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Abstract

Airline passenger forecasting has been studied for many years and has served airlines with critical
information for their planning processes. This thesis distinguish six di↵erent type of passengers:
economy and business class travellers, departure and arrival transfer passengers and local departure
and arrival passengers. These di↵erent type of passengers follow di↵erent type of processes and
give therefore more information during the planning phase. Furthermore, these type of passengers
share the same data structure and the same features, therefore multi-task learning can be an
interesting approach. With multi-task learning the model leverages shared learning among the
di↵erent type of passengers which in this case improved the performance by 7.4% in comparison
with independent single task models. In addition, the proposed model has outperformed all
benchmark model studied in this thesis. Therefore, it can be concluded that this novel approach is
very promising for industrialization and future research in the field of airline passenger forecasting
and ML.
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Chapter 1

Introduction

Airline passenger forecasting has been a popular research topic over the years. This chapter
describes how this has become the motivation for this master thesis. In addition it will outline
some basic information regarding the context of the study and specify the scope of the research.
Subsequently, the corresponding research questions and thereby structure of the thesis will be
explained and elaborated. At the end the scientific contribution of this thesis will be highlighted
and discussed.

1.1 Research Motivation

This study is conducted in collaboration with KLM Royal Dutch Airlines. KLM is the oldest
operating airline flying under the name and was established in 1919. About 100 years later it
transports more than 3,000,000 passengers a year and has over 33,000 employees.

Over the years, the aviation sector has become a very competitive market to operate in.
Nowadays, customers have a lot more choices between di↵erent airlines. Besides, there are more
di↵erent types of airlines in terms of service and prices they o↵er. Furthermore, the available flight
space has become more occupied and airports have become restricted in their capacity expansion,
this also limits the growth perspective of an airline. Taken this all into account, it has become
critical for an airline to excel in cost control and customer satisfaction in order to stay competitive
(KLM, 2018).

In order to minimize cost and maximize customer satisfaction, operating strategies of an air-
line are crucial. Determining this operating strategies require a lot of planning and planning is
highly complex due to many dependencies and unknowns. The planning process of an airline and
specifically the one of KLM, can be outlined as followed:

Figure 1.1: Airline Planning Process

In a nutshell, an airline starts with a long-term strategy. In this phase the direction of the
company will be established. Normally, this covers a time horizon between 10, 5 or 3 years. Shortly
after this phase, the network planning follows. Network planning is strongly influenced by the
company’s strategic goals. Based on the strategic direction an airline has set, network planning
decisions are made about fleet capacity, growth expectations and flight destinations. However,
one has to check for operational feasibility in terms of infrastructure, manpower and materials. If
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CHAPTER 1. INTRODUCTION

the planned network schedule is feasible, the airline will start calculating prices for the products
and services they are planning to o↵er. This products and services are then made available on
the desired channels within the Distribution & Sales step. Thereafter, Revenue Management is
trying to optimize revenue by getting the airplanes as full as possible while selling the tickets for
the highest possible price. Lastly, within the Operation & Service, planning is done in terms of
resource planning, infrastructure and safety.

This planning process can be significantly improved by leveraging data such as using optim-
ization techniques, descriptive analytics, apps and machine learning (ML). This study will focus
on the ML aspect. One way of applying ML is to predict what could happen in future such that
better planning can be done. A factor that plays a crucial role in planning is knowing how many
passengers to expect. To require this information airlines use a passenger forecast.

It is important to make a clear distinction between two types of passenger forecasts. A passen-
ger forecast can be made to predict the expected demand, hence how many people are interested
to fly or a passenger forecast can be made to predict the number of passengers that will board
the airplane of an upcoming flight. Predicting the expected demand is for this thesis out of scope
and will not be further discussed. This thesis will focus on the number of passengers that will
actually board the airplane of an upcoming flight. This means that cancellations and no-shows
are excluded because these type will not board the airplane.

The passenger forecast that predicts how many passengers will board the airplane has many
benefits for an airline. For example, the fleets within the airline capacity can be allocated such that
as many passengers as possible can fly. Because by knowing how many passengers to expect, one
can choose the airplane configuration that suits best. This may benefit an airline in unnecessary
allocating an airplane that is too small, which means less tickets can be sold or it could be that
too much aircraft capacity is allocated which lead to economical ine�ciencies. Another example is
that an airline must perform feasibility checks. When an airline produces a new network schedule
it has to be checked if there is su�cient sta�ng, if safety regulations are met and if there is enough
infrastructure in place such as check-in desks, baggage conveyors etc. To evaluate this, one must
know the expected number of passengers per time unit and the capacity. Besides this feasibility
check, an airline can also plan resources based on this information. For example, for the check-in
process of the departure hall. If one uses the expected number of passengers for a departing flight
in combination with an arrival profile, one knows how many passengers to expect per time unit.
By knowing how long each process activity takes one can determine how many passenger to expect
per time unit per process activity. With this information waiting times can be calculated, hence
costs be controlled and customer satisfaction can be maximized.

However, looking back at the planning process of figure 1.1, each process step has di↵erent
data available and requires di↵erent outputs of the passenger forecast. Therefore di↵erent type of
passenger forecast models are required. Based on KLM’s request, this study will focus on predicting
passengers per flight between 125-360 days prior to departure. This time horizon is relevant for
two phases of the planning process. For ’Network’ to improve the aircraft allocation process and
execute feasibility checks. For ’Operation & Service’ to improve their resource planning of the
processes.

In terms of outputs, Network wants a passenger forecast segmented in cabin class travellers.
In case of KLM, this is economy and business class. With this information, network can choose
the optimal fleet configuration per cabin class. Operating & Service wants a passenger forecast
segmented in cabin class, local and transfer passengers. A transfer passenger is a passenger type
that will use the airport as a hub to fly to the next destination. In contrary, a local passenger is
one that actually arrives or departs from the concerned airport. This di↵erent type of passengers
follow di↵erent processes and therefore it is relevant for resource planning. For the feasibility check
all six types of passengers are required because di↵erent type of passengers follow di↵erent type
of processes.

In the current situation at KLM, there is already a passenger forecast system in place. However,
due to complaints of its performance there is a clear motivation to investigate a new type of

2
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passenger forecast with the objective to outperform the current system. The current system has a
horizon of 180 days prior to the departure, where the planning process needs a horizon of 360 days
prior to departure. Besides, planners experience that the error margin of the prediction model
is too large and therefore, they do not trust it anymore. For all the above mentioned reasons, a
mandate has been given in the form of a master thesis, to research a better working prototype as
a proof of concept.

1.2 Research Questions

In this section the research motivation will be addressed in a structured fashion by means of
research questions and its scientific contribution. First the main research question will be intro-
duced, where after, the sub-research questions will follow. Lastly an outline will be given how this
master thesis adds value to the current science in the field of ML, the airline sector and the field
of operations & logistics.

Main research question:

How to build a forecasting model based on historical airline data to predict the number of pas-

sengers on flights departing from a specific airport in specific flight categories? Specifically, local

and transfer passengers as well as di↵erent cabin classes with a time horizon of 125-361 days prior

to departure.

In order to answer the main research questions, it is split up in 5 sub-questions.

Sub-research questions:

1. What methods do already exist that concerns passenger forecasting on flight level?

2. Which features can be selected and, if required, be constructed or transformed, to build the

prediction model?

3. What baseline can be used to compare the model performance with?

4. Which machine learning techniques should be used to build a prediction model that produces

the best results?

5. How can the prediction model be evaluated and tested?

1.3 Scientific Contribution

In existing literature on airline passenger forecasting mainly two approaches are taken. A eco-
nometric time series approach or an ML approach. This research extents the ML studies. It is
common to build a ML model per output you want to predict. For this case we want to predict
multiple splits in outputs at the same time, hence multiple type of passengers at the same time.
These type of passengers share the same data structure and the same features, therefore multi-task
learning (MTL) may suits this problem. With MTL, the model leverages shared learning among
the di↵erent type of passengers which can improve the performance. For this thesis project, MTL
is applied with Deep Neural Networks (DNN). To the best of my knowledge this is first time
MTL with DNN is applied in predicting the number of passengers that will board an airplane
for a specific upcoming flight. This could lead to new perspectives on the study of passenger
forecasting. Additionally, it enriches the work on the application field of MTL. Furthermore, ML
explainability theories such as SHAP and partial dependency plots are used to provide insights
in di↵erences between single-task learning (STL) and MTL. Moreover, the problem of passenger
forecasting is extended to a more detailed level, hence, instead of predicting the total number

3



CHAPTER 1. INTRODUCTION

of passengers per flight, di↵erent types of passengers will be predicted. This supports the busi-
nesses side to further improve planning and optimization be knowing more specifically when to
expect which type of passenger. Lastly, this is the first time an o�cial research is conducted in
the Netherlands concerning airline passenger forecasting because there are no Netherlands based
publications available.

4



Chapter 2

Literature Review

Nowadays, big data is almost everywhere. The airline sector and in particular passenger forecasting
benefits from this. How this has evolved and influenced the industry will be discussed in this
chapter. Subsequently, the existing methods on passengers forecasting will be outlined in order to
prove that MTL is never used before on this topic. In the end, MTL will be further explained in
theory and with examples.

2.1 Machine Learning in the Airline Industry

In 2017, a survey was held within the airline industry and reported that half of the global airlines
plan to make significant investments in ML and AI capabilities (Baker, 2018). In essence, ML is a
set of statistical models that find patterns of predictability (Fedyk, 2016). Most of the time large
amounts of data benefits ML in terms of performance. If large amounts of data is improves ML
than airlines such as KLM are an excellent environment for it. KLM has over 3,000,000 passengers
a year, around 33,000 employees and about 330 flights per day; as one can imagine this produces
a lot of data.

In general, airlines generate huge amounts of data. However, this data is not always used as
information. Airlines such as Delta Airlines highlighted in their 2017 investor day presentation,
that they are going to expand ML and AI capabilities to better utilize these huge amount of data
such that it can be used as information for decision making (Delta, 2017). Or Lufthansa Group
who recently invested in an alliance with Hopper to expand their ML capabilities (Lufthansa,
2019). Besides the huge amount of data and investments that are made, there is a very wide range
of possibilities how ML can be applied within airlines.

Supervised learning is by far the most popular approach in the airline industry. For example,
a recent award winning paper (Leeuwen et al., 2020) applied Gradient Boosting Decision Trees
to predict mishandled baggage while transferring to a connecting flight. In addition, they used
process analysis to better understand the business domain, which resulted in discovering new
features regarding process times. Furthermore, it was proven that ML showed better results than
business rules in terms of accuracy coupled with a marked increase in precision and recall.

A less popular method in the airline sector is unsupervised learning. Most of the time it serves
a supervised problem. An example, are the Dutch researchers (Wotawa et al., 2019), who applied
unsupervised learning techniques to detect fraudulent bookings of online travel agencies. They
argue that their anomaly detection can be a valuable tool to identify false bookings which hurts
tickets sells.

Recently, reinforcement learning (RL) has become a popular ML technique applied for airline
decision making processes. Most papers consider airline revenue management use cases. For
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example, (Lawhead. R.J, 2019) used an airline revenue management case to apply RL. It shows
that especially, when the state space is large, the algorithm delivers encouraging computational
behaviour. In addition it outperforms a well-known industrial benchmark heuristic. Or (Shihab
et al., 2019), who used RL to find the optimal policy for Seat Inventory Control and Overbooking
in order to maximize revenue for each flight. It was found that the proposed policy came very
close to the theoretical optimal solution. This promising results has triggered airlines to further
study this type of techniques.

To conclude, ML is not new in the airline business. In contrary, there are a lot of di↵erent
use cases to apply all di↵erent sort of ML techniques. This research will focus on predicting the
number of passengers that will board a specific upcoming flight. This is a typical supervised
learning problem, to be more specific, a regression problem. In the next section a review will be
given about the published literature on this problem.

2.2 Existing Methods for Airline Passenger Forecasting

2.2.1 Time Series Models

For forecasting airline passengers a popular choice is the Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA) model. This method is a combination of two models, the Moving Average
(MA) and Autoregressive (AR). These time series models are in existence since the early 1900’s.
The MA gives a prediction based on the average of a certain consecutive subsets of time series.
The AR is based on stochastic calculations in which prediction are based on weighted sum of
past values. The extra value of combining those models is that they capture non-stationary time
series data in comparison to MA and AR. (Box and Jenkins, 1970) introduced Seasonal ARIMA
(SARIMA), which therefore made it relevant for forecasting airline passengers. Based on a literat-
ure review on econometric models applied in airline passenger forecasting (Fildes et al., 2011), it
appears that the SARIMA model and its derivatives are most frequently applied and show reliable
results.

For example, (Andreoni and Postorino, 2006) experimented with uni-variate and multivariate
time series models to estimate passengers demand in the South of Italy on yearly basis. In addition,
an interesting explanatory variable is introduced, the researcher applied hedonic pricing theory to
determine the fare price such that it can be used as variable. In conclusion, the SARIMA model
with an explanatory variable (SARIMAX) showed the best performance in comparison with the
other time series models.

Another example is (Tsui et al., 2014), who used SARIMA and ARIMA with explanatory
variables (ARIMAX) to forecast passengers throughput at the airport of Hong Kong on monthly
level. They were the first to apply the Box-Jenkins ARIMA methodology for the region Hong
Kong. Di↵erent time series models are applied and again is this study the SARIMA and SARIMAX
outperformed the other time series models.

