objective . 3
1.4 Structure . 3

2 Problem Background 5
2.1 Assembly Line Balancing . 5
2.2 Assembly Line Description . 6
2.3 Assembly Line Sequencing . 8
2.4 Balancing at Nedcar . 9
2.5 Literature Review . 10
2.6 Summary . 11

3 Model Description 13
3.1 Assembly Line Balancing Problem . 13
3.2 Assembly Line Sequencing . 23
3.3 Summary . 25

4 Mixed Integer Linear Program 27
4.1 MILP Background . 27
4.2 Input Data . 27
4.3 Assembly Line Balancing Problem . 29
4.4 Car Sequencing . 36
4.5 Summary . 37

5 Algorithm 39
5.1 Genetic Algorithm . 39
5.2 Summary . 48

6 Case Study 49
6.1 Data collection and reduction . 49
6.2 Results . 55
6.3 Summary . 57

TU/e Page vii

Master Thesis CONTENTS

7 Conclusion and recommendations 59
7.1 Conclusion . 59
7.2 Recommendations . 60

TU/e Page viii

Master Thesis LIST OF FIGURES

List of Figures

1.1 The di�erent cars produced at VDL NedCar . 1

2.1 Schematic overview of a piece of the assembly line. Di�erent consecutive worksta-
tions are shown including its boundaries and length in terms of the takt time. . . . 5

2.2 Detailed schematic of a single workstation including an example of various tasks
and processing times allocated to each operator on the workstation. The operators
boundaries are not the same as the workstation boundaries as an operator can exceed
the takt time occasionally. The tasks allocated to a worker can be unique for a single
model . 6

3.1 Example of a precedence diagram where the black number represent the task number
and the red number corresponds to the processing time of the respective task . . . 15

3.2 The connection between di�erent tasks executed on a workpiece in consecutive cycles 16

3.3 An example of a car body divided into 12 di�erent mounting positions. Every
operator on the line can take up 1 or more unique mounting position in accordance
with with the tasks allocated to the operator . 17

3.4 Schematic showing the 3 di�erent types of assembly lines. The assembly lines �ow
from left to right and each shape represents a di�erent model 19

3.5 Example of strict takt time restriction considering 4 models 20

3.6 Example of a joint precedence diagram. All common and unique tasks between
models 1 and 2 are combined to form a single precedence graph that is used to solve
the ALBP. Both models have equal demand (0.5), therefore, the processing times of
the tasks in the joined graph are averaged according to 3.1 22

3.7 Example showing di�erence between two solutions for a single mated workstation
(w, o). If no horizontal balancing is applied the variance between di�erent models
is large, however, if horizontal balancing is applied this variance can be decreased.
This in turn causes less overall work overload. 23

5.1 Example of a chromosome as used in the Genetic Algorithm. Each gene in the chro-
mosome represents a task. The order in which the tasks appear in the chromosome is
the order in which they are distributed over the available operators and workstations. 40

5.2 Example of the crossover operation . 43

5.3 Example of the mutation operator . 43

5.4 The main e�ects plot for the parameters of the GA. It can be seen that the threshold
e�ciency (e�) has the most e�ect, as it shows the steepest and longest line. 47

5.5 The standardized e�ect charts for the parameters of the GA. The threshold e�ciency
(e�) and probability of crossover (pc) both are above the blue signi�cance line.
Therefore these 2 parameters have a signi�cant e�ect. 48

6.1 Diagram showing the reduction of tasks into task packages. 51

TU/e Page ix

Master Thesis LIST OF FIGURES

6.2 Example de�ning the di�erence between variants and process variants. The top
table shows possible variants, where for each column it is speci�cally noted which
options it is relevant for. In the bottom table example of process-variants are given.
Here, only the information of a variant is given relevant to the task. 52

6.3 Overview of the steps that are taken to collect the precedence relations between
the task packages. The top portion consists of the �rst phase consisting of coarsely
collecting the relations and the bottom part of the last phase in which the relations
are collected in a more detailed procedure. 53

6.4 The mounting positions available to each task package. 54
6.5 Distribution of the station times over all operators for the current and new line

balance. It can be seen that the newly generated line balance has a smoother
overall workload between operators. In addition, the large peaks have been removed
in the new balance. 58

TU/e Page x

Master Thesis List of Acronyms

List of Acronyms

2ALBP Two Sided Assembly Line Balancing Problem.

ALBP Assembly Line Balancing Problem.

ALX Assembly Line X.

CSP Car Sequencing Problem.

FAS Final Assembly Shop.

GA Genetic Algorithm.

ME Manufacturing Engineer.

MILP Mixed Integer Linear Program.

MMALBP Mixed Model Assembly Line Balancing Problem.

OEM Original Equipment Manufacturer.

PD Process Development.

SALBP Simple Assembly Line Balancing Problem.

TU/e Page xi

Master Thesis CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

1.1. Company Background

VDL Nedcar is an independent car assembly factory and the only one in the Netherlands. It has
over 50 years of experience in the manufacturing of cars being built for di�erent manufacturers
including DAF, Volvo, DaimlerChrysler and Mitsubishi. At the end of 2012 NedCar was acquired
by the VDL group who modernized the production-halls and lines. Currently VDL NedCar is
assembling cars for the BMW group. Three di�erent models are being produced for BMW: The
MINI Countryman (including the PHEV), the MINI convertible and the BMW X1 as can be seen
in Figure 1.1.

(a) The MINI Convertible (b) The MINI Countryman

(c) The BMW X1

Figure 1.1: The di�erent cars produced at VDL NedCar

TU/e Page 1

Master Thesis CHAPTER 1. INTRODUCTION

The factory consists of four di�erent shops: The press shop, body shop, paint shop and the �nal
assembly shop (FAS). In the press shop hundreds of tonnes of steel are processed each day to man-
ufacture all the body parts needed to build the body of the di�erent car models. At the body shop
high tech robots assemble the parts that arrive from the press shop into a �nished car body that
is ready for paint. The body shop is the most automated part of the whole assembly process as
almost all processes are conducted by robots. A total of 1300 robots are used in 50 fully automatic
production lines. After the body is completely assembled and checked, it moves onto the paint
shop. In the paint shop the body is cleaned, degreased, coated with a primer and �nally painted
to speci�cation. At last the painted body is moved to the FAS. Here, all components of the car
are �tted to customer speci�cations on a 1.7 km long assembly line. After leaving the assembly
line the cars go through various checks and inspections before being delivered to the customer.

1.2. Project Background

Comparing all of the di�erent production halls at VDL Nedcar, the Final Assembly Shop (FAS) is
one of the least automated. This is due to the complexity of the tasks and the changing demand in
di�erent car types, which can highly in�uence the order in which the tasks have to be conducted.
Most of the operations on the assembly line require manual labor, with only a small part (such as
installing the front window) being automated.

Finding the optimal order, con�guration and amount of workers for all the processes that have to
be done to minimize the total production time, is very challenging due to the enormous amount
of constraints. In case of constant demand of all vehicle types this problem is fairly simple, as
once the line is su�ciently balanced, no major updates have to be done to re-balance the line. In
the case of �uctuating demand, as is the case at VDL Nedcar, the line will have to be re-balanced
regularly. I.e., if the demand for the Mini Convertible is higher, more time will have to be allo-
cated to installing a convertible roof as this operation will occur more frequently (hence making
this process more e�cient will save time in the long run). Additionally, an increase or decrease
in demand might result in a change in takt time. With this change more or less processes can be
allocated to a workstation, therefore rebalancing of the line is necessary. Seeing as the automotive
market is highly volatile, and demand changes can occur rapidly, �exibilty is also of importance.
Being able to quickly rebalance the lines according to customer demands can therefore help meet
these changing demands.

Also, the constant updates of the di�erent models in�uence the way the line has to be balanced.
A small change in car parts can result in di�erent tooling that has to be used, which consequently
results in more/less time that has to be allocated to the process. This again can result in another
process that has to be changed at a workstation to make sure the total process time of a work-
station does not exceed the takt time (in the case that a process requires more time) or that a
workstation is not idle for too long (in the case that a process requires less time).

An even bigger change would be when a new vehicle model is introduced into the existing assembly
line. As VDL Nedcar operates a mixed model assembly line, producing all models in random order,
balancing the line when a new model is introduced takes a vast amount of time, as all processes
for all models have to coincide with each other. Even with "perfect" data it would take at least 3
weeks to balance the line. However, in this case the e�ciency of the line would be at 70%, while
VDL Nedcar desires an e�ciency of over 90%. From experience it is known that it would take at
an additional least 3-4 weeks to achieve this.

The reason that at the moment manual balancing of the line is done, instead of automated bal-
ancing, is due to the high complexity of the problem. A considerable amount of parameters,
constraints and goals has to be taken into account which is usually done by manual interpretation.
Translating these constraints into a mathematical model that can be solved by a computer is dif-

TU/e Page 2

Master Thesis CHAPTER 1. INTRODUCTION

�cult. However, automating the line balancing can potentially save a tremendous amount of time
and money in the long run.

For these reasons, VDL Nedcar is searching for a way to automatically balance the assembly lines,
saving a vast amount of time over the long run and to be �exible to quickly meet the changes in
customer demand. This allows the current engineers, instead of balancing the lines by hand, to
spend more time on improving the processes (i.e., making the process more e�cient or improving
the ergonomic workload), improving the quality of life of the operators and improving the overall
product. Furthermore, by automatically balancing the lines, more feasible solutions can be found
for the problem. More choices can be explored in a shorter amount of time and, depending on the
method used, an optimal solution may even be found.

1.3. Objective

The overall objective of this project is to develop a model to automatically balance the assembly
lines at VDL. As this is a fairly novel and elaborate project, the main objective is split up into
multiple subobjectives, all based on the following main research question:

How can the current assembly lines be balanced automatically so that, when changes are made to
the assembly line (i.e., process or volume), the highest possible e�ciency is achieved?

In order to answer this speci�c research question multiple subquestions will have to be answered:

� How are the assembly lines currently being balanced? What can be learned from this process?

� Which constraints of the assembly process need to be taken into account? Or do not have to
be taken into account? How do these constraints need to be de�ned?

� What input data is available? What is the desired output? Which extra input data is needed
to achieve the desired output?

� How can �uctuations in demand be taken into account?

� Is the line balance always feasible independent of the order of the cars in the assembly line?

1.4. Structure

The report is structured as follows: in Chapter 2 a more elaborate explanation of the problem is
given, including a description of the assembly lines and the current way the lines are balanced.
Then, in Chapter 3 the balancing model is described with an elaborate explanation of how the
various constraints that de�ne the assembly line need to be taken into account. Chapter 4 and 5 give
solution methods to solve the problem. Lastly, Chapter 6 explains how the model is implemented
at VDL and shows the result and the conclusion and recommendations are given in Chapter 7.

TU/e Page 3

Master Thesis CHAPTER 1. INTRODUCTION

TU/e Page 4

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

CHAPTER 2

Problem Background

2.1. Assembly Line Balancing

Balancing of an assembly line is one of the most challenging and complex tasks conducted at VDL
Nedcar. Incorrectly balancing an assembly line can cause a signi�cant ine�ciency in the line,
resulting in more capacity being consumed than is necessary and creating a surplus of idle time
(i.e., time that is not spent executing a task). Two di�erent types of assembly lines are present
at VDL Nedcar, however the type that is most in�uenced by line balancing is explained and has
been used throughout the remainder of this study. An assembly line is a large conveyor belt that
consists of multiple workstations. Workpieces are launched down the line at a prede�ned time
interval, commonly referred to as the takt time and continously move along the line. At each
workstation speci�c tasks are conducted to assemble the product. These tasks are done within the
operators boundaries and are then repeated when a new workpiece enters the workstation (i.e.,
tasks are repeated in a cyclic sequence). The tasks are carried out by operators assigned to certain
mounting positions of the workpiece at every workstation. Considering the size of the workpiece
(a typical car is around 4500 mm long), multiple operators can be assigned to a workstation. The
problem of optimally assigning all the available tasks to the available workstations is known as the
Assembly Line Balancing Problem (ALBP), see e.g. Baybars (1986). See �gures 2.1 and 2.2 for
schematics of the assembly line and a single workstation.

Figure 2.1: Schematic overview of a piece of the assembly line. Di�erent consecutive workstations are
shown including its boundaries and length in terms of the takt time.

TU/e Page 5

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

2.2. Assembly Line Description

The main focus for this project is on the FAS, therefore this is explained in slightly more detail.
The production lines have a total length of 1.7 km and contain about 400 workstations total.
There is one main assembly line and several sub-assembly lines which are used to assemble various
(sub-)parts of the car. The main assembly lines consist of 14 line sections which each have between
5 and 25 workstations. At the end of each section the car body is transported via an overhead
transportation system to the next line section. This transportation system can function as a bu�er
between the sections. The bu�er consists of a track and hanger. At the beginning and end of every
line a lift ensures that the car bodies can be transported above other lines to make e�cient use of
the �oor space. In addition, as the bodies are transported with the use of hangers, a return loop of
empty hangers is required in the system. The length of the overhead transportation system varies
between each line. This bu�er system is also a way to decouple the di�erent assembly lines from
each other, making it possible, although it is not required, to balance all 14 line sections separately.

Multiple factors have to be accounted for when balancing the assembly line. Each of these factors
in�uence the way the line can be balanced in di�erent ways. Some factors in�uence the balancing
more than others. The most important factors to consider and the factors that cause the greatest
disturbances in the line are Mixed-Model, Paced Line, Zoning and Tooling, Ergonomics, Setup
Times and Large tasks and these are explained below.

Figure 2.2: Detailed schematic of a single workstation including an example of various tasks and pro-
cessing times allocated to each operator on the workstation. The operators boundaries are not the same
as the workstation boundaries as an operator can exceed the takt time occasionally. The tasks allocated
to a worker can be unique for a single model

TU/e Page 6

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

2.2.1. Mixed-Model

In total three di�erent (main) models are produced on the assembly line: The Mini Convertible,
the Mini Countryman and the BMW X1. All three of these models are produced in a make-to-
order fashion, meaning there is a random order (according to some prede�ned rules) in which the
models are produced (no batch production). Furthermore, all models can have di�erent options
as desired by the customer. E.g., while one customer may want parking sensors, another customer
might not.

Consecutive cars cannot overtake each other in the line, even if a car has less overall processes
than the preceding one. Every car has to pass every workstation on each assembly line, even
though it possibly does not have tasks at every workstation. This causes a high level of variation
of workload between cars in the assembly line. The order of cars is not randomly chosen, they
adhere to speci�c rules laid out by the planning department. Due to the way the line is balanced,
some speci�c models cannot be planned too close after each other (e.g., there must be a certain
gap between two similar models as otherwise the cycle time might be exceeded too much which
causes problems throughout the entire line). The order in which the cars enter the assembly line
is referred to as the car entry sequence.

Typically, not only the main models are sequenced throughout the line. Some sub-models are
more complex with regards to the main model (e.g., a plug-in hybrid) and some options require
a large amount of time to be installed (e.g., a sunroof). These sub-options are therefore planned
separately alongside the main models. Typically, planning is done on a priority based system, so
that the complex variants can be planned �rst.

2.2.2. Paced Line

All assembly lines act according to a �xed, prede�ned takt time. This takt time determines the
pace of the line, the total time at which a car body is present at each workstation. The takt time
is given in cmins (1

100

th
of a minute). The objective of balancing is to pre-allocate each process, so

that the total time of each process at a workstation does not exceed the takt time for the assembly
line. Optimally, the total time should also not be less than the takt time, as this might lead to
non-useful idle time. Lastly, the car bodies move with a continuous velocity through the assembly
line and are never stopped.

2.2.3. Zoning and Tooling

Zoning can occur in two ways on the assembly line: either referring to the position where the
operator is working on the car or limitations of the positioning of the tool. The latter is referred
to as tooling restrictions.

The assembly line itself consists of a main conveyor which transports the car bodies between the
workstations. Depending on the part of the assembly line, operators can work at di�erent zones of
the car. In some cases operators work at both the left and right side, in other cases the operators
can work at four sides of the car, as long as the processes do not coincide with each others work
spaces. Each operator belongs to a single workstation and a group of workstations belongs to a
group. A group is de�ned as multiple operators who work on the line simultaneously on di�erent
zones.

The tools that need to perform certain processes also have zoning restrictions. Some processes can
only be done at certain workstations as the tool necessary to perform the task is only available at
that workstation. Secondly, there must also be enough room at a workstation to perform certain
tasks. For larger workpieces there must be enough room for the operator to maneuver and install
the workpiece. Lastly, some processes have certain height restrictions. E.g., some tasks have to be

TU/e Page 7

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

performed at the top side of the car, therefore the task has to be planned on a workstation where
the operator can easily access the top of the car.

