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Abstract

This research proposes a new algorithm to schedule the container receiving operations of a fast-
growing e-commerce company with multiple warehouses in the same geographical area. The
algorithm increases the efficiency of the warehouse operations receiving, put-away, picking and
shipping simultaneously, by reducing the long-term cross docks while avoiding situations where
containers are picked up after the demurrage date. Cross docks occur when the succeeding warehouse
operation cannot be executed in the current warehouse, the total number of cross docks can be
estimated on the pickup day and differ per receiving warehouse. The container receiving operation at
VidaXL can be scheduled with the rolling horizon policy. The rolling horizon policy reschedules the
receiving operation every day new information becomes available. First, an aggregate solution for the
coming four days is provided with a binary decision model. The binary decision model selects a subset
of containers out of the available containers and schedules each container to a warehouse. The binary
decision model maximizes the profit associated with receiving the container at the most preferred
warehouse instead of at a less preferred warehouse while considering the demurrage date. Second,
the FIFO dispatch rule is applied to gather a detailed solution for the first day. The detailed schedule
of first day can immediately be implemented. The receiving operation can be rescheduled during
succeeding days when new information becomes available. The potential of the scheduling algorithm
is evaluated in a realistic simulation by comparing the results with scheduling the containers first in
first out and minimizing the put-away cross docks first in first out every day. Moreover, the effect of
including picking and shipping cross docks in the scheduling algorithm is investigated by running the
model with and without considering cross docks based on the expected storage time.
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Management summary

In 2002, management guru Peter Drucker forecasted that e-commerce would significantly impact how
business is conducted. Seventeen years later, the Ecommerce Foundation expected that e-commerce
would be a 621-billion-euro industry in 2019 in Europe. In 2007, only 30% of the European population
bought items online, this percentage had almost doubled to 57% by 2017 (CBS, 2018). Logistics in e-
commerce are highly complex since e-commerce typically regards small orders with low value from
many different customers (Turban, King, Lee, Liang, & Turban, 2017). The flourishing E-commerce
economy combined with new complex logistic challenges stresses the need for efficient warehouse
operations. This research proposes a new scheduling algorithm to efficiently schedule the container
receiving operations integrated with other warehouse operations at VidaXL.

Problem statement

E-commerce companies have a large product assortment to fulfill small orders from many different
customers, and they typically have different warehouses to store the width assortment. Each
warehouse is equipped for a special group of products. Decisions need to be made towards achieving
an efficient flow of goods between the warehouses. The put-away, picking, checking, and packing
strategy are already considered in the literature and in practice to increase warehouse efficiency
(Davarzani & Norrman, 2014), and therefore this research focuses on scheduling the receiving
operation integrated with the other warehouse operations at VidaXL. The company is opening two
new warehouses in 2020 and lacks a scheduling tool to avoid unnecessary cross docks. Cross docks are
inefficient flow of goods between warehouses and occur when the succeeding warehouse operation
cannot be executed in the current warehouse. This research aims to define a scheduling algorithm
which can be used daily to reduce inefficient cross docks between the warehouses integrated with the
other warehouse operations. The main research question is formulated as follows:

“How can the container receiving operations be scheduled to increase efficiency during the warehouse
operations put-away, picking, and shipping ?”

Research topic

Warehousing regards the intermediate storage of goods between successive stages of a supply chain
and can be implemented to reduce transportation costs and provide customer service. Warehouses
fulfill customer demand through reorganization, which involves the operations: receiving, put-away,
order picking, checking and packing, and shipping. Each warehouse tries to increase the efficiency of
its warehousing operations by reducing double handling (Bartholdi & Hackman, 2019). The objective
of this research is to schedule the receiving operations in e-commerce logistics to increase the
efficiency of the warehouse operations put-away, picking and shipping simultaneously, by reducing
the long-term cross docks while avoiding situations where the container is picked up after the
demurrage date.

Framework

The framework to schedule the receiving operation integrated with other warehouse operations
consists of three layers: input data, scheduling algorithm and output data. Each layer subsequentially
fulfill certain tasks and provide the subsequent layer with information to complete the scheduling
process.



Input data

Containers can be classified as critical and noncritical containers. Critical containers must be received
as soon as possible at a specific warehouse, while noncritical containers are preferred to be processed
within ten days. However, these containers lack any other scheduling restrictions and it is therefore
possible to efficiently schedule the receiving operation. Arriving containers can contain one stock
keeping unit or over hundred different stock keeping units. Not every warehouse operation can be
executed in each warehouse for each stock keeping unit. ltems must be cross docked between the
warehouses when the subsequent operation cannot be executed in the current warehouse. The
inherent expected number of cross docks during each warehouse operation when the container is
received in one of the warehouses can be estimated on the pickup day.

