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Abstract 
 

This research proposes a new algorithm to schedule the container receiving operations of a fast-

growing e-commerce company with multiple warehouses in the same geographical area. The 

algorithm increases the efficiency of the warehouse operations receiving, put-away, picking and 

shipping simultaneously, by reducing the long-term cross docks while avoiding situations where 

containers are picked up after the demurrage date. Cross docks occur when the succeeding warehouse 

operation cannot be executed in the current warehouse, the total number of cross docks can be 

estimated on the pickup day and differ per receiving warehouse. The container receiving operation at 

VidaXL can be scheduled with the rolling horizon policy. The rolling horizon policy reschedules the 

receiving operation every day new information becomes available. First, an aggregate solution for the 

coming four days is provided with a binary decision model. The binary decision model selects a subset 

of containers out of the available containers and schedules each container to a warehouse. The binary 

decision model maximizes the profit associated with receiving the container at the most preferred 

warehouse instead of at a less preferred warehouse while considering the demurrage date. Second, 

the FIFO dispatch rule is applied to gather a detailed solution for the first day. The detailed schedule 

of first day can immediately be implemented. The receiving operation can be rescheduled during 

succeeding days when new information becomes available. The potential of the scheduling algorithm 

is evaluated in a realistic simulation by comparing the results with scheduling the containers first in 

first out and minimizing the put-away cross docks first in first out every day. Moreover, the effect of 

including picking and shipping cross docks in the scheduling algorithm is investigated by running the 

model with and without considering cross docks based on the expected storage time. 
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Management summary  
 

In 2002, management guru Peter Drucker forecasted that e-commerce would significantly impact how 

business is conducted. Seventeen years later, the Ecommerce Foundation expected that e-commerce 

would be a 621-billion-euro industry in 2019 in Europe. In 2007, only 30% of the European population 

bought items online, this percentage had almost doubled to 57% by 2017 (CBS, 2018). Logistics in e-

commerce are highly complex since e-commerce typically regards small orders with low value from 

many different customers (Turban, King, Lee, Liang, & Turban, 2017). The flourishing E-commerce 

economy combined with new complex logistic challenges stresses the need for efficient warehouse 

operations. This research proposes a new scheduling algorithm to efficiently schedule the container 

receiving operations integrated with other warehouse operations at VidaXL.  

Problem statement 
E-commerce companies have a large product assortment to fulfill small orders from many different 

customers, and they typically have different warehouses to store the width assortment. Each 

warehouse is equipped for a special group of products. Decisions need to be made towards achieving 

an efficient flow of goods between the warehouses. The put-away, picking, checking, and packing 

strategy are already considered in the literature and in practice to increase warehouse efficiency 

(Davarzani & Norrman, 2014), and therefore this research focuses on scheduling the receiving 

operation integrated with the other warehouse operations at VidaXL. The company is opening two 

new warehouses in 2020 and lacks a scheduling tool to avoid unnecessary cross docks. Cross docks are 

inefficient flow of goods between warehouses and occur when the succeeding warehouse operation 

cannot be executed in the current warehouse. This research aims to define a scheduling algorithm 

which can be used daily to reduce inefficient cross docks between the warehouses integrated with the 

other warehouse operations. The main research question is formulated as follows: 

“How can the container receiving operations be scheduled to increase efficiency during the warehouse 

operations put-away, picking, and shipping?” 

Research topic 
Warehousing regards the intermediate storage of goods between successive stages of a supply chain 

and can be implemented to reduce transportation costs and provide customer service. Warehouses 

fulfill customer demand through reorganization, which involves the operations: receiving, put-away, 

order picking, checking and packing, and shipping. Each warehouse tries to increase the efficiency of 

its warehousing operations by reducing double handling (Bartholdi & Hackman, 2019). The objective 

of this research is to schedule the receiving operations in e-commerce logistics to increase the 

efficiency of the warehouse operations put-away, picking and shipping simultaneously, by reducing 

the long-term cross docks while avoiding situations where the container is picked up after the 

demurrage date. 

Framework 
The framework to schedule the receiving operation integrated with other warehouse operations 

consists of three layers: input data, scheduling algorithm and output data. Each layer subsequentially 

fulfill certain tasks and provide the subsequent layer with information to complete the scheduling 

process.  
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Input data 
Containers can be classified as critical and noncritical containers. Critical containers must be received 

as soon as possible at a specific warehouse, while noncritical containers are preferred to be processed 

within ten days. However, these containers lack any other scheduling restrictions and it is therefore 

possible to efficiently schedule the receiving operation. Arriving containers can contain one stock 

keeping unit or over hundred different stock keeping units. Not every warehouse operation can be 

executed in each warehouse for each stock keeping unit. Items must be cross docked between the 

warehouses when the subsequent operation cannot be executed in the current warehouse. The 

inherent expected number of cross docks during each warehouse operation when the container is 

received in one of the warehouses can be estimated on the pickup day.  

The number of put-away cross docks per container are based on the available storage types in each 

warehouse. The picking and shipping cross docks are estimated by calculating the equivalent number 

of cross docks if a container is received in a less preferred warehouse based on the expected storage 

time. For many stock keeping units, most of the warehouse operations can be executed in the ship 

warehouses. The total number of picking and shipping cross docks can therefore be reduced through 

receiving containers with a short storing time in the ship warehouses, containers with an average 

storage time in the pick warehouse and containers with a long storage time in the overflow 

warehouses. Consequently, more containers are received in the preferred ship warehouse resulting in 

less cross docks and the efficiency during put-away, picking and shipping operations increases.  

Each warehouse is constraint by the inbound capacity per container type and the total inbound 

capacity per warehouse per day. The receiving operations must be scheduled such that all inbound 

capacity constraints are met.  

Scheduling algorithm 
In an ideal situation, the container and warehouse data are known far in advance. When there is 

enough inbound capacity, it would then be possible to schedule the receiving operation of each 

container before the demurrage date while minimizing the total long-term cross docks. A binary 

decision must be made, containers must be picked up by a warehouse on a specific date. A triple sum 

objective function can minimize the total long-term cross docks by assigning the containers to 

warehouses on specific periods. 

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is 

only known a few days in advance, the actual arriving date of each container almost always differs 

from the estimated arrival date and it is almost impossible to estimate the number of cross docks of 

each receiving container far in advance. Containers received during previous days, increases the 

current stock level in each warehouse and therefore affect the estimated number of cross docks of the 

new receiving containers. It would be possible to resolve the triple sum objective function each day 

when new information becomes available. However, solving a triple sum objective function is complex 

and requires computational effort while there is only limited time available to revise the receiving 

schedule. This paper therefore proposes an alternative rolling horizon scheduling algorithm to deal 

with uncertain container arrivals and new information availability while reducing the computation time 

and complexity of the problem. 

First, an aggregate solution for the coming four days is provided with a binary decision model. The 

binary decision model selects a subset of containers out of the available containers and schedules them 

to a warehouse while considering the four days inbound capacity. The binary decision model 
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maximizes the profit associated with receiving the container at the most preferred warehouse instead 

of at a less preferred warehouse while considering the demurrage date. Second, the FIFO dispatch rule 

is applied to gather a detailed solution for the first day. The dispatch rule schedules the container FIFO 

to each day such that the throughput time decreases, and the containers are picked up before its 

demurrage date. The detailed schedule of first day can immediately be implemented. The receiving 

operation can be rescheduled during succeeding days when new information becomes available. 

Output data 
The scheduling algorithm is able to provide the aggregate schedule for the upcoming four days through 

selecting and scheduling as many containers as all warehouses can receive from the available set of 

containers. However, VidaXL must only confirm the pickup date of the detailed schedule for next day 

in order to retain flexible to new information. New containers can arrive at the container yard and the 

number of cross docks associated with receiving the container at one of the warehouses can differ 

over time. The receiving schedule can therefore be revised on next day. 

Results 
The potential of the algorithm is evaluated in a realistic simulation by comparing the performance with 

the theoretical upper bound, scheduling containers first in first out and minimizing the total put-away 

cross docks first in first out every day. Moreover, the effect of including picking and shipping cross 

docks in the algorithm is investigated by running the model with and without additional cross docks 

based on the storage time. The results are evaluated in two situations: 1) ramp-up, after opening a 

new warehouse and 2) steady-state, when each warehouse has the same start utilization. 

The theoretical upper bound quantifies the optimal solution when everything is known beforehand, 

resulting in 5.7% and 10.4% less cross docks in ramp-up and steady state situations respectively as the 

solution provided by the scheduling algorithm. However, there does not exist a scheduling algorithm 

that provides an optimal solution without prior knowledge (Dertouzos & Mok, 1989). 

After opening a new ship warehouse, the number of cross docks can be reduced with 26.3%, 28.7% 

and 45.6% compared with the scheduling algorithm without considering picking an shipping cross 

docks, minimizing the put-away cross docks first in first out every day and first in first out procedure 

respectively. Moreover, 99.7% of the containers are picked up before the demurrage date. The number 

of cross docks decreases when the process becomes more stable and the warehouses are equally 

utilized. When all warehouses have the same start utilization, the total number of cross docks can be 

reduced with 32.7%, 35.9% and 54.2% respectively, and 99.9% of the containers are picked up on time 

before the demurrage date. Furthermore, the scheduling algorithm is not sensitive to different 

inbound capacities and different workload balance parameters, and it still outperforms the other 

scheduling procedures. 

The algorithm schedules containers with a long storage time to the overflow and pick warehouses. The 

utilization of the reserve area of these warehouses increases faster than that in the ship warehouses 

because the demand for these items is lower. Accordingly, less containers are received in the pick and 

overflow warehouses, while items with a high turnover rate are received in the ship warehouses. As 

such, the pick density in the shipping warehouses increases, whereas the number of cross docks from 

the pick and overflow warehouses to the ship warehouses decreases. Notably, when more items are 

picked in the same warehouse, it costs less effort to bundle items that are purchased by the same 

client. Scheduling containers to receiving warehouses using the algorithm increases efficiency in the 

receiving, put-away, picking, packing, and shipping operations. 
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1. Introduction 
 

In 2002, management guru Peter Drucker forecasted that e-commerce would significantly impact how 

business is conducted. Seventeen years later, the Ecommerce Foundation expected that e-commerce 

would be a 621-billion-euro industry in 2019 in Europe. In 2007, only 30% of the European population 

bought items online, this percentage had almost doubled to 57% by 2017 (CBS, 2018). 

Plunkett research Ltd. (2014) defined e-commerce: “electronic commerce refers to using the internet 

and intranets to purchase, sell, transport, or trade data, goods, or services.” This definition shows that 

e-commerce is characterized by how activities are executed by the company. By fulfilling activities 

digitally, e-commerce companies experience advantages compared to traditional companies including 

increased inventory control, shortened time to market, improved market search, and lower advertising 

costs (Berthon, Pitt, & Watson, 1996; Burstein & Kline, 1995; Spar & Bussgang, 1996).  

Logistics in e-commerce are highly complex since e-commerce typically regards small orders with low 

value from many different customers. They are exposed to seasonality and only large companies have 

their own warehouses (Turban, King, Lee, Liang, & Turban, 2017). According to the Council of Supply 

Chain Management Professionals (2013), logistics management plans, implements, and controls the 

efficient, effective forward and reverse flow and storage of goods, services, and related information 

between the point of origin and point of consumption in order to meet customers’ requirements. 

The flourishing E-commerce economy combined with new complex logistic challenges stresses the 

need for efficient warehouse operations. This research proposes a new scheduling algorithm to 

efficiently schedule the container receiving operations integrated with other warehouse operations at 

VidaXL. Section 1.1 provides the relevance in the literature, the research topic is defined in Section 1.2, 

and lastly Section 1.3 forms the outline of this report. 

1.1 Relevance in the literature 
Fulfilling thousands of small orders every day from different costumers requires significant effort from 

warehouses, which increases their throughput, storage, and accuracy requirements (Frazelle, 2002). 

The objective of order fulfillment is to deliver the right item to the right customer in a timely, cost 

effective, and profitable manner (Turban et al., 2017). Almost all warehouses fulfill customer orders 

through reorganization, which occurs through the warehouse operations receiving, put-away, picking, 

checking and packing, and shipping (Bartholdi & Hackman, 2019).  

Trends in e-commerce make warehouse management one of the most important players in order to 

realize growth, stay profitable, and continue improving customer satisfaction. In 2007 and in 2010, 

Goetschalckx and McGinnes covered different aspect of warehouse design, operations, and 

performance evaluation by reviewing 197 articles and books from different sources. In 2015, 

researchers Davarzani and Norrmann identified gaps in the literature and interviewed 15 warehouse 

managers to suggest a practical and relevant future research agenda Both studies concluded that 

scheduling the receiving and shipping operations in a warehouse represents the least explored 

category in warehousing literature. Receiving and shipping operations have the potential to be further 

investigated, integrated, and independent of other operations. 
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1.2 Research topic 
Warehousing regards the intermediate storage of goods between successive stages of a supply chain 

and can be implemented to reduce transportation costs and provide customer service. Most 

warehouses have the same material flow, whereby they receive bulk shipments, stage them for quick 

retrieval, retrieve and sort SKUs upon customer request, and ship them to the customer. Warehouses 

fulfill customer demand through reorganization, which involves the operations: receiving, put-away, 

order picking, checking and packing, and shipping. Each warehouse tries to increase the efficiency of 

its warehousing operations by reducing double handling (Bartholdi & Hackman, 2019). The objective 

of this thesis is to improve warehouse efficiency by scheduling the receiving operations. 

 The main contribution of this thesis is fourfold: 

1. This is the first research focusing on efficiently scheduling the receiving operations for fast-

growing e-commerce companies with multiple warehouses in the same geographical area. 

Fast-growing e-commerce companies are exposed to constraints that are less relevant in 

traditional warehousing literature.  

2. While existing literature mainly focuses on improving the receiving, put-away, picking, storage, 

checking, and packing operations independently of each other, this thesis focuses on 

scheduling the receiving operation integrated with the other warehouse operations to 

increase the overall warehouse efficiency. 

3. A new alternative rolling horizon scheduling algorithm to schedule receiving containers is 

developed. The algorithm can deal with uncertain container arrivals and new information 

availability while reducing the computation time and complexity of the problem. 

4. The potential and sensitivity of the scheduling algorithm is evaluated in a realistic simulation. 

1.3 Outline of the thesis 
Section 1 emphasizes the relevance in literature. The structure of the remainder of this paper is as 

follows: Section 2 provides all relevant information regarding the problem context and emphasizes its 

relevance in industry, which together motivate the research subject defined in Section 2 as well. 

Section 3 provides a brief overview of literature relevant to the research subject. Section 4 includes 

the conceptual model and proposes a framework, including an algorithm, to schedule the container 

receiving operation. The goal of the algorithm is to schedule the receiving operations to increase the 

efficiency of the warehouse operations put-away, picking and shipping simultaneously, by reducing 

the long-term cross docks while avoiding situations where the container is picked up after the 

demurrage date. Section 5 evaluates the effect of the scheduling algorithm on different performance 

measurements in a realistic simulation. Section 6 contains the overall conclusions of this research and 

suggests directions for further research. 
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2. Problem context 
 

This section provides information relevant to the problem context and elaborates on the industry 

relevance. The project is commissioned by VidaXL, and the first section includes a brief company 

description. Secondly, the warehouse setup at VidaXL is described in Section 2.2, and thirdly the 

reorganization of items through the warehouse operations at VidaXL are described in Section 2.3. 

Fourth, the current warehouse performances are specified in Section 2.4. Finally, the problem 

definition, research question, project scope, and research methodology are respectively provided in 

Section 2.5 to 2.9.  

2.1 Company background 
VidaXL is a rapidly growing international online retailer established in 2006 with an annual revenue of 

a quarter billion euro (2017). VidaXL offers products for ‘in and around the home,’ mainly from their 

own VidaXL brand, in 29 European countries, the United States of America, and Australia via various 

online sales channels. However, the product assortment is shifting towards a mixture of their own 

brand and A-brand products and contains around 70,000 SKUs. VidaXL differentiates themselves by 

being able to provide customers with products for a better price by optimizing and controlling each 

step of the supply chain from product design, purchasing, transport, and warehousing to delivery to 

the regional distribution hubs of several delivery partners. In addition, VidaXL provides customer 

service in native languages, an open marketplace via VidaXL web shops and offers drop shipment 

services, which enables business-to-business customers to operate their own web shop without having 

to manage the logistics.  

2.2 Warehouse setup 
VidaXL is growing, and within a year they will double their pick and storage locations by opening two 

new owned warehouses. They will stop using areas of the rented warehouses. In the future, VidaXL 

has five warehouses in the same geographical area to store their width assortment, “the long tail”. 

Two are shipping warehouses with a reverse area, forward area, and conveyor/sorting system, and 

items can be picked and shipped from these shipping warehouses. One warehouse has a reverse and 

forward area as well and is called the pick warehouse. Items can be picked in this warehouse, but the 

warehouse cannot ship the item directly to customers. The other two warehouses only have bulk 

storage in the reverse area and are called overflow warehouses. Items are consequently moved 

between the warehouses during each warehouse operation, the warehouse setup and the possible 

flow of goods are visualized in Figure 1 (see appendix A for a large version). Each warehouse operation 

will be explained in more depth in next section. 
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Figure 1: Flow of goods between the warehouses at VidaXL 

2.3 Warehouse operations at VidaXL  
Most warehouses have the same material flow: They receive bulk shipments, stage them for quick 

retrieval, retrieve and sort SKUs upon customer request, and ship them to the customer. Warehouses 

fulfill customer demand through reorganization, which involves the operations: receiving, put-away, 

order picking, checking and packing, and shipping (Jinxiang, Goetschalckx, & McGinnis, 2007; Bartholdi 

& Hackman, 2019). Each warehouse tries to increase the efficiency of warehousing operations and 

reduce double-handling in order to minimize handling costs (Bartholdi & Hackman, 2019). The 

warehouse operations receiving, put-away, order-picking, checking and packing, and shipping of 

VidaXL are respectively described in this section, the business process model is given in appendix B. 

2.3.1 Receiving 
In 2019, VidaXL received between 1 and 99 containers per day. The inbound logistics department 

usually receives the estimated arrival time of containers one month before the expected arrival, 

however due to different circumstances, the actual arrival date always differs from the expected arrival 

date. The forwarder transports containers to the container yard at Venlo, from which point VidaXL has 

ten days to pick them up before the demurrage date. However, sometimes the demurrage date is ten 

days after the arrival in the harbor in Rotterdam, and if the containers are not picked up on time, a 

penalty cost is incurred. 

At the beginning of the day, the inbound logistics department receives a message signaling the actual 

arrival at the container yard and assigns the containers first in first out (FIFO) to one of the warehouses. 

From each warehouse, they receive the available storage locations per storage type and the number 

of containers that each warehouse can unload on a particular day. The inbound logistics department 

checks in the systems, applications and products (SAP) system the percent of the content which can 

be stored in each warehouse, this depends on the storage types available and container contents. The 

containers are manually assigned to a warehouse where most of the content can be unloaded without 

harming the capacity constraints of the warehouse. This process represents the inbound logistics 

department’s attempt to minimize penalty costs and reduce the movements associated with putting 

away the goods at a storage warehouse of each container individually. 
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After picking up the containers at the container yard, the containers are unloaded by a team of three 

to four people, and the inbound logistics department tries to assign the containers so that the 

workload is balanced between each inbound team. Containers are categorized as A, B, and C based on 

the effort required to unload the container, where A containers are the easiest to unload and contain 

only a few SKUs. Arriving containers can contain 1 SKU or over 100 different SKUs. Items are stacked 

in cartons on the floor, also referred to as loose loaded, to increase transport efficiency. Before staging 

the items on appropriate storage units, they are inspected, and exceptions are registered. Based on 

the products’ characteristics, they are stacked on different pallet or bin types. VidaXL has developed 

an algorithm to determine the right storage unit, and to utilize the warehouse storage space as well as 

possible, VidaXL has around 40 different storage units.  

2.3.2 Put-away 
Before goods can be put away, an appropriate storage location must be determined. The storage 

location determines to a large extent the cost of retrieving the item for a certain customer. VidaXL has 

multiple warehouses with different types of warehousing system, and each is equipped for a specific 

group of products based on their characteristics, such as: size, weight, shape, pick size, delivery 

quantity, type of storage module, et cetera (van den Berg, 1999). VidaXL has over 40 different storage 

types, and it is therefore important to receive goods at a warehouse with the right storage types 

available. VidaXL plans receiving operations for each container individually to minimize the put-away 

costs, and if the receiving warehouses lack the right storage type, the goods are cross docked according 

to the put-away strategy of VidaXL, which tries to minimize the picking costs. 

2.3.3 Order picking 
VidaXL picks the requested items in waves. At the start of a wave, the warehouse management system 

(WMS) checks whether enough items are ordered to simultaneously pick a pallet or box from the 

reserve area instead of picking items separately in the forward area. If insufficient items are ordered 

for a pallet pick, the WMS verifies whether the items are available in the forward area, and if not, the 

WMS checks whether it is possible to replenish items from the reverse area into the forward area in 

the pick and ship warehouses (internal replenishments). If the pick or ship warehouses lack the items 

in its reverse area, the items are replenished from the reverse area of the overflow warehouses (e.g. 

picking cross docks). The whole storage unit is replenished, if the concerning storing units are pallets 

with a height of 1.20 meter, the full pallet is replaced, if the items are stored in small boxes, the whole 

box is replenished. Picking cross docks can be prevented by receiving the containers and storing the 

items at the right warehouse, such that items stored in the overflow warehouse are requested less 

often. VidaXL does not consider picking cross docks while assigning the containers to receiving 

warehouses. 

One SKU usually occupies one storage space in the forward area but never more than two since full 

pallets/boxes are picked from the reverse area if possible. In practice, replenishments can also occur 

from a reserve area to a reserve area in another warehouse due to items which used to be 

automatically labeled items but need to be manually labelled, which is only possible in the MKI 

warehouse. 

In e-commerce, typically customers order small quantities, and to reduce travel time, picklists are 

generated that contain multiple order lines of multiple customers. To increase the pick density, some 

storage locations are divided so that two pallets with two different SKUs can be stored instead of one 

pallet containing one SKU. 
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After picking the items, conveyable items can be automatically sorted and moved into carriers via 

telescope conveyors in one of the shipping warehouses (MKI and JTS). Non-conveyable items are 

stored in different areas of the warehouses and picked according to their destination so that sorting is 

not necessary. 

2.3.4 Checking and packing 
After the order picking operations, the items are placed on a conveyor and automatically labeled. The 

sorter automatically checks whether the right items are picked, and the conveyor brings the items to 

the right outbound dock. If customers order more than one product, the items are bundled since 

shipping one bundled item is cheaper than shipping two single items, however items that are bundled 

are not always picked by the same picker. The items are therefore sometimes stored for a brief time 

in the bundle area. 

2.3.5 Shipping 
Bartholdi and Hackman (2019) assume that shipping regards an operation that does not require much 

effort. However, e-commerce companies typically need to ship small orders to many destinations 

(Turban et al., 2017). Some e-commerce companies, such as VidaXL, have different warehouses to 

store the width assortment. To prevent less-than-full truckloads, items must be cross docked between 

warehouses before they can be shipped to their finale carrier destination, which requires manual 

handling. Receiving and storing the items with a low demand at the picking warehouses reduces the 

shipping cross docks between the pick and ship warehouses. However, it is almost impossible to reduce 

shipping cross docks between shipping warehouses by storing the items in each ship warehouse based 

on the expected demand per carrier destination, since VidaXL is not able to forecast the demand 

pattern per carrier destination.  

Forty-five different carrier destinations can be reached through the two shipping warehouses, and 

most of the carriers are loose loaded, which means that they are stacked without pallets or 

transportation cars in the carriers. In e-commerce, it is important to ship items so that customer 

receive their items the day after they placed their order (Wozniak, 2013; Bol.com, 2019; TNS,2019), 

and therefore the items must be shipped to the carrier destinations on the same day that the customer 

places their orders on the VidaXL website. If the items are not consolidated into one or more outgoing 

carriers, VidaXL will ship less than truckloads every day to the carrier destinations to satisfy customers.  
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2.3.6 Conclusion  
Reorganizing items in the warehouse of VidaXL occurs 

through the operations receiving, put-away, order-

picking, checking and packing, and shipping. The 

reorganization process is summarized in Figure 2. 

Almost all warehouse operations of VidaXL are equal to 

the preferred situation of traditional warehouses, 

which will be described in more depth in Section 3. 

Containers are received loose loaded at VidaXL to 

increase transport efficiency, and after receiving the 

items, they are staged on appropriate storage units and 

afterwards stored at an appropriate storage location in 

order to efficiently use available storage space. VidaXL 

tries to increase the pick density and reduce traveling 

time through batch picking and a conveyor system, and 

items are bundled to reduce parcel costs. However, 

VidaXL does not schedule the container receiving 

operation integrate with put-away, picking, and 

shipping operations to reduce the long-term cross 

docks in order to improve warehouse efficiency. 

2.4  Warehouse performance measures 
The main performance measurement of the receiving operation is currently the total number of days 

containers are picked up after the demurrage date. As earlier noted, the inbound logistics department 

basically tries to minimize the number of days the containers are picked up after the demurrage date 

without considering the long-term cross docks during succeeding warehouse operations.  

2.5 Problem description  
E-commerce companies have a large product assortment to full fill small orders with low value from 

many different customers, and they typically have different warehouses to store the width assortment. 