2.2.4. Ergonomics

The ergonomic workload of the tasks is one of the most important factors. This typically refers to
the physical load of a speci�c task, and in lesser extent, to the psychological e�ect repetitive tasks
can have on a operator. Even though the weight of a physical task can di�er between operators,
the workers union de�nes what the ergonomic load for a speci�c task is (based on multiple factors).
The aim when balancing the line is to keep the total ergonomic weight of all tasks for a operator
as low as possible and also below a certain threshold. Di�erent methods can be chosen to balance
the ergonomic workload for an operator, however taking this into account while automatically
balancing the line is di�cult, as some tasks exceed the threshold. To counteract this workers
should be able to switch workstations during their shift in order to keep the overall workload to
a minimum. As this is a di�cult factor to model (i.e., for now it can more cleverly be done "by
hand"), it will remain out of the scope of this project.

2.2.5. Setup Times

The factor that in�uences the line balancing the most is setup times. Setup times are created when
an operator has to walk from one mounting position to another mounting position (and on the way
grab new material/equipment). Due to the relatively short takt time, large setup times between
di�erent tasks can greatly in�uence the amount of operators needed in the line (i.e., the setup
times can consist of more than 10% of the workload of a workstation). The setup times are also
sequence dependent, as the order in which the tasks are sequenced on a workstation determines
the amount of setup time accumulated on the same workstation.

2.2.6. Large tasks

Typically the duration of a task is less than the takt time, however due to certain circumstances
this may not always be the case. Some smaller tasks are combined to form a larger task that ex-
ceeds the takt time (sometimes by more than double the takt time). This is done for either quality
reasons or to more evenly distribute the ergonomic workload on an operator (i.e., so that physi-
cally demanding tasks are not carried out by a single operator every cycle but rather every n cycles).

In addition some tasks also require the use of multiple operators (e.g., installing the headliner). In
this case two or more operators simultaneously execute the same task, but on di�erent sides of the
car. When planning these tasks, it must therefore be taking into account that the tasks start at
the same time even though they are executed on di�erent sides.

2.3. Assembly Line Sequencing

The secondary problem that is considered is the sequencing of the assembly line. Sequencing refers
to the production planning of the models (i.e., the order in which models and its variants are
launched down the line). Mixed-Model lines are often balanced on average demand, causing some
models to exceed the takt time, which are in turn compensated by models that have a station
load less than the takt time. Planning too many models with high station times consecutively can
cause high amounts of work overload which have to be compensated with either line stoppages or
with utility workers. Line stoppages cause a decrease in throughput which can be very costly if it
occurs too often and employing utility workers too often can cause other discrepancies in the line
(i.e., as the group coordinator is often used as utility worker).

Sequencing is currently done at VDL Nedcar using the Car Sequencing (CS) method. Rules are
created considering some options of the available model variants. The rules are typically based on
the amount that the takt time is exceeded, and the amount of time that can be compensated with

TU/e Page 8

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

variants that are lower than the takt time (e.g., if the options sunroof takes a considerable amount
of time, then it can be compensated with cars that do not contain a sunroof). The maximum
distance that an operator is allowed to digress (i.e., the operators boundary) from his assigned
workstation is then used to calculate how many times a variant can be sequenced consecutively.
Currently, there are no strict equations that are being followed to calculate the rules, most rules
are made by an educated guess, however the aforementioned variables are still considered.

Not every rule can always be adhered to completely, as this depends on the amount of rules created
and the demand for each variant. The assembly line is then sequenced according to all generated
rules by minimizing the amount of violations caused by every rule. It must be noted that not every
variant obtains a speci�c rule, typically only the variants that cause a large amount of overload
are considered while planning, since there can be thousands of unique cars. Usually models are
sequenced on the options they contain (e.g., sunroof).

2.4. Balancing at Nedcar

The engineers at VDL typically follow the same basic scheme for balancing with only some slight
variations, e.g., due to their experience.

The required tasks that need to be executed to completely assemble each model are delivered to
VDL by the OEM, while more speci�c information such as the required task duration is not de-
livered by the OEM. All these tasks require a certain time frame in which they expect a �t and
healthy person to be able to conduct the process. The time frame is calculate by the Process De-
velopment Engineers (PD-engineers) through a Methods-Time Measurement (MTM-2). The task
durations are calculated according to regulations in the workplace, but are always double checked
on the line themselves as the times can di�er greatly in some cases. In addition the variance in
the task durations is also checked as variances can cause uneven loading of a workstation.

After information is obtained from the customers, the PD Engineers adapt this information to
comply with the lines at VDL. The PD engineers supply more information such as the process
number, description, equipment needed, task duration and model variant. For clarity, a di�erence
has to be made between a process and a task. A process is a group of tasks, e.g., the process of
installing the mu�er consists of multiple tasks such a placing screws.

The information supplied by the Process Development (PD) engineers is checked by the Manu-
facturing Engineers (ME) for possible discrepancies. After this, the balancing engineers sequence
the processes on the workstations available. The engineers make their own decisions based on the
description of the process, process time, tooling, zoning and experience. This is done by manually
'dragging' the tasks to feasible workstations. The total workload is checked against the takt time.
The constraints are applied manually (such as precedence, zoning, workload) by the ME, where
improvements are done by a trial-and-error approach and aided by feedback. The precedence
constraints are not speci�ed in the information provided by the OEM. Typically, the task will be
distributed over the workstations in a ascending order according to their task number (in other
words, it is assumed that task n+ 1 is a direct predecessor of task n, while this does not have to
be the case). The processes however can be distributed in a di�erent order than the precedence
relations. tasks are grouped together in processes, as some tasks have to be done consecutively
(e.g., grabbing and installing the same part). Lastly, the engineer decreases walking times by
assigning tasks in speci�c orders. tasks are scheduled so that an operator walks the least amount
of distance in between new tasks.

On average the engineers spend about a quarter of their time balancing the lines, sometimes more
depending on the amount of updates that need to be processed. There are four main reasons why
the assembly line would need re-balancing (other reasons also exist, but they are less frequent or
in�uence the balancing to a much smaller extent):

TU/e Page 9

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

1. Model Update: This occurs when a current model is updated by the OEM (usually once
a year). Due to the slightly di�erent design the models can have, the processes needed to
assemble the car can change. This will a�ect the entire assembly line

2. Process Update: This occurs when a change is made to an existing process in the line. A more
e�cient method to a task has been found or a di�erent way to mount a certain workpiece.
This usually only e�ects a single line section initially.

3. Model introduction: Although this is a unique process that only occurs sporadically, it
requires substantial re-balancing of the entire line for the newly introduced model. The
current models on the line will not have to be rebalanced completely (i.e, the new model will
be made to �t on the current line).

4. Demand changes: The total demand may change, which causes a signi�cant change to the
takt time of the line. The line will have to be rebalanced to account for this. Smaller demand
changes regarding speci�c model also occur, this requires less dramatic rebalancing.

The process itself is continuous, meaning that an update for the line can come at any given
moment. The engineers do not describe the process of line balancing as di�cult, only that their
main challenge is the amount of processes that each of them have to keep track of (more than 100
per engineer). Each engineer may also be biased in the way they balance their lines and �nally,
due to the amount of time a single balance takes, only a handful of solutions can be tested at any
given time.

2.5. Literature Review

A lot of review papers have been written for the Assembly Line Balancing Problem that classify
all the current literature. Multiple papers (see for example Battaïa and Dolgui (2013), Becker and
Scholl (2006), Boysen et al. (2007), Li et al. (2017), Tasan and Tunali (2008), Boysen et al. (2008)
and Sivasankaran and Shahabudeen (2014)) make comprehensive reviews of all the research that
has been done in the past decades. All these papers look at the di�erent options that are available
in the ALBP (e.g., paced or unpaced, manual or automated etc.) as well as the various algorithms
that are available to solve such problems. They divide the solvers into 3 main groups; mathe-
matical optimization, exact solution procedures and meta-heuristics. All of the aforementioned
review papers come to a similar conclusion; even though there is enough literature describing all
of the problems concerning the ALBP, only a small part of it covers actual real world problems.
Most of the listed papers in the review articles cover enough aspects of the ALBP, yet a very large
portion have no relevance towards real-world problems (i.e, the size of the problems is not compa-
rable). Boysen et al. (2008) describes that of the 312 papers treating the ALBP, only 15 cover real
world assembly lines and two of those cover automobile production. It therefore becomes unclear
whether the proposed solution methods in the current research are applicable to the real-world
problems such as these at VDL. In addition, most of the academic research does not represent the
re-balancing of the line but rather �rst time installation. The di�erence here is that current lines
often have �xed places for heavy machinery which is costly to move, see Boysen et al. (2008). Also,
some operators may have been trained to conduct certain tasks in a �xed order, which may result
in training costs when the order of the tasks is changed. This causes some design variables to be
�xed and limits the amount of options.

Boysen et al. (2008) furthermore propose several aspects of assembly line balancing in the automo-
bile branch that can/have to be taken into account. These are: mixed model production, parallel
working places within a workstation (multiple operators working on the same workpiece), parallel
stations (typically referred to as the Two-Sided Assembly Line Balancing Problem (TALBP)), un-
productive activities at a station (i.e., operator switching station). Lastly, an important function
to minimize is that of the so called horizontal balancing ,i.e., minimizing the variance in the station

TU/e Page 10

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

times for all model types.

Falkenauer (2005) furthermore emphasizes the problems that are also seen in the works of Becker
and Scholl (2006). Even though a lot of literature is available solving both ALBP, only a few con-
straints are taken into account while real world practices deal with multiple constraints. Falkenauer
(2005) argue that, especially within the automobile industry, constraints such as the re-balancing
of the line, zoning, ergonomics and other operator constraints must all be taken into account si-
multaneously. This in turn gives rise to a severely complex problem. The SALBP, and therefore
also the GALBP and MALBP, are typical NP-hard problems (as discussed by Álvarez-Miranda
and Pereira (2019) and Wee and Magazine (1982)) or Bin-Packing problems (as discussed by Wee
and Magazine (1982) and Álvarez-Miranda and Pereira (2019)).

More recently, Alghazi and Kurz (2018) adapted the SALBP and took zoning, ergonomic work-
loads, parallel workstations, mixed-model assembly and assignment restrictions into account. They
used Integer Programming (IP) and Constraint Programming (CP) to optimally solve the problem
(by using the least amount of workers). They showed that for big problems (using information
provided by an independent OEM) CP models outperform IP models.

It becomes clear that there is a big gap between the academic research done on ALB and real world
examples. In addition, the academic research mainly focused on the SALBP and the GALBP where
only a handful of additional constraints have been tested, usually separate from each other. A lot
of di�erent solution methods have been tested over the past decades, possible making it simpler
to �nd a suitable method that can be implemented at VDL. It can be concluded that a lot of care
has to be taken when applying some of the aforementioned models to the assembly line at VDL
and a lot of attention has to be payed to which constraints have to be applied.

2.6. Summary

In this chapter an explanation of the assembly lines at VDL Nedcar was given. The assembly line
consists of multiple workstations, on which multiple operators can work. To each operator tasks
are allocated, which they have to complete within the lines takt time. Next, the most important
factors that need to be considered while balancing the line were described. This includes of Mixed-
Models, paced lines, mounting positions, tooling and setup times. Lastly, an explanation was given
of how the lines are currently being balanced and how the current data is built up.

In the next chapter an elaborate explanation of how to incorporate the various factors that in�uence
the line balancing into a solvable problem is described. Later, in chapters 4 and 5 solution methods
are given to solve the problem.

TU/e Page 11

Master Thesis CHAPTER 2. PROBLEM BACKGROUND

TU/e Page 12

Master Thesis CHAPTER 3. MODEL DESCRIPTION

CHAPTER 3

Model Description

In this chapter a description of the proposed model is given. First the most basic assembly line
balancing problem is described which forms a base for later additions. After this the additions
to the model are given based on the assembly line description as given in Chapter 2. The most
important and complex additions to the simple model are sequence dependent setup times and
mixed model lines. Both of these additions are described in more detail, next to some smaller
additions.

3.1. Assembly Line Balancing Problem

In this section the theory needed to solve the ALBP is given, coinciding with the description of
the assembly line as given in Chapter 2. First, the basis of the ALBP, referred to as the Simple
Assembly Line Balancing Problem is given. After this, extensions to the model are provided based
of relevant literature and information from experts at Nedcar.

3.1.1. Simple Assembly Line Balancing Problem

The most basic form of the assembly line balancing problem is referred to as the Simple Assembly
Line Balancing Problem (SALBP), by Salveson (1955) and Baybars (1986). The bin packing
problem serves as a base for the SALBP with the addition of precedence relations.
Every assembly line has a set of tasks which must be done, so that the products that cycle through
the assembly line are made to requirement (see Baybars (1986) and Boysen et al. (2007)). A
task here is de�ned as the simplest action that can be performed so that it cannot be separated
into smaller tasks. The tasks needed to complete the workpiece can be characterized by the set
j ∈ {1, .., J}. For each of the tasks j a processing time τj is given, which in turn describes the
length of time that can be spent on a process. Along the assembly line are a number of workstations
w ∈ {1, ...,W} the tasks must be divided over. Each line has a prede�ned takt time T , the time at
which a new model is introduced into the line. Due to this, all the workstations have a maximum
processing time equal to the takt time. The sum of all tasks done at every workstation must
therefore be at most equal to the takt time. There are multiple objectives for the SALBP:

SALBP-1 Given a �xed takt time, the objective is to minimize the number of workstation used.

SALBP-2 Given a �xed amount of workstations, the objective is to minimize the takt time, thus
maximizing the output.

SALBP-E Altering both takt time and number of workstations, the objective is to maximize the
e�ciency of the assembly line. The e�ciency is de�ned as the fraction of the total time used,
ttot, and the total available time, W · T .

SALBP-F Given a �xed number of stations and takt time, the objective is to �nd a feasible line
balance.

TU/e Page 13

Master Thesis CHAPTER 3. MODEL DESCRIPTION

Furthermore, the tasks must comply with precedence relations, which describe the relationship
between the di�erent tasks corresponding with the order in which the tasks must be executed and
their physical limitations. These precedence relations can be represented in a precedence diagram,
where the nodes are the tasks and an arc between nodes i and j represents a precedence relation
(with i being an immediate predecessor of task j). An example of a precedence diagram is given
in Figure 3.1. A feasible line balance is achieved when no precedence relation is violated and when
no task exceeds the takt time. In case that the last assigned task is completed before the takt time
then the remaining time is unused.

In the SALBP the following assumptions are made to relax the problem (see Baybars (1986),
Becker and Scholl (2006) and Boysen et al. (2007)):

Assumption 1 The task times are all deterministic and no variations in duration are considered.

Assumption 2 All tasks must comply with their precedence relations.

Assumption 3 Tasks are launched down the line at a predetermined time interval, i.e., the takt
time is �xed and does not vary.

Assumption 4 Feeder or parallel lines are not considered.

Assumption 5 A task can only be processed on a single workstation and cannot be split up
between workstations.

Assumption 6 Only a single model is produced on the assembly line and this model does not
have any variants.

Assumption 7 Every task can be processed on every workstation, i.e., there are no equipment
or material restrictions present.

Assumption 8 Only precedence relations can cause assignment restrictions.

The �rst 3 assumptions accurately describe a real-world assembly line, however, all other assump-
tions simplify the problem too much and can lead to infeasible solutions to the ALBP. As has been
described in Chapter 2, an actual assembly line produces multiple models and multiple variants of
these models simultaneously. Furthermore, restrictions as the zoning of tasks, setup times, equip-
ment and material constraints should all be considered to come to a usable and feasible solution.
Lastly, some tasks may exceed the takt time when this is necessary for the mounting of a large
part. For the remainder of this thesis assumptions 1 to 3 are therefore be kept. In addition, feeder
and parallel lines are out of the scope of the project. Typically, feeder lines are not the bottleneck
in a production line and parallel lines do not exist at VDL. However, assumptions 5-8 are changed
into the following:

Assumption 5 Tasks that exceed the takt time can be processed on consecutive workstations and
should be assigned to the same operator (i.e., the operator �nishes the task before returning
to his assigned workstation).

Assumption 6 Multiple models and variations of models can be produced on the same line. The
order in which these models are produced are subject to change depending on their demand.
Models are not produced in batches, but can be processed at any given moment within the
production sequence.

Assumption 7 Workstations have a unique identity depending on the available equipment and
space restrictions.

Assumption 8 Tasks can be restricted to certain workstations if special equipment (or material)
is needed.