The number of put-away cross docks per container are based on the available storage types in each
warehouse. The picking and shipping cross docks are estimated by calculating the equivalent number
of cross docks if a container is received in a less preferred warehouse based on the expected storage
time. For many stock keeping units, most of the warehouse operations can be executed in the ship
warehouses. The total number of picking and shipping cross docks can therefore be reduced through
receiving containers with a short storing time in the ship warehouses, containers with an average
storage time in the pick warehouse and containers with a long storage time in the overflow
warehouses. Consequently, more containers are received in the preferred ship warehouse resulting in
less cross docks and the efficiency during put-away, picking and shipping operations increases.

Each warehouse is constraint by the inbound capacity per container type and the total inbound
capacity per warehouse per day. The receiving operations must be scheduled such that all inbound
capacity constraints are met.

Scheduling algorithm

In an ideal situation, the container and warehouse data are known far in advance. When there is
enough inbound capacity, it would then be possible to schedule the receiving operation of each
container before the demurrage date while minimizing the total long-term cross docks. A binary
decision must be made, containers must be picked up by a warehouse on a specific date. A triple sum
objective function can minimize the total long-term cross docks by assigning the containers to
warehouses on specific periods.

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is
only known a few days in advance, the actual arriving date of each container almost always differs
from the estimated arrival date and it is almost impossible to estimate the number of cross docks of
each receiving container far in advance. Containers received during previous days, increases the
current stock level in each warehouse and therefore affect the estimated number of cross docks of the
new receiving containers. It would be possible to resolve the triple sum objective function each day
when new information becomes available. However, solving a triple sum objective function is complex
and requires computational effort while there is only limited time available to revise the receiving
schedule. This paper therefore proposes an alternative rolling horizon scheduling algorithm to deal
with uncertain container arrivals and new information availability while reducing the computation time
and complexity of the problem.

First, an aggregate solution for the coming four days is provided with a binary decision model. The
binary decision model selects a subset of containers out of the available containers and schedules them
to a warehouse while considering the four days inbound capacity. The binary decision model

\"



maximizes the profit associated with receiving the container at the most preferred warehouse instead
of at a less preferred warehouse while considering the demurrage date. Second, the FIFO dispatch rule
is applied to gather a detailed solution for the first day. The dispatch rule schedules the container FIFO
to each day such that the throughput time decreases, and the containers are picked up before its
demurrage date. The detailed schedule of first day can immediately be implemented. The receiving
operation can be rescheduled during succeeding days when new information becomes available.

Output data

The scheduling algorithm is able to provide the aggregate schedule for the upcoming four days through
selecting and scheduling as many containers as all warehouses can receive from the available set of
containers. However, VidaXL must only confirm the pickup date of the detailed schedule for next day
in order to retain flexible to new information. New containers can arrive at the container yard and the
number of cross docks associated with receiving the container at one of the warehouses can differ
over time. The receiving schedule can therefore be revised on next day.

Results

The potential of the algorithm is evaluated in a realistic simulation by comparing the performance with
the theoretical upper bound, scheduling containers first in first out and minimizing the total put-away
cross docks first in first out every day. Moreover, the effect of including picking and shipping cross
docks in the algorithm is investigated by running the model with and without additional cross docks
based on the storage time. The results are evaluated in two situations: 1) ramp-up, after opening a
new warehouse and 2) steady-state, when each warehouse has the same start utilization.

The theoretical upper bound quantifies the optimal solution when everything is known beforehand,
resulting in 5.7% and 10.4% less cross docks in ramp-up and steady state situations respectively as the
solution provided by the scheduling algorithm. However, there does not exist a scheduling algorithm
that provides an optimal solution without prior knowledge (Dertouzos & Mok, 1989).

After opening a new ship warehouse, the number of cross docks can be reduced with 26.3%, 28.7%
and 45.6% compared with the scheduling algorithm without considering picking an shipping cross
docks, minimizing the put-away cross docks first in first out every day and first in first out procedure
respectively. Moreover, 99.7% of the containers are picked up before the demurrage date. The number
of cross docks decreases when the process becomes more stable and the warehouses are equally
utilized. When all warehouses have the same start utilization, the total number of cross docks can be
reduced with 32.7%, 35.9% and 54.2% respectively, and 99.9% of the containers are picked up on time
before the demurrage date. Furthermore, the scheduling algorithm is not sensitive to different
inbound capacities and different workload balance parameters, and it still outperforms the other
scheduling procedures.

The algorithm schedules containers with a long storage time to the overflow and pick warehouses. The
utilization of the reserve area of these warehouses increases faster than that in the ship warehouses
because the demand for these items is lower. Accordingly, less containers are received in the pick and
overflow warehouses, while items with a high turnover rate are received in the ship warehouses. As
such, the pick density in the shipping warehouses increases, whereas the number of cross docks from
the pick and overflow warehouses to the ship warehouses decreases. Notably, when more items are
picked in the same warehouse, it costs less effort to bundle items that are purchased by the same
client. Scheduling containers to receiving warehouses using the algorithm increases efficiency in the
receiving, put-away, picking, packing, and shipping operations.
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1. Introduction

In 2002, management guru Peter Drucker forecasted that e-commerce would significantly impact how
business is conducted. Seventeen years later, the Ecommerce Foundation expected that e-commerce
would be a 621-billion-euro industry in 2019 in Europe. In 2007, only 30% of the European population
bought items online, this percentage had almost doubled to 57% by 2017 (CBS, 2018).