Each warehouse is equipped for a special group of products. Decisions need to be made towards 

achieving an efficient flow of goods between the warehouses. The warehousing costs are responsible 

for a substantial part of the overall cost and can be reduced by avoiding cross docks. Moreover, 

unnecessary cross docks lead to lost items and negatively influences order accuracy (Hines & Taylor, 

2000). Inaccurate orders are wrong delivered orders leading to unsatisfied customers and a return flow 

that is expensive to handle (Bartholdi & Hackman, 2019). The put-away, picking, checking, and packing 

strategy are already considered in literature and in practice to increase warehouse efficiency 

(Davarzani & Norrman, 2014), and therefore this research focuses on scheduling the receiving 

operation integrated with the other warehouse operations at VidaXL. The company is opening two 

new warehouses in 2020 and lacks a scheduling tool to reduce unnecessary cross docks. Cross docks 

are inefficient flow of goods between warehouses and occur when the succeeding warehouse 

operation cannot be executed in the current warehouse, the costs of a cross dock is equal during each 

warehouse operation. This research aims to define a scheduling algorithm which can be used daily to 

reduce the cross docks between the warehouses integrated with the other warehouse operations. A 

new scheduling algorithm is proposed to efficiently schedule the receiving operations for fast-growing 

e-commerce companies with multiple warehouses.  

Figure 2: Product reorganization process VidaXL 
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2.6 Research questions 
Based on the problem description, the main research question is defined as follows: 

“How can the container receiving operations be scheduled to increase efficiency during the warehouse 

operations put-away, picking, and shipping?” 

According to Jinxiang et al. (2007), receiving and shipping operations include the following: 

Receiving and shipping are the interface of a warehouse for incoming and outgoing material 

flow. Incoming shipments are brought to the warehouse, unloaded at the receiving docks, and 

put into storage. Receiving and shipping operations involve, for example, the assignment of 

trucks to docks and the scheduling of loading and unloading activities.  

In order to solve the problem description and main research question, the following sub-research 

questions are answered: 

1. How is the receiving operation at VidaXL currently organized, planned, and controlled? 

2. How does the receiving operation influence the efficiency during put-away, picking and 

shipping operations? 

3. How can the receiving operation be scheduled to increase efficiency during put-away, picking 

and shipping operations? 

2.7  Project scope 
VidaXL has distribution centers in Europe, America, and Australia, however the distribution centers in 

each continent act on their own. The scope of this research considers the European distribution center, 

which is located at Venlo and from begin 2020 consists of five different warehouses located in the 

same geographical area. This research only focuses on scheduling the container receiving operations 

regarding the put-away, picking, and shipping operations. 

2.8 Constraints 
This project is executed under the following constraints: 
 

1. Put-away strategy is fixed; 
2. Network design: the number, locations, and size of the warehouses are fixed;  
3. Storage units are fixed; 
4. Storage types are fixed; 
5. Demand cannot be forecasted per carrier destination. 

 

2.9  Methodology 
This research is conducted according to the 

research methodology designed by Van Aken, 

Van Der Bij, and Berends (2012), whose 

proposed method is the problem-solving 

cycle for design science Figure 3. Although 

this cycle consists of five steps, this research 

paper regards the first three steps of the 

cycle. The fourth step, the intervention is 

done at the logistical department of VidaXL. Figure 3: Problem-solving cycle (Van Aken et al., 2012) 
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The problem is defined in the introduction section and in the problem context section. The 

introduction section focuses on the research relevance in the literature, while the context section 

examines the relevance in industry and defines the problem. Section 3 includes a scientific literature 

review which includes trends and characteristics of e-commerce. Furthermore, the scientific literature 

review elaborates on scheduling rules and provides insight into binary decision models which functions 

as basis model for the scheduling algorithm. 

The occurrence of cross docks is diagnosed in Section 2, while Section 4 includes an analysis of how 

cross docks can be prevented by scheduling the receiving operation. Moreover, a framework to 

schedule the receiving operation integrated with other warehouse operations is presented in Section 

4. The framework first estimates the total number of cross docks during the put-away, picking and 

shipping operations when a container is received in one of the warehouses, followed up with a new 

scheduling algorithm to reduce the long-term cross docks in order to improve warehouse efficiency. 

The potential and sensitivity of the scheduling algorithm are evaluated in a realistic simulation, and 

the scheduling algorithm is implemented with an intervention at the logistical department of VidaXL. 

Parameter tuning is used to find proper settings to increase the performance of the scheduling 

algorithm. Figure 4 summarizes the research methodology. 

 

Figure 4: Summary of research methodology 

Problem 
definition

•Research proposal

•Warehouse setup VidaXL

•Warehouse operations VidaXL

Analysis and 
diagnosis

•Literature review

•Framework including a scheduling algorithm

•Realistic simulation

•Performance evaluation

•Sensitivity analysis

Solution 
design

•Scheduling tool

•Parameter tuning

•Performance measurement of solution

•Company recommendations

Intervention

•Implementation of planning tool
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3. Literature review 
 

In this section, a brief overview of literature relevant to the research subject defined in the previous 

sections is provided. Section 3.1 first examines the characteristics and recent trends in e-commerce 

companies and compares logistics in e-commerce with traditional companies to better understand the 

context of the problem. Section 3.2 discusses the reorganization process of items through the 

warehouse operations. Moreover, Section 3.3 considers the influence of prior knowledge and shows 

its effect on the performance of different scheduling rules, and Section 3.4 introduces the knapsack 

problem, which functions as basis model for the scheduling algorithm. 

3.1  E-commerce retailers 
In 2002, management guru Peter Drucker predicted that e-commerce would significantly impact how 

business is conducted. Seventeen years later, the Ecommerce Foundation has forecast that e-

commerce will be a 621-billion-euro industry in Europe in 2019. In 2007, only 30% of the European 

population purchased items online, but this percentage had almost doubled to 57% by 2017 (CBS, 

2018). The e-commerce market is growing and differs from traditional markets. This section describes 

the characteristics and trends of e-commerce and explains the difference between e-commerce 

logistics and traditional logistics to understand the context of the problem. 

3.1.1 Characteristics 
Companies fulfill three major activities: ordering and payments, order fulfillment and delivery to 

customers. Each activity can be conducted physically or digitally. Companies that execute all activities 

physically are called brick-and-mortar organizations, while pure e-commerce companies are referred 

to as virtual organizations. Increasing numbers of companies are transforming from brick-and-mortar 

companies to click-and-mortar companies by establishing new online sales channels (Turban et al., 

2017). By fulfilling certain activities digitally, e-commerce companies gain advantages compared to 

traditional companies in terms of increased inventory control, shortened time to market, more 

efficient payment systems, improved market search and lower advertising costs (Berthon et al., 1996; 

Burstein & Kline, 1995; Spar & Bussgang, 1996).  

3.1.2 Trends 
Companies began using e-commerce in 1970, when money was first transferred electronically. After 

the commercialization of the World Wide Web in 1990, e-commerce companies were exposed to new 

trends such as growth, purchase incentives and short delivery times.  

Growth: Online retail is taking business from traditional retailers. During the economic recession of 

2009–2013, e-commerce realized double-digit growth every year (Knight, 2013; Wilfred, 2014). 

However, not every e-commerce company is successful: Multiple e-tailing companies have gone 

bankrupt since 1999. Around 62% of these organizations lacked financial skills, while 50% did not have 

sufficient experience with marketing. Moreover, many companies were unable to fulfill all customer 

orders and did not have large enough inventories to deal with demand fluctuations (Direction, 2005). 

Purchase incentives: The three main drivers for online purchases in the Netherlands were identified 

as convenience, attractive pricing and large assortment (TNS, 2019). 
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Delivery time: Short lead times improve the conversion rate, conversion refers to the percentage of 

consumers that visit a website and purchase items on this website. Recently, Bol.com (2019) published 

a study on the effect of short lead times on conversion rates. Within one day delivery generates the 

best conversion rate, if items are delivered after two days, the conversion rate drops with 30%. 

3.1.3 E-commerce logistics vs traditional logistics 
According to the Council of Supply Chain Management Professionals (CSCMP) (2013), logistics 

management plans implement and control the efficient, effective forward and reverse flow and 

storage of goods, services and related information between the point of origin and the point of 

consumption to meet customers’ requirements. In e-commerce companies, logistics management 

requires dealing with different challenges to those faced by traditional companies, Table 1. 

Table 1: Logistic challanges of traditional logistics and e-commerce logistics (Turban et al., 2017) 

Attributes Traditional logistics E-commerce logistics 

Type, quantity Bulk, large volume Small parcels 

Destination Few Large number, highly dispersed 

Demand type Push Pull 

Value of shipment Very large, usually >$1,000 Very small, frequently <$50 

Nature of demand Stable, consistent Seasonal, fragmented 

Customers Business partners, repeat customers Unknown, many 

Accountability One link Through the entire supply chain 

Transporter Frequently by the company, 
sometimes outsources 

Usually outsourced, sometimes by 
company 

Warehouse Common Only very large shippers have their own 

 

Fulfilling thousands of small orders from different customers every day requires significant effort. As a 

result, the throughput, storage and accuracy requirements of warehouses have increased (Frazelle, 

2002). The object of order fulfillment is delivering the right item to the right customer in a timely, cost-

effective and profitable manner (Turban et al., 2017). Most warehouses fulfill customer orders through 

reorganization, which involves the operations of receiving, put-away, picking, checking and packing, 

and shipping. 

3.1.4 Conclusion 
E-commerce is significantly impacting how business is done. Increasing numbers of companies are 

transforming from brick-and-mortar companies to click-and-mortar companies by establishing new 

online sales channels. These companies typically have a large product assortment and fulfil small 

orders with low value to many different customers. The warehousing costs are responsible for a 

substantial part of the overall cost. The flourishing E-commerce economy combined with new complex 

logistic challenges stresses the need for efficient warehouse operations for e-commerce companies. 

3.2  Warehouse efficiency in e-commerce  
Warehousing, the intermediate storage of goods between two successive stages of a supply chain, can 

be implemented to reduce transportation costs and provide customer service. Warehouses fulfill 

customer demand through reorganization, which involves the operations: receiving, put-away, order 

picking, checking and packing, and shipping (Jinxiang et al., 2007; Bartholdi & Hackman, 2019). Each 

warehouse seeks to increase the efficiency of its warehousing processes and to reduce cross docks to 

minimize double handling (Bartholdi & Hackman, 2019). E-commerce companies have a large product 
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assortment to full fill small orders from many different customers, and they typically have different 

storage facilities to store the width assortment. Each facility is equipped for a special group of items. 

Decisions need to be made towards achieving an efficient flow of goods between the warehouses. 

Cross docks are inefficient flow of goods between warehouses and occur when the succeeding 

warehouse operation cannot be executed in the current warehouse. This section outlines the 

warehouse operations and their inherent influence on the warehouse efficiency.  

3.2.1 Receiving 
Ordinarily, receiving starts with a notification of the arrival of goods. Efficiently scheduling the 

receiving operation integrated with other warehouse operations is extremely complex for companies 

with multiple warehouses. The receiving warehouse determines to a large extend the efficiency during 

the other warehouse operations. After the items are unloaded, they are inspected, and any exceptions 

are noted. Next, these items are scanned so that the system knows the items are available and 

customer demand can be fulfilled (Bartholdi & Hackman, 2019).  

Items can arrive in different quantities; typically, the receiving quantity is large compared to the 

shipping quantity. Multiple SKUs can be received simultaneously in one shipment. Staging the items 

on appropriate storage units, such as pallets and boxes, is a labor-intensive process. Receiving the 

items in the same unit as the storage unit reduces the labor costs. However, this procedure usually 

increases the transportation costs (Bartholdi & Hackman, 2019). 

3.2.2 Put-away 
Before goods can be put away, an appropriate storage location must be identified. The storage location 

determines to a large extent what it costs to retrieve the item for a certain customer. Most large e-

commerce companies have multiple wareohuses with different types of warehousing systems. Each 

warehousing system is specially equipped for a specific group of items based on their characteristics, 

such as size, weight, shape, pick size, delivery quantity and type of storage module (van den Berg, 

1999). It is therefore important to receive goods at the appropriate location to ensure that items can 

be properly stored to reduce picking, packing and shipping cross docks. 

3.2.3 Order picking 
The WMS accomplishes the following tasks: verifying the inventory level, producing the picklist, 

producing the shipping documentation and scheduling the order picking and shipping operation. Order 

picking costs can be reduced by minimizing non-value-added tasks. The WMS reorganizes the picklist 

to generate pick efficiency. If items are picked FIFO, pickers need to travel a long distance, which 

increases operating costs. The WMS also checks whether it is possible to pick a full carton or pallet 

instead of items separately. Picking a pallet rather than a single item requires different resources and 

is therefore a separate process. Picking pallets containing multiple items increases the pick efficiency.  

Many warehouse configurations utilize a forward area and a reserve area. The forward area is used for 

efficient order picking, and the reserve area is used for replenishing the forward area. High pick density 

leads to lower traveling costs. However, not every item is always pickable in the forward area of the 

storing warehouse. If items are stored in a warehouse without an appropriate forward area, they are 

first cross docked to another warehouse before the pick tasks are executed. Orders can be picked 

serially or parallelly. In serial picking, one picker picks all the order lines of an order. While in parallel 

picking the items are picked through multiple pickers, it reduces the throughput time but requires 

more effort to coordinate the picking operation. The paper of Bartholdi and Hackman (2019) can be 

consulted for a more in-depth analyses of serial and parallel order picking.  
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3.2.4 Checking and packing 
After picking the product, the picker must check if they have picked the right item according to their 

pick list. Order accuracy can be a KPI to measures the service delivered to the customer. Inaccurate 

orders lead to unsatisfied customers and a return flow that is expensive to handle. Items can be 

bundled or packed to reduce the number of boxes shipped to a client, which lowers shipping and 

handling costs. After the item is checked and packed, it can be scanned to register its availability for 

shipping (Bartholdi & Hackman, 2019). 

3.2.5 Shipping 
Shipping normally requires less manual effort compared to other warehouse operations, since it deals 

with fewer items and the items have already been consolidated into larger boxes during the packing 

operation (Bartholdi & Hackman, 2019). However, e-commerce companies typically need to ship small 

orders to many destinations (Turban et al., 2017). Some e-commerce companies have different 

warehouses to store the width assortment. To prevent inefficient less-than-truckload shipments, item 

must be cross docked between the facilities before it can be shipped to its final carrier destination. 

While it is possible to wait until each individual facility has full truckloads, this process can be lengthy 

for destinations with low demand. In e-commerce, it is important to ship items on the same day the 

order is placed to ensure customers receive their items on time (Wozniak, 2013; Bol.com, 2013; TNS, 

2019). 

3.2.6 Conclusion 
Each warehouse seeks to increase the efficiency of its warehouse operations by reducing double 

handling. Cross docks are a form of double handling and can be prevented by scheduling the receiving 

operation. Available containers can be assigned to a receiving warehouse to unload the items on 

pallets, and the put-away strategy subsequently assigns the storage location of each SKU individually. 

The storage location depends on the receiving location but is not always the same as the receiving 

location, and cross docks can consequently occur. After a customer request, the items are picked from 

the forward area, however not every item is pickable in the forward area of the storing warehouse. If 

items are stored in a warehouse without an appropriate forward area, they are first cross docked to 

another warehouse before the pick tasks are executed, and the picked items are subsequently checked 

and can be shipped to customers. However, not all warehouses are able to serve all carrier destination 

on time, and therefore the items are cross docked from the pick location to shipping warehouse before 

shipping them to customers. The warehouse efficiency of an e-commerce company with different 

storage facilities can be increased by scheduling the receiving operation in order to avoid cross docks 

during the put-away, picking, and shipping operations. 

3.3 Scheduling the receiving operations 
Scheduling can be done either statically or dynamically. In static algorithms, the assignment of tasks to 

processes and the time at which the execution starts is determined in advance. However, if the task 

characteristics are not known beforehand, tasks cannot be scheduled statically. In dynamic scheduling, 

new tasks are scheduled without affecting the deadlines of the previously scheduled tasks. Dynamic 

scheduling algorithms can be centralized or distributed. In centralized algorithms, all tasks are received 

at one central location and scheduled on the different processors. In distributed algorithms, tasks 

arrive independently at each processor, and the processer checks whether it can accept or needs to 

reject these tasks (Manimaran & Siva Ram Murthy, 1998). According to Dertouzos and Mok (1989), 

there does not exist a scheduling algorithm that provides an optimal solution without prior knowledge. 

This section examines scheduling rules and the influence of prior knowledge on the solution. 
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3.3.1 Prior knowledge 
The receiving operation can be scheduled to prevent inefficient warehouse operations. Scheduling the 

receiving operation is limited by the level of prior knowledge or information that is available. Typically, 

three scenarios can be distinguished: 1) no knowledge is available; 2) partial statistical knowledge of 

the arrival or departure process and the content of the container is available; 3) perfect knowledge of 

the content and sequence of each arriving or departing container is available (Larbi, Alpan, Baptiste, & 

Penz, 2011). The second scenario is the basis for most decision models in literature since it is the most 

common one in practice (Jinxiang et al., 2007).  

The rolling horizon policy is a useful tool in dynamic situations with uncertain arrivals in later stages of 

the scheduling horizon (Wilkinson, 1996). It separates the problem in a sequence of iterations, each 

iteration only models’ part of the scheduling horizon in detail, while the rest of the horizon is scheduled 

in an aggregate manner. This approach results in close to optimal solutions with a significant reduction 

of the computation time (Dimitriadis, Shah, & Pantelides, 1997). In static scheduling policies, the arrival 

times of all containers must be known beforehand or must be forecasted while in rolling horizon 

policies only the actual arrival date need to be known. The rolling horizon policy is therefore suitable 

in real-time applications in uncertain environments (Fang & Xi, 1997).  

3.3.2 Scheduling rules 
Many large distribution centers receive many containers a day. A scheduling rule can be used to select 

the next container to be processed from a set of available containers. Scheduling rules are normally 

intended to minimize operational costs. However, there are n! possible ways of sequencing n 

containers waiting in the queue (Rajendran & Holthaus, 1997). It is therefore not possible to select one 

rule that outperforms all other rules in every situation. Most scheduling rules are developed for job 

shop environments. A wide variety of scheduling rules for transport are derived from these rules. 

However, such rules often deal with minimizing the travel distance and the number of vehicles 

required (Le-Anh, Koster, & Yu, 2010). Scheduling rules for job shops can be adapted to schedule the 

container receiving operations. However, the rules must be tested through simulation to verify if they 

can achieve the desired results in different settings. Most researchers assume that all jobs or 

containers are available at the start of the scheduling period (Baker K., 1974; French, 1982; Pinedo, 

1995). Only simple scheduling rules, such as shortest processing time, FIFO and longest processing 

time, are evaluated in situations where job arrivals are dynamic (Hunsucker & Shah, 1994).  

By 1976, more than 100 different scheduling rules had already been developed. Scheduling rules can 

be classified into the following categories: 1a) Simple priority rules, which are based on information 

related to a specific job, involving sub-classifications developed according to processing times, due 

dates, number of operations, costs, setup times, arrival times, slack, machines and miscellaneous 

information. 1b) Combinations of simple priority rules, which involve the combination of rules that fall 

under category 1a to form other scheduling rules. 1c) Weighted priority indexes, in which each simple 

priority rule can be weighted to receive an overall total weight, with important characteristics having 

a greater influence on the outcome than less important characteristics. 2) Heuristic scheduling rules, 

which involve a more complex consideration such as scheduling alternate operations; such rules do 

not only employ mathematical tools but can also include human intelligence. 3) Other rules, which are 

designed for a specific situation or consist of a combination of priority indexes based on the 

mathematical functions of job parameters. Panwalker and Iskander’s (1976) presents a summary of 

these rules. New scheduling rules are still being developed. However, at the foundational level, these 

rules are combinations of the simple priority rules or are only applicable in company-specific scenarios.  
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3.3.3 Conclusion 
There does not exist an algorithm yet to schedule the container receiving operations of a company 

with multiple warehouses in the same geographical area. However, the receiving operation can be 

scheduled dynamically through a centralized rolling horizon algorithm to face uncertain container 

arrivals and information availability. The rolling horizon policy separate the scheduling problem in a 

sequence of iterations, each iteration only models’ part of the scheduling horizon in detail, while the 

rest of the horizon is scheduled in an aggregate manner. 

3.4 Introduction to binary decision models 
Scheduling the container receiving operation to reduce cross docks require a decision process that can 

be formalized and validated independently of personal preferences. Quantification of variables and 

results is necessary. In most cases, the outcome of decisions can be measured by a single value 

representing profit, costs or some other category of data. Finding the option with the highest (or 

lowest) value can be extremely difficult when there are many possible options. This section therefore 

introduces the multiple knapsack problem which functions as basic model for the algorithm. 

3.4.1 Multiple knapsack problem 
The multiple knapsack problem originates from a cargo problem where multiple aircrafts from the 

same airline travel the same flight route multiple times a day. First, the airline must accept a package; 

afterwards, it must select a flight to transport the package. This can be formulated with a binary 

decision variable for every combination of a package for a flight (Kellerer, Pferschy, & Pisinger, 2004).  

𝑥𝑖𝑗 = {
1
0

      𝑖𝑓 𝑖𝑡𝑒𝑚 𝑗 𝑖𝑠 𝑝𝑢𝑡 𝑜𝑛 𝑓𝑙𝑖𝑔ℎ𝑡 𝑖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   

. ( 1) 

When choosing the first alternative 𝑥𝑖𝑗 = 1, a certain weight 𝑤𝑗 is required, where 𝑥𝑖𝑗 = 0 does not 

require a weight. Each alternative has a particular profit  𝑝𝑗. The solution is feasible if the sum of all 

weights over all binary decisions does not exceed capacity constraint 3. Moreover, it is not possible to 

assign each package twice by constraint 4. There can exist multiple feasible solutions. However, most 

of the time, not all feasible solutions optimize the outcome. The multiple knapsack problem can be 

formulated as the following linear integer programming problem:  

𝑀𝑎𝑥 ∑ ∑ 𝑝𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1
, ( 2) 

subjected to:  

∑ 𝑤𝑗𝑥𝑖𝑗 ≤ 𝑐𝑖

𝑛

𝑗 = 1
,     𝑖 = 1, … . . , 𝑚 , ( 3) 

∑ 𝑥𝑖𝑗 ≤ 1
𝑚

𝑖 = 1
,     𝑗 = 1, … . . , 𝑛 , ( 4) 

𝑥𝑖𝑗 ∈ {0,1},    𝑖 = 1, …..., m, j = 1, …...n. ( 5) 

3.4.2 Conclusion 
Daily scheduling the container receiving operation is like the multiple knapsack problem since it is not 

always possible to select and schedule all containers. Furthermore, only partial knowledge of the 

arrival process and the estimated cross docks per container is available. It is therefore not possible to 

select and schedule all containers beforehand. The solution is feasible when all constraints are met, 

each container is only scheduled once, and each warehouse only receives the containers it can handle.  
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3.5 Conclusion 
E-commerce has significantly impacted the way business is conducted. Current trends in e-commerce 

makes warehouse management one of the most important players in realizing growth, maintaining 

profitability and continuously improving customer satisfaction. Following the commercialization of the 

World Wide Web, e-commerce companies have been exposed to new trends such as growth, purchase 

incentives and short delivery times.  

Warehouses of e-commerce companies typically need to fulfill thousands of small orders from 

different customers every day. Warehouses reorganize items, which involves the operations: receiving, 

put-away, order picking, checking and packing, and shipping. Receiving and shipping operations is the 

least explored category in warehousing literature. The flourishing E-commerce economy combined 

with new complex logistic challenges stresses the need for efficiently scheduling the receiving 

operation. 

Large e-commerce companies often have different storage warehouses. Each warehouse has special 

equipment for a specific group of products and is therefore not always able to accomplish all 

warehouse operations for each item. Items are therefore cross docked to another warehouse when 

the succeeding warehouse operation cannot be executed in the current warehouse. The warehouse 

efficiency can be increased by scheduling the container receiving operation to reduce the total number 

of cross docks.  

The receiving operation can be scheduled dynamically through a centralized rolling horizon algorithm 

to face uncertain container arrivals and information availability. The rolling horizon policy separate the 

scheduling problem in a sequence of iterations, each iteration only models’ part of the scheduling 

horizon in detail, while the rest of the horizon is scheduled in an aggregate manner. When scheduling 

containers to specific warehouses, a binary decision must be made. The multiple knapsack problem 

can be used to make formalized decisions independently of personal preferences. The basic model is 

adapted in Section 4, the conceptual model improves the warehouse efficiency by reducing the long-

term cross docks while avoiding situations where the container is picked up after the demurrage date. 

The potential and sensitivity of the scheduling algorithm are evaluated in a realistic simulation in 

Section 5.  
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4. Conceptual model 
 

E-commerce companies have a large product assortment to fulfill small orders from many different 

customers, and they typically have multiple warehouses to store the width assortment. Each 

warehouse is equipped for a special group of products. Decisions need to be made towards achieving 

an efficient flow of goods between the warehouses. Each warehouse tries to increase the efficiency of 

its operations by reducing double handling (Bartholdi & Hackman, 2019). The put-away, picking, 

checking, and packing strategy are already considered in literature and in practice to increase 

warehouse efficiency (Davarzani & Norrman, 2014), and therefore this research focuses on scheduling 

the receiving operation integrated with the other warehouse operations at VidaXL.  

The goal of this research is to increase the warehouse efficiency by scheduling the container receiving 

operation in order to avoid cross docks during the succeeding warehouse operations. E-commerce 

companies typically ship small orders with low value to many different customers. The warehousing 

costs are therefore responsible for a substantial part of the overall cost and can be reduced by avoiding 

cross docks. Moreover, unnecessary cross docks lead to lost items and negatively influences order 

accuracy (Hines & Taylor, 2000). Inaccurate orders are wrong delivered orders leading to unsatisfied 

customers and a return flow that is expensive to handle (Bartholdi & Hackman, 2019). 

