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Abstract

In this Master Thesis, a generic calculation methodology is presented to calculate the emissions in
carbon dioxide equivalent (CO2e) of freight transportation. This methodology is applied as a case
study to Philips’ airfreight shipments to determine the CO2e impact of each shipment. In 2019, Philips’
total operational carbon footprint comprised for 71.4% of logistics emissions of which 65.1% can be
attributed to airfreight. Reducing airfreight emissions and implementing sustainable alternatives
depends on the trade-off between costs, emissions, and service level. Several sustainable improvement
directions are discussed, of which transport mode shift is handled in-depth. A mathematical model
is set up that handles this trade-off between costs, emissions and service levels of logistics processes
in a multi-modal multi-item setting. The model is solved using Lagrangian relaxation, where the
multi-item problem can be decomposed in multiple single-item problems. This model solves the
Transport Mode Selection Problem (TMSP) of which transport mode should be assigned to which
shipments. The TMSP model is applied as a case study to the most impactful lanes of Philips’
airfreight shipments. Using the single-item solutions, an efficient frontier is created which reflects
the trade-off between total CO2e emissions and total costs. Results show that a win-win situation
can be obtained, reducing transport emissions with 53.8% while reducing costs with 18.0%. It is
recommended that Philips applies transport mode shifts from air to ocean on the selected lanes to
reduce CO2e emissions in a cost-effective way.
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Executive summary

Introduction

Over the last few decades, topics like global warming, carbon emissions and sustainability have re-
ceived increasing attention. One of the important contributors to climate change is transportation.
In Europe, around 23% of all carbon dioxide (CO2) emissions can be attributed to the transport
sector. Within the global transport sector, road transport is by far the transport mode with the
highest emissions, accounting for about two-thirds of all Greenhouse Gas (GHG) emissions (European
Commission, 2017). GHG emissions refer to a collection of gases among which are carbon dioxide,
methane and chlorofluorocarbons (CFCs) often expressed in the aggregated measure carbon dioxide
equivalent (CO2e) (Hoen, Tan, Fransoo & van Houtum, 2014a). Air transport is the transport mode
with the highest carbon intensity, thus the highest emissions per transported unit (Dekker, Bloemhof
& Mallidis, 2012; Hoen, Tan, Fransoo & van Houtum, 2014b; van den Akker, te Loo & Schers, 2009).
Companies exert increasing effort on reducing CO2e emissions, either due to voluntary commitment
or as a response to emission regulations (Hoen et al., 2014a). This Master Thesis project considers
the possibility to reduce CO2e emissions by selecting transport modes with lower carbon intensity.

Problem definition

This Master Thesis project is performed in cooperation with the company Royal Philips, referred to
as Philips. Philips has the ambition to become fully carbon neutral in its operations, and to source
all its electricity usage from 100% renewable sources by the end of 2020. On top of this, Philips aims
for 4 to 6% comparable sales growth and an Adjusted EBITA margin improvement of around 100
basis points (Royal Philips, 2019b). In 2019, overall CO2e emissions from logistics represent 71.4% of
the total operational carbon footprint. It can be concluded that within Philips the emissions for the
transport mode air are by far the highest, accounting for 65.4% of the total logistics emissions in 2019.
Philips wants to implement sustainable improvements, such as transport mode shifts, in transport to
decrease the environmental impact of airfreight. However, the company has no clear insights into the
current environmental impact of every product shipment and how CO2e reductions can be obtained
best. An analysis is required to get an overview of the current state of logistics emissions and the
corresponding costs. This is the starting point of this research.

Research methodology

For the purpose of sustainability, this research aims to analyze and visualize global logistics processes
of Philips’ airfreight and aims to introduce actionable improvements for sustainability. Based on the
defined problem and research goal for this research project, the research question is defined as follows:

What is the current environmental impact of Philips’ logistic processes for airfreight and which
sustainable improvements can be introduced to drive CO2e emission reductions?

To answer this research question, three sub-questions have been stated:

1. How to define a method that can accurately calculate the current environmental impact of
Philips’ logistic processes for airfreight?

2. How to develop a general decision making model that provides a trade-off between emissions,
costs and service level indicators?

3. Which improvements can be made for the logistics planning process to include more sustainable
transportation alternatives for the most impactful products/lanes?

To answer the first research sub-question, a methodology is described to calculate the CO2e emissions
of transporting goods, based on the Network for Transport Measures (NTM) methodology. This
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methodology is, with some small adjustments, applied as a case study to Philips’ airfreight logistics
data. The project scope contains all global airfreight shipments of Philips’ products in the time period
January 2017 up to October 2019. The scope of reported CO2e emissions is well-to-wheel (WTW),
which is the total use of energy including fuel production, distribution and combustion (NTM, 2018b).
After analyzing all airfreight logistics, this project continues to the second research sub-question. Here,
a mathematical model is developed that minimizes the total costs under an emission constraint. This
model takes the factors costs, emissions and service levels into account in deciding the best way
of transport mode selection for several products and lanes. The model is solved using Lagrangian
relaxation, where the multi-item problem can be decomposed in multiple single-item problems. Next,
this model is applied as a case study to a subset of the most important lanes in Philips’ logistics
data to discover the improvement potential using transport mode shift. Finally, to answer the third
research sub-question, directions for improvement towards more sustainable logistics are presented.
These improvements are based on insights generated by the emission calculation and the Transport
Mode Selection Problem (TMSP) model.

Carbon emission calculation methodology

In order to reduce the CO2e emissions of logistics, the first step is to measure the current emissions
that occur during transport of goods. This Master Thesis describes a general methodology to calculate
the CO2e emissions of airfreight logistics. The first step of this method is the distance calculation, in
which the Great Circle Distance (GCD) is used to calculate the flight distance. Additionally, distances
are taken into account for detours during take-off and landing, and for the road shipments from the
airport to the final destination. The second step includes the weight calculation, where the actual
weight is the weight in kilograms of everything loaded into the plane. The volumetric weight is the
actual weight, taking into account a minimum density of 167 kg/m3. For calculating emissions the
chargeable weight should be used, which is then defined as the maximum of the actual weight and
the volumetric weight. The third step takes into account the vehicle type that is used. Often this
vehicle type is connected to the shipment itself, e.g. airfreight shipments of 10,000 kilometers use
an intercontinental plane with a certain maximum load and fuel usage. Depending on these vehicle
characteristics, the emission factor (EF) is determined. In the final step, the emission calculation is
performed. Here, the distance and weight are converted into tonne-kilometers and multiplied with
the EFs to get the CO2e emissions. Finally the output can be aggregated into any form, in order to
report emissions e.g. per shipment lane or per time period.

The described methodology is applied to all Philips’ global airfreight shipments between January 2017
and October 2019. In order to implement the methodology to Philips’ data, some adjustments are
required. The data is cleaned based on the aspects: origin/destination, weight and cost. The CO2e
emissions are calculated for two scenarios, based on the aircraft type: Scenario (1) uses the limited
aircraft data available at Philips; and Scenario (2) uses industry-average aircraft data. The second
scenario is considered most representative and results in total WTW CO2e emissions of 1,192 million
kg. Comparing this result to Philips’ reported emissions over the same scope, leads to an increase of
18.2%. This increase is, among other things, a result of the emission factor source, the pure freighter
aircraft type assumption and the reporting scope.

Transport Mode Selection Problem (TMSP) optimization model

Modelling and optimizing logistics choices is highly complex, since there are many criteria to take
into account. It is the objective to combine carbon measurement with carbon management, in order
to select lanes that are most suitable for implementing improvements, decreasing the total amount
of carbon emissions. This multi-criteria problem takes into account the costs, carbon emissions and
service levels of logistics shipments. A mathematical model is stated to solve the Transport Mode
Selection Problem (TMSP) of which transport mode should be assigned to which shipments. The
purpose of the TMSP model is to minimize the overall transportation and inventory costs, while taking
into account an emission constraint in a multi-modal multi-item setting. This model is developed for
a company to decide on a tactical level which lanes are most suitable for a transport mode shift. The
model is solved using Lagrangian relaxation, where the multi-item problem can be decomposed in
multiple single-item problems.
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The TMSP model is applied as a case study to a subset of the 20 most important lanes of Philips’
shipments data. Unfortunately, many of the required data inputs cannot be obtained. For this reason,
all input parameters are estimated with the help of existing data, Philips’ analysts and literature.
Because the leadtime (variability), demand distribution and warehouse inventory policy are unknown,
it is decided to use simulated data to apply the TMSP optimization model. It is concluded that
running the model against zero emission penalty cost, results in a win-win decreasing emissions with
53.8% while reducing costs with 18.0% as opposed to Philips’ initial situation. This win-win situation
at zero emission cost is found with a proposed transport mode shift to ocean for 11 of the 20 lanes
in scope. Then, the order in which the other 9 lanes can be shifted from air to ocean transport in a
cost-efficient way is tested and results in an efficient frontier of solutions, which reflects the trade-off
between total CO2e emissions and total costs. The total emission reduction potential is calculated to
be 96.5% against a cost increase of 31.8%.

Recommendations

Firstly, it is recommended to Philips to substantiate its decisions for the CO2e calculation scope and
to reconsider its current assumptions and EFs. Secondly, the most important recommendation to
Philips is to apply transport mode shift from air to ocean for the shipment lanes that are deemed
most suitable. It is recommended to start the transport mode shifts for the 11 lanes that resulted in
the win-win solution. The next 2 lanes that shift from air to ocean still have a cost below “Philips’
initial situation” but do incur additional costs as opposed to the “zero emission penalty” situation.
Therefore, it is recommended to switch these 2 lanes in a later stage. The other 7 lanes in scope
shift at increasing additional costs, due to which these lanes are less suitable for transport mode shift.
Next to transport mode shift, also general recommendations are provided that can help to include
more sustainable transportation alternatives. Here, the collaboration with 3PLs is mentioned, to e.g.
decrease the contracted minimum weight of a shipment; apply transport consolidation; use cleaner
fuels or vehicles; or increase load factors. Furthermore, improvement directions related to Philips’
data collection are described. Obtaining relevant data is crucial to improve the calculation accuracy
of research sub-questions 1 and 2. Improved accuracy is important when Philips wants to act upon
results in order to have reliable expectations for costs of e.g. a transport mode shift.

Implementations

Many aspects of this Master Thesis project are implemented at Philips and integrated in their current
way of working. This Master Thesis project contributes to Philips’ airfreight logistics CO2e reporting
on several aspects. First, the cleaning of input data of the origin and destination locations with
IATA-codes is implemented. This implementation leads to accurate distances for an additional 5% of
the shipments compared to Philips’ original method. Second, the data cleaning method for weights
has also been implemented, which includes cleaning for minimum weight, missing weight values, and
maximum weights. Third, the distance calculations have been implemented fully, which consists of
the Great Circle Distance (GCD), the detour distances, and the road distance percentage. This
implementation enables automated distance calculations instead of using a lookup table for each
shipment. All these components are implemented in Philips’ CO2e calculation method, process flow
and in Philips’ annual report of 2019 (Royal Philips, 2019c). For the process flow, a BPMN tool is
built such that everyone can follow the performed calculations and also apply the methodology in
the future. Furthermore, a dashboard tool in Qlik Sense is built such that it can easily be seen on
which lanes, segments, and periods emissions occur. It is an interactive tool in which a person can
select e.g. the origin or destination country or the period and then the selected lanes are shown on a
world map. When selecting specific lanes, also the corresponding emissions, costs, and the number of
shipments are shown. The final implementation of this project is the implementation of the TMSP
model as a case study on a subset of Philips’ logistics data. This tool is built in R, which is Philips’
preferred programming language and this enables Philips to use the TMSP model on a wider scope
in the future. It is also possible to extrapolate current conclusions for the limited scope to a wider
scope. This option is a solution that Philips likes to implement in a short-term while starting the
in-depth supply chain investigations and additional data collection. This implementation is currently
being developed and the first proposal is expected to be finished in April 2020.
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Chapter 1

Introduction

Over the last few decades, topics like global warming, carbon emissions and sustainability have received
increasing attention. One of the important contributors to climate change is transportation. In
Europe, around 23% of all carbon dioxide (CO2) emissions can be attributed to the transport sector.
This makes the transport sector the second-biggest contributor after the energy sector (Hoen et
al., 2014b; European Commission, 2017). Each mode of transportation causes air pollution in a
different way and intensity. Air pollution results from the emission of gases, solids and/or liquid
aerosols, when they occur in volumes above the capacity of the atmosphere itself to dissipate or
dispose them. Air pollution has negative effects both on human health and on the existence and
integrity of material goods (D’Agosto, 2019). The increase in emissions is a result of the increase in
demand for transportation, and the existing trend in increased energy efficiency is not (yet) sufficient
to balance this (Hoen et al., 2014a).

Within the global transport sector, road transport is by far the transport mode with the highest emis-
sions, accounting for about two thirds of all Greenhouse Gas (GHG) emissions (European Commission,
2017; Smart Freight Centre, 2018). GHG emissions refer to a collection of gases among which are
carbon dioxide, methane and chlorofluorcarbons (CFCs) (Hoen et al., 2014a). Road transport is the
transport mode with overall highest emissions, since road transport is easy to use in short-distance or
intermodal logistics. However, air transport is the transport mode with the highest carbon intensity,
thus the highest emissions per transported unit (Dekker et al., 2012; Hoen et al., 2014b; van den
Akker et al., 2009).

1.1 Company description

This Master Thesis project is performed in cooperation with the company Royal Philips, referred
to as Philips. Philips was founded in Eindhoven in 1891 as a manufacturer of electric incandescent
light bulbs. In 1918, Philips began with its healthcare department and introduced a medical X-ray
tube (Royal Philips, 2019b). Nowadays, Philips is a leading health technology company focused on
improving people’s health and enabling better outcomes across the health continuum from healthy
living and prevention, to diagnosis, treatment and home care. Philips leverages advanced technology
and deep clinical and consumer insights to deliver integrated solutions. The company is a leader
in diagnostic imaging, image-guided therapy, patient monitoring and health informatics, as well as
in consumer health and home care. Philips has sustainability incorporated in its company strategy.
The company embraces sustainability to benefit the society and because it believes this is a driver
for economic growth (Royal Philips, 2019a). Philips strives to make the world healthier and more
sustainable through innovation, with the goal to improve the lives of 3 billion people a year by 2030.

At Philips, each segment has its own supply chain structure and resources. This leads to a decentralized
structure with business units that control its own operations with its own resources (Koc, 2010).
Products are produced in and shipped to countries all around the world and each department has its
own decision making criteria for logistics processes. In 2019, Philips generated sales of 19.5 billion.
Additionally, Philips employs approximately 78,000 employees and has sales and services in more than
100 countries (Royal Philips, 2019a).

1.2 Problem definition

Philips has the ambition to become fully carbon neutral in its operations, and to source all its elec-
tricity usage from 100% renewable sources by the end of 2020. On top of this, Philips aims for 4-6%
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comparable sales growth and an Adjusted EBITA margin improvement of around 100 basis points
(Royal Philips, 2019b). In line with the sustainability goal, Philips already increased its global renew-
able electricity usage in 2019 to 95% (Royal Philips, 2019c). This results in low CO2e emissions from
manufacturing and non-industrial operations, as can be seen as ‘Sites’ in Figure 1.1. In 2019, overall
CO2e emissions from logistics represent 71.4% of the total operational carbon footprint (see ‘Logist-
ics’ in Figure 1.1). The remaining part of the operational carbon footprint is allocated to ‘Business
travel’. The emissions from logistics already decreased by 11.9% in 2019 as compared to 2018 (Royal
Philips, 2019c). This decrease has been realized by using multi-modal shipments, a transition from
air to ocean freight and a stricter airfreight policy. However, even with this decrease, the category of
logistics is by far the biggest contributor to the operational carbon footprint. Therefore, we have to
look deeper into this category in order to improve the total operational carbon footprint.

Figure 1.1: Visualization of Philips’ total operational carbon footprint in 2019

As discussed above, logistics is the largest category of emissions in the overall operational carbon
footprint of Philips. Table 1.1 shows the operational carbon footprint of Philips’ logistics over the
years 2015 until 2019 in kilotonnes CO2-equivalent. From this table, it can be concluded that within
Philips the emissions for the factor ‘Air transport’ are by far the highest, accounting for 65.4% of the
total logistics emissions in 2019. The factor ‘Road transport’ that is displayed here, only contains the
shipments that are fully transported by road transport. The shipments that are performed by air or
ocean transport also include a portion of road transport, where the product is transported from the
warehouse to the port/airport. However, this road transport is included in the emissions for air and
ocean transport respectively.

Table 1.1: Operational carbon footprint of Philips logistics 2015-2019 in kilotonnes CO2e
(Royal Philips, 2019c)

2015 2016 2017 2018 2019

Air transport 309 361 491 393 328
Road transport 65 67 67 70 75
Ocean transport 68 63 83 109 101
Total Philips Group 460 491 641 572 504

The carbon footprint reduced from 2017 to 2019. However, Philips requires more insights in its
logistics processes to improve even further. In Table 1.1 is shown that about two thirds of the logistics
emissions can be attributed to airfreight. The company wants to implement improvements, such as
modal shifts, in transport to decrease the environmental impact of airfreight, but has no clear insights
in what the current impact is of every product shipment and where most impact can be gained.
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This impact might e.g. depend on the number of times that Philips uses a specific lane; on product
characteristics such as value or weight; or on environmental factors such as accessibility. The problem
arises that the company has no clear overview of where to implement more sustainable alternatives,
such as modal shifts, first. The implementation of more sustainable alternatives also depends on the
costs that are attributed to this change. Furthermore, the service levels that Philips currently offers
to its customers has to be maintained. An analysis is required to get an overview of the current state
of logistics emissions and the corresponding costs. In order to reduce the operational carbon footprint
of Philips’ logistics, the large factor of ‘Air transport’ should be investigated in-depth. This is the
starting point of this research.

1.3 Research questions and methodology

For the purpose of sustainability, this research aims to analyze and visualize global logistics processes
of Philips’ airfreight and aims to introduce actionable improvements for sustainability. Based on the
defined problem and research goal for this research project, the research question is defined as follows:

What is the current environmental impact of Philips’ logistic processes for airfreight and which
sustainable improvements can be introduced to drive CO2e emission reductions?

To answer this research question, three sub-questions have been stated:

1. How to define a method that can accurately calculate the current environmental impact of Philips’
logistic processes for airfreight?

To answer the first research sub-question, a methodology is described to calculate the carbon dioxide
equivalent (CO2e) emissions of transporting goods, based on the Network for Transport Measures
(NTM) methodology. Then this methodology is, with some small adjustments, applied as a case
study to Philips’ airfreight logistics data. After having analyzed all airfreight logistics, this project
continues to the second research sub-question:

2. How to develop a general decision making model that provides a trade-off between emissions, costs
and service level indicators?

To answer the second research sub-question, a mathematical model is developed that minimizes the
total costs under an emission constraint. This model takes the factors costs, emissions and service
levels into account in deciding the best way of transport mode choice for several products and lanes.
The model is solved using Lagrangian relaxation, where the multi-item problem can be decomposed
in multiple single-item problems. This model solves the Transport Mode Selection Problem (TMSP)
of which transport mode should be assigned to which lanes. Next, this model is applied as a case
study to a subset of the most important lanes in Philips’ shipments data to discover the improvement
potential. Then, the final research sub-question is formulated:

3. Which improvements can be made for the logistics planning process to include more sustainable
transportation alternatives for the most impactful products/lanes?

To answer this third research sub-question, directions for improvement towards more sustainable
logistics are presented. These insights are based on insights generated by the emission calculation and
the TMSP model. The research methodology is summarized in Figure 1.2. This Figure shows how
the research questions depend on each other and on external data or literature.
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Figure 1.2: Research methodology overview

1.4 Research scope

The scope of this research project contains the carbon dioxide equivalent (CO2e) emissions of global
logistics processes for airfreight shipments of Philips’ products in the time period January 2017 up
to October 2019. The scope of reported emissions is well-to-wheel (WTW), which is the total use
of energy including fuel production, distribution and combustion (NTM, 2018b). The emissions are
calculated in CO2e, which is a measure that allows for aggregating all GHG emissions. The reason
for this aggregation notation is that CO2 emissions have by far the largest impact on global warming
of all emissions of Greenhouse Gas (GHG) (van den Akker et al., 2009). Every shipment refers to a
combination of an origin and destination location and a product type. Only air shipments that Philips
is financially responsible for (that Philips has paid or will pay for), are included in scope.

Figure 1.3 provides a visualization of the general transport chain that is used for shipping one product
by air transport. The transport chain starts at a warehouse or production location and is shipped
with transport mode road towards a transhipment center. In this transhipment center, the product is
loaded from the truck into the aircraft. It is estimated that about 90% of the emissions for logistics
and transport activities are due to freight transportation, and 10% for operating logistics buildings
(Marklund & Berling, 2017). Since the impact is relatively small, carbon emissions for e.g. electricity
or heating of this transhipment centre are out of scope. After the flight the product is again loaded
into a truck at the transhipment centre and transported by road transport to the final destination.
Only shipments of which reliable data is available can be considered in the analysis. The analysis
results in an overview of carbon emissions of all global air shipments within scope, after which a
general comparison selects the most impactful shipments or lanes. Subsequently, for these selected
lanes a deep-dive case study is conducted to analyze the options for transport mode shift and provide
specific recommendations for improvement.
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Figure 1.3: Transport chain visualization

1.5 Thesis outline

The remainder of this Master Thesis is structured as follows. Chapters 2 and 3 tackle the first research
sub-question. Chapter 2 describes the general calculation method that is designed to calculate the
total CO2e emissions of airfreight logistics. Then, Chapter 3 puts this methodology into practice,
applying it as a case study to Philips. Chapters 4 and 5 handle the second research sub-question.
Chapter 4 describes the general Transport Mode Selection Problem (TMSP) optimization model on a
mathematical level. Thereafter, Chapter 5 applies this model as a case study to Philips’ logistics data.
Chapter 6 tackles the third research sub-question of sustainable improvement directions. Chapter 7
shows the implementations of this Master Thesis project at Philips. Finally, Chapter 8 provides
conclusions and a discussion with directions for future research.
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Chapter 2

Carbon emission calculation method

This chapter describes the calculation method that is designed for determining the CO2e emissions
of airfreight shipments. Each subsection describes one step in the calculation in order to provide a
clear overview and enable reproduction of results. This chapter provides a general answer to the first
research question:

1. How to define a method that can accurately calculate the current environmental impact of Philips’
logistic processes for airfreight?

Section 2.1 introduces the concepts of emission calculations for freight logistics. Then, Section 2.2
describes the method that is used for calculating the distances of airfreight shipments. Section 2.3
describes the method that is used for determining the chargeable weight of airfreight shipments.
Then, Section 2.4 describes the CO2e emission calculation method. Finally, Section 2.5 summarizes
the chapter and provides an overview of the complete methodology. This chapter contributes to
the logistics carbon measurement literature by describing a step-by-step methodology to calculate
emissions for global airfreight transport shipments.

2.1 Introduction to logistics emission calculations

In order to reduce the CO2e emissions of logistics, the first step is to measure the current emissions that
occur during transport of goods. Two methods can be applied to calculate CO2e emissions of logistics
processes: energy-based calculations or activity-based calculations (Boukherroub et al., 2017). With
energy-based calculations, the Logistics Service Provider (LSP) measures the actual fuel being used.
This method is potentially the most accurate one. However, the amount of fuel combusted is generally
not directly monitored. With activity-based calculations, an estimation of emissions is made based
on shipment characteristics such as distance and product weight. The activity information is used to
derive carbon emissions by using emission factors. Such an emission factor (EF) is a calculated ratio
relating carbon emissions to a proxy measure of activity at an emissions source (Boukherroub et al.,
2017). While emission calculation should always depend on the data available, this chapter proposes
a method for activity-based carbon calculation of airfreight.

A literature review investigated several existing activity-based CO2e emission calculation methodolo-
gies and their EF sources. There is not one best method to calculate transport emissions. Instead,
different research methods and tools exist to determine CO2e emissions. All of these methods and tools
have different scopes, backgrounds and results (van den Akker et al., 2009). For example, ARTEMIS
is a European project focused on getting better understanding of differences in model predictions
and to address uncertainties in emission modelling (Boulter & Mccrae, 2007). Since ARTEMIS only
focuses on Europe and since it does not provide a lane-specific calculation method, ARTEMIS is not
considered very relevant for this Master Thesis. STREAM is a study on emissions of both freight
and passenger transport and focuses on comparisons of intermodal transport based on Dutch vehicle
and vessel fleets (Otten, Hoen & den Boer, 2016). Since this Master Thesis includes intercontinental
transport routes, STREAM is not considered to be very relevant either. The Greenhouse Gas (GHG)
Protocol is a standardized step-by-step approach to help firms understand their full value chain emis-
sions impact. It is a calculation method on a high aggregation level, taking into account only the
vehicle type, fuel type and distances (Greenhouse Gas Protocol, 2011). A framework with a more
detailed calculation level is the NTM framework (NTM, 2019). This method provides a higher level
of detail than the GHG Protocol by providing a separate calculation method per transport mode.
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Further, NTM provides estimates for transport parameter values that might be unknown to a com-
pany or 3PL. The latest update of the default and benchmark transport data of NTM in 2018 shows
also global figures, which makes the method applicable on a global scale (NTM, 2018b). Finally, the
GLEC framework contains global industry guidelines for emission calculation, reporting and reduction
of emissions (Smart Freight Centre, 2018). The GLEC framework is accredited by the GHG Protocol
and aligns with a growing number of other methodologies and industry standards. The GLEC Frame-
work is not an independent method that can be seen as an alternative to GHG Protocol or NTM
Framework, since it combines several input factors together in one practical overview. However, it
provides separate formulas and EFs, thus it is considered as a separate choice. An overview of the
emission factors per transport mode for the relevant methodologies can be found in Appendix A.1.
Note that the list of logistics carbon measurement methods and corresponding EFs is not exhaustive
and includes only the most relevant methods.