TU/e Page 14

Master Thesis CHAPTER 3. MODEL DESCRIPTION

1

2

3

4

5 6

7

1

5

4

3

5 6

5

Figure 3.1: Example of a precedence diagram where the black number represent the task number and
the red number corresponds to the processing time of the respective task

3.1.2. Sequence Dependent Setup Times

Setup times are a very relevant addition to the SALBP, especially in the automotive industry.
However, most researchers do not take setup times into account explicitly (e.g., due to the ad-
vances in manufacturing technology quick setup times can be achieved, thus making setup times
irrelevant). However, in the automotive industry the relatively large size of a car body and the
short takt time can cause the setup times accounting for, on average, 15% of the total station time.
Setup time can be caused by a variety of situations. The most applicable ones in the automotive
industry are listed below:

Walking distance The length of a typical car is between 4-5 meters. When two tasks are planned
successively, but on opposite side of a car body, then the total walking distance can be around
10 meters. If it is taken into account that the average walking speed of a person is around
1 m/s, then this accounts for 10 seconds of walking time. When the takt time is around
60 seconds (which is typical for a car manufacturer), then the walking time has already
accounted for 17% of the total station time.

Material changes Another important aspect in setup times is the collection of materials. When
switching tasks the operator may have to walk to a material bin to grab new material for
the subsequent tasks. The material bins are usually placed alongside the line, at a distance
of 1-2 meters depending on the available space. The shortest distance an operator can travel
is around 3 meters then, still accounting for about 5% of the station time. However, as
operators always carry out multiple tasks within a station, this number increases with the
amount of tasks planned.

Equipment changes Similar to the aforementioned material changes, an operator may also have
to change equipment between tasks. This again account for a similar amount of setup time
as before.

It also becomes clear that the setup times greatly depend on the sequence in which the tasks
are planned to a workstation. The objective is to create as little setup times as possible in a
workstation, as setup times have no added value. Therefore, it is desired to calculate the setup
times between every pair of feasible tasks so that the tasks can be sequenced accordingly in their
workstations. A common way of applying setup times is by denoting that if the setup time between
a pair of tasks is too large then these tasks cannot be placed on the same workstation, see e.g.,
Becker and Scholl (2009) and Alghazi and Kurz (2018). This, however, leads to a reduction in
scheduling freedom, as feasible line balances remain unconsidered.

Andrés et al. (2006) was one of the �rst to take sequence dependent setup times into account.
They made the considerations that when task j2 is preceded by task j1 in a station load, then a

TU/e Page 15

Master Thesis CHAPTER 3. MODEL DESCRIPTION

setup time πj1,j2 must be added to compute the station time. Furthermore, if a task j2 is the last
task in a station load and task j1 the �rst task, then a setup time equal to πj2,j1 must also be
added to the station time as the tasks are repeated in a cyclic sequence. The length of the setup
times depend on the factors as described previously.

However, as explained by Scholl et al. (2013), a di�erence has to be made between forward and
backward setup times, as these setup times can vary signi�cantly. A forward setup time is caused
when a task j2 is directly preceded by a task j1 during the same production cycle p (the de�nition
of a cycle is when an operator is processing tasks on the same workpiece). A forward setup time
between tasks j1 and j2 is denoted as πj1,j2 . In contrast, a backward setup time is present when a
task j1 is processed directly by the same operator after task j2 in the next production cycle p+ 1
(i.e., on the next workpiece). A backward setup time must be �nished within the takt time of cycle
p in order to start task j1 when cycle p+ 1 begins. A backward setup time between tasks j2 and
j1 is denoted as µj2,j1 . It must also be noted here that a forward setup time between the same
tasks cannot exist (i.e., πj1,j1), yet on the other hand a backward setup time between the same
tasks can exist (i.e., µj1,j1).

Figure 3.2 shows how setups are de�ned and the di�erences between forward and backward setups.
The simplest setup time is created solely by walking distances, as is the case between tasks j1 and
j2. Here the operator does not have to change equipment or grab new materials. In contrast, the
setup between tasks j2 and j3 is more elaborate. The operator must walk from position (a), to the
material box at position (b), and then continue to task j3 at position (c). This creates extra setup
time in comparison with the situation that the operator walks directly from task j1 at position (a)
to task j3 at (c). Next, the di�erence between a forward and backward setup becomes apparent.
If the operator �nish cycle a with task j4 and starts the next cycle a + 1 with task j1, then only
a short setup time is needed (i.e., the backward setup µj4,j1). However, if task j4 is succeeded by
task j1 in the same cycle a then a much longer setup time is relevant, namely the forward setup
πj4,j1 .

Figure 3.2: The connection between di�erent tasks executed on a workpiece in consecutive cycles

Example 1: Sequencing tasks Consider the processing time and setup time as given in Table
3.1 if the tasks are ordered in the sequence {1, 2, 3, 4} then the total station time is equal to

TU/e Page 16

Master Thesis CHAPTER 3. MODEL DESCRIPTION

τj1 + πj1,j2 + τj2 + πj2,j3 + τj3 + πj3,j4 + τj4 + µj4,j1 = 16. This is a feasible (and in this case
optimal) sequence for the problem. However, consider the sequence {1, 3, 2, 4}. In this case
the total station time will be equal to τj1 +πj1,j3 + τj3 +πj3,j2 + τj2 +πj2,j4 + τj4 +µj4,j1 = 19,
which is not a feasible sequence for a single workstation. If the tasks are planned in this
sequence, then task 4 has to be sequenced on the next workstation.

This example therefore shows the importance of sequencing the tasks in the workstations correctly.
The following assumptions are therefore added to the model:

Assumption 9 Forward and backward setup times are taken into account and are unique to each
processed model and model pair.

Table 3.1: Processing times and setup time for the example in Figure 3.2

Description τj1 τj2 τj3 τj4 πj1,j2 πj2,j3 πj3,j4 µj4,j1 πj1,j3 πj3,j2 πj2,j4

Time 2 4 3 1 1 2 2 1 3 2 3

3.1.3. Multiple Operators and Mounting Positions

Balancing the line by only utilizing a single operator is cost e�ective, however it results in long
assembly lines due to the amount of tasks that have to be carried out. The main solution to this
problem is by allowing multiple operators to work on the car simultaneously, thus minimizing the
length of the line. The size of the car body allows this as operators can work on opposite sides
and therefore not interfere with each others work. The car body is split up into di�erent zones
and depending on the location of speci�c tasks, a car can have between 1 and 24 zones. The most
simple method of utilizing multiple sides is by considering two zones, being the left and right side
of the car. This method is referred to as the 2-sided assembly line balancing problem (2ALBP),
see, e.g., Kim et al. (2000). Here tasks are designated with zone information, either containing an
L when the task has to be done on the left side of the car, R for the right side and E when it can be
done on either side. Di�erent balancing methods have been derived for the 2ALBP, which mainly
focus on di�erent solution methods and in turn make decisions on where to plan the E tasks as
this can greatly in�uence the balance.

Figure 3.3: An example of a car body divided into 12 di�erent mounting positions. Every operator on
the line can take up 1 or more unique mounting position in accordance with with the tasks allocated to
the operator

TU/e Page 17

Master Thesis CHAPTER 3. MODEL DESCRIPTION

However, the problem by only considering two separate zones is that operators may interfere with
one another. If two operators work on tasks that are labeled 'E' at the same time, then there is
a possibility that they are both occupying a similar smaller zone (a task inside the car body can
be executed on either side of the line, which can lead to interference). The two sided balance does
not contain enough information to correctly assign tasks to the operators at every workstation.
The 2ALBP can also be extended to an N-ALBP considering N di�erent sides of a workstation.
Additionally, these problems typically assign mounting positions to operators and therefore limit
the amount of tasks a single operator can execute.

The solution to this is to not �x an operator solely to a single side of the line. All tasks contain
speci�c zone information, which in turn means that assigning tasks to operators also assigns zones
to operators. Thus, during the balancing procedures, when a task is assigned to an operator, a
mounting position is also assigned to the worker. Other operators can therefore not be assigned to
tasks that take up the same mounting position. This idea was �rst proposed by Becker and Scholl
(2009) and is referred to as variable workplaces. Every operator can be assigned every available
mounting position depending on the assigned tasks. This allows for more �exibility in the ALBP.
In conclusion, the following assumption must always hold:

Assumption 10 Every operator on the assembly can be assigned to any available mounting posi-
tion, however operators on the same workstation cannot share a zone (i.e., if a task is assigned
to an operator then another operator on the same workstation cannot be assigned tasks that
occupy the same zone).

Furthermore, when considering multiple operators occupying the same workstation additional con-
straints regarding the precedence relations must be taken into account. These precedence relations
can cause idle times when one operator has to wait for another operator to �nish his/her task.
Therefore:

Assumption 11 If task j1 is assigned to a workstation w and task j2 is a successor of task j1
that is assigned to the same workstation, then j2 can only start when j1 has been completed,
independent of the operators assigned to the tasks.

3.1.4. Mixed Model Assembly Line Balancing

In assembly line balancing there are three cases to consider when accounting for di�erent model
mixes, see Figure 3.4. The easiest one is single model, where only a single product is made on
an assembly line. However this is becoming less common as customers often desire a customized
product out�tted according to their needs. Mass production of highly con�gurable products has
become a standard practice, though in the early days this was not the case, see Hounshell (1984).
The Ford Model T was the �rst mass produced product on the market. In 1909 at the Highland
Park Complex a Model T was produced every 3 minutes, with the production eventually totaling
2 million vehicles in the year 1925. Over the years the production system became more e�cient,
signi�cantly dropping the prices of the vehicles. The only di�erence from today was the customiza-
tion of the Model T. Every model came with the same engine, wheels, body and color, with the
famous quote from Henry Ford: "Any customer can have a car painted any color that he wants so
long as it is black" Ford and Crowther (1922).

In today's vehicle market the amount of customization is enormous, with BMW theoretically hav-
ing 1032 di�erent models in 2004, see Meyr (2004), which in 2020 is even higher with the release of
new vehicle types. Even though not all di�erent models will be made, the customers expect short
lead times and personal customization on their product. Nevertheless the factory must keep the
production rate and quality high while maintaining low assembly costs, see Bukchin et al. (2002).
In addition the �exibility of the assembly line should be high in order to quickly react to changing
customer demand and customization.

TU/e Page 18

Master Thesis CHAPTER 3. MODEL DESCRIPTION

Figure 3.4: Schematic showing the 3 di�erent types of assembly lines. The assembly lines �ow from left
to right and each shape represents a di�erent model

The other two options both consider the sequencing of the di�erent models on the assembly lines
in di�erent ways, see Boysen et al. (2007). The �rst option is referred to as Multi-Model Assembly
Line Balancing. Here the models are sequenced in batches dependent on their demand. In this
case, if the batch sizes are large enough, it may be possible to balance the line separately for each
model type, which can in turn also lead to some other problems. However, as mixed-model assem-
bly lines are not relevant for the automotive industry, further discussion regarding this subject is
left out.

The third and most relevant is Mixed Model Assembly Line Balancing (MMALB). Here models
are randomly sequenced on the line according to their demand. The models that are produced are
typically a variant of the same base model. Nevertheless, even this restriction has been subject to
change over the last years, where even completely di�erent models are still produced on the same
assembly line so that the companies become even more versatile. It quickly becomes clear the
MMALBP gives rise to many problems that need to be solved to come to a feasible (and preferably
optimal) line balance.

The �rst major challenge is the di�erence in task times between the di�erent variants. Installation
of a certain option may be more intensive than another option which leads to high variety in station
times. On occasions this may cause the takt time to be exceeded. This is not a big problem if it
occurs sporadically, though if a lot of high intensive models succeed each other a large overload
occurs. This has to be counteracted by either halting the line or using an extra operator, both
of which are expensive solutions and therefore highly undesired. Another way to counteract this
problem is by adjusting the sequence of the models in the line, known as Car Sequencing (CS) or
Mixed Model Sequencing (MMS).

Simultaneously balancing and sequencing an assembly line can be viable. However, due to the
di�erence in planning horizons (balancing having a long term horizon and sequencing short term)
more problems have to be overcome. The exact model mix is di�cult to predict on a long term
basis as this can already vary daily. As a result, the line balancing is done on a prediction of the
demand for the main models (i.e., the various smaller options a model can have are not taken into
account). As the goal is to come to a prediction of the number of operators needed to combat
future demand, this assumption is reasonable. If the objective is to balance the lines on a short
term bases, where the sequence of the models is known, then the lines can be balanced using a
simulation based approach, see e.g. Tiacci (2015).

TU/e Page 19

Master Thesis CHAPTER 3. MODEL DESCRIPTION

Strict Restriction

A second way to balance the MMAL is through strict restrictions of the takt time. In this case
the takt time must be met for every model, independent of its demand. While this relaxes most
of the problems as described in the previous sections, it can lead to a high amount of ine�ciency
especially when model demands are low but task times are high. This in turn also lead to the use
of more operators along the line and in turn to higher running costs.

Example 2: Strict Restrictions Consider 4 models labeled {A,B,C,D} each with varying de-
mand αm, with

∑
αm = 1, see Figure 3.5. Model A is the only model that has no idle

time as the sum of all its tasks is equal to the takt time. If the demand for model A is low,
αA = 0.1, and the rest of the models have equal demand (αB = αC = αD = 0.30) then the
average e�ciency of the line is equal to 0.625. Considering the fact that the average e�ciency
is desired to be around 0.95, this method of balancing an assembly line is undesirable.

Strict Restrictions

1 2 3 4

Model Number

0

5

10

15

20

25

S
ta

ti
o
n
 T

im
e

takt time

Figure 3.5: Example of strict takt time restriction considering 4 models

Joint Precedence

A common approach to balancing MMALB is that by considering the MMALB as a single model
line. In this case a joint precedence graph is created that contains all the tasks of each model, see
e.g. Boysen et al. (2009) and Yang et al. (2013). The task times are then averaged according to
the demand of each model according to the following equations:

τ̄j =
∑
n∈N

pnτj,n, (3.1)

TU/e Page 20

Master Thesis CHAPTER 3. MODEL DESCRIPTION

where τ̄j is the weighted duration of task j, N is the set of models that need to be produced, pn
the demand for model n and τj,n the task duration of task j for model n. An example of a joint
precedence graph can be seen in Figure 3.6. For example, task 3 is unique for model 2 and results
in a processing time of 2 · 0.5 + 0 · 0.5 = 1 if both models have equal demand. This however causes
large overloads to occur in stations if the demand for a model is low but the task time is high (e.g.,
if a model's demand is 5% and its task time is 50 then its weighted task time is 2.5). This also
causes a large di�erence in station times between the models, which in turn can block the line if two
task intensive models are launched down the line consecutively. A way to counteract this problem
is by allowing common tasks (i.e., tasks that are done regardless of the model) to be executed
on di�erent workstation instead of the same, see Becker and Scholl (2006). This, however, is an
undesired option as, e.g., more equipment has to be placed at each workstation. Another method
that is most commonly employed in the automotive industry is the use of the so called skip policy
(see Scholl (1999)). Here the group coordinator takes over whenever the normal operator alongside
the assembly line cannot �nish their workpiece before the end of the workstation. In most cases
this will not lead to extra costs and is therefore more desirable (however not always optimal).

The downside, however, to previously described method is when sequence dependent setup times
are also considered. Consider three tasks with corresponding task duration, forward and backwards
setup times as given in Figure 3.2. Two variants have to be produced whereby task 1 is a common
task, task 2 is exclusive for variant 1 and task 3 is exclusive for variant 2. The sequence {1, 2, 3} is
still the optimal sequence in this case if the MMAL is considered as a single model line. However,
this would lead to incorrect setup times being taken into account. Forward setup πj2,j3 would be
added to the station time but this setup time does not exist as j2 and j3 are exclusive to variants
v1 and v2 respectively. Furthermore, backward setup µj2,j1 is not taken into account despite this
setup existing for variant v1 (similarly πj1,j3 is not taken into account for variant v2).