VidaXL is a rapidly growing international online retailer with an annual revenue of a quarter billion 

euro and the product assortment contains around 70,000 different SKUs (2017). VidaXL is opening two 

new warehouses and will have two ship, one pick and two overflow houses in the same geographical 

area to fulfill all European orders. However, not all warehouses are equipped with all necessary 

resources to accomplish all warehouse operations for each product type, and therefore cross docks 

occur when the succeeding operation cannot be executed in the current warehouse. The number of 

cross docks associated with receiving, put-away, picking, checking and packing, and shipping 

operations can be estimated on the pickup day and differ per container for each receiving warehouse.  

The receiving operations at VidaXL can be scheduled within ten days after confirmation of the delivery 

date of each container in the container yard at Venlo. VidaXL receives multiple containers per day and 

can therefore select the next containers to be processed from a set of available containers. During 

most days it is impossible to select and process al available containers since each warehouse is 

constrained by the available inbound capacity per day. The receiving operation must therefore be 

scheduled to determine which container must be processed in each warehouse on each day. 

The objective of our model is reducing the number of long-term cross docks while avoiding situations 

where the container is picked up after the demurrage date. The main approach for accomplishing this 

is through scheduling containers to the preferred warehouses such that the corresponding estimated 

number of cross docks is reduced. Scheduling the receiving operations has a “free operating space”: 

The pickup date can be scheduled within ten days after the confirmation of arrival to prevent 

demurrage costs, the receiving warehouse can be chosen and the order of receiving each container 

can be determined. However, for some urgent critical containers there is no liberty, they must always 

be unloaded first at a specific warehouse. This section combines scheduling the receiving operation 

for critical and non-critical containers while reducing the long-term cross docks into one algorithm. 
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Daily scheduling the receiving operations to avoid cross docks require a decision process that can be 

formalized and validated independently of personal preferences. The multiple knapsack problem can 

be used as basic model for the new developed scheduling algorithm. This section provides a framework 

to reduce the long-term cross docks and demonstrates that the long-term cross docks during each 

warehouse operation can be reduced by scheduling the receiving operation. 

Section 4.1 first provides a framework to schedule the receiving operation integrated with other 

warehouse operations. Section 4.2 issues the variables used in the conceptual model. Section 4.3 

provides the container data existing of a distinction between critical and noncritical containers, and 

the quantification of the estimated number of cross docks per container regarding each warehouse 

operation. Moreover, Section 4.4 proposes an algorithm to subsequently schedule critical and 

noncritical containers while reducing the long-term cross docks and the number of days the containers 

are picked up after the demurrage date. Finally, the algorithm is validated and verified in Section 4.5. 

It is recommended to read Section 4.1 before reading the other sections since Section 4.1 elaborates 

in more depth on the remaining structure of this section.  

4.1 Framework 
The framework to schedule the receiving operation integrated with other warehouse operations will 

be presented in this section, the framework is visualized in Figure 5. The framework consists of three 

layers: input data, scheduling algorithm and output data. Each layer subsequentially fulfill certain tasks 

and provide the subsequent layer with information to complete the scheduling process. The provided 

information depends on the current state of the system and therefore differs each day the algorithm 

is executed, and a receiving schedule is made. Each layer will be discussed in this section.  

 

Figure 5: Framework conceptual model 
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4.1.1 Input data 
The input layer gathers all relevant data for the scheduling algorithm. The receiving operation will be 

scheduled at the start of every day and the input data will therefore be gathered at the start of every 

day instead of updating the input data every time new information becomes available. As a result, 

decisions can be taken daily, making the model less complex. This section elaborates on the available 

input data consisting of container data and warehouse data.  

Container data 
In 2019, VidaXL received between 1 and 99 containers per day and can therefore select the containers 

to be processed on the next day from a set of available containers. During most days it is impossible 

to select and process al available containers since each warehouse is constrained by the maximum 

inbound capacity. Consequently, a pool of containers is available at the container yard. 

Containers can be classified as critical and noncritical containers. Critical containers must be received 

as soon as possible at a specific warehouse and it is therefore not possible to schedule the container 

receiving operation to achieve an efficient flow of goods. Noncritical containers are preferred to be 

picked up from the container yard within ten days, otherwise demurrage costs are incurred, however 

these containers lack any other scheduling restrictions. It is therefore possible to schedule the 

receiving operation in the upcoming ten days to achieve an efficient flow of goods. Section 4.3.1 

provides rules to distinct critical and noncritical containers. 

Arriving containers can contain 1 SKU or over 100 different SKUs. After receiving a container at one of 

the warehouses, items are put-away, stored, picked, checked and packed, and shipped to fulfill 

customer demand. However, not every warehouse operation can be executed in each warehouse for 

each SKU. Items must be cross docked between the warehouses when the subsequent operation 

cannot be executed in the current warehouse. The inherent expected number of cross docks during 

each warehouse operation when the container is received in one of the warehouses can be estimated 

on the pickup day. Section 4.3.2 to 4.3.5 provides guidelines to estimate the number of cross docks 

when the container will be received in one of the warehouses.  

Warehouse data 
The warehouse data consist of the inbound capacity per container type and the total inbound capacity 

per warehouse. VidaXL classifies the containers as A, B, and C based on the number of SKUs and on the 

number of items in each container, where A containers require less manual effort to unload than C 

containers. Each warehouse can be constrained with the number of A, B and C containers it can receive 

per day. Moreover, each warehouse is only able to receive a total number of containers per day. Note 

that the total inbound capacity is not always equal to the sum of the inbound capacity per container 

type. The receiving operations must be scheduled such that all inbound capacity constraints are met. 

The inbound capacity constraints are provided by each warehouse individually. 

Information availability 
In an ideal situation, the container and warehouse data are known far in advance. When there is 

enough inbound capacity, it would then be possible to schedule the receiving operation of each 

container before the demurrage date while minimizing the total long-term cross docks. 

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is 

only known a few days in advance, the actual arriving date of each container almost always differs 

from the estimated arrival date and it is almost impossible to estimate the number of cross docks of 
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each receiving container far in advance. Section 4.3 shows that the estimated number of cross docks 

depends on the available storage locations in the receiving warehouse, and on the stock level of each 

SKU in the pick and ship warehouses. Both depend on the demand of each SKU and on the earlier 

received and stored items in each warehouse. Containers received during previous days, increases the 

current stock level in each warehouse and therefore affect the estimated number of cross docks of the 

new receiving containers. It is therefore almost impossible to calculate the container and warehouse 

data for all feasible solution since each decision affects the estimated cross docks of other containers. 

This paper therefore proposes in Section 4.4 an alternative rolling horizon scheduling algorithm to deal 

with uncertain container arrivals and new information availability while reducing the computation time 

and complexity of the problem. 

4.1.2 Scheduling algorithm 
The objective of our model is reducing the long-term cross docks while avoiding situations where the 

container is picked up after the demurrage date by scheduling the receiving operation. Daily scheduling 

the receiving operation of noncritical container to avoid cross docks require a decision process that 

can be formalized and validated independently of personal preferences.  

In multi container packing problems, a set of containers must be scheduled to one or more 

warehouses, each container can be scheduled to at most one warehouse. Each container has a weight 

associated with receiving the container at one of the warehouses. Furthermore, each container may 

also have a profit or costs which can differ or can be equal to its weight. When there is only one single 

warehouse, the problem is similar to the well-known knapsack problem (Fukunaga & Korf, 2007; Keller 

et al., 2004). 

For our model, the characteristics of four well-known multi container packing problems are evaluated: 

bin packing, multiple knapsack, bin covering, and min-cost covering. Many other combinatorial 

optimization problems are variants of these multi container packing problems as constraints are added 

or adjusted. In the basis, the problems differ from each other in two dimensions. One key dimension 

is whether all containers are assigned to a warehouse or whether a subset of containers is selected 

and assigned to a warehouse. The second dimension is whether the inbound capacity of the 

warehouses cannot be exceeded, referred to as packing, or whether a minimum of containers must be 

assigned to each warehouse, referred to as covering (Fukunaga & Korf, 2007). The models are classified 

in Table 2. 

Table 2: Characterizing multi container problems (Fukunaga & Korf, 2007) 

 Schedule all containers Select and schedule subset of containers 

Packing Bin packing Multiple knapsack 

Covering Bin covering Min-cost covering 

 

In bin packing or covering problems, the goal is to schedule all containers to bins (i.e. warehouses) 

without harming the minimum or maximum capacity constraint of each bin. The objective is to 

minimize the total number of bins necessary to schedule all available containers. There are infinite bins 

available to schedule all containers (Delorme, Lori & Martello, 2015; Fukunaga & Korf, 2007; Martello, 

Pissinger & Vigo, 1998; Valerio de Carvalho, 2000). On the other hand, multiple knapsack or min-cost 

covering problems aims to maximize the overall profit of the selected and scheduled containers 

without harming the minimum or maximum capacity constraint. A subset of containers is selected 

since it is not possible to schedule all containers while satisfying the capacity constraints. The total 
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number of warehouses is fixed under the multiple knapsack problem while the total number of bins 

under the min-cost covering problem is infinite (Fukunaga & Korf, 2007; Keller et al., 2004; Wolsey & 

Nemhauser, 1999). 

Daily scheduling the container receiving operation at VidaXL is similar to the multiple knapsack 

problem since VidaXL is only able so select and schedule a subset of containers. Each warehouse is 

constrained by the maximum available inbound capacity, VidaXl is therefore not able to pick up all 

available containers on the arriving day. VidaXL aims to select and schedule all containers before the 

demurrage date but is not always able and not forced to pick up all containers before the demurrage 

date when there is not enough inbound capacity. Furthermore, only partial knowledge of the container 

arrival process and the estimated cross docks per container is available. Deciding to receive a container 

in a warehouse increases the inventory position of the warehouse and affects the estimated cross 

docks for new arrived containers. It is therefore not possible to schedule all containers beforehand as 

a bin packing problem since new containers and information becomes available during the scheduling 

process. Moreover, VidaXL has a finite number of warehouse available and can therefore not minimize 

the number of warehouses necessary to receive all containers as they do in bin packing or covering 

problems. Even if the bin packing problem is constraint with the number of available bins equal to the 

number of warehouses is it still not a bin packing problem since it is not always possible to select and 

schedule all available containers. Which is a key characteristic of the bin packing problem. 

Furthermore, it is also not possible to minimize the number of inbound teams necessary to receive all 

containers. The warehouses have a restricted inbound capacity and can therefore not always receive 

all available containers on the same day. Moreover, the resources necessary to unload a container are 

equal in each receiving warehouse, it is therefore not possible to schedule the container such that as 

many containers as possible are received while minimizing the inbound teams necessary. Cross docks 

are not physically executed by the inbound teams and do therefore not impact the resources necessary 

to receive containers. 

Basic multiple knapsack problem 
The multiple knapsack problem originates from a cargo problem where multiple aircrafts from the 

same airline travel the same flight route multiple times a day. First, the airline must accept a package; 

afterwards, it must select a flight to transport the package. The airline attempts to maximize the value 

of the selected packages without harming the maximum capacity constraint of each flight. Each flight 

can have a different capacity. Furthermore, each package can only be assigned once to a flight. This 

scenario can be formulated with a binary decision variable for every combination of a package for a 

flight. If there are n packages available and m flights, there are n*m binary decision variables (Kellerer 

et al., 2004). 

Daily scheduling the receiving operation at VidaXL is similar to the cargo problem, as VidaXL has w 

warehouses and there are j containers available with the result of w*j binary decision variables. VidaXL 

is not able to schedule the receiving operation on next day for all available containers and must 

therefore select a subset of containers; afterwards it must schedule the containers to a warehouse. 

VidaXL wants to reduce the long-term cross docks and the number of days the containers are picked 

up after the demurrage date, without harming the inbound capacity constraints of each warehouse. 

Furthermore, each container can only be assigned once at one of the warehouses. Container j will be 

assigned to warehouse w if the binary decision variable is equal to 1, and if the container is not assigned 

to warehouse w, the binary decision variable is equal to 0.  
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Myopic 
The multiple knapsack problem can be used as basic model to select and schedule the next container 

to be processed. However, daily minimizing the number of cross docks is exposed to myopic and does 

not lead to the optimal answer. In fact, the total long-term cross docks are not minimized with the 

basic multiple knapsack problem because of: 

1. Daily selecting containers to minimize the total number of cross docks automatically means 

not selecting “hard containers” with many cross docks at all warehouses. These containers are 

forced to be scheduled just before the demurrage date and are therefore most of the times 

scheduled at a less preferred warehouse resulting in avoidable cross docks. Forced scheduling 

a “hard container” with 10 avoidable cross docks at a less preferred warehouse results in more 

cross docks as voluntary scheduling another container with one avoidable cross dock at a less 

preferred warehouse. 

2. Minimizing the total number of cross docks every day does not minimize the long-term cross 

docks, since two sub optimizations do not automatically lead to the overall optimum. 

3. The total number of cross docks are minimized without harming the inbound capacity 

constraint by selecting zero containers. 

Scheduling containers 
Four adjustments must be made to the basic multiple knapsack problem to schedule noncritical 

containers in order to reduce long-term cross docks.  

1. The model must consider the profit associated with receiving the container at the most 

preferred warehouse instead of at a less preferred warehouse. This will prevent the model 

from not scheduling “hard containers”. Moreover, this feature assist in selecting the right 

container to be received in a less preferred warehouse since it contemplates the profit of 

receiving container j at warehouse w. Section 4.4.3 proposes a method to quantify the profit. 

2. The algorithm must be able to optimize the binary decision model for multiple periods to 

reduce the long-term cross docks. However, confirming the pickup date of all available 

containers makes the system inflexible to new information and leads to suboptimal answers 

as well. The model is therefore adapted to a rolling horizon procedure where only the 

immediate short-term schedule is implemented. VidaXL can confirm the pickup date of the 

containers scheduled on the next day and can consequently reschedule the pickup date of the 

other containers if new information becomes available. This working procedure is explained in 

more depth in Section 4.4.2 and Section 4.4.3. 

3. The model must be rewritten as a maximalization function to schedule as many containers as 

possible in order to prevent the model from selecting zero containers, it consequently enables 

selecting containers for the complete scheduling horizon. 

4. The possibility of selecting and scheduling a container must be increased when the container 

is approaching its demurrage date to prevent demurrage costs. 

Scheduling critical and noncritical containers can be combined in one rolling horizon scheduling 

algorithm, the objective function of the algorithm will be discussed in more depth in Section 4.4.3 while 

Section 4.4.4 demonstrates the working procedure of the algorithm. 

4.1.3 Output data 
The scheduling algorithm is able to select and schedule every day as many containers as all warehouses 

can receive during the scheduling horizon from the available set of containers. The algorithm will 
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reduce the long-term cross docks while avoiding situations where the container is picked up after the 

demurrage date.  However, VidaXL must only confirm the pickup date of the containers scheduled on 

the next day in order to retain flexible to new information. New containers can arrive at the container 

yard and the number of cross docks associated with receiving the container at a warehouse can differ 

over time. The list with available containers must be updated after confirming the pickup date of the 

scheduled containers. The potential and quality of the scheduling algorithm is evaluated in Section 5. 

4.2 Variables 
The sets, parameters, vectors, and decision variables used in Section 4.3 and in the proposed binary 

decision model in Section 4.4 are specified as follows: 

Sets  

𝐼 𝑆𝑒𝑡 𝑜𝑓 𝑆𝐾𝑈𝑠 (𝑖𝑛𝑑𝑒𝑥 = 𝑖) 1, … . , 𝐼 

𝐽 𝑆𝑒𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 (𝑖𝑛𝑑𝑒𝑥 = 𝑗) 1, … . , 𝐽 

𝑊 𝑆𝑒𝑡 𝑜𝑓 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 (𝑖𝑛𝑑𝑒𝑥 = 𝑤) 1, … . , 𝑊 

𝑇 𝑆𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (𝑖𝑛𝑑𝑒𝑥 = 𝑡) 1, … . , 𝑇 

 

Parameters 

𝐴𝐷𝑗 Arriving Day container j 

𝐴𝑆𝑡𝑤 Available number of storage locations of storage type t in warehouse w 

𝐵𝑝 𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑙𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑝𝑖𝑐𝑘 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 

𝐵𝑜 𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑙𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 

𝐵𝑆 𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑙𝑘 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 

𝐶𝑊 Capacity of warehouse w 

𝐶𝑃𝐴𝑗𝑤 Number of put-away cross docks if container j will be received at warehouse w  

𝐶𝑃𝐼𝑗𝑤 Number of picking cross docks if container j will be received at warehouse w  

𝐶𝑃𝑆𝑗𝑤 Number of pick and ship cross docks if container j will be received at warehouse w  

𝐶𝑇𝑗𝑤 Total number of cross docks if container j is docked at warehouse w 

𝐷𝑖 𝐷𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 𝑜𝑓 𝑆𝐾𝑈 𝑖  

𝐹𝐷 𝐹𝑟𝑒𝑒 𝑑𝑒𝑚𝑢𝑟𝑟𝑎𝑔𝑒 𝑑𝑎𝑦𝑠 

𝑀 𝐵𝑖𝑔 𝑀, 𝑙𝑎𝑟𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

P Penalty when approaching due date of container j 

𝑃𝐴𝑖𝑗𝑤 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑜𝑓 𝑆𝐾𝑈 𝑖 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑤 

𝑄𝑖𝑗  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑜𝑓 𝑆𝐾𝑈 𝑖 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 
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𝐸[𝑆𝐿𝑂𝑗] The expected equivalent number of weeks container j occupies one bulk pallet place if the 

container is received in the ship or pick warehouse 

𝑆𝐿𝑂𝑤
̅̅ ̅̅ ̅̅ ̅ Average SLO at warehouse w 

𝑆𝑖𝑝 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑙𝑘 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑜𝑓 𝑆𝐾𝑈 𝑖 𝑎𝑡 𝑝𝑖𝑐𝑘 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 

𝑆𝑖𝑠 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑙𝑘 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑜𝑓 𝑆𝐾𝑈 𝑖 𝑎𝑡 𝑠ℎ𝑖𝑝 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 

𝑆𝑖𝑤 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙 𝑏𝑢𝑙𝑘 𝑠𝑡𝑜𝑐𝑘 𝑖𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑜𝑓 𝑆𝐾𝑈 𝑖 𝑎𝑡 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑤 

𝑆𝑡𝑤 Stock level of storage type t at warehouse w 

𝑆𝐶𝑖 Stock coverage of SKU i  

𝑇𝐷 Today 

𝑇𝑆𝑡𝑤 Total storage locations of storage type t at warehouse w 

𝜇𝑡 Allowed utilization of storage type t 

𝜇𝑊̅̅ ̅̅  Average utilization of bulk locations in all warehouses 

𝑊𝑗𝑤 Weight of assigning container j to warehouse w 

𝑊𝐵𝐴𝑤 Fraction of the capacity at warehouse w allowed to be occupied with type A containers 

𝑊𝐵𝐵𝑤 Fraction of the capacity at warehouse w allowed to be occupied with type B containers 

𝑊𝐵𝐶𝑤 Fraction of the capacity at warehouse w allowed to be occupied with type C containers 

𝑍𝑃 Cut-off SLO of pick warehouses 

𝑍𝑆 Cut-off SLO of shipping warehouses 

𝑍𝐿𝑊 Lower-bound SLO of receiving warehouse w 

𝑍𝑈𝑊 Upper-bound SLO of receiving warehouse w 

 

Vectors  

𝐶𝑇𝑗 Vector containing all 𝐶𝑇𝑗𝑤 of container j 𝐶𝑇𝑗 = {𝐶𝑇1𝑤, … , 𝐶𝑇𝐽𝑤} 

𝐷𝑗 Vector containing all 𝐷𝑖 of the SKUs in container j 𝐷𝑗 = {𝐷1 … , 𝐷50, … , 𝐷90} 

𝑄𝑗 𝑉𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 𝑄𝑖𝑗  𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 𝑄𝑗 = {𝑄1𝑗, … , 𝑄50𝑗, … , 𝑄90} 

𝑆𝑗 𝑉𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 (𝑆𝑖𝑝 + 𝑆𝑖𝑠)  

𝑜𝑓 𝑡ℎ𝑒 𝑆𝐾𝑈𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 

𝑆𝑗 = {(𝑆1𝑝 + 𝑆1𝑠), … , (𝑆𝐼𝑝 + 𝑆𝐼𝑠)} 

 

Decision variables 

𝑥𝑗𝑤 
{
0
1

    
𝑁𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 𝑡𝑜 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑤

𝐴𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 𝑡𝑜 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑤
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4.3 Container data 
Multiple containers a day arrive at the container yard waiting to be picked up by VidaXL. After arrival, 

containers are first classified as critical and noncritical containers. Critical containers must be 

scheduled before scheduling noncritical containers. Section 4.3.1 first provide rules to make a 

distinction between critical and noncritical containers. Noncritical containers must be picked up within 

ten days and lack any other scheduling restriction, it is therefore possible to schedule the receiving 

operation to reduce long-term cross docks. Section 4.3.2 to 4.3.5 provides methods to determine the 

number of cross docks associated with the put-away, picking and shipping operation respectively when 

the container will be received in one of the warehouses. Cross docks are inefficient flow of goods 

between warehouses and occur when the succeeding warehouse operation cannot be executed in the 

current warehouse. The put-away, picking and shipping cross docks are marked red in Figure 6. Cross 

docks can be avoided through scheduling the receiving operation such that the flow of goods between 

the warehouses is organized as efficient as possible. 

 

Figure 6: Put-away, picking and shipping cross docks between warehouses (marked red) 

4.3.1 Distinct critical and noncritical containers 
Containers available at the container yard can be classified as critical and noncritical containers. Critical 

containers must be received as soon as possible at a specific warehouse and it is therefore not possible 

to schedule the container receiving operation to achieve an efficient flow of goods. Noncritical 

containers are preferred to be picked up from the container yard within ten days, otherwise 

demurrage costs are incurred, however these containers lack any other scheduling restrictions. It is 

therefore possible to schedule the receiving operation in the upcoming ten days to achieve an efficient 

flow of goods.  

Critical containers are the containers which must be unloaded as soon as possible at a specific 

warehouse, which only occurs when a container at the container yard contains items which are almost 

out of stock. To fulfill customer demand on time, it is desirable to reduce the throughput time between 

the moment the critical container arrives at the container yard and when the item is shipped to the 

customer. Therefore, these containers are preferred to be received as soon as possible in a ship 



26 
 

warehouse, even if the number of cross docks in the ship warehouse is higher than in another 

warehouse. Containers are classified as critical when the current stock coverage is below a certain 

value. The current stock coverage of SKU i can be calculated as follows: 

𝑆𝐶𝑖 =
∑ 𝑆𝑖𝑤𝑤∈𝑤

𝐷𝑖
 

( 6) 

When the stock coverage is lower than the desired stock coverage, container j with SKU i must be 

received as soon as possible in a shipping warehouse. The critical containers must be scheduled before 

the noncritical containers, which is included in the scheduling algorithm in Section 4.4.3.  

4.3.2 Put-away cross docks 
Put-away cross docks occur when the receiving warehouse is not the same as the storage warehouse. 

Items cannot be stored in the receiving warehouse when the receiving warehouse lacks the right 

storage type or when the storage type is fully utilized (as pointed out in Section 2.3.2). The number of 

put-away cross docks of SKU i in container j are: 

𝑃𝐴𝑖𝑗𝑤 = {
0

 𝑄𝑖𝑗 − 𝐴𝑆𝑡𝑤 
          𝑖𝑓 𝑄𝑖𝑗 ≤ 𝐴𝑆𝑡𝑤

          𝑖𝑓 𝑄𝑖𝑗 > 𝐴𝑆𝑡𝑤
 

( 7) 

The number of put-away cross docks when receiving container j at warehouse w, as a consequence of 

not having the right storage type available, are: 

𝐶𝑃𝐴𝑗𝑤 = ∑ 𝑃𝐴𝑖𝑗𝑤

𝑖∈𝐼

 ( 8) 

4.3.3 Picking cross docks 
Picking cross docks occur in cases of customer demand when there is no stock available at the pick or 

ship warehouses while there is stock available in the overflow warehouses. Cross docks (e.g., external 

replenishments) are executed to replenish bulk stock from the overflow warehouse to one of the ship 

or pick warehouses. Pallets are always completely replenished from the reserve area into the forward 

area, and demand occurs in full pallets and can occur with equal probability at any day of the week. 

Picking cross docks can be avoided by assigning available containers to each warehouse so that the 

pallets stored in the overflow warehouse remain there as long as possible. More containers containing 

items with a short storage time can consequently be received in the preferred shipping warehouse 

resulting in less put-away, picking and shipping cross docks. 

To determine where to receive a container, the expected storage location occupation (SLO) is 

calculated, along with the equivalent number of weeks the container occupies one bulk pallet place if 

the container is received in the ship or pick warehouse. The SLO is determined for the whole container 

instead of each item individually since all items will be stored in the receiving warehouse if possible. 

Section 4.3.3.1 elaborates on the calculations of the SLO. To increase warehouse efficiency, containers 

must be allocated such that the amount of picking cross docks between warehouses is reduced. 

Therefore, containers with a low SLO are preferably received in the pick or ship warehouses, while 

containers with a high SLO are preferably received in an overflow warehouse. Items stored in the 

overflow warehouse are consequently requested less often resulting in less cross docks. Section 4.3.3.2 

proposes an equation for calculating the cut-off SLO to distinct high and low SLO. Section 4.3.3.3 

provides formulas to calculate the number of picking cross docks if a container is received in a less 

preferred warehouse. The same example is referred to at the end of every section for clarification. 
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4.3.3.1 Storage location occupation 

The SLO consist of two parts: The first regards the time required before the current stock is sold and 

VidaXL begins to sell the content of the receiving container if the container is received in the pick or 

ship warehouse; the second regards the time required before the content of the receiving container is 

sold. For simplicity is assumed that it never occurs that two containers containing the same SKU are 

available in the container yard. 