In literature, five criteria are described for evaluating carbon footprint tools: (1) Breadth - the scope of
activities included in the measurement; (2) Depth - the range of direct and indirect emissions included
in the measurement; (3) Precision - the level of detail provided by the measurement; (4) Comparability
- the degree with which measurements can be compared across time and organizations; (5) Verifiability
- the degree of assurance in the results and methodology (Craig, Blanco & Caplice, 2013). The first
three criteria together capture how relevant a measure is for decision-making. The other two criteria
provide a measure of how well suited the tool is for external use to faithfully represent the actual
performance. In the literature study of Stalpers (2019), the GHG Protocol, NTM framework and
GLEC framework are scored based on these five criteria. The result of this can be seen in Table 2.1.
After this thorough literature research, it is decided to base the calculation method on the Network
for Transport Measures (NTM) methodology (NTM, 2019). This is the preferred methodology, due
to the high level of detail and the possibility of adding and changing parameters and values. The full
literature study can be found clicking HERE.

Table 2.1: Criteria scores of emission calculation methods and corresponding EFs

Method (1) Breadth (2) Depth (3) Precision (4) Comparability (5) Verifiability

GHG High Low Low High Low
NTM High High High Moderate High
GLEC High High Moderate Moderate Moderate

2.2 Description of calculation method for distances

In this section, the calculation methodology for distances is described. First, Subsection 2.2.1 describes
the method to calculate distances of flights. Thereafter, Subsection 2.2.2 discusses the method to
calculate additional distance for detours along the route. Finally, Subsection 2.2.3 describes the
method for determining the road distance for transport from and towards the airports.

2.2.1 Distance calculation of flights

The distance calculation of an airfreight shipment is required in order to know the total CO2e emissions
that occur during the flight. The emissions of airfreight are mostly calculated with an emission
factor (EF) that represents the kg of CO2e emissions per tonne-kilometer. The tonne-kilometer then
represents the movement of one tonne (1,000 kg) weight over a distance of one kilometer. Thus, in
order to calculate the emissions, it is required to know the distance of each shipment.

In order to calculate the distance of an air shipment, the Great Circle Distance (GCD) formula is
applied. The GCD, also known as direct distance or ‘as the crow flies’, defines the shortest distance
between two points on the surface of a sphere. It is a common method for calculating distances in
the aviation industry (Greene & Lewis, 2019). This distance can be calculated using the geographical
coordinates of the origin and destination (NTM Air, 2015). According to Mahmoud and Akkari
(2016), Haversine is the appropriate method for this type of shortest path calculation. Therefore, the
Haversine GCD method is used in this methodology, see Equation 2.1.
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d = 2 · r · arcsin(

√
sin2(

lat2− lat1
2

) + cos(lat1) · cos(lat2) · sin2(
long2− long1

2
)) (2.1)

Where d is the total distance in km; r is the radius of the earth (equals 6378.137 km) (Wikipedia,
2019a); lat1 and lat2 are the latitude of origin and destination respectively (in radians); and long1
and long2 are the longitude of origin and destination respectively (in radians).

2.2.2 Additional detour distance

The Great Circle Distance (GCD) is the shortest distance between the start and end point of a flight.
This would be the ideal flight route between two airports but in practice there may be many deviations,
particularly at take-off and landing. Each flight needs to take into account the uplift distance of the
flight during take-off and landing. To compensate for this, the total route distance should also include
a ‘detour’ distance. With this detour distance, also emissions of stacking, traffic and weather-driven
corrections are included (NTM, 2019; ICAO, 2017). Using the NTMCalc 4.0 online tool (NTM, 2019),
the detour distances are determined for each GCD interval of 1,000 kilometers. The additional detour
distance in kilometers for the GCD in 1,000 kilometers is displayed in Table 2.2.

Table 2.2: Detour distances (NTM, 2019)

GCD (*1000 km) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Detour (km) 63 87 105 120 133 144 155 164 173 182 190 197 205 211 218 224 230

Using these distances, the underlying trend could be identified with an Excel tool (see Appendix A.2).
The result of this can be seen in Equation 2.2. Here, the GCD is expressed in 1,000 kilometers and
the detour in kilometers. This function should be applied to every Great Circle Distance (GCD) flight
length. Then, the total flight distance (in kilometers) is the sum of the GCD of Equation 2.1 and the
detour distance of Equation 2.2.

detour (km) = 63.472 ∗GCD0.4564 (2.2)

2.2.3 Additional road distance

The transport chain of an air shipment consists of a multi-modal road-air-road combination. Until now,
only the origin and destination airports were considered and the travel from the warehouse/production
site towards the airport and back was neglected. In order to calculate the additional road distance from
the production/warehouse to the airport and from the destination airport to the final location, it is
required to know the exact locations. Between the origin/destination location and origin/destination
airport, the road distance has to be calculated. This is a bit more complex than air distance, since one
has to take into account the positioning of the roads. The NTMCalc 4.0 online emission calculation
tool is capable of calculating this specific route distance, also for different stops along the route (NTM,
2019). However, this tool is only suitable for calculating specific routes one by one. When it is required
to calculate road distances for many shipments at the same time, then the ‘osrm’ package offered by
R is recommended to use (Giraud, Cura & Viry, 2019). Note that this package requires either an
address or coordinates with longitude and latitude to calculate road distances.

Further, taking into account the road type (motorway, rural or urban) and the road gradient, which
is a measure for driving uphill and downhill, improves the accuracy of emission calculation. Also the
positioning of a truck before transport should be included in the distance per shipment. NTM Road
(2015) recommends to use an additional factor of 20% of the transport distance as the positioning
distance. The emissions related to empty running after delivery of the cargo is not considered by the
NTM method.
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2.3 Description of calculation method for weights

Next to the distances, also the weight of an airfreight shipment is required in order to determine
the total CO2e emissions that occur during the flight. In air transport, weight is an essential and
delimiting factor defining total environmental performance. It is assumed that shipment transports
are undertaken in a shared transport system where the capacity of a vehicle (or set of vehicles) can
be shared between multiple shipments (NTM, 2019). The actual weight of a shipment is the total
actual physical weight of everything loaded onto the plane. The weight of containers, pallets and other
cargo handling and securing devices must be included in this calculation (NTM Air, 2015). Emission
calculation of airfreight often takes into account a volumetric weight, e.g. by a minimum density for
air transport (Hoen et al., 2014a). This is done, because there is limited space in an airplane. When
performing calculations only with the actual weight, while e.g. transporting a huge bag of air, too
little emissions would be attributed to this specific shipment. For this reason the volumetric weight
is used, which is the volume (in m3) multiplied with the minimum density. The minimum density for
airfreight is set to 167 kg/m3 which is in coordination to the literature (NTM Air, 2015; Hoen et al.,
2014a). The emission calculation and allocation is performed based on the chargeable weight, which
is the maximum of the actual weight and the volumetric weight (NTM Air, 2015). For the purpose of
emission calculation, the chargeable weight in kilograms should be divided by 1,000 to be expressed
in tonnes, since an emission factor (EF) is normally expressed in kilograms of CO2e per transported
tonne-kilometer.

2.4 Emission calculation

This section combines all input parameters into the emission calculation. In this calculation method,
CO2e emissions are derived from activity information by using conversion factors. These factors are
calculated ratios relating carbon emissions to a proxy measure of activity. Such an activity-based
conversion factor is often referred to as emission factor (EF) (Boukherroub et al., 2017). Different
values for EFs are defined for each mode of transport, see Appendix A.1. Ranking the transport
modes from highest to lowest emission factor, results in: air, road, rail and water transport (Dekker
et al., 2012; Hoen et al., 2014b; van den Akker et al., 2009). Subsection 2.4.1 describes the use of EF
for air transport, followed by Subsection 2.4.2 which describes the EFs for road transport. Finally,
Subsection 2.4.3 describes how to convert the distance, weight and EF into CO2e emissions.

2.4.1 Emission factors for transport mode air

The NTM methodology presents emission factors for carbon calculation. All EFs are based on the
aircraft type and the load factor of the plane. When calculating aircraft emissions care needs to be
taken in choosing the right aircraft or type of aircraft, since environmental performance varies both
with aircraft/engine configuration and the type of aircraft. Calculations on for example belly freight,
taking into consideration that more of the aircraft’s volume and weight is used for the passengers,
show approximately 30% higher emissions for belly freighters as compared to pure freighters (NTM,
2018a). This is due to the higher tare weight (or unladen weight) of a belly freighter.

Table 2.3: Average airfreight emission factors (NTM, 2018b)

Aircraft range Distance range (km) Aircraft type WTW CO2e (kg/tkm)

Regional < 785 Freight 2.10
Continental 785 - 3,600 Freight 0.92
Intercontinental > 3,600 Freight 0.58
Regional < 785 Belly 2.10
Continental 785 - 3,600 Belly 1.10
Intercontinental > 3,600 Belly 1.10

Table 2.3 presents an example overview of the NTM airfreight emission data per distance range. The
table shows the well-to-wheel (WTW) emission factors, which is the total use of energy including
fuel production, distribution and combustion. The aircraft type is specified, dividing between regular
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freight aircrafts and belly aircrafts (passenger aircrafts carrying additional cargo) (NTM, 2018b). For
each of the aircrafts, an average load factor of 65% is assumed (NTM, 2019). Note that the choice
of emission factors is an important factor determining the final output of the CO2e emissions. There
is not one single standard that is used consistently in industry or literature. However, as long as the
assumptions of using a methodology are defined clearly, it cannot be stated that one method is better
than another method.

2.4.2 Emission factors for transport mode road

The emission factors of a road vehicle depend on the size of the vehicle, as well as the energy efficiency,
load factor, road type and road gradient (NTM Road, 2015). The road gradient describes the road
topography as this has an influence on fuel consumption (NTM, 2018b). Besides, the average emission
factors differ per region of the world. For example, it can be concluded that the average emission
factors for the US are slightly higher than the EFs for the EU (NTM, 2018b). The NTM method
provides clear averages for the EU, US, Asia, South America as well as global averages.

Whenever actual data for vehicles, route, load factor or road gradient is not present, it is an option
to work with industry averages. Since road transport in this setting is used for transport from e.g. a
warehouse to an airport, it is most likely that an average rigid truck is used. For this reason, it can
be assumed that the truck type is a rigid truck (20-26 tonnes). This truck size has a typical capacity
of 15 tonnes (NTM, 2019). NTM (2018b) uses an average road gradient of 2% and an average load
factor of 50% for a truck. Here, the default load factor (%-weight) includes empty positioning of truck.
Table 2.4 shows an overview of the emissions of CO2e including fuel production, distribution and the
combustion (WTW) under these assumptions. Again, the emissions are expressed in kg of CO2e per
shipped tonne-kilometer. If the country under consideration is not mentioned in Table 2.4, the world
averages can be used instead. The impact of the truck size on the emission factors is shown in A.1.

Table 2.4: Average road emission factors per region (NTM, 2018b)

Transport region WTW CO2e (kg/tkm)

Europe 0.130
United States 0.136
Asia 0.160
South America 0.130
World averages 0.139

2.4.3 Emission calculation

Until now, the method for calculating shipments’ distances and weights has been described as well
as the use of emission factors. Using these input variables, the emissions of a shipment can be
calculated as in Equation 2.3. Here, it is assumed that I={1,2,...,n} (iεI) denotes the set of available
transport modes. In this calculation, only the transport modes air and road have been used. Further,
J={1,2,...,m} (jεJ) denotes the set of lanes to which certain products are shipped. Each shipment
consists of a product type, an origin location and a destination location. Note that the emissions
should be calculated separately per transport mode (e.g. air or road) and can be added afterwards.

ei,j = wj · EFi,j · δi,j (2.3)

Where the emissions (ei,j) are expressed in kilograms of CO2e; the total distance (δi,j) for air shipments
is the distance of GCD Equation 2.1 plus Detour Equation 2.2 in kilometers; the total distance (δi,j)
for road shipments as explained in Section 2.2.3; the chargeable weight (wj) is expressed in tonnes;
the emission factor (EFi,j) is expressed in kg CO2e/tonne-kilometer. Note that the emission factor
depends on several factors, such as the distance of the shipment, the vehicle type and the (average)
load factor of the vehicle. For this reason, the emissions have to be calculated for every single shipment
separately and can then be summed afterwards.
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2.5 Summary emission calculation method

Figure 2.1 provides an overview of the calculation method that has been described throughout this
chapter. The first step is the distance calculation, in which the Great Circle Distance (GCD) is used
to calculate the flight distance. Additionally, distances are taken into account for detours during
take-off and landing, and for the road shipments from the airport to the final destination. The second
step includes the weight calculation, where the actual weight is the weight in kilograms of everything
loaded into the plane. The volumetric weight is the actual weight, taking into account a minimum
density of 167 kg/m3. For calculating emissions the chargeable weight should be used, which is then
defined as the maximum of the actual weight and the volumetric weight. The third step takes into
account the vehicle type that is used. Often this vehicle type is connected to the shipment itself, e.g.
airfreight shipments of 10,000 kilometers use an intercontinental plane with a certain maximum load
and fuel usage. Depending on these vehicle characteristics, the emission factors are determined. In
the final step, the emission calculation is performed. Here, the distance and weight are converted into
tonne-kilometers and multiplied with emission factors to get the CO2e emissions. Finally the output
can be aggregated into any form, in order to report emissions e.g. per shipment lane or per time
period.

Figure 2.1: Calculation method overview CO2e emissions

The methodology described throughout this chapter contains some aspects for discussion. One of the
biggest challenges in the topic of carbon measurement and disclosure is non-comparability, because
there is no internationally agreed standard or authoritative guidance for benchmarking and measuring
GHG emission levels (Hartmann, Perego & Young, 2013; Bouman, Lindstad, Rialland & Strømman,
2017). Section 2.1 discusses several methodologies for logistics emission calculations and evaluates the
most relevant methods based on five criteria. The NTM methodology is selected as the most promising
methodology for this Master Thesis. However, even within one methodology, the choices to be made to
get a final CO2e result are not straightforward. For example, Table 2.3 assumed higher EFs per tonne-
kilometer for belly freighters as compared to pure freighters (NTM, 2018b). However, this depends on
the allocation method of CO2e emissions of a flight over freight and passengers. That this allocation
is not straightforward can also be concluded from the words of a NTM representative: “Allocation in
NTM (2018b) is done by pure weight. The common discussion is to set passenger (including luggage)
at 100 kg. One could also argue that seats, galley, toilets and flight attendants should be allocated to
passenger. On the other hand the flight would not exist if there were no passengers.” This qualitative
difference for allocation methodologies occurs with every methodology and is important to consider
when drawing conclusions. Another factor that remains a bottleneck in practice is the availability of
correct and complete data about shipments, load factors and vehicle types which is required input
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to perform emission calculations. It is the objective to combine carbon measurement with carbon
management, in order to select lanes that are most suitable for implementing improvements, decreasing
the total amount of carbon emissions.

The discussed methodology can be applied to any data set of airfreight shipments, including at least
the variables: year and month; origin and destination airport; origin and destination address; the
actual and/or chargeable shipment weight; shipment volume. Variables that make the calculation
more accurate include (among other things): exact vehicle types (full freighter/ belly freight aircraft);
fuel consumption and load factors of airplane; packaging size and weight. Chapter 3 implements
this methodology as a case study using Philips’ logistics data to determine the total emissions of its
airfreight logistics.
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Chapter 3

Case Study Philips: Emissions

This chapter describes the methodology for calculating the carbon emissions related to Philips’ air-
freight logistics. It is an application of the methodology as described in Chapter 2. Thus, this chapter
answers the first research question:

1. How to define a method that can accurately calculate the current environmental impact of Philips’
logistic processes for airfreight?

Section 3.1 describes both the data that is used as input for the calculations as well as the data cleaning
steps that are performed. Section 3.2 describes the method that is used for calculating the distances
of airfreight shipments. Thereafter, Section 3.3 describes the method that is used for determining
the chargeable weight of airfreight shipments. Section 3.4 describes the CO2e emission calculation for
air and road transport that is applied to every shipment in scope. The final section of this chapter,
Section 2.5, presents and discusses the final result. All calculations are performed in programming
language R.

3.1 Description of input data

3.1.1 Data input description airfreight shipments

This calculation method is set up to determine the emissions of Philips’ airfreight logistics. The flight
data is provided by the Forwarding and Distribution department of Philips. This department has an
overview of all flights that Philips used and paid for over the past years. All global flights within the
time frame January 2017 up to October 2019 are included in the calculations. Table 3.1 shows some
aggregated data characteristics.

Table 3.1: Airfreight shipments characteristics

Year Months Number Flights Shipped weight (kg)

2017 Jan-Dec 97,984 62,030,207
2018 Jan-Dec 99,024 53,711,004
2019 Jan-Oct 82,766 42,346,040
Total 279,784 158,087,251

For the input data, the following characteristics are included: segment, year, month, origin airport,
destination airport, origin country, destination country, shipper name, shipper city, receiver name,
receiver city, and chargeable weight. However, for some shipments, data is incomplete, incorrect or
unreliable. Working with any database, the possibility of wrong or missing entries has to be taken
into account. All noise, such as missing values or outliers have to be handled (Márquez & Lev, 2019).
The airfreight shipments data has been cleaned on the aspects: origin/destination, weight and cost.

Data cleaning origin and destination

The input of the origin and destination airports has been cleaned first. In total twenty types of
wrong entries have been identified for the IATA-code of origin and destination airports. These IATA
codes are three-letter geocodes designating airports around the world, defined by the International
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Air Transport Association (IATA, 2020). Appendix B.1 provides an explanation of the IATA code
rectification process that has been applied to the input data, in order to change the incorrect codes
to official IATA-codes on all shipment lines. This cleaning step greatly contributes to the distance
calculation, by providing a higher availability of origin and destination locations. This is also be
explained with the distance calculation, see Section 3.2.1.

Data cleaning of costs

As a second step, the airfreight shipments have been cleaned based on their transport cost value. The
airfreight shipments data is first cleaned from negative values for costs. These are shipments that are
paid for initially, but that were cancelled. Further, the data contains shipments having no cost value,
which is denoted as NA in the input file. One of the reasons for this, is that recent shipments still
have to be paid for in the next month. To fill in estimated cost values, it was tested whether the costs
depend on the weight and/or the distance of a shipment. Unfortunately, no clear relation between
the cost and chargeable weight or between the cost and distance could be identified (see Appendix
B.2). For this reason, it is decided to fill in the average cost of that specific year-month combination.
Next to the negative and NA cost values, outliers on both the lower and upper side of the costs have
to be cleaned. An outlier is defined as an observation in a set of data that is inconsistent with the
majority of the data (Sheskin, 2010). Since no clear relation could be identified between the cost and
the chargeable weight of a shipment, or between the cost and distance of a shipment, this cannot
be used to identify outliers. However, outliers need to be removed, since these values can exert a
disproportionate influence on statistical analyses (Reifman & Keyton, 2010). One method to clean
out data outliers for one variable, not taking into account other variables, is winsorizing. To winsorize
data, one converts the values of data points that are outlyingly high to the value of the highest data
point that is not considered to be an outlier. Then, the outlying values are reduced in magnitude to a
value that is still at the high end of the distribution, but not as extreme (Reifman & Keyton, 2010).
This way, the information that a case had among the highest (or lowest) values in a distribution
remains, but the data is protected against some of the harmful effects of outliers. The absolute and
relative changes due to data cleaning of shipments costs are provided in Appendix B.3.

Data cleaning of weights

As a next step, the airfreight shipments are cleaned based on their chargeable weight. The chargeable
weight is defined as the total shipment weight in kg, including the weight of containers and pallets,
corrected for the minimum density of airfreight shipments. According to Philips’ Sustainability and
Forwarding and Distribution analysts, the minimum chargeable weight for a shipment is 30 kg. This
is a fixed agreement with the 3PLs. Note that this might lead to an overestimation of the emissions,
since the actual chargeable weight of these shipments can be below 30 kg. Next to shipments having
a minimum weight, there is also a maximum weight to a shipment. The maximum load of an airplane
is limited, depending also on the type of airplane and distance range (see Table 3.2). According to
Philips’ analysts, all shipments in the data are separate shipments and no aggregation takes place.
Therefore, the chargeable weight of a shipment is considered an outlier when it exceeds the maximum
load for the airplane type. These outliers are deleted from the data set.

Table 3.2: Freight aircraft characteristics (NTM, 2018b, 2019)

Freight aircraft Distance range (km) Maximum load (kg)

Regional < 785 5,327
Continental 785-3,600 41,146
Intercontinental > 3,600 91,937

Missing values for chargeable weight have to be handled as well. When the chargeable weight of a
shipment is missing, the best estimate has to be filled in. It is preferred not to delete the shipments
without a chargeable weight, since these shipments are most likely real shipments with emissions.
Until now, Philips applied a policy in which they used a column called ’volumetric weight’ for the
missing chargeable weights. However, according to Philips’ data analysts, this data input is very
unreliable, because filled in volumes of shipments are often wrong. Instead, in this Master Thesis
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project it is chosen to fill in the average chargeable weight of that specific year-month combination.
This is considered as the best estimate and results in a chargeable weight for every shipment. The
absolute and relative changes due to data cleaning of shipment weights are provided in Appendix B.3.

3.1.2 General airport data

Next to Philips’ specific airfreight logistics data, also several general input data sources are being used.
The first data input source is a data hub for all the world airport codes (Codes, 2019). Since only
the ISO-country codes and the IATA-codes of the origin/destination airport are provided in Philips’
airfreight data, an external source was needed to find the corresponding city and country names. With
this external source all the city and country information has been filled in for each IATA-code that
is used by Philips. The second data input source being used is a data download of the longitude and
latitude coordinates of all airports worldwide (OurAirports, 2019). Latitude is a geographic coordinate
that specifies the north-south position of a point on the Earth’s surface and longitude specifies the
east-west position. This information is required to calculate the distances between airports. Also for
this data set, the wrong or missing values have to be checked. The coordinates in the airport file have
been cross-referenced with Google Geohack database, in order to ensure reliable data input. This file
included originally a total of 9,039 airports worldwide. After sorting out the IATA-codes that Philips
uses, and checking the correctness of the corresponding coordinates, there are twelve IATA-codes for
which no coordinates are found. These IATA-codes had to be added manually to the input file. An
overview of the missing IATA coordinates is given in Appendix B.4.

3.2 Description of calculation method for distances

To calculate GCD for airfreight, Equation 2.1 has been applied to all lanes in Philips’ airfreight
logistics. Each lane consists of an origin airport IATA and a destination airport IATA. In total there
are 4,392 unique combinations of origin and destination airports, using 434 unique airports. Figure
3.1 shows an overview of all the airports worldwide that are used by Philips. The majority of the
airports is located either in Europe, Asia or in the United States.

Figure 3.1: Worldwide airports used by Philips

3.2.1 Discussion of results distance calculation

This subsection discusses the results of the former distance calculation method that was used by
Philips and the new method as is described in Subsection 2.2.1. Firstly, both methods are compared
based on their availability of distances. For availability, the results of both methods are compared
using two measures: (1) the percentage of flights for which a distance is found, and (2) the total
shipped weight for which a distance is found. Secondly, the correctness of the newly calculated values
are checked by comparing it with Philips’ distance file.
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Availability of distances

The former method of Philips for distances used a fixed database of origin-destination combinations
with distances between these locations. It is unknown with which calculation method this database
is constructed, but it assumed that the distances are (approximately) correct. Applying Philips’
distance database to the airfreight flights resulted in flight distances for 92.73% of the number of
flights, corresponding to 92.03% of the shipped weight. Using the method as described in Subsection
2.2.1 for calculating distances, with the longitude and latitude coordinates corresponding to each
IATA-code, a higher percentage of distances is found than with Philips’ method. After applying the
rectifications as explained in Appendix B.1 and Appendix B.4, this methodology could calculate a
distance for 97.76% of the flights. This corresponds to 97.59% of the total shipped weight. It can
be concluded that the new distance calculation method results in 5.03% more distances (for 14,088
shipments) than Philips’ original method.

For the remaining shipments without a calculated distance, it is often the case that either the origin
IATA-code or the destination IATA-code is missing or cannot be identified as any specific airport. For
these cases, Philips’ method uses a weighted average of country-to-country distances. It is assumed
that this method is indeed the most accurate method when specific IATA or city information is
missing. The method works as follows: For every shipment lane with a calculated distance, the
average is determined on a country-to-country level. This means that e.g. all shipments within
the United States have an average distance of 1594 kilometers. For the percentage of flights where
distances are missing, this number is filled in for all flights with origin country and destination country
the US. After this step a distance is determined for 99.96% of the flights. Note that the lanes with
an average country-to-country distance cannot be used for direct improvements or deep-dive study of
transport, since the lacking city information is crucial for this point of view. Therefore these airfreight
shipments are be handled separately, but their emissions are added to the total CO2e impact.

Correctness of distances

Until now, only the percentages of available distances have been compared. The next step is to
investigate the correctness of the distance calculations, by comparing the calculated distance values
in kilometers with Philips’ distance values. Note that this can only be done for the lanes that were
already in the distance file of Philips. Philips’ distance values have been compared with the distance
values of the calculation as described in Subsection 2.2.1. On average, the calculation method as
described in Subsection 2.2.1 results in distances of 7.48 kilometers longer than Philips’s reported
distances. This corresponds to 0.086% of the total average flight length. The lanes for which the
percentage difference was the largest are discussed in Appendix B.5. Overall, it is concluded that the
new method performs well in terms of accuracy and is therefore a reliable calculation method. With
this method, distances could be calculated for 97.76% of the total airfreight shipments. By improving
the distance calculation method, the accuracy of the emission calculation is also be improved.