An overlapping assumption of the time series models discussed so far, is that they assume
a linear dependency between the prediction and the previous data points. There are variants
that try to capture non-linear dependency such as Autoregressive Conditional Heteroskedasticity
(ARCH) by (Engle, 1982) or Generalised Autoregressive Conditional Heteroskedasticity (GARCH)
by (Bollerslev, 1986). However, these models are meant to model volatility of shocks of financial
time series and are therefore not relevant for passenger forecasting. In contrast, machine learning
models have shown relative good performance in capturing non-linear dependencies. Subsequently,
the relevant machine learning algorithms for this topic will be discussed in the next section.

2.2.2 Machine Learning Models

In the literature mostly Artificial Neural Networks (ANN) are applied to forecast airline passengers.
In some cases Support Vector Machine (SVM) are also applied but mostly in combination with an
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additional type of model. Furthermore, there are some interesting cases where tree-based models
where applied.

One of the first to apply ANN for forecasting airline passengers was (BaFail, 2004), who
applied ANN to forecast the number of airline passengers in Saudi Arabia. The forecast was split
up in two outputs predicting international and domestics passengers. For each output a separate
independent neural network was applied. They found that the most influential factors where oil
gross domestic product and capital income in the domestic and international sector.

(Mohie El-Din et al., 2017), applied back propagation NN to forecast the airline passenger in
the region of Egypt. The contribution of this research paper was to use genetic algorithms (GA)
to enhance the ANN. The GA adapts the weights in the model which is proven to show better
performance in this case. Features that were used are: population size, employed population,
per capita income(PCI), Gross domestic product (GDP), gross national product(GNP), economic
growth rate an foreign exchange rate.

(Mostafaeipour et al., 2018) also improved the ANN with another algorithm. In this research
the ANN was optimized with the Bat and Firefly algorithm. In this case study the air travel
demand for Iran was predicted by considering elasticity and population size in each zone of the
country. By means of the optimization algorithm the results show an improvement of the adapt-
ation rate of the ANN.

(Laik et al., 2014), took a di↵erent approach by predicting the load factor of flights by means
of decision trees. This research was conducted in the area of Singapore. Features that were used
are: aircraft type, airline type, day of the week, month of the year, hour of the day, country,
destination. The aim was mainly to predict the demand for the day in order to improve resource
planning.

In the paper of (Godfrey and Gashler, 2018) a new model is introduced. They present a
neural network technique for the analysis and extrapolation of time series data. This technique
is defined as Neural Decomposition. In general, layers with a sinusoidal activation function serve
to decompose the training data into a sum of sinusoids. In addition, layers with non-periodic
activation functions are applied to capture non-periodic components such as trends etc. This
model was tested on multiple datasets among which monthly international airline passengers. The
results show that a simple model generalizes well on di↵erent time series. Each time it outperforms
the popular models such as LSTM, echo state networks, ARIMA, SARIMA, SVR with a radial
basis function, and Gashler and Ashmore’s model.

2.2.3 Conclusions

This work looks at the problem of passenger forecasting, specifically for airlines. Existing and
previous approaches have mostly focused on modelling parts of this problem, such as (Tsui et al.,
2014) with a classical time series approach for total number of passengers on specific time horizons,
(Mohie El-Din et al., 2017) with ANN for predicting on flight level or (Laik et al., 2014) who have
chosen the approach of modelling passengers based on load factors.

These approaches don’t scale to the operational requirements of KLM, where e.g. time series
modelling would involve 1200 separate models for the di↵erent flights and dimensions required.
This adds complexity to deployment, maintenance and retraining. Even regression models per
flight would still require training di↵erent models for each passenger type – e.g. business, economy
etc, resulting in a separate model for each passenger type.

Instead, this work approaches the issue through joint modelling of the di↵erent passenger
groups per flight simultaneously using deep learning multi-task learning resulting in a single model
forecasting all passenger types for the entire network and fleet.

Recent work by (Nekrasov et al., 2019) has shown this approach to work well in the computer
vision domain. (Gao et al., 2019) has translated this approach to the regression domain with
structured data, yielding better performance using a single model rather than modelling the sub-
problems separately.

As is with most current deep learning approaches, practice precedes theory. There is no strong
theoretical framework yet as to why this works well, however (Ruder, 2017) provides several
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compelling intuitive arguments. In the next section, this approach will be explained in more
detail.

2.3 Multi-Task Learning

2.3.1 Introduction to Multi-Task Learning

Typically, with ML the aim is optimize a certain metric. This could be a business Key Performance
Indicator (KPI) or a score on a benchmark. In case of this research, the aim is optimize a regression
performance measure per passenger type such as Mean Absolute Error (MAE) or Mean Squared
Error (MSE). Commonly, a single model per output is trained to perform this task. Subsequently,
the model will be optimized by tuning parameters until its performance does not further improves.
In most cases this process performs well, but it could be that by being single-focused on one output,
relevant information of other outputs might be ignored. (Ruder, 2017) argues that by sharing
representations between multiple related outputs, the model will generalize better and therefore,
in cases, performs better than the original single output model. This approach is defined as MTL.

MTL is part of transfer learning. According to (Sinno J., 2010), it is defined as inductive
transfer learning which aims at finding good feature representation to minimize domain divergence
and classification or regression model error. To formalize the definition of MTL, I would like to
refer to (Zhang and Yang, 2017):

“Given m learning tasks ⌧i, i = 1, . . . ,m, where all the tasks or a subset of them are related,
multi-task learning aims to help improve the learning of a model for task ⌧i by using the knowledge
contained in the m tasks.

MTL has been mostly successfully applied in Natural Language Processing (NLP), speech
recognition, computer vision and drug discovery. This thesis however, argues that it can also be
successful for multi-target regression problems with structured data.

2.3.2 Why Multi-task learning can work?

There are multiple reasons why MTL might work. Looking from a biological cognitive perspective,
it is in some ways similar as how humans learn. Often, if we learn a new task, knowledge of related
acquired tasks are applied. For example, someone who plays field-hockey and tries to learn golf,
will probably learn quicker than someone who has never exercised a sport with a stick.

From a technical perspective, MTL is a form of inductive transfer learning. Inductive transfer
may benefits the model performance by introducing an inductive bias. Consequently, the model
will prefer some hypotheses over others. For example, Ridge regularization results in inductive
bias, where the preference is for sparse solutions (Ruder, 2017). In terms of MTL, the inductive
bias is created by auxiliary outputs. This might result in that the model will prefer hypotheses
that explain multiple outputs instead of one output and therefore will generalize better.

Although some intuitive reasons are already mentioned such as biological cognitive perspective
and inductive bias, there are some underlying mechanism that were researched by (Caruana, 1997).
Caruana is one the first to introduce MTL and can be seen as the pioneer in the field. In the
paper four di↵erent mechanism are mentioned why MTL might work. Furthermore it is assumed
that there are two related tasks A and B, which both have a common hidden layer denoted as F.

First, a MTL approach increases the training data. Each output has probably some meaningless
data in it, which is defined as noise. If a model is trained on output A, the objective is to learn an
optimal representation F, that ignores noise and generalizes well. Assuming that di↵erent outputs
have di↵erent noise patterns, a MTL model learns two outputs simultaneously and might therefore
learn a more general representation. Only learning output A increases the risk of overfitting output
A. Jointly, learning output A and B enables a better generalization by averaging the noise patterns.
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Second, if the training data contain a lot of noise, is limited or high-dimensional, it might be
harder for a model to learn which features are relevant. By MTL additional evidence may be
gathered about which features are relevant due to related outputs.

Third, it might be that feature G is easier to for output A than output B. The reason for this
could be that this feature G interacts in a more complex way or other features impeding the model
to learn feature G. With MTL it can be possible for the model to eavesdrop, in other words, to
learn feature G through output A for output B.

Fourth, MTL has a regularization function by introducing inductive bias to the model. Con-
sequently, overfitting is reduced as well as the Rademacher complexity of the model, i.e. the
models ability to fit random noise.

Furthermore, MTL could also be interesting for practical reasons. For instance, it is easier
to deploy and industrialize one model instead of multiple models. After deployment, less time is
required to keep up the maintenance and monitoring the model. And lastly, tuning the hyper-
parameters has to be done only once instead of doing this per model.

However, there are also reasons why MTL may not be favorable. It requires more e↵ort in the
development phase. Building the model will become more complex, training time will increase and
understanding what is happening might be more di�cult. In addition, it requires more hardware
capacity and it is more di�cult to add new outputs to the model instead of building a new extra
model. Because by adding new tasks to the model, one has to reconsider the loss function, what
parameters to share with the new task and how it a↵ects the other tasks.

In conclusion, the benefits of MTL sounds promising and interesting to test. Therefore, pre-
dicting di↵erent types of passenger can be an interesting use case for the application field of MTL.
Next, a more in-depth analysis will be given on MTL and how it works. This will be done in the
context of Deep Learning.

2.3.3 Methods for MTL in Deep Learning

MTL with Deep Learning is the most common application in the field. It is typically done with
hard or soft parameter sharing between the hidden layers. Both will be explained separately.

Hard Parameter Sharing

Hard parameter sharing was first introduced in (Caruana, 1993). This approach is most common
and intuitive to apply. It basically, shares the hidden layers between all the outputs and has a
separate output layer per output, figure 2.1.

Figure 2.1: Hard parameter sharing for multi-task learning in deep neural networks

By sharing the layers, the chance of overfitting will be significantly reduced (Yang and Hos-
pedales, 2017). In this paper, it is argued that the risk of overfitting is an order N smaller than
overfitting a model per output. In this case, N is denoted as the number of outputs. The reason
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for this might be that the model needs to represent all outputs and therefore has to capture the
more general relationships instead of adding output specific relationships.

Furthermore, hard parameter sharing requires specifying the weights given to the task’s loss.
In this way one, can for example give more priority to a specific task. However, if the weight
becomes too high, it could be that the other task’s losses starve and therefore will not perform
well. Choosing these extra parameters can be di�cult and equalling the weights can be a good
default setting. Finding the right weights is also very time consuming, therefore, for this thesis a
default with equal weights will be chosen initially.

A good example of hard parameter sharing is the paper (Kokkinos, 2017). In this paper seven
computer vision problem are solved with hard parameter sharing. The authors showed that the
computational cost decreases but experience a degradation in performance by adding more tasks
to the model. Other examples of hard parameter sharing are (Nekrasov et al., 2019), (Dvornik
et al., 2017), (Kendall et al., 2018), (Bilen and Vedaldi, 2016), (Pentina and Lampert, 2017).

Soft Parameter Sharing

With soft parameter sharing, each output has its own hidden layers and parameters, figure 2.2.
The distance between the parameters is then regularized such that they become more similar.
This could be done with for example Lasso regularization (Duong et al., 2015).

Figure 2.2: Soft parameter sharing for multi-task learning in deep neural networks

This approach has shown to be more robust towards learning output specific features, which
make sense because each output has its own model. However, it is less popular in the existing
literature. Examples of soft parameter sharing are (Dai et al., 2016) and (Tessler et al., 2017).

Auxiliary tasks

A classic way to improve MTL performance is by adding a related task to the model as an
auxiliary output. For example, (Caruana, 1997) tries to predict the steering direction of a self-
driving car and adds as an auxiliary task di↵erent characteristics of the road. In (Song and Xiao,
2014) landmark detection was predicted with head pose estimation and facial attribute inference
as auxiliary tasks. The authors of (Girshick, 2015) build a prediction model where the class
and the coordinates of an object in an image are learned. (Liu et al., 2015), jointly used query
classification with web search to improve performance. And lastly, (Arik et al., 2017), combined
the phoneme duration and frequency profile for text-to-speech. However, it still is relative unclear
what auxiliary task may be beneficial in practise. For now, finding an auxiliary task is based on
the assumption that it is in some way related to the main task. In addition, there is no standard
notion defining when two task are related to each other. (Caruana, 1997) defines two task as
related when they use the same features for decision making. (Baxter, 2000) states theoretically
if two task share a common optimal hypothesis class, i.e. share the same inductive bias, they are
related. In the paper of (Xue, 2007), it is argued that two task are related if their parameter
vectors in the classification boundaries are close to each other. Although there is some progress
in understanding task relatedness, there is not much advances in recent literature. In conclusion,
it can be stated that task relatedness is not binary. In general, similar task should improve the

10



CHAPTER 2. LITERATURE REVIEW

learning progress of the model. Where in the contrary less similar task should make learning more
di�cult. (Ruder, 2017) states that in case of allowing the models to learn what to share might
temporarily circumvent the lack of theory and make models better even tough the auxiliary task
is loosely related. In conclusion, there should be a clear notation for task relatedness in MTL such
that we know what tasks are related with each other.

2.4 Position of this Research in the Literature

In this chapter literature is discussed on three subjects: the increasing trend of ML in the aviation
industry, the existing methods on airline passenger forecasting and the theory around MTL. From
the literature study it can be concluded that MTL is a new and exciting method to forecast airline
passengers. Although many methods are tried to forecast airline passengers, MTL is a completely
new approach and seems a suitable enhancement on the current literature. The di↵erent type of
passengers share the same features and it is assumed they are somehow related. According to the
theory this could improve the performance of the prediction model and is therefore interesting
to test. Furthermore, this thesis introduces an extension of the problem by predicting multiple
types of airlines passengers in order to better plan for airline processes. With this thesis a Deep
MTL model will be introduced that is optimized with limited time and resources. Hopefully, this
will lead to new perspectives on the study of passenger forecasting and enriches the work on the
application field of MTL.
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Methodology

The methodology for building a passengers forecast applied in this thesis is two-folded, where
both are focused on a proof of concept approach. First, the abstract methodology of the thesis
will be discussed. Second, a more in-depth methodology for the specific use case of the thesis will
elaborated upon.