Plunkett research Ltd. (2014) defined e-commerce: “electronic commerce refers to using the internet
and intranets to purchase, sell, transport, or trade data, goods, or services.” This definition shows that
e-commerce is characterized by how activities are executed by the company. By fulfilling activities
digitally, e-commerce companies experience advantages compared to traditional companies including
increased inventory control, shortened time to market, improved market search, and lower advertising
costs (Berthon, Pitt, & Watson, 1996; Burstein & Kline, 1995; Spar & Bussgang, 1996).

Logistics in e-commerce are highly complex since e-commerce typically regards small orders with low
value from many different customers. They are exposed to seasonality and only large companies have
their own warehouses (Turban, King, Lee, Liang, & Turban, 2017). According to the Council of Supply
Chain Management Professionals (2013), logistics management plans, implements, and controls the
efficient, effective forward and reverse flow and storage of goods, services, and related information
between the point of origin and point of consumption in order to meet customers’ requirements.

The flourishing E-commerce economy combined with new complex logistic challenges stresses the
need for efficient warehouse operations. This research proposes a new scheduling algorithm to
efficiently schedule the container receiving operations integrated with other warehouse operations at
VidaXL. Section 1.1 provides the relevance in the literature, the research topic is defined in Section 1.2,
and lastly Section 1.3 forms the outline of this report.

1.1 Relevance in the literature

Fulfilling thousands of small orders every day from different costumers requires significant effort from
warehouses, which increases their throughput, storage, and accuracy requirements (Frazelle, 2002).
The objective of order fulfillment is to deliver the right item to the right customer in a timely, cost
effective, and profitable manner (Turban et al., 2017). Almost all warehouses fulfill customer orders
through reorganization, which occurs through the warehouse operations receiving, put-away, picking,
checking and packing, and shipping (Bartholdi & Hackman, 2019).

Trends in e-commerce make warehouse management one of the most important players in order to
realize growth, stay profitable, and continue improving customer satisfaction. In 2007 and in 2010,
Goetschalckx and McGinnes covered different aspect of warehouse design, operations, and
performance evaluation by reviewing 197 articles and books from different sources. In 2015,
researchers Davarzani and Norrmann identified gaps in the literature and interviewed 15 warehouse
managers to suggest a practical and relevant future research agenda Both studies concluded that
scheduling the receiving and shipping operations in a warehouse represents the least explored
category in warehousing literature. Receiving and shipping operations have the potential to be further
investigated, integrated, and independent of other operations.
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1.2 Research topic

Warehousing regards the intermediate storage of goods between successive stages of a supply chain
and can be implemented to reduce transportation costs and provide customer service. Most
warehouses have the same material flow, whereby they receive bulk shipments, stage them for quick
retrieval, retrieve and sort SKUs upon customer request, and ship them to the customer. Warehouses
fulfill customer demand through reorganization, which involves the operations: receiving, put-away,
order picking, checking and packing, and shipping. Each warehouse tries to increase the efficiency of
its warehousing operations by reducing double handling (Bartholdi & Hackman, 2019). The objective
of this thesis is to improve warehouse efficiency by scheduling the receiving operations.

The main contribution of this thesis is fourfold:

1. This is the first research focusing on efficiently scheduling the receiving operations for fast-
growing e-commerce companies with multiple warehouses in the same geographical area.
Fast-growing e-commerce companies are exposed to constraints that are less relevant in
traditional warehousing literature.

2. While existing literature mainly focuses on improving the receiving, put-away, picking, storage,
checking, and packing operations independently of each other, this thesis focuses on
scheduling the receiving operation integrated with the other warehouse operations to
increase the overall warehouse efficiency.

3. A new alternative rolling horizon scheduling algorithm to schedule receiving containers is
developed. The algorithm can deal with uncertain container arrivals and new information
availability while reducing the computation time and complexity of the problem.

4. The potential and sensitivity of the scheduling algorithm is evaluated in a realistic simulation.

1.3 Outline of the thesis

Section 1 emphasizes the relevance in literature. The structure of the remainder of this paper is as
follows: Section 2 provides all relevant information regarding the problem context and emphasizes its
relevance in industry, which together motivate the research subject defined in Section 2 as well.
Section 3 provides a brief overview of literature relevant to the research subject. Section 4 includes
the conceptual model and proposes a framework, including an algorithm, to schedule the container
receiving operation. The goal of the algorithm is to schedule the receiving operations to increase the
efficiency of the warehouse operations put-away, picking and shipping simultaneously, by reducing
the long-term cross docks while avoiding situations where the container is picked up after the
demurrage date. Section 5 evaluates the effect of the scheduling algorithm on different performance
measurements in a realistic simulation. Section 6 contains the overall conclusions of this research and
suggests directions for further research.