3.2.2 Additional detour distance

The Great Circle Distance (GCD) is the shortest distance between the start and end point of a
flight. This would be the ideal flight route between two airports but in practice there may be many
deviations, particularly at take-off and landing. To compensate this, the total route distance should
also include a ‘detour’ distance, as described in Subsection 2.2.2. The detour Equation 2.2 is applied
to the airport-to-airport distances and to the country-to-country distances and added to the GCD to
get the total flight distance. For the ten lanes that are used most often by Philips, the calculated
detour percentages can be seen in Appendix A.2.

Before this Master Thesis project, Philips used a detour percentage of 0.81% of the flight length. It is
unknown by Philips’ current employees where this number was based on. However, after application
of the detour calculation in this Master Thesis, it can be concluded that Philips’ detour percentage
is too low. The application of the detour method as displayed in Equation 2.2 results in a detour
corresponding to 1.80% of the flight length. Since all transport is outsourced, there is no reason to
assume that Philips has a lower detour percentage than the worldwide average. Therefore, a detour
of 1.80% of the flight length is applied in Philips’ logistics emission calculation.
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3.2.3 Additional road distance

As discussed in Subsection 2.2.3, it is required to obtain data of the exact origin and destination
location of shipments in order to calculate the additional road distance. Until now, only the origin
and destination airports were considered and the travel from the warehouse/production site towards
the airport and back was neglected. In order to estimate this distance, Philips used a fixed percentage
of 3.79% of the air distance on each shipment lane, corresponding to 1.90% for the first and for the
last leg respectively. However, no documentation exists on the calculation method for this percent-
age. Unfortunately, no data could be obtained specifying the exact origin and destination location of
shipments. This lack of data makes it impossible to calculate the exact distances of the road trans-
portation part. For most of the shipments, a ‘shipper city’ and ‘receiver city’ are specified, giving an
indication of the final destination. Note, however, that this data field is also sometimes left blank or
can state the city of the person booking the shipment, instead of a location where the freight has been.
Due to the lacking data, it is decided to calculate the road distance for a portion of the shipments and
translate this distance as a percentage of the flight distance. Then, this distance can be extrapolated
over the other shipments. Extrapolation is defined as an estimation of the dependent variable for
values of the independent variable that are located outside of the set of observations (Dodge, 2008a).

Sample size

In order to randomly calculate the distances for a subset of the data, it is required to know the
minimum sample size for statistically valid extrapolation. For this purpose, three criteria have to be
specified: the level of precision, the level of confidence or risk, and the degree of variability (Israel,
1992). The level of precision is the range in which the true value of the population is estimated to
be. This is often expressed in percentage point, e.g. a precision rate of 5% reflects that the result
can be either 5% higher or lower than the reported number. The confidence level is based on ideas
emcompassed under the Central Limit Theorem. A confidence level of 95% means that 95 out of 100
samples will have the true population value within the specified range of precision. The degree of
variability refers to the distribution of attributes in the population. A proportion of 0.5 indicates the
maximum variability in the population, and is thus often used in determining a more conservative
sample size (Israel, 1992).

For this sampling study, a precision rate of 10%, a confidence interval of 95%, and a degree of variability
of 0.5 are used. The precision level is set to 10%, such that the output of this sampling study should
reflect the real road distances up to 10% accurate. Decreasing this percentage is considered not to be
very useful, since the location data is only accurate up to city level. Then, Equation 3.1 is used to
find the sample size (Israel, 1992).

n =
N

(1 +N ∗ e2)
(3.1)

Where n is the sample size, N is the population size (equals 434 airports) and e is the level of precision
(equals 0.1). Equation 3.1 results in a sample size of 82 unique airports.

Method and assumptions for road distances

Using a random generator, random unique integers are sampled which numbers correspond to the 434
airports that Philips uses. An airport can have several origin or destination cities. For each of these
airports, the origin and destination cities are written down and the distances from airport to this city
are calculated using the NTMCalc 4.0 tool (NTM, 2019). Then, also the number of times that this
specific airport-city combination is used is written down. The sampling of new random sets continues,
until the sample size of 82 airports has been reached.

To make calculating road distances possible with limited data quality, some assumptions have to be
made. The first set of assumptions handles with the unavailability of city locations and the mistaken
city data. First, it is assumed that if the road distance is equal to or higher than 1,000 kilometers, the
city name is incorrect and therefore this distance cannot be calculated. This assumption is considered
as valid since all locations are within 1,000 kilometer radius from an airport. Additionally, it is not
efficient to drive more than 1,000 with road transport. Secondly, for a similar reason, it is also assumed
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that the road distance cannot exceed the flight distance. Thus, whenever the road distance is equal
to or greater than the flight distance, the city name is assumed to be incorrect. Note that it is chosen
to have both an absolute and a relative target on the road distance, since the flight distances differ
greatly. Further, it is chosen to handle these city mistakes and the blank city fields as ’lost samples’,
meaning that they do not add up to the minimum samples that should be taken to reach the stated
precision level. Note that these wrong entries are included in the data, since there is no automatic
way to clean wrong entries, but they are not included in the sample size. Thus, it can be concluded
that the actual precision of the sample is most probably higher than the 10% as stated in the last
section. The third assumption is made to define a distance whenever there are several cities with the
same name. In this case, the city closest to the airport is assumed to be the destination location. The
last assumption holds in the case that the IATA-code of the airport is the same as the city. Since
there are no final addresses in the data, no distance can be calculated from and towards the same city.
Therefore, it is assumed that if the IATA-code city is the same as the destination city, the distance is
equal to 25 kilometers. This assumption is made to apply an average within-city distance. Note that
this assumption is an educated guess and that it is hard to justify this number, since every city has
a different size and street mapping. A sensitivity analysis has been applied to test the impact of this
assumption (see Appendix B.6).

Results for road distances

The results of the sampling study for road distances are presented in Table 3.3. The road distance
percentages stated in Table 3.3 are applied to the Great Circle Distance (GCD) of Philips’ shipments.
The sum of the road distance percentages of a shipment corresponds on average to 1.38% of the
GCD. As discussed in Section 2.2.3, an additional pre-positioning distance of 20% should be included
on every shipment lane (NTM Road, 2015). Adding the additional 20% results in the total average
distance percentage of 1.66% of the GCD. This road percentage is used to determine CO2e emissions
for the road legs of airfreight shipments.

Table 3.3: Sampling results for road distance

Description Amount Percentage

Sample size first leg 155,178 shipments 55.5% of shipments
Sample size last leg 67,684 shipments 24.5% of shipments
Total sample size 222,862 shipments 39.8% of shipments
Average flight distance 8,234 km -
Average distance first leg 60.20 km 0.73% of GCD
Average distance last leg 53.84 km 0.65% of GCD
Sum distances legs 114.04 km 1.38% of GCD
Total average road distance 136.85 km 1.66% of GCD

3.3 Description of calculation method for weights

As discussed in Section 2.3, the weight of an airfreight shipment is required in order to calculate the
total CO2e emissions that occur during the flight. The described method of Section 2.3 states that
the chargeable weight should be calculated using the actual weight and the volume of the shipment.
Unfortunately, according to Philips’ Forwarding and Distribution data analyst, the volume data of
shipments is completely unreliable. This specialist states that often commas are misplaced, leading
to large outliers. This can also be concluded from the data, leading to volumetric weights up to 1.7
million kilograms. The chargeable weight input data is considered as the most reliable shipment weight
data and is thus being used for the emission calculations. This chargeable weight data is obtained
from the databases of the 3PLs.
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3.4 Emission calculation

3.4.1 Emissions with transport mode air

Section 2.4 discusses the use of emission factors and its role in calculating activity-based CO2e emis-
sions. When selecting a specific emission factor source, the underlying assumptions have to be clear
and have to fit the purpose and scope of reporting. Further, the importance of the aircraft type
(freighter/belly) was pointed out in Section 2.4. Aircraft data is not standardly captured in the
database of Philips’ shipments, and thus had to be requested. Some data could be obtained through
Philips’ biggest 3PL Expeditors. The aircraft type data was obtained for 3.5% of the shipments in
scope, which is only a very small portion. This is a random sample of shipments that is captured
in one specific data system that stores aircraft specific information. It appeared that 14.9% of the
shipped chargeable weight is transported using a pure freight aircraft. The other 85.1% of the shipped
chargeable weight is transported as belly freight. Since the aircraft type information is limited, it
might be more reliable to work with industry-averages. According to NTM Air (2015), on average
51% of the freight logistics is transported using a full-freighter and 49% using a belly-freighter. These
numbers are based on industry-wide average freight traffic data.

In order to work with the different aircraft options, two scenarios are defined and calculated. The
first scenario is based on Philips’ limited data for aircraft types and the second scenario is based on
industry-average aircraft types. For both scenarios, an average load factor of 65% is assumed (NTM,
2019).

Scenario 1: Philips aircraft data

In this scenario, it is assumed that the obtained aircraft data is representative for all flights of Philips.
It is chosen to extrapolate the aircraft outcomes over all shipments of all 3PLs. This means that the
aircraft type percentages are multiplied with the EFs of Table 2.3 to form a ‘combined’ representative
aircraft. Table 3.4 provides an overview of these weighted emission factors that are applied to Philips’
airfreight data. Note that specific aircraft data on all shipments of all 3PLs would greatly improve
the accuracy of the emission factor calculation.

Table 3.4: Emission factors for Philips (Scenario 1)

Aircraft range Distance range (km) Aircraft type WTW CO2e (kg/tkm)

Regional < 785 Combined 2.10
Continental 785 - 3,600 Combined 1.073
Intercontinental > 3,600 Combined 1.023

Until now, Philips assumed that all airfreight shipments are delivered using a full-freighter aircraft with
EFs of UK Department for Environment Food and Rural Affairs (2019). It can now be concluded that
this assumption results in the application of too low emission factors, especially for intercontinental
shipments. Applying the variable emission factors of Table 3.4, together with the distance and weight
data into Equation 2.3, the CO2e emissions per shipment are calculated. The total WTW CO2e
emissions for the airfreight shipments within scope sum up to 1,445 million kg. An overview of CO2e
emissions on a shipment-level is provided in Table 3.5.

Table 3.5: Result of emission calculation (1) (kg CO2e)

Minimum 1rst Quartile Median Mean 3rd Quartile Maximum

0.00 302.7 1,335.2 5,167.3 4,138.5 1,048,548.9

Scenario 2: Industry-average aircraft data

In this scenario, it is assumed that the available aircraft data of Philips is too limited, since it only
reflects 3.5% of the total available data in scope. This percentage is statistically too low to extrapolate
over the whole population (Dodge, 2008a). Therefore, the industry-wide averages for aircraft types
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are applied to the emission factors of Table 2.3. Table 3.6 provides an overview of the emission factors
that would be applied under this scenario.

Table 3.6: Emission factors for Philips (Scenario 2)

Aircraft range Distance range (km) Aircraft type WTW CO2e (kg/tkm)

Regional < 785 Combined 2.10
Continental 785 - 3,600 Combined 1.00
Intercontinental > 3,600 Combined 0.84

Comparing Table 3.4 and Table 3.6, the most noticeable difference lies in the intercontinental distance
range. This difference can result in high differences of calculated emissions, when the amount of
intercontinental shipments is high. Applying the emission factors of Table 3.6, together with the
distance and weight data into Equation 2.3, the final emissions per shipment are calculated. The
total WTW CO2e emissions for the airfreight shipments within scope sum up to 1,189 million kg. An
overview of emissions on a shipment-level is provided in Table 3.7.

Table 3.7: Result of emission calculation (2) (kg CO2e)

Minimum 1rst Quartile Median Mean 3rd Quartile Maximum

6.9 250.9 1108.6 4,254.1 3416.4 860,978.6

3.4.2 Emissions with transport mode road

Next to the emissions that are released with the airfreight shipment itself, there are also CO2e emissions
for transportation towards and from the airport. In this calculation, it is assumed that separate
shipments are consolidated within trucks, such that trucks meet the average 50% load factor. Besides,
when the load of a shipment exceeds the maximum weight (15 tonne) of a typical rigid truck (NTM
Road, 2015), it is assumed that a shipment can be divided over several trucks and that this does
not affect the average load factor. Applying the emission factor calculation of Equation 2.3 and the
emission factors of Table 2.4 to the road legs of Philips’ shipments, results in a total of 3.35 million
kg CO2e over all shipments in scope. Table 3.8 provides an overview of the road emission calculation
on a shipment-level. It can be concluded that on average, the road emissions of a shipment are 0.28%
of the air emissions of a shipment.

Table 3.8: Result of emission calculation road (kg CO2e / tonne-km)

Minimum 1rst Quartile Median Mean 3rd Quartile Maximum

0.01 0.69 3.06 11.98 9.60 2,518.2

3.5 Conclusion and discussion

This last section presents the conclusions of the emission calculation method that has been applied
to Philips’ airfreight shipments within scope. The total CO2e emissions of Philips’ airfreight are
defined as the sum of the airfreight emissions, plus the road emissions for the first and last leg of the
shipment. Due to the limited amount of Philips’ airplane type data, it is chosen to calculate the total
emissions based on two scenarios, as described in Section 3.4. Scenario 2 is expected to be the most
representative one, based on industry-wide averages for the division between full freighter airplanes
and belly freighter airplanes. In this scenario, the total CO2e emissions for all Philips’ shipments
within scope add up to 1,192 million kg CO2e, which is on average 4,266 kg CO2e per shipment.

The final output of CO2e emissions of this calculation method for Scenario 2 are 18.2% higher than
the emissions that Philips reported over the same scope. This significant difference can mainly be
attributed to the fact that Philips uses EFs of DEFRA with different underlying assumptions. The
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methodology of this Master Thesis based on NTM EFs is considered to be an improvement as opposed
to Philips’ method with DEFRA EFs. This is the case, because the EFs of DEFRA are not clearly
defined for use outside of the UK (Downie & Stubbs, 2012). DEFRA defines three different emission
factors: (1) domestic, to/from UK, (2) short-haul up to 3,700 km and (3) long-haul flights over 3,700
km (UK Department for Environment Food and Rural Affairs, 2019). Currently, Philips applies the
UK domestic EF to all global shipments within a distance range of 1,500 km; the short-haul for global
flights between 1,500-4,000 km; and the long-haul for flights over 4,000 km, which is considered to
be incorrect. Additionally, the EFs of DEFRA only include tank-to-wheel (TTW) emissions, while
the methodology of this Master Thesis reports well-to-wheel (WTW) emissions. WTW reporting is
recommended, since it includes the total use of energy including fuel production, distribution and
combustion (NTM, 2018b). Reporting the full WTW CO2e impact is relevant for Philips in their
ambition to become fully carbon neutral in its operations.

Using the methodology as described in Chapter 2 and Chapter 3 makes emission calculation more
transparent by following a clear and coherent set of assumptions. The added value of this Master
Thesis method over Philips’ former method, can e.g. be seen in the improved distance calculation
for the Great Circle Distance (GCD), detour distances and road distances, being more accurate.
Besides, many data preparation steps lead to better data quality e.g. by removing outliers and filling
in data gaps. These improvement steps are already applied to Philips’ official carbon calculation
methodology and reporting, which is also discussed in Chapter 7. However, several data gaps are
faced when implementing the CO2e calculation methodology. The biggest issues come up with the
lack of specific shipment data, such as the exact route of a shipment and its final address (Section
3.2), the volume of a shipment (Section 3.3), and the vehicle type and its load factor (Section 3.4).
These data issues result in the fact that the methodology of Chapter 2 cannot be implemented right
away. The assumption with the highest impact is the aircraft type, being either a full freighter or a
belly freight aircraft. A high level overview of which data would ideally be used and which data was
actually available is presented in Section 6.2.3. Here is also discussed how data gaps are filled in and
recommendations for Philips are stated.

Philips states that implementing the complete CO2e calculation method depends on the target setting
and the industry norms for reporting. It is expected that additional costs arise for Philips related
to the implementation of the full carbon calculation methodology. When Philips decides to change
the emission factors for reporting, the overall emissions increase. Since Philips has an internal carbon
price and wants to become carbon neutral in its operations, this would mean that there are more costs
incurred with reporting higher emissions. Here, the most important aspect is that Philips is aware
of the fact that its current assumptions of TTW reporting and EFs might not be representative. It
is recommended that Philips substantiates the decisions for carbon calculations and reconsiders the
current assumptions. This has been discussed in formal meetings with the manager of Sustainability
Reporting team, and Philips will consider taking the next implementation steps in 2020.
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Chapter 4

Transport Mode Selection Problem
optimization model

Modelling and optimizing logistics choices is highly complex since there are many criteria to take
into account. It is the objective to combine carbon measurement with carbon management, to select
lanes that are most suitable for implementing improvements, decreasing the total amount of carbon
emissions. This multi-criteria problem takes into account the costs, carbon emissions and service
levels of logistics shipments. This chapter describes the general optimization model that can be used
for decision-making in logistics processes. Specifically, the model solves the Transport Mode Selection
Problem (TMSP), where a decision is made on the transport mode to select for each specific shipment
lane. The second research question is be answered:

2. How to develop a general decision-making model that provides a trade-off between emissions, costs
and service level indicators?

First, Section 4.1 describes related literature. Then, Section 4.2 discusses the goal and assumptions
of the optimization model. In Section 4.3, the model parameters are presented and the mathematical
problem is formulated. Section 4.4 analyzes the mathematical model with Lagrange relaxation. Then,
Section 4.5 states the conclusions and provides an overview of the trade-offs within the model. Finally,
Section 4.6 states directions for future research.

4.1 Related literature

Both the operations management and transport literature, and specifically literature that incorporates
carbon emissions, are related to this research. A short introduction to these topics is presented in this
section, in order to position the model of this Master Thesis project into the existing literature.

Within the operations management field, literature on Green Supply Chain Management (GSCM)
is connected to this work. GSCM is defined by Srivastava (2007) (p. 54-55) as: ‘Integrating envir-
onmental thinking into supply-chain management, including product design, material sourcing and
selection, manufacturing processes, delivery of the final product to the consumers as well as end-of-life
management of the product after its useful life’. The field of GSCM including carbon emissions is
rapidly extending to include green inventory models that link inventory, ordering behavior and emis-
sions of e.g. packaging, waste and locations (Bonney & Jaber, 2010). Further, the study of Benjaafar,
Li and Daskin (2013) illustrates how carbon emission concerns could be integrated into operational
decision-making with regard to procurement, production, and inventory management. Operations re-
search has and will bring important contributions to the environment, but it is quite often implicit and
without a clear end-point (Dekker et al., 2012; Bouchery, Corbett, Fransoo & Tan, 2017). Although
these papers incorporate carbon emissions in inventory decisions, the transport modality is assumed
to be an external parameter.

Several studies have been performed on the topic of transport mode selection or shift, taking into
account the environmental effect of transportation. One category of studies considers passenger trans-
port. The article of Bigazzi (2019) evaluates the difference between average and marginal energy and
emission factors for passenger transport modes, concluding that policies for increasing or decreasing
passenger travel on certain transport modes will have smaller environmental impacts than suggested
by average emission factors. The article of Zhang, Liu, Li and Yu (2013) studies the effects of low-
carbon constraints on the route and mode choices of trip makers in a network composed of buses and
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private cars. Further, in this category there are models considering the influence of travel time, travel
cost and emissions simultaneously on route selection problems. For example, the article of Nagurney,
Dong and Mokhtarian (2002) develops a multi-criteria traffic network equilibrium model with an expli-
cit environmental criterion and solves it for a numerical example where members of a class of traveler
perceive their generalized cost as a weighting of travel time, cost and emissions generated. Besides,
there are models that discuss environmental constraints to control transport in order to not exceed
the corresponding environmental capacity or emission permit (A. Chen, Zhou & Ryu, 2011).

Next to the category of passenger transport, the category of freight transport is especially relevant for
this model. Some studies incorporate different carbon emission regulations, such as carbon tax and
emission caps, in their decision model for transport modes. The article of Wang, Liu, Choi and Yue
(2015) shows that imposing a carbon-emission tax on the product with a higher production cost, a
bigger product volume, or a bigger product density can increase the probability of improving social
welfare through emission reductions. The article of X. Chen and Wang (2016) studies a retailer’s
ordering and transportation mode selection problem using stochastic customer demand and investig-
ates the optimal ordering and transportation mode selection decisions under different carbon emission
reduction policies. The analytical results reveal that there are some important transportation mode
shifting thresholds under different carbon emissions reduction policies.

The TMSP optimization model that is presented in this Master Thesis is mainly based on Hoen et al.
(2014a) and Hoen et al. (2014b). The model considers and optimizes for transport modality decisions
and inventory simultaneously, where the transport cost and emissions are modelled as a function of
product characteristics. Whereas Hoen et al. (2014a, 2014b) presents two separate models, one single-
product setting with stochastic demand and one multi-product setting with deterministic demand, this
Master Thesis model combines the two into a multi-product stochastic demand setting. Combining
these two models ensures that the realistic applicability for a company is improved, since companies
most likely have multiple products and face stochastic demand. Another difference between the two
models of Hoen et al. (2014a, 2014b) and this Master Thesis model lies in the scope of application.
Whereas the studies of Hoen et al. (2014a, 2014b) focus on a European scope, this study focuses on
a global scope. This has implications for the transport network to which the model is applied (see
Chapter 5).

4.2 TMSP model goal and assumptions

4.2.1 Model goal

The goal of this model is to gain insights in the relationship between costs, carbon emissions and
service level of logistics. It can be a reoccurring trade-off for companies to pick the transport mode
that balances these three factors. Some companies might just pick the easy and fast option of air
transport, while other options might as well meet their service requirements at lower cost and/or
emission levels. The model is designed to select specific routes for transport mode shift that have
the highest positive impact in terms of cost and emissions. The model has a tactical decision level,
which means that the results correspond to longer term choices in transportation. The model can
be reconsidered e.g. every year; or when it is known that changes occurred in the transportation of
certain lanes; or when the emission reduction target changed. The model solves the Transport Mode
Selection Problem (TMSP): which transport mode to use for shipments to each of the locations in
order to meet a predetermined emission target for all products together, while minimizing the overall
costs. The costs that are taken into account in this model include: transportation costs, holding costs
for items in transportation and in stock, penalty costs for not fulfilling customer demand and emission
penalty costs.

The study considers a company that ships products to customers worldwide using only airfreight.
The company wants to reduce the emissions related to transport of the products by shifting to less
polluting transport modes. In this situation, multiple products are taken into account to satisfy one
overall emission constraint. With this, the company makes use of the portfolio effect. The purpose of
the portfolio effect is to compensate costly emission reductions on one lane with less costly reduction
on another lane to achieve emission reductions at an overall lower cost (Hoen et al., 2014b). This
decision model is useful when it is given that the overall emissions of a product portfolio should
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decrease to reach a specific target, but it is unknown which products or lane(s) to select for modal
change. Thus, this model represents a multi-item multi-modal logistics trade-off.

4.2.2 Model assumptions

This subsection describes the assumptions that are made in relation to the optimization model. As a
first step, the assumptions regarding transportation are stated. First, in this model it is assumed that
the company can determine which transport mode to use for all shipments to a specific customer. This
assumption corresponds with a situation in which the producer agrees with the customer a service
level regarding the delivery of products (Hoen, 2012). Secondly, it is assumed that the model is
generically applicable to several transport modes, e.g. air, road, rail and ocean. It is assumed that
within one shipment, only one of the options air, rail or ocean can be chosen. All transport modes
use a multi-modal combination with the transport mode road, except for the case when only the
mode road is being used. If it is undesirable or infeasible that a particular transport mode is used,
e.g. because of network restrictions, then the transport cost is set to infinite. Thirdly, it is assumed
that the transport activity is outsourced and executed by a 3PL. If transport would be executed by
company-owned vehicles, a modal shift may in fact be a capital investment decision. The assumption
that transport is outsourced has implications for the cost function and emissions structure. Namely,
only a variable cost component per shipped unit or shipped weight is considered. Fourth, it is assumed
that transport consolidation can be used on every shipment lane. In practice, this means that a large
shipment can fill up an entire vehicle, or a small shipment can be consolidated with other small
shipments in a vehicle. This results in the fact that every vehicle is filled up to the average load
percentage.

As a next step, some assumptions about the scope are stated. First, only shipments that have a
warehouse as final destination are within the scope of this model. This scope is set, in order to be
able to measure the service level of a shipment and to make general comparisons. Secondly, it is
assumed that no lateral transshipments take place between warehouses. Demand can only be fulfilled
by sending a new order from the production site to the specific warehouse. Thirdly, this model only
considers shipment decisions and not production decisions. This is a valid assumption when the buffer
stock at the production site is enough to always fulfill a shipment. Finally, it is assumed that demand
is fulfilled using a first-come-first-serve policy. All demand that cannot be fulfilled directly from stock
is backordered and has to be fulfilled before any new demand can be fulfilled.

4.3 TMSP model description

The problem to solve is which transport mode to use for shipments to each of the customers to
meet a predetermined emission target for all customers together while minimizing the total costs.
This problem is solved as a variant of the famous knapsack problem, where each shipment should be
assigned to a transport mode (Fisher, 1981).

4.3.1 Model parameters

This subsection describes the parameters that are being used in the model. Let I={1,2,...,n} (iεI)
denote the set of available transport modes. Let J={1,2,...,m} (jεJ) denote the set of shipments. Each
shipment consists of a product type, an origin location, which is a warehouse or a production site,
and a destination location, a warehouse. In the remainder of this section the term ‘shipment’ is used
to denote one transportation of products to this specific warehouse. Table 4.1 provides an overview
of the parameters that are used in the TMSP optimization model.