The first part requires (𝑆𝑖𝑝 + 𝑆𝑖𝑠)/𝐷𝑖 time units, where 𝑆𝑖𝑝 is the total current stock level of SKU i in 

the pick warehouses, 𝑆𝑖𝑠 the total current stock level of SKU i in the ship warehouses, and 𝐷𝑖 is the 

demand pattern of SKU i. In the meantime, the items are occupying 𝑄𝑖𝑗  pallet places, so the SLO during 

this timeframe is (𝑆𝑖𝑝 + 𝑆𝑖𝑠) ∗ 𝑄𝑖𝑗/𝐷𝑖. The first part is marked blue in Figure 13. The current stock level 

of SKU i in the ship and pick warehouse is considered instead of the overall stock since the stock level 

in the overflow warehouse does not affect the decision.  

Demonstration A: The stock level of SKU i in the overflow warehouse does not affect the allocation 

decision of the receiving container, given the restriction that first all stock is sold from the ship and pick 

warehouses before stock in the overflow warehouses. 

VidaXL receives one container with ten pallets of SKU i. Before assigning the container to the ship, pick, 

or overflow warehouse, the company checks the stock level in each warehouse and the demand pattern 

of SKU i. There are currently ten pallets located in the ship and pick warehouses and ten pallets located 

in the overflow warehouse, and the demand pattern is one pallet every week. First the stock is sold 

from the ship and pick warehouses before the stock in the overflow warehouses, the company therefore 

forecasts that the stock level will develop as shown in Figure 7 and Figure 8. The company calculates 

the SLO of the receiving container using equation 10, and two situations can occur: 1) the SLO is low 

and the container is assigned to the pick or ship warehouse or 2) the SLO is high and the container is 

assigned to the overflow warehouse. 

  
 
Figure 7: Current stock level SKU i pick and ship warehouses 

 

Figure 8: Current stock level SKU i overflow warehouses 

In the first situation, ten pallets of SKU i are received in the pick or ship warehouse and the current stock 

level of SKU i increases to twenty pallets (Figure 9). The increase in stock in the pick and ship warehouses 

is allowed since the demand is high enough so that the SLO of the receiving container is below the cut-

off SLO 𝑍𝑃 (which is explained in Section 4.3.3.2). The ten pallets stored in the overflow warehouse 

consequently remain ten weeks longer in the overflow warehouse (Figure 10), which is preferred since 

the company wants to store pallets as long as possible in the overflow warehouse in order to reduce 

cross docks between warehouses. 
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Figure 9: Stock level SKU i pick & ship warehouses 𝑆𝐿𝑂 < 𝑍𝑃  

 

Figure 10: Stock level SKU i overflow warehouses 𝑆𝐿𝑂 < 𝑍𝑃 

In the second situation, the company handles a lower cut-off SLO 𝑍𝑃 and the container is assigned to 

the overflow warehouse. The stock level in the pick and ship warehouses remains equal and the 

company forecasts to sell all the pallets within ten weeks (Figure 11). However, the stock level of the 

overflow warehouse increases by ten pallets to twenty pallets, the pallets stay in the overflow 

warehouse on average longer as forecasted earlier, which is desired since the throughput time of the 

pallets stored in the overflow warehouse must be as long as possible in order to reduce the cross docks 

between warehouses (Figure 12). 

 

Figure 11: Stock level SKU i pick & ship warehouses 𝑆𝐿𝑂 > 𝑍𝑃 

 

Figure 12: Stock level SKU i overflow warehouses 𝑆𝐿𝑂 > 𝑍𝑃 

The stock level in the overflow warehouses does not affect the decision to receive the container in the 

overflow warehouses or in the pick or ship warehouses. The stock level in the pick and ship warehouses 

represents the sole crucial stock affecting the decision to receive containers in one of the warehouses.  

The second part of the SLO consists of the time required before all pallets of SKU i of container j are 

sold, which can be calculated by summing the time that each pallet remains in the warehouse. For 

example, container j contains ten pallets of SKU i with a demand of one pallet per week. The first pallet 

demand occurs within one week on a random day, so it occupies one pallet place for half a week on 

average, while the second pallet is sold within two weeks, so it occupies one pallet place for one and 

a half weeks on average, and so on. In total, the pallets occupy the equivalent of one pallet place for 

0.5+1.5+2.5+3.5+4.5+5.5+6.5+7.5+8.5+9.5=50 weeks. It is possible to calculate the sum of consecutive 

numbers using the Gauss sum formula (equation 9). Demand occurs at a random day of the week and 

not always at the end of the week, and therefore the formula of Gauss must be adjusted to (n^2)/2. In 

addition, the demand is not always one pallet per week, and the Gauss formula can be divided with 

the demand pattern 𝐷𝑖 to calculate the equivalent number of weeks the item occupies one pallet place 
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(marked red in Figure 13). The SLO can be calculated with equation 10, which represents a combination 

of the first and second equation. 

 

Figure 13: Stock level evolution SKU i container j with marked SLO denotation 

 

1 + 2 + 3 + ⋯ + 𝑛 = ∑ 𝑘 =

𝑛

𝑘=1

𝑛(𝑛 + 1)

2
 

 

( 9) 

𝐸[𝑆𝐿𝑂𝑗] = ∑(
(𝑆𝑖𝑝 + 𝑆𝑖𝑠) ∗ 𝑄𝑖𝑗

𝐷𝑖
+

𝑄𝑖𝑗
2

2𝐷𝑖
)

𝐼

𝑖=1

= ∑
𝑄𝑖𝑗

2 + 2 ∗ (𝑆𝑖𝑝 + 𝑆𝑖𝑠) ∗ 𝑄𝑖𝑗

2𝐷𝑖

𝐼

𝑖=1
 

( 10) 

 

Example 1 : Calculating the SLO 

VidaXL receives one container j, which has eight SKUs inside which can be stored on fifty-five pallets in 

total. The container contains six pallets of the first item, the demand pattern for this item is one pallet 

per week, and there are currently fourteen pallets stocked in the pick and ship warehouses. Container 

j also contains seven pallets of the second item, the demand pattern for the second item is one pallet 

per week, and the current stock level in the pick and ship warehouses is twenty-six pallets. The content 

of container j, the demand pattern of the SKUs in container j, and the current stock level of those SKUs 

are summarized in the following vectors: 

I: 8 

𝑄𝑗: {6,7,10,7,5,12,1,7} 

𝐷𝑗: {1,1,2,1,2,3,2,1}  

𝑆𝑗: {14,26,23,15,25,29,10,18} 

The SLO of container j can be calculated using equation 10: 

𝐸[𝑆𝐿𝑂𝑗] = ∑
𝑄𝑖𝑗

2 + 2 ∗ (𝑆𝑖𝑝 + 𝑆𝑖𝑠) ∗ 𝑄𝑖𝑗

2𝐷𝑖

8

𝑖=1
=  999.5 

Container j is expected to occupy the equivalent of 999.5 storage locations for one week if it is received 

in a pick or ship warehouse. 
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4.3.3.2 Cut-off SLO 

For every receiving container, the appropriate receiving warehouse needs to be determined. As 

previously mentioned, the efficiency of the warehousing system can be increased by assigning the 

containers so that the amount of picking cross docks between the warehouses is reduced. Therefore, 

containers with a low SLO are preferred to be received in one of the pick or ship warehouses, while 

containers with a high SLO are preferred to be received in an overflow warehouse. This section 

provides equations to specify low and high SLO.  

Demonstration B: Containers with a low SLO are preferred to be received in one of the pick or ship 

warehouses, while containers with a high SLO are preferred to be received in an overflow warehouse. 

VidaXL receives four containers in the next thirty weeks. For simplicity, the warehouses currently do not 

have stock of the SKUs that are in the containers (which is also the case when new SKUs are received). 

The first three containers each contain ten pallets, and the demand is one pallet per week. The SLO of 

each container is calculated using equation ten and is equal to fifty. The fourth container has ten pallets, 

but the demand pattern is one pallet per three weeks. The SLO of the fourth container is also calculated 

with equation 10 and is equal to 150. To equalize the usage of the storage space between the pick, 

ship, and overflow warehouses, the containers can be divided into two sets. Set A contains the first 

three containers, where 3*10=30 pallets with a total SLO of 50+50+50=150. Set A uses five storage 

places on average in the upcoming thirty weeks, see Figure 14 for the expected stock level evolution of 

set A. For calculating the average storage places in the upcoming thirty weeks, it does not matter 

whether all three containers are received from the start 30*(5+0+0)/30=5 or whether one container is 

received every ten weeks 10*(5+5+5)/30=5). Set B contains the fourth containers with ten pallets and 

a SLO of 150 as well. Set B uses five storage places on average in the upcoming thirty weeks as well, 

see Figure 15 for the expected stock level evolution of set B. To reduce the number of cross docks 

between warehouses, it is better to assign set B to an overflow warehouse. Ten pallets are consequently 

cross docked in the upcoming thirty weeks to fulfill customer demand. If set A is assigned to an overflow 

warehouse, VidaXL needs to cross dock ten pallets from set A every ten weeks, resulting in thirty cross 

docks in the upcoming thirty weeks.  

 

Figure 14: Stock level evolution set A (SLO=150) 

 

Figure 15: Stock level evolution set B (SLO=150) 

The example shows that containers with a low SLO are preferred to be received in the pick and ship 

warehouses and shows that the storage locations in the warehouses can be equally utilized if the total 

SLOs of each set are equal. However, in practice the bulk storage locations are not equally divided over 

the pick, ship, and overflow warehouses. Therefore, the overall SLO must be divided according to the 

distribution of the bulk storage places between the pick, ship, and the overflow warehouses, which is 

represented by the right side of equation 11. The left side illustrates the sum of all expected SLOs lower 
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than 𝑍𝑃 so that all containers with a SLO lower than 𝑍𝑃 are preferred to be received in the pick and 

ship warehouses to achieve balanced storage location utilization. Parameter 𝑍𝑃 must be set so that 

the following equation holds: 

∑ 𝐸[𝑆𝐿𝑂𝑗] 

𝑗∈𝐽 |𝐸[𝑆𝐿𝑂𝑗]≤𝑍𝑃

=  
𝐵𝑝 + 𝐵𝑠

𝐵𝑜 + 𝐵𝑝 + 𝐵𝑠
∗ ∑ 𝐸[𝑆𝐿𝑂𝑗]

𝑗∈𝐽

 

 

( 11) 

Example 1 : Calculating the cut-off SLO 

VidaXL received 7,100 containers in 2019. The SLO per container can be determined from historical data 

and yields the result of Figure 16. The SLO faces a “long tail,” where all values above 3,000 are given in 

the last column. A SLO value of 3,000 is on average almost equivalent to storing all items of a container 

for one year without selling any items. When items are not sold within one year, VidaXL tries to sell the 

items via other sales channels or they scrap the items. 

  

Figure 16: Storage location occupation and cut-off SLO 𝑍𝑃  VidaXL (2019) 

The “long tail” makes the warehouse operations at VidaXL highly suitable for assigning containers with 

a high SLO to overflow warehouses. As earlier noted, ten containers with a SLO of 300 occupy the same 

amount of storage places as one container with a SLO of 3,000. 

Vida XL has 284,700 bulk storage locations divided across three overflow warehouses, one pick 

warehouse, and two ship warehouses, they have 238,700 bulk storage locations in the pick and ship 

warehouses and 46,000 bulk storage locations at overflow warehouses. VidaXL wants to utilize the 

storage locations equally over the warehouses while reducing the number of cross docks. To achieve 

this result, 84% of the overall SLO must be assigned to the pick and ship warehouses and 16% to 

overflow warehouses. To reduce the number of cross docks between the warehouses, the containers 

with a high SLO must be received in the overflow warehouses. In other words, containers with a SLO 

lower or equal to 𝑍𝑃 must be stored in the pick and ship warehouses so that the sum of the SLO of those 

containers divided by the overall SLO is equal to 84%.  

After evaluating the historical data of VidaXL, the cutoff score 𝑍𝑃 must be set to 2,765. 
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∑ 𝐸[𝑆𝐿𝑂𝑗] 

𝑗∈𝐽 |𝐸[𝑆𝐿𝑂𝑗]≤2,765

=  
61,500 + 177,200

46,000 + 61,500 + 177,200
∗ 7,322,506 = 6,138,549 

 

 

4.3.3.3 Additional cross docks if received in another warehouse as preferred 

If containers are received in another warehouse as preferred (according to the cutoff SLO), the items 

occupy storage locations so that other containers must be received in other warehouses as well. Pallets 

are consequently cross docked between the pick and ship warehouses and the overflow warehouses 

unnecessary. Two events cause cross docks: 1) The wrong container is received in the pick or ship 

warehouse or 2) the wrong container is received in the overflow warehouse. The expected 

unnecessary cross docks in the first event can be calculated by multiplying the additional fraction of 

time that the items unnecessarily occupy the storage location with the average pallets per container 

and subtracting it by the average pallets per container. The additional fraction of time that the items 

occupy the storage location can be calculated by dividing the expected SLO of container j with the 

average SLO of the pick and ship warehouses. However, the outcome needs to be divided by two since 

in practice such cross docks only occur for the items wrongly stored in the overflow warehouse rather 

than to the items wrongly stored in the pick and ship warehouses (equation 12). 

The expected unnecessary cross docks caused by the second event can be calculated by multiplying 

the average pallets per container with the expected SLO of container j and dividing this result by the 

average SLO of the received containers in the overflow warehouse. This value can be subtracted from 

the average pallets per containers to calculate the unnecessary cross docks. Moreover, the outcome 

needs to be divided by two since additional cross docks only occur for the containers assigned to the 

overflow warehouse (equation 13). 

If  𝐸[𝑆𝐿𝑂𝑗] > 𝑍𝑃 and container is assigned to the pick or ship warehouse: 

𝐸[𝐶𝑃𝐼𝑗𝑤] =
𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑝𝑖𝑐𝑘 𝑎𝑛𝑑 𝑠ℎ𝑖𝑝 𝑤ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

−
𝑄̅

2
 

( 12) 

 

If  𝐸[𝑆𝐿𝑂𝑗] <  𝑍𝑃  and container is assigned to the overflow warehouse: 

𝐸[𝐶𝑃𝐼𝑗𝑤] =
𝑄̅

2
−

𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑤ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 
( 13) 

Example 1 : Calculating additional picking cross docks 

Container j from example 1 is received in the overflow warehouse, and therefore container j+1 must be 

received in the pick or ship warehouse to equalize the utilization of the storage locations. Container j+1 

has an expected SLO of 3,000, and the average SLO of the containers received in the pick and ship 

warehouses is 1,000. Therefore, the additional pallet cross docks of receiving container j+1 in the pick 

or ship warehouse instead of the overflow warehouse are: 

𝐸[𝐶𝑃𝐼𝑗𝑤] =
𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑝𝑖𝑐𝑘 𝑎𝑛𝑑 𝑠ℎ𝑖𝑝 𝑤ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

−
𝑄̅

2
=

56.5 ∗ 3,000

2 ∗ 1,000
−

56.5

2
= 56.5 
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Container j+1 occupies the equivalent of 3,000 storage places for one week in the pick or ship 

warehouse. Three other containers with a SLO of 1,000 must consequently be received in the overflow 

warehouse to equalize the utilization between the ship, pick, and overflow warehouses. 

Container j in example 1 has an expected SLO of 999.5, and the container must be received in the pick 

or ship warehouse because its expected SLO is below 2,765. If the container is received in the overflow 

warehouse, avoidable cross docks occur. Therefore, the additional pallet cross docks due to the wrong 

receiving location are calculated as follows:  

𝐸[𝐶𝑃𝐼𝑗𝑤] =
𝑄̅

2
−

𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑤ℎ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=
56.5

2
−

56.5 ∗ 999.5

2 ∗ 3,000
= 18.8 

In total, four containers are wrongly assigned. Container j+1 is assigned to the ship and pick warehouse. 

Equation 12 assigns 56.5 additional cross docks to container j+1. Three containers with a SLO of 999.5 

are assigned to the overflow warehouse, and 18.8 additional cross docks are assigned to each 

container. In total, 56.5+18.8+18.8+18.8=112.9 cross docks are equally assigned to the four containers. 

In practice, three containers with on average 56.5 pallets are stored in the overflow warehouse, 

resulting in 3*56.5=169.5 cross docks. If the containers were assigned correctly, the container with a 

SLO of 3,000 was stored in the overflow warehouse, resulting in 56.5 cross docks. The wrong 

assignment results in 169.5-56.5=113 unnecessary avoidable cross docks, which is equal to the sum of 

all additional assigned cross docks to all four containers. 

4.3.4 Shipping cross docks 
Shipping cross docks occur when the pick warehouse is not the same as the shipping warehouse. This 

section first elaborates on the occurrence and prevention of shipping cross docks. Moreover, it 

proposes a method to reduce shipping cross docks and it presents an example for clarification. 

VidaXl has one pick warehouse which is not equipped for shipping items directly to the customer, and 

they have two shipping warehouses which can pick and ship items directly. Items picked in the pick 

warehouse are always cross docked to one of the shipping warehouses. 

VidaXL currently ships items to forty-five carrier destinations in Europe, carrier destinations with low 

demand are not reach by both shipping warehouse. They are not able to forecast the demand pattern 

per item per carrier destination since the demand pattern is exposed to multiple trends and 

seasonality, and it is therefore not possible to assign the right shipping warehouse to receiving 

containers based on forecasted customer demand. In addition, the expected utilization of the pick 

locations will deviate between 70% and 90% in 2020. VidaXL lacks sufficient pick locations to make 

items pickable in multiple warehouses, and shipping cross docks will consequently occur when the pick 

warehouse is not the same as the ship warehouse. 

The shipping cross docks from the pick warehouse to the ship warehouses can be reduced by storing 

items with a high demand in the ship warehouse, items with an average demand in the pick warehouse 

and items with a low demand in the overflow warehouse. More containers containing items with a 

short storage time can consequently be received in the preferred shipping warehouse resulting in less 

put-away, picking and shipping cross docks. After observing Figure 6, it looks like it does not matter if 

the items stored in the pick and overflow warehouse are cross docked to the ship warehouse during 

the picking or shipping operation. However, scheduling the receiving operation does not affect the 

current replenishment procedure and the warehouse network design of VidaXL.  
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Items are not always directly cross docked (e.g. replenished) from the overflow warehouse to the ship 

warehouses. Sometimes, they are first cross docked to the pick warehouses, the items are 

consequently cross docked to the ship warehouses before shipping them to the customers. The picking 

cross docks are executed to the pick or ship warehouse based on the utilization of the forward area of 

those warehouses. Moreover, it is only possible to pick some items in the pick warehouse and not in 

the ship warehouse since the forward area of the ship warehouses are not always equipped with all 

storage types. Pallets must therefore first be cross docked from the overflow warehouse to the pick 

warehouses before cross docking the items to the ship warehouses. 

When receiving containers in the overflow warehouse, it is not possible to determine beforehand if 

the items will be cross docked to the ship or pick warehouse. It is therefore desirable to reduce all 

cross docks during the shipping and picking operation from the overflow warehouses, by receiving 

container with a low SLO in the shipping warehouse, containers with an average SLO in the pick 

warehouse and containers with a high SLO in the overflow warehouse. More containers containing 

items with a short storage time can consequently be received in the preferred shipping warehouse 

resulting in less put-away, picking and shipping cross docks. Receiving containers can be assigned to 

the warehouses in the same manner as described in Section 4.3.3. Equation 11 must be adjusted as 

follows to calculate the cut-off SLO 𝑍𝑆: 

∑ 𝐸[𝑆𝐿𝑂𝑗] 

𝑗∈𝐽 |𝐸[𝑆𝐿𝑂𝑗]≤𝑍𝑆

=  
𝐵𝑆

𝐵𝑂 + 𝐵𝑃 + 𝐵𝑆
∗ ∑ 𝐸[𝑆𝐿𝑂𝑗]

𝑗∈𝐽

 
( 14) 

The right side of the equation is adjusted so that the containers are equally distributed over the 

warehouses according to the distribution of the storage locations. There are consequently two cut-off 

SLOs: The cut-off SLO 𝑍𝑆 is the upper bound SLO of the shipping warehouses,  𝑍𝑆 is also the lower 

bound of the pick warehouses, and the cut-off SLO 𝑍𝑃 is both the upper bound of the pick warehouses 

and the lower bound of the overflow warehouses.  

If the container is not received in the preferred warehouse, the estimated number of additional cross 

docks can be calculated in the same manner as in Section 4.3.3. However, equations 12 and 13 must 

be adjusted to: 

If  𝐸[𝑆𝐿𝑂𝑗] > 𝑍𝑈𝑊 where 𝑍𝑈𝑊 is the upper bound of the receiving warehouse w: 

𝐸[𝐶𝑃𝑆𝑗𝑤] =
𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑊
̅̅ ̅̅ ̅̅ ̅̅

−
𝑄̅

2
 

( 15) 

If  𝐸[𝑆𝐿𝑂𝑗] <  𝑍𝐿𝑊 where 𝑍𝐿𝑊 is the lower bound of the receiving warehouse w: 

𝐸[𝐶𝑃𝑆𝑗𝑤] =
𝑄̅

2
−

𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑊
̅̅ ̅̅ ̅̅ ̅̅

 
( 16) 
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Example 1 : Calculating 𝑍𝐿𝑊, 𝑍𝑈𝑊, and the additional number of cross docks. 

VidaXL still has the same amount of bulk locations in each warehouse: 62% are located in the shipping 

warehouses, 22% in the pick warehouses, and 16% in the overflow warehouses. To reduce the number 

of cross docks, the receiving containers must be allocated so that the overall SLO is divided according 

to the same distribution. The same historical data from the previous section is evaluated (Figure 17). 

Figure 17: Storage location occupation and cut-off SLO 𝑍𝑃  and 𝑍𝑆 VidaXL (2019) 

The cut-off SLO 𝑍𝑆 is equal to 𝑍𝑈𝑊 of the shipping warehouses and to 𝑍𝐿𝑊 of the picking warehouses, 

which can be calculated as follows: 

∑ 𝐸[𝑆𝐿𝑂𝑗] 

𝑗∈𝐽 |𝐸[𝑆𝐿𝑂𝑗]≤1,872.5

=  
177,200

46,000 + 61,500 + 177,200
∗ 7,322,506 = 4,556,382 

The cut-off SLO 𝑍𝑆 is equal to 1,872.5. Every receiving container with a SLO lower or equal to 1,872.5 

must be received in one of the shipping warehouses to reduce the number of shipping cross docks. The 

cut-off SLO 𝑍𝑃 is equal to 𝑡ℎ𝑒 𝑍𝑈𝑊 of the picking warehouses and to 𝑡ℎ𝑒 𝑍𝐿𝑊 of the overflow 

warehouses, which can be calculated as follows: 

∑ 𝐸[𝑆𝐿𝑂𝑗] 

𝑗∈𝐽 |𝐸[𝑆𝐿𝑂𝑗]≤2765

=  
61,500 + 177,200

46,000 + 61,500 + 177,200
∗ 7,322,506 = 6,138,549 

Receiving containers with a SLO lower than 1,872.5 are consequently preferred to be received in the 

shipping warehouse. Containers with a SLO between 1,872.5 and 2,765 are preferably received in the 

pick warehouses, while containers with a SLO above 2,765 are preferably received in the overflow 

warehouses to reduce put-away, picking and shipping cross docks. 

Consider the containers j, j+1, and the new introduced container j+2, which have SLOs of 999.5, 3,000, 

and 2,000 respectively. Imagine that container j is received in the overflow warehouse, container j+1 in 

the pick warehouse, and container j+2 in the ship warehouse.  

For container j holds  𝐸[𝑆𝐿𝑂𝑗] <  𝑍𝐿  , the additional number of cross docks are: 

𝐸[𝐶𝑃𝑆𝑗𝑤] =
𝑄̅

2
−

𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑊
̅̅ ̅̅ ̅̅ ̅̅

=
56.5

2
−

56.5 ∗ 999.5

2 ∗ 3,000
18.8 
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For container j+1 holds  𝐸[𝑆𝐿𝑂𝑗] >  𝑍𝑈, the additional number of cross docks are: 

𝐸[𝐶𝑃𝑆𝑗𝑤] =
𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑊
̅̅ ̅̅ ̅̅ ̅̅

−
𝑄̅

2
=

56.5 ∗ 3,000

2 ∗ 2,500
−

56.5

2
= 5.65 

For container j+2 holds  𝐸[𝑆𝐿𝑂𝑗] >  𝑍𝑈, the additional number of cross docks are: 

𝐸[𝐶𝑃𝑆𝑗𝑤] =
𝑄̅ ∗  𝐸[𝑆𝐿𝑂𝑗]

2 ∗ 𝑆𝐿𝑂𝑊
̅̅ ̅̅ ̅̅ ̅̅

−
𝑄̅

2
=

56.5 ∗ 2,000

2 ∗ 1,000
−

56.5

2
= 28.3 

4.3.5 Total number of cross docks 
The total number of cross docks as a result of assigning container j to receiving warehouse w can be 

calculated by summing the number of cross docks during the put-away, picking, and shipping 

operations (equation 17). The total number of cross docks during put-away are defined as 𝐶𝑃𝐴𝑗𝑤, 

while the expected total number of avoidable cross docks during picking and shipping are defined as 

𝐶𝑃𝑆𝑗𝑤. 

𝐶𝑇𝑗𝑤 = 𝐶𝑃𝐴𝑗𝑤 + 𝐶𝑃𝑆𝑗𝑤 ( 17) 

 

4.4 Scheduling container receiving operation 
In an ideal situation, the inbound capacity per warehouse, the arriving date and the number of cross 

docks of each receiving container is known far in advance. When there is enough inbound capacity, it 

would then be possible to schedule the receiving operation of each container before the demurrage 

date while minimizing the total long-term cross docks. A binary decision must be made, containers 

must be picked up by a warehouse on a specific date resulting in J*W*T binary decision variables. The 

triple sum objective function can minimize the total long-term cross docks by assigning the containers 

to warehouses on specific periods. Container j will be assigned to warehouse w on period t if the binary 

decision variable is equal to one, the container is not assigned to warehouse w on period t if the binary 

decision model is equal to zero. Triple sum objective functions are complex to solve and requires high 

computational effort, the solution space increases exponentially.  