Averaging Station Loads

A solution to the previous described problems is to combine and adjust joint precedence and strict
restrictions. The assembly is balanced for every model independently, whereby the takt time
constraint is relaxed. The takt time then does not have to be met for every model, however the
average station load should be less than or equal to the takt time. Then, if the station load at
workstation w and operator o for model n is denoted as tw,o,n, then the following inequality must
hold: ∑

n∈N
αn · tw,o,n ≤ T . (3.2)

In contrast, another strict restriction is introduced. When an operator exceeds the takt time at
his/her respective workstation, the operator may not be able to use certain equipment or material
due to the positioning of these pieces. For that reason the operators station boundaries βw,o are
introduced, denoting the distance between the start of the operators workstation and the maximum
distance the operator can vary from this point. If the speed of the line is normalized to 1 (i.e.,
the length of a workstation is equal to the takt time), then the following inequality must hold for
every operator:

tw,o,n ≤ βw. (3.3)

By doing this no setup times are missing in the balance and the station loads are described correctly.
However a similar problem as described in section 3.1.4 is still present. A model that creates a
large station load with a large demand may cause a large variance in takt time. To combat this, the
method of horizontal balancing, as introduced by Merengo et al. (1999), can be used. The aim of
horizontal balancing is to smooth out the work load at every mated station (w, o) over all models.
Emde et al. (2010) examined di�erent objective functions related to horizontal balancing. They
concluded that comparing the station times of all models to the takt time typically leads to the best

TU/e Page 21

Master Thesis CHAPTER 3. MODEL DESCRIPTION

1

2

4

6

5

3

6

4

(a) Precedence graph of Model 1

1

2

3

5 6

5

3

2

3 4

(b) Precedence graph of Model 1

1

2

3

4

5 6

5

3

1

3

1.5 4

(c) Precedence graph of Model 1 and 2

Figure 3.6: Example of a joint precedence diagram. All common and unique tasks between models 1 and
2 are combined to form a single precedence graph that is used to solve the ALBP. Both models have equal
demand (0.5), therefore, the processing times of the tasks in the joined graph are averaged according to
3.1

results. Furthermore, if demand information can be given with a high amount of accuracy, then
a weighted objective function should be used. The following two horizontal balancing approaches
are therefore introduced, depending on the planning horizon:

min
∑
n∈N

∑
w∈W

∑
o∈O
|tw,o,n − T | (3.4)

min
∑
n∈N

∑
w∈W

∑
o∈O

αn · |tw,o,n − T |, (3.5)

where (3.4) should be used for long term planning and (3.5) for short term planning where demand
is certain. Minimizing the variance can result in less overall work overload for an operator (i.e.,
the total amount of time an operator exceeds the takt time). In addition, horizontal smoothing
also helps in counteracting the volatile demand of the automotive market. Demand changes can
cause line balances to become infeasible, as the average station time can start to exceed the takt
time. The lower the di�erence between the station times and the takt time, the less the demand
in�uences the overall average station load. It is worth noting that the higher the uncertainty in
demand forecasts, the lower the e�ect of horizontal balancing is.

Lastly, Emde et al. (2010) concluded in the case of high product variety that separate model
demand becomes completely insigni�cant, the concept of vertical balancing might work better.
Vertical balancing aims at evenly balancing the workloads among all stations by comparing the

TU/e Page 22

Master Thesis CHAPTER 3. MODEL DESCRIPTION

station time to the processing times of all models per station, in other words:∑
w∈W

|t∗w,o − t̄|, (3.6)

where t∗w,o is that average station time of workstation k and t̄ the overall station time according
to (3.7) and (3.8) respectively.

t∗w,o =
∑
n∈N

αn · tw,o,n ∀w ∈W, o ∈ O, (3.7)

t̄ =
1

|W |
∑
w∈W

1

|O|
∑
o∈O

t∗w,o. (3.8)

In summary, while considering mixed-model assembly lines, the following assumptions must hold:

Assumption 12 Common tasks between models must be processed on the same workstation and
the same operator.

Assumption 13 The average station load across each model at every mated station (w, o) should
be less than or equal to the takt time.

Assumption 14 The maximum station load observed by a single model should be less than the
operators boundaries.

Assumption 15 The total workload at every mated station should be balanced out over every
model (horizontal balancing) or balance out over all stations (vertical balancing) dependent
on the planning horizon and demand uncertainty.

No horizontal balancing

1 2 3

Model Number

0

5

10

15

20

25

30

35

S
ta

ti
o
n
 T

im
e takt time

(a) No horizontal balancing objective

Horizontal balancing

1 2 3

Model Number

0

5

10

15

20

25

30

35

S
ta

ti
o
n
 T

im
e takt time

(b) Horizontal balancing objective

Figure 3.7: Example showing di�erence between two solutions for a single mated workstation (w, o). If
no horizontal balancing is applied the variance between di�erent models is large, however, if horizontal
balancing is applied this variance can be decreased. This in turn causes less overall work overload.

3.2. Assembly Line Sequencing

In this section, a solution to the Assembly Line Sequencing Problem (ASLP) is given. The current
method as employed at VDL Nedcar is Car Sequencing. An overview of how the rules related to
CS are generated is given, as well as the solution method for the ASLP.

TU/e Page 23

Master Thesis CHAPTER 3. MODEL DESCRIPTION

3.2.1. Car Sequencing

One of the two methods for the sequencing of assembly lines in the automotive industry is CS,
as has been brie�y described in Section 2.3. The second method is Mixed Model Sequencing (see
Golle et al. (2014)), however this is out of the scope of this project. CS is based on certain se-
quencing rules that depend on the results of the ALBP. The objective of CS is to sequence all
N di�erent models while following rules related to options these models can have (e.g., an a/c or
sunroof). It can easily be seen that the more station times are distributed evenly across the entire
assembly line, the less options require rules. In the remainder of this section two di�erent methods
are proposed to de�ne options and rules.

Currently, only two approaches for generating sequencing rules have been formulated. Sequencing
rules are typically in the form of Hv : Qv, meaning that out of every Qv sequenced models only Hv

of these models can contain variant v. The �rst one is the BY-approach as given by Bolat and Yano
(1992). The basis of these sequencing rules is to calculate a number of models Qo that contain an
option o that can be sequenced successively before a number of models not containing option o has
to be sequenced to shift the operator back to its left hand side border. However, as discussed by
Golle et al. (2014) this method can cause feasible sequences to be ignored. The reasoning behind
this is that an operator does not necessarily have to return to his left hand border, as long as the
right hand border is not exceeded. Golle et al. (2014) therefore propose a new rule, referred to as
the MSR-approach (mixed Sequencing Rule). Instead of generating one rule per option, the MSR
approach generates multiple per option, which can in turn lead to a more accurate sequence where
the total work overload is minimized. It is assumed that exactly one variant v ∈ V is processed at
every mated workstation (w, o). The minimum and maximum number of successive models that
consists of variant v that can be sequenced is then:

qminv =

⌊
βvw − T
p+
v − c

⌋
(3.9)

qmaxv =

⌊
A(c− p−v) + (βvw − T)

p+
v − p−v

⌋
, (3.10)

where βvw is the length of the workstation w variant v is produced on, p+
v is the processing time of

models with variant v, p−v is the processing time of models not containing v and A is the length
of the sequence. Furthermore it is assumed that p−v < T < p+

v ≤ lvw. Finally, the sequencing rules
can be generated as follows:

H
qv−qminv +1
v = qv (3.11)

Q
qv−qminv +1
v = H

qv−qminv +1
v +

⌈
qv(p

+
v − c)− (βvw − p+

v)

c− p−v

⌉
, (3.12)

with qv ∈ [qminv ; qmaxv]. The last term of (3.12) calculates the amount of models not containing v
that need to be processed before another model that contains v can again be processed. In addition
a secondary rule for every variant is proposed. It can be useful to distribute every model over the
line evenly(e.g., this can help with material planning). For every variant an extra rule is created
equal to:

Hv = 1 (3.13)

Qv =

⌊∑
v∈V αv ·A
αv ·A

⌋
. (3.14)

Lastly, a weight can be assigned to each sequencing rules. A common way to weigh each rule is to
assign a weight equal to the amount of time a variant v exceeds the takt time, in other words:

λv = p+
v − T, (3.15)

where λv is the work overload induced by variant v.

TU/e Page 24

Master Thesis CHAPTER 3. MODEL DESCRIPTION

3.3. Summary

In this chapter a description of the model needed to solve the assembly line balancing problem
was provided. First, the main problem referred to as the ALBP was described, including all the
assumptions necessary to solve it. Then, additional constraints were added to the model that were
previously found in Chapter 2. Di�erent ways to incorporate these constraints were described
and were added to the main model. Lastly, an additional problem known as the Car Sequencing
Problem was described.

In the next chapter the assumptions that were formulated in this chapter are translated to a Mixed
Integer Linear Program that can be used to solve the ALBP and the CSP.

TU/e Page 25

Master Thesis CHAPTER 3. MODEL DESCRIPTION

TU/e Page 26

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

CHAPTER 4

Mixed Integer Linear Program

In this chapter the Mixed Integer Linear Program (MILP) models are presented for the di�erent
models previously described in Chapter 3. First, a short description of a MILP is given in section
4.1. Then the necessary input data, sets and variables needed to solve both MILP models are
presented. Finally, the MILP is presented respectively for the ALBP and CS.

4.1. MILP Background

In Mixed Integer Linear Programming some of the design variables that are used are constrained
to be integers, while others are not. Furthermore, all variables are linearly dependent on each
other. The optimization problem can be written in the following standard form:

min cTx

s.t. Aeqx = beq

Ax ≤ b
lb ≤ x ≤ ub
xi ∈ Z
xj ∈ {0, 1}

(4.1)

where x are decision variables, Aeq and A are m×n input matrices and c, beq, b, lb and ub are input
vectors. MILP can be solved using exact methods such as the branch and bound, cutting plane
or, a combination of both, referred to as the branch and cut method.

In addition to the above formulation, the 'big-M' notation is also used. This notation is used to
penalize certain constraints if they are not met by adding a su�ciently large positive value M .
E.g., if two variables labeled a and b both are equal to 1, then variable c must be 0:

M · (2− a− b) ≥ c
c ≥ 0.

4.2. Input Data

The required input data needed to solve the various MILP models is given below:

� J number of tasks that need to allocated to the assembly line with task j ∈ {1, . . . , J}

� W number of mated workstations with workstation w ∈ {1, . . . ,W}

� T is the Tact time

� O number of operators available at every mated station with operator o ∈ {1, . . . , O}

TU/e Page 27

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

� N number of models with model n ∈ {1, . . . , N}

� V number of variants with variant v ∈ {1, . . . , V }

� A number of slots in the production cycle with slot a ∈ {1, . . . , A}

� Z number of zones with zone z ∈ {1, . . . , Z}

� M a very large positive number

� ε a very small positive number

Furthermore, the following matrices and sets are required:

� βw maximum length of workstation w

� Pj(P∗j) set of all (direct) predecessors of task j

� Sj(S∗j) set of all (direct) successors of task j

� Zz set containing the tasks allocated to zone z

� τj,n is a J ×N matrix denoting the task time of task j for model n

� πj1,j2,nis a J × J × N matrix denoting the forward setup time from task j1 to task j2 for
model n

� µj2,j1,n2,n1
is a J × J ×N matrix denoting the backward setup time from task j2 to task j1

from model n2 to model n1

� αn is the fraction of the demand of model n ∈ {1, ..N}

� D is a set of tasks j that have to be assigned to station (w, o)

� K is a set of task pairs (j1, j2) that have to be assigned to station w on operators (s1, s2)
with s1 6= s2

� Ωj,n is a J ×N matrix stating if the completions time of a task j is larger than 0 for a model
n, i.e.,:

Ωj,n =

{
1, if the completion time of task j for model n is larger than 0

0, otherwise

� Ψv,n is an V ×N matrix denoting if a model n contains variant v, i.e.,:

Ψv,n =

{
1, if model n contains variant v

0, otherwise

� R is a set of Hv : Nv sequencing rules stating that Hv out of Nv successively sequenced
models can contain variant v

4.2.1. Design Variables

The following design variables are used in the MILP:

� xJWj,w =

{
1, if task j is assinged to workstation w

0, otherwise

� xJOj,o =

{
1, if task j is assinged to operator o of a station

0, otherwise

TU/e Page 28

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

� xJJj1,j2 =

{
1, if task j1 is assigned to an earlier position than task j2 and j1 6= j2 in a mated station

0, otherwise

� xANa,n =

{
1, if model v is assigned to postion a of the production cycle

0, otherwise

� yJJNj1,j2,n
=

{
1, if task j1 directly precedes task j2 for model n in a mated station and j1 6= j2

0, otherwise

� fJNj,n =

1, if task j is assigned to the �rst position for model nv

in a mated station and Ωj1,n > 0

0, otherwise

� lJNj,n =

1, if task j is assigned to the last position for model n

in a mated station and Ωj1,n > 0

0, otherwise

� uWO
w,o =

{
1, if mated station (w, o) is utilized

0, otherwise

� uw =

{
1, if workstation w is utilized

0, otherwise

� cJNj,n completion time of task j for model v in its mated station

� tWON
w,o,n station time of workstation w for operator o for model v

� sWOA
w,o,a starting time of operator o on workstation w for production cycle a

� qWOA
w,o,a work overload of operator o on workstation w for production cycle a

� bVv the amount of violation made for variant v

4.3. Assembly Line Balancing Problem

The MILP for the ALBP is formed as station and scheduling problem, which is also described in
the papers of Esmaeilbeigi et al. (2016) and Yang and Cheng (2019). Station based formulations
use binary decision variables to assign tasks to workstations (i.e., station information is directly
available). Schedule based formulations output the sequence of the tasks, disregarding information
like which task is assigned to which station. Due to the nature of the problem a combination of
both methods is proposed for ease of de�nition. The total number of variables for the ALBP is
bound by O(J2).

4.3.1. Constraints

The constraint for the MILP can be divided into 6 separate categories; Task assignment, prece-
dence, sequence, setup, capacity and station assignment constraints.

TU/e Page 29

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

Task Assignment Constraints

Each task should only be assigned to a single workstation and a single operator:∑
w∈W

xJWj,w = 1 ∀j ∈ J,

(4.2)∑
o∈O

xJOj,o = 1 ∀j ∈ J.

(4.3)

If a task j has to be assigned to a mated station (w, o) then xJWj,w and xJOj,o should equal 1:

xJWj,w − xJOj,o = 0 ∀(j, (w, o)) ∈ D.
(4.4)

If 2 tasks have to be carried out simultaneously at opposite operators of the same station j then
the tasks should be assigned to the same station and on di�erent operators:

xJWj1,w − x
JW
j2,w = 0 ∀(j1, j2) ∈ K,

∀w ∈W,
(4.5)

xJOj1,o1 − x
JO
j2,o2 = 0 ∀(j1, j2) ∈ K,

∀(o1, o2) ∈ O,
o1 6= o2.

(4.6)

To operators on the same workstation cannot be assigned tasks that occupy the same zone:

M · (2− xJWj1,w − x
JW
j2,w) ≥ xJOj1,o1 − x

JO
j2,o2 ∀z ∈ Z,

∀(j1, j2) ∈ Zz,
∀w ∈W,
∀o ∈ O.

(4.7)

Precedence Constraints

All tasks must follow the precedence constraints, i.e. a task cannot be assigned to a workstation,
unless all of its predecessors have been assigned to an earlier or the same workstation. Note that
for the precedence constraints it is not necessary that a task's predecessors have also been assigned
to the same operator of a workstation.∑

y1∈W
y1 · xJWj1,y1 ≤

∑
y2∈W

y2 · xJWj2,y2 ∀j1 ∈ J,

j2 ∈ P∗j1 .
(4.8)

Sequence Constraints

2 tasks that are assigned to the same workstation are also assigned in a speci�c sequence (i.e.,
the order in which the tasks are executed in the workstation). This is denoted by the variable
xJJj1,j2 . If tasks j1 and j2 are assigned to the same mated station (w, o) and they are not direct

TU/e Page 30

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

predecessors of one another, then one of those tasks must be appointed to an earlier position in the
mated station (i.e, only variable xJJj1,j2 or x

JJ
j2,j1

can be equal to 1), this is ensured by the following
2 constraints:

xJJj1,j2 + xJJj2,j1 +M · (4− xJWj1,w − x
JW
j2,w − x

JO
j1,o − x

JO
j2,o) ≥ 1 ∀j1 ∈ J,

∀j2 ∈ J − (P∗j1 ∪ S
∗
j1),

∀w ∈W,
∀o ∈ O,

(4.9)

xJJj1,j2 + xJJj2,j1 −M · (4− x
JW
j1,w − x

JW
j2,w − x

JO
j1,o − x

JO
j2,o) ≤ 1 ∀j1 ∈ J,

∀j2 ∈ J − (P∗j1 ∪ S
∗
j1),

∀w ∈W,
∀o ∈ O.

(4.10)

If task j1 is an immediate predecessor of task j2 and they are allocated to the same mated station
(w, o), then j1 must also precede task j2 in that mated station:

xJJj1,j2 +M · (4− xJWj1,w − x
JW
j2,w − x

JO
j1,o − x

JO
j2,o) ≥ 1 ∀j2 ∈ J,

∀j1 ∈ Pj2 ,
∀w ∈W,
∀o ∈ O.

(4.11)

If a task j2 precedes task j3 in a station and consequently task j1 precedes task j2 in the same
station task, then j3 must therefore also precede j1 in the same mated station. This is also referred
to as a transitivity constraint.

xJJj1,j3 +M · (2− xJJj1,j2 − x
JJ
j2,j3) ≥ 1 ∀(j1, j2, j3) ∈ J.

(4.12)

If 2 tasks are not assigned to the same workstation or operator then there cannot be any sequence
dependent relations between them:

M(1− xJJj1,j2) ≥ xJWj1,w + xJWj2,w,

M(1− xJJj1,j2) ≥ xJWj2,w + xJWj1,w ∀(j1, j2) ∈ J,
∀w ∈W.