2. Problem context

This section provides information relevant to the problem context and elaborates on the industry
relevance. The project is commissioned by VidaXL, and the first section includes a brief company
description. Secondly, the warehouse setup at VidaXL is described in Section 2.2, and thirdly the
reorganization of items through the warehouse operations at VidaXL are described in Section 2.3.
Fourth, the current warehouse performances are specified in Section 2.4. Finally, the problem
definition, research question, project scope, and research methodology are respectively provided in
Section 2.5 to0 2.9.

2.1 Company background

VidaXL is a rapidly growing international online retailer established in 2006 with an annual revenue of
a quarter billion euro (2017). VidaXL offers products for ‘in and around the home,” mainly from their
own VidaXL brand, in 29 European countries, the United States of America, and Australia via various
online sales channels. However, the product assortment is shifting towards a mixture of their own
brand and A-brand products and contains around 70,000 SKUs. VidaXL differentiates themselves by
being able to provide customers with products for a better price by optimizing and controlling each
step of the supply chain from product design, purchasing, transport, and warehousing to delivery to
the regional distribution hubs of several delivery partners. In addition, VidaXL provides customer
service in native languages, an open marketplace via VidaXL web shops and offers drop shipment
services, which enables business-to-business customers to operate their own web shop without having
to manage the logistics.

2.2 Warehouse setup

VidaXL is growing, and within a year they will double their pick and storage locations by opening two
new owned warehouses. They will stop using areas of the rented warehouses. In the future, VidaXL
has five warehouses in the same geographical area to store their width assortment, “the long tail”.
Two are shipping warehouses with a reverse area, forward area, and conveyor/sorting system, and
items can be picked and shipped from these shipping warehouses. One warehouse has a reverse and
forward area as well and is called the pick warehouse. Items can be picked in this warehouse, but the
warehouse cannot ship the item directly to customers. The other two warehouses only have bulk
storage in the reverse area and are called overflow warehouses. Items are consequently moved
between the warehouses during each warehouse operation, the warehouse setup and the possible
flow of goods are visualized in Figure 1 (see appendix A for a large version). Each warehouse operation
will be explained in more depth in next section.
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Figure 1: Flow of goods between the warehouses at VidaXL

2.3  Warehouse operations at VidaXL

Most warehouses have the same material flow: They receive bulk shipments, stage them for quick
retrieval, retrieve and sort SKUs upon customer request, and ship them to the customer. Warehouses
fulfill customer demand through reorganization, which involves the operations: receiving, put-away,
order picking, checking and packing, and shipping (Jinxiang, Goetschalckx, & McGinnis, 2007; Bartholdi
& Hackman, 2019). Each warehouse tries to increase the efficiency of warehousing operations and
reduce double-handling in order to minimize handling costs (Bartholdi & Hackman, 2019). The
warehouse operations receiving, put-away, order-picking, checking and packing, and shipping of
VidaXL are respectively described in this section, the business process model is given in appendix B.

2.3.1 Receiving

In 2019, VidaXL received between 1 and 99 containers per day. The inbound logistics department
usually receives the estimated arrival time of containers one month before the expected arrival,
however due to different circumstances, the actual arrival date always differs from the expected arrival
date. The forwarder transports containers to the container yard at Venlo, from which point VidaXL has
ten days to pick them up before the demurrage date. However, sometimes the demurrage date is ten
days after the arrival in the harbor in Rotterdam, and if the containers are not picked up on time, a
penalty cost is incurred.

At the beginning of the day, the inbound logistics department receives a message signaling the actual
arrival at the container yard and assigns the containers first in first out (FIFO) to one of the warehouses.
From each warehouse, they receive the available storage locations per storage type and the number
of containers that each warehouse can unload on a particular day. The inbound logistics department
checks in the systems, applications and products (SAP) system the percent of the content which can
be stored in each warehouse, this depends on the storage types available and container contents. The
containers are manually assigned to a warehouse where most of the content can be unloaded without
harming the capacity constraints of the warehouse. This process represents the inbound logistics
department’s attempt to minimize penalty costs and reduce the movements associated with putting
away the goods at a storage warehouse of each container individually.
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After picking up the containers at the container yard, the containers are unloaded by a team of three
to four people, and the inbound logistics department tries to assign the containers so that the
workload is balanced between each inbound team. Containers are categorized as A, B, and C based on
the effort required to unload the container, where A containers are the easiest to unload and contain
only a few SKUs. Arriving containers can contain 1 SKU or over 100 different SKUs. Items are stacked
in cartons on the floor, also referred to as loose loaded, to increase transport efficiency. Before staging
the items on appropriate storage units, they are inspected, and exceptions are registered. Based on
the products’ characteristics, they are stacked on different pallet or bin types. VidaXL has developed
an algorithm to determine the right storage unit, and to utilize the warehouse storage space as well as
possible, VidaXL has around 40 different storage units.