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is 

only known a few days in advance, the actual arriving date of each container almost always differs 

from the estimated arrival date and it is almost impossible to estimate the number of cross docks of 

each receiving container far in advance. Previous section showed that the estimated number of cross 

docks depends on the available storage locations in the receiving warehouse, and on the stock level of 

each SKU in the pick and ship warehouses. Both depend on the demand pattern of each SKU and on 

the earlier received and stored items in each warehouse. Containers received during previous periods, 

increases the current stock level in each warehouse and therefore affect the estimated number of 

cross docks of the new receiving containers. Scheduling the container receiving operation for many 

periods in advance with a triple sum objective function is therefore almost impossible since each 

receiving operation during previous periods affects the estimated cross docks of to be received 

containers in future periods. 

It would be possible to resolve the triple sum objective function each period when new information 

becomes available. However, solving a triple sum objective function with J*W*T binary decision 

variables requires computational effort and there is only limited time available to complete the 
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calculations. VidaXL schedules its container receiving operation each day, there will only be a few hours 

available during the night to provide a proper receiving schedule for each warehouse. Applying a rolling 

horizon and resolving a triple sum objective function for the coming months each day new information 

becomes available would therefore not be possible. 

The solution space can be decreased significantly through daily assigning the containers to warehouses 

while meeting the inbound capacity constraints, resulting in W*J binary decision variables. However, 

minimizing the total cross docks daily is exposed to myopic and does not reduce the total long-term 

cross docks. Section 4.4.1 provides three examples to discuss all three myopias and proposes a method 

to conquer them. This paper proposes an alternative rolling horizon scheduling algorithm to deal with 

uncertain container arrivals and new information availability while reducing the computation time and 

complexity of the problem. First, an aggregate solution for multiple periods is provided with a binary 

decision model. The binary decision model has a double sum objective function and selects the next 

containers to be processed at each warehouse for the upcoming periods. The binary decision model 

only assigns the containers to warehouses, resulting in J*W binary decision variables and a double sum 

objective function. Second, the FIFO dispatch rule is applied to gather a detailed solution for the first 

scheduling’s period. The FIFO dispatch rule schedules the container to specific receiving periods such 

that the throughput time decreases, and the containers are picked up before its demurrage date. The 

algorithm can be resolved each period new information becomes available. Section 4.4.2 first 

elaborates in more depth on the rolling horizon policy whereas Section 4.4.3 proposes a binary decision 

model including the objective function. Finally, the complete algorithm to schedule the receiving 

operation of critical and noncritical containers is provided in Section 4.4.4. 

4.4.1 Reducing the total number of cross docks 
The goal if this research is to increase the efficiency of warehouse operations by reducing the total 

number of cross docks. First, this section provides evidence that unnecessary cross docks are not 

avoided through daily selecting containers to minimize cross docks since this automatically means not 

selecting “hard containers” with many cross docks at all warehouses. Second, this section provides 

evidence that minimizing the number of cross docks daily does not minimize the total long-term cross 

docks. Third, this section provides evidence that the total number of cross docks are minimized without 

harming the inbound capacity constraint by selecting zero containers. Afterwards, it proposes a 

method to tackle these myopias through maximizing the long-term profit associated with receiving the 

container at the most preferred warehouse instead of at a less preferred warehouse. 

Myopic 1 
Selecting containers to minimize the total number of cross docks automatically means not selecting 

“hard containers” with many cross docks at all warehouses. These containers are forced to be scheduled 

just before the demurrage date and are therefore most of the times scheduled at a less preferred 

warehouse resulting in avoidable cross docks. Forced scheduling a “hard container” with ten avoidable 

cross docks at a less preferred warehouse results in more cross docks as voluntary scheduling another 

container with one avoidable cross dock at a less preferred warehouse. 

There are six containers available in the container yard waiting to be picked up, and VidaXL can receive 

one container per day in the upcoming five days in each of the two warehouses. VidaXL must pick up 

all available containers within four days to prevent itself from demurrage costs. Moreover, VidaXL 

receives two containers per day in the upcoming two days. The cross docks associated with receiving 

the containers at MKI or JTS are provided in Table 3. 
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Table 3: Container data myopic 1 

Container A B C D E F G H I J 

MKI 5 5 5 5 6 6 5 5 5 5 

JTS 6 7 8 9 12 13 0 0 0 0 

Available date t t t t t t t+1 t+1 t+2 t+2 

Demurrage date t+3 t+3 t+3 t+3 t+3 t+3 t+4 t+4 t+5 t+5 

 

To minimize the number of cross docks daily, the containers can be scheduled as shown in Table 4. 

Table 4: Receiving schedule daily minimize cross docks myopic 1 

Day t t+1 t+2 t+3 t+4 

MKI C G D F J 

JTS A H B E I 

 

The total number of cross docks are 5 + 6 + 5 + 0 + 5 + 7 + 6 + 12 + 5 + 0 = 51. 

Through minimizing the number of cross docks daily, the containers G and H are scheduled on day t+1 

and VidaXL is therefore forced to pick up the “hard containers” E and F on day t+3 since these containers 

are approaching the demurrage date. Container E is assigned to a less preferred warehouse, causing 

12-6=6 unnecessary avoidable cross docks. The containers can also be assigned as in Table 5.  

Table 5: Receiving schedule conquer myopic 1 

Day t t+1 t+2 t+3 t+4 

MKI C D E F J 

JTS A B G H I 

 

The total number of cross docks are 5 + 6 + 5 + 7 + 6 + 0 + 6 + 0 + 5 + 0 = 40. 

Minimizing the total number of cross docks automatically means not selecting “hard containers” with 

many cross docks at all warehouses. These containers are forced to be scheduled just before the 

demurrage date and are therefore most of the times scheduled at a less preferred warehouse resulting 

in unnecessary avoidable cross docks.  

Myopic 2  
Minimizing the total number of cross docks every day does not minimize the total long-term cross docks 

since two sub optimizations do not automatically lead to the overall optimum. 

There are eight containers available in the container yard waiting to be picked up, and VidaXL can 

receive two containers per day in the next two days in each of the two warehouses. The number of cross 

docks associated with receiving the containers at the MKI and JTS warehouse are presented in Table 6. 

Table 6: Container data myopic 2 

Container A B C D E F G H 

MKI 4 4 4 4 7 7 8 8 

JTS 6 6 6 6 6 6 6 6 

Available date t t t t t t t t 

Demurrage date t+5 t+5 t+5 t+5 t+5 t+5 t+5 t+5 
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Minimizing the number of cross docks on the first day can be achieved as presented in Table 7.  

Table 7: Receiving schedule daily minimizing cross docks myopic 2 

Day t t+1 

MKI A, B E, F 

JTS C, D G, H 

The total number of cross docks are 4 + 4 + 6 + 6 + 7 + 7 + 8 + 8 = 50. 

Minimizing the total number of cross docks over both days results in the assignment of Table 8. 

Table 8: Receiving schedule minimizing total number of cross docks myopic 2 

Day t t+1 

MKI A, B C, D 

JTS E, F G, H 

 

The subsequent number of cross docks are 4 + 4 + 4 + 4 + 6 + 6 + 6 + 6 = 40. Minimizing the number of 

cross docks daily thus does not minimize the total number of cross docks. 

In a static situation, scheduling all available containers for the upcoming days results in the optimal 

answer. However, the scheduling procedure is exposed to uncertainty, because VidaXL does not know 

exactly when the containers become available, and the number of cross docks associated with each 

container can differ each day. Containers received over the following days can influence the decision 

made on the previous day. The rolling horizon policy may therefore be very useful in dynamic situations 

with considerable uncertain arrivals in later stages of the scheduling horizon (Wilkinson, 1996). 

Applying the rolling horizon policy to schedule the container receiving operation is described in more 

depth in Section 4.4.2. 

Myopic 3 
The total number of cross docks are minimized without harming the inbound capacity constraint by 

selecting zero containers. 

There are six containers available in the container yard waiting to be picked up, and VidaXL is able to 

pick up one container per day in the upcoming tree days in each of the two warehouses. VidaXL must 

pick up all available containers within three days to prevent itself from demurrage costs. The cross 

docks associated with scheduling the containers at MKI or JTS are provided in Table 9. 

Table 9: Container data myopic 3 

Container A B C D E 

MKI 5 5 5 5 6 

JTS 6 7 8 9 12 

Available date t t T t t 

Demurrage date t+2 t+2 t+2 t+2 t+2 

 

Minimizing the total number of cross docks while there is no minimum inbound capacity constraint yield 

the result of Table 10. 
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Table 10: Receiving schedule minimizing cross docks myopic 3 

Day t t+1 t+2 

MKI - - B 

JTS - - A 

 

No containers are scheduled on day t and on day t+1. However, all containers must be picked up before 

or on day t+2, each warehouse is only able to receive 1 container per day and not all containers are 

therefore picked up before the demurrage date by daily minimizing the number of cross docks. 

Selecting containers to minimize the number of cross docks automatically means not selecting “hard 

containers” with many cross docks at all warehouses. Moreover, minimizing the number of cross docks 

daily does not minimize the total long-term cross docks and selects zero containers when none of the 

available containers are approaching the demurrage date. The total number of cross docks can be 

reduced by scheduling the containers for a larger scheduling horizon existing of multiple periods by 

maximizing the profit from assigning container j to warehouse w instead of less-preferred warehouse. 

This principle is a combination of a rolling horizon policy and the greedy heuristic, the latter selects the 

“biggest bang for the buck,” yielding a better result than minimizing the number of cross docks daily. 

Conquer myopic 1, 2 and 3 while reducing long-term cross docks 
Scheduling containers for a scheduling horizon of multiple periods by maximizing the profit associated 

with receiving the container at the most preferred warehouse instead of at a less preferred warehouse 

conquer myopic 1, 2 and 3. 

At day one, there are eight containers with the same demurrage date available at the container yard 

waiting to be picked up, containers A, B, C, D, E, F, G, and H. On the fourth day, four new containers 

become available at the container yard, and VidaXL has the capacity to receive one container per day 

in two warehouses. VidaXL schedules the containers over two periods and only confirms the pickup day 

of the containers scheduled on next period (the scheduled for the second period can consequently still 

be changed). The cross docks associated with scheduling the containers at MKI or JTS are provided in 

Table 11. 

Table 11: Number of cross docks per container per warehouse 

Container A B C D E F G H I J K L 

MKI 5 5 5 5 5 5 5 5 5 5 5 5 

JTS 6 7 8 9 10 11 12 13 0 0 0 0 

Available  t t t t t t t t t+3 t+3 t+3 t+3 

Demurrage t+3 t+3 t+3 t+3 t+3 t+3 t+3 t+3 t+12 t+12 t+12 t+12 

 

To minimize the number of cross docks, the containers are scheduled as shown in Table 12 (c =confirmed 

picked up, n=scheduled but pick up not yet confirmed). 

Table 12: Receiving schedule minimizing the number of cross docks 

Day t t+1 t+2 t+3 t+4 

C/N C N C N C N C N C N 

MKI C D D E E G G J J L 

JTS A B B F F H H I I K 
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The total number of cross docks are 5 + 6 + 5 + 7 + 5 + 11 + 5 + 13 + 5 + 0 = 62. 

Scheduling the containers for two periods by maximizing the profit associated with receiving the 

container at the most preferred warehouse instead of at a less preferred warehouse leads to the 

assignment of Table 13. 

Table 13: Receiving schedule "biggest bang for the buck" 

Day t t+1 t+2 t+3 t+4 

C/N C N C N C N C N C N 

MKI H G G F F E E I I K 

JTS A B B C C D D J J L 

 

The total number of cross docks are 5 + 6 + 5 + 7 + 5 + 8 + 5 + 9 + 5 + 5 = 50. 

The total number of cross docks is reduced by maximizing the profit associated with receiving the 

container at the most preferred warehouse instead of at a less preferred warehouse. Moreover, 

maximizing the profit daily yields a suboptimal solution, and therefore the total number of cross docks 

can be reduced by maximizing the profit over a larger horizon. Sections 4.4.2 to 4.4.4 elaborate on the 

scheduling procedure to maximize the profit over a scheduling horizon existing of multiple periods. 

The influence of different scheduling horizons on the total number of cross docks is investigated in 

Section 5.  

4.4.2 Rolling horizon policy 
As mentioned in the introduction of Section 4.4, each receiving operation affects the estimated cross 

docks of new to be received containers. Furthermore, the receiving operation at VidaXL is exposed to 

uncertainty and it is therefore almost impossible to apply a static algorithm to schedule all container 

arrivals in advance. A rolling horizon policy can therefore be applied to revise the receiving schedule 

every period new information becomes available. This section first introduces the rolling horizon 

policy, hereafter it discusses the usability of the rolling horizon policy to schedule the container 

receiving operation at VidaXL.  

To reduce the long-term cross docks, the rolling horizon policy will be applied. The rolling horizon policy 

separate the scheduling problem in a sequence of iterations, each iteration only models’ part of the 

scheduling horizon in detail, while the rest of the horizon is scheduled in an aggregate manner. This 

approach results in close to optimal solutions with a significant reduction of the computation time 

(Dimitriadis, Shah, & Pantelides, 1997). The length of the scheduling horizon has a significant impact 

on the performance of the model. Some simulation studies show even better performance under the 

rolling horizon policy as under static scheduling since it can deal with environmental changes (Fang & 

Xi, 1997). The rolling horizon policy may therefore be very useful in dynamic situations with 

considerable uncertain arrivals in later stages of the scheduling horizon (Wilkinson, 1996). In static 

scheduling policies, the arrival times of all containers must be known beforehand or must be 

forecasted while in rolling horizon policies only the actual arrival date need to be known. The rolling 

horizon policy is therefore suitable in real-time applications in uncertain environments (Fang & Xi, 

1997). Figure 18 provides a rough idea of the outcome of the rolling horizon policy. 
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Figure 18: Rolling horizon policy 

The container receiving operation at VidaXL can be scheduled with the rolling horizon policy to deal 

with uncertain future container arrivals. The rolling horizon policy can reschedule the receiving 

operation every period new information becomes available. Most rolling horizon policies optimizes the 

objective function over multiple periods, schedules the container to a warehouse and assigns the 

containers directly to one of the scheduling blocks (e.g. periods). The detailed schedule of the first 

period will be implemented and the other containers will be rescheduled during next period when new 

information becomes available. However, solving a triple sum objective function with J*W*T binary 

decision variables is complex and requires computational effort, there is only limited time available to 

reschedule the containers. VidaXL schedules its container receiving operation each day, there will only 

be a few hours available during the night to provide a proper receiving schedule for each warehouse. 

Applying a rolling horizon and resolving a triple sum objective function each day new information 

becomes available would therefore not be possible. 

The computational effort can be reduced through splitting the problem in sequence of iterations, each 

iteration only models’ part of the scheduling horizon in detail, while the rest of the horizon is scheduled 

in an aggregate manner. This approach results in close to optimal solutions with a significant reduction 

of the computation time (Dimitriadis, Shah, & Pantelides, 1997). At VidaXL, an aggregate solution can 

be provided with a binary decision model thereafter the FIFO dispatch rule can be applied to gather a 

detailed solution for the first scheduling’s period, Figure 19. 

 

Figure 19: Aggregate and detailed schedule 

The solution space can be decreased significantly, the binary decision model selects a subset of 

containers out of the available containers and schedules them to a warehouse, resulting in J*W binary 

decision variables. However, the containers are not yet assigned to one of the scheduling blocks (e.g. 

periods). The FIFO dispatch rule can be used to complete the detailed schedule for the first period by 

assign the containers FIFO to the scheduling blocks. The rule is effective in minimizing the maximum 

throughput time and variance of throughput times. The FIFO dispatch rule is therefore chosen to avoid 
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situation whereas the container is picked up after its demurrage date. The detailed schedule of first 

period can immediately be implemented. The receiving operation can be rescheduled during 

succeeding periods when new information becomes available, Figure 18.  

Assigning containers directly to one of the scheduling blocks with a triple sum objective functions has 

the potential to be investigated in more detail when facing tight demurrage dates. The weight variable 

of the triple sum objective function differs per schedule block since it aims to schedule containers with 

a tight demurrage date first without using a dispatch rule. We expect that the triple sum objective 

function therefore will assign more containers in an earlier stage to less preferred warehouses when 

the preferred warehouse is not able to receive all containers on time, resulting in less containers 

scheduled after the demerge date. However, when demurrage dates are loose, the triple sum objective 

function can also assign fewer desirable containers to less preferred warehouses since it contemplates 

the demurrage and pick up date as well, which can result in unnecessary avoidable cross docks. The 

double sum objective function only considers the demurrage date when selecting the next containers 

to be processed but treats containers with different demurrage dates equally when deciding which 

container is desired to be received at a less preferred warehouse. The double sum objective function 

only contemplates the long-term cross docks and can therefore avoid unnecessary cross docks in some 

situations. Notably, the outcome of both models strongly depends on the parameters used and it is 

therefore not possible to conclude beforehand which method suits best (Addis, Carello, Grosso, & 

Tanfani, 2015; Monch & Habenicht, 2003). VidaXL is opening two new warehouses and will extend 

their inbound capacity, the probability of facing tight demurrage dates consequently decreases. In 

consultation with VidaXl is therefore decided to apply a rolling horizon policy where the aggregate 

schedule is provided with a binary decision model whereas the detailed schedule is made with the FIFO 

dispatch rule. 

4.4.3 Binary decision model 
Complex professional environments require a decision process that can be formalized and validated 

independently of personal preferences. This section therefore presents a binary decision model which 

provides an aggregate mid-term container receiving schedule through selecting a subset of containers 

out of the available containers and schedule them to warehouses, while reducing the long-term cross 

docks and the total number of days the containers are picked up after the demurrage date. Moreover, 

it explains the logic behind each constraint and proposes a method to solve the binary decision model. 

The problem can be defined as a maximization function since it aims to maximize the profit from 

assigning container j to warehouse w instead of another warehouse, which seems contractionary since 

our goal is to reduce the total number of cross docks. However, if the problem is rewritten to a 

minimization function, the total number of cross docks on the long-term increases as concluded in 

Section 4.4.1. Furthermore, the model includes a double sum objective function instead of a triple sum 

objective functions to reduce the computational effort. The model only selects a subset of containers 

and schedules them to one of the warehouses, the containers are not yet assigned to one of the 

scheduling blocks (e.g. periods). The FIFO dispatch rule will afterwards be used to assign the containers 

to specific scheduling blocks as mentioned in the previous section. The binary decision model is 

incorporate in the scheduling algorithm proposed in Section 4.4.4. 
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Deciding where to receive which container can be formulized as the following binary decision model: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑊𝑗𝑤 ∗ 𝑥𝑗𝑤

𝑗∈𝐽𝑤∈𝑊

 ( 18) 

 

subjected to:  

∑ 𝑥𝑗𝑤 ≤ 1,                                           𝑗 = 1, … , 𝐽

𝑤∈𝑊

 ( 19) 

∑ 𝑥𝑗𝑤 ≤ 𝑇 ∗ 𝐶𝑤

𝑗∈𝐽

                               𝑤 = 1, … , 𝑊 ( 20) 

∑ 𝑥𝑗𝑤 ≤ 𝑊𝐵𝐴𝑤 ∗ 𝑇 ∗ 𝐶𝑤

𝑗∈𝐽𝐴

            𝑤 = 1, … , 𝑊 ( 21) 

∑ 𝑥𝑗𝑤 ≤ 𝑊𝐵𝐵𝑤 ∗ 𝑇 ∗ 𝐶𝑤

𝑗∈𝐽𝐵

            𝑤 = 1, … , 𝑊 ( 22) 

∑ 𝑥𝑗𝑤 ≤ 𝑊𝐵𝐶𝑤 ∗ 𝑇 ∗ 𝐶𝑤

𝑗∈𝐽𝐶

            𝑤 = 1, … , 𝑊 ( 23) 

∑ 𝑥𝑗𝑤 ≥ 𝐶𝑤

𝑗∈𝐽

                                        𝑤 = 1, … , 𝑊 ( 24) 

𝑆𝑡𝑤 ≤ 𝜇𝑡 ∗ 𝑇𝑆𝑡𝑤                                   𝑤 = 1, … , 𝑊  ( 25) 

𝑥𝑤𝑗 ∈ {0,1},                                           𝑤 = 1, … , 𝑊 𝑗 = 1, … , 𝐽 ( 26) 

Where:  

𝑊𝑗𝑤 = 1000 − (𝐶𝑇𝑗𝑤 − min(𝐶𝑇𝑗) − (𝑇𝐷 − 𝐴𝐷𝑗) ∗ 𝑃) ( 27) 

𝑃 = {
𝑀
𝑃

          
𝑖𝑓 𝑇𝐷 − 𝐴𝐷𝑗 > 𝐹𝐷 − 1

𝑒𝑙𝑠𝑒                                   
 

( 28) 

The aggregate receiving schedule can be provided through solving a binary decision model, as VidaXL 

has w warehouses and receives j containers with the result of w*j binary decision variables. Container 

j will be assigned to warehouse w if the binary decision variable 𝑥𝑗𝑤 is equal to 1, and if the container 

is not assigned to warehouse w, the binary decision variable is equal to 0. The binary decision model 

provides an aggregate mid-term container receiving schedule for each warehouse. 

Each container has a weight 𝑊𝑗𝑤, which depends on the receiving warehouse w and on the demurrage 

date of container j. The weight contemplates the profit from assigning container j to warehouse w 

instead of another warehouse by subtracting the least possible number of cross docks of container j 

from the number of cross docks if it is received in warehouse w. Additional penalty costs P are included 

so that containers approaching the demurrage date are preferred to be selected first when it is not 

possible to select and schedule all available containers. The value of the penalty sole depends on 

number of days the container is already available in the container yard, since the model aims to 

contemplates the long-term cross docks when considering which container is desired to be received at 

a less preferred warehouse. The binary decision model only schedules the containers to warehouses 



45 
 

and does not assign the actual receiving date, the detailed schedule will be completed in a later stage 

by the FIFO dispatch rule. Furthermore, the structure of 𝑊𝑗𝑤 prevent weights equal to zero such that 

the model always schedules as many containers as possible under the specified constraints.  

The goal of the binary decision model is to maximize the product of all weights 𝑊𝑗𝑤 and decision 

variables 𝑥𝑗𝑤 under constraints 19 to 26. Because this model tries to maximize the profit from assigning 

container j to warehouse w, it schedules as many containers as possible and proposes an aggregate 

schedule for the upcoming T periods. If the binary decision model was defined as a minimization 

function by adjusting the weight 𝑊𝑗𝑤, it would only schedule as many containers as necessary under 

constraints 26 to 33, which will result in an aggregate planning for one period and would result in a 

suboptimal solution, as concluded in the previous sections. However, it is possible to make an 

aggregate schedule for the upcoming T periods with a minimization function by adding and adjusting 

constraints (Addis, et al., 2015). 

Containers are received loose loaded and can contain multiple SKUs, and items of the same SKU can 

be staged at the beginning and end of the container. The complete container is therefore unloaded at 

the receiving warehouse. Moreover, the warehouse operations at VidaXL are not designed to receive 

and unload one container in multiple warehouses. Constraint 19 ensures that each container cannot 

be allocated to multiple warehouses. 

Each warehouse can receive multiple containers per period; however the maximum inbound capacity 

is constrained by the available resources at each warehouse. The binary decision model provides an 

aggregate mid-term container receiving schedule for each warehouse. Constraint 20 ensures that the 

model does not schedule more containers at each warehouse than the warehouse can handle during 

the aggregate scheduling period. 

The performance of the inbound teams can be improved by balancing the workload between the 

warehouses. VidaXL categorizes its containers as A, B, and C containers, where A containers are easy 

to unload and cost little manual effort, while C containers typically contain many different SKUs which 

require significant effort from the inbound teams to unload the container. Constraints 21 to 23 assure 

that the workload is balanced between each warehouse for the aggregate mid-term receiving 

schedule.  

The containers are unloaded by an inbound team, and if the warehouse does not receive enough 

containers, the performance of the inbound team decreases since it cannot unload as many containers 

as desired. Constraint 24 ensures that at least 𝐶𝑤 containers are scheduled at warehouse w for the 

aggregate schedule such that the FIFO dispatch rule can complete the detailed container receiving 

schedule for at least one period in advance.  

Warehouses can only receive containers when they have storage locations available to store the items. 

If containers are unloaded at a fully utilized warehouse, all items need to be cross docked to another 

warehouse to store all items. Therefore, constraint 25 ensures that VidaXL only receives containers at 

a warehouse which has storage space available in the warehouse.  

The PulP library in python is used to solve the integer linear programming problem. The PulP library 

generates mathematical programming systems or linear programming files, and calls GLPK, CLP, CPLEX, 

and Curobi to solve linear problems (Hall, 2016). The default solver is the Coin Linear Programming 

(CLP) model which is open-source mixed integer programming and is free to use. The code is designed 

by COIN-OR and uses branch-and-cut algorithms to solve the problem. Branch and cut algorithms are 
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computation effective and are very powerful approaches to solve integer programming problems 

(Hillier & Lieberman, 2001). The CLP uses three hierarchical levels: The first two contain all the problem 

data which define the model, while the third contains the algorithmic aspects of the CLP model (Coin-

Or, sd). 

The PulP library can validate whether the provided solution is optimum or not using the function 

LpStatusOptimal (Mitchell, Kean, Mason, O'Sullivan, & Phillips, 2009). However, solving the binary 

decision model optimal for each iteration leads to close to optimal long-term solutions (Dimitriadis, et 

al. 1997). The length of the aggregate scheduling horizon has a significant impact on the performance 

of the model. Different scheduling horizons are therefore evaluated in Section 5. 