(4.13)

M(1− xJJj1,j2) ≥ xJOj1,o + xJOj2,o,

M(1− xJJj1,j2) ≥ xJOj2,o + xJOj1,o ∀(j1, j2) ∈ J,
∀o ∈ O.

(4.14)

TU/e Page 31

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

Setup Constraints

If for any model v its task time for a task j1 is equal to 0, then no forward setup can occur for the
task of that model:

yJJNj1,j2,n −M · (Ωj1,n1
· Ωj2,n2

) ≤ 0 ∀(j1, j2) ∈ J,
∀(n1, n2) ∈ N.

(4.15)

A task j1 cannot be an immediate follower of another task j2 in both forward and backward
direction (i.e., if task j1 is the �rst task in a station and task j2 is the last task in a station, then
there cannot be a forward setup from task j2 to task j1).

yJJNj2,j1,n −M · (2− f
JN
j1,n − l

JN
j2,n) ≤ 0 ∀(j1, j2) ∈ J,

∀n ∈ N.
(4.16)

Each task j in a mated station (w, o) can have at most one direct follower in forward direction:∑
j2∈J

yJJNj1,j2,n ≤ 1 ∀j1 ∈ J,

∀n ∈ N.
(4.17)

Only one forward setup can occur between any task pair in a mated station (w, o):

yJJNj1,j2,n + yJJNj2,j1,n ≤ 1 ∀(j1, j2) ∈ J,
∀n ∈ N.

(4.18)

A forward setup can only occur between tasks that have been assigned to the same mated station
(w, o).

xJJj1,j2 ≥ y
JJN
j1,j2,n ∀(j1, j2) ∈ J,

∀n ∈ N.
(4.19)

If task j1 directly precedes task j1 in a mated station (w, o) for a model v, then a forward setup
should exist:

yJJNj1,j2,n +M · (6− xJWj1,w − x
JO
j1,o − x

JW
j2,w − x

JO
j2,o − Ωj1,n − Ωj2,n)+

M · |
∑
i∈J

xJJj1,i · Ωi,n −
∑
k∈J

xJJj2,k · Ωk,n − 1| ≥ 1 ∀j1 ∈ J,

∀j2 ∈ J − Pj1 ,
∀w ∈W,
∀o ∈ O,
∀n ∈ N.

(4.20)

The �rst and last task in a station load can be determined as follows; the �rst task in a station
is a task that no other tasks have any forward setups to and similarly the last task in a station is

TU/e Page 32

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

the task that does not have any forward setups to another task.

fJNj1,n +M · (3− xJWj1,w − x
JO
j1,o − Ωj1,n) +

∑
j2∈J

xJJj2,j1 · Ωj2,n ≥ 1 ∀j ∈ J,

∀w ∈W,
∀o ∈ O,
∀n ∈ N,

(4.21)

lJNj1,n +M · (3− xJWj1,w − x
JO
j1,o − Ωj1,n) +

∑
j2∈J

xJJj1,j2 · Ωj2,n ≥ 1 ∀j ∈ J,

∀w ∈W,
∀o ∈ O,
∀n ∈ N.

(4.22)

In addition, if the previous is not true, than a task can not be �rst or last in a station respectively:

fJNj1,n + yJNj2,j1,n −M · (6− x
JW
j1,w − x

JO
j1,o − x

JW
j2,w − x

JO
j2,o − Ωj1,n − Ωj2,n) ≤ 1 ∀(j1, j2) ∈ J,

∀w ∈W,
∀o ∈ O,
∀n ∈ N,

(4.23)

lJNj1,n + yJNj1,j2,n −M · (6− x
JW
j1,w − x

JO
j1,o − x

JW
j2,w − x

JO
j2,o − Ωj1,n − Ωj2,n) ≤ 1 ∀(j1, j2) ∈ J,

∀w ∈W,
∀o ∈ O,
∀n ∈ N.

(4.24)

Capacity Constraints

The completion time of every task j should be larger or equal to its task time:

cj,n ≥ τj,n ∀j ∈ J,
∀n ∈ N.

(4.25)

The average completion time for all tasks on each workstation for every model should be less than
or equal to the takt time:∑

n∈N
αv · tWON

w,o,n ≤ T ∀j ∈ J.

(4.26)

The station time for each model cannot exceed the line length:

tWON
w,o,n ≤ βw ∀w ∈W,

∀o ∈ O,
∀n ∈ N.

(4.27)

TU/e Page 33

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

The completion time of every task on the last workstation should be smaller than or equal to the
takt time:

cJNj,n −M · (1− xJWj,W) ≤ T ∀j ∈ J,
∀n ∈ N.

(4.28)

The completion time of every task including the forward setup time to the next task in the sequence
can be calculated as follows:

cJNj2,n − c
JN
j1,n +M · (1− yJJNj1,j2,n) ≥ τj2,n + πj1,j2,n ∀j2 ∈ J,

∀j1 ∈ J − Pj2 ,
∀n ∈ N.

(4.29)

The backward setup time from the �rst task in the sequence to the last task should be added to
the station time. However, when it is assumed that the next model in the production sequence is
unknown, then it does not become clear which backward setup time should be added to the station
load. Therefore the average backward setup time between all models should be added, in other
words:

cJNj2,n + µj2,j1 ≤ tWON
w,o,n +M · (6− fJNj1,n1

− lJNj2,n2
− xJWj1,w − x

JW
j2,w − x

JO
j1,o − x

JO
j2,o) ∀j1 ∈ J,

∀j2 ∈ J − Sj1 ,
∀(n1, n2) ∈ N,

(4.30)

where:

µj2,j1 =
1

N2

∑
n1∈N

∑
n2∈N

µj2,j1,n1,n2
∀(j1, j2) ∈ J. (4.31)

If task j1 precedes task j2 in a mated station (w, o) then the �nish time of task j1 must be lower
than that of task j2.

cJNj2,n − c
JN
j1,n +M · (1− xJJj1,j2) ≥ 0 ∀(j1, j2) ∈ J,

∀n ∈ N.
(4.32)

The completion time of a task j must be smaller than that of all its followers:

cJNj2,n2
− cJNj1,n1

+M · (2− xJWj2,w − x
JW
j1,w) ≥ τj2,n2

∀j2 ∈ J,
∀j1 ∈ P∗j2 ,
∀w ∈W,
∀(n1, n2) ∈ N.

(4.33)

If task j1 is the �rst task in mated station (w, o) and task j2 is the last task in mated station
(w − 1, s) and task j2 is a predecessor of task j1, then task j1 can only start after j2 has �nished
if it has exceeded the takt time.

cJNj1,n1
+M · (4− xJWj1,w − x

JW
j2,w−1 − fJNj1,n1

− lJNj2,n2
) ≥ cJNj2,n2

− T + τj1,n2 ∀j2 ∈ J,
∀j1 ∈ P∗j2 ,
∀(n1, n2) ∈ N,
∀w ∈W.

(4.34)

TU/e Page 34

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

The completion times of tasks that have to be executed simultaneously should be the same (it is
assumed that the task times of both tasks are equal)

cJNj1,n − τj1,n − c
JN
j2,n + τj2,n = 0 ∀(j1, j2) ∈ K,

∀n ∈ N.
(4.35)

Lastly, the completion time of any task and the station time cannot be negative, therefore:

cJNj,n ≥ 0 ∀j ∈ J
∀n ∈ N,

(4.36)

tWON
w,o,n ≥ 0 ∀w ∈ w

∀o ∈ O,
∀n ∈ N.

(4.37)

Station Assignment Constraint

If any task j is assigned to a mated station (w, o) then that mated station should be active (i.e.,
uWO
w,o = 1:

uWO
w,o +M · (2− xJWj1,w − x

JO
j1,o) ≥ 1 ∀j ∈ J,

∀w ∈W,
∀o ∈ O.

(4.38)

If a task is assigned to a workstation operator, then that workstation must be active:

uWw +M · (1− uWO
w,o ≥ 1 ∀w ∈W,

∀o ∈ O.
(4.39)

Furthermore, if no task is allocated to an operator in a workstation, then that workstation is not
active:

uWw +M ·
∑
o∈O

uWO
w,o ≥ 1 ∀w ∈W.

(4.40)

Lastly, all workstation must be active in order:

uWw+1 ≤ uWw ∀w ∈W.
(4.41)

4.3.2. Objective

The objective of the model is to minimize the number of operators and workstation used on the
assembly line and to keep the station time and horizontal balancing as low as possible. Therefore
the following objective function is chosen:

minM ·
∑
w∈W

∑
o∈O

uWO
w,o +

M

10
·
∑
w∈W

uWw +
ε

10
·
∑
n∈N

∑
w∈W

∑
o∈Ow

|tw,o,n − T |+ ε ·
∑
n∈N

∑
w∈W

∑
o∈Ow

tw,o,n

(4.42)

TU/e Page 35

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

The separate terms are weighted according to their importance in the overall objective. The
number of operators should dominate the other coe�cients, as this is the main objective of the
model. The term related to the number of workstations can be given more or less importance
depending on the to be balanced line as this depends on the relation between the number of tasks,
their task time and the available amount of workstations. Assembly lines with a high amount of
tasks, that have high processing times and are very limited in the amount of available workstations,
will have to put more emphasis on lowering the number of workstations, as the correct amount
may be di�cult to achieve otherwise.In this case it is chosen as the second most important factor.
Decreasing station times and horizontal balancing are given the least importance. However the
station times are given a slightly higher factor, as the horizontal balancing term may otherwise
add idle times to the solution, which is undesired. Here, M is set to 100 and ε = 1

T ·N

4.3.3. Results

The MILP for the ALBP was implemented into a Python API using IBM ILOG CPLEX as a
solver. Five small test case were used from https://assembly-line-balancing.de/. The size
and results of the test cases can be seen in Table 4.1. It becomes apparent that even for a very
small case consisting of 11 tasks the computation time is very high. For the test case consisting
of 31 tasks the model resulted in an out-of-memory error. Therefore, it can be concluded that the
MILP cannot be used for actual test cases, as the computation time increases exponentially with
an increasing number of tasks and models.

Table 4.1: Results of the MILP model for di�erent test cases. The demand for each model was equal
according to the number of models present in the test case. The time limit for each run was set to 7200

seconds.

Name #tasks #models takt time #operators #workstations objective gap(%) CPU time (s)

mertens 11 2 18 2 1 211.775 0 1181
mertens 11 2 18 4 3 433.325 35 7200
jackson 13 2 18 3 3 335.147 33 7200
roszieg 31 3 25 - - - - >7200

4.4. Car Sequencing

In this section the MILP for CS is given, following the explanation as previously given in section
3.2.1. First, each slot in the production cycle can only contain a single model:∑

n∈N
xANa,n = 1 ∀a ∈ A.

(4.43)

Secondly, the total demand must be satis�ed for the entire production cycle:∑
t∈T

xANa,n = αn ·A ∀n ∈ N.

(4.44)

Lastly, the amount of violations induced by variant v that occur in a speci�c window need to be
counted. The basis of this violation rule is that each excessive variant in a window leads to an
extra violation. The length of the window, as described in section 3.2.1, runs from position a in
the total sequence, to position a+Gv + 1 in the sequence. The amount of models in this window
that contains variant v is summed, and the di�erence with the amount of models allowed (Hv)
according to the CS-rule, is calculated. However, there can be less models that contain variant
v in the window, resulting in a negative amount of violations. Therefore the maximum between

TU/e Page 36

https://assembly-line-balancing.de/

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

the calculated amount of violations and zero has to be taken. Finally, the total sum over the
production sequence, including the extra added production slots, is used to count the total amount
of violations variant v incurs.

bVv =

A−Hv∑
a=Hv−Gv+2

max

(a+Gv+1∑
a′=a

∑
n∈N

Ψv,n · xANa′,n −Hv, 0

)
∀v ∈ V.

(4.45)

In order to linearize (4.45), an extra variable ρa,v is introduced, that calculates the number of
violations that are incurred:

ρAVa,v =

(a+Gv+1∑
a′=a

∑
n∈N

Ψv,n · xANa′,n −Hv, 0

)
∀v ∈ V,

∀a ∈ A.
(4.46)

Then, the number of violations that are incurred by variant v is:

bVv =

A−Hv∑
a=Hv−Gv+2

ρAVa,v ∀v ∈ V.

(4.47)

Finally, the number of violations cannot be negative:

bVv ≥ 0 ∀v ∈ V,
(4.48)

ρAVa,v ≥ 0 ∀a ∈ A,
∀v ∈ V.

(4.49)

Note that (4.49) is needed to ensure that there cannot be a negative amount of violations. The
objective of the model is to minimize the amount of violations made. The total model therefore
becomes:

min
∑
v∈V

λv · bVv

s.t. (4.43), (4.44), (4.46), (4.47), (4.48), (4.49)

4.5. Summary

In this chapter a MILP model to solve the ALBP and CSP was given. The solution methods
and assumptions as proposed in Chapter 3 were translated to linear constraints. Also, some extra
constraints were given to account for the additional constraints that may be present in a real world
assembly line, such as tasks that require multiple operators at the same time. The MILP models
were also tested on test sets. The ALBP proved to need a large amount of time to be solved for a
small test case and would therefore not be of practical used for a real world case. For this reason,
in the next chapter and alternative to the MILP is presented that makes it possible to solve the
problem in a more time e�cient manner.

TU/e Page 37

Master Thesis CHAPTER 4. MIXED INTEGER LINEAR PROGRAM

TU/e Page 38

Master Thesis CHAPTER 5. ALGORITHM

CHAPTER 5

Algorithm

As previously described in Chapter 4, the ALBP is too large to be solved optimally in reasonable
time using exact methods such as branch-and-bound. Therefore, in this chapter, an algorithm
is proposed to approximate the optimal solution within a more reasonable time frame. First, an
explanation of a Genetic Algorithm (GA) is provided. The GA forms the basis of the proposed
solution method. Next, a meta-heuristic is provided to generate initial sequences for the GA. Lastly,
an algorithm is given to divide the sequence of generated tasks among the available workstation,
and operators.

5.1. Genetic Algorithm

The basis of a Genetic Algorithm (GA) is the evolution of a solution into a better solution. The
genetic algorithm is an algorithm that follows the laws of reproduction and natural selection. Dur-
ing reproduction genes (traits) of the parents are combined to form a new set of genes for the
o�spring. The combination of the genes into a string is referred to as a chromosome. A chromo-
some therefore contains all the traits of a living organism. During reproduction the genes of the
parents are crossed, referred to as crossover. After the parents chromosomes are crossed there is
a probability that the o�spring undergoes a mutation (caused by errors from copying the parents
genes). Finally the �tness of the organism is how successful they are in life.

This algorithm has been used to solve various ALBPs over the past decades (see e.g., Tiacci
(2015), Sabuncuoglu et al. (2000), Chen et al. (2019) and Kim et al. (2009)). Even though it is not
a state-of-the-art meta-heuristic, it has been proven to be very e�ective in solving the ALBP and
generating promising results. Typically, past literature revolves around the Type-II problems, i.e.
minimizing the takt time. However all these problems can easily be adapted to solve the Type-I
problem, i.e. minimizing the number of workstations used (by adapting the �tness function).

Due to the sequence dependencies caused by the setup times, it becomes favorable to allow a high
variety of sequences to remain in the population, allowing for possibly more e�ective crossovers to
occur between 2 parent chromosomes. Therefore a high number of individuals should be chosen to
be carried over to the next generation.

The basis of the GA can be summarized in the following steps:

1. Generate an initial population.

2. Assign a �tness score to each individual.

3. Use tournament method to select individuals to perform crossovers.

4. Select individuals to perform mutation on.

TU/e Page 39

Master Thesis CHAPTER 5. ALGORITHM

5. Collect newly generated individuals and original individuals into a new population and assign
�tness scores. Select N individuals to be carried over to the next generation.

6. Terminate if a stopping criterion is met (time limit, number of generations (#gen), �tness
score), otherwise repeat from step 3.

The GA also depends on multiple input parameters, a summary of these can be found in table 5.1.

Table 5.1: Parameters of the GA

Parameter Description

pm Probability of mutation
pc Probability of crossover
#gen Number of generations
N Population size
ηt Threshold e�ciency
pt Tournament size

5.1.1. Encoding

The �rst step to the GA is encoding the chromosomes (i.e., a possible solution for the problem). As
described in the previous section, chromosomes are built up out of genes. For the ALBP each gene
in the chromosome represents a task, e.g. task 7 would be given a gene labeled with 7. The total
length of a chromosome equals the number of available tasks. The sequence of the genes in the
chromosome represents the sequence (i.e., the order) of the tasks on the assembly line. See Figure
5.1 for a visual example of a chromosome. It must be noted that the order in which the tasks
appear in the chromosome, do not exactly relate to the order in which the tasks are processed.
Due to the fact that multiple operators can be present at every workstation, successive tasks that
are present in the chromosome may start simultaneously, but at di�erent operators. The de-coding
heuristic used to de�ne at which mated station task j is present is given in section 5.1.7.