Transportation equations

The transportation cost (ti,j) depends on the transportation cost rate of a shipment (fi,j), the distance
of a shipment (δi,j) and the weight of a shipment (wj), as shown in Equation (4.1). Note that the
distance of a shipment depends on the transport mode that is being used.

ti,j = δi,j · f i,j · wj (4.1)
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Table 4.1: TMSP optimization model parameters

Parameter Description

wj The chargeable weight of a shipment (tonne)
δi,j The distance (km) of a shipment j with a specific mode i
kj The value density of a shipment (e/tonne)
li,j Lead time for shipment j using mode i
fi,j The transportation cost rate of a shipment (e/tonne-km)

EFi,j Emission factor (kg CO2e/tonne-km) for transport mode i and shipment j
hc Holding cost rate (e)
pc Penalty cost rate (e)
ε Emission reduction target (%)

hi,j Holding costs (e) of a shipment j using mode i
ti,j Transport costs (e) of a shipment j using mode i
ei,j Unit emissions (kg CO2e) of shipment j using mode i
si,j Holding costs (e) over inventory in destination j using mode i
pi,j Penalty costs (e) for insufficient inventory in destination j using mode i
dj Stochastic demand at shipment j ’s destination

Holding cost is the cost associated with physically having inventory in stock. Such a cost arises due to
the capital invested in the inventory (capital cost) and to rent/write-offs on warehouses, salaries to staff
etc. (Berling, 2008). The same principle holds for inventories that are caught up in transportation.
Holding costs (hi,j) do in this model depend on the total weight (wj) of a shipment; the transport
leadtime (li,j); the shipment value density (kj) and the holding cost rate (hc). It is assumed that
holding costs are paid over each day that has been used (partially). The holding cost calculation can
be seen in Equation (4.2).

hi,j = hc · kj · li,j · wj (4.2)

The emissions associated with transporting one shipment j using mode i are denoted by ei,j. The total
CO2e emissions of a shipment can be the sum of multiple transport modes, e.g. multi-modal with
road when using air or ocean transport. In this situation, the emissions are calculated separately per
mode and summed afterwards. The calculation for the emissions is based on the NTM methodology
(NTM, 2018b) (see Chapter 2). The emissions are denoted by Equation (4.3).

ei,j = wj · EF i,j · δi,j (4.3)

Inventory equations

As stated above, holding cost is the cost associated with physically having inventory in stock. Holding
costs are incurred for each unit of stock in a warehouse at the end of a period, and the average is
denoted with: E

[
IL+

i

]
in tonnes. Note that the underscore i denotes that the expected inventory

at the end of a period depends on the transport mode being used. A slower transport mode would
typically require higher stocks to cover the demand during the leadtime. Then, the inventory holding
cost of the total inventory in a specific warehouse depends on the holding cost rate (hc), the value
density of a product (kj) and the expected inventory (E

[
IL+

i

]
) as. This relation is denoted in Equation

(4.4).

si,j = hc · kj · E
[
IL+

i

]
(4.4)

Penalty cost, also known as the shortage cost or the stock-out cost, is the cost of not having sufficient
stock on hand to satisfy demand when it occurs (Nahmias, 2014). Such a cost arises due to unfulfilled
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demand and potentially losing customers to competitors. The average number of units of unfulfilled
demand at the end of a period is denoted by: E

[
IL−i

]
in tonnes. Since all unfulfilled demand is

backordered, this is equal to the expected number of backorders. Then, the penalty cost depends on
the penalty cost rate (pc), the value density of a product (kj) and the expected backorders (E

[
IL−i

]
).

This relationship is denoted in Equation (4.5).

pi,j = pc · kj · E
[
IL−i

]
(4.5)

The values for E
[
IL+

i

]
and E

[
IL−i

]
denote the expected inventory and expected backorders at the

end of a period respectively. When deriving the expected values for inventory and backorders at the
end of a period, one could make use of the equations of Hoen (2012), Chapter 2. The only differences
between Hoen (2012) and this model are that: (1) this model expresses demand per shipment per
period, whereas the single-product model of Hoen (2012) defined demand as a function of the leadtime
and (2) in this model the holding costs and penalty costs do not depend on an emission cost. Let
dj(µ, σ) denote the demand for shipment j during one period, which is independent of the transport
mode used. Demands in different periods are assumed to be independent and identically distributed
(i.i.d.). Let fi(x) and Fi(x) denote the probability density function and cumulative distribution
function of demand during a period. Additionally, Si is defined as the order-up-to level for inventory
in the destination warehouse using transport mode i. This order-up-to level can be determined by
application of the single-period newsvendor problem or can be a given input parameter based on
warehouse capacity and demand characteristics in the supply chain. Then, the expected inventory
and expected backorders at the end of a period can be derived using equations (4.6), (4.7) and (4.8).

Gi(y) =

∫ ∞
y

(x− y)fi(x)dx (4.6)

E
[
IL−i

]
= Gi(Si) (4.7)

E
[
IL+

i

]
= Si − µ+Gi(Si) (4.8)

4.3.2 Mathematical problem formulation

This section states the mathematical model formulation. The purpose of the model is to minimize the
total costs while meeting a specific emission reduction target (ε). It is assumed that the sales price
and quantity are fixed for all products, selecting a suitable transport mode based on historical data.
The average number of products shipped per period is equal to the average demand µj . The total
costs per time unit for transport mode i and shipment j are denoted by Equation (4.9).

Ci,j = pi,j + si,j + µj(hi,j + ti,j) (4.9)

It is assumed that the starting inventory levels are known and that the historical shipments are
transported in sufficient amounts such that demand is being met against a desirable service level.
Further, the total emissions per time unit are denoted by Equation (4.10).

Ei,j = µj · ei,j (4.10)

Let xi,j (xi,jε {0, 1}) denote whether mode i is used for shipment j. Note that only one transport mode
i can be chosen for each shipment j. This is the transport mode that is always used to transport this
specific product on this specific lane. The mathematical formulation of the Problem (P) can be stated
as:
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Minimize:

C(x) =
∑
jεJ

∑
iεI

xi,j · Cij

Subject to:

E(x) =
∑
j∈J

∑
i∈I

xi,j · Eij ≤ ε

∑
iεI

xi,j = 1 ∀jεJ

xij =

{
1 if i assigned to j
0 otherwise

The objective function minimizes the overall costs over all shipments j and all transport modes i.
The first constraint ensures that the emission reduction target is met, whilst the second and third
constraints ensure that one (and only one) transport mode i is assigned to each shipment j.

4.4 TMSP model solution

4.4.1 Mathematical analysis

The constrained minimization Problem (P) is solved using Lagrangian relaxation. With Lagrangian
relaxation, the multi-item problem can be decomposed in multiple single-item problems. A useful
property of Lagrangian relaxation is that all solutions that are generated are efficient, i.e. there is no
solution with higher profits given that emission target, but not all efficient solutions are generated.
This mathematical analysis is based on cost-minimization case in the work of Hoen (2012), Chapter 3.
The main difference between this work and Hoen (2012) lies in the definition of total costs Ci,j. This
work includes both transport and inventory costs in the model, whereas the model of Hoen (2012)
excluded the effect of demand, inventory costs and penalty costs. However, solving the constrained
minimization problem using Lagrangian relaxation here follows the exact same steps as in Hoen (2012)
Chapter 3.

In Lagrange relaxation, a penalty cost is introduced for violation of the constraint, in this case the
emission target (ε). This means that the first constraint of Problem (P) is relaxed. It is not a hard
constraint anymore, but the emission penalty ensures that the end-result comes as close as possible
to the target. The Lagrangian function for Problem (P) is defined as in Equation (4.11).

L(x, λ) =
∑
j∈J

(∑
i∈I

xi,jCi,j

)
− λ

∑
j∈J

(∑
i∈I

xi,jEi,j

)
− ε

 , (4.11)

where λ ≥ 0 is the Lagrange multiplier. As λ increases, it reduces the emissions by charging a
higher penalty. Since the costs and emission function are separable in j as is the implicit constraint
((x) ∈ (X)), the Lagrangian is also. Hence the Lagrangian can be written as:

L(x, λ) =
∑
j∈J

Lj (xj , λ) + λε, (4.12)

where

Lj (xj , λ) =
∑
i∈I

xi,jCi,j − λ
∑
i∈I

xi,jEi,j (4.13)
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is the decentralized Lagrangian for shipment j. See Appendix C.1 for clarification steps on Lagrange
relaxation. Note that the Lagrangians are only connected by a single multiplier λ of the emission
constraint. For a given value of λ there is a solution x∗(λ) = (x∗1(λ), . . . , x∗m(λ) ) that minimizes the
Lagrangian. If ε = E (x(λ)) , then, by the Everett result (Everett, 1963) , x(λ) is the optimal solution
to the mathematical Problem (P) and the constraint will be met with equality. See Appendix C.2
for clarification on the Everett result. By varying the value of λ, different optimal solutions to the
mathematical problem for specific values of ε are obtained. Note that this technique is not in general
certain to produce solutions for all interesting constraint levels. It follows from Theorem 1 of Everett
(1963) that these solutions are efficient solutions for the unconstrained multi-criteria Problem (Q):

min
x∈X

C(x)

min
x∈X

E(x)

The advantage of having an unconstrained Problem (Q) is that it can be solved by only applying
minimization techniques. The decentralized Lagrangian can be separated further in mode i, because
it is separable and only connected by the implicit constraint (xj) ∈ (Xj)). We denote this function by

Li,j(λ) = Ci,j + λEi,j (4.14)

The decentralized Lagrangian can then be rewritten as follows, which follows from Equation (4.13) :

Lj (xj , λ) =
∑
i∈l

xi,jLi,j(λ) (4.15)

Applying Equations (4.10), (4.11) and (4.13) to Equation (4.15), the following result is obtained:

Lj (xj , λ) =
∑
i∈l

xi,j(pi,j + si,j + µj(hi,j + ti,j + λei,j)) (4.16)

This can be rewritten in the final decentralized Lagrangian function:

Lj (xj , λ) =
∑
i∈I

xi,jzi,j(λ) (4.17)

where
zij(λ) := pi,j + si,j + µj(hi,j + ti,j + λei,j)

represents the inventory cost and logistics cost including emissions. Minimizing the decentralized
Lagrangian over xj ∈ Xj is equivalent to selecting the mode that minimizes zi,j(λ). For this model,
the Lagrangian is decreasing in λ. Note that for a given λ, only the value of zi,j(λ) determines the
differences in the values of Lj(λ) for different modes of shipment j. This is true since the mean demand
µj is stable and xi,j is the decision variable. This implies that if the values of zi,j(λ) for the two modes
are equal, then the model is mathematically indifferent between selecting a mode with lower cost and
higher emissions, and higher cost and lower emissions. Note that the overall goal of this model is
emission reduction, so in this case the most sustainable mode is selected.

4.4.2 Model output

After the transport mode allocation is performed, the total emissions, logistics cost and inventory cost
of this allocation can be calculated. The total emissions E(x) are equal to the sum of emissions (ei,j)
of all shipments, which depend on the transport mode being used per lane (xi,j). Here, (x) denotes
an allocated transport mode for each of the shipment lanes x∗(λ) = (x∗1(λ), . . . , x∗m(λ) ). Then, the
total costs of this solution x∗(λ) = (x∗1(λ), . . . , x∗m(λ) ) are the sum of the logistics costs and inventory
costs, Cij(x). This can be calculated over every time unit, e.g. per month or year. Note that this cost
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also reflects the service level, since the cost for not fulfilling demand is higher than the cost for having
inventory. A low service level is reflected in high penalty costs. For different values of λ a different
solution can be obtained when a lane shifts between transport modes. Every obtained solution is an
efficient solution, in the sense that no solution has both lower emissions and lower costs.

4.5 Conclusion

The mathematical TMSP optimization model as presented in this chapter is able to solve the second
research sub-question generically. It can be applied to any product mix, route and transport mode,
as long as all required input parameters are available (see Table 4.1). The purpose of the model is
to minimize the overall transportation and inventory costs, while taking into account an emission
constraint. This model is developed for a company to decide on a tactical level which lanes are most
suitable for a transport mode shift. When specific lanes are selected for a transport mode shift, an
in-depth investigation of the required changes in the supply chain structure is needed. These required
changes might concern production capacity, warehouse capacity, or increased handling costs of freight.
A company can rerun this model e.g. every year to select new lanes for transport mode shift. Also
when it is known that changes occurred in the transportation of certain lanes; or when the emission
reduction target changed the solution can be reconsidered. The case study of Chapter 5 applies this
TMSP model to a subset of Philips’ freight logistics.

4.6 Directions for future research

In the current model, the service level is only taken into account indirectly by charging higher costs
for missing demand. It is also an option to set a service level constraint and use this as an additional
constraint in the Lagrange optimization model. A similar method would apply as for the emission
constraint in Problem (P). Then, there would be two Lagrangian multipliers λk (λ > 0), where each
λk can be interpreted as a penalty cost for violating the k -th constraint. This can be useful when it is
observed that the current penalty cost for not fulfilling demand is not high enough to ensure satisfying
service levels.

Another useful addition to this model could be to implement the option for a transport mode mix.
Then, the model would not necessarily pick one transport mode per shipment, but could indicate
which percentage is performed by one mode or the other. For example, one shipment lane could be on
default transported with ocean, but 10% of the shipments could be performed by air. This addition
can be implemented mathematically by changing the last constraint of Problem (P), which states that
xi,j can only get the integer values 0 and 1. This constraint can be changed such that each mode
gets a ratio score which represents the percentage of shipments allocated to this transport mode. The
second constraint

∑
iεI xi,j = 1 ∀jεJ ensures that the sum of the modes is equal to 1. Then, at each

moment in time, one could consider the current inventory levels and the inventory in transit, and
decide whether the next shipment can use a slower and more sustainable transport mode, or needs
the faster and more polluting mode. This is useful when demand variability is high or demand can
only be forecasted on short notice. Implementing this additional feature would shift the level of the
model from tactical to a more operational level.

Furthermore, future research can be performed on how this model with single echelon perspective can
be extended to a supply chain perspective. Currently, it is assumed that production always meets
the amounts that should be transported. However, this assumption might not hold in reality, leading
to logistics planning issues. When production is late, it is tempting for companies to use a faster
but more polluting transport mode to still meet targets for customer service levels. Supply chain
cooperation and communication is required in order to solve this issue. As a final point of discussion,
the current model does not take into account the trade-off between increasing inventory capacity or
shipping more frequently. This is a relevant trade-off when shifting to a transport mode with higher
leadtimes and higher leadtime variability, since this requires higher stock levels. This could e.g. be
done mathematically by incurring a cost for increasing warehouse capacity.
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Chapter 5

Case study Philips: TMSP

The purpose of this chapter is applying the methodology described in Chapter 4 to Philips’ data as a
case study. This shows the potential of the model and how it can be used in practice. This chapter
functions as an implementation of the second research question:

2. How to develop a general decision making model that provides a trade-off between emissions, costs
and service level indicators?

Section 5.1 describes the scope of the application and the subset of data that is being used. Section 5.2
describes all input parameters. Then, Section 5.3 shows how the model is applied to Philips’ data by
using a simulation model. It is chosen to implement the Transport Mode Selection Problem (TMSP)
optimization model with the help of simulate data, due to data restrictions. In this section, the pseudo-
code for implementation is given, as well as a description how leadtimes, demand and inventory are
simulated. Section 5.4 presents the simulation results. Section 5.5 presents the sensitivity analyses.
Finally, Section 5.6 states the conclusions and provides a discussion.

5.1 Data subset

In order to apply the mathematical TMSP model of Chapter 4, scoping of the original problem is
required. The main reason why a selection of lanes is required for this application, is unavailable data
about which items are being shipped. Therefore, product type and value estimation needs to be done
manually with the help of a specialist at Philips. It is decided to implement the TMSP model on the
lanes that have the highest CO2e impact for Philips. The Commodity Manager of Philips Forwarding
and Distribution department states that the lane with highest CO2e emissions recently shifted from
airfreight to ocean freight. Thus, it is expected that this lanes’ emissions strongly decrease in the
coming year. For the following 20 lanes, there is no transport mode shift or changes in the policy
for the coming year as opposed to the years 2017-2019. Therefore, these 20 lanes have been selected
as scope. These lanes together account for 25.6% of all logistics emissions within Philips. The time
period over which these shipments occurred is January 2017 until October 2019.

Table 5.1 provides an overview of the 20 lanes in scope and their shipment characteristics such as
segment, average weight and estimated value. The origin, destination and segment data have been
coded to ensure confidentiality. Here, the location codes consists of a world region and a number,
where every replication of the same location gets the same code. The world regions are shown on a map
in Appendix D.1. The average shipment weight could directly be calculated from the available data,
and therefore represents the true shipped amount. The average value per shipment is estimated, by
taking for each segment an estimated value density (e/kg) and multiplying with the average weight.
To obtain this value density, both the weight and the value of one product had to be estimated.
Multiple sources and specialists have been consulted per segment, in order to estimate the average
product value and average product weight. Here, the origin location is taken into account as well as
the product mix produced at this specific production site. Then, a weighted average is taken over the
product weight and value in order to estimate an ‘average’ product that is transported (see Appendix
D.2). Note that it is difficult to state the accuracy of the estimations, since the exact contents of
shipments are unknown. However, this is the best product value estimation that could be obtained in
order to show the implementation and relevance of the model.
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Table 5.1: Overview of shipment characteristics of the 20 lanes in scope

Lane Origin Destination Segment # shipments Avg. weight (kg) Avg. value (e)

1 NAM1 APAC2 A 1,214 3,175 12,065
2 NAM2 EUR1 A 1,390 8,185 31,103
3 EUR1 APAC3 B 3,267 1,142 151,886
4 EUR1 APAC2 B 1,837 1,817 241,661
5 NAM3 EUR1 C 8,387 640 153,600
6 APAC1 EUR2 A 1,017 1,777 6,753
7 EUR1 APAC4 B 2,702 1,276 169,708
8 NAM1 EUR2 A 1,710 1,763 6,699
9 NAM3 EUR3 D 5,520 733 76,232
10 NAM2 APAC3 A 299 7,859 29,864
11 APAC3 EUR1 C 2,868 761 182,640
12 APAC4 NAM4 E 454 2,665 44,506
13 EUR1 APAC5 B 978 2,122 282,226
14 NAM1 APAC3 A 701 2,002 7,608
15 EUR1 NAM5 B 1,276 1,617 215,061
16 EUR1 APAC1 B 1,876 992 131,936
17 NAM5 APAC6 F 893 986 8,184
18 NAM5 EUR1 F 1,157 1,612 8,544
19 EUR1 APAC6 B 1,434 800 106,400
20 APAC1 NAM3 A 699 1,600 6,080

All calculations related to the implementation of the TMSP optimization model are performed using
an estimated shipment value. This is obtained by multiplying the actual shipment weight with the
estimated product value density. The scope of this case study is set to the use of two transport options
only: a combination of air-road or a combination of ocean-road. This decision has been made, because
of the fact that no route within scope is suitable for road transport due to the long distances, and
because Philips never uses rail transport. Therefore, no data could be obtained about the potential
train network to use, its distances, leadtimes or costs.

5.2 Input parameters model

This section describes the input parameters as being used in the numerical application and analysis
of the multi-item multi-modal optimization model of Chapter 4. Each of the parameters of Table 4.1
is handled in this section. Note that the weight of a shipment (wj) is provided by Philips. The cost
of a product is estimated using the value density (kj) as described in Section 5.1.

5.2.1 Holding cost rate (hc)

Holding cost is the cost associated with physically having inventory in stock. The holding costs are
most commonly obtained by taking a percentage of the product value, the holding cost rate (hc),
multiplied with the amount of inventory on hand. This holding cost rate is often in the range of 12
to 34% depending on the industry (Berling, 2008). Hoen (2012) assumes a holding cost rate of 25%
per year. Since this model has similar application and the cost rate falls in the middle of the range
as described by Berling (2008), the 25% rate is also used in this case study. This would result in a
holding cost rate of 0.0048 per week, or 0.00068 per day. Here, it is assumed that transport can occur
365 days a year. Holding costs are calculated over items that are in transportation and over items
that are in the warehouse inventory. To find the total holding costs, this cost rate is then multiplied
with the product value and weight, following Equations 4.2 and 4.4.
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5.2.2 Penalty cost rate (pc)

Penalty cost is the cost associated with having not enough inventory to fulfill demand. When demand
cannot be fulfilled from stock immediately, a customer can be lost and go to a competitor. The other
option is that a backorder is placed, and that the customer waits until the next batch of products
arrive to fulfill demand later. This last option is assumed in this model, which comes with a cost
that represents reduced customer satisfaction. The cost of not fulfilling demand is higher than the
cost of having these items on stock. Hoen et al. (2014a) assumes in their model that the penalty cost
rate (pc) is 10 times higher than the holding cost rate (hc). This assumption is also applied to the
model in this Master Thesis, which results in a penalty cost rate of 0.0068 per day. The impact of
this assumption is tested with a sensitivity analysis in Section 5.5.

5.2.3 Distance per transport mode (δij)

In this subsection, the distances per transport mode are discussed. The methodology for distances of
air transport has been discussed elaborately in Chapters 2 and 3. This calculated distance is therefore
also used in this model. For all shipments within scope the methodology is able to calculate an air
distance.

Next, the distances for ocean transport have to be calculated. Since there are only 20 lanes in scope,
the distances could be calculated manually using an online tool that calculates distances between sea
ports (Sea-distances.org, 2020). It is assumed that a shipment always uses the port that is closest
to the origin and destination. Afterwards, the ocean distance in nautical miles has been converted
to ocean distance in kilometers by multiplying with 1.852 (Wikipedia, 2019b). In order to calculate
the first and last leg of every shipment, a similar methodology is applied as in Section 2.2.3. The
NTMCalc 4.0 tool has been used in order to calculate the road distance between the port and the
origin/destination city (NTM, 2019). Here, it was again assumed that the within city distance is on
average 25 kilometers. This means that when the port is in the same city as the origin/destination,
then a road distance of 25 km is applied. Further, it is again assumed that there is always a 20%
detour on road distances as opposed to the optimal route. Then, these road distances are added to the
specific shipment when the transport mode ocean is being used. Appendix D.3 provides an overview
of the distances per transport mode and their corresponding road distances.

5.2.4 Leadtime per transport mode (lij)

The leadtime is defined as the total transportation time of a product between leaving the origin
address and arriving at the destination address. This time depends on the transport mode being
used, but also on the origin and destination locations. It is assumed that there are three phases in
each transport: pre-carriage, transport and post-carriage. The carriage stages exist in order to move
the product to the right (air)port and to load the product(s) in and out of the vehicle. Data of the
contracted transportation leadtimes for both air and ocean could be obtained of 3PLs. Note that these
leadtimes are not the actual or realized leadtimes per transport mode but only the planned duration.

Applying the contracted country-to-country ocean leadtimes to the shipment lanes, results in an
available leadtime for 93.4% of the shipments with an average leadtime of 28.7 days. This means
that for 6.6% the country-to-country connection did not exist in the data file. In order to fill in the
best estimate, multiple regression analysis is performed. In simple linear regression, the model shows
how the mean of variable Y depends linearly on the value of a predictor variable X; this relationship
is expressed as the conditional expectation E(Y |X) = b0 + b1 ∗ X1 where b0 is a constant and b1
is the regression coefficient (Krzywinski & Altman, 2015). To determine the prediction accuracy the
coefficient of determination (R2) can be used. The R2 is calculated as the squared correlation between
the actual and the predicted values of the dependent variable. Moreover, the R2 can have a value
between 0 and 1, where R2 = 1 means a perfect prediction, and R2 = 0 means no prediction. When
more than one variable predicts the outcome, the simple linear regression becomes a multiple linear
regression. To expand the simple regression equation, the independent variable with the greatest
predictive power should be added. The equation becomes as follows: Y = b0 + b1 ·X1 + b2 ·X2 + ε
where ε is the prediction error. Every time a variable is added, the R2 increases. Therefore the
adjusted R2 is introduced, which prevents over-fitting, and does not increase every time you add
another variable (Hair, Black, Babin & Anderson, 2014).
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A multiple linear regression model for ocean leadtime includes the variables distance, origin region and
destination region of a shipment. The different regions that are used by Philips in this data set are
discussed in Appendix D.4. Each of the relations in the model is significant and the prediction scores
R2 = 0.62. This means that 62% of the variation in ocean leadtimes is explained by this multiple
linear regression model. An overview of the multiple regression model can be found in Appendix D.5.

For air transport leadtimes, a similar methodology has been applied. First, the country-to-country
air leadtimes have been applied to the shipments file. It appears that for 69.5% an air leadtime was
found and for the remaining 30.5% the country-to-country connection did not exist in the data file.
Unfortunately, the linear regression model methodology did not work well for the air leadtimes. The
air leadtime could not reliably be predicted by any (combination) of the other variables in the data.
Therefore, the missing air leadtimes are filled in based on a region-to-region data mapping. Again,
Appendix D.4 provides an overview of the leadtime per region that is used and Appendix D.5 shows
the air leadtime overview. The mean contracted leadtime for air transport is equal to 6.4 days.

Now the leadtimes from (air)port-to-(air)port have been filled in, the leadtimes by road for the first
and last leg need to be determined. Since there is no data available about the actual road transport,
it is assumed that the speed of a truck equals 400 km/day (Hoen et al., 2014a). Then, with the help of
the road distances (see Appendix D.3), this can be easily calculated towards the expected leadtimes.
An overview of the road leadtimes per transport mode is given in Appendix D.5.

5.2.5 Transportation costs (fij)

In this subsection, the costs per transport mode are discussed. Since the subset of data that is used
for this model consists of air shipments, the total transport costs for the transport mode air are a
known input for each shipment.