4.4.4 Scheduling algorithm 
This section proposes a scheduling algorithm to schedule critical and non-critical containers while 

accomplish fewer cross docks and avoiding situations where the container is picked up after the 

demurrage date. The algorithm applies the rolling horizon policy proposed in Section 4.4.2 and uses 

the binary decision model suggested in Section 4.4.3. This section illustrates the working procedure of 

the scheduling algorithm with an example.  

The total long-term cross docks can be reduced by solving a binary decision model to make an 

aggregate receiving schedule for the upcoming T periods while completing the detailed schedule with 

the FIFO dispatch rule. The binary decision model selects and schedules containers to one of the 

warehouses by maximizing the profit associated with receiving the container at the most preferred 

warehouse instead of at a less preferred warehouse while considering the demurrage date, the 

objective function is provided in Section 4.4.3. The binary decision model selects and schedules under 

constraint 20 as many containers as all warehouses can receive during the upcoming T periods. The 

total inbound capacity of all warehouses during next period will never exceed the number of container 

available in the container yard. Furthermore, under constraint 24 the binary decision model schedules 

at least as many containers to each warehouse as each warehouse can receive in the next period. The 

FIFO dispatch rule will otherwise not be able to complete the detailed schedule for next period as 

mentioned in Section 4.4.3. The binary decision model only selects a subset of containers and 

schedules them to warehouses. The FIFO dispatch rule is used afterwards to complete the detailed 

schedule for the first period by assign the containers FIFO to the scheduling blocks. The rule is effective 

in minimizing the maximum throughput time and variance of throughput times. The FIFO dispatch rule 

is therefore chosen to avoid situation whereas the container is picked up after its demurrage date. The 

detailed schedule of first period can immediately be implemented. The receiving operation can be 

rescheduled during succeeding periods when new information becomes available. 

At VidaXL, one scheduling’s period is equal to one day and the scheduling algorithm will therefore be 

executed every day. If there are enough containers available, the binary decision model will select and 

schedule as many containers to each warehouse as each warehouse can receive in the upcoming T 

days. Afterwards, the FIFO dispatch rule assigns the scheduled containers FIFO to pickup days. VidaXL 

needs to confirm the pickup date to the forwarder one day in advance, the detailed schedule of next 

day is therefore immediately implemented and communicated to the forwarder. However, the 

forwarder is sometimes not able to make the container available for pickup on time. VidaXL therefore 

wants to inform the forwarder two days in advance with the expected pickup date of each container 

such that the forwarder can anticipate on the request. The detailed schedule must therefore be 

completed with the FIFO dispatch rule for at least next day and preferred for the upcoming two days. 

On day t+1, VidaXL executes the algorithm again, due to new information availability, the best receiving 
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schedule for day t+2 differs from the expected receiving schedule communicated to the forwarder.  

VidaXL is still able to revise the expected detailed receiving schedule of day t+2 on day t+1. Sometimes 

there are not enough containers available to complete the detailed schedule two days in advance. 

VidaXL can therefore only inform the forwarder two days in advance when there are enough containers 

available at the container yard. New containers and information become available every day which can 

affect the receiving schedule, and therefore the scheduling algorithm must be executed at the start of 

every day to revise the receiving schedule for next days. Furthermore, it makes no sense to update the 

container receiving schedule during the day since the forwarder must be informed at the beginning of 

the current day to make the container available for next day. 

The receiving operation can be scheduled for period t+1 on period t using the following algorithm: 

1. Form long list with containers available at the container yard at Venlo from which the pickup 

date is not confirmed yet. 

2. For each container j: 

a. Determine demurrage date 

b. Calculate number of cross docks 𝐶𝑇𝑤𝑗 

c. Verify stock coverage 𝑆𝐶𝑖 of each SKU i in container j 

3. Schedule critical containers: 

a. If 𝑆𝐶𝑖 < Y do: 

i. Schedule container j to preferred ship warehouse as soon as possible 

ii. Adept 𝐶𝑤 

4. Complete aggregate receiving schedule for noncritical containers: 

a. Solve binary decision model for T periods 

5. Complete detailed receiving schedule for noncritical containers: 

a. Assign containers FIFO for next period (t+1) for each warehouse 

b. If ∑ 𝑥𝑗𝑤 >∗ 𝐶𝑤𝑗∈𝐽  do: 

i. Schedule containers FIFO for the period after next period (t+2) for each 

warehouse  

6. Update list with available containers at container yard: 

a. Remove containers scheduled on period t+1 from list with available containers 

b. Update list with new container arrivals 

 

The scheduling algorithm must be solved daily hereafter the detailed schedule is implemented for next 

day. The containers are consequently scheduled as shown in Figure 20 (T=5). 
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Figure 20: Outcome scheduling algorithm three iterations 

First, the scheduling algorithm is executed on day t at the start of the day. A long list with available 

containers at the container yard is created and the container data for each container is determined by 

evaluating the system. Critical containers are immediately scheduled to the shipping warehouses. The 

aggregate receiving schedule for noncritical containers is completed by solving the binary decision 

model provided in Section 4.4.3. There are 55 containers available at the container yard and VidaXL 

can receive two containers per day in each warehouse. Under constraint 20, it is not possible to 

schedule the receiving operation for all available containers. The binary decision model selects a subset 

of containers and schedules the containers 1, 2, 6, 7, 8, 9, 13, 15, 16 and 17 to the MKI warehouse and 

the containers 3, 4, 5, 10, 11, 12, 14, 18, 19 and 20 to the JTS warehouse. The detailed schedule is 

completed by assigning the containers with the FIFO dispatch rule to the upcoming 2 days. The MKI 

warehouse is able to receive two containers a day, the containers 1 and 2 are consequently scheduled 

on day t+1 and the containers 6 and 7 on day t+2. The detailed container schedule of day t+1 is 

implemented and confirmed to the forwarder since VidaXL needs to confirm the pickup day one day 

in advance. Furthermore, it is already possible to inform the forwarder with the expected detailed 

schedule of day t+2. However, the detailed schedule of day t+2 can still change when new information 

becomes available after completing the algorithm again on day t+1. VidaXL should therefore carefully 

inform the forwarder that it expects to pick up the containers 5,7,8 and 9 on day t+2 without actually 

confirming the pickup date of these containers. Furthermore, the containers 1, 2, 3 and 4 are removed 

from the list with available containers since their pickup is scheduled and confirmed. 

Second, the scheduling algorithm is executed on day t+1 at the start of the day, new container arrivals 

are added to the list with available containers at the container yard. There are no critical containers at 

the container yard. The aggregate receiving schedule is again completed by solving the binary decision 

model of Section 4.4.3. The model selects a subset of containers and schedules the containers 6, 8, 9, 

10, 13, 15, 16, 17, 21 and 22 to the MKI warehouse and the containers 5, 7, 11, 12, 14, 18, 19, 20, 23, 
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24 to the JTS warehouse. Due to the availability of new information, the performance increases when 

the container 7 and 10 are swapped between the MKI and JTS warehouses. The detailed receiving 

schedule is completed by applying the FIFO dispatch rule to the scheduled containers. The containers 

5, 6, 7 and 8 are scheduled on day t+2, the detailed schedule made on day t for day t+2 is incorrect. 

VidaXL need to inform the forwarded that it will pick up container 8 instead of container 10 on day t+2. 

Furthermore, VidaXL can again inform the forwarder that it expects to pick up the containers 9, 10, 11 

and 12 on day t+3. 

Third, the scheduling algorithm is repeated on day t+2. The binary decision model schedules 10 

containers to each warehouse thereafter the detailed schedule is completed by scheduling containers 

9 and 10 to the MKI warehouse and containers 11 and 12 to the JTS warehouse on day t+3. The detailed 

schedule made on day t+1 is in line with the detailed schedule made on day t+2 and VidaXL affirms the 

pickup date of these containers to the forwarded. 

The scheduling process can be repeated every day, in this example the aggregate schedule is provided 

for the upcoming 5 days while the forwarder is informed with the detailed schedule for the upcoming 

2 days. Section 5 investigates the influences of different planning horizons and penalty values on the 

performance of the scheduling algorithm. 

4.5 Validation and verification 
The conceptual model and simulation need to be verified and validated before conclusions can be 

drawn and recommendations can be made. Verification refers to the steps, processes, or techniques 

that are employed in the model to ensure that it behaves according to the specifications. Validations 

refers to validating whether the model adequately represents the actual process (North & Macal, 

2007).  

The model is verified using stress testing, stage-by-stage, and scenario analysis. With stress testing, the 

model is tested under extreme and unlikely situations such as zero containers, zero capacity, maximum 

capacity, and zero cross docks, which allows flaws and errors to be easily detected. Stage-by-stage 

verification refers to building the model piece by piece where every new stage is extensively tested 

using multiple test sets. Errors can be detected early in the modeling phase. Lastly, the model is verified 

by scenario analysis, where multiple scenarios under different conditions are tested, and the results 

are compared with each other in Section 5. The outcome is checked, and the results of different 

performance measurements are compared. 

The underlying logic of the conceptual model has been validated by the logistics department of VidaXL. 

The scheduling algorithm is implemented at VidaXL, and the solution will be validated every day by the 

logistics department. 

As mentioned in Section 4.4.2, the PulP library checks whether the solution is optimum. However, 

finding the optimum per scheduling horizon does not automatically results in the overall long-term 

optimum as demonstrated in Section 4.4.1. Furthermore, the rolling horizon policy separate the 

scheduling problem in a sequence of iterations, each iteration only models’ part of the scheduling 

horizon in detail, while the rest of the horizon is scheduled in an aggregate manner. This approach 

results in close to optimal long-term solutions (Dimitriadis, et al. 1997). Calculating the long-term 

optimum assignment with brute force is not possible, because brute force calculates every possibility 

and the problem is too large for brute-force methodology according to the following example. 
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If there are 3 warehouses which can receive goods, the warehouses can receive 4, 4, and 2 containers 

per day for seven days in a row. In total, (4+4+2)*7=70 containers can be scheduled. The first 

warehouse can schedule 28 containers out of 70, which results in 1.17 ∗ 1021 possible combinations. 

(
70
28

) = 1.17 ∗ 1021 

The second warehouse can schedule 28 containers of the remaining 42 containers, which results in 

7.40 ∗ 1011 possible combinations. The third warehouse can schedule 14 containers out of 14 

containers, leaving only one remaining combination. In total, there are 1.17 ∗ 1021 ∗ 7.40 ∗ 1011 ∗

1 = 8.69 ∗ 1032 combinations to schedule 70 containers. The python function combinations can 

calculate 300,000 combinations per minute, which will require 2.01 ∗ 1021 days to calculate every 

combination. The calculation time increases exponentially with the number of available containers, 

and it is impossible to validate the model using brute force. 

Assuming that the branch and cut algorithm of the CLP solver from the PulP library provides the correct 

answer, it is possible to calculate the theoretical upper bound of the minimum number of cross docks 

possible. The theoretical upper bound quantifies the optimal static solution when the inbound capacity 

per warehouse, the arriving date and the number of cross docks of each receiving container is known 

one year in advance. The theoretical upper bound solution of the simulation is provided in Section 5.4. 

4.6 Conclusion 
The warehouse efficiency can be increased by scheduling the receiving operation in order to avoid 

cross docks during the put-away, picking, and shipping operations. The receiving operation can be 

scheduled with the usage of the proposed framework. The framework consists of three layers: input 

data, scheduling algorithm and output data. Each layer subsequentially fulfill certain tasks and provide 

the subsequent layer with information to complete the scheduling process. 

The input layer gathers relevant container and warehouse data for the scheduling algorithm. The 

container data consist of a distinction between critical and noncritical containers, and estimates the 

total number of cross docks when the container is received in a warehouse. The warehouse data 

consist of the inbound capacity per container type and the total inbound capacity per warehouse.  

The scheduling algorithm subsequently schedules critical and non-critical containers with a rolling 

horizon policy. The rolling horizon policy separate the scheduling problem in a sequence of iterations, 

each iteration only models’ part of the scheduling horizon in detail, while the rest of the horizon is 

scheduled in an aggregate manner. The aggregate schedule is provided through solving a binary 

decision model, it selects and schedules containers to one of the warehouses by maximizing the profit 

associated with receiving the container at the most preferred warehouse instead of at a less preferred 

warehouse while considering the demurrage date. The detailed schedule can be completed by 

assigning the scheduled containers FIFO to the upcoming scheduling periods. 

The output data consist of the detailed schedule where the pickup dates of the scheduled containers 

are specified with the FIFO dispatch rule. VidaXL can implement the receiving operation of the 

containers scheduled on the next day. However, VidaXL must not confirm the pickup date of the other 

scheduled containers in order to retain flexible to new information and container arrivals. The 

potential and sensitivity of the scheduling algorithm are evaluated in a realistic simulation in Section 

5. 
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5. Simulation  
 

To evaluate the potential of the proposed scheduling algorithm, the receiving operation at VidaXL is 

simulated. The simulation setup is discussed in Section 5.1. The datasets used as input are described 

in Section 5.2.  The output of the scheduling algorithm is compared with other scheduling procedures, 

which are presented in Section 5.3. Section 5.3 also shows an overview of the used performance 

measures. The quality of the scheduling algorithm is specified in Section 5.4. The final results are shown 

in Section 5.5, and the sensitivity of the model is analyzed in Section 5.6. 

5.1  Simulation setup  
The receiving operation at VidaXL is simulated using discrete-event simulation. Each event occurs at a 

particular moment in time and causes a change in the system, and therefore this type of simulation 

only evaluates the system after each event. Figure 21 shows the general architecture of the simulation. 

 

Figure 21: Simulation architecture VidaXL 

The simulation aims to represents the warehouse operations at VidaXL of 2020 as accurately as 

possible, and therefore the simulation setup is the same as the warehouse setup of VidaXL in 2020. 

The following warehouses are included in the simulation: 

• MKI (ship warehouse) 

• JTS (ship warehouse new: January 2020) 

• WTR (pick warehouse new: November 2019) 

• OF (all overflow warehouses) 
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The storage types and number of storage locations in each warehouse are equal to the warehouse 

network of VidaXL. All overflow warehouses are equipped with the same storage types and can 

therefore be seen as one warehouse. The company opened one pick warehouse in November 2019, 

one new ship warehouse in January 2020, and closed three overflow warehouses. Stock is moved from 

the old warehouses to the new warehouses and is currently not equally distributed over the 

warehouses. Therefore, the effect of the scheduling algorithm is analyzed using two different settings: 

First the potential of the scheduling algorithm is evaluated in a ramp-up situation where the inventory 

is not equally distributed over the warehouses. In this situation, VidaXL wants to equalize the utilization 

of the resources in each warehouse as quickly as possible without having avoidable cross docks. 

Second, the potential of the scheduling algorithm is evaluated when the starting inventory is equally 

distributed over the warehouses. 

VidaXL does not receive containers during the weekend. Moreover, it is not possible to schedule 

containers in the first week of the simulation to generate a pool of available containers. If there is no 

pool of available containers, it is not possible to schedule the containers for the whole scheduling 

horizon and the algorithm reduces the number of cross docks per day. Reducing the number of cross 

docks per day does not lead to the minimum number of possible cross docks, as concluded in Section 

4.4.1. 

The proposed scheduling algorithm in Section 4.4 has four variables which can be adapted and 

immediately affect the outcome of the algorithm. The influence of different scheduling horizons and 

penalty values are analyzed in the results section, and the proper values are later used to compare the 

results with other scheduling procedures.  

The inbound capacity per warehouse immediately influences the outcome of the proposed scheduling 

algorithm. The total inbound capacity per day is calculated by counting all containers received in the 

corresponding month and dividing this value with the number of workdays in that month. The inbound 

capacity for warehouse w is calculated using the following equation: 

𝐶𝑤 = min (
𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑏𝑜𝑢𝑛𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑤

∑ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑤𝑤∈𝑊
, 20) 

 

( 29) 

The inbound capacity cannot exceed 20 containers per day since there are insufficient resources in 

each warehouse to handle more than that. The sensitivity analysis investigates whether the proposed 

scheduling algorithm behaves independently of the inbound capacity of each warehouse. 

Moreover, the following assumption is made in the simulation model: 

- The maximum SLO is equal to 3,000, which is on average almost equivalent to storing a 

container for one year without selling any items. When items are not sold within one year, 

VidaXL tries to sell the items via other sales channels or they scrap the items. 

5.2 Input 
The simulation model uses in the basis four different input datasets, namely the arriving pattern of 

containers, the demand pattern per item, the inbound capacity per warehouse, and the starting 

inventory per warehouse. 
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The arriving pattern of containers corresponds to the arriving pattern of 2019. The simulation model 

can schedule the containers after confirmation of the actual delivery date, which can be received on 

the day of arrival or one day beforehand. The contents of each container correspond to the actual 

received containers in 2019. Each container can contain multiple items of multiple SKUs, and the 

number of items per SKU is divided with the Packspec to calculate the number of pallets per item per 

container. The Packspec regards the packing specifications and differs per SKU, as some SKUs are large 

and can only fit 2 items on one pallet, while other SKUs are small and can fit 1,000 items on one pallet. 

The containers are classified as A, B, and C based on the number of SKUs and on the number of items 

in each container, where A containers require less manual effort to unload than C containers.  

The demand pattern per item corresponds to the demand pattern of 2019 and is converted to the 

demand pattern per pallet since full pallets are replenished from the reserve area into the forward 

area. Each demand event occurs with probability equal to the distribution of the number of storage 

locations between the ship and pick warehouses (e.g., if the shipping warehouse has 50% of the total 

bulk storage locations, the probability is 50% that the demand occurs in the shipping warehouse). If 

one of the shipping warehouses lacks the item in stock, the inventory of the picking warehouse is 

evaluated, and if the pick warehouse has the item in stock, the items are cross docked to the shipping 

warehouse. If the ship and pick warehouses lack the item in stock, the inventory of the overflow 

warehouses is evaluated, and if they have the item in stock, the items are cross docked to the ship 

warehouse. If the item is not in stock in any of the warehouses, the demand request is forfeited. 

The total inbound capacity per day is calculated by counting all containers received in the 

corresponding month and dividing this with the number of workdays in that month. The inbound 

capacity per warehouse is calculated using equation 29 as described in Section 5.1. 

The starting inventory differs regarding the ramp-up and steady-state situations. The starting inventory 

of the ramp-up situation is equal to the actual inventory in the reserve areas on the first of February 

2020 and is measured in number of pallets. In contrast, the starting inventory in the steady-state 

situation is generated by running the simulation for one year for the extended FIFO scheduling 

procedure (explained in Section 5.3) and constraining the maximum capacity of each warehouse to 

75% of actual capacity. At the end of the simulation, all warehouses are consequently equally utilized 

with 75% of total storage capacity. The ending inventory position is used as the starting inventory for 

the steady-state situation. The extended FIFO scheduling procedure is used since it most closely 

corresponds to the current working procedure of the logistics department of VidaXL.  

5.3 Output 
The output of the simulation is compared with three other scheduling procedures to evaluate the 

potential of the proposed scheduling algorithm. The results are compared with scheduling the 

containers FIFO and minimizing the number of cross docks FIFO every day. Moreover, the effect of 

including picking and shipping cross docks in the binary decision model is investigated by running the 

model with and without additional cross docks based on the SLO. 

Proposed scheduling algorithm: The algorithm applies a rolling horizon policy which reschedules the 

receiving operation every day new information becomes available. First, an aggregate solution for the 

coming four days is provided with a binary decision model. The binary decision model selects a subset 

of containers out of the available containers and schedules each container to a warehouse. The binary 

decision model maximizes the profit associated with receiving the container at the most preferred 

warehouse instead of at a less preferred warehouse while considering the demurrage date. Second, 
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the FIFO dispatch rule is applied to gather a detailed solution for the first day. The detailed schedule 

of first day can immediately be implemented. The receiving operation can be rescheduled during 

succeeding days when new information becomes available. 

FIFO: In the FIFO scheduling procedure, the system is evaluated at the start of every day and the 

containers are scheduled for next day. The containers with the earliest arrival date are selected until 

the number of containers corresponds to the inbound capacity of that day. The containers are 

scheduled chronologically, which means that the first container is assigned to its preferred warehouse 

based on the number of put-away cross docks. The container is only scheduled to its preferred 

warehouse if the preferred warehouse has remaining inbound capacity, otherwise the container is 

scheduled at the second preferred warehouse and so on. The procedure is repeated until all selected 

containers are scheduled. 

FIFO extended: The third scheduling procedure is an extension of the FIFO procedure where every day, 

the containers with the earliest arrival date are selected until the number of containers corresponds 

to the inbound capacity of next day. The scheduling procedure aims to minimize the total number of 

put-away cross docks for the next day by solving a binary decision model for that day. Accordingly, the 

scheduling procedure is repeated every day. 

NoSLO: The proposed scheduling algorithm tries to reduce the number of picking and shipping cross 

docks by assigning containers with a high SLO to the pick and overflow warehouses. The demand for 

the items stored in the pick and overflow warehouses is low, and thus causes fewer cross docks. The 

scheduling procedure NoSLO behaves as the proposed scheduling algorithm but does not consider the 

SLO; it only contemplates the put-away cross docks and the demurrage date. 

The following KPIs are measured for every scheduling procedure: 

• Number of containers received in each warehouse; 

• Number of pickup dates predicted correctly during day t for day t+2; 

• Number of pickup dates predicted incorrectly during day t for day t+2; 

• Real put-away cross docks from each warehouse; 

• Real picking cross docks after customer demand; 

• Real shipping cross docks after customer demand; 

• Average throughput time per arriving container; 

• Number of containers picked up after the demurrage date; 

• Total number of days the containers are picked up after the demurrage date; 

• The reserve area utilization per warehouse. 

5.4 Quality of scheduling algorithm 
Before evaluating the potential of the scheduling algorithm, a theoretical upper bound of the main 

performance measurement the total number of cross docks is determined. The theoretical upper 

bound quantifies the optimal static solution when everything is known beforehand. For the theoretical 

upper bound calculation is therefore assumed that perfect knowledge of the content, number of cross 

docks and the arrival date of each container is available. Furthermore, the containers must be 

scheduled under the same constraint as the algorithm does. 
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The default CLP solver of the PulP library in python is used to calculate the theoretical upper bound. 

The code is designed by COIN-OR and uses branch-and-cut algorithms to solve the problem. The PulP 

library can validate whether the provided solution is optimum or not using the function 

LpStatusOptimal (Mitchell, Kean, Mason, O'Sullivan, & Phillips, 2009). 

Assuming that the branch and cur algorithm of the CLP solver provides the correct answer, the 

minimum number of cross docks possible are 89,148 and 64,138 in the ramp-up and steady state 

situation respectively. The theoretical upper bound solution has 5.7% and 10.4% less cross docks as 

the solution provided by the scheduling algorithm presented in Section 5.5. The scheduling algorithm 

does not provide the optimal solution regarding the theoretical upper bound. However, recall that 

there does not exist a scheduling algorithm that provides an optimal solution without prior knowledge 

(Dertouzos & Mok, 1989). Furthermore, the algorithm uses a rolling horizon policy which provides 

close to optimal solutions (Dimitriadis et al., 1997).  

5.5 Results  
The goal of this research is to schedule the receiving operations in e-commerce logistics to increase 

the efficiency of the warehouse operations put-away, picking and shipping simultaneously, by reducing 

the long-term cross docks while avoiding situations where the container is picked up after the 

demurrage date. First, parameter tuning is used to increase the performance of the scheduling 

algorithm in Section 5.5.1. Second, the potential of the scheduling algorithm is analyzed by comparing 

its performance with three other scheduling procedures during the ramp-up phase. Last, the 

performance of each scheduling procedure is analyzed in a steady state situation.  

The goal of constraints 21, 22, and 23 is to balance the workload between the warehouses and the 

inbound teams. The workload can also be balanced with other managerial decisions, for example, by 

extending certain inbound teams. The parameters 𝑊𝐵𝐴𝑤 , 𝑊𝐵𝐵𝑤 , 𝑎𝑛𝑑 𝑊𝐵𝐶𝑤  are therefore set equal 

to one since these are managerial decisions, and the purpose of this section is to evaluate the maximal 

potential of the scheduling algorithm. The sensitivity of the scheduling algorithm under different 

values for 𝑊𝐵𝐴𝑤 ,  𝑊𝐵𝐵𝑤 , 𝑊𝐵𝐶𝑤 is evaluated in Section 5.5. 

5.5.1 Scheduling algorithm parameter tuning  
The proposed scheduling algorithm may behave differently with different parameters settings. As 

such, parameter tuning is used to determine the appropriate settings for the container scheduling 

process at VidaXL. An aggregate scheduling horizon equal to two, three, four or five days combined 

with penalty value of ten, twenty, twenty-five and thirty for each day the container is not scheduled 

after its arrival day in the container yard. 

The main purpose of the penalty is to plan the containers before the demurrage date. Figure 22 and 

Figure 23 illustrate the behavior of the scheduling algorithm under the different scheduling horizons 

and penalties for each day the container is not scheduled after its arrival day in the container yard on 

the number of days the containers are picked up after the demurrage date. The results of a scheduling 

horizon equal to two days are excluded from these figures since the total number of days containers 

are picked up after the demurrage date differ between 18 and 1,650 days. The results are less visible 

when these values are included in the figures. A detailed overview of the simulation results for all 

instances is given in Appendix C. 
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Figure 22: Simulation results, effect of different parameters on days containers are picked up after demurrage date (1) 

From Figure 22 can be observed that the total number of days that the containers are picked after the 

demurrage date decreases when the assigned penalty increases. The effect stabilizes when the penalty 

rises to a value between 20 and 30. The penalty is responsible for a substantial part of the overall 

weight. Moreover, when there is not enough inbound capacity to receive all containers before the 

demurrage date, the total number of days the containers are picked up after the demurrage date 

increases. As such, increasing the penalty value does not decrease the total number of days the 

containers are picked up after the demurrage date anymore. 