Figure 5.1: Example of a chromosome as used in the Genetic Algorithm. Each gene in the chromosome
represents a task. The order in which the tasks appear in the chromosome is the order in which they are
distributed over the available operators and workstations.

5.1.2. Initial Population

Due to the fact that the solutions for the ALBP are highly sequence dependent, mainly caused by
the sequence dependent setup times, a diverse population can be useful for the GA. The initial
population should therefore also contain a variety of unique task sequences, thus allowing for
the crossover and mutation to be e�ective. Therefore, it has been chosen to use the method
developed by Scholl et al. (2013) to generate the initial chromosomes. This method is referred to
as rule-GRASP (Greedy Randomized Adaptive Search Procedure) and is a combination of previous

TU/e Page 40

Master Thesis CHAPTER 5. ALGORITHM

developed meta-heuristics from Andrés et al. (2006) and Martino and Pastor (2010). Scholl et al.
(2013) propose a GRASP algorithm but, rather than choosing tasks at random which adheres to
a certain threshold (a threshold is typically a calculation of the impact a task has to a certain
sequence), a priority rule is chosen at random and the task with the highest priority is assigned
to the sequence, similar to the method from Martino and Pastor (2010). With this method other
criteria can be used to sequence the tasks among the workstations. Scholl et al. (2013) propose
the following priority rules:

MT Select a task that has the highest processing time and the smallest increase of setup time:
MTi(k, p) = τi + (τσkp−1,i

+ µi,πk1 − µσkp−1,σ
k
1
) ∀i ∈ CL

MTS Select a task with highest processing time and the smallest increase of setup time divided
by the number of available workstations:
MTSi(k, p) = MTi(k,p)

Li(m̄)−Ei+1 ∀i ∈ CL

MF Select a task that has the maximum number of direct followers:
MFi = |Fi| ∀i ∈ CL

MS Select a task that has the minimal amount of slack (maximum value):
MSi = k − Li(m̄) ∀i ∈ CL

MR Select any task at random.

The rule-GRASP algorithm assigns available tasks from a generated candidate list (CL) to the
current constructed sequence (labeled as σ). The tasks (labeled j) in the CL are ones that can be
assigned to the next position in the sequence, due to their precedence relations (i.e., tasks that do
not have any predecessors or whose predecessors have already been assigned). Then a priority rule
(PR) is chosen at random from a uniform distribution and each task in the CL is assigned a value
corresponding to the PR. The task with the lowest PR value is then assigned to the next position
in the sequence. Lastly, the CL is updated by adding the direct successors of task j (i.e., from the
set S∗j) to the CL if all other predecessors of these tasks have also been assigned. This process is
repeated until all tasks have been assigned. See algorithm 1 for a summary of the algorithm.

Algorithm 1: rule-GRASP algorithm

while Cl 6= ∅ do
select priority rule from random uniform distribution;
for j ∈ CL do

calculate values for chosen PR;
add j to σ;

end
construct CL from S∗j ;

end

5.1.3. Fitness Evaluation

An important factor to consider in a GA is the assignment of �tness values to the chromosomes
in the (newly) generated population. The evaluation of a chromosomes �tness is based o� the
overall objective of the model. In the case for the ALBP, the main objective is to increase the
OEE (Over Equipment E�ciency). This is achieved by reducing the number of operators working
at the assembly line, in other words:

ρ1 =
∑
w∈W

Ow,

TU/e Page 41

Master Thesis CHAPTER 5. ALGORITHM

where Ow is the amount of operators in workstation w. In addition, two side objectives are
introduced. Due to the fact that the maximum number of workstations that can be used is given,
the �tness function should also include this. By doing this, solutions that generate too many
workstations can be given a very high �tness value and are therefore not carried over to the next
generation. It must also be noted that using less workstations than are physically available can also
be desired. This could in turn lead to a better distribution of tasks throughout the entire assembly
line and distribute the overall workload. In summary, the secondary �tness function becomes:

ρ2 = Wtotal,

where Wtotal is the total amount of workstation in the assembly line. Next, as stated in Sec-
tion 3.1.4, to combat �uctuations in demand, horizontal balancing should also be taken into ac-
count. Therefore, the station time for each model should be known and the di�erence between all
station times and the takt time is summed and minimized. In other words:

ρ3 =
∑
n∈N

∑
w∈W

∑
o∈Ow

|tw,o,n − T |.

Lastly, the total non-useful time (i.e., setup time and idle time) should be minimized. This can
in turn help with emptying certain operators that have high amounts of non-useful time, possibly
being able to reallocate certain tasks to decrease the number of operator or workstations. In
addition, this will help with the horizontal balancing, as idle times are kept as low as possible and
not added to the station times. This can be done by minimizing all station times. The �tness
function becomes:

ρ4 =
∑
n∈N

∑
w∈W

∑
o∈Ow

tw,o,n.

All 4 �tness are then combined into a single �tness function:

ρ = 100 · ρ1 + 10 · ρ2 +
1

T ·N
(0.1 · ρ3 + ρ4) .

5.1.4. Crossover Children

Crossover children are created by selecting 2 parent chromosomes. The parents chromosomes can
be chosen using a variety of methods such as: at random, roulette wheel selection or tournament
selection. In this case the tournament selection procedure is chosen. Here, a pt part of the pop-
ulation of random chromosomes is chosen (with n > 2) from the current population and the two
with the best �tness values are chosen to form a pair of parents. This process is repeated #gen/2
times.

In order to retain feasible sequences of tasks (i.e., according to the precedence relations), a 2 point
crossover method is chosen. To start, two random integers (C1 and C2) between (2, n − 1) are
chosen (with C1 < C2). C1 and C2 denote positions in the chromosome. Then, the head and
tail portions of the �rst parent chromosome (P1) are copied to the �rst o�spring (O1). The head
is the genes from positions 1 up to C1 and the tail from positions C2 up to n. Then the middle
section (genes between C1 and C2) of P1 is ordered in the sequence it occurs in the second parent
chromosome (P2). The elements are the copies to O1. The same procedure is used to create O2,
where the roles of P1 and P2 are reversed. See Figure 5.2 for an example of the 2 point crossover
method.

In addition, not all parents produce an o�spring with the crossover method. There is a probability,
pc with 0.5 ≤ pc ≤ 1, that two parent chromosomes produce an o�spring. The value for pc is
determined through a trial-and-error approach, as di�erent assembly lines can require di�erent
values of pc to produce good results.

TU/e Page 42

Master Thesis CHAPTER 5. ALGORITHM

Figure 5.2: Example of the crossover operation

5.1.5. Mutation Children

The second method used to diversify the population is through mutation. Mutation children
are created by �rst randomly selecting a gene in a parent chromosome. For this gene the latest
assigned predecessor (m1) and earliest assigned successor (m2) are recorded. A random integer
from (m1,m2) is then chosen and the gene is inserted into this point. The probability that a
mutation happens, pm, with 0 ≤ pm ≤ 0.2, is also chosen through a trial-and-error approach. See
Figure 5.3 for a visual representation of the mutation operator.

Figure 5.3: Example of the mutation operator

5.1.6. Selection

Elitism (and selection) is a third important step in a GA. Elitism (or survival of the �ttest), is
used to carry over the solutions with the best �tness value for the next generation. This is done
to preserve the quality of the solutions to the next generations. As has been explained earlier,
the newly formed population and the original population are pooled together. From this total
population a certain number, N , of individuals with the best �tness score are selected to be
carried over to the next generation.

5.1.7. Decoding

The decoding of the chromosome is based on the information needed for the �tness function and
the desired output, in this case which tasks are allocated to which mated station. The allocation of
tasks should be deterministic, a sequence of tasks should always yield the same output, therefore
no randomness can be involved. When allocating tasks to a workstation the assumptions as posed
in Chapter 2 should be adhered to. For this purpose, a heuristic has been written to decode the
chromosomes. The basis of the heuristics is based on three choices, the �rst being which operator

TU/e Page 43

Master Thesis CHAPTER 5. ALGORITHM

a task is assigned to, secondly if a task can be allocated to the current workstation and lastly, how
many operators are assigned to each workstation.

First, the assignment of tasks to a mated station is done through the calculation of its earliest
starting time on every available operator on the current workstation. The start time of a task
depends on four factors: (1) the end time of the last allocated task to an operator, (2) a forward
setup time, (3) idle time created by precedence relations caused by tasks allocated to other opera-
tors on the same workstation (I1) and (4) idle time created by precedence relations and mounting
positions by tasks allocated to operators on previous workstations (I2). The start time for each
model and operator is calculated and the minimum start time over all models is the start time
used to decide to which operator the task is allocated to. Finally, the output is a list of operators
in ascending order from earliest to latest start time. It is noted, that in case of a tie (i.e., the start
times for 2 or more operators is equal), then the operator with the lowest index is chosen as best
operator, as opposed to choosing one of the operators at random.

Secondly, a check has to be done to decide if a task can be allocated to the current workstation.
The station time tw,o,n for each model is calculated, which includes all possible idle and setup
times (τ and µ). In order to calculate setup times, the �rst and last (i.e., f and l respectively)
allocated task to a workstation for each model must be tracked. As the backward setup time can
vary between any combination of models (e.g., the setup from model n1 to n2 might be di�erent
than from n1 to n3 depending if a task is executed for a speci�c model), this time is averaged
according to the �rst task that is relevant for a model, according to (4.31).

After all station times are calculated, they are averaged according to the model demand. If the
average station time is lower that the takt time (T) and the maximum station time is lower than
the operators boundary (Tmax), then the task is allocated to the selected operator. Otherwise, the
check is repeated for the next operator in the list. If the current task cannot be allocated to any
operator, a new workstation is opened.

The choice of deciding the number of operators on each workstation is done through the e�ciency
(η) of each operator. First, a maximum amount of operators per workstation is set, Omax. This
number typically depends on the available space on the assembly line. Next, a threshold value
for the e�ciency is set. The e�ciency is the ratio between the useful time of an operator (i.e.,
time spent executing a task) and the takt time. This is in turn calculated for every model and is
averaged according to the demand for each model. In other words:

ηo,w = αn

∑
j∈(w,o) τj

T
. (5.1)

After no more tasks can be allocated to the current workstation, the e�ciency of each operator is
calculated. If the e�ciency of a single operator is lower than the threshold value, the number of
operators for that workstation is reduced by one and the tasks are re-allocated to the remaining
operators. This process is repeated until all operators reach the threshold value or until there is
only a single operator left on the current workstation. The �nal output of the algorithm is the
number of operators per workstation (Ow), number of workstations (Wtotal), a list of allocated
tasks to each workstation and operator (J) and the station times (t). The general heuristic can
be seen in Algorithm 2.

5.1.8. Simple Lower Bound

An important factor in assessing the solution quality of the proposed heuristic is to compare the
results to a lower bound, as the optimal solution is not known. The lower bound is calculated
with a similar method as proposed by Scholl et al. (2013), however adapted to accompany the

TU/e Page 44

Master Thesis CHAPTER 5. ALGORITHM

Algorithm 2: Decoding Algorithm

Data: σ, µ, τ, π,Z,P, α,Omax, T
Result: Ow,Wtotal,J , t
initialization: set Wtotal = 1, Ow = Omax,add σ1 to J1,1, calculate t1,1,n, add σ1 to
f1,1,n, l1,1,n dependent on model;
ii = 2;
while ii ≤ noTasks do

Calculate I1;
Calculate I2;
Decide best operator to assign task to based on earliest start time;
for o ∈ O do

for n ∈ N do
Determine τl,j,n and µj,f,n;
Calculate tw,o,n based o� idle and setup times;

end
if mean station time ≤ T and max station time ≤ Tmax then

add j to Jw,o;
Calculate tw,o,n, fw,o,n, lw,o,n;
break;

else
continue;

end

end
if task �ts in mated station then

ii = ii+ 1;
else

Calculate ηw,o for all operators on current workstation;
if mean e�ciency ≥ ηt || Ow = 1 then

Wtotal = Wtotal + 1, Ow = Omax;
add σii to Jw,1, set fw,1,n, lw,1,n dependent on model;
Calculate tw,o,n;
ii = ii+ 1

else
empty Jw,o and reset fw,o,n, lw,o,n for all operators on current workstation;
ii = prev;
Ow = Ow − 1;

end

end

end

mixed-model nature of the ALBP.

The lower bound calculation is based o� of a destructive improvement bound. First the capacity
bound is calculated 1 (i.e., the lower bound assuming that there are no setup times):

OLB,n =

∑
j∈J τj

T
.

However, setup times should be included in the lower bound calculation. In order to do this, it is
�rst recognized that in any given solution, a minimum of J −OLB forward setups are needed. The
total time needed for forward setups is then πJ−OLBtotal , which is equal to the sum of the J − OLB

1For an explanation of the variables used in this sections, see section 4.2

TU/e Page 45

Master Thesis CHAPTER 5. ALGORITHM

lowest setup times πj1,j2 , with j1 ∈ J and j2 ∈ Sτj1 . Here, S
τ
j1
is the set of possible forward setup

times for task j1, i.e.,:

Sτj1 = {J − (Sj1 − S∗j1)− P∗j − j1}.

The minimum amount of backward setup times is dependent on the maximum workstation length,
βw. For the SALBP, the amount of backward setups needed is equal to the amount of workstations,
as each workstation has a backward setup. However, the mixed model nature of the problem can
cause workstations to be empty for some models, while other models exceed the takt time. This
can cause that there are more or less backward setup times than the amount of workstations.

In order to add backward setup times to the lower bound calculation, the minimum number of
backward setups possible must be calculated. In any solution with a maximum takt time of βw · T ,
the capacity bound becomes:

Oµ,n =

∑
j∈J τj

T · βw
.

Therefore, also a minimum amount of backward setups, equal to Oµ,n, is needed for each model.

The total amount of backward setup time needed is then equal to µOµ,ntotal , which is de�ned as the
sum of the Omin,n backward setups µj1,j2 . Here, j1 ∈ J and j2 ∈ Sµj1 , where:

Sµj1 = {J − S∗j1},

is the set of possible backward setups for a task j1. The capacity available is T̄ = Ow · T . Finally,
the following problem must be solved for each model to calculate the lower bound:

min{Ow,n ≥ OLB,n|
∑
j∈J

τj + πJ−Owtotal + µ
Oµ,n
total ≤ T̄ } Ow ≥ Omin, (5.2)

Then, the �nal lower bound is:

Omin =
∑
n∈N

Ow,n · αn

5.1.9. Design of Experiments

The algorithms performance depends on the chosen factors for the available parameters. In order
to come to a correct choice for these parameters, a Design of Experiments is done. During DOE,
multiple values of each parameter are checked in order to evaluate their in�uence on the results.
In this case, two values for each parameter are chosen, a lower and upper bound value. The values
of each parameter are chosen through an educated guess and can be seen in table 5.2.

Table 5.2: Table showing the lower and upper bound values for the parameters of the GA for the DOE.

Parameter Lower Bound Upper Bound

pm 0.1 0.9
pc 0.1 0.9
#gen 10 100
N 10 100
ηt 0.1 0.75
pt 0.05 0.2

TU/e Page 46

Master Thesis CHAPTER 5. ALGORITHM

A 2-factor factorial design is performed, with an addition of 17 center points to check for possible
curvature. This results in a total of 26 + 17 = 81 runs. StatGraphics18 is used to create the
experimental design and to analyze the results. For each run, 10 samples are taken. A test case is
created consisting of 90 tasks and 1000 models, taken from a real world example at VDL Nedcar.
This ensures similar results to a an actual real-world case, however decreases the computation time.

Figure 5.4 show the main e�ects plot for each of the six parameters. A line is drawn from the
lower bound to the upper bound (left to right), corresponding to the e�ect of the bound. As the
goal is to minimize the cost function (�tness), which corresponds to the lowest point on the line.
The longer the line, the more e�ect a certain parameter has. In addition, the steeper the slope of
the line, the greater the magnitude of the main e�ect. A negative slope relates to a better result
with a higher value of the parameter. It becomes clear that η has the largest in�uence on the results.

Figure 5.4: The main e�ects plot for the parameters of the GA. It can be seen that the threshold e�ciency
(e�) has the most e�ect, as it shows the steepest and longest line.

The main e�ects signi�cance must also be checked, this is shown by the pareto chart in Figure 5.5.
Here the standardized e�ects are shown of the main parameters as well as the two factor interaction
between parameters. The blue vertical line represents the signi�cance level. It can be seen that
the threshold e�ciency (η) and probability of crossover (pc) have signi�cant e�ects. Lastly, the
optimal value for each parameter can be decided in StatGraphics18, this result is shown in Table
5.3.