2.3.2 Put-away

Before goods can be put away, an appropriate storage location must be determined. The storage
location determines to a large extent the cost of retrieving the item for a certain customer. VidaXL has
multiple warehouses with different types of warehousing system, and each is equipped for a specific
group of products based on their characteristics, such as: size, weight, shape, pick size, delivery
quantity, type of storage module, et cetera (van den Berg, 1999). VidaXL has over 40 different storage
types, and it is therefore important to receive goods at a warehouse with the right storage types
available. VidaXL plans receiving operations for each container individually to minimize the put-away
costs, and if the receiving warehouses lack the right storage type, the goods are cross docked according
to the put-away strategy of VidaXL, which tries to minimize the picking costs.

2.3.3 Order picking

VidaXL picks the requested items in waves. At the start of a wave, the warehouse management system
(WMS) checks whether enough items are ordered to simultaneously pick a pallet or box from the
reserve area instead of picking items separately in the forward area. If insufficient items are ordered
for a pallet pick, the WMS verifies whether the items are available in the forward area, and if not, the
WMS checks whether it is possible to replenish items from the reverse area into the forward area in
the pick and ship warehouses (internal replenishments). If the pick or ship warehouses lack the items
in its reverse area, the items are replenished from the reverse area of the overflow warehouses (e.g.
picking cross docks). The whole storage unit is replenished, if the concerning storing units are pallets
with a height of 1.20 meter, the full pallet is replaced, if the items are stored in small boxes, the whole
box is replenished. Picking cross docks can be prevented by receiving the containers and storing the
items at the right warehouse, such that items stored in the overflow warehouse are requested less
often. VidaXL does not consider picking cross docks while assigning the containers to receiving
warehouses.

One SKU usually occupies one storage space in the forward area but never more than two since full
pallets/boxes are picked from the reverse area if possible. In practice, replenishments can also occur
from a reserve area to a reserve area in another warehouse due to items which used to be
automatically labeled items but need to be manually labelled, which is only possible in the MKI
warehouse.

In e-commerce, typically customers order small quantities, and to reduce travel time, picklists are
generated that contain multiple order lines of multiple customers. To increase the pick density, some
storage locations are divided so that two pallets with two different SKUs can be stored instead of one
pallet containing one SKU.



After picking the items, conveyable items can be automatically sorted and moved into carriers via
telescope conveyors in one of the shipping warehouses (MKI and JTS). Non-conveyable items are
stored in different areas of the warehouses and picked according to their destination so that sorting is
not necessary.

2.3.4 Checking and packing

After the order picking operations, the items are placed on a conveyor and automatically labeled. The
sorter automatically checks whether the right items are picked, and the conveyor brings the items to
the right outbound dock. If customers order more than one product, the items are bundled since
shipping one bundled item is cheaper than shipping two single items, however items that are bundled
are not always picked by the same picker. The items are therefore sometimes stored for a brief time
in the bundle area.

2.3.5 Shipping

Bartholdi and Hackman (2019) assume that shipping regards an operation that does not require much
effort. However, e-commerce companies typically need to ship small orders to many destinations
(Turban et al., 2017). Some e-commerce companies, such as VidaXL, have different warehouses to
store the width assortment. To prevent less-than-full truckloads, items must be cross docked between
warehouses before they can be shipped to their finale carrier destination, which requires manual
handling. Receiving and storing the items with a low demand at the picking warehouses reduces the
shipping cross docks between the pick and ship warehouses. However, it is almost impossible to reduce
shipping cross docks between shipping warehouses by storing the items in each ship warehouse based
on the expected demand per carrier destination, since VidaXL is not able to forecast the demand
pattern per carrier destination.

Forty-five different carrier destinations can be reached through the two shipping warehouses, and
most of the carriers are loose loaded, which means that they are stacked without pallets or
transportation cars in the carriers. In e-commerce, it is important to ship items so that customer
receive their items the day after they placed their order (Wozniak, 2013; Bol.com, 2019; TNS,2019),
and therefore the items must be shipped to the carrier destinations on the same day that the customer
places their orders on the VidaXL website. If the items are not consolidated into one or more outgoing
carriers, VidaXL will ship less than truckloads every day to the carrier destinations to satisfy customers.



2.3.6 Conclusion

Receiving &
Put-away

Reorganizing items in the warehouse of VidaXL occurs
through the operations receiving, put-away, order-
picking, checking and packing, and shipping. The
reorganization process is summarized in Figure 2.
Almost all warehouse operations of VidaXL are equal to
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which will be described in more depth in Section 3.
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items are bundled to reduce parcel costs. However,

VidaXL does not schedule the container receiving e

operation integrate with put-away, picking, and

shipping operations to reduce the long-term cross | oo
docks in order to improve warehouse efficiency. Figure 2: Product reorganization process VidaXL

2.4  Warehouse performance measures

The main performance measurement of the receiving operation is currently the total number of days
containers are picked up after the demurrage date. As earlier noted, the inbound logistics department
basically tries to minimize the number of days the containers are picked up after the demurrage date
without considering the long-term cross docks during succeeding warehouse operations.