 

Figure 23: Simulation results, effect of different parameters on days containers are picked up after demurrage date (2) 

Figure 23 shows the effect of completing the aggregate schedule for different scheduling horizons. 

Being able to complete the aggregate schedule for the upcoming four or five days does not reduce the 

total number of days the containers are picked up after the demurrage date. Notably, the scheduling 

algorithm performs worse with an aggregate scheduling horizon equal to five days as applying an 

aggregate scheduling horizon of three days. VidaXL has over 40 different storage types, the storage 
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types at MKI ship warehouse are more varied than those in the other warehouses. Accordingly, most 

containers prefer to be assigned to the MKI warehouse since most of their items can be stored there. 

Making an aggregate schedule by solving the binary decision model for five or more days assigns more 

containers to the MKI warehouse and less containers to the other warehouses. The number of 

containers scheduled to each warehouse depends on their inbound capacity during the scheduling 

horizon (i.e. constraints 20 till 23). When more containers are approaching the demurrage date as the 

preferred warehouse can handle, not all containers are picked up before the demurrage date. 

Completing the aggregate schedule for a shorter horizon assigns more containers to the second 

preferred warehouse so that the total number of days the containers are picked up after the 

demurrage date decreases. 

The effect of different aggregate scheduling horizons on the average number of cross docks per 

container is illustrated in Figure 24. 

 

Figure 24: Simulation results, effect of different parameters on average pallet cross docks per container 

As concluded in Section 4.4.1, the number of cross docks can be reduced through applying a larger 

aggregate scheduling horizon. Daily minimizing the number of cross docks does not lead to the overall 

optimum and therefore the average number of cross docks reduces when applying an aggregate 

scheduling horizon equal to three or four days. The average number of cross docks are at lowest under 

a scheduling horizon equal to four days and a penalty value equal to twenty-five.  

If an aggregate scheduling horizon of five days is applied, more containers are assigned to the preferred 

warehouse and less containers are assigned to the other warehouses. However, each warehouse can 

only receive as many containers as it can handle on a day. As a result, more containers are facing tight 

demurrage dates and are scheduled three or less days before the demurrage date. The calculated 

weight of these containers depends, for a substantial part, on the penalty for each day the container 

is not scheduled after its arrival day. The scheduling algorithm schedules the containers such that the 

containers are picked up as soon as possible; it focuses less on the corresponding number of cross 

docks. The number of cross docks consequently increases when the aggregate scheduling horizon is 

equal to five days. 
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All parameter values together form sixteen different instances. The summary of results is presented in 

Table 14, while the detailed results can be found in Appendix C. The performance of the scheduling 

algorithm is at best through applying a scheduling horizon of four days and a penalty of twenty-five for 

every day the container is scheduled after its arrival date. Both the average number of cross docks and 

the total number of days to late are reduced at this instance. 

Table 14: Summary of results parameter tuning scheduling algorithm  

 
Average 
cross 
docks 

Total cross 
docks 

Average 
TH time 

Total days 
after 
demurarge 

Percentage 
of containers 
on time 

Containers 
picked up after 
8 days 

T = 2 Penalty = 10 10.59 73,799 7.23 1,652 87.9% 2,224 

T = 3 Penalty = 10 10.26 72,523 4.07 24 99.7% 59 

T = 4 Penalty = 10 10.17 71,955 3.59 19 99.7% 32 

T = 5 Penalty = 10 10.37 73,333 3.58 26 99.6% 51 

T = 2 Penalty = 20 10.52 73,336 7.28 1,638 88.1% 2,075 

T = 3 Penalty = 20 10.18 72,054 4.01 10 99.9% 13 

T = 4 Penalty = 20 10.17 71,940 3.51 8 99.9% 8 

T = 5 Penalty = 20 10.27 72,803 3.59 22 99.7% 37 

T = 2 Penalty = 25 10.43 72,787 6.93 943 91.8% 1,635 

T = 3 Penalty = 25 10.12 71,504 3.92 8 99.9% 0 

T = 4 Penalty = 25 10.11 71,551 3.57 8 99.9% 9 

T = 5 Penalty = 25 10.26 72,605 3.61 19 99.7% 30 

T = 2 Penalty = 30 10.25 72,511 3.56 18 99.7% 25 

T = 3 Penalty = 30 10.14 71,711 3.87 9 99.9% 11 

T = 4 Penalty = 30 10.17 71,993 3.60 9 99.9% 10 

T = 5 Penalty = 30 10.23 72,398 3.58 18 99.7% 24 

5.5.2 Ramp-up situation 
In the ramp-up situation, VidaXL opened one new shipping warehouse: JTS. VidaXL aims to ramp up 

the usage of resources in the new warehouse as soon as possible so that the resources in each ship 

warehouse are utilized equally. The ramp-up situation differs from the steady state situation in that 

the inventory in the reserve areas is not equally distributed among the warehouses. This section 

describes the effect of the scheduling algorithm on the receiving operation and on the cross docks 

during put-away, picking, and shipping operations. The detailed simulation results can be found in 

Appendix D. 

Receiving operations: In total, 99.7% of the containers are picked up before the demurrage date. The 

detailed schedule made on day t predicted the pickup date of the containers scheduled on day t+2 in 

66.3% of the containers correctly. In 23.3% of the cases, the scheduling algorithm predicted the wrong 

pickup day and did not predicted the pickup day at all in 10.5% of the cases. The total number of 

containers received in the new JTS warehouse per week per scheduling procedure is visualized in 

Figure 25. The proposed scheduling algorithm, on average, schedules more containers to the JTS 

warehouse compared to other procedures. More items are consequently stored in this warehouse. 

However, the reserve area is less utilized under the proposed scheduling algorithm since the received 

items have a high turnover rate (see Figure 26); therefore, the pick density in the new warehouse 

increases, which positively influences the warehouse’s efficiency. The resources of the new JTS 

warehouse are used more intensively under the scheduling algorithm in contrast to other procedures. 
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Figure 25: Simulation results, effect of different scheduling procedures on containers received in JTS warehouse 

  

Figure 26: Simulation results, effect of different scheduling procedures on utilization reserve area JTS warehouse 

Total number of cross docks 

In Figure 27, the number of cross docks during each warehouse operation are graphically presented 

under the four scheduling procedures. The proposed scheduling algorithm uses an aggregate 

scheduling horizon of four days and a penalty of twenty-five for each day a container is scheduled after 

its arrival date. The algorithm performs at best under these settings, resulting in 94,572 cross docks 

during the simulation period of one year.  

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

N
u

m
b

er
 o

f 
co

n
ta

in
er

s 
re

ce
iv

ed

Weeknumber

Containers received per week JTS warehouse

Scheduling algorithm NoSLO FIFO extension FIFO Scheduling algorithm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

U
ti

liz
at

io
n

 r
es

er
ve

 a
re

a

Day in the year

Utilization reserve area JTS warehouse

scheduling algorithm NoSLO FIFO extension FIFO scheduling algorithm



60 
 

 

Figure 27: Simulation results, effect of different scheduling procedures on put-away, picking and shipping cross docks (1) 

Put-away cross docks: Put-away cross docks occur when the receiving warehouse does not hase the 

right storage type available. The total put-away cross docks are lower when applying the algorithm 

NoSLO and extended FIFO scheduling procedures since these procedures assign less containers to JTS 

warehouse. Moreover, the JTS warehouse does not has all 40 storage types; therefore, more put-away 

cross docks occur when more containers are received in this warehouse. The total number of cross 

docks are still lower under the scheduling algorithm since more items are stored in JTS warehouse, and 

less items need to be cross docked during picking or shipping operations. 

Picking cross docks: Picking cross docks occur when the item is not available after a customer demand 

in the ship and pick warehouse but is available in the overflow warehouse. Containers with a high SLO 

are stored in the overflow warehouse. Most of the items stored in the overflow warehouse 

consequently have a low turnover rate, reducing the number of picking cross docks when applying the 

scheduling algorithm. 

Shipping cross docks: Shipping cross docks occur when the items are picked in a pick warehouse, which 

is not able to ship items. The algorithm reduces shipping cross docks through receiving containers with 

an above-average SLO in the pick warehouse. The items stored in the pick warehouse have a low 

turnover rate and are requested less often. 

Figure 28 shows the total number of cross docks per week when applying the scheduling algorithm. 

The number of cross docks decreases as the process becomes more stable and when the warehouses 

are utilized equally. 
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Figure 28: Simulation results, effect of the utilization rate per warehouse on the total cross docks 

5.5.3 Steady state situation 
In the steady state situation, each warehouse already operates for a certain amount of time; therefore, 

the start utilization of the reserve area in each warehouse will be the same. The scheduling algorithm 

again uses an aggregate scheduling horizon of four days and a penalty of twenty-five for each day a 

container is scheduled after its arrival date. This section outlines the results of the scheduling algorithm 

regarding receiving operation and the cross docks during put-away, picking, and shipping operations. 

The effect of including picking and shipping cross docks in the algorithm based on the SLO of each 

container is described at the end of this section. The detailed simulation results can be found in 

Appendix E. 

Receiving operation: Results affirm that 99.9% of the containers are picked up on time. In total, eight 

containers are picked up one day after the demurrage date. The detailed schedule made on day t 

predicted the pickup date of the containers scheduled on day t+2 in 65.1% of the containers correctly. 

In 21.5% of the cases, the scheduling algorithm predicted the wrong pickup day and did not predicted 

the pickup day at all in 13.4% of the cases. The MKI and JTS shipping warehouses received 25.3%, 

26.3%, and 10.5% more containers under the scheduling algorithm than under the scheduling 

algorithm without SLO, the extended FIFO procedure, and the normal FIFO procedure, respectively 

(Figure 29). 
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Figure 29: Simulation results, effect of each scheduling procedure on the number of containers received per warehouse 

Total number of cross docks 
In Figure 30, the cross docks during each warehouse operation are graphically presented under the 

four scheduling procedures. The proposed scheduling algorithm outperforms the scheduling algorithm 

without SLO, the extended FIFO procedure, and the normal FIFO procedure. The total cross docks are 

reduced by 32.7%, 35.9%, and 54.2%, respectively.  

 

Figure 30: Simulation results, effect of different scheduling procedures on put-away, picking and shipping cross docks (2) 

Put-away cross docks: There are less put-away cross docks at each warehouse under the proposed 

scheduling algorithm. Most containers are received in the shipping warehouses. However, the received 

items have a high turnover rate, and the storage location becomes available for new arrivals after a 

relatively short time. The ship warehouses are equipped with most of the storage types, decreasing 

the number of put-away cross docks. 
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Picking cross docks: The picking cross docks are lower under the scheduling algorithm since containers 

with a high SLO are received in the overflow warehouse. The items stored in the overflow warehouse 

are sold less often, reducing the number of picking cross docks. 

Shipping cross docks: The shipping cross docks account for 46.9% of the total number of cross docks 

under the scheduling algorithm. However, it is hard to prevent shipping cross docks because VidaXL is 

not able to make items pickable in both shipping warehouses since pick locations are scare. However, 

the shipping cross docks are reduced by receiving containers with a SLO above average in the pick or 

overflow warehouses. 

Effect of including picking and shipping cross docks 
The previous section affirmed that the number of cross docks decreases when picking and shipping 

cross docks based on the SLO are considered in the scheduling algorithm. This section describes the 

effect of including picking and shipping cross docks on the utilization of each warehouse. The utilization 

of each warehouse under the scheduling procedures with and without SLO are presented in Figure 31 

and Figure 32. 

 

Figure 31: Simulation results, effect of considering picking and shipping cross docks on the utilization per warehouse 

 

Figure 32: Simulation results, effect of not considering picking and shipping cross docks on the utilization per warehouse 
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The algorithm schedules containers with a long storage time to the overflow and pick warehouses. The 

utilization of the reserve area of these warehouses increases faster than that in the ship warehouses 

because the demand for these items is lower. Accordingly, less containers are received in the pick and 

overflow warehouses, while items with a high turnover rate are received in the ship warehouses. As 

such, the pick density in the shipping warehouses increases, whereas the number of cross docks from 

the pick and overflow warehouses to the ship warehouses decreases. Notably, when more items are 

picked in the same warehouse, it costs less effort to bundle items that are purchased by the same 

client. Scheduling containers to receiving warehouses using the algorithm increases efficiency in the 

receiving, put-away, picking, packing, and shipping operations. 

5.6 Sensitivity analysis 
This section determines whether the conclusions drawn in the previous section are still valid under 

different circumstances. First, sensitivity during the ramp-up situation is investigated in Section 5.6.1. 

This is done by evaluating the performance of the scheduling algorithm when the overflow warehouse 

is only able to receive containers if the utilization of the other warehouses is above 70%. This situation 

corresponds to the current ramp-up procedure at VidaXL. Second, sensitivity during the steady state 

situation is evaluated in Section 5.6.2. The inbound capacity per warehouse is adjusted to determine 

if the scheduling algorithm still outperforms the other scheduling procedures. Moreover, the workload 

balance parameters are modified to analyze if the model behaves the same way in different 

circumstances. 

5.6.1 Ramp-up situation 
After opening a new warehouse, VidaXL temporarily stops receiving any container in the overflow 

warehouses to increase the usage of resources in the new warehouse. This section analyzes the 

consequences of this temporary block on the inbound flow of the overflow warehouses. 

5.6.1.1 Temporary block on the inbound flow 
VidaXL currently abolished the temporary block on the inbound flow of the overflow warehouses when 

the utilization of the reserve area of all pick and ship warehouses is above 70%. The simulation is thus 

executed with these settings. Figure 33 illustrates the utilization per warehouse while temporary 

blocking the inbound flow of the overflow warehouses. 

 

Figure 33: Simulation results, effect of temporary blocking the inbound flow on the utilization per warehouse 
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The temporary blockage has been abolished from day 330. Utilization in the MKI, JTS and WTR 

warehouses is above 70%. The effect on the number of cross docks is visualized in Figure 34. The left 

bar corresponds to the results presented in Section 5.5. The right bar represents the results when 

VidaXL temporary blocks the inbound flow of the overflow warehouses. 

 

Figure 34: Simulation results, effect of temporary blocking inbound flow on the total cross docks 

The total number of cross docks increases by 5.0%. The additional cross docks are mainly put-away 

cross docks from JTS and WTR warehouses since they receive 12.3% more containers than before. The 

JTS and WTR warehouse are not equipped with all storage types, causing extra put-away cross docks. 

The utilization of the JTS and WTR warehouses with and without temporary blocking on the inbound 

flow is visualized in Figure 35. 

 

Figure 35: Simulation results, effect of temporary blocking inbound flow on the utilization new opened warehouses 

The utilization of the newly opened JTS and WTR warehouses increases faster when temporary 

blocking the inbound flow of overflow warehouses. Containers with an average SLO are received in the 

new JTS ship warehouse; therefore, items with a low turnover rate are stored in the wrong warehouse. 

Temporarily blocking the inbound flow causes unnecessary cross docks in the short and long term.  
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5.6.2 Steady state situation 
This section investigates the sensitivity of the scheduling algorithm in the steady state situation. First, 

sensitivity under different inbound capacities is analyzed in Section 5.6.2.1. The goal of equation 29 is 

to determine the inbound capacity per warehouse based on the available number of storage locations 

in each warehouse. The inbound capacity per warehouse determines, to a large extent, the total 

number of cross docks; therefore, the sensitivity of the scheduling algorithm under different inbound 

capacities in steady state is analyzed. Second, the behavior of the scheduling algorithm under different 

workload balancing parameters is investigated in Section 5.6.2.2. 

5.6.2.1 Different inbound capacities 
The inbound capacity per warehouse influences the total number of cross docks. When a warehouse 

is forced to receive a certain number of containers that it cannot store, the total number of put-away 

cross docks increases. Moreover, when a ship warehouse is forced to receive more containers, it also 

receives containers with a high SLO since there are no more containers with a low SLO available. The 

number of long-term picking and shipping cross docks thus increases. Accordingly, the effect of the 

scheduling algorithm is tested under five different inbound capacities, as used in the previous sections. 

The inbound capacity of both ship warehouses decreased by 10%, while the inbound capacity of the 

pick warehouse increased by 10% in the first instance. In the second instance, the capacity of both ship 

warehouses increased by 20%, whereas the inbound capacity of the pick and overflow warehouses 

decreased by 10%. The third instance decreased the inbound capacity of the JTS ship warehouse by 

10% and increased the inbound capacity of the MKI ship warehouse by 10%. The fourth instance is the 

opposite of the third instance. In the fifth instance, both shipping warehouses have 10% more inbound 

capacity, while the pick warehouse has 5% less inbound capacity. 

Table 15 presents a summary of the results. Cross docks are expressed as percentages and compared 

with the total number of cross docks for the simulation period caused under the FIFO scheduling 

procedure. The detailed simulation results can be found in Appendix G. 

Table 15: Total number of cross docks per scheduling procedure under different inbound capacities 

 
Scheduling 
alg. 

NoSLO FIFO 
(ext.) 

FIFO 

Equation 29 45.8% 68.0% 71.5% 100.0% 

Ship - 10%, Pick + 10% 60.8% 70.4% 73.1% 100.0% 

SHIP + 20%, Pick/OF - 10% 48.5% 75.4% 92.1% 100.0% 

JTS - 10%, MKI + 10% 45.3% 67.9% 71.5% 100.0% 

JTS + 10%, MKI - 10% 48.3% 69.5% 72.4% 100.0% 

Ship + 10%, Pick - 5% 45.0% 66.2% 67.6% 100.0% 

 

The proposed scheduling algorithm outperforms the three other scheduling procedures in all 

situations. As the inbound capacity of the shipping warehouses decreases, the benefits of the 

scheduling procedure also decrease. Less items are stored in the ship warehouses; consequently, the 

number of picking and shipping cross docks increases. Remarkable, the benefits of the scheduling 

procedure do not increase when the capacity of the shipping warehouses increases. The utilization 

rate of the reserve area of the ship warehouses consequently increases faster, resulting in more put-

away cross docks. The detailed simulation results can be found in appendix F. 
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5.6.2.2 Workload balance parameters 
This section investigates the behavior of the scheduling algorithm under different workload balance 

parameters. First, containers are classified as A, B, and C. Second, the total number of cross docks and 

the total number of days the containers are picked up after the demurrage date during the simulation 

period under different workload balance parameters are evaluated. Last, the effect of the workload 

balance parameters on the percentage of A, B, or C containers per warehouse is analyzed. 

The inbound teams of VidaXL unload the received containers. Some containers may contain only a few 

SKUs stored in a few boxes and are thus easy to unload. Other containers may contain many small 

SKUs in multiple boxes, and these containers cost much effort to unload. VidaXL therefore categorizes 

containers as in Table 16. When a container has less than 10 SKUs inside or less than 460 boxes, the 

container is categorized as A. If the container is not an A container, and it contains more than 10 SKUs 

or more than 1,150 boxes, it is categorized as a C container. All other containers are B containers. 

Notably, 25% of the containers are A containers, 50% are B containers, and 25% are C containers. 

Table 16: Classification of containers 

Category SKUs Boxes 

A <=10 <=460 

C >20 >1,150 

B Otherwise Otherwise 

 

Since the containers are unloaded by humans, it is not fair to assign all C containers to the same 

inbound team. Each warehouse can divide the containers among inbound teams so that workload is 

equally distributed. However, when one warehouse only receives C containers, it is not possible to 

divide the workload equally among inbound teams in all warehouses. Constraints 21, 22, and 23 are 

therefore included in the scheduling algorithm. The cross docks under the scheduling algorithm with 

𝑊𝐵𝐴𝑤 =  𝑊𝐵𝐵𝑤 = 𝑊𝐵𝐶𝑤 = 1.0,   𝑊𝐵𝐴𝑤 =  𝑊𝐵𝐵𝑤 = 𝑊𝐵𝐶𝑤 = 0.75, 𝑎𝑛𝑑 𝑊𝐵𝐴𝑤 =  𝑊𝐵𝐵𝑤 =

𝑊𝐵𝐶𝑤 = 0.50 are presented in Figure 36. The number of cross docks under the three other scheduling 

procedures can be found in Appendix H. 

 

Figure 36: Simulation results, effect of applying workload balance constraints 21,22 and 23 on cross docks 
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When it is only possible to assign 75% of A, B, or C containers to the aggregate schedule, the total 

number of cross docks during the simulation period increases with almost 5,400. More than 80% of 

these extra cross docks are put-away cross docks. Meanwhile, when its only possible to assign 50% of 

A, B, or C containers to the aggregate schedule, the total number of cross docks increases with almost 

6,000. Notably, 70% of those extra cross docks are put-away cross docks. Limiting the number of A, B, 

or C containers to 75% or 50% for the aggregate schedule increases the number of cross docks 

significantly although there is only a small change visible between these two parameters. Balancing 

the workload results in more cross docks, which consequently increases workload. 

Balancing the workload negatively influences the number of containers picked up after the demurrage 

date. Part of the “free operating space” is used by the workload balance constraint. When   𝑊𝐵𝐴𝑤 =

 𝑊𝐵𝐵𝑤 = 𝑊𝐵𝐶𝑤 = 0.75, the total number of days the containers are picked up after the demurrage 

date increases to 275, and 2.7% of the containers is picked up after the demurrage date. However, 

when   𝑊𝐵𝐴𝑤 =  𝑊𝐵𝐵𝑤 = 𝑊𝐵𝐶𝑤 = 0.5,  the total number of days the containers are picked up after 

the demurrage date only increases to 19, and only 0.4% of the containers are picked up after the 

demurrage date. When multiple containers in the same category are available for pickup and prefer 

the same receiving warehouse, the aggregate schedule can only assign half of the available inbound 

capacity to these containers when applying the parameters  𝑊𝐵𝐴𝑤 =  𝑊𝐵𝐵𝑤 = 𝑊𝐵𝐶𝑤 = 0.5. The 

scheduling algorithm assigns the leftovers to the second, third, or fourth preferred warehouse; thus, 

throughput time decreases. This phenomenon is illustrated in Figure 37 and Figure 38. 

 
Figure 37: Simulation results, effect of different workload 

balance constraints on percent of B containers JTS warehouse 

 

 
Figure 38: Simulation results, effect of different workload 

balance constraints on percent of B containers MKI 
warehouse 
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Most B containers prefer to be received at the JTS warehouse. On average, half of the received 

containers at JTS are B containers. When 𝑊𝐵𝐵𝑤 = 0.75, a little over 15% of the simulation period, the 

JTS warehouse receives 70% B containers on one day. When  𝑊𝐵𝐵𝑤 = 0.5, the JTS warehouse is not 

able to receive that many B containers; more B containers are assigned to the MKI warehouse. As such, 

the MKI warehouse receives more often 50% of B containers per day, and the throughput time 

consequently decreases. 

The effect of the scheduling algorithm on the JTS warehouse is visible in Figure 37. The percentage of 

B containers received per day at the JTS warehouse is less spread under  𝑊𝐵𝐵𝑤 = 0.5. Moreover, 

more B containers are assigned to the other warehouses when the number of available B containers 

increases. 

5.7 Conclusion 
The potential of the proposed scheduling algorithm has been evaluated by comparing its performance 

with three other scheduling procedures. The proposed scheduling algorithm performs at best when 

applying an aggregate scheduling horizon equal to four days and a penalty value equal to twenty-five 

for every day the container is scheduled after its arriving day. The theoretical upper bound solution 

has 5.7% and 10.4% less cross docks in ramp-up and steady state situations respectively as the solution 

provided by the scheduling algorithm. However, recall that there does not exist a scheduling algorithm 

that provides an optimal solution without prior knowledge (Dertouzos & Mok, 1989). It outperforms 

all other procedures in the ramp-up and steady state situations. Moreover, the scheduling algorithm 

is not sensitive to different inbound capacities and different workload balance parameters. 

In the ramp-up situation, the total number of cross docks can be reduced by 26.3%, 28.7%, and 45.6% 

compared with the scheduling algorithm without SLO, the extended FIFO, and the FIFO procedure, 

respectively. Moreover, 99.7% of the containers are picked up before the demurrage date. The number 

of cross docks decreases when the process becomes more stable, and the warehouses are utilized 

equally. 

In the steady state situation, the total number of cross docks can be reduced by 32.7%, 35.9%, and 

54.2% compared with the scheduling algorithm without SLO, the extended FIFO, and the FIFO 

procedure, respectively. Moreover, 99.9% of the containers are picked up on time. 

The scheduling algorithm performs best when there is no workload balancing constraint. The 

scheduling algorithm assigns containers with a high SLO to the overflow and pick warehouses. The 

utilization of the reserve area of these warehouses increases faster than that in the ship warehouses 

since the demand for these items is lower. Less containers are consequently received in the pick and 

overflow warehouses. Accordingly, items with a high turnover rate are received in the ship 

warehouses. The pick density in the shipping warehouses increases, whereas the number of cross 

docks from the pick and overflow warehouses to the ship warehouses decreases. Scheduling 

containers with the proposed scheduling algorithm increases efficiency during the receiving, put-away, 

picking checking and packing, and shipping operations. 
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6. Conclusion and recommendations 
 

The goal of this research is to schedule the receiving operations to increase the efficiency of the 

warehouse operations put-away, picking and shipping simultaneously, by reducing the long-term cross 

docks while avoiding situations where the container is picked up after the demurrage date. Hereto, 

current scheduling procedure were captured, after which a new scheduling algorithm is proposed. The 

potential and sensitivity of the scheduling algorithm is evaluated in a realistic simulation. This section 

first answers the research questions in Section 6.1. Second, the contribution to the literature is pointed 

out in Section 6.2. Recommendations to VidaXL are made in Section 6.3 and directions for further 

research are stated in Section 6.4. 

6.1 Answer on research questions 
In this section, the sub research questions are answered based on the findings of previous sections. 