Table 5.3: Optimal values of the DOE

Parameter Optimal Value

pm 0.9
pc 0.9
#gen 100
N 100
η 0.8
pt 0.2

TU/e Page 47

Master Thesis CHAPTER 5. ALGORITHM

Figure 5.5: The standardized e�ect charts for the parameters of the GA. The threshold e�ciency (e�)
and probability of crossover (pc) both are above the blue signi�cance line. Therefore these 2 parameters
have a signi�cant e�ect.

5.1.10. Results

To compare the proposed algorithms to the MILP in Chapter 4, they were implemented into
Matlab. The same test cases were used as in section 4.3.3. The rule-GRASP algorithm, used to
create the initial population for the GA, produced the optimal solution consisting of 2 operators
within less than 0.01 seconds. The GA will always improve solutions, therefore it can be concluded
that the proposed algorithm can obtain similar results compared to the MILP in more reasonable
time and can possibly be of use for real-world assembly line.

Table 5.4: Results of the MILP model for di�erent test cases. The demand for each model was equal
according to the number of models present in the test case. The time limit for each run was set to 7200

seconds.

Name #jobs #models takt time #operators #workstations objective CPU time (s)

mertens 11 2 18 2 1 211.775 16.25
mertens 11 2 10 4 3 2433.19 16.2
jackson 13 2 18 3 2 322.525 1.2
roszieg 31 3 25 6 5 655.088 14.2

5.2. Summary

In this chapter a Genetic Algorithm was proposed as an alternative to the mathematical model as
described in Chapter 4. The Genetic Algorithm uses mutation and two point crossover operators
to generate new solutions for the ALBP. The initial population is created using the rule-GRASP
algorithm in order to create a diverse and good population to start the GA with. Lastly, a
decoding algorithm was given to translate the generated chromosomes into the desired solution
(i.e., the amount of operators, workstations and the division of tasks among the operators). In
addition, the algorithm showed to �nd the same answer to the test case that was also used in the
previous chapter, in a shorter amount of time.

TU/e Page 48

Master Thesis CHAPTER 6. CASE STUDY

CHAPTER 6

Case Study

In this chapter a descriptions of the process and the results of applying automated line balancing at
VDL Nedcar is described. For this purpose a single line section is chosen, referred to as Assembly
Line X (ALX). In the �rst part of this chapter the process of collecting the data that is necessary
top apply the algorithm as given in the previous chapter is described. In addition, an explanation
of the procedure of reducing the amount of data that is collected is provided. Lastly, the results
of applying the line balancing algorithm at VDL Nedcar are given.

6.1. Data collection and reduction

In order to implement automated line balancing at Nedcar, the correct data needs to be gathered,
analyzed and adapted to �t in the previously described model. The main data that is needed is as
follows:

� List of tasks with corresponding task time

� List of available mounting positions

� Precedence relations between tasks

� List of variants and their corresponding demands

� Forward and backward setup times

� Takt Time

In addition, some extra constraints may need to be added to the model depending on the assembly
line section that is being balanced. Each assembly line is unique, e.g., some lines have tasks that
have to be done on a speci�c workstation due to equipment or material constraints and other
tasks might require two operators to work simultaneously on the same task. An important step
to take is to analyze the assembly line thoroughly and take note of special constraints. It must
however be noted that not each additional constraint should be adhered to strictly, as this may
reduce the degrees of freedom in the eventual line balance. E.g., a task might require a speci�c
piece of equipment that is only available at a single workstation, therefore a constraint could be
added that �xes this speci�c task to that workstation. However, the cost reduction of the new line
balance might outweigh the costs of moving the equipment. This only becomes apparent if the
initial balance is done with the least amount of additional constraints.

An initial analysis of the data shows that ALX contains around 1000 tasks that have to be pro-
cessed. Considering the amount of options that are installed on the assembly line, the total amount
of variants is bounded by O(104) (an exact number is not known as not all option combinations
can exist). It becomes apparent that the amount of variants quickly exceeds the amount of tasks,
as the number of variants increases exponentially with an increasing amount of options. Therefore,

TU/e Page 49

Master Thesis CHAPTER 6. CASE STUDY

both the amount of tasks and variants have to be reduced in order to balance the line within a
reasonable time frame.

Precedence relations are not directly available. The reason for this is that assembly line balancing
is done by hand. The responsible engineer typically knows the order in which the tasks have to
be done, however the exact relations are never written down. A similar principle applies to setup
times. These are added later in the balance if it becomes apparent that an operator has to cover
extra distance between tasks. The methods of obtaining both data types is explained in the next
section.

6.1.1. Task reduction

As stated before, the total amount of tasks that needs to be allocated to ALX is around 1000.
Balancing the line for all tasks separately is accurate, however it is very time consuming and not
necessary due to "direct" precedence relations between certain tasks. These "direct" relations state
that certain tasks have to be done consecutively (i.e., no other tasks can be done in between by
the same operator). These tasks typically consist of grabbing a part, walking to the vehicle and
mounting the part (other variations may also occur). Therefore, it can be useful to group the tasks
together into a larger task, decreasing the total amount of tasks that are needed to balance the line.

In order to create larger tasks, some new de�nitions need to be established. A task is de�ned as the
smallest operation that is carried out by an operator, such as grabbing a bolt and installing it in
an exact location. Next, a process is a group of tasks describing the installation of a main part of
the car. The task of installing a bolt is part of the process of installing the exhaust system. Lastly,
a job is the group of tasks carried out by an operator. A job does not contain a whole process,
but contains multiple parts of multiple processes. The last de�nition can be used to reduce the
amount of tasks needed to balance the assembly line.

Figure 6.1 shows an example of how the amount of tasks are reduced by combining them into
larger task packages. Sub-groups of tasks belonging to a single process are typically allocated to a
single operator at a workstation. These sub-groups of tasks can be extracted from the current line
balance or can be created intuitively if new tasks or processes have to be introduced into the line.
E.g., tasks 1 and 2 of Process A have to be done in order and are both allocated to workstation 1
and operator 1. The sub-group consisting of tasks 1 and 2 are then combined into a task package
labeled as Process A1. The processing times of task packages are the sum of the processing times of
the individual tasks that form the package. Information regarding variants and mounting positions
is also carried over. This leads to a reduction from 1000 tasks to 300 task packages that need to
distributed among the line for ALX.

6.1.2. Variant Reduction

As stated before, the number of total variants in ALX is bounded by O(104). A high amount of
variants can make the line balancing very accurate, as no work overload is created if a variant
enters the line that has a very low demand. However, if a large amount of variants are considered,
the problem changes into a task shop scheduling problem (i.e., scheduling tasks to an operator de-
pending on the variant that is passing through the line at any given moment). Thus it is necessary
to strongly reduce the amount of variants that are taken into account.

Each task contains certain variant information provided by the Process Development engineers.
The information provided contains very speci�c and elaborate information of the process-variant
a task is relevant to. A process-variant is de�ned as a sub-component of a single variant, see
Figure 6.2 for more detail. Depending on the process a task is part of, variant information such
as; model number, option number, driver side, engine specs etc. may be provided. As can be

TU/e Page 50

Master Thesis CHAPTER 6. CASE STUDY

Figure 6.1: Diagram showing the reduction of tasks into task packages.

seen in Figure 6.2, variants contain all information regarding options. In contrast, process-variants
contain information that is relevant to a speci�c task (or task package). E.g., a task that is done for
Process Variant C2-03 would be carried out on Variants 1 and 2 on the assembly line, as variants
1 and 2 are of the correct model, driver side and both contain Option C.

The �rst step in reducing the number of variants is to check which combinations of process vari-
ants exist in the line. For this, a list of cars that have passed through the assembly line is used.
This list consists of a car ID and the process-variants that are relevant to the car. A single car
can consist of up to 500 process-variants. Each car is checked whether it contains one of the
process-variants that occur on the assembly line, which results in an 0-1, n × p matrix, where
n is the amount of cars and p the amount of process-variants. Each unique row of this matrix
is then a single variant. This results in a reduction of around 90% when compared to the total
amount of variants that can occur in the line. This method also returns the demand of each variant.

6.1.3. Generating Precedence

There are multiple ways to gather the information necessary to create the precedence graphs that
are needed to balance the assembly lines. Klindworth et al. (2012) propose a way to approximate
precedence graphs by using information regarding previous line balances. Previous line balances
can �nd independencies between di�erent tasks (i.e., if two tasks interchange position between two
previous balances then no precedence relation can exist between those two tasks). They combine
this information with known dependencies, gathered from CAD databases and experts with knowl-
edge of the assembly line. Otto and Otto (2014) further extend this approach by considering the
modular design used in the automotive industry. If one module has to be installed before another

TU/e Page 51

Master Thesis CHAPTER 6. CASE STUDY

Figure 6.2: Example de�ning the di�erence between variants and process variants. The top table shows
possible variants, where for each column it is speci�cally noted which options it is relevant for. In the
bottom table example of process-variants are given. Here, only the information of a variant is given relevant
to the task.

module, then all tasks regarding the �rst module precedes all the tasks of the second module. In
addition, Otto and Otto (2014) also introduce novel ways to conduct interviews by stating the
way questions regarding precedence relations should be asked and how to incorporate these into
precedence graphs.

First, the method of generating precedence graphs by using the former method as described in
the previous paragraph has been tested. Line balances over the course of one year were used.
This did result in some independencies between tasks, however it was noticed that the overall line
balance does not change enough. Usually, only small changes to the line balance are made and
more vigorous changes that are needed for the generation of a precedence graph are rare. Tasks
are also added and removed from the line continuously due to model updates or the re-assignment
of tasks from another assembly line. This can restrict the amount of precedence relations gained
from this method. However, it must be noted that results may vary between assembly lines. Some
assembly lines are updated more often than others and in more extensive ways. It should therefore
be tested whether this method can induce some relations.

Due to the fact that the precedence relations are not directly available, a method similar to the
latter one described in the previous section is applied. The precedence graph is made through in-
terviews with the responsible engineer who does the day to day line balancing and by walk through
of the assembly line. A schematic overview of the generations is given in Figure 6.3. The basic
concept consists of two phases; A coarse walk through of the precedence relations to �lter out large
groups and a �ner walk through to �lter out any remaining, individual relations.

Phase 1

An initial step in the generation is to �nd large independencies between tasks and groups of tasks
(i.e., groups of tasks that do not have any precedence relations between them). Typically, in a
multi-manned assembly line, tasks are duplicated over both sides of the vehicle, as a large portion
of the vehicle is mirrored. Mirrored tasks that both relate to a similar part are therefore pre-

TU/e Page 52

Master Thesis CHAPTER 6. CASE STUDY

Figure 6.3: Overview of the steps that are taken to collect the precedence relations between the task
packages. The top portion consists of the �rst phase consisting of coarsely collecting the relations and the
bottom part of the last phase in which the relations are collected in a more detailed procedure.

con�rmed independencies, and can be ignored during the initial phase. Next, relations between
modules are extracted, as has been previously proposed by Otto and Otto (2014). This is done
through interviews with the responsible engineer and walkthroughs of the line to visually see the
position of certain parts. Lastly, relations between task groups are added. As previously explained
in section 6.1.1, task groups are extracted based on the operator and workstation they are assigned
to. These packages are assigned in order, as the total process has to be done in a speci�c order.
Therefore, a precedence relation exists between task packages, where packages assigned on earlier
workstations have to be done before packages assigned to later workstations. For example, in
Figure 6.1 Process A1 has to be completed before Process A2 can be done. In this stage, task
packages assigned to the same workstation but to di�erent operators are assumed to not have any
precedence relations.

Phase 2

Phase 2 consists of a much �ner walkthrough of the precedence relations. Here, questions are asked
as also stated by Otto and Otto (2014). Simple "yes/no" questions are asked, stating whether task
A has to be done before tasks B or vice versa. This is not done for every task, but for relations

TU/e Page 53

Master Thesis CHAPTER 6. CASE STUDY

that were unclear from the prior phase. Then, the algorithm is run and task lists are generated.
These are run through with the engineer and relations between tasks are checked. Even though
this method does not extract all possible relations between tasks, it proved to be a useful method,
as relations were more easily seen. This process is repeated multiple times, until most relations
have been collected.

6.1.4. Setup Times

Lastly, the forward and backward setup times have to be calculated. This is done by de�ning
setups between mounting positions, instead of de�ning them for each task pair individually, as this
requires a high amount of information needed that is not readily available. Each task package is
assigned a unique mounting position, according to the ones given in Figure 6.4. Some individual
tasks already contain setup times (i.e., time needed to walk to grab equipment/material or to walk
to the vehicle). As this is the case, and because it is di�cult to �nd the exact time that has been
added, it was decided to add a low amount of forward and backward setup times in order not to
add more setup times than occur. Standard times between mounting position are added for both
the forward and backward setup times, according to Table 6.1. This also includes and additional
mounting position 12 that is not included in Figure 6.4. This mounting position is an o�-line
pre-assembly, typically done on the side of the assembly line.

Figure 6.4: The mounting positions available to each task package.

6.1.5. Extra Constraints

As explained previously, every assembly line has additional extra constraints that must be in-
cluded in the line balancing algorithm. These constraints can be related to material, equipment or
operators. For ALX the following additional constraints have to be added to be kept track o�:

Fixed Equipment : A large piece of equipment is used to �ll the brake �uid. Moving this
equipment is expensive, therefore the task package related to it is �xed to the workstation the
equipment is positioned at (coupling process). Furthermore, the decoupling of the equipment
has to take place a few workstation later, and, no tasks can be assigned to the workstations
in between the coupling and decoupling of the equipment.

Multiple operators : The front end module (FEM) requires two operators working simultane-
ously. The two task packages related to this operation have to be carried out �rst in a station
load at the workstation they are assigned to.

TU/e Page 54

Master Thesis CHAPTER 6. CASE STUDY

Table 6.1: Tables showing the forward and backward setup times between various mounting positions

(a) Forward setup times

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 2 3 4 5 1 2 4 1
2 1 0 1 2 3 4 5 3 2 1 2 1
3 2 1 0 1 4 5 4 3 3 1 2 1
4 3 2 1 0 5 4 3 2 4 2 1 1
5 2 3 4 5 0 1 2 3 1 2 4 1
6 3 4 5 4 1 0 1 2 2 1 3 1
7 4 5 4 3 2 1 0 1 3 1 2 1
8 5 3 3 2 3 2 1 0 4 2 1 1
9 1 2 3 4 1 2 3 4 0 3 5 1
10 2 1 1 2 2 1 1 2 3 0 4 1
11 4 2 2 1 4 3 2 1 5 4 0 1
12 1 1 1 1 1 1 1 1 1 1 1 0

(b) Backward setup times

1 2 3 4 5 6 7 8 9 10 11 12

1 4 3 2 1 5 6 7 8 4 5 7 4
2 3 4 3 2 4 5 6 7 3 4 6 4
3 2 3 4 3 3 4 5 6 2 4 5 4
4 1 2 3 4 2 3 4 5 1 3 4 4
5 5 6 7 8 4 3 2 1 4 5 7 4
6 4 5 6 7 3 4 3 2 3 4 6 4
7 3 4 5 6 2 3 4 3 4 4 5 4
8 2 3 4 5 1 2 3 4 5 3 4 4
9 4 3 2 1 4 3 4 5 5 6 7 4
10 5 4 4 3 5 4 4 3 6 4 6 4
11 7 6 5 4 7 6 5 4 7 6 4 4
12 4 4 4 4 4 4 4 4 4 4 4 4

For the �rst constraint a penalty function is added to the GA. If the task related to the coupling
of the equipment is not assigned to the correct workstation, a large penalty is added to the �tness
function. Next, if a mated station (w, o) contains the coupling task after it is closed, then the
number of current workstations (Wtotal in algorithm 2) is increased by x instead of 1, with x being
the number of empty workstations needed.

The second constraint is completely added to the decoding algorithm. If the current task is one of
the two tasks related to the FEM, then a new workstation is opened, and both task packages are
assigned to di�erent operators on the newly opened workstation. It is also noted that the minimum
number of operators on this workstation is equal to 2 instead of 1.

6.2. Results

In this section the results of implementing the algorithm as given in Chapter 5 and the data re-
duction as explained for ALX at VDL Nedcar is given. Due to con�dentiality most of the results
cannot be shown, however a short explanation is still provided.

TU/e Page 55

Master Thesis CHAPTER 6. CASE STUDY

6.2.1. Assembly line balancing

The most important results to consider are the e�ciency of the line balance, the smoothness index
and the lower bound. The overall line e�ciency is the average of the individual e�ciencies of all
operators, in other words:

η =
1

Ototal

∑
w∈W

∑
o∈Ow

ηo,w,

where ηo,w is as stated in (5.1). The smoothness index results directly from the horizontal balancing
�tness functions as given in section 5.1.7, however scaled according to the takt time:

SI =

∑
n∈N

∑
w∈W

∑
o∈Ow |tw,o,n − T |
T

.