2.5 Problem description

E-commerce companies have a large product assortment to full fill small orders with low value from
many different customers, and they typically have different warehouses to store the width assortment.
Each warehouse is equipped for a special group of products. Decisions need to be made towards
achieving an efficient flow of goods between the warehouses. The warehousing costs are responsible
for a substantial part of the overall cost and can be reduced by avoiding cross docks. Moreover,
unnecessary cross docks lead to lost items and negatively influences order accuracy (Hines & Taylor,
2000). Inaccurate orders are wrong delivered orders leading to unsatisfied customers and a return flow
that is expensive to handle (Bartholdi & Hackman, 2019). The put-away, picking, checking, and packing
strategy are already considered in literature and in practice to increase warehouse efficiency
(Davarzani & Norrman, 2014), and therefore this research focuses on scheduling the receiving
operation integrated with the other warehouse operations at VidaXL. The company is opening two
new warehouses in 2020 and lacks a scheduling tool to reduce unnecessary cross docks. Cross docks
are inefficient flow of goods between warehouses and occur when the succeeding warehouse
operation cannot be executed in the current warehouse, the costs of a cross dock is equal during each
warehouse operation. This research aims to define a scheduling algorithm which can be used daily to
reduce the cross docks between the warehouses integrated with the other warehouse operations. A
new scheduling algorithm is proposed to efficiently schedule the receiving operations for fast-growing
e-commerce companies with multiple warehouses.
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2.6 Research questions
Based on the problem description, the main research question is defined as follows:

“How can the container receiving operations be scheduled to increase efficiency during the warehouse
operations put-away, picking, and shipping?”

According to Jinxiang et al. (2007), receiving and shipping operations include the following:

Receiving and shipping are the interface of a warehouse for incoming and outgoing material
flow. Incoming shipments are brought to the warehouse, unloaded at the receiving docks, and
put into storage. Receiving and shipping operations involve, for example, the assignment of
trucks to docks and the scheduling of loading and unloading activities.

In order to solve the problem description and main research question, the following sub-research
guestions are answered:

1. How is the receiving operation at VidaXL currently organized, planned, and controlled?

2. How does the receiving operation influence the efficiency during put-away, picking and
shipping operations?

3. How can the receiving operation be scheduled to increase efficiency during put-away, picking
and shipping operations?

2.7 Project scope

VidaXL has distribution centers in Europe, America, and Australia, however the distribution centers in
each continent act on their own. The scope of this research considers the European distribution center,
which is located at Venlo and from begin 2020 consists of five different warehouses located in the
same geographical area. This research only focuses on scheduling the container receiving operations
regarding the put-away, picking, and shipping operations.

2.8 Constraints
This project is executed under the following constraints:

Put-away strategy is fixed;

Network design: the number, locations, and size of the warehouses are fixed;
Storage units are fixed;

Storage types are fixed;

Demand cannot be forecasted per carrier destination.

Learning and evaluation
Intervention

ukhwnNE

2.9 Methodology

This research is conducted according to the
research methodology designed by Van Aken,
Van Der Bij, and Berends (2012), whose
proposed method is the problem-solving
cycle for design science Figure 3. Although
this cycle consists of five steps, this research

paper regards the first three steps of the -
Solution design
cycle. The fourth step, the intervention is )

done at the logistical department of VidaXL. Figure 3: Problem-solving cycle (Van Aken et al., 2012)

Problem definition

Analysis and
diagnosis




The problem is defined in the introduction section and in the problem context section. The
introduction section focuses on the research relevance in the literature, while the context section
examines the relevance in industry and defines the problem. Section 3 includes a scientific literature
review which includes trends and characteristics of e-commerce. Furthermore, the scientific literature
review elaborates on scheduling rules and provides insight into binary decision models which functions
as basis model for the scheduling algorithm.

The occurrence of cross docks is diagnosed in Section 2, while Section 4 includes an analysis of how
cross docks can be prevented by scheduling the receiving operation. Moreover, a framework to
schedule the receiving operation integrated with other warehouse operations is presented in Section
4. The framework first estimates the total number of cross docks during the put-away, picking and
shipping operations when a container is received in one of the warehouses, followed up with a new
scheduling algorithm to reduce the long-term cross docks in order to improve warehouse efficiency.
The potential and sensitivity of the scheduling algorithm are evaluated in a realistic simulation, and
the scheduling algorithm is implemented with an intervention at the logistical department of VidaXL.
Parameter tuning is used to find proper settings to increase the performance of the scheduling
algorithm. Figure 4 summarizes the research methodology.

eResearch proposal

eWarehouse setup VidaXL
Problem *Warehouse operations VidaXL

definition

eliterature review
eFramework including a scheduling algorithm
eRealistic simulation
Analysis and| eperformance evaluation
diagnosis | eSensitivity analysis

1
|
1

eParameter tuning
ePerformance measurement of solution
eCompany recommendations

Solution
design

eImplementation of planning tool

Intervention

Figure 4: Summary of research methodology
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3. Literature review

In this section, a brief overview of literature relevant to the research subject defined in the previous
sections is provided. Section 3.1 first examines the characteristics and recent trends in e-commerce
companies and compares logistics in e-commerce with traditional companies to better understand the
context of the problem. Section 3.2 discusses the reorganization process of items through the
warehouse operations. Moreover, Section 3.3 considers the influence of prior knowledge and shows
its effect on the performance of different scheduling rules, and Section 3.4 introduces the knapsack
problem, which functions as basis model for the scheduling algorithm.