Sub question 1: How is the receiving operation at VidaXL currently organized, planned, and controlled? 

At the beginning of the day, the inbound logistics department receives a message signaling the actual 

arrival and assigns the containers FIFO to one of the warehouses. In 2019, VidaXL had one main ship 

warehouse, two small pick warehouses and multiple overflow warehouses. From each warehouse, the 

inbound logistics department receives the available storage locations per storage type and the number 

of containers that each warehouse can unload on a particular day. The inbound logistics department 

checks in the SAP system the percent of the content which can be stored in each warehouse. They 

attempt to reduce the cross docks by manually assigning the containers FIFO to a warehouse where 

most of the content can be unloaded without harming the capacity constraints of the warehouse.  

Sub question 2: How does the receiving operation influence the efficiency during put-away, picking 

and shipping operations? 

VidaXL is opening two new warehouses and will have two ship, one pick and two overflow houses in 

the same geographical area to fulfill all European orders. However, not all warehouses are equipped 

with all necessary resources to accomplish all warehouse operations for each product type, and 

therefore inefficient cross docks occur when the succeeding operation cannot be executed in the 

current warehouse. The total number of cross docks can be estimated on the pickup day and differ per 

container for each receiving warehouse. 

VidaXL receives multiple containers per day and can therefore select the containers to be processed 

on the next day from a set of available containers. During most days it is impossible to select and 

process al available containers since each warehouse is constrained by the available inbound capacity.  

Scheduling the receiving operations has a “free operating space”: The pickup date can be scheduled 

within ten days after the confirmation of arrival to prevent demurrage costs, the receiving warehouse 

can be chosen and the order of receiving each container can be determined. However, for some urgent 

critical containers there is no liberty, they must always be unloaded first at a specific warehouse. The 

efficiency can be increased through reducing the long-term cross docks by scheduling the receiving 

operation in the “free operating space”. 
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Sub question 3: How can the receiving operation be scheduled to increase efficiency during put-away, 

picking and shipping operations? 

Cross docks during put-away, picking, and shipping can be estimated and prevented using the 

proposed scheduling algorithm. The objective of the algorithm is reducing the long-term cross docks 

while avoiding situations where the container is picked up after the demurrage date. The main 

approach for accomplishing this is through scheduling containers to the preferred warehouses such 

that the corresponding estimated number of cross docks are reduced. 

In an ideal situation, the container and warehouse data are known far in advance. When there is 

enough inbound capacity, it would then be possible to schedule the receiving operation of each 

container before the demurrage date while minimizing the total long-term cross docks. A binary 

decision must be made, containers must be picked up by a warehouse on a specific date resulting in 

J*W*T binary decision variables. The triple sum objective function can minimize the total long-term 

cross docks by assigning the containers to warehouses on specific days. 

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is 

only known a few days in advance, the actual arriving date of each container almost always differs 

from the estimated arrival date and it is almost impossible to estimate the number of cross docks of 

each receiving container far in advance. Containers received during previous days, increases the 

current stock level in each warehouse and therefore affect the estimated number of cross docks of the 

new receiving containers. It would be possible to resolve the triple sum objective function each day 

new information becomes available. However, solving a triple sum objective function with J*W*T 

binary decision variables requires computational effort and there is only limited time available to 

complete the calculations. This paper therefore proposes an alternative rolling horizon scheduling 

algorithm to deal with uncertain container arrivals and new information availability while reducing the 

computation time and complexity of the problem. 

First, an aggregate solution for the coming four days is provided with a binary decision model. The 

binary decision model selects a subset of containers out of the available containers and schedules them 

to a warehouse, resulting in J*W binary decision variables. The binary decision model maximizes the 

profit associated with receiving the container at the most preferred warehouse instead of at a less 

preferred warehouse while considering the demurrage date. Second, the FIFO dispatch rule is applied 

to gather a detailed solution for the first scheduling’s period. The FIFO dispatch rule schedules the 

container to specific receiving periods such that the throughput time decreases, and the containers 

are picked up before its demurrage date. The algorithm can be resolved each period new information 

becomes available. 

The algorithm performs at best for VidaXL when applying an aggregate scheduling horizon equal to 

four days and a penalty value equal to twenty-five for every day the container is scheduled after its 

arriving day. The theoretical upper bound solution has 5.7% and 10.4% less cross docks in ramp-up and 

steady state situations respectively as the solution provided by the scheduling algorithm. Furthermore, 

cross docks can be reduced through receiving containers with a short storing time in the ship 

warehouses, with an average storage time in the pick warehouse and with a long storage time in the 

overflow warehouses. Consequently, more containers are received in the preferred ship warehouse 

and the efficiency of the receiving, put-away, picking, checking and packing, and shipping operations 

simultaneously increases. 
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The potential of the scheduling algorithm is evaluated through comparing the performance with 

scheduling the containers FIFO and minimizing the put-away cross docks FIFO every day. Moreover, 

the effect of including picking and shipping cross docks in the scheduling algorithm is investigated by 

running the model with and without additional cross docks based on the storage time. After opening 

a new ship warehouse, the total number of cross docks can be reduced with 26.3%, 28.7% and 45.6% 

compared with the scheduling algorithm without storage time component, minimizing the put-away 

cross docks FIFO every day and FIFO procedure respectively. The number of cross docks decreases 

when the process becomes more stable and the warehouses are equally utilized. When all warehouses 

have the same start utilization, the total number of cross docks can be reduced with 32.7%, 35.9% and 

54.2% respectively. Moreover, the scheduling algorithm is not sensitive to different inbound capacities 

and different workload balance parameters. 

6.2 Contributions to literature 
The contribution to literature is three-fold and are presented in this section. 

First, this is the first research focusing on efficiently scheduling the receiving operations for fast-

growing e-commerce companies with multiple ship, pick and overflow warehouses in the same 

geographical area. 

Second, while existing literature mainly focuses on improving the put-away, picking and shipping 

operations independently of each other, this thesis focuses on scheduling the receiving operation 

integrated with other warehouse operations to increase the overall warehouse efficiency. 

Third, this paper proposes an alternative rolling horizon scheduling algorithm to deal with uncertain 

container arrivals and new information availability while reducing the computation time and 

complexity of the problem. 

Literature on scheduling the receiving operation integrated with other warehouse operations is scare. 

However, this type of literature is extremely relevant for practitioners. To the authors knowledge, this 

is the first algorithm which schedules the receiving operation to increase the efficiency of the other 

warehouse operations for fast growing e-commerce companies with multiple warehouses. 

6.3 Company recommendations 
The company recommendations are fivefold and are presented in this section. 

First, the receiving operation at VidaXL can be scheduled with the scheduling algorithm to reduce the 

long-term cross docks while taking the demurrage date into consideration. The potential of the 

scheduling algorithm is quantified with a realistic simulation, and it outperforms scheduling the 

containers FIFO and minimizing the put-away cross docks FIFO every day. The scheduling algorithm 

can be used at the start of every day by the inbound logistics department to plan the containers for 

next day. 

Second, after opening a new ship warehouse, the usage of the resources in the new warehouse can be 

ramped-up with the scheduling algorithm. Many containers with a short storage time are received in 

the new ship warehouse and the pick density increases. As a result, the number of put-away, picking 

and shipping cross docks decreases. The performance of the scheduling algorithm increases when the 

warehouse processes stabilizes, and the warehouses are equally utilized. 
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Third, in the current warehouse set-up, the scheduling algorithm performs at best when applying an 

aggregate scheduling horizon equal to four days and a penalty value equal to twenty-five for every day 

the container is scheduled after its arriving day. The theoretical upper bound solution has 5.7% and 

10.4% less cross docks in ramp-up and steady state situations respectively as the solution provided by 

the scheduling algorithm. However, the parameter settings should be evaluated with a simulation after 

every change in the warehouse set-up. When the average throughput time increases, the penalty value 

must be enlarged. 

Fourth, balancing the workload between the warehouses for the aggregate schedule increases the 

workload as well. It is recommended to balance the workload with other managerial decisions such as 

dividing the workload between the inbound teams in a warehouse or providing more resources to 

highly utilized inbound teams.  

Fifth, when the total inbound capacity is significantly lower as the expected container arrivals per 

month, VidaXL can adjust the workload balance parameters to schedule as many A and B containers 

as possible. The inbound teams can unload more containers per day and the total number of days the 

containers are picked up after the demurrage date decreases. 

6.4 Limitations and further research 
The main limitations of the scheduling algorithm are the parameter settings. Proper parameter settings 

differ for every warehouse set-up, and parameter tuning is necessary to determine the aggregate 

scheduling horizon and penalty value for every day the container is scheduled after its arrival date. 

Furthermore, when there is no pool of available containers, the algorithm minimized the total number 

of cross docks for next day. Minimizing the number of cross docks per day does not minimize the total 

long-term cross docks. 

The effect of the scheduling algorithm on the efficiency of the warehouse operations receiving, put-

away, order picking, checking and packing, and shipping can be investigated further. The scheduling 

algorithm reduces the long-term cross docks. However, increasing the efficiency of the reorganization 

process through the warehouse operations entails more as preventing cross docks between the 

warehouses. More in depth research is necessary to quantify for example the effect on the pick density 

or checking and packing operations. The algorithm functions as a basic model, constraints can be 

added, and the weight can be adapted to further increase the efficiency of the warehouse operations. 

Moreover, the scheduling algorithm assigns containers to warehouses, the effect of assigning 

containers to inbound docks or inbound teams can be investigated in more depth.  

The algorithm applies a rolling horizon policy where the aggregate schedule is provided with a binary 

decision model whereas the detailed schedule is made with the FIFO dispatch rule. The theoretical 

upper bound solution has 5.7% and 10.4% less cross docks in ramp-up and steady state situations 

respectively as the solution provided by the scheduling algorithm. There is still room for improvement, 

assigning containers directly to one of the pickup days with a triple sum binary decision model has the 

potential to be investigated further. 
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Appendix A  

Warehouse setup VidaXL 

 

Figure 39: Warehouse setup VidaXL (2019) 
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Figure 40: Warehouse setup VidaXL (2020) 
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Appendix B  

Business process model VidaXL 

 

Figure 41: Business process model warehouse operations VidaXL 
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Appendix C  

Parameter tuning scheduling algorithm 
Table 17: Detailed results parameter tuning scheduling algorithm penalty = 10 and penalty = 20 

 
T = 2 
Penalty 
=10 

T = 3 
Penalty 
=10 

T = 4 
Penalty 
= 10 

T = 5 
Penalty 
=10 

T = 2 
Penalty 
=20 

T = 3 
Penalty 
=20 

T = 4 
Penalty 
= 20 

T = 5 
Penalty 
=20 

Nr containers MKI 2,629 2,697 2,709 2,682 2,643 2,702 2,703 2,689 

Nr containers JTS 2,877 2,934 2,939 2,957 2,875 2,935 2,939 2,956 

Nr containers WTR 791 796 788 793 790 786 792 787 

Nr containers 
Overflow 

674 642 641 643 665 652 643 656 

Nr containers not 
right predicted 

2,603 1,995 1,525 1,387 2,448 1,863 1,492 1,363 

Nr containers right 
predicted 

3,859 4,731 4,625 4,371 4,006 4,846 4,592 4,395 

Put-away cross 
docks MKI 

126 119 142 162 138 131 133 139 

Put-away cross 
docks JTS 

9,723 9,489 9,735 10,436 9,454 9,358 9,792 10,245 

Put-away cross 
docks WTR 

3,928 3,992 3,790 4,094 4,315 3,860 3,611 3,699 

Put-away cross 
docks overflow 

12,446 11,673 11,427 11,324 12,106 11,600 11,334 11,813 

Picking cross docks 13,359 13,322 13,375 13,433 13,533 13,508 13,386 13,136 

Shipping cross 
docks 

34,217 33,928 33,486 33,884 33,790 33,597 33,684 33,771 

Total nr crossdocks 73,799 72,523 71,955 73,333 73,336 72,054 71,940 72,803 

Average 
throughput time 

7.23 4.07 3.59 3.58 7.28 4.01 3.51 3.59 

Nr containers 
picked up after 
demurrage 

843 24 19 26 833 10 8 22 

Nr days containers 
picked up after 
demurrage 

1,652 24 19 26 1,638 10 8 22 

Nr containers 
picked up after 8 
days 

2,224 59 32 51 2,075 13 8 37 
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Table 18: Parameter tuning scheduling algorithm penalty = 25 and penalty = 30 

 
T = 2 
Penalty 
=25 

T = 3 
Penalty 
=25 

T = 4 
Penalty 
=25 

T = 5 
Penalty 
=25 

T = 2 
Penalty 
=30 

T = 3 
Penalty 
=30 

T = 4 
Penalty 
=30 

T = 5 
Penalty 
=30 

Nr containers 
MKI 

2,658 2,716 2,716 2,699 2,682 2,717 2,709 2,697 

Nr containers 
JTS 

2,871 2,919 2,931 2,949 2,954 2,917 2,928 2,954 

Nr containers 
WTR 

795 787 788 793 790 789 794 786 

Nr containers 
Overflow 

656 641 640 637 651 649 646 640 

Nr containers 
not right 
predicted 

2,344 1,871 1,522 1,381 1,345 1,819 1,503 1,348 

Nr containers 
right predicted 

4,086 4,783 6,407 4,385 4,388 4,798 4,649 4,400 

Put-away cross 
docks MKI 

140 133 133 172 158 123 147 151 

Put-away cross 
docks JTS 

9,490 9,189 9,567 10,326 10,359 9,144 9,448 10,242 

Put-away cross 
docks WTR 

3,884 3,841 3,668 3,877 3,675 3,981 3,857 3,866 

Put-away cross 
docks overflow 

11,575 11,252 11,242 11,105 11,331 11,450 11,520 11,268 

Picking cross 
docks 

13,769 13,447 13,363 13,417 13,138 13,376 13,240 13,266 

Shipping cross 
docks 

33,929 33,642 33,578 33,708 33,850 33,637 33,781 33,605 

Total nr 
crossdocks 

72,787 71,504 71,551 72,605 72,511 71,711 71,993 72,398 

Average 
throughput 
time 

6.93 3.92 3.57 3.61 3.56 3.87 3.60 3.58 

Nr containers 
picked up after 
demurrage 

569 8 8 19 18 9 9 18 

Nr days 
containers 
picked up after 
demurrage 

943 8 8 19 18 9 9 18 

Nr containers 
picked up after 
8 days 

1,635 0 9 30 25 11 10 24 
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Appendix D  

Results ramp-up situation  
Table 19: Results ramp-up situation per scheduling procedure 

 
Scheduling 
algorithm 

Scheduling 
algorithm 
NoSLO 

FIFO 
extension 

FIFO 

Nr containers MKI 2,133 1,989 1,952 1,722 

Nr containers JTS 3,103 2,654 2,675 3,138 

Nr containers WTR 1,127 1,452 1,503 1,688 

Nr containers Overflow 697 978 963 598 

Nr containers not right predicted 1,643 2,247 
  

Nr containers right predicted 4,679 4,407 
  

Put-away cross docks MKI 98 135 154 42 

Put-away cross docks JTS 15,410 11,425 13,876 58,911 

Put-away cross docks WTR 9,044 6,756 8,805 26,300 

Put-away cross docks overflow 7,084 1,974 1,251 4,031 

Picking cross docks 19,615 49,038 48,580 28,264 

Shipping cross docks 43,321 59,051 59,992 56,311 

Total nr crossdocks 94,572 128,379 132,658 173,859 

Average throughput time 3.80 3.97 2.51 2.42 

Nr containers picked up after 
demurrage 

19 118 0 0 

Nr days containers picked up after 
demurrage 

19 225 0 0 
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Appendix E  

Results steady state situation 
Table 20: Results steady state situation per scheduling procedure 

 
Scheduling 
algorithm 

Scheduling 
algorithm 
NoSLO 

FIFO 
extension 

FIFO 

Nr containers MKI 2,716 2,251 2,229 1,959 

Nr containers JTS 2,931 2,257 2,243 3,152 

Nr containers WTR 788 1,209 1,283 1,590 

Nr containers Overflow 640 1,360 1,339 466 

Nr containers not right predicted 1,522 1,808 
  

Nr containers right predicted 4,607 4,326 
  

Put-away cross docks MKI 133 151 161 84 

Put-away cross docks JTS 9,567 5,932 6,834 59,009 

Put-away cross docks WTR 3,668 3,281 5,304 26,713 

Put-away cross docks overflow 11,242 14,732 13,496 4,597 

Picking cross docks 13,363 31,495 33,139 17,568 

Shipping cross docks 33,578 50,647 52,751 48,246 

Total nr crossdocks 71,551 106,238 111,685 156,217 

Average throughput time 3.57 3.61 2.56 2.37 

Nr containers picked up after 
demurrage 

8 7 0 0 

Nr days containers picked up after 
demurrage 

8 7 0 0 
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Appendix F  

Results Temporary blockage OF warehouse 
Table 21: Detailed simulation results temporary blocking inbound flow overflow warehouses 

 
Scheduling 
algorithm 

Scheduling 
algorithm 
NoSLO 

FIFO 
extension 

FIFO 

Nr containers MKI 2,133 2,143 1,965 19,999 

Nr containers JTS 3,103 3,507 3,030 3,043 

Nr containers WTR 1,127 1,244 1,715 1,689 

Nr containers Overflow 697 175 360 346 

Nr containers not right predicted 1,643 1,824 2,757 
 

Nr containers right predicted 4,679 5,106 4,244 
 

Put-away cross docks MKI 98 98 117 92 

Put-away cross docks JTS 15,410 24,740 21,923 23,371 

Put-away cross docks WTR 9,044 16,038 14,472 14,740 

Put-away cross docks overflow 7,084 1,333 2,929 2,196 

Picking cross docks 19,615 13,090 15,953 17,770 

Shipping cross docks 43,321 43,997 63,698 62,089 

Total nr crossdocks 94,572 99,296 119,092 120,258 

Average throughput time 3,80 6,25 6,12 4,31 

Nr containers picked up after 
demurrage 

19 437 721 31 

Nr days containers picked up after 
demurrage 

19 830 2,443 37 

  



86 
 

Appendix G  

Results different inbound capacities 
Table 22: Results different inbound capacities (1) 

 
SHIP -10%, Pick + 10% SHIP +20%, Pick/OF - 10% 

 
Scheduling 
algorithm 

Schedu-
ling 
algorithm 
NoSLO 

FIFO 
exten-
sion 

FIFO Scheduling 
algorithm 

Schedu-
ling 
algorithm 
NoSLO 

FIFO 
exten-
sion 

FIFO 

Nr containers 
MKI 

1,995 1,820 1,924 1,656 3,037 2,560 2,492 2,482 

Nr containers JTS 2,478 1,997 2,072 2,750 3,181 2,603 2,770 3,316 

Nr containers 
WTR 

1,063 1,352 1,411 1,759 758 1,142 1,375 1,496 

Nr containers 
Overflow 

982 1,379 1,369 589 462 1,100 835 305 

Nr containers not 
right predicted 

3,078 3,125 
  

342 453 
  

Nr containers 
right predicted 

3,440 4,423 
  

2,804 2,439 
  

Put-away cross 
docks MKI 

113 115 89 65 2,658 3,872 9,962 4,258 

Put-away cross 
docks JTS 

7,437 5,975 7,661 53,906 13,007 15,348 23,620 56,236 

Put-away cross 
docks WTR 

17,123 5,558 6,942 32,661 5,594 4,371 12,885 21,913 

Put-away cross 
docks overflow 

18,943 16,427 15,101 5,061 7,767 10,264 7,951 2,545 

Picking cross 
docks 

19,138 33,411 33,277 19,778 10,424 26,031 24,812 13,661 

Shipping cross 
docks 

37,688 54,733 57,618 53,685 30,308 48,576 53,304 45,324 

Total nr 
crossdocks 

100,442 116,219 120,688 165,156 69,758 108,462 132,534 143,937 

Average 
throughput time 

19.68 19.96 14.12 13.97 1.21 1.22 2.34 1.03 

Nr containers 
picked up after 
demurrage 

5,056 5,122 4,409 4,419 0 0 0 0 

Nr days 
containers picked 
up after 
demurrage 

67,728 69,896 34,127 33,106 0 0 0 0 
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Table 23: Results different inbound capacities (2) 

 
JTS -10%, MKI + 10% JTS +10%, MKI - 10% 

 
Scheduling 
algorithm 

Schedu-
ling 
algorithm 
NoSLO 

FIFO 
exten-
sion 

FIFO Scheduling 
algorithm 

Schedu-
ling 
algorithm 
NoSLO 

FIFO 
exten-
sion 

FIFO 

Nr containers 
MKI 

2,942 2,441 2,439 2,194 2,426 2,018 1,991 1,731 

Nr containers 
JTS 

2,728 2,097 2,081 2,901 3,201 2,457 2,451 3,358 

Nr containers 
WTR 

797 1,180 1,257 1,557 786 1,237 1,309 1,574 

Nr containers 
Overflow 

620 1,346 1,299 465 663 1,357 1,327 470 

Nr containers 
not right 
predicted 

1,462 1,939 
  

1,573 1,971 
  

Nr containers 
right 
predicted 

4,691 4,358 
  

4,652 4,347 
  

Put-away 
cross docks 
MKI 

164 131 153 71 135 116 116 65 

Put-away 
cross docks 
JTS 

6,786 4,345 5,200 54,472 14,410 8,408 9,806 64,168 

Put-away 
cross docks 
WTR 

3,561 2,350 4,087 26,213 4,252 5,018 6,895 26,374 

Put-away 
cross docks 
overflow 

10,650 14,535 13,506 3,831 11,669 14,755 13,643 4,619 

Picking cross 
docks 

12,740 30,063 30,970 17,452 14,257 32,562 33,627 17,647 

Shipping cross 
docks 

34,057 50,369 53,256 47,876 33,104 51,188 52,636 48,297 

Total nr 
crossdocks 

67,958 101,793 107,172 149,915 77,827 112,047 116,723 161,170 

Average 
throughput 
time 

3.56 3.96 3.51 2.38 3.64 3.92 2.78 2.33 

Nr containers 
picked up 
after 
demurrage 

13 12 4 0 8 11 0 0 

Nr days 
containers 
picked up 
after 
demurrage 

13 12 21 0 8 11 0 0 
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Table 24: Results different inbound capacities (3) 

 
SHIP +10%, Pick -5% 

 
Scheduling 
algorithm 

Scheduling 
algorithm 
NoSLO 

FIFO 
extension 

FIFO 

Nr containers MKI 2,840 2,421 2,384 2,098 

Nr containers JTS 3,053 2,396 2,351 3,525 

Nr containers WTR 756 1,151 1,204 1,579 

Nr containers Overflow 507 1,160 1,092 382 

Nr containers not right 
predicted 

636 780 
  

Nr containers right predicted 3,341 3,020 
  

Put-away cross docks MKI 151 134 95 58 

Put-away cross docks JTS 11,457 8,591 7,921 59,344 

Put-away cross docks WTR 4,283 3,611 5,565 25,769 

Put-away cross docks 
overflow 

9,125 11,645 11,138 3,467 

Picking cross docks 11,191 27,145 26,452 15,068 

Shipping cross docks 31,655 48,683 50,712 47,086 

Total nr crossdocks 67,862 99,809 101,883 150,792 

Average throughput time 1.67 1.74 4.14 1.31 

Nr containers picked up after 
demurrage 

0 0 41 0 

Nr days containers picked up 
after demurrage 

0 0 56 0 
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Appendix H  

Results different workload balance 

parameters 
Table 25: Results workload balance paremeters equall to 0.75 and 0.5 

 
𝑾𝑩𝑨𝒘 =  𝑾𝑩𝑩𝒘 = 𝑾𝑩𝑪𝒘 = 𝟎. 𝟕𝟓 𝑾𝑩𝑨𝒘 =  𝑾𝑩𝑩𝒘 = 𝑾𝑩𝑪𝒘 = 𝟎. 𝟓𝟎 

 
Scheduling 
algorithm 

Schedu-
ling 
algorithm 
NoSLO 

FIFO 
exten-
sion 

FIFO Scheduling 
algorithm 

Schedu-
ling 
algorithm 
NoSLO 

FIFO 
exten-
sion 

FIFO 

Nr containers 
MKI 

2,631 2,273 2,247 1,705 2,623 2,277 2,262 1,690 

Nr containers 
JTS 

2,970 2,094 2,086 3,147 2,957 2,079 2,112 3,126 

Nr containers 
WTR 

810 1,154 1,138 1,692 820 1,159 1,127 1,679 

Nr containers 
Overflow 

665 1,282 1,223 602 676 1,272 1,222 637 

Nr containers 
not right 
predicted 

1,366 621 
  

1,460 611 
  

Nr containers 
right predicted 

4,260 2,304 
  

4,457 2,306 
  

Put-away cross 
docks MKI 

140 146 0 42 140 146 0 38 

Put-away cross 
docks JTS 

12,067 4,270 5,334 59,812 12,165 4,226 5,308 57,707 

Put-away cross 
docks WTR 

5,406 1,916 2,988 26,396 5,217 1,870 3,042 27,672 

Put-away cross 
docks overflow 

11,323 13,453 13,445 3,898 11,220 13,425 13,466 4,771 

Picking cross 
docks 

13,845 30,173 29,482 28,680 14,676 29,862 29,650 28,835 

Shipping cross 
docks 

34,149 50,371 50,208 56,263 34,125 50,799 49,049 56,901 

Total nr 
crossdocks 

76,930 100,329 101,457 175,091 77,543 100,328 100,515 175,924 

Average 
throughput time 

4.36 10.76 13.68 2.42 3.66 10.96 13.12 2.39 

Nr containers 
picked up after 
demurrage 

192 2,139 3,184 0 26 2163 3,206 0 

Nr days 
containers 
picked up after 
demurrage 

283 42,108 39,484 0 27 43,208 36,271 0 
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