The costs for transport mode ocean have to be estimated. Data is obtained from Philips’ 3PLs with the
total costs per container on a country-to-county lane base. It is assumed that freight is transported
in the standard container size of 20 feet. The maximum payload of such a container is 25,000 kg
(DSV Global transport and logistics, 2020). This is used to allocate a portion of the costs of each
container to a shipment. As stated in Chapter 5, it is assumed that a shipment can be spread over
multiple containers and/or transport consolidation is assumed. Due to this assumption, the average
load factor of a container is equal to 70% (NTM Sea, 2015). The total transport cost of a container
is then estimated using Equation 5.1, filling in the country-to-country container costs (e).

Cost ocean shipment (e) = cost container (e) · weight shipment (kg)

load factor % · container capacity (kg)
(5.1)

After this calculation, there is an ocean transport cost calculated for 93.4% of the shipments. For
the remaining 6.6% of the shipments, the country-to-country transportation cost did not exist in the
input file. Therefore, again multiple linear regression is applied in order to build a prediction model.
According to Equation 4.1, the transportation cost of a shipment is linearly increasing in weight and
distance. The multiple linear regression model for transport cost, based on ocean distance and the
weight of a shipment, results in a reliable prediction model with R2 = 0.97. The variables in the
model were log-transformed in order to prevent negative cost predictions. Appendix D.6 provides an
overview of the model and the results for ocean transport costs.

5.2.6 Remaining transport parameters

Finally, this subsection defines the general transport parameters that are used. This includes the
transport mode, the region where the vehicle is used, the vehicle capacity, the average load factor,
and the emission factor (EF) per transport mode (see Table 5.2). For the transport mode air, the
assumptions of Scenario 2 hold (see Section 3.4). This means that an industry-average aircraft is
used, where 51% of the flights use a full-freighter and 49% uses a belly-freighter aircraft. For the
transport mode road, the EF per specific region is used if applicable, otherwise the world average for
road transport is used.
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Table 5.2: Transport parameters per mode (NTM, 2018b)

Mode Region Average load Vehicle capacity EF (kg CO2e/tkm)

Air Regional (< 785 km) 65% 5,327 kg 2.10
Air Continental (785-3,600 km) 65% 41,146 kg 1.00
Air Intercontinental (> 3,600 km) 65% 91,937 kg 0.84
Road Europe 50% Rigid truck 20-26 tonne 0.130
Road United States 50% Rigid truck 20-26 tonne 0.136
Road Asia 50% Rigid truck 20-26 tonne 0.160
Road South America 50% Rigid truck 20-26 tonne 0.130
Road World average 50% Rigid truck 20-26 tonne 0.139
Ocean Intercontinental 70% 6,000 - 12,000 TEU 0.0159

5.3 TMSP implementation

This section states all steps that are performed in order to implement the generic TMSP model to
Philips’ data as a case study. Unfortunately, no data could be obtained about the exact shipment
contents, their leadtimes, demand variation or stock levels. Therefore, data had to be simulated in
order to implement the TMSP model and show its potential. For this purpose, some assumptions
about the leadtime variability (Subsection 5.3.1), demand variability (Subsection 5.3.2) and starting
inventory levels (Subsection 5.3.3) have to be made. Note that, even though these assumptions are
made as realistic as possible, they are always simplifications as opposed to reality. A high level over-
view of which data would ideally be used and which data was actually available is presented in the
next chapter, Section 6.2.3. Here is also discussed how data gaps are filled in and recommendations
for Philips are stated. Subsection 5.3.4 states how the service level of the simulation can be calculated.
Finally, Subsection 5.3.5 states the pseudo-code of the implementation of the TMSP model to simu-
lated data. With this pseudo-code, the methodology can always be replicated for other applications
inside or outside Philips.

5.3.1 Leadtime variability

In Subsection 5.2.4, the contracted transport leadtimes per mode are discussed. However, in reality,
the actual transportation is not always as planned and delays may occur. The actual transportation
time may for example depend on the route, shipping mode, and period of the year (Freightos, 2020).
Unfortunately, there is no data available at Philips that states the realized leadtimes for shipments
by air or ocean transport. Therefore, these values need to be estimated in order to simulate a system
that is as close as possible to the real world. For this purpose, several sources have been consulted
and the best estimate is filled in. A leadtime variability is only applied to the air and ocean part of
the shipments, and not to the first and last road leg. This decision has been made, since the first and
last leg only make up a small percentage of the total transportation distance and time.

Using the online freight transit time calculation tool of Freightos (2020), an interval of transportation
times (in days) for each of the transport lanes can be generated. For ocean transport is the leadtime
variability about 25 days. This is the interval between the minimum transport time and the maximum
transport time. Here, every day within the interval is equally likely to be the actual transport time.
Then, it is being checked where the contracted leadtimes of Philips fall in the interval generated by
Freightos (2020). In total 8 out of 20 lanes have a contracted leadtime that is at the minimum range
as given by the online tool. None of the lanes have a higher contracted leadtime than the maximum
range. As a next step, several interviews have been held with supply chain specialists of several
sectors. These supply chain specialists all indepenently stated that the contracted ocean leadtimes
are unreliable and that shipments arrive mostly later than contracted. Taking into account these
sources, it is decided to use a combination of Philips’ insights and Freightos (2020) data, where the
leadtime is most probably higher than Philips’ contracted leadtimes. Therefore, the ocean leadtimes
in the simulation are random samples drawn from a uniform distribution, with a minimum of the
contracted leadtime minus 5 days and a maximum of the contracted leadtime plus 20 days.
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For air transport, the transportation time variability within scope is smaller than with ocean, on
average 4 days (Freightos, 2020). Here, it could be observed that all Philips’ contracted leadtimes
were within the generated interval of Freightos (2020), of which some are on the lower side. For this
reason, it has been decided to apply a similar method to air leadtimes as was done to ocean leadtimes.
Therefore, the air leadtimes in the simulation are random samples drawn from a uniform distribution,
with a minimum of the contracted leadtime minus 1 day and a maximum of the contracted leadtime
plus 3 days. In Section 5.5, the impact of the uniform distribution assumption is tested by also running
the TMSP model under the assumption that leadtimes follow a Gamma distribution.

5.3.2 Demand simulation

For the demand simulation per product and shipment lane, historical shipment data is being used.
Here, it is assumed that the total historical shipments reflect the total historical demand. For sim-
ulation purposes it is chosen to express time in days, because in reality it is often possible to send
shipments every day with the use of a 3PL and customers can place orders every day. The historical
shipment patterns have been analyzed in cooperation with an analyst at Philips. It is concluded that
there is large variation on some lanes, but that no clear pattern or seasonality could be identified.
Thus, demand in different periods are assumed to be independent and identically distributed (i.i.d.).
A normal demand distribution is assumed. The total demand is summed and a mean and standard
deviation of demand per day is calculated, under the assumption that demand can occur 365 days
per year. Appendix D.7 provides an overview of the mean and standard deviation of demand per day
over the total time in scope. To simulate demand, every day in every warehouse gets a non-negative
demand with the normal demand distribution (µX , σX) assigned. It is assumed that demand and
leadtime of shipments are uncorrelated.

5.3.3 Starting inventory

Generally, the slower the transport mode, the higher the variability in leadtimes. This leadtime
variability can cause low service levels because of increasing stock-outs. Avoiding stock-out occasions
needs optimization of the reorder inventory levels. Increasing reorder levels reduces probability of
stock-outs whereas it increases inventory holding costs. As discussed in Section 4.3, there are holding
and/or penalty costs incurred for positive or negative inventory respectively. This simulation model
also incurs these costs on a daily base. Every day the model handles the following subsequent steps:
(1) check previous inventory; (2) add new arriving shipments to the inventory; (3) subtract demand
of that day; (4) incur holding and/or penalty costs over the inventory. The shipments are simulated
using the historical data with a sending date and an assigned leadtime. The demand is simulated as
stated above. Since the simulation only uses shipments based on historical data, the inventory policy
in each of the warehouses is out of scope. For this reason, the application of this TMSP model does
not use an order-up-to level Si as denoted in Section 4.3. Instead, in order to start the simulation, an
assumption is made on the initial inventory level of each of the destination warehouses.

It is assumed that the starting inventory is mode dependent. This means that a slower transport
mode usually needs higher stocks, because a slower transport mode usually has higher variability
in transport times than faster transport modes (Freightos, 2020) and inventory needs to make up
for this variability. An initialization period of one month is applied in the simulation, in order to
make up for the fact that the first shipments have a higher leadtime for ocean than for air transport.
The single-period newsvendor model is used in order to set the starting inventory levels, taking
into account the trade-off between holding costs and penalty costs: Fi = pc

pc+hc
(Nahmias, 2014).

For the current simulation it was assumed that penalty costs are 10 times the holding costs, thus
the result of the newsvendor equation equals 0.909. This score can then be translated to a z-score
of the Normal Distribution F−1i = 1.33. Demand during day (t) are independent and identically
distributed (i.i.d.) random variables drawn from a normal distribution with mean (µX) and standard
deviation (σX), as discussed in Subsection 5.3.2. For a generic leadtime distribution with mean µL
and standard deviation σL, the demand during the leadtime has mean M = µL · µX and standard
deviation S =

√
µLσ2

X + µ2
Xσ

2
L (Silver & Peterson, 1985). Note again that it is assumed that demand

and leadtime variability are uncorrelated. Then, using the normal distribution (z-score = x∗+M
S ), the

initial inventory levels can be calculated filling in M and S.
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This calculation is applied to all shipment lanes in order to set a starting inventory (x∗) for the
simulation model. Note that, since this inventory level is just an initial inventory to start simulation,
it is not necessarily the optimal inventory level.

5.3.4 Service level calculation

Service level is defined as the portion of customer demand that is fulfilled directly from stock (Heydari,
2014). This definition of service level is sometimes in literature also referred to as the fill rate (Chopra,
Reinhardt & Dada, 2004). In order to calculate the service level of a shipment lane, the demand that is
fulfilled directly from stock is summed and displayed as a percentage of the total demand (see Equation
(5.2)). Note again that this TMSP simulation model denotes both demand as well as inventory in
kilograms of product.

Service level (%) =
demand directly fulfilled from stock

total demand
∗ 100% (5.2)

The service level is calculated per day and then the average is taken over all days in the simulation
scope. All demand is fulfilled following a first-come-first-serve policy. This means that, when new
items arrive at a warehouse and there are backorders from last period, the backordered demands are
fulfilled first and the new demands are fulfilled afterwards. This can result in several consecutive days
of negative inventory. The total service level can either be denoted per transport mode, by taking the
average of all lanes allocated to this specific mode, or as a total service level for all lanes combined. In
this latter case, the average service level is calculated over all 20 lanes where each lane lane displays
the service level of the allocated transport mode.

5.3.5 Pseudo-code simulation model

Algorithm 1 (see next page) shows the pseudo-code of the implementation of the Transport Mode
Selection Problem (TMSP) simulation model. This implementation is based on the mathematical
model described in Chapter 4, the input parameters of Section 5.2 and the simulation parameters
of Section 5.3. The purpose of this pseudo-code is to provide a clear overview of the steps being
taken and to enable others to replicate the model. The TMSP simulation model is made using the
programming language R.

5.4 Simulation results

In this section, the simulation results are presented based on three different situations. The first
situation that is presented is the current situation of Philips’ shipments within scope. This means that
every shipment uses the transport mode air. The second output shows the improvement potential
without incurring emission penalty costs (win-win situation). The third output presents all other
efficient solutions while incurring emission penalties, in order to show the total potential for Philips’
improvements. All results in this section are obtained using partially simulated data. Every simulation
run gets a stochastic leadtime per shipment and demand per day allocated. A simulation model should
be sampled enough times to provide stable predictions of performance (Ritter, Schoelles, Quigley &
Klein, 2011). It should be noted that the outcomes of costs and service level provide an indication of
the actual values, since the demand, leadtimes and inventory levels are simulated based on assumptions
and literature, instead of on Philips’ data. The results in terms of CO2e emissions are quite stable, since
these are based on the historical shipments and the emissions calculation methodology of Chapters 2
and 3. The main outcome of this model is which transport mode to use, which is an exact result of
the implemented model on the simulated data. This outcome must be stable across several runs for
specific settings.
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Algorithm 1: Pseudo-code TMSP simulation model

Result: Allocated transport mode per shipment
Initialization of all model parameters: product type, shipment value, shipment weight, origin and
destination, emission factors, holding cost rate, penalty cost rate, transportation costs,
distances per mode, leadtime distribution (µL, σL), demand distribution (µX , σX), starting
inventory levels ;

while iterating over λ values do
if There are new shipments for transportation then

Allocate a random date when the shipment is put on transit ;
Simulate a leadtime U(µL, σL) for each shipment and each mode;
Determine the arrival day of the shipments;
Calculate ti,j, hi,j, ei,j

end
if A new time period is added to the simulation then

Simulate a demand N(µX , σX) for each shipment and each day
end
while at the beginning of a new day t do

Check the current inventory level on each lane;
if Shipment(s) j arrive using transport mode i then

Add the shipment (wj) to the previous inventory;
Subtract the demand of that day (di,j);
Determine new inventory levels;
Allocate holding (si,j) and/or penalty (pi,j) costs for remaining inventory;
Calculate the service level of day t (% fulfilled demand)

else
No shipment j arrives on this lane on day t ;
Subtract the demand of that day (di,j);
Determine new inventory levels;
Allocate holding (si,j) and/or penalty (pi,j) costs for remaining inventory;
Calculate the service level of day t (% fulfilled demand)

end

end
Calculate zi,j(λ) for each shipment lane;
Decide on the transport mode to use on each shipment lane;
Calculate the costs, emissions and service level

end

Results Philips’ initial situation

Table 5.3 provides an overview of Philips’ initial situation for the shipments within scope. The project
was scoped in such a way that the initial situation contains only airfreight shipments. Thus, Philips’
initial situation results from running the TMSP model and choosing transport mode air for every
transport lane. This is done, because there is no data available about the actual inventory -, holding
-, penalty -, or emission costs that Philips currently faces. These emissions represent the emissions
that were incurred by historical shipments, calculated by using the methodology of Chapters 2 and 3.
The costs include the total simulated logistics and inventory costs over the time period January 2017
until October 2019, as in Equation (4.17). The service level is determined using Equation (5.2).

Table 5.3: Results after simulation Philips’ current situation

Transport mode % of shipments CO2e (tonnes) Costs (million e) Service level (%)

Air + road 100 272,188 144.4 70.9
Ocean + road - - - -

Total 100 272,188 144.4 70.9
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Results simulation without emission penalty cost

Table 5.4 provides an overview of the results of the TMSP simulation model, without taking into
account the emission penalty cost (λ = 0). This situation can be seen as the optimal starting situation,
from which the emission penalty cost are increased to create more efficient solutions. The CO2e, costs
and service level are provided separately for ocean and air transport, for the lanes allocated to each
mode. It can be concluded that the model with zero emission penalty results in a proposed transport
mode shift for 11 lanes: 1, 2, 6, 8, 10, 12, 14, 15, 17, 18, and 20. Here, a win-win situation can be
obtained where transportation by ocean is both cheaper and more sustainable than Philips’ initial
situation. This results in a situation where the CO2e emissions are reduced with 53.8% while the costs
reduce with 18.0% as opposed to using air transport only. It can be concluded in this situation without
emission penalty cost, that all lanes of the segments A, E and F shift towards ocean transport, which
are the lanes with products of low value density. One lane of segment B already shifts, while all other
lanes from segments with high value density B, C and D do not shift.

Table 5.4: Results after simulation with zero emission penalty cost (λ = 0)

Transport mode % of shipments CO2e (tonnes) Costs (million e) Service level (%)

Air + road 32.4 125,076 98.8 90.7
Ocean + road 67.6 4,276 19.7 86.6

Total 100 129,352 118.5 88.4

Validation is done for determining whether a model is an accurate representation of the actual system.
In other words, validation is the confirmation of the model’s results via the information obtained
from real-life (Law, 2015). Here, validation is done by comparing the outputs of the simulation
with literature findings. First, a low product value density results in lower holding costs, both in
transportation and in warehouses, and vice versa. Therefore, shipment lanes with cheaper products
shift easier to ocean transportation in this model than more expensive products. This relationship
is also found in literature, see e.g. (Wang et al., 2015; Hoen et al., 2014a). Further, it can be
concluded from the model that heavier shipments are shipped with cleaner transport modes. The
average chargeable weight of the shipments on lanes that shifted to ocean is about 3 times higher than
the lanes that are allocated to air transport. This result can also be confirmed by literature (Hoen
et al., 2014a). Additionally, it can be concluded that for larger distances cleaner modes are selected,
because the inventory holding and penalty costs are balanced by lower transport (and emission) costs
(Hoen et al., 2014a). Here, the top 20% lanes with highest air distance result in a choice for ocean
transport. Another observation is that there are also transport mode shifts when both air and ocean
distances are low. When the ratio between the ocean distance and the air distance is low, this means
that the distance difference is not (very) disadvantageous for ocean. Then, the lower transportation
cost rate for ocean (and lower emissions) balance the inventory holding and penalty costs. This can
also be seen as the most logical explanation why one lane of segment B was selected to shift to ocean.
This observation is not directly found in literature, but follows a similar reasoning as the distance
aspect described above.

The win-win situation, improving both costs and emissions, can appear when the transportation costs
are considerably lower for ocean than for air, and also lower than the additional inventory costs. The
situation where emission reduction can be obtained against relatively low costs, has been concluded
more often from literature. For example, Arıkan, Fichtinger and Ries (2013) state that a policy change
from cost to emission minimization has low impact on cost, but can have considerably high impact
on emissions. This means that little extra costs are incurred by decreasing the transport emissions
substantially. Furthermore, Boere (2010) concludes from a case study that a maximum cost savings
of 9.5% can be obtained in combination with an emission reduction of 27.9%. Hoen et al. (2014b)
conclude from a transport mode selection case study that a 10% emission reduction could be realized
at only 0.7% cost increase. This case study was applied to a European scale without the transport
mode air, which reduces the emission reduction potential as opposed to the case study in this Master
Thesis. Since all findings until now can be substantiated by literature, it is likely that the TMSP
model is functioning well.
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Results simulations with different emission penalty cost values

The total transport mix and emissions of the solution presented in Table 5.4 are taken as the starting
situation for the next simulation step, where emission penalty costs are included. The multi-objective
approach in this model allows to define a set of efficient solutions (or a Pareto frontier) which are
defined as the set of solutions such that there is no other solution that dominates them, i.e., each
solution of the set is strictly better than the rest of the solutions in at least one objective and is not
worse than the rest of the solutions in all objectives (Bouchery et al., 2017). For all solutions that
are efficient, it holds that if a transport mode has lower emissions than the other mode, then the
expected costs are higher for the other mode, i.e. C∗i1 ≤ C∗i2 and ei1 ≥ ei2 (Hoen, 2012). Choosing
one option over the other depends on how a company makes a trade-off between the two objectives.
In this simulation model, runs are performed over different λ values, in order to identify all efficient
solutions for different emission penalty costs. By increasing the emission penalty, none of the lanes
that were ocean in overview Table 5.4 shift back towards air. This is the case since ocean is always the
transport mode with lowest emissions, thus increasing the emission penalty cost never leads towards
the ‘unsustainable mode’. Therefore, only the lanes that had air transport in the initial situation,
shift to ocean at a specific level of λ. When a lane shifts to ocean, the costs increase and the emissions
decrease. A graph of all efficient solutions is shown in Figure 5.1.

Figure 5.1: Efficient solutions Transport Mode Selection Problem (TMSP)

Several conclusions can be drawn from Figure 5.1. As stated before, it can be seen that the first 53.8%
of emissions reductions can be obtained against a cost reduction of 18.0%. This is the gap between the
triangle of “Philips’ initial situation” (Table 5.3) and the square “Zero emission penalty” (Table 5.4).
Philips’ initial situation is used as a comparison point for all efficient solutions of the model. Increasing
the emission penalty cost, it can be concluded that applying transport mode shift to the other 9 lanes
comes with additional costs. However, the first two efficient solutions that incur emission penalty
cost, still contain a total cost that is below Philips’ initial situation. The first efficient solution that
incurs emission penalty costs, increases the total costs (Ci,j) with 9.9% while leading to an additional
emission reduction of 3.0%. No clear pattern between decreasing emissions and increasing costs can
be identified from the graph. This might be due to the fact that there are only 20 lanes within
scope, of which 11 already pick ocean with zero emission penalty cost. Other explanations can be
that some lanes contain much more shipments than others, have highly variable demand, or have a
disadvantageous ratio between transportation costs for air versus ocean. Finally, it can be concluded
that a total emission reduction potential of 96.5% is identified against a cost increase of 31.8%.

Since the solutions are obtained by simulation and not by exact calculation, it is not possible to
determine the specific emission penalty cost per lane where the transport mode shift occurs. However,
it is possible to identify the order in which the transport mode shifts occur. In this model, the win-win
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situation at zero emission cost was found for lanes 1, 2, 6, 8, 10, 12, 14, 15, 17, 18, and 20. As a next
step, the emission penalty costs (λ) are increased and the lanes 19 and 16 can also be shifted against
a cost level that is below Philips’ initial situation. Then, the order in which the other lanes can be
shifted from air to ocean transport in a cost-efficient way is: 13, 4, 7, 3 and 9, 11, and 5.

Service level calculation

Next to the cost trade-off for the transport mode selection, also the service level per lane has been
simulated and calculated. Service level could be an important measure for Philips, in order to fulfill
customer demand from stock and maintain customer satisfaction. The simulation as described in this
chapter results in an average service level of 86.6% for ocean and 90.7% for air transport, as denoted
in Table 5.4. These service levels are obtained using simulation, and each simulation run results in
a different service level value. The service level confidence interval per lane is discussed in Appendix
D.8. Depending on the product category, customers and network characteristics, it can be desirable
to have a service level of 95% or even higher. As discussed in Chapter 4, service level can theoretically
be used as a constraint in the optimization Problem (P) and then handled with Lagrange relaxation
in a similar way as the emission constraint. From an operations management point of view, it could
make sense to apply different strategies for different lanes or warehouses. Some products or markets
may need higher service levels due to customer characteristics than others.

5.5 Sensitivity analyses

Verification is the confirmation of the model’s results via the information obtained from sensitivity
analyses (Law, 2015). Sensitivity analyses are performed with respect to the assumptions in the TMSP
simulation model. In each analysis, one assumption is tested and the impact on the overall result is
calculated. The first sensitivity analysis tests the assumption of the holding cost/penalty cost ratio.
This is a factor where Philips has influence on, deciding the importance of customer service level
versus inventory costs. The second sensitivity analysis tests the assumption of demand variability.
This is a factor where Philips has not much influence on, but that can have an impact on the mode
of transport to select. The third and last sensitivity analysis tests the assumed leadtime distribution,
by applying a Gamma distributed leadtime instead of the uniform distributed leadtime. Here, the
same mean leadtime is used but the probability of extreme leadtimes changes. These analyses test
several scenarios at zero emission penalty cost, to see the effect on the number of lanes allocated to
each transport mode; the service levels per mode; and the logistics and inventory costs per mode.

Sensitivity 1 - Changing the holding cost/penalty cost ratio

In Section 5.2, it was assumed that the penalty cost rate (pc) for not having inventory to fulfill
customer demand directly from stock is 10 times higher than the holding cost rate for inventory (hc).
This assumption was made based on the assumption in a similar research of Hoen et al. (2014a).
However, the trade-off between the penalty cost rate and the holding cost rate is not a given ratio.
The ratio between the two cost rates depends on the importance that Philips places on the customer
service level or on minimizing inventories. A higher penalty cost rate for not fulfilling customer
demand directly from stock, results in higher stock levels that Philips keeps. Vice versa, a higher
holding cost rate for having inventory in stock results in lower stock levels that Philips keeps. This
trade-off was represented in the starting inventory calculation as: Fi = pc

pc+hc
. This score can then

be translated to a z-score of the Normal Distribution, which is used to determine the initial inventory
level. This sensitivity analysis tests how the model behaves under different holding cost/penalty cost
ratios. Sensitivity analysis is performed to test the scenarios where the penalty cost rates (pc) are 5,
10, 50, and 100 times higher than the holding cost rate. This corresponds to z-scores of 0.96, 1.33,
2.06, and 2.33 respectively. The holding cost rate (hc) remains equal to 0.00068e/day. This sensitivity
analysis compares the number of lanes per transport mode; the service levels per mode; the logistics
costs per mode; and the inventory costs per mode across the different scenarios. Note that the second
scenario with a z-score of 1.33 equals the original TMSP simulation.

Figure 5.2 shows the transport mode choice for the 20 lanes within scope at different z-scores. This
figure is constructed at the zero emission penalty cost (λ = 0). It can be concluded that a low penalty
cost rate results in more lanes being allocated to the transport mode ocean. This can be substantiated
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by the fact that service level is less important at a lower penalty cost rate, thus a slower transport
mode is chosen more often. Increasing the penalty cost rate from factor 5 to 10 and from factor 10 to
50 has an impact on the transport mode choice of lanes. However, increasing the penalty cost factor
from 50 to 100 did not change the final result. Appendix D.9 provides an overview of which lanes are
allocated to which transport mode for each of the scenarios. Since it is not realistic that the penalty
cost rate is more than 100 times higher than the holding cost rate, these scenarios are not tested. It
can be concluded that transport mode selection result is quite robust for moderate to high z-scores.

Figure 5.2: Number of lanes per transport mode at different z-scores

Figure 5.3 shows the service level and CO2e emissions for the TMSP simulation results at different
z-scores. The average scores are combined for all 20 lanes, where each lane is allocated to their optimal
transport mode, as shown in Figure 5.2. It can be concluded that the service level is increasing in
the z-score. This makes sense, since a higher z-score corresponds to higher penalty costs for not
fulfilling customer demand directly from stock. These increased penalty costs result in higher initial
inventory levels and more lanes being allocated to the faster transport mode. Furthermore, it can be
concluded that the CO2e emissions are increasing in the z-score. This is the case, since a low service
level corresponds to more lanes allocated to ocean transport and vice versa. Since there is no change
in transport mode allocation between z-scores 2.06 and 2.33, the CO2e emissions stay the same.