3.1 Abstract Methodology

The central theme of the approach is the process of demonstrating concepts in MTL by making
use of DNN. These techniques are divided in di↵erent model architectures by experimenting with
di↵erent paradigms such as, single task models, auxiliary inputs and grouping tasks. The final
proposed model can be adopted by any organization or person who wants to apply MTL on a
multi-target regression problem using structured data. Therefore, the purpose of this section is
to extract an abstraction of the methods used in this thesis. This is based on the design science
principle of (Van Aken, 2005), such that the abstract knowledge can be used by professionals for
similar problems they are trying to solve. In (Pe↵ers, 2007), a design science research methodology
(DRSM) is introduced for specific information system problems. This methodology is adhered to
in this thesis and comprises the following process steps: problem identification and motivation,
definition of the objectives of a solution, design and development, demonstration, evaluation, and
communication.

Figure 3.1: DRSM for airline passenger forecasting at KLM
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Figure 3.1 provides a summary of the DRSM process model pertained to this thesis. The
underlying problem that motivated this research, is to improve the current airline passenger pre-
diction model of KLM. The need for better insights about di↵erent types of passengers triggered
the development of a MTL neural network model.

1. Identify problem & motivate: The airline industry is highly complex with many depend-
encies within the operation. Therefore, e�cient and e↵ective planning of the operations is
crucial for airlines to stay competitive. Passenger forecast can serve as important informa-
tion in making decisions within the planning process. Forecasting too many passengers can
lead to oversupply of services and products. Whilst forecasting too little passengers may
lead to decreasing customer satisfaction and operational challenges. Because di↵erent types
of passengers follow di↵erent operational processes, this thesis aims to predict the expec-
ted number of di↵erent types of passengers. One might expect that these passengers are
somehow related, which makes it interesting to apply MTL for this problem.

2. Define objectives of solution: The objective for this research is to improve the current
passenger forecast of KLM and to investigate if MTL might be a better solution compared to
building a single-task model per required output. These required outputs should be available
between 360-125 days prior to departure for any specific upcoming flight.

3. Design and development: The artifact of this thesis is a MTL model that can handle
categorical and numerical features to predict for the required outputs. In addition, these
inputs are transformed in a preprocessing pipeline to improve the prediction models perform-
ance. For the proposed model di↵erent types of architectures are experimented with which
are inspired on literature findings. However, these findings were not directly applicable for
this problem. Therefore, own applications of network architectures have been developed and
tested.

4. Demonstration: A final proof of concept has been developed and proved to perform better
than the current system of KLM. Next to this, it also proved that MTL can work better
than building single task models.

5. Evaluation: The proposed model has been compared with baseline models and di↵erent
architectures. The baseline models consist out of a simple prediction model, the current
system used by KLM and a Gradient Boosting Decision Tree model, which is considered as
a best in class model. The proposed model has shown to outperform the benchmarks model
with 60%, 20% and 2%, respectively. Hence, artifact leads to improved performance and
robust results.

6. Communication: The approach, experiments and results have been shared with the most
important stakeholders. This was mainly done by presentations, providing slide decks and
frequent meetings. Furthermore, a final detailed report is delivered in the form of a master
thesis with a corresponding repository. This repository contains all the code necessary to
reproduce the experiments and results.
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3.2 Proof of Concept Approach

In this section a more in-depth methodology will be discussed which was used for understanding
and experimenting the problem. The set-up was inspired by the CRISP-DM process model as
shown in figure 3.2.

Figure 3.2: CRISP-DM Process Diagram for Data Mining

In essence, this thesis follows the same steps of the CRISP-DM process: business understanding,
data understanding, data preparation, modelling, evaluation and deployment. However, because
this thesis follows a proof of concept approach, deployment is out of scope. The first three steps
will be extensively discussed in chapter 4, 5 and 6 respectively. In addition, the evaluation stage
will be discussed in chapter 9 and provides a comprehensive overview of the results. However, one
of the main focus points of this thesis is to develop a new architecture for predicting di↵erent type
of airline passengers. Therefore, the remaining of this section will be dedicated to explain how the
experimentation methodology for modelling is set up.

The experimentation methodology is based on the lean startup method. The general idea is
to start simple and small. Then add complexity and test for improvement. In our case, the first
step was to start with a simple baseline model. This was relatively easily to build and explain
to stakeholders. It gives an understanding if the right predictions are made, how di�cult the
problem is and if the data is clean. For this relative simple model, a moving average (MA) per
flight was used. This MA uses the three previous flights taken the query moment into account.
For example, if we want to predict a specific upcoming flight with flight number KL 0001 and a
query moment of 150 days before departure. Then we look 150 days back and take the average of
the last 3 flights with flight number KL 0001. Second a more advanced approach is considered.
For the second baseline model, a state of the art model has been studied, which is GBDT. This
is then considered as best in class and the model to beat. Together with the current passenger
forecast model of KLM, these 3 benchmark models are considered as the baseline models. They
can be compared with the proposed models in order to evaluate the performance.

For the neural network it becomes more complex as there are a lot of parameters and options
to explore. First of all, the sequence layers are out of scope for this research. Although it may
improve performance, it is considered to broaden the scope of this research too much and therefore
it might loose focus. Secondly, hyperparameters such as learning rate, batch size, drop out rate,
regularization rates, epochs, activation functions and weight initialization are tested, but will not
be extensively discussed. The reason is to keep focus on what is important for this thesis, namely
the comparison of MTL with single task models.

In terms of MTL, first single neural networks with identical architectures per task will be build
in order to compare with the MTL model. Second, a MTL with hard parameters sharing will be
modelled where di↵erent sharing of parameters are tested, this will be done by grouping outputs
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layers. This term ’groups’ will be explained later on in chapter 8. In addition, auxiliary tasks will
be added to the network to see how it a↵ects the performance.

As evaluation, the models will be compared with a 2-way holdout method (train/test split),
where the most recent year will be the test set. The data used for this thesis is over 140,000,000
records and is therefore considered as a large dataset. According to (Raschka, 2018), when a
having a large dataset, a 2-way holdout method should be su�cient for performance estimations
and evaluation of models. The evaluation is based on performance over the months of the year and
day of the week. Furthermore, the query moment will be taken into account and residuals plots
will be examined. But first, it is necessary to understand the problem and business challenges
more in-depth. Therefore, the next chapter will zoom in on business understanding.
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Chapter 4

Business Understanding

This section will provide a comprehensive overview about how the proposed model can support
the business in several areas and in various planning and scheduling stages. Di↵erent use cases for
passengers forecasting will be discussed and an overview will be given how the system is designed
and fits into the business.

4.1 Business Use Cases

There are multiple instants before departure, where a passenger forecast can serve as an import-
ant information source for decision making. The following enumeration will outline when those
moments occur in time before departure and where the passenger forecast numbers are used for.

• 10-3 year: The strategy of the airline is determined in terms of fleet capacity and growth
planning of KLM and Schiphol. In this case, long term growth estimates of the total number
of expected passengers, is used to decide what direction to take with respect to the current
capacity.

• 3-1 year: Within this time horizon the network planning is scheduled. For this use case,
the passenger demand is required for decisions about which destinations are economically
attractive and which destinations might be less attractive.

• 365-1 days: The airline is trying to decide on the optimal fleet allocation. This in combin-
ation with other factors depends strongly on how many passengers to expect for a specific
upcoming flight.

• 240-125 days: The first resource plannings are made and feasibility checks are performed
to understand if the current capacity can cope with the expected upcoming demand. Fur-
thermore, an airline has to check for customs & security compliance, for if so, do certain
measures need to be taken in advance to guarantee safety. Amongst others, the expected
number of passengers, serves as crucial information to estimate the total demand for the
operation processes.

• 125-1 days: In this stage, the airline plans for catering, cargo, final resource planning,
customs & security, baggage handling and load control. Also here, the expected number of
passengers, serves as crucial information to estimate the total demand.

Although there are many moments a passenger forecast is utilized before an airplane actually
departs, the passenger forecast for this thesis focuses mainly on three important use cases.

1. Aircraft allocation: An airline needs to decide which airplane to allocate to which flight.
The optimal airplane allocation depends strongly on how many passengers are expected. An
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airline does not want to allocate an airplane too small such that less tickets can be sold. On
the other hand, an airline do not want to use an airplane with too much capacity which can
lead to more economic ine�cient airplanes in terms of fuel consumption and other airplane
size related costs. Therefore, di↵erent scenarios must be considered and changes in bookings,
airplane maintenance and crew possibilities must be monitored. The expected number of
passengers is not the only factor to consider but in the end it is important in determining
which aircraft to allocate to which flight.

2. Resource planning: All planners in KLM rely heavily on a passenger forecast to sched-
ule their resources. Their goal is optimize service while minimizing costs. The better the
passenger forecast is, the better the resources can be scheduled. In this case, a bad fore-
cast results in under or over sta�ng, which leads to customer dissatisfaction or unnecessary
costs, respectively. Although, the final resource planning is not made within this passenger
forecast time window, it is used for the initial resource plannings. It is beneficial to make
the initial planning as accurate as possible, so later on not too many stirring changes are
needed. These changes could lead to extra work, misunderstanding, errors and gives third
parties who are involved less time react, which may cause unforeseen problems. For example,
at the departure hall of KLM 50% of the employees are a temporal hire. Some of the jobs
in these processes require special training and skill sets. It is not a given that a temporal
hire contains the necessary skills, therefore, third parties like employment agency need time
to recruit and/or train this type of employees.

3. Feasibility analysis: During planning the network schedule, operational capabilities are
taken into account in terms of feasibility. Network planning provides a tentative flight
schedule. Based on this flight schedule the passenger forecast is used to estimate the number
of passengers to expect. Typical aspects considered are; is there enough manpower, is there
su�cient equipment and can the infrastructure handle it. If for example the passenger
forecast provides a wrong prediction, which follow in an advice that the operation cannot
cope with proposed network, then the proposed network schedule is rejected. This cost
revenue. Subsequently, network planning has to use their resources again to produce a new
alternative flight schedule. This flight schedule could be seen as sub-optimal, assuming the
first schedule was the best option.

Taking the above use cases into account, it is evident that a passenger forecast is of significant
importance for an airline. Understandable, KLM has such a system already in place, so why do
they want to replace it? There are two main reasons for this. First, there is a system in place
called PTRA, that can predict between 1 and 180 days before departure. However, the business
needs a forecasts earlier than 180 days before departure. To cope with this need, employees have
build their own passenger forecast system. So it appears, KLM requires a comprehensive flexible
system that can predict from 360 days prior to departure to 1 day before departure. Secondly,
the PTRA system seems to be outdated. It does not use state of the art techniques and users
have complained that especially on the ’long term’ predictions i.e., between 125 en 180 days before
departure, the outcomes are not reliable.

It can be concluded that there are clear business drivers to design a new forecasting system,
embracing state-of-the-art techniques, to produce the best possible passenger forecast, which is
the focus of this thesis. And in order to prove that the proposed model works better than the
current system of KLM, PTRA will be adressed as a benchmark model. The next paragraph will
focus on the system design, taking into account the underlying business value chain.
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4.2 System Design

This section has the following structure. First, the data value chain will be explained in order to
understand how the system will provide value for the business. Second, the business requirements
of the system are outlined. Third, the required outputs the system must generate are enumer-
ated. Fourth, the available inputs are discussed and briefly explained. Fifth, a discussion about
performance metrics for di↵erent stakeholders is provided. Lastly, a final system design set-up is
o↵ered.

4.2.1 Data Value Chain

Before diving into the passenger forecast model, we first need to understand the data value chain.
Figure 4.1 provides an overview on the data flows and how it eventually creates value for KLM.

Figure 4.1: Data Value Chain for KLM

To elaborate, there is data, maintained in a specific data lake or data warehouse. A prediction
model is build using this data. This model predicts the required outputs used by the planners to
estimate the demand. For example, if a planner of a departure hall needs to know the demand, one
has to know how many passengers to expect per time unit. To achieve this, a planner can multiply
the expected number of passengers departing locally with an arrival profile. Based on this demand,
actions can be taken in terms of resource planning, feasibility checks and security compliance.
Finally, these actions can be measured and analyzed to evaluate how good the decisions were to
determine the business value it has created. To conclude, the value proposition of this thesis is
to build an accurate and reliable passenger forecast to provide insights for the users. The users
eventually need to transform the insights into actual business value. How these insights must be
delivered will be specified in the next subsection.

4.2.2 System requirements

There are mainly three important system requirements for the passengers forecast.

1. It should predict for any specific upcoming flight of KLM.

2. It should predict any moment between 360-125 days prior to departure.

3. The forecast should be more accurate than the output of the current KLM system.

To clarify requirement 1, an example could be that there is an upcoming flight with flight
number ’KL 1234’, flying from ’Schiphol airport’ to ’London Heathrow airport’ with flight date
’2021-01-31’, which is almost a year later than now. Than the passenger forecast model must
predict for this certain flight the six di↵erent type of passengers that going to board.

These requirements are taking into account while modelling the passenger forecast. Although
industrializing is out of scope, for industrializing the proposed model, extra requirements should
be added such as:
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1. Real-time data as input for predictions; more recent data could lead to better predictions

2. On-time predictions; predictions at the right (query) moments

3. 100% coverage; no missing predictions

4. Monitoring and alerting; know the performance of the system, the predictions and when
things break

5. Automatic re-training of the model; new and more data can improve the model.

In addition, it could also be considered to look at the pre-processing pipeline and prediction
model to make it more e�cient such that the running time of the code becomes faster.