3.1 E-commerce retailers

In 2002, management guru Peter Drucker predicted that e-commerce would significantly impact how
business is conducted. Seventeen years later, the Ecommerce Foundation has forecast that e-
commerce will be a 621-billion-euro industry in Europe in 2019. In 2007, only 30% of the European
population purchased items online, but this percentage had almost doubled to 57% by 2017 (CBS,
2018). The e-commerce market is growing and differs from traditional markets. This section describes
the characteristics and trends of e-commerce and explains the difference between e-commerce
logistics and traditional logistics to understand the context of the problem.

3.1.1 Characteristics

Companies fulfill three major activities: ordering and payments, order fulfillment and delivery to
customers. Each activity can be conducted physically or digitally. Companies that execute all activities
physically are called brick-and-mortar organizations, while pure e-commerce companies are referred
to as virtual organizations. Increasing numbers of companies are transforming from brick-and-mortar
companies to click-and-mortar companies by establishing new online sales channels (Turban et al.,
2017). By fulfilling certain activities digitally, e-commerce companies gain advantages compared to
traditional companies in terms of increased inventory control, shortened time to market, more
efficient payment systems, improved market search and lower advertising costs (Berthon et al., 1996;
Burstein & Kline, 1995; Spar & Bussgang, 1996).

3.1.2 Trends

Companies began using e-commerce in 1970, when money was first transferred electronically. After
the commercialization of the World Wide Web in 1990, e-commerce companies were exposed to new
trends such as growth, purchase incentives and short delivery times.

Growth: Online retail is taking business from traditional retailers. During the economic recession of
2009-2013, e-commerce realized double-digit growth every year (Knight, 2013; Wilfred, 2014).
However, not every e-commerce company is successful: Multiple e-tailing companies have gone
bankrupt since 1999. Around 62% of these organizations lacked financial skills, while 50% did not have
sufficient experience with marketing. Moreover, many companies were unable to fulfill all customer
orders and did not have large enough inventories to deal with demand fluctuations (Direction, 2005).

Purchase incentives: The three main drivers for online purchases in the Netherlands were identified
as convenience, attractive pricing and large assortment (TNS, 2019).
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Delivery time: Short lead times improve the conversion rate, conversion refers to the percentage of
consumers that visit a website and purchase items on this website. Recently, Bol.com (2019) published
a study on the effect of short lead times on conversion rates. Within one day delivery generates the
best conversion rate, if items are delivered after two days, the conversion rate drops with 30%.

3.1.3 E-commerce logistics vs traditional logistics

According to the Council of Supply Chain Management Professionals (CSCMP) (2013), logistics
management plans implement and control the efficient, effective forward and reverse flow and
storage of goods, services and related information between the point of origin and the point of
consumption to meet customers’ requirements. In e-commerce companies, logistics management
requires dealing with different challenges to those faced by traditional companies, Table 1.

Table 1: Logistic challanges of traditional logistics and e-commerce logistics (Turban et al., 2017)

Attributes Traditional logistics E-commerce logistics

Type, quantity Bulk, large volume Small parcels

Destination Few Large number, highly dispersed

Demand type Push Pull

Value of shipment | Very large, usually >5$1,000 Very small, frequently <$50

Nature of demand  Stable, consistent Seasonal, fragmented

Customers Business partners, repeat customers = Unknown, many

Accountability One link Through the entire supply chain

Transporter Frequently by the company, Usually outsourced, sometimes by
sometimes outsources company

Warehouse Common Only very large shippers have their own

Fulfilling thousands of small orders from different customers every day requires significant effort. As a
result, the throughput, storage and accuracy requirements of warehouses have increased (Frazelle,
2002). The object of order fulfillment is delivering the right item to the right customer in a timely, cost-
effective and profitable manner (Turban et al., 2017). Most warehouses fulfill customer orders through
reorganization, which involves the operations of receiving, put-away, picking, checking and packing,
and shipping.

3.1.4 Conclusion

E-commerce is significantly impacting how business is done. Increasing numbers of companies are
transforming from brick-and-mortar companies to click-and-mortar companies by establishing new
online sales channels. These companies typically have a large product assortment and fulfil small
orders with low value to many different customers. The warehousing costs are responsible for a
substantial part of the overall cost. The flourishing E-commerce economy combined with new complex
logistic challenges stresses the need for efficient warehouse operations for e-commerce companies.