Figure 5.3: Service level and CO2e emissions at different z-scores

Figure 5.4 shows the inventory costs and the logistics costs for the different z-scores. These are the
average costs for all 20 lanes combined, where each lane is allocated to its optimal transport mode, as
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shown in Figure 5.2. It can be concluded that the logistics costs remain quite stable across different
z-score scenarios. Only the scenario with the lowest penalty cost rate has increased logistics costs.
This can be explained by the fact that more lanes are allocated to ocean transport and ocean transport
incurs higher holding costs during transport than air transport. For the inventory costs, it can be
concluded that the cost differences are bigger across the four scenarios. It can be concluded that a low
penalty cost rate, which corresponds to low initial inventories, results in higher inventory costs than
the TMSP original. These additional costs can be attributed to having reduced service levels and thus
increased number of backorders. Further, it can be seen that the inventory costs decrease from z-score
0.97 to 1.33, while the inventory costs increase from 1.33 to 2.33. This increase of inventory costs
at higher penalty cost rate can be explained by the fact that unfulfilled demand is more expensive
and warehouses hold higher inventory levels. From this can be concluded that there is most likely a
minimum in the inventory cost curve.

Figure 5.4: Logistics and inventory cost (e) at different z-scores

From this first sensitivity analysis can be concluded that changing the holding cost/penalty cost ratio
has high impact on the inventory costs of the simulation and moderate impact on the service level
result of the simulation. However, the main result of which lanes are allocated to which transport
mode at zero emission penalty costs is quite robust at a moderate to high penalty cost rate.

Sensitivity 2 - Changing the demand variability

This sensitivity analysis concerns the variability of the simulated customer demand at the warehouses.
Demand during a day are i.i.d. random variables drawn from a normal distribution with a mean and
standard deviation per lane (see Appendix D.7). In this sensitivity analysis, the TMSP model is tested
for two scenarios: half of the standard deviation ( 1

2 ·σ) and double the standard deviation (2·σ) on each
lane. The initial inventory levels in the simulated destination warehouses depend on the mean and
standard deviation of demand during the leadtime (see Section 5.3.3). When the standard deviation
of demand increases (decreases), the starting inventories also slightly increase (decrease). The mean

(M) remains unchanged, whereas the deviation (S) changes into: S′ =
√
µL (factor · σx)

2
+ µ2

xσ
2
L. In

this sensitivity analysis, the ‘factor’ is either 1
2 or 2. When running this TMSP simulation model, all

other input parameters remain unchanged.

Figure 5.5 shows the transport mode choice for the 20 lanes within scope at different demand variab-
ility scores. This figure is constructed at the zero emission penalty cost (λ = 0). Note that demand
variability score of 1 equals the TMSP original result. It can be concluded that a high demand variab-
ility score results in more lanes being allocated to the transport mode air. This can be substantiated
by literature; Hoen et al. (2014a) states that it is expected that when demand variability is high,
a faster and more polluting mode is selected to cope with uncertainty. Appendix D.9 provides an
overview of which lanes are allocated to which transport mode for each of the scenarios. It can be
concluded that transport mode selection result is quite robust for changes in the demand variability.
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Figure 5.5: Number of lanes per transport mode at different demand variability scores

Figure 5.6 shows the service level and CO2e emissions for the TMSP simulation results at different
demand variability scores. These are the average scores for all 20 lanes combined, where each lane is
allocated to its optimal transport mode, as shown in Figure 5.5. It can be concluded that the service
level with factor 1

2 slightly decreases as opposed to the TMSP original. This might be due to the
fact that the initial inventories slightly decreased, while the transport mode selection did not change.
The service level at doubled demand variability decreases strongly. This makes sense, since a higher
demand variability corresponds to more uncertainty thus more frequent stock-outs. Furthermore, it
can be concluded that the CO2e emissions do not change between factors 1

2 and 1.0 since there is no
change in transport mode allocation. There is a slight increase in CO2e emissions between factors 1.0
and 2.0, due to the fact that one additional lane is allocated to air transport.

Figure 5.6: Service level and CO2e emissions at different demand variability scores

Figure 5.7 shows the inventory costs and the logistics costs for the different demand variability scores.
These are the average costs for all 20 lanes combined, where each lane is allocated to its optimal
transport mode, as shown in Figure 5.5. It can be concluded that the logistics costs remain stable
across different demand variability scenarios. For the inventory costs, it can be concluded that the cost
differences are bigger across the three scenarios. It can be concluded that a low demand variability
score, results in the lowest overall inventory costs and vice versa.
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Figure 5.7: Logistics and inventory cost (e) at different demand variability scores

From this second sensitivity analysis can be concluded that changing the demand variability has high
impact on the service level and moderate impact on the inventory costs of the simulation. However,
the main result of which lanes are allocated to which transport mode at zero emission penalty costs is
robust across several demand variability scores. Only at doubled demand variability, one additional
lane is attributed to the transport mode air.

Sensitivity 3 - Changing the leadtime distribution

This sensitivity analysis concerns the distribution of the simulated leadtimes for air and ocean ship-
ments respectively. Until now, it was assumed that leadtimes follow a uniform distribution. The ocean
leadtimes in the simulation are random samples drawn from a uniform distribution, with a minimum
of the contracted leadtime minus 5 days and a maximum of the contracted leadtime plus 20 days. The
air leadtimes follow the same distribution, with a minimum of the contracted leadtime minus 1 day
and a maximum of the contracted leadtime plus 3 days. This leadtime interval is obtained using the
online freight tool of Freightos (2020). This interval implies that the average leadtime for ocean equals
the contracted leadtime + 7.5 days and for air equals the contracted leadtime + 1 day. This sensitivity
analysis tests the TMSP simulation model using a Gamma distribution instead of the uniform distri-
bution for leadtimes. The mean simulated leadtime for both distributions is equal. Using the Gamma
distribution, there is a higher probability that a simulated leadtime is close to the mean than in the
uniform distribution, whereas in the uniform distribution every interval is equally likely. Besides, the
Gamma distribution is skewed. In a symmetric distribution, the median, arithmetic mean, and mode
are in the same central point. This is not true when the distribution is skewed. In this case, the
mode is separate from the arithmetic mean, and the median is between two of them (Dodge, 2008b).
Since there is no data available about the actual leadtimes, it cannot be stated that one distribution
is better than the other. For this example, the contracted leadtime is used as shape parameter and a
scale parameter around 1.25 is used to ensure that the mean of the Gamma distribution is equal to
the mean of the former uniform distribution. Figure 5.8 shows how the resulting leadtimes per mode
are distributed. This figure is constructed for a random example of lane 4 (EUR1-APAC2) within
scope. For every other lane within scope, a similar shaped graph can be constructed. When running
this TMSP simulation model, all other input parameters remain unchanged.

It can be concluded that changing the leadtime distribution from uniform to Gamma in the TMSP
simulation model, the exact same lanes are allocated to transport modes ocean and air as in the
TMSP original simulation (see Appendix D.9). Furthermore, it can be concluded that the logistics
costs increase with 1.0% and the inventory costs increase with 1.4%. Additionally, the average service
level over all 20 lanes decreases with 0.6%. This slight increase in cost and decrease in service level can
be due to the fact that some leadtime values are more extreme on the high end, incurring additional
holding costs during transport and penalty costs in the warehouse. The total CO2e emissions decrease
with 0.3%. It is expected that this minor change is due to simulation effects.
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Figure 5.8: Simulated leadtimes per transport mode using uniform and Gamma distribution

5.6 Conclusion and discussion

To our best knowledge, the literature on transport mode selection problems for freight transport
did not yet cover a decision model that is applied to intercontinental, multi-item multi-modal freight
shipments, to make a transport mode decision based on a trade-off between cost, emissions and service
levels. This Master Thesis project contributes to the literature by investigating the relations between
cost, emissions and service level of freight transport, taking into account both logistics and inventory
costs. The objective of this model is to present a decision-supportive model on a tactical level that
can be applied in practice. The mathematical model could not be implemented right away due to
data issues. However, with the help of a case study and data simulation, the potential of the model
is shown.

As opposed to existing literature, this model has some additional or improved features that poten-
tially enhance realistic results. The model of this Master Thesis takes into account the road distances
depending on the transport mode, whereas e.g. Hoen et al. (2014a) and Hoen et al. (2014b) base
their decision only on (air)port-to-(air)port routes. However, some locations might be good accessible
by air transport but are located far away from an ocean port. Taking into account the positioning
of destinations ensures that the routes and leadtimes are realistic. Next to realistic routing, also the
emissions of this first and last road leg are determined in the total emission figure. Furthermore, the
model is applied on a global scale, whereas existing models were applied only in a specific area. On
the other hand, this model also has its shortcomings. For example, this model is applied using two
transport modes only: the multi-modal combinations air-road and ocean-road. These two transport
modes are selected based on Philips’ supply chain network and its available data. It can be interesting
in the future to also include the transport mode rail or to use other multi-modal transport combin-
ations. Besides, the TMSP model is only applied as a case study to a limited amount of shipment
lanes and does not consider the production side of the supply chain.

For this simulation model, the historical shipments got a shipment date assigned and a variable lead-
time, depending on the route and transport mode. Every shipment consists of a product type, origin
and destination, where it is assumed that each destination is a warehouse of Philips. In each ware-
house there is a demand simulated for each day using the normal distribution, based on historical
shipments. Starting inventories are determined using the newsvendor model and the mean and stand-
ard deviation of demand during the leadtime. Then, the total costs and emissions are analyzed using
different values for the emission penalty cost and the service levels are determined. It is concluded
that a win-win opportunity exists for Philips, where they can reduce costs and CO2e emissions at
the same time. This solution applies a transport mode shift to ocean for 11 lanes within scope. The
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transport mode shift for these lanes together reduces the CO2e emissions with 53.8% while reducing
the costs with 18.0%. For the other 9 lanes within scope, the efficient solutions are obtained in order
to show the additional cost that would be incurred by shifting from air to ocean transport. The total
emission reduction potential is calculated to be 96.5% against a cost increase of 31.8%.

A sensitivity analysis is performed for three assumptions: (1) the holding cost/penalty cost ratio; (2)
the demand variability; and (3) the leadtime distribution. The goal of the sensitivity analysis is to
see how robust the TMSP model is and how the results change based on different assumptions. In
Sensitivity (1), it appeared that the holding cost/penalty cost ratio has high impact on the inventory
costs and moderate impact on the service levels. Further, it can be concluded that a low penalty
cost rate results in more shipments using ocean transport. In Sensitivity (2), increasing the demand
variability has a negative impact on the service levels and increases the inventory costs. Further, the
increased demand variability leads to slightly more lanes using air transport. In Sensitivity (3), the
leadtime distribution is changed from uniform to Gamma, where in both distributions the same mean
leadtime is used. A slight increase in costs and decrease in service levels is observed. However, there
is no change in the allocation of transport modes to shipment lanes at zero emission penalty cost.
The most important aspect of the sensitivity analyses is whether the final result, the lanes that are
recommended for Philips to perform a transport mode shift to ocean, stays the same across several
parameter settings. Which lanes are allocated to which transport mode under the different sensitivity
analyses is displayed in Appendix D.9. It can be concluded that the results for recommended transport
mode shift at zero emission penalty cost are quite stable throughout several scenarios. The assumption
with highest impact is the situation where the penalty cost rate is low, corresponding to a z-score of
0.96. Under this assumption, most lanes were allocated to transport mode ocean.
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Chapter 6

Improvement directions Philips

This Master Thesis investigates the current environmental impact of Philips’ logistics processes for
airfreight and the CO2e reduction potential using transport mode shift. This chapter answers the
third and final research sub-question:

3. Which improvements can be made for the logistics planning process to include more sustainable
transportation alternatives for the most impactful products/lanes?

Section 6.1 handles the improvement direction of transport mode shift, which can be seen as the
improvement with highest focus in this Master Thesis. Then, Section 6.2 provides an overview of the
general recommendations for Philips in order to improve the logistics planning process. This includes
insights obtained during the Master Thesis project as well as insights from literature.

6.1 Transport mode shift

The topic of transport mode shift has been handled extensively in Chapters 4 and 5. With a transport
modality shift, emissions are reduced with switching from a carbon intensive mode of transport to a
less carbon intensive mode. The ranking of the different transport modes in order of decreasing carbon
intensity is: air, road, rail and water transport (Dekker et al., 2012; Hoen et al., 2014b; van den Akker
et al., 2009). When a modal shift occurs to a mode other than road, often a combination of transport
modes is required: multi-modal transport in combination with road (Hoen et al., 2014b; Koc, 2010;
Smokers, Tavasszy, Chen & Guis, 2014).

Achieving a modal shift is not an easy task, because the alternative freight transport modes have
to fulfill shippers’ logistical requirements, fit into the supply chain and be feasible in terms of costs
(Blauwens, Vandaele, Van de Voorde, Vernimmen & Witlox, 2006). Each transport mode has different
characteristics in terms of cost, transit time, accessibility, and also different environmental perform-
ance. Time sensitive goods are often supplied by air, while large volumes of commodities like coal are
transported by rail, inland barge or pipeline (in case of gas or oils) (Dekker et al., 2012). This Master
Thesis research takes into account these factors of costs, transit times, accessibility and product type.
For costs the transport cost per mode, holding costs, penalty costs and emission costs are considered.
The transit times consider the full distance per mode, including the first and last road leg and the
average waiting time at a(n) (air)port. To ensure accessibility, the routes and their distances are
investigated on a lane level. Here, it is assumed that a destination always uses the closest (air)port,
and the road distances including a detour percentage are determined. With this, some routes might
be more efficient in terms of distance to a(n) (air)port, but accessibility is ensured at all routes. Fur-
thermore, Philips’ products are not time sensitive in the sense of being perishable and the products
are all end-products and thus no bulk items, gasses or oils. For these reasons, all lanes within scope
are deemed suitable for transport mode shift. The only aspect that has not been taken into account is
the supply chain effect on the production side. Since there is no information available on this aspect,
it is assumed that production can always meet up to product deliveries with any transport mode.

A case study is conducted at Philips on a subset of 20 shipment lanes, which together account for 25.6%
of all CO2e emissions. This case study investigated which of the lanes in scope are most suitable for a
transport mode shift, considering the costs, emissions and service level. In Chapter 5, it is concluded
that 11 lanes can be shifted as win-win situation at zero emission penalty costs. Shifting these 11
lanes to ocean decreases costs with 18.0% while reducing emissions with 53.8%. It is recommended
to start implementing transport mode shifts for these 11 lanes, which are the following: 1, 2, 6, 8, 10,
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12, 14, 15, 17, 18, and 20. Afterwards, the emission penalty cost is increased and efficient solutions
are obtained when an additional lane shifts from air to ocean. The next 2 lanes that shift from air to
ocean still have a cost below “Philips’ initial situation” but do incur additional costs as opposed to
the “zero emission penalty” situation. Therefore, it is recommended to switch these lanes in a later
stage. The other 7 lanes in scope shift at increasing additional costs, due to which these lanes are less
suitable for transport mode shift.

When Philips wants to implement a transport mode shift on one of the shipment lanes, there are some
additional aspects to take into account. It is recommended to look at the lanes that recently shifted
from air to ocean, and see whether the origin or destination port is also suitable for other lanes. For
example, Philips’ shipment lane with highest CO2e emissions (APAC1-NAM1) did a modal shift in
2019. This shipment lane uses ports that are also being used in other shipments which makes it easier
to shift those to ocean. It might also be possible for some lanes to not pick the closest port, but the
second closest port, when this is a port that Philips already uses for transport. Then, products can
be consolidated or changes with 3PLs might be easier to implement. Additionally, it is recommended
to Philips to also investigate the lanes that currently fell out of scope of this case study and analyze
which lanes use the same product values, shipment weights or locations as the lanes that result in a
win-win. Most probably, focusing on these lanes delivers the best trade-off between emission reduction
and costs while maintaining service levels. This aspect is discussed further in the implementations of
Chapter 7. Finally, it is likely that higher inventory levels are required when a cleaner and slower mode
of transport is used (Boere, 2010; Hoen, 2012). If this aspect is not taken into account when planning
for a transport mode shift, the increased leadtime variability may lead to stock-outs. These stock-outs
lead to reduced service levels and Philips will make use of emergency shipments by air transport in
order to still fulfill customer demand. This topic has already been discussed with several supply chain
specialists of different segments within Philips and it can be concluded that this emergency shipment
situation is a known problem to Philips. Thus, the inventory aspects must be incorporated into supply
chain planning when implementing transport mode shifts.

6.2 General recommendations

This section elaborates on the general recommendations to improve logistics planning to include
more sustainable choices, for which numerous ‘best practices’ and frameworks have been proposed in
literature. The options elaborated below are based on the proposed ‘best practices’ of literature and
the findings at Philips throughout this Master Thesis project.

6.2.1 Reconsider emission calculation assumptions

Chapters 2 and 3 describe the CO2e emission calculation methodology and the application to Philips’
global airfreight shipments. Many of the steps of this methodology are already implemented at
Philips (see Chapter 7). However, there are some aspects that Philips did not implement yet. It is
recommended that Philips substantiates its decisions for carbon calculations and reconsiders its current
assumptions. It should be noted that it cannot easily be stated that one methodology is more correct
than the other. However, all assumptions have to be clearly defined and coherent. The most important
deviations are described here. The final output of CO2e emissions of this calculation method are
18.2% higher than the emissions that Philips reported over the same scope. This significant difference
can mainly be attributed to the fact that Philips uses EFs of DEFRA with different underlying
assumptions. The methodology of this Master Thesis based on NTM EFs is considered to be an
improvement as opposed to Philips’ method with DEFRA EFs. This is the case, because the EFs of
DEFRA are not clearly defined for use outside of the UK (Downie & Stubbs, 2012). Additionally, the
EFs of DEFRA only include tank-to-wheel (TTW) emissions, while the methodology of this Master
Thesis reports well-to-wheel (WTW) emissions. WTW reporting is recommended, since it includes
the total use of energy including fuel production, distribution and combustion (NTM, 2018b). Finally,
Philips currently assumes that all transport activities are performed using full-freighter aircrafts. This
assumption has been invalidated by data obtained from a 3PL. However, the impact of this assumption
depends on the allocation methodology of emissions over passengers and freight (see Section 8.2).
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6.2.2 Collaboration with Third Party Logistics provider (3PL)

Philips performs all its logistics in cooperation with a 3PL. There are contracts with each of these
3PLs that state the costs per transport mode, per route and per shipped chargeable weight. One of
these agreements states that Philips always pays for a minimum chargeable weight of 30 kg. After
performing the data cleaning steps for the first research question, it is discovered that the total number
of shipments with a chargeable weight of 30 kg is 69,473 which equals 25.6% of all shipments in scope.
This observation has two implications. Firstly, it can be concluded that Philips logistics planning
system is not optimal by sending so many separate shipments of (less than) 30 kg. It should be
investigated whether shipments can be consolidated into larger shipments. Secondly, it should be
considered to revise the agreements that are made with these 3PLs. When the minimum chargeable
weight limit would be decreased from 30 kg to e.g. 20 kg, this saves costs for Philips. Besides, it is
expected that this also has a positive effect on the CO2e calculations, since shipments lighter than 30
kg get less emissions allocated.

Another improvement direction to reduce carbon emissions from logistics in collaboration with 3PLs
is to increase the vehicle efficiency. This can e.g. be done by increasing the payload of a vehicle.
This leads to more efficient use of transport and to a reduction of the number of trips needed to
transport all products (van den Akker et al., 2009). An extension to this option is using transport
consolidation, where small shipments are combined with larger ones to achieve efficiencies of scale for
transport over longer distances (Dekker et al., 2012). It is also possible to reduce empty kilometers by
combining shipments. If the return trip of one shipment can be used to transport a second shipment,
then in total less kilometers have to be made and emissions can be reduced significantly (van den
Akker et al., 2009). Other options include executing planned route optimization or using alternative
fuels instead of diesel, such as biological fuel (Bouman et al., 2017; Oberhofer & Dieplinger, 2014).
The use of electric or hybrid vehicles can also be a good option, where emissions depend on the way
that electricity is generated (Dekker et al., 2012; Craig et al., 2013).

Since Philips outsources all its logistics activities to 3PLs, Philips has no overview about the load factor
that is representative for its shipments. This results in the fact that emission calculation and carbon
compensation is performed on assumed load factor numbers. It is likely that there is improvement
potential in increasing the load factor for Philips’ shipments, which reduces costs and emissions for
the 3PL and for Philips. The 3PL reduces costs by providing their services more efficiently and Philips
reduces costs by having lower CO2e emissions to compensate.

6.2.3 Required data and data collection

The final improvement direction to be discussed here lies in obtaining the right data to improve the
accuracy of calculations at Philips. This holds for both the first research question as well as for
the second research question. Both research questions have been handled generically first, in order
to show how the problem could be solved, if the right data is available. Then, two case studies
are performed to implement the methodologies in the best possible way with the available data. It
is discovered that many useful data aspects could not be obtained, which made the application of
calculation methodologies challenging. Table 6.1 states in the first column which data is required for
the calculations, and in the second column which data is currently available at Philips. The third
column states which data is currently used for application of calculations or which solution is designed
to estimate or simulate specific data.

The first nine rows in Table 6.1 are relevant for both the CO2e calculation as well as the TMSP
optimization model. The product type or exact shipment contents are not known within Philips. This
means that Philips only knows the high level segments that products are in, but not which products
are inside which shipments. Furthermore, Philips also only knows the weight of shipments and not
the number of products. The number of products is especially relevant for the TMSP with regard
to the inventory and demand calculations. Currently, the inventory and demand simulation are both
performed in kilograms of product instead of number of products. For the CO2e calculations, the
volume data of shipments would be especially relevant. Knowing the volumes of shipments, ensures
more realistic allocation of CO2e emissions. This is the case, since not only the maximum load of a
vehicle is limited, but also the volumetric space. Currently the chargeable weight input of 3PLs is
used, which is the transported volumetric weight that Philips has to pay for. Additionally, the exact
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origin and destination addresses are required data to calculate the road distances between airports
and warehouses. For most shipments, only the origin/destination city is known, due to which road
distances could not be calculated in an exact way but had to be obtained using a sampling study.

Table 6.1: Required data versus available data overview

Required data for calculations Currently available data Currently used for calculations

Product type of shipment High level segment data Estimated average product based on segment
Number of products per shipment Only shipment weight Estimated average weight per product
Product value of shipment - Estimated value density per product
Shipment volume data Volume data is unreliable Chargeable weight input
Aircraft type (belly/ full freighter) - Industry-average aircraft
Load factor of aircraft - Industry-average load factor
Origin/destination addresses Origin/destination city Origin/destination city
Road distances - City-to-city distance based on sampling study
Truck type (size and load factor) - Assumed 20-26 t truck with 50% load factor
Actual sending dates of shipments Year and month of shipping Assigned a sending day
Actual leadtimes of shipments Contracted leadtimes per lane Simulated interval around contracted leadtimes
Inventory policy warehouses - Initial inventory based on demand during leadtime
Holding/penalty cost rate - Assumption on literature and sensitivity analysis
Demand distribution products - Normal demand dist. and sensitivity analysis

Next to the shipment specific data, there is also transport data lacking for CO2e calculations. Philips
outsources all transportation to several 3PLs. Philips currently has no influence over the used vehicles,
the vehicle load factor or the vehicle routing. However, when calculating the CO2e emissions, the
vehicle type and load factor can have high impact on the final results. Also vehicle routing, including
e.g. stopovers for specific flights has impact on the final result. Currently, industry-average aircraft and
truck data is used to calculate the CO2e impact of logistics. Since Philips makes use of several 3PLs,
it is expected that industry-wide averages are representative for a company like Philips. However,
actual data would result in a more accurate CO2e emission calculation.

The last five rows of 6.1 are relevant for the TMSP optimization model. The actual sending dates of
shipments and the actual leadtimes are required to know when shipments arrive at a specific warehouse.
Furthermore, knowing the exact leadtimes is crucial to calculate realistic inventory levels and holding
costs for inventory. Currently, the leadtimes are simulated based on the contracted leadtimes and the
leadtime interval of Freightos (2020). This leadtime simulation ensures that there is realistic leadtime
variability in the system. The inventory policy in the warehouses, including e.g. the order-up-to level
or the order decisions, are required data to calculate the expected inventory on hand and the expected
backorders per period. This also depends on the demand distribution for products. It is decided
to implement the TMSP model as a simulation model, where demand is simulated using a normal
demand distribution based on the mean and standard deviation of demand during the leadtime.
Several scenarios for the standard deviation of demand are tested in the sensitivity analysis. The
simulation model started with an initial inventory level, and afterwards the inventory was tracked
using incoming shipments and outgoing demand. The inventory holding costs and penalty costs are
calculated based on the simulated inventory levels and assumed inventory holding and penalty cost
rates. A sensitivity analysis is performed on the ratio between these two cost rates to show Philips
the effects of the trade-off between high service levels versus low inventory costs.

Obtaining the data aspects as mentioned in Table 6.1 is crucial to improve the calculation accuracy
of research sub-questions 1 and 2. It is expected that obtaining high-level data for the first research
sub-question would not be very difficult, when collaborating with the 3PLs. This can also be seen
from the fact that the aircraft type of recent shipments by 3PL Expeditors could be obtained already
during the Master Thesis project. Specific shipment data such as the load factor of each shipment
is already more challenging. Furthermore, obtaining the data aspects for the second research sub-
question might be more complex since it involves several parties. However, all required data should
be available internally within Philips. Improving the calculation accuracy is important when Philips
wants to act on results, in order to have reliable expectations for e.g. costs of transport mode shifts.
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Implementations at Philips

This chapter shows the implementations that have been performed during this Master Thesis project at
Philips, or that can be performed by Philips after the Master Thesis project. As described in Chapter
3, the carbon calculation methodology is applied to Philips’ airfreight logistics data. This calculation
has not only been analyzed in R, but is also partially implemented in Philips’ official calculations,
visualized in a Business Process Model and Notation (BPMN) tool and in a dashboard tool Qlik
Sense. The Transport Mode Selection Problem (TMSP) methodology as described in Chapter 4 is
implemented as a simulation model in R (see Chapter 5). This chapter shows the implementations
and how Philips can use them in the future.