4.2.3 System Output

The are multiple ways a passengers forecast can generate outputs from which the business may
benefit. For example, one can choose to predict distributions such that uncertainties are included.
One could also choose to predict directly the expected demand. For example in the departure hall,
instead of combining the expected number of passengers with an arrival profile, one can choose
to predict how di↵erent passenger types flow through di↵erent processes. However, these di↵erent
outputs needs extra e↵ort in terms of change management. To minimize the change needed, it was
decided, in collaboration with KLM, to stick with predicting the expected number of passengers.
As discussed in the introduction, there are 6 types of passengers that are interesting for the use
cases:

1. Economy class passengers

2. Business class passengers

3. Local arriving passengers (Passengers who’s end station is the destination airport)

4. Local departing passengers (Passengers who’s first station is the arrival airport)

5. Transfer arriving passengers (Passengers who use the arrival airport as a hub)

6. Transfer departing passengers (Passengers who use the departure airport as a hub)

This segmentation is based on the fact that these di↵erent type of passengers follow di↵erent
processes. For example, a local departing passenger probably needs to check-in and drop o↵
luggage. In comparison, a transfer departing passenger, needs to walk from one gate to the other.
Or for example, business class passengers have di↵erent privileges compared to economy class
passengers, requiring di↵erent resources.

4.2.4 System Inputs

For the prediction model, only inputs can be used that are available at the required moments.
Moments we want to predict, are also referred to as query moments. Data that is available on the
required query moments are:

• Current state of bookings for the cabin classes

• Locations: arrival and departure station

• Aircraft type

• Aircraft capacity for the cabin classes

• Scheduled date-time information for departure and arrival
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• Flight number

All, except the bookings data, are logged in the O�cial Aviation Guide (OAG) and should be
available for airlines. This guide provides a track record for over 900 airlines. Taken into account
that each airline knows it own state of bookings, we assume that all airlines have these input data
available. Therefore, the proposed model can be generalized for all airlines. These inputs will be
further examined and discussed in chapter 5.

4.2.5 Performance Metrics

In this section, we will clarify what an accurate passenger forecast means. Accurate has di↵erent
meanings for di↵erent type of stakeholders. In this case, we distinguish 3 types of stakeholders:
Business, users and the model. In figure 4.2, an overview is given who those stakeholders are and
what is important for them.

Figure 4.2: Performance Metrics Passenger Forecast

As mentioned in the introduction, customer satisfaction and cost control are of the utmost
importance for an airline to stay competitive. For the business and users there are 3 aspects to
consider in terms of customer satisfaction and cost reduction.

First, by optimal aircraft allocation the maximum number of passengers can board. If for
example, a flight gets more passengers than the aircraft capacity and not a larger one is allocated,
not all passengers can board which will decrease customer satisfaction and future loyalty. Fur-
thermore the airline has to re-book the excess passengers, which cost extra manpower. Sometimes
a fine such as few hundred euro’s to the passenger has to be paid and/or provide a business class
ticket instead of economy class. If necessary the airline also has to pay for hotel accommodation.

Second, network planning provides a tentative flight schedule. Based on this flight schedule,
Operations estimates the demand. The demand is estimated by using the passenger forecast per
flight. Based on this demand, KLM has to check if the operations can cope. Typical aspects
considered are; is there enough manpower, is there su�cient equipment and can the infrastructure
handle it. If for example, the passenger forecast provides a wrong prediction, which follow in an
advice that the operation cannot cope with proposed network, then the proposed network schedule
is rejected. This may potentially cost revenue. Subsequently, network planning has to use their
resources again to produce a new alternative flight schedule. This flight schedule could be seen as
sub-optimal, assuming the first schedule was the best option

Third, resource plannings are made based on the estimated demand, which is based on the
expected number of passengers. By estimating too much demand unnecessary costs are made, by
underestimating the expected demand customer service will be hurt.
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In terms of modelling, the mean absolute error (MAE) is chosen instead of the mean squared
error (MSE), because it is closely related to the business problem, as will be explained hereafter.
With MAE, there is no preference for over-under estimation and it is not necessary to penalize
bigger mistakes. Because by penalizing bigger mistakes, flights with larger capacity will probably
get favoured since there absolute di↵erence will be larger. The formula for MAE with an example
can be seen in figure 4.3

Figure 4.3: Mean Absolute Error

The MAE will be sliced and calculated per output we want to predict. To give an idea how
the performance might be visualized and evaluated, an example is given in figure 4.4.

Figure 4.4: Performance Visualization

The MAE is on the y-axis, representing the model performance and on the x-axis the query
moments prior to departure. Per query moment a residual plot can be made to determine if
the model over or underestimates. In order to be trustworthy, it is important for the model
performance to show stable prediction errors over the query moments. If users experience variation
in the performance, it could be that they find that one time it does give good predictions and
the next time, the prediction are way of target. This instability could lead to distrusting the
prediction model. Furthermore, there are more ways to visualize and evaluate the performance of
the model. This will be comprehensively discussed in chapter 9.
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4.2.6 System Set-up

Finally, this section describes how the system could be designed and which steps should be taken
in the process. Figure 4.5 gives an overview of this process.

Figure 4.5: System Set-up

This is a general framework showing how the system is designed. First data is extracted from
the local server. Subsequently, prepossessing is done with an automated pipeline that filters the
data and generates new features. When the data is cleaned, a split in train and test data is
made for validation procedures. These steps will be extensively discussed in chapter 6. With
the train data, di↵erent models are trained and hyperparameters are optimized. For finding the
right hyperparameters the test set is also used as validation set. The di↵erent architectures of
the models will be evaluated on the test set. Then, the best performing model will be chosen to
make predictions. An the end, one can choose to build an auto retrain for this process or to do it
manually after substantial new additional data is available. However, this is out of the scope for
this thesis, and will not be further considered here.
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Chapter 5

Data Understanding

This section describes the data that is used for predicting di↵erent types of airline passengers
between 126-365 days before departure. The data used is from 2016 till the end of 2019 and
contains 144,195,921 records. The remaining of this chapter will describe which filters are used
for data cleaning, then descriptive analytics will be provided about the target variables and then
on variables that are used for predictions.

5.1 Cleaning and Filtering

In general, two filter rules are applied in the preprocessing pipeline in order to generate a clean
dataset.

1. Drop record where no passengers boarded

2. Drop record where the capacity of the specific airplane is missing

In consultation with the KLM stakeholders it has been decided, that if no passengers boarded,
the record is false. This is because for KLM it would be very unlikely to execute a flight with
no passengers as it will generate no revenue except from the cargo. In total this a↵ected only
0.0112% of the dataset. Furthermore, the capacity information of a specific flight is important for
the prediction model. Because of its importance, rows with no information about the capacity
have been dropped as well. In total this a↵ected 0.02% of the dataset.

5.2 Target Variables

For the specific problem at KLM, there are six target variables that the model needs to predict
for each specific flight number, as discussed in section 4.2.3.

Lets first look at how these di↵erent type of passengers di↵er over the flights. To visualize this,
a histogram is plotted in figure 5.1 till figure 5.6. On x-axis the number of passengers on a flight
are outlined, where on the y-axis the number of occurrences are displayed. Based on the economy
and business class figures, it can be observed that most of the flights consist of smaller airplanes
because most of the occurrences happens for relative smaller number of passengers. Furthermore,
comparing the transfer and local passengers, it can be seen that there are more transfer passengers
than local passengers. For the local passengers it happens often that are no arriving or departing
passengers.
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Figure 5.1: Histogram Economy class passengersFigure 5.2: Histogram Business class passengers

Figure 5.3: Histogram Departure transfer passen-
gers

Figure 5.4: Histogram Arrival transfer passengers

Figure 5.5: Histogram Departure local passen-
gers

Figure 5.6: Histogram Arrival local passengers
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How these target variables have evolved over time is plotted as time series in figure 5.7 till
figure 5.12. To start with, there is a general upward trend for all targets variables. This implies
that the number of passengers travelling with KLM is growing. According to there annual report
(KLM, 2018) this is correct. Furthermore, in all figures a clear seasonality can be observed. In
the first months of the year the least amount passengers are flying, where in the summer months,
June, July and August the most passengers are travelling. In terms of passenger forecasting, these
summer months are the most important to predict accurately. This is because the more passengers
are travelling, the more important planning becomes. In those months operations is working at
almost their full capacity and the e↵ect of an percentage wise improvement becomes in absolute
numbers larger. This is also strongly mentioned by the business side of KLM. This raises the
question, if everything is running almost maximal, why not predict that each airplane is full with
passengers?

Figure 5.7: Economy class passengers over time Figure 5.8: Business class passengers over time

Figure 5.9: Departure transfer passengers over
time

Figure 5.10: Arrival transfer passengers over time
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Figure 5.11: Departure local passengers over time Figure 5.12: Arrival local passengers over time

Suppose you would predict that every airplane is full, it means that the load factor is one
for both cabin classes. The load factor for example, for economy class is the number of economy
class passengers divided by the capacity for economy class. Figure 5.14 shows how the mean load
factors is over time.

Figure 5.13: Load factor economy class passengers over time

The load factor for economy class comes close to one in the summer months, where in the
earlier months of the year it is considerably lower. These load factors are strongly influenced
by a department within KLM named Revenue Management. Revenue Management is focused on
optimizing profit by selling as many seats for the best possible price. For economy class this means,
if the airplane is becoming full with bookings, they increase the ticket price, which therefore could
result in less tickets sold. For the business class cabin it is a completely di↵erent game.
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Figure 5.14: Load factor business class passengers over time

The load factor for business class is around 0.5 throughout the year. Revenue Management
follows a di↵erent kind of strategy for this cabin class. They want to create a feeling of privilege
for the customer. Thus if a potential customer wants to book business class, they want him/her to
see that the cabin is almost empty so that they feel special. Within Revenue Management there
are a lot of strategies, algorithms and business rules. They are constantly playing with the ticket
prices and load factors to optimize revenue. This all is very interesting but out of scope for this
thesis. In the end, predicting that every airplane has a load factor of one will not give a good
performance. In addition, it does not happen often, that an airplane is fully booked.

Furthermore, in practise, the number of bookings does not equal the number of passengers.
Passengers do not show up, employees of KLM join the flight without an o�cial booking or too
many seats are booked. Figure 5.15 and figure 5.16, show the mean absolute error between the
total number of cabin class passengers and the total number of bookings for this class on flight
level.

Figure 5.15: MAE economy class passengers and
bookings over time

Figure 5.16: MAE business class passengers and
bookings over time

As can be seen in the figures is that the number of bookings never equals the number of
passengers that have boarded. Therefore, it can be concluded that predicting the number of
passengers is di↵erent than predicting the number of bookings. By predicting the number of
bookings instead, it will result in an additional error in the bias of the model.
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Furthermore, it was observed that all target variables show an upward trend with the same
seasonality. This might indicate the target variables are related to each other. Figure 5.17, shows
a heat-map of the correlations between the target variables.

Figure 5.17: Correlation Matrix, target variables

In some cases, it is not possible to calculate a correlation because for some flights the target
variable is zero, hence, not all flights have transfer or local passengers on board. There are
some strong correlations between the cabin classes, which makes sense, because the larger the
airplane the more capacity is available. Furthermore, there are some strong correlations between
the transfer passengers and cabin class passengers. According to the business almost 70% of the
passengers use Schiphol as a hub. Taking into account that 50% of all flights start from or have
Schiphol as their final destination, this might clarify the correlations. Furthermore, the local
passengers show weak or no correlation with the other target variables.

5.3 Predictors

The system inputs have been clarified in previous chapter. In this section they will be discussed
in more detail. Table 5.1 presents the inputs by name, which data type it has, an explanation plus
an example and what the source of the data is.

Table 5.1: Overview predictors

Name Variable Data Type Information Example Source

Flight number String The flight number of the flight leg KL 1234 OAG
Aircraft subtype String The type of the aircraft 77W OAG
Arrival station String The arrival airport of the flight leg AMS OAG
Destination station String The departure airport of the flight leg CDG OAG

Scheduled departure datetime Datetime
Departure date time of the
flight leg according to schedule

2019-21-01 OAG

Scheduled arrival datetime Datetime
Arrival date time of the
flight leg according to schedule

2019-22-01 OAG

Bookings economy class Integer
Current number of bookings made
for economy class

55 KLM

Bookings business class Integer
Current number of bookings made
for business class

10 KLM

Capacity economy class Integer Number of technical economy class seats 100 KLM
Capacity business class Integer Number of technical business class seats 20 KLM
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Categorical Predictors

The categorical variables flight number, arrival and destination station are high in cardinality.
They have 1029, 176, 175 unique categories respectively. Furthermore, Amsterdam Schiphol Air-
port is the most frequent airport in the data because it is the home airport of KLM. It covers
roughly half of the data records for either arrival or departure station. In terms of aircraft sub-
types, mostly small airplanes are used. There are small and large body airplanes. The small
body airplanes are: E95, E90, 74E, 73W, 333 and 73J. This type of airplanes are mostly used for
European flights. The large body airplanes can also transfer cargo, this types are: 772, 789, 74E
and 781. Figure 5.18 shows how many times each aircraft sub type occurs in the total dataset.