The lower bound calculation of section 5.1.8 resulted in an e�ciency of 95%. An educated guess
would therefore put the optimal solution around 90%, if all setup times and idle times are included.
The following parameters were used to generate the new line balance according to the results from
the DoE in section 5.1.9:

Table 6.2: Table showing the parameters used to balance ALX

Variable Value

Tmax 1.5 · T
ηt 0.75
N 100
Omax 3
pc 0.9
pm 0.9
pt 0.2

The only parameter that was altered from the DoE results is the number of generations. It became
apparent during testing that the �tness function still decreases after 100 generations, due to the
horizontal balancing parameter. It was therefore chosen to swap out the limit on the number of
generations by a time limit. This limit was set to 7200 seconds, as �nding a better solution is of
more importance than �nding a solution quickly.

Overall, an increase from 78% to 85% was seen in the line e�ciency, with less operators and work-
stations used. The smoothness index has been decreased from 10733 to 3498, thus resulting in
a more even station load throughout the assembly line, which can be seen in Figure 6.5. The
maximum station load has been decreased from 205% to 128%.

It must be noted that the constraint that multiple operators cannot be allocated to the same
mounting position has been relaxed due to the size of the mounting positions. Only allowing a
single operator did result in less operators, however the amount of workstation needed increased
signi�cantly. It was therefore chosen to allow 2 operators to perform tasks at the same mounting
position. This is similar to the current line balance.

Lastly, the station times of the operators for the newly generated line balance were close to the
takt time. Considering the addition of setup times and idle times, it may be possible to further
increase the e�ciency by 3− 5%, however this might require some changes in the proposed model.

6.2.2. Assembly Line Sequencing

The car sequencing model as described in Chapter 4 was implemented into IBM ILOG CPLEX
and a Python API. Car sequencing rules as given in section 2.3 were applied to the new line

TU/e Page 56

Master Thesis CHAPTER 6. CASE STUDY

balance. However, the newly generated rules did not overrule the current rules used at VDL
Nedcar. Therefore, the CS was tested for the current rules. This was done for six separate day
packages (i.e., a package containing the cars that have to be produced during a certain period
lasting one day). A total of 16 rules were implemented, leading to 16 di�erent variants and 53
models. The model solved all 6 test cases in less than 600 seconds, all resulting in objective
functions equal to 0 (i.e., no work overload was directly created). This is a reduction of 90% in
computation time and 100% in work overload compared to the current situation.

6.3. Summary

In this chapter a case study was explained describing the methods used to implement the assembly
line balancing models, as described in the previous chapters, at VDL Nedcar. A single line was
chosen to test the model on. The number of tasks and variants were reduced in order to more easily
solve the ALBP. Next, a method to gather precedence relations was described. This method is
based on the current line balance and interviews with the responsible engineer. Lastly, additional
constraints that describe the assembly line and the results of implementing the model were given.
The results showed that the line e�ciency was increased by 5% and that the workload was more
even over the operators.

TU/e Page 57

Operators

S
ta

ti
o
n
 T

im
e

Current Line Balance

takt time

(a) Current line balance

Operators

S
ta

ti
o
n
 T

im
e

New Line Balance

takt time

(b) New line balance

Figure 6.5: Distribution of the station times over all operators for the current and new line balance. It
can be seen that the newly generated line balance has a smoother overall workload between operators. In
addition, the large peaks have been removed in the new balance.

Master Thesis CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

CHAPTER 7

Conclusion and recommendations

7.1. Conclusion

This project focused on investigating the automation of assembly line balancing at VDL Nedcar.
Most importantly, the following research question was stated:

How can the current assembly lines be balanced automatically so that, when changes are made to
the assembly line (i.e., process or volume), the highest possible e�ciency is achieved?

In order to answer this question, some subquestions were also stated that have been studied
throughout this thesis. First, the current process of line balancing had to be understood in order
to gain insight into how automating the process can help the current engineers, and what is needed
in order to automate the process. Here it became apparent that line balancing is a day-to-day
process, and that there are many reasons why a line has to be rebalanced. Furthermore, line
balancing is a very time consuming job. Depending on the reason why a line has to be rebalanced,
it may take a a signi�cant amount of time to �nd a reasonable balance. This is due to the fact
that line balancing is still done "by hand". It has to be checked manually whether a task can be
assigned to an operator, if all models can be made and so on. The engineers use smart tricks in
the way process are grouped and de�ned, and how they are ordered. These tricks should be used
while automating the line balancing.

Next, the constraints that are needed to balance the line were sought out. It was found out that
there are multiple constraints that can be included in the model, however not all of them have
similar importance and can be left out. Most importantly, Mixed Models, Mounting positions,
setup times (such as walking and tool changes) and multiple operators per workstation have to
be accounted for, besides the standard constraints regarding precedence relations and takt time.
Mixed model balancing was accounted for by relaxing the takt time constraints. Some models
should be allowed to exceed the takt time, as long as on average the takt time is still met. This
is in accordance with how the line is currently being balanced. Setup times were found to be
dependent on the mounting positions of tasks. Di�erent task sequences lead to large di�erences
in the total amount of setup time that is added, and therefore lead to more or less operators that
are used. Lastly, multiple operators per workstation have to be considered in order to be able to
execute all the tasks necessary to assemble a car. However, care has to be taken while doing this
as operators cannot occupy the same mounting positions simultaneously and waiting times may
be incurred due to precedence relations.

Fluctuations in demand can be counteracted with horizontal balancing, i.e., minimizing the total
di�erence between the station load of each model with the takt time. This assures that if slight
di�erences occur in the demand of certain models, the line does not have to be rebelanced. In
addition, the sequence in which models enter the assembly line also has to be taken into account.
A line balance is only feasible if an operator is not overloaded with too much work. Models that

TU/e Page 59

Master Thesis CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

exceed the takt time can only occur considering speci�c rules that denote how many times they
can occur consecutively. If these rules are not met then too much work overload is created and the
line has to be halted.

In order to solve the ALBP, an MILP has been developed. However, even for small problems the
model was not of practical use. A large amount of design variables and constraints is needed to
de�ne the model, thus for now it is not of practical use. For that reason, a GA has been developed
that can solve the problem within reasonable time. In addition, an algorithm has also been de-
veloped that decodes the solutions generated by the GA. This heuristic assigns tasks to operators
based on their overall e�ciency and starting time.

Adjustments to the current data at Nedcar had to be made in order to apply the line balancing
algorithm. The number of tasks and variants should be kept to a minimum, as these two variables
greatly in�uence the e�ectiveness of the algorithm. However, these variables should not be reduced
too much, as this in turn reduces the overall degrees of freedom of the line balance. The GA in
combination with the proposed decoding heuristic proved to be successful in rebalancing an exist-
ing line, showing improvements of close to 6% in the overall e�ciency. This is already a signi�cant
improvement for the line balance. This can further be improved considering the recommendations
in the following section. In addition, multiple other constraints have been added to the model, to
consider line speci�c restrictions.

Overall, it can be concluded that the proposed model can be used to balance real world automotive
assembly lines and provides similar or better results in comparison to the current line balance. This
is a big step, as previous literature, as of the time of writing this, has not included the same type
of constraints and, the best of our knowledge, never been tested on a large automotive assembly
line.

7.2. Recommendations

The following recommendations are made:

� The ALSP should be tested for more days to evaluate the full e�ect of the proposed model, to
see if the optimum solution can always be achieved. A side-by-side test can be done with the
current line sequencing software, to evaluate the exact di�erences and to see what is needed
to implement the model.

� Mounting positions should be kept small enough so that only a single operator can perform a
task at that position. If the mounting positions are too large then too many workstations are
needed to perform all tasks. It is therefore recommended that around 24 unique mounting
positions are allocated to the car.

� A more e�ective way of keeping track of precedence relations should be investigated. As this
has proven to be a very time consuming process, more use should be made of CAD drawings
and other schematics. Furthermore standard interview questions and a standard format for
keeping track of the relations should be made. The process has to improve if these relations
have to be gathered for the entire factory.

� Costs related to moving equipment, material and other components should be added to the
model. This relaxes some �xed station assignment constraints that have been implemented. It
can then be checked if the cost reduction related to an increase of the line e�ciency outweighs
the costs for the movement of equipment or materials. Relaxing these �xed constraints can
possibly have a slight impact on the e�ciency as results showed that there is room for a 3%
e�ciency gain.

� It should be investigated if some task packages can be made smaller as this can increase the
e�ciency of some workstations, while possible emptying other workstations. This can lead to

TU/e Page 60

Master Thesis CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

an overall decrease in both the amount of operators and workstations used, possible leading
to the extra 3% e�ciency gain.

TU/e Page 61

Master Thesis CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

TU/e Page 62

Master Thesis BIBLIOGRAPHY

Bibliography

Alghazi, A. and Kurz, M. E. 2018. Mixed model line balancing with parallel stations, zoning
constraints, and ergonomics. Constraints, 23(1):123�153.

Álvarez-Miranda, E. and Pereira, J. 2019. On the complexity of assembly line balancing problems.
Computers and Operations Research, 108:182�186.

Andrés, C., Miralles, C., and Pastor, R. 2006. Balancing and scheduling tasks in parallel assembly
lines with sequence-dependent setup times. European Journal of Operational Research, page
8196.

Battaïa, O. and Dolgui, A. 2013. A taxonomy of line balancing problems and their solutionap-
proaches. International Journal of Production Economics, 142(2):259�277.

Baybars, l. 1986. A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem.
Management Science, 32(8):909�932.

Becker, C. and Scholl, A. 2006. A survey on problems and methods in generalized assembly line
balancing. European Journal of Operational Research, 168(3):694�715.

Becker, C. and Scholl, A. 2009. Balancing assembly lines with variable parallel workplaces: Prob-
lem de�nition and e�ective solution procedure. European Journal of Operational Research,
199(2):359�374.

Bolat, A. and Yano, C. A. 1992. Scheduling alogrithms to minimize utility work at a single station
on a paced assembly line.

Boysen, N., Fliedner, M., and Scholl, A. 2007. A classi�cation of assembly line balancing problems.
European Journal of Operational Research, 183(2):674�693.

Boysen, N., Fliedner, M., and Scholl, A. 2008. Assembly line balancing: Which model to use when?
International Journal of Production Economics, 111(2):509�528.

Boysen, N., Fliedner, M., and Scholl, A. 2009. Assembly line balancing: Joint precedence graphs
under high product variety. IIE Transactions (Institute of Industrial Engineers), 41(3):183�193.

Bukchin, J., Dar-El, E. M., and Rubinovitz, J. 2002. Mixed model assembly line design in a
make-to-order environment. Computers & Industrial Engineering, 41(4):405�421.

Chen, J. C., Chen, Y. Y., Chen, T. L., and Kuo, Y. H. 2019. Applying two-phase adaptive genetic
algorithm to solve multi-model assembly line balancing problems in TFT�LCD module process.
Journal of Manufacturing Systems, 52(May):86�99.

Emde, S., Boysen, N., and Scholl, A. 2010. Balancing mixed-model assembly lines: A computational
evaluation of objectives to smoothen workload. International Journal of Production Research,
48(11):3173�3191.

Esmaeilbeigi, R., Naderi, B., and Charkhgard, P. 2016. New formulations for the setup assembly
line balancing and scheduling problem. OR Spectrum, 38(2):493�518.

TU/e Page 63

Master Thesis BIBLIOGRAPHY

Falkenauer, E. 2005. Line balancing in the real world. Proceedings of the International Conference
on Product Lifecycle Management PLM, 5:360�370.

Ford, H. and Crowther, S. 1922. My Life and Work. Doubleday.

Golle, U., Rothlauf, F., and Boysen, N. 2014. Car sequencing versus mixed-model sequencing: A
computational study. European Journal of Operational Research, 237(1):50�61.

Hounshell, D. 1984. From the American System to Mass Production, 1800-1932: The Development
of Manufacturing Technology in the United States. The John Hopkin University Press, Baltimore.

Kim, Y. K., Kim, Y., and Kim, Y. J. 2000. Two-sided assembly line balancing: A genetic algorithm
approach. Production Planning and Control, 11(1):44�53.

Kim, Y. K., Song, W. S., and Kim, J. H. 2009. A mathematical model and a genetic algorithm for
two-sided assembly line balancing. Computers and Operations Research, 36(3):853�865.

Klindworth, H., Otto, C., and Scholl, A. 2012. On a learning precedence graph concept for the
automotive industry. European Journal of Operational Research, 217(2):259�269.

Li, Z., Kucukkoc, I., and Nilakantan, J. M. 2017. Comprehensive review and evaluation of heuristics
and meta-heuristics for two-sided assembly line balancing problem. Computers and Operations
Research, 84:146�161.

Martino, L. and Pastor, R. 2010. Heuristic procedures for solving the general assembly line bal-
ancing problem with setups. International Journal of Production Research, 48(6):1787�1804.

Merengo, C., Nava, F., and Pozzetti, A. 1999. Balancing and sequencing manual mixed-model
assembly lines. International Journal of Production Research, 37(12):2835�2860.

Meyr, H. 2004. Supply chain planning in the german automotive industry. Supply Chain Planning:
Quantitative Decision Support and Advanced Planning Solutions, pages 343�365.

Otto, C. and Otto, A. 2014. Multiple-source learning precedence graph concept for the automotive
industry. European Journal of Operational Research, 234(1):253�265.

Sabuncuoglu, I., Erel, E., and Tanyer, M. 2000. Assembly line balancing using genetic algorithms.
Journal of Intelligent Manufacturing, 11(3):295�310.

Salveson, M. 1955. The Assembly Line Balancing Problem. The Journal of Industrial Engineering
6 (3),, pages 18�25.

Scholl, A. 1999. Armin Scholl - Balancing and Sequencing of Assembly Lines. pages XVI, 318.

Scholl, A., Boysen, N., and Fliedner, M. 2013. The assembly line balancing and scheduling prob-
lem with sequence-dependent setup times: Problem extension, model formulation and e�cient
heuristics. OR Spectrum, 35(1):291�320.

Sivasankaran, P. and Shahabudeen, P. 2014. Literature review of assembly line balancing problems.
International Journal of Advanced Manufacturing Technology, 73(9-12):1665�1694.

Tasan, S. O. and Tunali, S. 2008. A review of the current applications of genetic algorithms in
assembly line balancing. Journal of Intelligent Manufacturing, 19(1):49�69.

Tiacci, L. 2015. Coupling a genetic algorithm approach and a discrete event simulator to de-
sign mixed-model un-paced assembly lines with parallel workstations and stochastic task times.
International Journal of Production Economics, 159(October):319�333.

Wee, T. S. and Magazine, M. J. 1982. Assembly line balancing as generalized bin packing. Opera-
tions Research Letters.

TU/e Page 64

Master Thesis BIBLIOGRAPHY

Yang, C., Gao, J., and Sun, L. 2013. A multi-objective genetic algorithm for mixed-model assembly
line rebalancing. Computers and Industrial Engineering, 65(1):109�116.

Yang, W. and Cheng, W. 2019. Modelling and solving mixed-model two-sided assembly line
balancing problem with sequence- dependent setup time. International Journal of Production
Research, 0(0):1�22.

TU/e Page 65

TU leffillffito"::*;,

Declaration concerning the TU/e Code of Scientific Conduct
for the Master's thesis

I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master's thesis has been carried out in accordance with the rules of the TU/e Code of Scientific

Conduct

Date

.. Ld.:c3.:.tU.?=0....

Name

..f ,..S.'. t:i...(.,...
-)

lD-number

odd lslL

Siqnature

Submit the signed declaration to the student administration of your department.

i See: http://www.tue.nl/en/universitvlabout-the-universitv/inteqritv/scientific-inteqritv/
The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also.

More information about scientific integrity is published on the websites of TU/e and VSNU

.(r1l

January 15 2016

	Abstract
	Preface
	List of Figures
	List of Acronyms
	Introduction
	Company Background
	Project Background
	Objective
	Structure

	Problem Background
	Assembly Line Balancing
	Assembly Line Description
	Assembly Line Sequencing
	Balancing at Nedcar
	Literature Review
	Summary

	Model Description
	Assembly Line Balancing Problem
	Assembly Line Sequencing
	Summary

	Mixed Integer Linear Program
	MILP Background
	Input Data
	Assembly Line Balancing Problem
	Car Sequencing
	Summary

	Algorithm
	Genetic Algorithm
	Summary

	Case Study
	Data collection and reduction
	Results
	Summary

	Conclusion and recommendations
	Conclusion
	Recommendations