7.1 Implementation carbon calculation in Philips’ reporting

The Reporting team within Philips’ Group Sustainability is responsible for reporting several types of
sustainability aspects of the company. These results are then audited by an external company and
published in the annual report. This Master Thesis project contributes to Philips’ airfreight logistics
CO2e reporting on several aspects. First, the cleaning of input data of the origin and destination
locations with IATA-codes is implemented (see Appendix B.1). This implementation leads to accurate
distances for an additional 5% of the shipments compared to Philips’ original method. Second, the
data cleaning method for weights has also been implemented, as described in Section 3.1.1. This
includes cleaning for minimum weight, missing weight values and maximum weights. Third, the
distance calculations of Section 2.2 and Section 3.2 have been implemented fully. This consists of the
GCD Equation (2.1), the detour distances with Equation (2.2) and the road distance percentage (see
Section 3.2.3). The steps described above are implemented in Philips’ calculation method, process
flow and official CO2e reporting in the annual report of 2019 (Royal Philips, 2019c).

Some parts of the emission calculation have not been implemented yet in Philips’ CO2e reporting of
airfreight logistics. Philips still uses DEFRA emission factors and still assumes that all aircrafts are
pure freighters. Since data of Philips’ most used 3PL has proven that this last assumption is not
valid, it is exptected that these improvements will be implemented later on. However, shifting from
DEFRA to NTM, taking into account industry-average aircraft types and reporting WTW instead of
TTW leads to CO2e emissions of 18.2% higher than was currently reported. Therefore, implementing
the full method also depends on the target setting and the industry norms for reporting. This has
been discussed in formal meetings with the manager of Sustainability Reporting team, and Philips
will consider taking the next implementation steps in 2020.

7.2 Implementation of methodology in BPMN

Philips uses BPMN tools in order to visualize processes across the company and to make calculation
steps also transparent for the audit. A BPMN tool is built such that everyone can follow the performed
calculations and also apply the methodology in the future. For this Master Thesis Project, two tools
have been built. The first tool represents the methodology that Philips currently uses and the second
tool represents the recommended methodology including the NTM emissions calculation. Figure 7.1
shows an overview of the general BPMN model that Philips currently uses. For each of the sub-
process steps of loading data files, general data cleaning, cleaning of chargeable weight and cleaning
of distances, a separate model exists with the subsequent steps. Clicking on a step enables a person
to see the purpose of a step, the corresponding lines in the R-code and the person who is responsible.
This model can even be used to automate the process, e.g. by having fixed email notifications and
rerunning the script with monthly updated data.
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Figure 7.1: BPMN tool overview

7.3 Implementation dashboard tool Qlik Sense

A dashboard tool in Qlik Sense is built such that it can easily be seen on which lanes, segments and
periods emissions occur. Qlik Sense is a publicly available business intelligence and visual analytics
platform, which allows an individual discovery path through the data (Qlik, 2020). It is an interactive
tool in which a person can select e.g. the origin or destination country or the time period and then
the selected lanes are shown on a world map. On the world map are also Philips’ production sites
(orange) and main warehouses (red). When selecting specific lanes, the corresponding CO2e, costs
and number of shipments are shown. Figure 7.2 shows a screenshot of the dashboard tool. Note that
this dashboard overview does not give the complete overview of all lanes and cost figures that are
used by Philips, in order to ensure confidentiality.

Figure 7.2: Dashboard overview - World map and general figures
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The dashboard only uses the shipments, emissions and costs of the lanes that contain both an origin
and a destination IATA-code. For the lanes that lack this specific information, only country-to-country
details could be calculated. Since country-to-country details are not helpful either for visualization or
for transport mode shift calculations, these details are only included in the total emission figures but
not in the implemented dashboard. The lanes that are excluded for this reason, account for 2.7% of
the total CO2e emissions within scope.

This dashboard is a useful start for Philips’ internal carbon reporting and improvement program.
Being able to communicate throughout the company which lanes have the highest emissions impact
and by which segment these shipments are transported, enables Philips to get into contact with these
specific segments and point out alternatives. The first version of this airfreight dashboard is launched
in April 2020 within Philips’ Group Sustainability. Philips is currently working on improving the
segment mapping, and by narrowing down these segments, it is easier to trace back who sent which
shipments. This data can later be added to the dashboard of Figure 7.2, by adding an extra column to
the imported data sheet. This will be quite easy for Philips, since this dashboard has been developed
in the software tool of Philips preference. Afterwards, the dashboard can be launched to all supply
chain segments within Philips.

7.4 Transport Mode Selection Problem (TMSP) tool

The final implementation that has been performed at Philips is the implementation of the Transport
Mode Selection Problem (TMSP) simulation model. Due to data limitations, it was not possible to
implement the methodology of Chapter 5 right away. Instead, the contingency plan has been applied
of building a tool in R, based on both available and simulated data. This tool shows the improvement
potential for reducing logistics emissions at Philips on a narrowed scope. There are multiple ways
for Philips to use this implementation. Firstly, the results of the current application can be used to
apply transport mode shift to (some of) Philips’ top 20 lanes. With the help of the tool lanes can be
selected and it results in an estimation for the emission decrease (and cost increase) to substantiate
decision-making. Secondly, when specific data about the product types, product value, inventory
policy, demand distribution or actual leadtimes per mode becomes available, this data can be added
to the tool. When more data is available, the accuracy of results increases. The R-code specifies which
input is used in which blocks of code, thus data input can be adjusted easily. Thirdly, also when no
additional data becomes available, but the results of this chapter are considered to be useful, then
the existing simulation model can be applied to a bigger or different scope. In order to do this, the
emission calculation (Chapters 2 and 3) can be used to select the lanes with high emission impact for
scoping, e.g. lanes 20-40. The methodology of Chapter 5 can be applied to calculate the parameters of
these selected lanes (cost, leadtime, demand, inventory). All input parameter estimations have been
documented clearly and all steps have been performed in R, which was Philips’ preference for coding
language. Therefore, future application on wider scope is considered to be feasible for Philips.

Finally, it is also possible to extrapolate current conclusions for the limited scope to a wider scope.
This option is a solution that Philips likes to implement on a short-term, while starting the in-
depth supply chain investigations and additional data collection. In Chapter 5 it is concluded that
shipment lanes with cheaper products shift easier to ocean transportation in than more expensive
products. Furthermore, it is concluded that heavier shipments are shipped with cleaner transport
modes. Additionally, it can be concluded that for larger distances cleaner modes are selected, because
the inventory holding and penalty costs are balanced by lower transport (and emission) costs. Another
observation is that there are also transport mode shifts when both air and ocean distances are low.
When the ratio between the ocean distance and the air distance is low, this means that the distance
difference is not (very) disadvantageous for ocean. These conclusions can be extrapolated to a wider
scope by comparing e.g. product categories with value and weight on several shipment lanes. Then it
is possible to select lanes with similar characteristics as the lanes that currently shifted to ocean in the
TMSP simulation results. This idea is currently being developed and the first proposal is expected to
be finished in April 2020.
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Chapter 8

Conclusion and discussion

The objective of this Master Thesis is to analyze and visualize the global logistics processes of Philips’
airfreight and this research aims to introduce actionable improvements for sustainability. Based on
the defined objective, the research question is defined as follows:

What is the current environmental impact of Philips’ logistic processes for airfreight and which
sustainable improvements can be introduced to drive carbon emission reductions?

First, Section 8.1 briefly summarizes the conclusions of this Master Thesis project, by answering each
of the research sub-questions. This is followed by Section 8.2 that presents a discussion on the results,
and reflections on the choices made during this Master Thesis.

8.1 Conclusion

To answer the main research question, three sub-questions have been defined. Firstly, Chapters 2 and
3 answer the following research sub-question:

1. How to define a method that can accurately calculate the current environmental impact of Philips’
logistic processes for airfreight?

To answer the first research sub-question, Chapter 2 describes a methodology to calculate the carbon
dioxide equivalent (CO2e) emissions of transporting goods, based on Network for Transport Measures
(NTM) methodology. This methodology presents a step-by-step overview how to handle distances,
weights and emission factors of transportation. Then, this methodology is applied to Philips’ airfreight
logistics data in Chapter 3. In order to implement the methodology to Philips’ data, some adjustments
are required. The data is cleaned based on the aspects: origin/destination, weight and cost. The
methodology for calculating the chargeable weight of shipments cannot be implemented, because the
actual weight and volume data of shipments is incorrect. Therefore, the chargeable weight input
of 3PLs is used to calculate emissions. Further, the road distances cannot be calculated, because
exact origin/destination address data is missing. For this reason, a sampling study is performed to
extrapolate a road distance percentage over all shipments. The CO2e emissions are calculated for two
scenarios, based on the aircraft type: Scenario (1) uses the limited aircraft data available at Philips;
and Scenario (2) uses industry-average aircraft data. The second scenario is considered the most
representative scenario and results in total WTW CO2e emissions of 1,192 million kg. Comparing this
result to Philips’ reported emissions over the same scope, leads to an increase of 18.2%. This increase
is, among other things, a result of the emission factor choice, the aircraft type assumption and the
reporting scope (WTW). Now the emission impact of every shipment lane is calculated, Chapters 4
and 5 answer the second research sub-question:

2. How to develop a general decision making model that provides a trade-off between emissions, costs
and service level indicators?

To answer the second research sub-question, Chapter 4 describes a mathematical model for the Trans-
port Mode Selection Problem (TMSP). This model takes the factors costs, emissions and service levels
into account in deciding the best way of applying transport mode shift in a multi-modal multi-item
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setting. Then, in Chapter 5 this model is applied as a case study to a subset of the 20 most important
lanes of Philips’ shipments data. Unfortunately, many of the required data inputs cannot be obtained.
For this reason, all input parameters are estimated as good as possible with the help of existing data,
Philips’ analysts and literature. Because the leadtime variability, demand distribution and inventory
policy are unknown, it is decided to use simulated data to apply the TMSP optimization model. It
is concluded that running the simulation model with zero emission penalty cost, results in a win-win
decreasing emissions with 53.8% while reducing costs with 18.0% as opposed to Philips’ initial situ-
ation. This win-win situation at zero emission cost is found with a proposed transport mode shift for
lanes: 1, 2, 6, 8, 10, 12, 14, 15, 17, 18, and 20. As a next step, the emission penalty costs are increased
and lanes 19 and 16 can also be shifted against a cost level that is below Philips’ initial situation.
However, these modal shifts do incur additional costs as opposed to the zero penalty cost situation.
Then, the order in which the other lanes can be shifted from air to ocean transport in a cost-efficient
way is: 13, 4, 7, 3 and 9, 11, and 5. The total emission reduction potential is calculated to be 96.5%
against a cost increase of 31.8%.

To check the robustness of results, three sensitivity analyses are performed. Sensitivity (1) tests
different holding cost/penalty cost ratios to show Philips the trade-off between service level and
inventory costs. Sensitivity (2) tests the simulation with different demand variability scores. Demand
variability is an aspect that Philips cannot control, but it does influence the inventory costs and service
level of the system. Sensitivity (3) tests the transportation leadtimes under a Gamma distribution
instead of a uniform distribution. The most important aspect of the sensitivity analysis is whether
the final result, the lanes that are recommended for Philips to perform a transport mode shift to
ocean, stays the same across several parameter settings. It can be concluded that the results for
recommended transport mode shift at zero emission penalty cost are quite stable throughout several
scenarios. Which lanes are allocated to which transport mode is displayed in Appendix D.9. The
assumption with highest impact is the situation where the penalty cost rate is low, corresponding to
a z-score of 0.96. Under this assumption, most lanes were allocated to transport mode ocean. Finally,
the third research sub-question is answered in Chapter 6:

3. Which improvements can be made for the logistics planning process to include more sustainable
transportation alternatives for the most impactful products/lanes?

The improvement direction of transport mode shift has been handled in depth. In Chapter 6, it is
described why Philips’ lanes within scope are considered suitable for transport mode shift. Afterwards,
the aspects are described that should be taken into account when shifting the transport modality from
air to ocean. It can e.g. be beneficial to apply transport mode shift to lanes that use a similar route
or to start with the lanes where there is relatively low variability in production, leadtime and demand
across the supply chain. Next to transport mode shift, also general recommendations are provided that
can help to include more sustainable transportation alternatives. First, recommendations are stated
to reconsider current emission calculation assumptions within Philips. Second, the collaboration with
3PLs is mentioned, to e.g. decrease the contracted minimum weight of a shipment; apply transport
consolidation; use cleaner fuels or vehicles; or increase load factors. Further, improvement directions
related to Philips’ data collection are described. Obtaining relevant data is crucial to improve the
calculation accuracy of research sub-questions 1 and 2. Improved accuracy is important when Philips
wants to act upon results in order to have reliable expectations for costs of e.g. a transport mode
shift.

8.2 Discussion

8.2.1 Carbon emission calculation method

Applying the carbon emission calculation methodology as a case study to Philips’ airfreight logistics,
many assumptions have been made to come to the final results. Each of these assumptions has an
influence on the accuracy of the final result. Most of the assumptions or estimations are made in the
data cleaning phase (Section 3.1). These data cleaning steps are well substantiated and are made
in accordance to NTM methodology. E.g. cleaning shipments bigger than the size of an airplane or

55



CHAPTER 8. CONCLUSION AND DISCUSSION

filling in average weights, is considered the most logical choice to calculate the full impact of Philips’
airfreight logistics. The biggest issues come up with the lack of specific shipment data, such as the
exact route of a shipment and its final address (Section 3.2), the exact actual weight and volume of a
shipment (Section 3.3), and the vehicle type and its load factor (Section 3.4). These data issues result
in the fact that the methodology of Chapter 2 cannot be implemented right away. The assumption
with the highest impact is the aircraft type, being either a full freighter or a belly freight aircraft.
Until now, Philips did not incorporate the use of belly freight aircrafts, whereas the (limited) data
obtained during this Master Thesis shows that these aircrafts are used often. According to the EFs
of the NTM methodology, the emissions of a belly freighter are much higher than the emissions of a
full freighter. This assumption has substantial influence on the final CO2e number, while the aircraft
type is currently fully decided by the outsourced 3PL.

Future research is required to investigate the allocation of CO2e emissions over passengers and freight
in a belly freighter aircraft. The allocation of emissions over freight and passengers in a belly freighter
differs per methodology, because literature and experts are indecisive which is the preferred allocation
methodology. The NTM method allocates emissions corresponding to 100 kilograms of weight to each
passenger, and all other emissions to freight. However, it is also arguable that the CO2e emissions
for the weight of seats, galleys, toilets and flight attendants should be allocated to a passenger. A
representative of the GLEC framework stated that it is not possible to say one allocation method is
more ‘correct’ than the other, and it is merely a matter of convention. Furthermore, this representative
stated that GLEC develops a new standard in the coming 3 years with which it is possible to coalesce
on a single belly freight allocation method throughout industry. It is useful for Philips to revise the
current assumptions over 3 years to stay informed about the preferred allocation methodology. In the
meantime, Philips can obtain reliable data about the type of aircrafts being used with their logistics
operations. Next to the recommendation for Philips to obtain more accurate vehicle type data, there
are several other data points that can be improved. All data aspects that are currently unavailable or
incomplete, are discussed in Chapter 6.

In addition to the assumption of the aircraft type and the emission allocation methodology, there are
more aspects to choosing representative EFs. Philips uses EFs of DEFRA with specific underlying
assumptions. The methodology of this Master Thesis based on NTM EFs is considered to be an
improvement as opposed to Philips’ method with DEFRA EFs. This is the case, because the EFs of
DEFRA are not clearly defined for use outside of the UK (Downie & Stubbs, 2012). Additionally, the
EFs of DEFRA only include tank-to-wheel (TTW) emissions, while the methodology of this Master
Thesis reports well-to-wheel (WTW) emissions. WTW reporting is recommended, since it includes the
total use of energy including fuel production, distribution and combustion (NTM, 2018b). Reporting
the full WTW CO2e impact is relevant for Philips in their ambition to become fully carbon neutral
in its operations. The most important goal of this discussion is to create awareness at Philips that its
current assumptions of TTW reporting and EFs might not be representative. It is recommended that
Philips substantiates the decisions for carbon calculations and reconsiders the current assumptions.
This has been discussed in formal meetings with the manager of Sustainability Reporting team, and
Philips will consider taking the next implementation steps in 2020.

8.2.2 TMSP optimization model

The application of the Transport Mode Selection Problem (TMSP) optimization model as a case study
to Philips’ top 20 lanes, also requires several estimations and assumptions. Most of the assumptions on
input parameters of the model (Section 5.2) are considered to be valid and realistic. This includes the
product values; the shipment distances; the contracted leadtimes; the holding and penalty cost rate;
the transportation costs; and the general transport parameters. However, the model would be more
precise when the exact product type, weight, volume and value are known. When the product type
and dimensions are known, logistics planning could be more efficient. For example, then one would
know how many products fit inside one container and shipping quantity can be optimized accordingly.
Besides, when the product value is known, all equations and parameters can be expressed in units of
product instead of units of weight. That would increase the reliability of the penalty cost and the
holding cost calculation for items in transit or items in stock.

A discussion point for the distances and routes can be seen in the somewhat simplistic assumption
that there is only one route available for each transport mode. Each route uses the (air)ports that are
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closest to the origin and destination respectively. However, in real life it can also be more convenient
to drive a bit further and consolidate shipments of different destinations at one (air)port. Or, a
shipment can go by air transport to the nearest coast and then switch to ocean transport. This might
be a good solution for destinations that are e.g. in the middle of the United States. Further, it is
assumed that air and ocean are the only possible modes for Philips. This could be extended to e.g. a
multi-modal option with rail transport. There are many possibilities per transport lane and figuring
out which is the most efficient one requires detailed data on a lane level. Since no actual product
level data can be obtained, this falls out of scope for this Master Thesis. Another shortcoming of
the case study in this Master Thesis, is that it only considers 20 lanes within scope, corresponding
to about a quarter of Philips’ total CO2e emissions. It would have been more useful to Philips when
all lanes were considered for a transport mode shift. Note that this scoping decision is made due to
lacking data. In cooperation with Philips, the possibility for extending the results over other lanes is
investigated. Here, the conclusions for e.g. certain product segments are reviewed and suitability for
transport mode shift on all lanes with these characteristics is considered.

The simulation parameters (Section 5.3), including leadtime variability, demand simulation and start-
ing inventory, are more up for discussion. Since there is no data at all about the actual leadtimes, it is
hard to justify any assumption on the leadtime variability. The uniform distribution that is currently
used forms a reasonable starting point of what this variability could be. A sensitivity analysis is
performed for leadtimes, changing the uniform distribution to a Gamma distribution. Only minor
changes in the costs and service level are observed. For the demand simulation it is defensible that
the total shipped weight equals the total demand over the years within scope. However, it is unknown
whether a demand of the normal distribution with a stable mean over the years is representative.
A sensitivity analysis is performed changing demand variability scores to show the effect on service
level and inventory costs. Further, the inventory model of the system does not respond as it would
be desirable in reality. Every transported shipment is based on historical shipments and there cannot
be any additional shipments when demand or leadtime variability is high in certain periods. This is
done in order to provide the transport mode selection trade-off for Philips with the use of their actual
historical emissions. However, this results in a simulation model where it is not possible to order
additional products when the warehouse is out of stock. Due to this choice, the service levels in some
of the warehouses can be below an acceptable level for real-life situations.

Since the TMSP model is applied with simulated data, the outcome of the model is not the same at
every simulation run and every emission penalty cost value (λ). It can be the case that at a specific
λ value, in one run the inventory costs are much higher than in another run, due to the stochastic
arrival of shipments and demands. For this reason, it can only be stated approximately which transport
mode for shipment lanes is applied at which emission penalty cost. The final discussion point about
the TMSP results are the costs. The win-win situation only holds for the costs as included in the
model, being: transportation costs, holding costs for items in transportation, holding costs for items
in warehouse inventory, penalty costs for not fulfilling customer demand, and emission penalty cost.
It is very likely that in reality there are other cost factors included in applying a transport mode shift.
These additional costs could occur for, among others: changing of production schedules, warehouse
capacity expansion, increase of handling costs at ports, etc. Therefore, it is expected that the actual
costs of a transport mode shift could be higher than the costs presented in this Master Thesis. This
requires further investigation as soon as more data is available.

Several improvement possibilities and/or future directions for the TMSP model are identified. In
the current model, the service level is only taken into account indirectly by charging higher costs for
not fulfilling demand from stock. It is also possible to set a service level constraint and then solve
the model using two Lagrangian multipliers (λk), where each λk can be interpreted as a penalty for
violating the k -th constraint. Another useful addition to the model can be to implement the option for
a transport mode mix. Then, the model would not necessarily pick one transport mode per shipment,
but could indicate which percentage is performed by one mode or the other. Additionally, it can
be interesting in the future to also include the transport mode rail to Philips’ case study, or to use
other multi-modal transport combinations. Furthermore, future research can be performed on how
this model with single echelon perspective can be extended to a supply chain perspective. Currently,
it is assumed that production always meets the amounts that should be transported. However, this
assumption might not hold in reality, leading to logistics planning issues.
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Appendix A

Appendix to Chapter 2

A.1 Literature review emission factors

This appendix provides a short overview of the literature review that has been performed on the
emission factor (EF) per transport mode for the relevant emission calculation methodologies. These
methodologies are: the GHG Protocol (Greenhouse Gas Protocol, 2015), the NTM framework (NTM,
2018b) and the GLEC framework (Greene & Lewis, 2019). Additionally, the EFs of DEFRA are
included in this literature review (UK Department for Environment Food and Rural Affairs, 2019).
This is the EF source that Philips currently uses. All these EFs present the average kilograms of CO2e
emissions that are emitted with the transportation of one tonne-kilometer under certain assumptions.
The full literature study describing all underlying assumptions can be found clicking HERE.

Figure A.1 provides an overview of five different EFs for air transport. The EFs for air transport
are considered for different haul-types that are based on certain distance intervals. This system is
designed, because of the fact that flying and landing of the airplane costs a lot of energy. Thus, taking
this fixed amount of emissions over a shorter distance leads to a higher amount of CO2e per tonne-
kilometer. In this figure all airplanes are assumed to be full freight flights. When calculating aircraft
emissions care needs to be taken in choosing the right aircraft or type of aircrafts, since environmental
performance varies both with aircraft/engine configuration and the type of aircraft.

Figure A.1: Emission factor comparison for air freight

Figure A.2 provides an overview of the emission factors for three road vehicle types within Europe.
Note that it is quite difficult to compare different vehicle types across several methods, since not every
method reports the same type or load of vehicles. Further, it can be concluded that the average EFs
for the US are slightly higher than the EFs for the EU. This can be attributed e.g. to a lower energy
efficiency of the vehicles being used. Since not all methods provide EFs globally, it is decided to only
visualize Europe in this figure. However, the NTM method provides also clear averages for the EU,
US, Asia, South America and global averages. Overall, it can be concluded that a smaller vehicle uses
to result in higher CO2e emissions per transported tonne-kilometer of freight.
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Figure A.2: Emission factor comparison for road freight

Figure A.3 provides an overview of the emission factors for diesel trains within Europe. It can be
observed that the NTM method presents a lower EF for rail transport than the other methods. No
clear statement could be found why this is the case, since the compared methods are all on the same
scope and on the same type of rail transport. However, the most logical explanation is that NTM
assumes a higher average load factor than DEFRA. The underlying assumptions of DEFRA are not
specified, but it is known that NTM and GLEC assume an average load factor of 60%.

Figure A.3: Emission factor comparison for rail freight

Finally Figure A.4 provides an overview of the emission factors for ocean, consisting of bulk carrier and
container ship. This is an average global figure of EFs. For ocean transport, the EFs are dependent
on the size, load and the speed of the ship. Further, also the type of water is relevant, since inland
waterways have higher EFs than the ocean. Generally it holds that the lower the speed of the ocean
transport, the lower the emissions per tonne-km. This Master Thesis project assumes that ocean
freight is transported using container ships.
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Figure A.4: Emission factor comparison for ocean freight

A.2 Flight detour distance

Figure A.5 shows the detour distance of the ten lanes that are used most often by Philips. Here,
the yellow line is calculated with NTMCalc 4.0 online tool (NTM, 2019). The blue dotted line is
calculated using Equation (2.2). The percentage of absolute difference between the Equation and
the online NTMCalc 4.0 tool on these ten lanes, equals 0.009%. It can thus be concluded that the
Equation fits the NTMCalc 4.0 tool very well. The big advantage of the Equation as opposed to the
online tool is that the Equation can be automated easily and calculated for thousands of flights at the
same time.

Further, it can be seen that shorter flights have relatively higher detour distances. This makes sense,
since for shorter flights, the detour at e.g. take-off or landing is a bigger portion of the total flight.
It can be concluded that the total flight distance including detour for these lanes is on average 2.83%
higher than the Great Circle Distance (GCD).

Figure A.5: Detour percentage top-10 lanes
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Appendix to Chapter 3

B.1 IATA-code input rectification

This appendix provides an overview of the IATA-code mistakes that are found in the input data.
Since the IATA-codes in the input data are entered manually, it can occur that an employee enters
a combination of letters that is not an IATA-code but e.g. a city code. Table B.1 shows in the most
left column the ’wrong’ inputs that are used as an IATA-code. Then, the corresponding city and
country are specified. The next column provides official IATA-code(s) as are known in this specific
city (Codes, 2019). Finally, the most right column provides the final IATA-code as being rectified
for the calculations. For determining this code the following methodology is used: (1) If only one
available IATA then pick this; (2) If more than one available IATA then pick the one that is most
often used by Philips; (3) If more than one available IATA and none of them are used by Philips, pick
the largest airport.