Figure 5.18: Value counts of aircraft types

In terms of transforming the categorical features three options have been considered: one-
hot encoding, ordinal and label encoding. One-hot encoding transforms the categories to binary
dummy variables. Hence, each category gets its own feature and then with a boolean it is indicated
if the row corresponds to this feature with ”1” and if not with ”0”. With the many categories the
dataset has, this is not ideal because the dimensionality of the dataset will explode. The trade-o↵
between ordinal and label encoding is contingent of the existence of any ordinality in the categories.
In our case, there is no ordinality. For example, it does not matter for destination feature if
Amsterdam Schiphol airport comes first or London Heathrow airport, hence label encoding has
been chosen. With label encoding each unique category gets its own unique number assigned.
This number then replaces the string in the cell.

5.3.1 Numerical Predictors

Besides the four categorical inputs, there are six numerical inputs. This could be extended by
feature engineering. There are a lot of possibilities with feature engineering. However, for this
thesis it is kept simple because the goal is more focused on the modelling part instead of finding
new features. Subsequently, only the timestamp features are used to extract new features:

• Minute of the hour

• Hour of the day

• Day of the week

• Week of the year

• Month of the year

• Year

• Days before departure (Query moment)
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Examples of features that could possibly add value and could be examined in the future are:
last time the flight occurred, how many times a week does the flight takes place or how many
flights with the same destination take place the same day etc.. These types of features could be
further investigated as follow up work of this thesis, however for now they are out of scope.

For the numerical features it could be interesting to investigate if and how they are correlated.
To visualize this, a correlation heat map is plotted in figure 5.19.

Figure 5.19: Correlation Matrix, predictors

In general, there are no correlations between date and time features and other predictors.
Furthermore, there is a strong correlation between the economy class capacity and the business
class capacity. This makes sense because the larger the airplane the more capacity there is available
for both classes.

What is also interesting to notice is that over time airplanes are swapped during the planning
period. This means that the capacity configuration changes for a certain flight over the query
moments. Figure 5.20 shows a histogram displaying how many times the capacity has changed for
a certain flight in the time period between 360 and 125 days before departure.
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Figure 5.20: Correlation Matrix, predictors

Most of the time the configuration changes at least once, but a nine times change in configura-
tion during the planning occurred as well. These changes make it more di�cult to predict because
the capacity information is not a constant.

Besides these aircraft swaps and the days before departure, there is another temporal feature,
namely, the current status of the bookings. Figure 5.21 and figure 5.22 show how the load factor
of the number of bookings has evolved on average over the days before departure. The load factor
for the bookings is the number of bookings divided by its capacity. For example for economy class
it is the number of economy class bookings divided by the economy class capacity. In the figure
it can be seen that the longer before departure the lower the load factor. The closer to departure
the more information is available about this load factor.

Figure 5.21: Load factor economy class bookingsFigure 5.22: Load factor business class bookings

For transforming the numerical features a scaling approach has been chosen. Scaling benefits
the learning of the model especially with neural networks. By having the same scales among
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features, the model does not prefer to learn large weights for large values. Large weights values
can lead to instability in the network which results in poor performance during learning. For the
scaling two options are considered: normalizing and standardization. The normalizer transforms
the data such that the minimum value is ”0” and maximum value is ”1”. This is done by using
the following formula:

xnew =
x� xmin

x� xmax
(5.1)

Where xnew denotes the new scaled value, x the original value, xmin the minimum value of
the single numerical feature and xmax the maximum value of the numerical feature.

With standardization, the data is transformed such that the mean is zero and the standard
deviation is 1. This is done with the following formula:

zi =
xi � x

s
(5.2)

Where zi denotes the z-score, xi the data point, x the sample mean and s the sample standard
deviation. Standardization might especially be useful for models that rely on Gaussian processes.
Furthermore, there are di↵erent arguments to use the one or the other. However, in this case, a
performance comparison has been done. The comparison test is based on comparing the MAE
performance on the test set. Out of this test it was concluded that the normalizer performs almost
10% better. Therefore, the normalizer is chosen to scale the numerical features.

5.3.2 Relationship between predictors and target variables

For the categorical predictors a Eta squared is applied to test the association between the target
variables and the categorical predictors. Table 5.2 shows the results of this test. If for example the
value is 0.52 such as with flight number on economy class passengers, it means 52% of all variance
for economy class passenger is attributable to flight numbers.

Predictor/ target
Eta squared

Economy
class

Business
class

Departure
transfer

Arrival
transfer

Departure
local

Arrival
local

Flight number 0.52 0.724 0.668 0.669 0.706 0.706
Aircraft subtype 0.732 0.007 0.255 0.237 0.157 0.129
Arrival airport 0.499 0.349 0.003 0.002 0.168 0.078
Departure airport 0.522 0.327 0.001 0.003 0.053 0.152

Table 5.2: Eta squared test for categorical features on target variables

For the numerical features a Pearson correlation test is applied to quantify the association.
The results are presented in table 5.3.
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Pearson Correlation test

Predictor/ Target
Economy
class

Business
class

Departure
transfer

Arrival
transfer

Departure
local

Arrival
local

Economy capacity 0.921 0.771 0.342 0.330 0.271 0.284
Business capacity 0.777 0.822 0.322 0.307 0.201 0.207
Economy bookings 0.450 0.374 0.153 0.185 0.146 0.176
Business bookings 0.355 0.422 0.136 0.149 0.121 0.128
Minute of departure 0.101 0.095 0.091 -0.026 0.067 0.014
Hour of departure 0.168 0.086 0.114 -0.075 0.070 0.072
Day in the week 0.024 0.024 0.005 0.003 0.014 0.023
Week of the year -0.011 -0.012 -0.015 -0.004 0.005 0.007
Month of the year -0.012 -0.012 -0.014 -0.004 0.002 0.007
Year 0.019 -0.03 -0.005 -0.003 0.027 0.023
Days before departure 0.140 0.130 0.066 -0.061 0.038 0.028

Table 5.3: Pearson correlation between numerical features and target variables

Although logically the features should indicate how many of which type of passengers are going
to board, the correlation metrics do not show any specific predictive features. Therefore, a more
complex model is needed to model the underlying complexities and non-linear relationships. This
will be extensively discussed in the two upcoming chapters.

5.4 Validation Procedure

The data available covers the years 2016 to 2019. As shown in the previous chapter there is a
clear seasonality in the dataset. Therefore, a split in training and test data should comprise all
seasons in order to capture the di↵erent patterns. For this reason it has been decided to take the
last year(2019), the most representative one, as the test data. The remaining data will be part of
the training set. Figure 5.23 shows the data split visually.

Figure 5.23: Validation procedure, data split

The choice for this split is based on (Raschka, 2018). This paper recommends that when having
large datasets, a 2-way holdout method (train/test split) should be su�cient for performance
estimation for the models. After this split, the train set contains 104,531,717 records and the test
set 39,664,204 records. Furthermore, a rolling window method is considered, but because of the
huge amount of data used for this thesis, this procedure is unfortunately out of scope as it would
have resulted in very long training and testing times. Due to the time constraints and shortage of

33



CHAPTER 5. DATA UNDERSTANDING

resources for this project, this would have limited the number of experiments to try. For future
research, given su�cient resources, it is recommended to include a rolling window validation to
be more confident about the results of the experiments.

Finally, before going on to the modelling part, lets have a look at how the final data frame
looks like after filtering, feature engineering and scaling.

Feature name Example Data type

Flight Number 5 Integer
Aircraft subtype 3 Integer
Arrival airport 143 Integer
Departure airport 87 Integer
Economy capacity 0.644 Float
Business capacity 0.575 Float
Economy bookings 0.052 Float
Business bookings 0.033 Float
Minute of the hour 0.12 Float
Hour of the day 0.478 Float
Day of the week 0.5 Float
Week of the year 0.788 Float
Month of the year 0.818 Float
Year 0.667 Float
Days before departure 0.004 Float
Economy class passengers boarded 221 Integer
Business class passengers boarded 27 Integer
Departure transfer passengers boarded 87 Integer
Arrival transfer passengers boarded 13 Integer
Departure local passengers boarded 44 Integer
Arrival local passengers boarded 17 Integer

Table 5.4: Final data frame for modelling
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Chapter 6

Multi-task Learning with Deep

learning

This chapter will explain the proposed model for predicting di↵erent type of airline passengers
simultaneously. First the model architecture will described. Second, a comparison between single
task neural networks and MTL will be given. Third, experiments regarding what to share in the
network and auxiliary tasks will be discussed. Last, conclusions will be given about the final
choices of the proposed model architecture.

6.1 Model Architecture

In this section the architecture of the proposed model will be explained. Out of the limited
experiments done, the best established architecture in terms of MAE performance on the total
loss function of the test set, is presented in figure 6.1. All neural networks are implemented with
the Keras library using the functional API. For MTL it is required to use the functional API since
it gives much more flexibility in modelling. Furthermore, all models are trained on a local server
of KLM with 8 GPU’s and memory of 36 GB.

Figure 6.1: Multi-task learning final deep neural network architecture
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In total there are 18 inputs for the model, whereof 4 categorical features and 14 numerical
features. Each categorical feature has its own embedding layer. After the numerical inputs a
fully-connected dense layer of 128 neurons is placed. Each dense layer has a ’ReLu’ activation
function and ’HeNormal’ initialization. The relu activation uses the following formulate:

f(x) = max(0, x) (6.1)

Where x denotes the input of a neuron. The ’HeNormal’ initialization draws samples from a
uniform distribution within [-limit, limit] where limit is sqrt(6/fan in) and where fan in is the
number of input units in the weight tensor. This based on the paper of (He, 2015).

The embedding layers and dense layers are concatenated to a dense layer of 512 neurons. For
regularization an Ridge l2 regularizer and dropout is added to network. The network follows a
diverge structure and in the end, before each output layer, a separate dense layer of 64 neurons
is placed. Without going into much detail on every parameter, there are 5 elements that have a
relative big impact on the performance. These will be discussed in the next subsections.

6.1.1 Loss Function

As discussed earlier, the evaluation metric of the prediction model is MAE. This however does not
have to be the loss function during training per se. It could for example be that one chooses MSE
as loss function for optimization and uses MAE for the final evaluation. Therefore, as loss function
the MSE and MAE are considered. These two have been compared by running exactly the same
experiments, with the same data and same model architecture. MAE as loss function resulted in
5% better performance in comparison with MSE as loss function. In this respect, performance is
defined as the MAE on the test set where each target is summed to a total MAE. Based on this
results the MAE as loss function has been the final choice for this proof of concept. In addition,
all outputs are weighted equally, therefore, during training they are considered equally important
to learn. The loss function can be formulated as follow:

X

j=0

L(ŷj , yj) (6.2)

Where j is denoted as the number of tasks, in this case there are six outputs to predict thus
six tasks. L(ŷj , yj) is denoted as the a single loss function with MAE for task j, where ŷj is the
predicted value and yj the value value.

Generally, this loss function is the mean of the overseen data of the absolute di↵erence between
the predicted and true value. Where N is denoted as the number of observations. The MAE loss
function is less sensitive to outliers in comparison with MSE. In this case, it looks like this benefits
predicting airline passengers for KLM. This is probably because the errors for large airplanes
in comparison with small airplanes will weight more with MSE. Consequently, flights with large
airplanes will be preferred during training. In practice most of the KLM flights are with small
airplanes, therefore on average this would decrease the total performance if large airplanes are
preferred more.

6.1.2 Embedding Layer

Each categorical input has its own embedding layer. This improved the total loss performance
over the test set with approximately 5.1%, whilst keeping the rest of the network and data exactly
the same. In general, the embedding layer compresses the input feature space into a smaller space
and therefore embedding layers can only be used as the first layer in the model. In short, the
embedding layer tries to learn the optimal mapping of each of the unique categories and converts
it to a vector of real numbers. The size of this output vector can be seen as a hyper parameter
and is equal to the output dimension. For now a common rule in NLP is used namely,

outputdimension = Min(64,
Nunique

2
) (6.3)
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Where Nunique is denoted as the number of unique values for the category. The output dimen-
sion could be further optimized by doing more research about how to find the optimal value. This
however, is not further tested and investigated and could be done in future research.

6.1.3 Extra Dense Layer

A relative small improvement for the network is created by adding a dense layer after the numer-
ical inputs. This dense layer contains 128 neurons and like the other dense layers has a ’ReLu’
activation function with ’HeNormal’ weight initialization. Overall, when keeping everything the
same and only remove the dense layer after the numerical input, the total performance decreases
approximately 1.2%. Although this is not a big number, it is still worthwhile because especially in
the airline sector each percent counts. The dense layer adds value as it provides extra flexibility
and space to learn the interactions between the numerical features. Possibly, there is some extra
complexity in these interactions which can be absorbed better with this extra dense layer.

6.1.4 Regularization

Because the model tends to overfit relative fast, two regularization methods are tested. Both
improved the network’s performance which indicates regularization benefits predicting airline pas-
sengers on our query moments.

Dropout

The first regularization method discussed is the dropout method. The dropout method randomly
ignores or ’droppes out’ layers output. Consequently, each update to a layer, while training, gives
a di↵erent view of the configured layer. This makes the training process more noisy and forces
nodes that are not dropped out to learn more of the inputs. (Srivastava et al., 2014) argures that:
”Units may change in a way that they fix up the mistakes of the other units. This may lead to
complex co-adaptations. This in turn leads to overfitting because these co-adaptations do not
generalize to unseen data.”. Therefore, dropout can help to prevent overfitting and therefore can
be an alternative as regularization method. By experimenting with dropout layers, it is found that
the performance decreases 7.8% when the dropout layers are left out. Therefore, it is strongly
advised to include dropout layers in the model. For further optimization of the prediction model
it could be interesting to experiment with di↵erent parameters for the dropout rates.

Ridge regularization

The second regularization method tested are the Lasso, denoted as l1 and Ridge, denoted as
l2 regularization. L2 regularization adds squared magnitudes of coe�cients as a penalty to the
loss. Where l1 adds absolute value of magnitude of coe�cient as penalty to the loss. Both
methods are applied on the dense layers with 512 and 256 neurons. Overall, the l2 regularization
performed best and improved the total loss performance on the test set with approximately 6.2%.
The l1 regularization improved the performance with approximately 3.1%. Therefore, the l2
regularization has been chosen for the two dense layers.

6.2 MTL versus Independent Neural Networks

6.2.1 Performance Comparison

Now the final model architecture has been clarified, the first interesting comparison to make is
MTL versus independent single task neural network models. Let’s examine how MTL performs
compared to a single network for each required output, with the same architectures only one
output layer instead of six. Table 6.1 shows the results of both approaches on the test set. The
number per target variable are first grouped by query moment and then the average MAE score
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is taken on that specific query moment. In that way each query moment is considered equally
important and query moments with more data records will not out-weight query moments with
less data records. This results in a data frame where each query moment has its own average
MAE score. Table 6.1 show the average score of this dataframe scores. In addition, a last row is
added to the table, where the total score can be seen. For the total MAE and standard deviation
scores all MAE’s and standard deviations of the target variables are summed.

Table 6.1: Comparison Multi-task learning versus Single-task models

Target Category Multi-task learning Single-task learning Di↵erence

Economy Class
MAE 12.405 12.760 0.355
st.dev 1.204 1.308 0.511

Business Class
MAE 2.883 2.765 -0.118
st.dev 0.346 0.221 0.266

Departure Transfer
MAE 8.445 8.240 -0.205
st.dev 0.894 0.790 0.418

Arrival Transfer
MAE 7.934 8.378 0.444
st.dev 0.842 1.008 0.554

Departure Local
MAE 7.756 7.888 0.132
st.dev 0.628 0.728 0.368

Arrival Local
MAE 6.941 10.038 3.097
st.dev 0.543 1.31 1.192

Total
MAE 46.364 50.069 3.705
st.dev 1.941 2.376 1.371

As can be seen in the table, MTL performs overall better than single task models, in percentage
MTL performs approximately 7.4% better in terms of MAE. To compare the MAE between the
two models a Wilcoxon signed-rank test is applied. Each target variables shows a P-value of 0.000.
Therefore, the di↵erences between STL and MTL on MAE for each target variable are signific-
ant. In terms of variation of the query periods, MTL shows more stable predictions because the
standard deviation is lower. Only the business class passengers and departure transfer passengers
perform better with STL. That STL performs better than MTL is known as negative transfer.
With negative transfer sometimes independent networks perform better. There are two reasons
why negative transfer happens. First there is an optimization challenge, if gradients of one task
interfering with the training of another task. Basically when you apply it, the network computes
gradient for task one and computes gradient for task two. If gradient one hurts the weights for
task two then optimization becomes more di�cult. Furthermore, tasks learn at di↵erent rates. If
one task is learning a lot faster than another task, it might end up learning task one very quickly
and might get stuck trying to learn task two because it has already learned and does not want
to learn something else. Essentially, the optimization gets stuck in a local optimum. The second
issue might be a limited representational capacity. In general, MTL networks need to be much
larger than a single task network. If the network is not large enough then it is going to under fit,
which could be seen as a symptom of limited representational capacity. However, in this case, the
exact same networks are trained, therefore it might not be the best performance, but is the most
fair comparison.

Furthermore, within the loss function each task gets the same weight, hence each task is con-
sidered equally important. These weights can be adjusted to what task you find more important.
Therefore, one could consider to give more weight to business class and departure transfer in order
to match or even outperform the performance of STL. Changing the weights in the loss function is
however a whole new research topic and requires more time and resources to investigate. For this
thesis project it is out of scope but would be a recommend step to follow up separately. To better
understand how MTL di↵ers from STM, the next subsection will discuss the di↵erence in feature
importance, how individual predictions are made and the partial dependencies of the features.
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6.2.2 Di↵erence in Feature Importance

The feature importance is based on SHAP (SHapley Additive exPlanations) values and DeepLift,
which is a method to explain predictions proposed by (Lundberg and Lee, 2017) and (Shrikumar
et al., 2017), respectively. The feature importance for all target variables are calculated on 5000
records of the test data. According to (Lundberg and Lee, 2017), this number should be su�cient
to get a general overview of the model and its feature importance on the total dataset. Each
passenger category will be discussed briefly.

Figure 6.2: SHAP Feature Importance of Multi-task learning and Single task learning for Economy
Class

For the economy class passengers it is interesting to see is that MTL gets more value out of
the flight feature. This could be because with MTL it learns more examples of the same flight
and therefore learns extra patterns throughout the other tasks it tries to predict. This is also the
case for some more general features such a week number, month, hour and minute of departure.
STM in contrast, learns more specific for the task by assigning more value to arrival and departure
station. In addition, it uses the bookings data more for its predictions.
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Figure 6.3: SHAP Feature Importance of Multi-task learning and Single task learning for Business
Class

For business class, it is interesting to see that MTL uses the economy capacity features a lot
more than the STM. This is not a task-specific feature for business class but still MTL uses it.
However, taken into account that STM performs better on this output, it might not be the best
way to learn for a neural network. Therefore, it seems that negative transfer has taken place
where with learning this task this features was interfered by the other tasks. Furthermore, STM
uses the departure station, bookings data, days before departure and flight number more. Taken
the performance di↵erences into account, it might be that more information is contained in these
features.

Figure 6.4: SHAP Feature Importance of Multi-task learning and Single task learning for Depar-
ture Transfer

Predicting the target departure transfer passengers is in terms of MAE performance better
with STM. Looking at the feature importance, this is probably because it uses the departure and
arrival station better. According to the business, there are typically stations that are used as hub
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and that makes it a more task specific features. However, this could than also be expected for the
target: departure local, arriving transfer and local.

Figure 6.5: SHAP Feature Importance of Multi-task learning and Single task learning for Arrival
Transfer

A large di↵erence between MTL and STM can be observed between arrival and departure
stations. Perhaps both balance each other out but this should be further investigated. This
information alone is not enough to make further conclusions. Another relative large di↵erence can
be seen at the aircraft sub-type feature. In terms of MAE performance, MTL performs roughly
5% better. Besides the arrival and departure station, it looks like aircraft sub-type feature add
extra value to the learning of the prediction model.

Figure 6.6: SHAP Feature Importance of Multi-task learning and Single task learning for Arrival
Local

The same patterns can be observed for the arrival local passengers. Only, in this case the
di↵erences between the station are bigger. Interestingly, the di↵erence in performance is also
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much bigger. MTL performs in terms of MAE approximately 30% better. This might indicate
that with MTL the shared learning helps to better understand the departure and arrival station.

Figure 6.7: SHAP Feature Importance of Multi-task learning and Single task learning for Depar-
ture Local

Lastly, the departure local passengers will be discussed. Besides, the arrival and departure
station, it seems that MTL uses more general features such as: month, economy bookings and
days before departure. Overall, it can be observed that there a di↵erences in feature importance

between STL and MTL, hence, the models uses the features di↵erently. This may imply that the
models learn di↵erently. To better understand how this features interact and are distributed over
the SHAP values, the next section will look into how individual flights are predicted with STM
and MTL.

6.2.3 Di↵erence in Individual Predictions

Figure 6.8 shows an example of how MTL makes a prediction for a certain flight. This example,
is flight number ’KL 0569’ flying to airport code ’AMS’ with flight date ’2019-08-12’.

Figure 6.8: SHAP individual prediction for economy class with multi-task learning model

This figure can be interpreted as follows. The MTL models has predicted 159.44 economy class
passengers. The base value is 261.4. This base value is the average model output over the training
dataset that is passed. Features that increase the base value are colored in red and features that
decrease the base value are in blue. The size of the visual representation of the feature represents
the magnitude of its contribution. So in this case, the economy bookings with a feature value of
0.343, had the most impact on the prediction. Hence, subtracting the blue bars magnitude from
the base value and adding the red bars magnitude, results in the output (prediction)value.

The next figures displays exactly the same flight only now predicted with STM.
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Figure 6.9: SHAP individual prediction for economy class with single-task model

The base value is roughly the same, the prediction however is di↵erent. Looking at the red
part, STM uses more features with greater magnitudes to increase the prediction. Whereas the
blue part is more or less similar to MTL, as expected and described in a previous section. The
more general features are clearly used di↵erently by MTL and STM.

In addition, figure 6.10 and figure 6.11 provide another example. This example, is flight number
’KL 0714’ flying to airport code ’PBM’ with flight date ’2019-01-01’.

Figure 6.10: SHAP individual prediction for business class with multi-task learning model

Figure 6.11: SHAP individual prediction for business class with single-task model

The base value is again roughly the same for both models. The red part has more or less the
same magnitude which increases the prediction. However, the blue part di↵ers. The di↵erence
lays mainly in the use of the general features such as hour of departure and week of the year. The
same patterns occur for the other targets as well.

After this analysis of the importance of the di↵erent features with respect to the individual
predictions, it can be concluded that features in STM and MTL are used di↵erently and have
di↵erent importance. This might indicate that they follow a di↵erent learning pattern. To get
more insights in this matter, the next section will describe the partial dependencies of the features
within the models.
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6.2.4 Di↵erence in Partial Dependencies

In this section, the target variable arrival local passengers will be used as example. In the previous
section it was discussed that more general features such as number of days before departure or
week of the year, di↵er in how they are used between MTL and STM. With partial dependence
plots (PDP) it can be shown how these features a↵ect predictions per model. It basically works
as follows; there is a fitted and trained model in place, we take a data record of the test data and
repeatedly alter the value of the feature we want to test. This results in a series of predictions,
which can be plotted to visualize the pattern about how the model uses the feature. An example,
is given for the feature: days before departure.

Figure 6.12: PDP, Single-task learning Figure 6.13: PDP, Multi-task learning

In the top of the figure, a legend is provided which show which rowkeys are used. A rowkey
makes a flight unique by, flight number, destination and date of flight. In this case, five unique
flights are used for PDP. The tick blue line is the average of these five flights. By altering the
feature value, and predicting with the di↵erent values for it, it can be observed how the models
uses this feature. For example, figure 6.12 displays the single-task learning model and figure 6.13
the MTL model, both on the same records, with the same changes for the feature days before
departure. Analysing these figures, show that STM reacts more (steeper slope lines) on changes
in feature values than MTL. This confirms the theory discussed in chapter 2 that MTL has a
regularization e↵ect. Therefore, MTL is more robust for changes in feature values compared to
STM. Furthermore, as explained in the previous section, regularization works positively for this
problem, where arguments where given with drop out layers and Ridge regularization. Interest-
ingly, some rowkeys show di↵erent learning patterns. For example, the light blue line belonging
to ’KL1977AMS2019-12-31’. With STM, the value increases almost linearly with the number of
days before departure. In case of MTL, it shows a more a logarithmic pattern. The same holds
for rowkey, ’KL1791AMS2019-12-30’. This may confirm that between STM and MTL, di↵erent
types of learning patterns of the features take place.

PDP, shows how a single feature impacts the predictions, but what they do not show is the
distributions of e↵ects. SHAP dependence contributions plots provide more or less similar insights
but add more detail to it. Figure 6.14, shows in addition to the PDP a distribution plot of the
feature ’days before departure’.

44



CHAPTER 6. MULTI-TASK LEARNING WITH DEEP LEARNING

Figure 6.14: SHAP Dependence Contribution Plot

This figure shows, how di↵erent values for a feature influence the SHAP values, hence, the
contribution to the prediction. The x-axis denotes the di↵erent (scaled) values for the features,
where y-axis show the SHAP value. For this example, 5000 records are visualized on the target
departure local. The red points indicate the STM and the blue dots MTL. The shape of both
models is more or less the same. Getting closer to the departure day decreases the prediction,
whilst longer before departure increases the prediction. Because higher values for the feature are
towards right of the x-axis. The more to right, the higher the SHAP value, hence, the more value
is added to the base value. Approximately, on the half of the x-axis, the contribution becomes
negative, hence, value is subtracted from the base value. This is consistent with the PDP plots as
shown in the previous paragraph. In these PDP plots it was also clear that MTL is less a↵ected
when changing the feature value. This can be seen even better in the SHAP contribution plot.
The blue points are less wide spread than the red colored points, which confirms the expected
regularization e↵ect of MTL.

6.3 Grouping tasks and Auxiliary inputs

As for MTL, multiple experiments have been performed to better understand what layers to share
in the model. In addition auxiliary inputs have been tested as well because according to the
literature, it may improve the performance. Concerning what to share, three di↵erent groupings
are tested. The first grouping is similar to the basic architecture as discussed in section 6.1, and
referred to in figure 6.1. This is for now denoted as ’no-groups’. The second grouping contains 2
groups. In this example, the cabin classes are grouped and the local and transfer passengers are
grouped. The architecture can be seen in figure 6.15.
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Figure 6.15: Multi-task learning final deep neural network architecture with 2 output groups

The third grouping contains 3 groups, where the cabin class is one group, the arrival passengers
a group and the departure passengers is a group. The architecture can be seen in figure 6.1.