Table B.1: Airfreight IATA-code input mistakes

Input IATA City Country Official IATA code(s) Output IATA

ZSN Manitoba Canada XSI XSI
SPL Amsterdam Netherlands AMS AMS
BJS Beijing China PEK / NAY PEK
BUH Bucharest Romania OTP / BBU OTP
TYO Tokyo Japan NRT / HND / OKO NRT
MIL Milan Italy MXP / LIN / BGY / PMF MXP

MMA Malmö Sweden MMX MMX
LON London England LHR / LGW / LTN / STN / LCY / SEN LHR
KUB Kunshan (Shanghai) China PVG PVG
OSA Osaka Japan KIX / ITM / UKB KIX
REK Reykjav́ık Iceland KEF / RKV KEF
SEL Seoul South Korea ICN / GMP / SSN ICN
BAK Baku Azerbaijan GYD / ZXT GYD
BUE Buenos Aires Argentina EZE / AEP EZE
DTT Detroit United States DTW / DET / YIP DTW
BHZ Belo Horizonte Brazil CNF / PLU CNF
JKT Jakarta Indonesia CGK / HLP CGK
PAR Paris France CDG / ORY / LBG / BVA / POX / XCR CDG
STO Stockholm Sweden ARN / BMA / NYO / VST ARN
ZIX Zhuhai China ZUH ZUH

B.2 Data cleaning visualization transport costs

This appendix shows some figures supporting the data preparation statement of having no clear
relation between the cost of a shipment, and its weight or distance. This explanation supports the
data preparation section as explained in Subsection 3.1.1. A relation between the variables cost and
weight or between cost and distance would help to determine which cost values are outliers.
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First, it was tried to find a relationship between the costs and the shipment weights, using boxplots.
Figure B.1 shows the the costs for several weight categories. The first weight category is from 0-5,000
kg, and every following category is with an interval of 5,000 kg more. The last box contains the
shipments of 70,000 kg and more, which are just 5 shipments in the total data. From this plot it
is concluded that there is no clear relation between the costs of a shipment and the shipped weight.
Most of the boxplots are overlapping with other categories. Especially for the first category, no clear
boxplot can be seen, since there are many outliers in terms of costs. For higher weight categories,
the price seems quite stable (no outliers). Note, however, that most of the shipments have a weight
between zero and 10,000 kg.

Figure B.1: Costs per weight category

After plotting the normal variables of weight and cost to another, the next option was to log-transform
the variables and to check whether there is a linear relation between the two. Figure B.2 shows the
plot of the log-transformed variables cost and chargeable weight. The Figure shows some trend for a
portion of the data-points. Unfortunately, no clear linear function can be identified, due to the wide
spreaded data points and many data points along the axes. Therefore, using the chargeable weight of
a shipment to clean the data input of costs cannot be substantiated.

Figure B.2: Log-transformed costs over chargeable weight

Next to the possible relation between costs and shipped weight, the relation between costs and distance
is tested. Figure B.3 shows a boxplot of the costs for several distance categories. The first cost category
is from 0-3,000 km and every following category is with an interval of 3,000 km bigger. From this
plot it is concluded that there is no clear relation between the costs of a shipment and the shipped
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distance. The average cost for every boxplot is in the same range and all boxplots overlap another.
There are so many outliers that for most of the distance intervals, no real boxplot can be seen.

Figure B.3: Costs per distance category

Finally, also the log-transformation for costs and distance has been tested, in order to seek for a linear
relationship between the two. Unfortunately, the relation was even more spread out than the one of
Figure B.2, and resulted in one big cloud, as can be seen in Figure B.4. Therefore, using the flight
distance of a shipment to clean the data input of costs cannot be substantiated.

Figure B.4: Log-transformed costs over flight distance

B.3 Data cleaning overview

Table B.2 provides an overview of the data cleaning changes applied for chargeable weight and cost
input values. The first column shows the reason for data cleaning, as explained in Chapter 3. The
second and third column show the absolute and relative change respectively. It can be concluded that
none of the cleaning steps has a major impact on the total data set. Note that there are no cases
observed where the input for chargeable weight was below 30 kg.
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Table B.2: Data cleaning overview

Data cleaning reason Absolute change Relative change

Chargeable weight below 30 kg - -
Chargeable weight above max. load - 1,483,311 kg - 0.939%
Chargeable weight NA value + 366,459 kg + 0.232%
Cost value negative - 25 shipments -
Cost value NA + 11,995,833 e + 0.037%
Cost outlier values - 7,189,912 e - 0.022%

As explained in Chapter 3, Philips likes to have realistic cost results but prefers to stay as close
as possible to the original values. For the outlying cost values, a winsorizing of 99.5% is applied.
This means that the top 0.25% and the bottom 0.25% of the data is winsorized and that only the
most extreme cases have been cleaned. Table B.3 provides an overview of the data before and after
winsorizing.

Table B.3: Winsorizing shipment cost data (e)

Min. 1st Quartile Median Mean 3rd Quartile Max.

Original data 0 119 346 1,205 1,059 132,007
Winsorized data 1 119 346 1,180 1,059 21,773

B.4 Missing coordinates input data

After sorting out the IATA-codes that Philips uses, and checking the correctness of the corresponding
coordinates, there are 12 IATA-codes for which no coordinates were found. Note, however, that these
IATA-codes are not used very often, just 0.43% of the total amount of flights. Table B.4 provides
an overview for which IATA-codes the coordinates were missing. The coordinates have been filled in
by using Google GeoHack and are used in the calculation method of distances. After this step the
complete data input file of airport contains 9,052 airports with coordinates.

Table B.4: Missing coordinates rectification

IATA Country Longitude Latitude

EOS United States -94.392 36.811
GDY United States -82.125 37.233
GUM Guam 144.797 13.484
JMN United States -93.995 44.169
MLH France 7.529 47.590
MOR United States -83.376 36.179
MOW Russia 55.756 37.617
SAO Brazil -23.507 -46.634
TOV Tortola -64.600 18.450
UXM United States -158.145 61.044
YTN Canada -62.620 45.610
ZBD China 118.623 28.739
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B.5 Distance differences between methods

This appendix provides an overview of the lanes for which the highest percentage of difference in
distances are found between Philips’ method and the calculation method as described in Section 2.2.
In total there are 2,989 lanes with same origin and destination IATA in both distance methods. The
top 10 of highest percentage differences is displayed in Table B.5. A negative distance difference
represents that the calculated distance is lower than the original distance of Philips and vice versa.
The top 3 lanes with the highest percentage difference is due to the very short total distances. The
remaining airports in this table are checked based on coordinates and no mistakes could be identified.
Thus, it is unknown why these distance differences exist. The lanes in Table B.5 together make up for
only 0.11% of the flights. Therefore, the impact of these distance differences is considered to be low.

Table B.5: Origin-Destination (IATA) lanes with highest percentage distance difference

Lane (IATA) Distance Philips Calculated distance km difference % difference

HKG-SZX 26.8 38.3 11.5 42.8
SZX-HKG 26.8 38.3 11.5 42.8
DXB-MCT 370.6 348.9 -21.7 -5.9
BUD-NBO 5,406.4 5,692.5 286.1 5.3
STR-NBO 5,897.7 6,173.7 276.0 4.7
AMS-NBO 6,408.4 6,684.9 276.5 4.3
SDF-GDL 2,507.1 2,592.1 85.1 3.4
TLV-IST 1,134.1 1,167.0 32.9 2.9
GDL-SEA 3,357.5 3,451.9 94.4 2.8
PIT-GDL 3,035.2 3,118.0 82.8 2.7

B.6 Sensitivity analysis road assumption

In Subsection 3.2.3, the methodology for calculating road distances has been discussed. It appeared
that some of the shipments have a city-name that is equal to the city corresponding the IATA-code.
This results in the problem that the within-city distance can not be calculated. It is assumed that
on average, this road distance equals 25 kilometers. Table B.6 provides an overview of the impact of
this assumption. With assuming 25 kilometers average, the resulting total road-percentage was 1.38%
of the GCD respectively. However, varying the assumed distance between 10 and 40 kilometers, the
road distance percentages range between a minimum of 1.25% and a maximum of 1.52% respectively.

Table B.6: Sensitivity analysis of within-city distance assumption

Road distance (km) Distance first leg (km) Distance last leg (km) % first leg of GCD % last leg of GCD

10 55.99 47.13 0.68% 0.57%
15 57.39 49.37 0.70% 0.60%
20 58.80 51.60 0.71% 0.63%
25 60.20 53.84 0.73% 0.65%
30 61.61 56.08 0.75% 0.68%
35 63.01 58.31 0.77% 0.71%
40 64.42 60.55 0.78% 0.74%
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Appendix to Chapter 4

C.1 Lagrangian function

This appendix clarifies the calculation steps that are performed in order to find the Lagrangian function
and the decentralized Lagrangian. According to (Joachim Arts, 2018), a Lagrangian function is set
up as follows:

L(x, λ) = f(x) +
∑
j∈J

λj(gj(x)− ε),

Where f(x) is the cost function of Problem (P), g(x) is the emission function of Problem (P) and ε is
the emission constraint of Problem (P). Then the Lagrangian function of Equation (4.11) is obtained:

L(x, λ) =
∑
j∈J

(∑
i∈I

xi,jCi,j

)
− λ

∑
j∈J

(∑
i∈I

xi,jEi,j

)
− ε

 .

First, the sums over j are combined to one sum and the ε is moved out of the brackets:

L(x, λ) =
∑
j∈J

(∑
i∈I

xi,jCi,j − λ

(∑
i∈I

xi,jEi,j

))
+ λε,

Now it is easily observed that the costs and emission function are separable in j. The implicit constraint
((x) ∈ (X)), is also separable in j and thus Lagrangian is also. Hence the Lagrangian can be written
as:

L(x, λ) =
∑
j∈J

Lj (xj , λ) + λε,

Where the left part is defined as:

Lj (xj , λ) =
∑
i∈I

xi,jCi,j − λ
∑
i∈I

xi,jEi,j

which is the decentralized Lagrangian for product j. Note that the Lagrangians are only connected by
a single multiplier λ of the emission constraint.
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C.2 Everett result

This appendix clarifies the Everett result (Everett, 1963) that is being used to decompose problem (P)
into problem (Q). First the Everett result theorem is explained. The Everett result can be especially
useful when the Lagrangian dual function cannot be obtained analytically; e.g. because the solution
space is limited to integer solutions. Then there might be a gap between the optimal solution and the
maximum value of the Lagrangian dual function.

Everett result (Joachim Arts, 2018; Everett, 1963): If, for a given λ ≥ 0,x(λ) minimizes
L(x, λ) over x ∈ χ, then x(λ) is optimal for all bj ∈ (0,∞), j = 1, · · · ,m, that satisfy

bj ≥ gj(x(λ)) and λj [gj(x(λ))− bj ] = 0, j = 1, . . . ,m (1)

For a given value of λ there is a solution x∗(λ) = (x∗1(λ), . . . , x∗m(λ) ) that minimizes the Lagrangian.
Then x∗(λ) is optimal for Problem (P ) for all ε ∈ (0,∞) that satisfy

εj ≥
∑
j∈J

∑
i∈I

xi,jEi,j(x(λ))

λj(
∑
j∈J

∑
i∈I

xi,jEi,j(x(λ))− εj) = 0

Thus, if ε = E (x∗(λ)) , then, by the Everett result (Everett, 1963)) , x∗(λ) is the optimal solution to
the mathematical Problem (P) and the constraint will be met with equality. Then, it follows from
Theorem 1 of this (Everett, 1963) that these solutions are efficient solutions for the unconstrained
multi-criteria Problem (Q):

min
x∈X

C(x)

min
x∈X

E(x)
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Appendix to Chapter 5

D.1 World regions

Figure D.1 provides an overview of the regions worldwide as used in this Master Thesis. In this figure,
every world region is colour coded as follows: red = APAC; green = EUR; blue = LATAM; orange =
MEA; and yellow = NAM. These regions are also used in the confidential coding of shipments and in
multiple linear regression model as described in Appendix D.5.

Figure D.1: World regions

D.2 Value density per segment

Table D.1 provides an overview of the value density numbers per segment. As explained in Chapter
5, the average product value and product weight are estimated with the help of multiple professionals
and data sources. Then, these value density numbers are multiplied with the weight of a shipment to
obtain the estimated shipment value. Note that the segment names have been replaced with letters
for confidentiality reasons.

Table D.1: Average product value and weight per segment

Segment Avg. product value (e) Avg. product weight (kg) Value density (e/kg)

A 15 4.0 3.8
B 690,000 5,200 133
C 60,000 250 240
D 520 5.0 104
E 20 1.2 16.7
F 5,000 600 8.3
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D.3 Overview distances per transport mode

Table D.2 provides an overview of the calculated distances per transport mode. The first three columns
show the lane number and its origin and destination. The fourth and fifth column show the air distance
and the corresponding distance of the road legs for air transport. The sixth and seventh column show
the ocean distance and the corresponding distance of the road legs for ocean transport. The road
distances of both transport modes include the additional 20% for detours and pre-positioning.

Table D.2: Distance per transport mode

Lane Origin Destination Air (km) Road-air (km) Ocean (km) Road-ocean (km)

1 NAM1 APAC2 10,773 179 17,935 628
2 NAM2 EUR1 5,931 98 6,265 265
3 EUR1 APAC3 9,084 151 19,492 125
4 EUR1 APAC2 9,505 158 20,728 125
5 NAM3 EUR1 8,011 133 16,381 125
6 APAC1 EUR2 9,820 163 17,977 60
7 EUR1 APAC4 7,998 133 20,468 301
8 NAM1 EUR2 6,121 102 6,458 628
9 NAM3 EUR3 6,146 102 5,963 692
10 NAM2 APAC3 11,975 199 19,598 200
11 APAC3 EUR1 9,085 151 19,492 125
12 APAC4 NAM4 15,626 259 19,024 944
13 EUR1 APAC5 9,427 156 20,341 125
14 NAM1 APAC3 11,945 198 19,550 628
15 EUR1 NAM5 6,942 115 6,712 1,193
16 EUR1 APAC1 9,460 157 18,053 125
17 NAM5 APAC6 15,747 261 19,198 1,128
18 NAM5 EUR1 6,942 115 6,712 1,193
19 EUR1 APAC6 10,712 178 15,349 125
20 APAC1 NAM3 10,639 177 10,630 60

D.4 Overview leadtimes per region

This appendix provides some insights on the average contracted leadtime per region. This data is
used in the multiple regression model of D.5. The transport times per region are defined based on the
contracts that Philips has with its 3PLs. Table D.3 shows an overview of the contracted transport
time in days for the transport mode air. On top of this, an average 2.3 additional days are used per
shipment for handling and waiting.

Table D.3: Airport-to-airport transport times per region (in days)

Region from/to APAC EMEA LATAM NAM

APAC 4 5 7 5
EMEA 5 5 5 5
LATAM 6 5 3 5
NAM 5 5 5 5

74



APPENDIX D. APPENDIX TO CHAPTER 5

Table D.4 shows an overview of the contracted transport time in days for the transport mode ocean
between specific regions. On top of this, an average 3.2 additional days are used per shipment for
handling and waiting.

Table D.4: Port-to-port transport times per region (in days)

Region from/to APAC EUR LATAM MEA NAM

APAC 10 30 34 21 21
EUR 36 15 26 25 17
LATAM 39 28 18 39 13
MEA 31 18 42 29 26
NAM 29 21 37 26 -

D.5 Multiple linear regression model leadtimes

Figure D.2 shows the multiple linear regression model that has been applied in order to predict the
missing values for contracted ocean leadtime. The interpretation is complex, since multiple variables
are used in order to predict the ocean leadtime. It can be concluded that the prediction power of this
model is R2 = 0.62.

Figure D.2: Multiple linear regression model ocean leadtime

Table D.5 provides an overview of the application of the leadtimes for ocean. The first row shows
the overview after applying only the contracted country-to-country ocean leadtimes. Here, it can be
seen that there are 2,625 NA values (equals 6.6%) in the ocean leadtimes. The second row shows the
predicted values of the multiple linear regression model on the NA values. The bottom row shows the
summary of the complete ocean leadtime data.

Table D.5: Ocean leadtime overview (days)

Min. 1st Qu. Median Mean. 3rd Qu. Max. NA’s

Country-to-country leadtimes 15.2 24.2 27.3 28.7 32.2 49.2 2,625
Predicted leadtimes 15.1 16.2 37.8 30.7 37.8 37.8 -
Complete overview 15.1 24.2 27.2 28.9 32.2 49.2 -
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Table D.6 provides an overview of the application of the leadtimes for air. The first row shows the
overview after applying only the country-to-country air leadtimes. Here, it can be seen that there
are 12,112 NA values (equals 30.5%) in the air leadtimes. The second row shows the region-to-region
air leadtimes that have been applied to the NA values. The bottom row shows the summary of the
complete air leadtime data.

Table D.6: Air leadtime overview (days)

Min. 1st Qu. Median Mean. 3rd Qu. Max. NA’s

Country-to-country leadtimes 5.0 5.0 7.0 6.5 8.0 10.0 12,112
Region-to-region leadtimes 5.0 5.0 7.0 6.3 7.3 10.0 -
Complete overview 5.0 5.0 7.0 6.4 7.6 10.0 -

The expected leadtime for the road legs is determined by taking the road distance of a specific transport
mode and shipment lane and dividing this with an average speed of 400 km/day. An overview of the
road distances per transport mode is shown in Table D.7.

Table D.7: Road leadtime overview (days)

Min. 1st Qu. Median Mean. 3rd Qu. Max.

Road leadtimes with air 0.25 0.29 0.33 0.35 0.39 0.65
Road leadtimes with ocean 0.15 0.31 0.31 0.89 1.57 2.98

D.6 Multiple linear regression model ocean transport costs

Figure D.3 provides an overview of the multiple linear regression model that has been applied in
order to estimate the missing transport cost values for ocean. Both the dependent and independent
variables have been log-transformed. This is done in order to prevent negative cost predictions. Log-
transforming only the transportation costs and not the independent variables decreased the predictive
value of the model.

Figure D.3: Multiple linear regression model ocean transport cost

Table D.8 provides an overview of the application of the transport costs for ocean. The first row shows
the overview after applying only the country-to-country ocean transport costs (e/shipment). Here, it
can be seen that there are 2,611 NA values in the ocean transport costs. The second row shows the
predicted values of the multiple linear regression model on the NA values. The bottom row shows the
summary of the complete ocean transportation cost data.
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Table D.8: Ocean transport cost (e/shipment) overview

Min. 1st Qu. Median Mean. 3rd Qu. Max. NA’s

Country-to-country costs 1.85 10.58 34.61 111.14 110.77 3,134.02 2,611
Predicted costs 2.76 12.15 89.33 118.38 187.61 966.00 -
Complete overview 1.85 10.70 35.59 111.62 124.33 3,134.02 -

D.7 TMSP simulation demand characteristics

Table D.9 provides an overview of the demand characteristics of the lanes within scope. It is assumed
that the total amount of shipments within scope (January 2017 until October 2019) reflect the total
demand during scope. The demand is calculated by summing the total shipments per lane and dividing
by the total number of days. Here, it is assumed that each year consists of 365 days on which shipment
and demand can occur. The second and third column of Table D.9 show the origin and destination
respectively. From the fourth column can be seen from which segment the shipments are. The fifth
and sixth column show the transported mean weight per day and its standard deviation.

Table D.9: Overview of simulation demand characteristics of the 20 lanes in scope

Lane Origin Destination Segment µ (kg/day) σ (kg/day)

1 NAM1 APAC2 A 2,596.4 878.3
2 NAM2 EUR1 A 4,028.3 1,681.1
3 EUR1 APAC3 B 2,520.5 577.7
4 EUR1 APAC2 B 2,405.2 722.7
5 NAM3 EUR1 C 2,236.0 247.7
6 APAC1 EUR2 A 1,720.9 665.5
7 EUR1 APAC4 B 2,089.8 495.7
8 NAM1 EUR2 A 2,691.4 707.4
9 NAM3 EUR3 D 2,632.9 210.5
10 NAM2 APAC3 A 1,317.6 452.2
11 APAC3 EUR1 C 1,735.6 430.61
12 APAC4 NAM4 E 945.7 786.9
13 EUR1 APAC5 B 1,539.4 630.1
14 NAM1 APAC3 A 1,209.1 599.1
15 EUR1 NAM5 B 1,855.1 369.3
16 EUR1 APAC1 B 1,286.2 275.0
17 NAM5 APAC6 F 772.1 169.0
18 NAM5 EUR1 F 1,668.6 90.93
19 EUR1 APAC6 B 962.0 122.3
20 APAC1 NAM3 A 924.0 284.6

D.8 TSMP simulation service level boxplot

Figure D.4 shows the TMSP simulation service level boxplots for each of the shipment lanes within
scope. Recall that all service level results are obtained using simulation, which can result in a different
service level for each simulation run. This figure shows the service level ranges for each of the ship-
ments. Each shipment is denoted using the shipment lane number, as also denoted in e.g. Table 5.1,
and the allocated transport mode. Here, A stands for air transport and O stands for ocean transport.
When the boxplot and the whiskers of a specific lane are narrow, this means that the service level
range is small and vice versa. A small service level range means that the service level is more stable
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across several simulation runs. It can be concluded that for most lanes, the service level boxplot covers
a range of 10 to 15%. For some lanes the variation in service levels is bigger. This is especially the
case for lanes 12, 13 and 14. The most logical explanation for the high service level variation of these
lanes is the relatively high standard deviation of demand (see Table D.9).

Figure D.4: Service level boxplot per shipment

D.9 TMSP sensitivity analyses mode allocation

This appendix shows for the TMSP sensitivity analyses which shipments are allocated to which trans-
port modes and the corresponding CO2e emissions in kilotonnes (kt). Each shipment is displayed
using the shipment lane number, as also denoted in e.g. Table 5.1. Figure D.5 shows an overview of
the transport mode allocation per lane at different z-scores, for Sensitivity 1. These z-scores represent
different holding cost/penalty cost ratios, where the penalty cost rate is 5, 10, 50, and 100 times
higher than the holding cost rate respectively. Note that the z-score of 1.33 represents the original
TMSP simulation model. It can be concluded that a low penalty cost rate leads to increased use of the
transport mode ocean, which results in reduced CO2e emissions. Furthermore, it can be concluded
that only one lane changed from ocean to air at z-score 1.33 to 2.06 and no changes occurred between
z-score 2.06 and 2.33.

Figure D.5: Sensitivity 1 - Transport allocation per lane at different z-scores
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Figure D.6 shows an overview of the transport mode allocation per lane at different demand variability
scores, for Sensitivity 2. These demand variability scores represent a multiplication factor with the
standard deviation of demand, as in Table D.9. The demand variability score of 1.0 represents the
original TMSP simulation model and corresponding demand. It can be concluded that there is only a
slight change in the solution from factor 1.0 to 2.0, then one lane changed from ocean to air transport.
This corresponds to a slight increase in CO2e emissions. No other changes can be observed, which
means that the solution is quite robust for changes in the demand variability.

Figure D.6: Sensitivity 2 - Transport allocation per lane at different demand variability scores

Figure D.7 shows an overview of the transport mode allocation per lane using different leadtime
distributions in the TMSP simulation. It can be concluded that there are no changes in transport
mode allocation between the uniform and the Gamma distributed leadtimes. Therefore, also no
changes occur in the CO2e emissions. It can be concluded that the mode selection at zero emission
penalty cost is robust for this analyzed change in leadtime distribution.

Figure D.7: Sensitivity 3 - Transport allocation per lane at different leadtime distributions

79


	List of Figures
	List of Tables
	List of Abbreviations
	List of Definitions
	Introduction
	Company description
	Problem definition
	Research questions and methodology
	Research scope
	Thesis outline

	Carbon emission calculation method
	Introduction to logistics emission calculations
	Description of calculation method for distances
	Description of calculation method for weights
	Emission calculation
	Summary emission calculation method

	Case Study Philips: Emissions
	Description of input data
	Description of calculation method for distances
	Description of calculation method for weights
	Emission calculation
	Conclusion and discussion

	Transport Mode Selection Problem optimization model
	Related literature
	TMSP model goal and assumptions
	TMSP model description
	TMSP model solution
	Conclusion
	Directions for future research

	Case study Philips: TMSP
	Data subset
	Input parameters model
	TMSP implementation
	Simulation results
	Sensitivity analyses
	Conclusion and discussion

	Improvement directions Philips
	Transport mode shift
	General recommendations

	Implementations at Philips
	Implementation carbon calculation in Philips' reporting
	Implementation of methodology in BPMN
	Implementation dashboard tool Qlik Sense
	Transport Mode Selection Problem (TMSP) tool

	Conclusion and discussion
	Conclusion
	Discussion

	References
	Appendix
	Appendix to Chapter 2
	Literature review emission factors
	Flight detour distance

	Appendix to Chapter 3
	IATA-code input rectification
	Data cleaning visualization transport costs
	Data cleaning overview
	Missing coordinates input data
	Distance differences between methods
	Sensitivity analysis road assumption

	Appendix to Chapter 4
	Lagrangian function
	Everett result

	Appendix to Chapter 5
	World regions
	Value density per segment
	Overview distances per transport mode
	Overview leadtimes per region
	Multiple linear regression model leadtimes
	Multiple linear regression model ocean transport costs
	TMSP simulation demand characteristics
	TSMP simulation service level boxplot
	TMSP sensitivity analyses mode allocation