Figure 6.16: Multi-task learning final deep neural network architecture with 3 output groups

Next to the sharing part, an auxiliary task is also experimented with. For the auxiliary task,
the total number of bookings for the cabin class is added to the network. The hypothesis is that
this would be a related task to the economy and business class passengers and therefore might
improve the performance of those target variables. Again, the same three groups are tried with
only now the auxiliary task added. The auxiliary tasks where added to the cabin class groups.
The results of the experiments can be seen in table:
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Table 6.2: Results experiments about output groupings and auxiliary inputs

Target Category
MTL:

No groups

MTL:

2 groups

MTL:

3 groups

MTL-aux:

no groups

MTL-aux:

2 groups

MTL-aux

3 groups

Economy Class
MAE 12.405 12.413 12.373 12.593 12.300 12.981
st.dev 1.204 1.134 1.509 1.11 1.144 1.212

Business Class
MAE 2.883 2.863 2.864 2.809 2.806 2.852
st.dev 0.346 0.221 0.222 0.211 0.210 0.243

Departure Transfer
MAE 8.445 8.614 8.509 8.673 8.502 8.803
st.dev 0.894 0.807 0.913 0.908 0.902 0.929

Arrival Transfer
MAE 7.934 8.148 7.917 7.986 8.142 8.505
st.dev 0.842 0.889 0.846 0.714 0.973 0.779

Departure Local
MAE 7.756 8.035 7.933 7.836 7.958 8.064
st.dev 0.628 0.804 0.796 0.766 0.621 0.692

Arrival Local
MAE 6.941 7.191 6.932 6.930 7.258 7.469
st.dev 0.543 0.884 0.778 0.791 0.920 0.917

Total
MAE 46.364 47.264 46.528 46.827 46.966 48.674
st.dev 1.941 2.050 2.262 1.955 1,856 2.078

First of all, at the total score, hence the last two rows, it can be seen that MLT with no groups
performs best in terms of MAE and second in terms of variation. The models are compared with
Wilcoxon signed-rank test in order test if there is significant di↵erence. For example, comparing
the two best models, MTL with no groups and MTL with 3 groups, on MAE. All target variables
show a significant di↵erence with P-values very close to 0.000.

Furthermore, lets discuss the grouping aspect i.e., what to share between the output layers. For
the cabin classes there is not much di↵erence between the groupings. Therefore, it can be concluded
that grouping economy and business class, does not increase or decrease MAE that much. For the
remaining target categories, it seems that creating two groups, decreases performance in terms of
MAE. Probably, these tasks benefit more from having the flexibility of an extra own dense layer to
learn more task specific features. In this respect, it can be concluded that in general, less sharing
of output layers improves performance.

From the experiments it became clear that adding an auxiliary task, did not improve the per-
formance. It was expected that this might improve the performance of both cabin class passengers.
For the business class passengers, it did improve performance but for the economy class it only
improved by having 2 groups. In terms of variation of the prediction, it improved in all cases ex-
cept on having 3 groups. Therefore, it can be concluded that for more stable predictions, adding
the number of bookings of the cabin classes as auxiliary task improves performance in most cases.
However, for the remaining target categories, it decreases performance. Only the MTL with two
groups seems to benefit slightly from it. The output of the other models do not improve at all
with the auxiliary inputs. To conclude, it is not recommended to add the number of bookings for
the cabin classes as auxiliary inputs.

6.4 Conclusions

For predicting di↵erent types of airline passengers, it can be stated that MTL works better than
STM in four out of the six target variables. For KLM, the performance of the models in terms MAE
is the most important. Therefore, it is recommended to use STL for business class and departure
transfer passengers, because for those targets, STM performs better. In this cases STL performs
better because it utilizes task and non-task-specific features better. For example, we saw for the
business class that with MTL the feature economy class capacity has a high feature importance
although this is non-task-specific feature. Furthermore, we saw for departure transfer passengers
that task-specific feature such arrival and departure station has a higher feature importance,
hence this features are better utilized. For the other four target variables, it is recommended to
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use MTL because it has an lower MAE score. Furthermore, it was shown that there is a di↵erence
in how MTL and STM uses the features. First SHAP theory was used to show the di↵erence in
feature importance. Based on these di↵erences, it can be concluded that MTL and STM allocate
di↵erent importance to the same features, especially to the general features such as date and
time features. Subsequently, it was shown that the features are also used di↵erently in making
individual predictions. The main di↵erence lays in how the general features such as date and time
features are utilized. By plotting the PDP, it was observed that MTL reacts less on changes in
feature values. In addition, with the SHAP contribution plot, it can be concluded that MTL is
more robust in how its uses and reacts to those general features in comparison with STM and thus
has regularization e↵ect. Given that regularization works well for this problem, it might be that
for other problems where regularization benefits performance, MTL can outperform STM.

Furthermore, it seems that grouping output layer does not lead to any performance improve-
ment. The same holds for adding the number of bookings of the cabin classes as auxiliary input.
This could be further tested with di↵erent parameters however, given the current results, it seems
unlikely it will result in any significant improvement.
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Chapter 7

Validation

In this section, a comparison will be presented between the proposed DNN model with the bench-
mark models. The proposed DNN is based on the conclusions of previous chapter and represents
the best neural network architecture found. For evaluation the models are compared on MAE at
a few query moments i.e.: over the year and day of the week.

7.1 Benchmark Models

7.1.1 Current Method

Before continuing, a short notice must be made. At my last day at KLM, I noticed that the
current system PTRA was updated. It appeared that at the Air France site, a team had been
working on improving their model. This Air France team had ample time and resources at their
disposal. For fair comparisons I used their new improved model results for evaluation. Due the
lack of time to investigate, it is not clear how the new improved PTRA system works. Therefore,
the old system will be explained. With the current model used at KLM (deployed by means of a
software named PTRA), a passenger forecast is made from 180 days before departure. Actually,
the forecast is not the number of passengers but the number of bookings. It produces a specifc
outcome for transfer/local and economy/business.

PTRA uses the following features.

1. Bookings that are already available for future flights

2. Future flight information: location and timestamps

3. Historic bookings of the past 3 years

With this information a bookings curve (BC) is made based on bookings that are now available
and historical bookings. On both sets, graph curves are created of the booking patterns indicating
the speed at which the flight is filled with bookings. Now, the curve of the historical flights that
is most similar to the curve of the target flight is chosen. The notation therefore is:

BestBC = (min8X2E) kBC �Xk

The remaining bookings are then calculated by:

REMbookings(t) = REMbookings(
X

i

BestBCi

n
)

Here i is denoted as the BC and n the days before departure. An example is given in the
figure below.
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Figure 7.1: Example Current KLM PTRA Method

In the figure the purple line denotes the current bookings made and its expected curve path
represented by dots. The three most similar BC found are plotted as well. In this case the gray
line is most similar to the current BC, therefore, the purple dotes follow the gray line.

7.1.2 Baseline Model

A baseline model is made to better understand how di�cult it is to predict the number of pas-
sengers. This baseline model is relative simple and should be easy to understand and simple to
apply. The chosen method, is a moving average (MA) of the 3 previous flights taken the query
moment into account. For example, if one wants to predict a specific upcoming flight with flight
number KL 0001 and a query moment of 150 days before departure. Then one has to look 150
days back and take the average of the last 3 flights with flight number KL 0001.

7.1.3 Best in Class

As the best in class model, gradient boosting decision trees (GBDT) is chosen. First a brief
motivation will be given why this is considered as best in class. Subsequently, it will be explained
how this model works. Furthermore, there are di↵erent ways to implement it in terms of libraries,
hyperparameter tuning and how to build multiple models. This will be discussed in the last
section.

Motivation

GBDT is a very popular model used in many di↵erent settings. In the book XGBoost with Python,
13 algorithms are compared on 165 datasets. Although there is no silver bullet for what is the
best algorithm to use, GBDT outperforms any other algorithm in most cases. In addition, it is a
model used widely in Kaggle competitions and has won many times 1. The main advantages of
GBDT mentioned by (Hastie and Friedman, 2009), (Kuhn and Johnson, 2013), (Murphy, 2012)
and (Strobl and Augustin, 2006) are:

1. Captures non-linear relationships in the data

2. Captures high-order interactions between inputs

1This website gives an overview where GBDT was applied and has won a podium place in Kaggle competitions:
https://github.com/microsoft/LightGBM/blob/master/examples/README.md
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3. Performs implicit variable selection

4. Deals with categorical and numerical data

5. Deals with di↵erent scaled input variables

6. Handles missing values

7. Robust to outliers

8. Fast predictions

The disadvantages mentioned are:

1. Requires datasets with a big sample size

2. Can be di�cult to interpret

3. Can over-fit the data (predictive performance)

4. Tends to select predictors with a high number of distinct values

5. Training (optimizing hyper-parameters) is time consuming

Although there are some disadvantages, the advantages and evidence for its outstanding per-
formance dominates. Therefore, this is the first advanced model applied, considered as best in
class and model to beat with this thesis research work. The evaluation and comparisons of this
model will be discussed in chapter 9.

How it works

Gradient boosting is an ensemble technique, hence predictions are executed by an ensemble of
simple estimators. In case of GBDT, this estimators are the decision trees, however, in theory,
any other prediction model can be used as estimator. Taken this into account, the objective of the
gradient boosting is to train an ensemble of estimators, given that that it is known how to train
a single estimator. Building this ensemble is called boosting and with boosting it is expected to
improve performance in comparison to a single estimator. In addition, there are parameters to
optimize for this algorithm. Because training and tuning is very time consuming not all parameters
are considered, the one that where included in the optimization for this thesis work are:

1. n estimors: number of boosting iterations i.e., number of trees in the ensemble.

2. max depth: the depth of one tree, smaller values gives weaker learners.

3. num leaves: number of leaves in one tree, this controls the complexity of the model.

4. colsample bytree: fraction of features to use for an iteration.

Implementation

For implementation light-GBM developed by Microsoft is applied. The alternative would be
XGBoost but in a comparison, (Guolin Ke, 2017), debates the following advantages of Light-
GBM:

1. Faster training speed and higher e�ciency: Light-GBM uses an histogram based algorithm i.e
it buckets continuous feature values into discrete bins which fastens the training procedure.

2. Lower memory usage: Replaces continuous values to discrete bins which result in lower
memory usage.
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3. Better accuracy than any other boosting algorithm: It produces many more complex trees
by following leaf wise split approach rather than a level-wise approach which is the main
factor in achieving higher accuracy. However, it can sometimes lead to overfitting, which
however can be avoided by setting the max depth parameter.

4. Compatibility with Large Datasets: It is capable of performing equally good on large datasets
with a significant reduction in training time as compared to XGBOOST.

For optimization the hyper parameters three possibilities are considered i.e. Bayesian optim-
ization, grid search and random search. For this case random search is used, because it is less
biased compared to grid search. With grid search, one has to select the parameters to choose
out, which creates bias. With Random search a range of possible options is given, from which a
random selection takes place. Bayesian optimization could also be a choice, but it is not proven
that random search or Bayesian is better to one or another. The trade-o↵ depends on the type
of problem and resources available. In this case random search is chosen for its simplicity. In
practise, 500 di↵erent combinations with random search are used, with a cross-fold validation of
3. However, in future research it might be interesting to investigate Bayesian optimization as well.

The results of the best found parameter setting are:

Figure 7.2: Results Random Search Hyper-Parameters Light-GBM

Furthermore, since there are multiple outputs required, a model per target varible must be
made. This is done by using the Multiple Output Regressor from Sklearn library.

7.2 Results

7.2.1 Comparison on Query Moments

From figure 7.3 till figure 7.8, the results of MAE are plotted over the query moments. There are 4
lines belonging to 4 di↵erent models. As discussed there are 3 baseline models. The simple model,
denoted as the Moving Average (MA). The current system of KLM, denoted as PTRA. And the
best in class model, denoted as Light-GBM. The first thing to notice is that the MA performs a
lot worse. This implies that it is not so easy to predict. Second, it stands out that PTRA predicts
on shorter time horizon, thus less query moments (maximum 180 days before departure). Perhaps
for Air France this is not a requirement, but for KLM it is necessary to have predictions longer
than 180 days before departure. Third, the MTL and Light-GBM perform better than PTRA
on almost all targets. Only on the economy class passengers, PTRA sometimes performs better.
It is di�cult to reason why this is, because it unclear how the new PTRA model works. But
assuming the previous model relies heavily on the current status of bookings, it can be seen that
closer to departure PTRA comes closer in MAE. Perhaps, it utilizes this feature in a better way
by interpolating the bookings curve. In addition, the PTRA predictions are more unstable and
vary over the query moments. This was also the experience of the business, where the predictions
of PTRA appeared to be unreliable. The ML models show a stable improvement in MAE when
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the time to departure gets closer. Furthermore, the Light-GBM and DNN are very close to each
other. Overall on average DNN performs better on all targets compared to Light-GBM. Only
with the departure local passenger, Light-GBM performs slightly better on query moment 360 till
220 days before departure. Besides that DNN performs better than light-GBM, there are also
practical benefits. The DNN is one model and Light-GBM consists of six models. One model is
less e↵ort to put in production, cost less maintenance and requires less time with monitoring. In
addition, for auto-retraining, only one model needs to be tuned instead of six models separately.
In conclusion, based on these charts and practicalities, it can be stated that the proposed DNN
model outperforms all benchmark models.

Figure 7.3: Query moments, economy class Figure 7.4: Query moments, business class

Figure 7.5: Query moments, departure transfer Figure 7.6: Query moments, arrival transfer

53



CHAPTER 7. VALIDATION

Figure 7.7: Query moments, departure local Figure 7.8: Query moments, arrival local

7.2.2 Comparison over the Year

In figure 7.9 till figure 7.14, the average MAE performance of the four models can be seen over the
year on the test set. Where month 1 is January and month 12 is December. Based on the previous
section, as expected, the MA performs a lot worse. This again indicates, it is not so simple to
predict di↵erent type of airline passengers. In case of the local and transfer passengers targets, the
ML models outperform PTRA on every aspect. Especially, on the transfer passenger, where the
gap is relatively bigger. For the cabin class passengers, PTRA performs only better on economy
class in March than the proposed DNN. This is in the beginning of the year, where the number
of passengers is overall on its lowest. Interestingly, in the most busiest months; June, July and
August, the gap between PTRA and ML models becomes larger. This are the most important
months, because the demand is then the highest and thus, more work must be done. The more
work there is, the more costs can be reduced and/or the more customers can be serviced, all with
better planning.

Comparing DNN with light-GBM, it can be stated that the behaviour is very similar. The
patterns over the month follow more or less the same movements and the MAE are very close to
each other. Almost in all cases DNN matches or outperforms light-GBM. Only for departure local
passenger in May, light-GBM clearly performs better. Especially for the cabin classes DNN shows
better performances during the year. This strengthens the argument that the proposed DNN is a
better choice for predicting di↵erent type of airline passengers compared to the benchmark models.
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Figure 7.9: Over the year, economy class Figure 7.10: Over the year, business class

Figure 7.11: Over the year, departure transfer Figure 7.12: Over the year, arrival transfer

Figure 7.13: Over the year departure local Figure 7.14: Over the year, arrival local
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7.2.3 Comparison over Day of the Week

In figure 7.15 till figure 7.20, the average MAE performance over day of the week of the test set
is shown. Where 0 is a Sunday and 6 is a Saturday. Again, as expected, the MA performs a lot
worse than the other models. On almost every aspect the ML models perform better than PTRA.
Only for the business class passengers, on Monday, PTRA works better. Light-GBM and DNN
are again close to each other in terms of performance and patterns. Overall, DNN performs better
than Light-GBM, especially on for the cabin classes.

Figure 7.15: Day of the week, economy class Figure 7.16: Day of the week, business class

Figure 7.17: Day of the week, departure transfer Figure 7.18: Day of the week, arrival transfer
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Figure 7.19: Day of the week, departure local Figure 7.20: Day of the week, arrival local
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7.3 Conclusions

In this chapter a comparison was made between the proposed DNN and the benchmark models. In
general, the simple MA model showed that is not that easy to predict the di↵erent type of airline
passengers. The gap between this MA and the more advanced methods is in all cases relative big.
Furthermore, it can be concluded that the ML models outperform the current PTRA system used
at KLM. The ML models predict on more query moments and have shown a better performance
in terms of MAE. Lastly, the proposed DNN performs slightly better than the best in class ML
model. The expectation was that this best in class model would be di�cult to beat, however
based on the results and practical benefits, it can be concluded that DNN is a better choice for
this problem. To repeat these practical benefits, the DNN is one model and Light-GBM consists
of six models. One model is less e↵ort to put in production, cost less maintenance and requires less
time with monitoring. In addition, for auto-retraining, one model needs to be tuned instead of six
models separately. To summarize, table 7.1 presents an overview of the results. In this table the
predictions are grouped by query moments and then the average MAE and standard deviations
are calculated.

Table 7.1: Results Deep Neural Network compared to Benchmark Models

Target Category Moving Average PTRA Light-GBM Deep Neural Network

Economy Class
MAE 25.135 12.763 12.760 12.405

st.dev 0.951 1.159 1.308 1.204

Business Class
MAE 3.552 2.854 2.811 2.765

st. dev 0.032 0.137 0.202 0.221

Departure Transfer
MAE 21.994 12.321 8.363 8.240

st.dev 0.762 0.375 0.832 0.790

Arrival Transfer
MAE 21.992 12.012 7.982 7.934

st.dev 0.767 0.397 0.891 0.842

Departure Local
MAE 20.892 8.950 7.696 7.756
st.dev 0.789 0.545 0.661 0.628

Arrival Local
MAE 19.977 8.789 7.045 6.941

st.dev 0.770 0.525 0.877 0.543

Total
MAE 113.542 57.694 46.854 46.041

st.dev 1.813 1.494 2.376 1.905

Looking at the total scores of the losses, it can be concluded that the proposed DNN performs
almost 60% better than the simple MA. Although, the variation of the MA is more stable, it
does not compete with the other benchmark models. Furthermore, one of the objectives of this
master thesis project was to develop a new airline passenger forecasting system that performs
better than current system used at KLM. Despite Air France themselves all of a sudden came
with an improved system during the last day of this research at KLM, DNN still performs over
20% better. Comparing the variation is not fair taken the fewer number of query moments PTRA
predicts on into account. Lastly, one of the hardest challenges was to outperform the light-GBM.
The di↵erences are small, but the proposed DNN performs in total 2% better. To compare the
light-GBM with the proposed model a Wilcoxon signed-rank test is applied. On all target variables
on MAE it shows a significant di↵erence. On each target variable the P-value is 0.000. In addition,
it shows more stable predictions evidenced by mostly a lower standard deviation.
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Discussion

This chapter will discuss the results relative to the stated research questions for this master thesis.
In addition possible threats in terms of validity of this research will be discussed in combination
with possible directions for follow-up research work.

8.1 Discussion of the Results

In chapter 1 section 2, the main research question of this master thesis was introduced. This was
formulated as follows:

How to build a forecasting model based on historical airline data to predict the number of pas-

sengers on flights departing from a specific airport in specific flight categories? Specifically, local

and transfer passengers as well as di↵erent cabin classes with a time horizon of 125-361 days prior

to departure.

To answer this main question, it is split up in sub-research questions, which are answered through-
out the chapters of this master thesis. In this section the answers found will be summarized and
discussed.

What methods do already exist that concerns passenger forecasting on flight level?

Passenger forecasting has been researched in di↵erent manners. Basically, there are two approaches
in the literature, an econometric time series approach and a ML approach. Some forecast on time
series levels such as daily, monthly or yearly time horizons. Where others use ML to predict on
flight level the number of passengers or load factors. For the specific problem of KLM, where they
want to predict multiple type of passengers for upcoming specific flights, there is no equivalent case
in the literature. Furthermore, an econometric time series approach seems not the best option. In
case of KLM, this would imply that around 1200 di↵erent models need to be made, one for each
flight number. ML has shown relative good performance on regression problems. It can capture
all flights in one model, learn non-linear relationships and can handle large amount of data.

Which features can be selected and, if required, be constructed or transformed,

to build the prediction model?

For the prediction model, only inputs can be used that are available at the required moments.
Moments for predictions, are also referred to as query moments. Data that is available on the
required query moments are:

• Current state of bookings for the cabin classes

• Locations: arrival and departure station

• Aircraft type
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• Aircraft capacity for the cabin classes

• Scheduled date-time information for departure and arrival

• Flight number

All, except the bookings data, should be available for the airline and are logged in the O�cial
Aviation Guide (OAG). This guide provides a track record for over 900 airlines. Taken into account
that each airline knows it own state of bookings, it can be assumed that all airlines have these
input data available. Therefore, the proposed model can be generalized to other airlines as well.

There are a lot of possibilities for transforming or constructing features. However, for this
thesis it is kept simple because the focus is on the modelling part and not on finding new features.
In this study, only the timestamp features are used to extract new features.

What baseline can be used to compare the model performance with?

For this master thesis four baseline models are considered and compared with the new proposed
model. First a simple MA model is applied that is easy to understand, fast to implement and
demonstrates how di�cult it is to predict the target variables. The MA applied is based on the
3 previous flights, taken the query moments into account. For example, if one wants to predict
a specific upcoming flight with flight number KL 0001 and a query moment of 150 days before
departure. Then one looks 150 days back and takes the average of the last 3 flights with flight
number KL 0001.

The second baseline model is current airline passenger forecasting system used at KLM. One
of the objectives of this thesis project was to outperform this system, therefore, this is considered
to be a benchmark model.

Third, a so-called best in class model is considered. For this type Gradient Boosting Decision
Trees (GBDT) are chosen. GBDT is a very popular model used in many di↵erent settings. In
the book XGBoost with Python, 13 algorithms are compared on 165 datasets. Although there is
no silver bullet for what is the best algorithm to use, GBDT outperforms in most cases any other
algorithm. In addition, it is a model used widely in Kaggle competitions and has won many times.

Fourth, the MTL model is compared with an independent single-task neural network model.
For this model the exact same architecture is used: only instead of having six outputs there is one
output. In this way a comparison can give insights between the di↵erences of STL and MTL.

Which machine learning techniques should be used to build a prediction model

that produces the best results?

For this project the aim is to predict multiple splits in outputs at the same time, hence multiple
type of passengers at the same time. These type of passengers share many of the same features
and therefore MTL suits this problem by leveraging shared learning between the di↵erent types
of passengers. The technique used to apply MTL is DNN. It was shown that for 4 of the 6 target
variables the performance improved by leveraging shared learning with MTL. Only business class
and departure transfer passenger predictions do not benefit from shared learning. Furthermore,
looking at the total averages of the target variables MAE, by grouping the performance on query
moments, the results have shown that MTL with DNN performed 60% better than the MA model,
20% better than current system used at KLM and 2% better than the best in class model. In this
respect, MTL with DNN has proven to be a well suited technique to produce the best results for
predicting the di↵erent types of airline passengers.

How can the prediction model be evaluated and tested?

The data available cover the years 2016 to 2019. In the airline section there is a clear seasonality.
Therefore, a split in training and test data should comprise all seasons in order to capture the
di↵erent patterns. For this reason it is chosen to take the last year, the most representative one,
as the test data. The remaining data will be part of the training set. In total the data contains
about 144,195,921 records. Therefore, according to (Raschka, 2018), a 2-way holdout method
(train/test split) should be su�cient for performance estimation for the models. On the test set,
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the di↵erent models are evaluated based on MAE. With MAE, there is no preference for over-under
estimation and it is not necessary to penalize bigger errors. And this is what should be avoided,
as by penalizing bigger errors, flights with larger capacity will probably get favoured since their
absolute di↵erence will be larger. This performance metric is evaluated for all models on query
moments, performance of the year, day of the week and on residuals and variations.

8.2 Practical Implication

This section will discuss how KLM can use the improved forecasting system for their business
processes. As discussed in chapter 4, the main users are the tactical planners of KLM. A summary
of the planning process can be mapped as follow:

Figure 8.1: Planning process end user airline passenger forecasting system

The predictions of the di↵erent types of passengers, together with the flight schedule, serve as
input to create a long-term planning. This long-term planning is used for resource planning and
feasibility analysis. Later on, more detailed plannings are prepared where decisions are made about
which job to assign to which employee etc. In terms of practical implications, it is recommended
to do a shadow run on the passenger predictions. Hence, the current system PTRA is still used
for the planning process, only the proposed MTL model is deployed and monitored in parallel
for comparison. If the MTL works well and performs better, KLM should consider to replace the
system PTRA by the proposed model. This limits the risks of practical errors. If for example
problems are encountered in the deployment phase or the model does not generalize well, this
could be tackled without hurting the planning process. Furthermore, the proposed model predicts
the same type of passengers as PTRA, thus in practise the planners do not have to change the
process. In practise they should not notice any di↵erences if the model is replaced, hopefully, only
that the predictions are better than before.

8.3 Threats to validity and directions of future work

In terms validity a few assumptions were made. First of all, the models were tested on the data
of 2019. Ideally, a more robust evaluation procedure should be applied. To be more confident
about the results, a rolling window method could be considered. Thus for example, first use 2016
as training data and then 2017 as test data. Then use 2016 and 2017 as training data and 2018
as test etc. Then for all test cases, the average can be taken to get a more robust result. Because
of the huge amount of data used in this thesis, this procedure was unfortunately out of scope as
it would have resulted in very long training and testing times. And, due to the time constraints
and shortage of resources for this project, this would have limited the number of experiments to
try.
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Furthermore, it was assumed that GBDT is the best in class. However, this could not be the
case for this problem since there is currently no superior prediction model that always outperforms
each other model. To be more confident about which model is best in class, a study could be done
that evaluates many more prediction models for this problem. In terms of directions for future
work of the proposed MTL DNN model, it is still an open question about what to share in the
architecture. In current MTL related literature, there is not a uniform definition about which tasks
are related, hence which tasks should share which parameters. This thesis limited the number of
possibilities in what to share and this could be extended in many di↵erent ways. For now only
the output layers where considered in terms of sharing but all the layers before the output layer
could also be tested and evaluated. It could also be examined which inputs to share, since not all
inputs might be relevant for each target variable.

Besides what to share in the network, there is also room for improvement by hyper parameter
optimization. For example, the learning rate is one of the most important parameters but is not
optimized in this thesis. Other parameters such as batch size, number of nodes for the layers,
activation functions, drop out rates, number of layers etc. are not fully explored and may o↵er
possibilities of improvement.

Furthermore, in this case all target variables were considered equally important in defining the
objective loss function. It could be that by optimizing the weight distribution among these target
variables, the overall performance will improve. Di↵erent techniques might be possible here to
find the optimal weights distribution, like a grid search, random search and other methods.

Lastly, this thesis did not focus much on finding new features for the prediction model. To im-
prove the prediction models, it could be considered to explore new features by feature engineering
or by adding complete new features. These new features could be marco-economic information or
perhaps meta-search data on arrival and destination combinations. It could also be interesting to
include information of other airlines such as di↵erence in ticket prices or number of flights going
to the same destination.

All in all, predicting airline passengers is a very interesting and challenging topic and is studied
for many years now. With this thesis I hope to have augmented this research topic by demonstrat-
ing that predicting di↵erent types of passengers more accurately, can add more business value.
I also showed MTL adds a new perspective to approach this problem and comprises many more
opportunities to further improve.
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