3.2  Warehouse efficiency in e-commerce

Warehousing, the intermediate storage of goods between two successive stages of a supply chain, can
be implemented to reduce transportation costs and provide customer service. Warehouses fulfill
customer demand through reorganization, which involves the operations: receiving, put-away, order
picking, checking and packing, and shipping (Jinxiang et al., 2007; Bartholdi & Hackman, 2019). Each
warehouse seeks to increase the efficiency of its warehousing processes and to reduce cross docks to
minimize double handling (Bartholdi & Hackman, 2019). E-commerce companies have a large product
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assortment to full fill small orders from many different customers, and they typically have different
storage facilities to store the width assortment. Each facility is equipped for a special group of items.
Decisions need to be made towards achieving an efficient flow of goods between the warehouses.
Cross docks are inefficient flow of goods between warehouses and occur when the succeeding
warehouse operation cannot be executed in the current warehouse. This section outlines the
warehouse operations and their inherent influence on the warehouse efficiency.

3.2.1 Receiving

Ordinarily, receiving starts with a notification of the arrival of goods. Efficiently scheduling the
receiving operation integrated with other warehouse operations is extremely complex for companies
with multiple warehouses. The receiving warehouse determines to a large extend the efficiency during
the other warehouse operations. After the items are unloaded, they are inspected, and any exceptions
are noted. Next, these items are scanned so that the system knows the items are available and
customer demand can be fulfilled (Bartholdi & Hackman, 2019).

Items can arrive in different quantities; typically, the receiving quantity is large compared to the
shipping quantity. Multiple SKUs can be received simultaneously in one shipment. Staging the items
on appropriate storage units, such as pallets and boxes, is a labor-intensive process. Receiving the
items in the same unit as the storage unit reduces the labor costs. However, this procedure usually
increases the transportation costs (Bartholdi & Hackman, 2019).

3.2.2 Put-away

Before goods can be put away, an appropriate storage location must be identified. The storage location
determines to a large extent what it costs to retrieve the item for a certain customer. Most large e-
commerce companies have multiple wareohuses with different types of warehousing systems. Each
warehousing system is specially equipped for a specific group of items based on their characteristics,
such as size, weight, shape, pick size, delivery quantity and type of storage module (van den Berg,
1999). It is therefore important to receive goods at the appropriate location to ensure that items can
be properly stored to reduce picking, packing and shipping cross docks.

3.2.3 Order picking

The WMS accomplishes the following tasks: verifying the inventory level, producing the picklist,
producing the shipping documentation and scheduling the order picking and shipping operation. Order
picking costs can be reduced by minimizing non-value-added tasks. The WMS reorganizes the picklist
to generate pick efficiency. If items are picked FIFO, pickers need to travel a long distance, which
increases operating costs. The WMS also checks whether it is possible to pick a full carton or pallet
instead of items separately. Picking a pallet rather than a single item requires different resources and
is therefore a separate process. Picking pallets containing multiple items increases the pick efficiency.

Many warehouse configurations utilize a forward area and a reserve area. The forward area is used for
efficient order picking, and the reserve area is used for replenishing the forward area. High pick density
leads to lower traveling costs. However, not every item is always pickable in the forward area of the
storing warehouse. If items are stored in a warehouse without an appropriate forward area, they are
first cross docked to another warehouse before the pick tasks are executed. Orders can be picked
serially or parallelly. In serial picking, one picker picks all the order lines of an order. While in parallel
picking the items are picked through multiple pickers, it reduces the throughput time but requires
more effort to coordinate the picking operation. The paper of Bartholdi and Hackman (2019) can be
consulted for a more in-depth analyses of serial and parallel order picking.
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3.2.4 Checking and packing

After picking the product, the picker must check if they have picked the right item according to their
pick list. Order accuracy can be a KPI to measures the service delivered to the customer. Inaccurate
orders lead to unsatisfied customers and a return flow that is expensive to handle. Items can be
bundled or packed to reduce the number of boxes shipped to a client, which lowers shipping and
handling costs. After the item is checked and packed, it can be scanned to register its availability for
shipping (Bartholdi & Hackman, 2019).

3.2.5 Shipping

Shipping normally requires less manual effort compared to other warehouse operations, since it deals
with fewer items and the items have already been consolidated into larger boxes during the packing
operation (Bartholdi & Hackman, 2019). However, e-commerce companies typically need to ship small
orders to many destinations (Turban et al.,, 2017). Some e-commerce companies have different
warehouses to store the width assortment. To prevent inefficient less-than-truckload shipments, item
must be cross docked between the facilities before it can be shipped to its final carrier destination.
While it is possible to wait until each individual facility has full truckloads, this process can be lengthy
for destinations with low demand. In e-commerce, it is important to ship items on the same day the
order is placed to ensure customers receive their items on time (Wozniak, 2013; Bol.com, 2013; TNS,
2019).

3.2.6 Conclusion

Each warehouse seeks to increase the efficiency of its warehouse operations by reducing double
handling. Cross docks are a form of double handling and can be prevented by scheduling the receiving
operation. Available containers can be assigned to a receiving warehouse to unload the items on
pallets, and the put-away strategy subsequently assigns the storage location of each SKU individually.
The storage location depends on the receiving location but is not always the same as the receiving
location, and cross docks can consequently occur. After a customer request, the items are picked from
the forward area, however not every item is pickable in the forward area of the storing warehouse. If
items are stored in a warehouse without an appropriate forward area, they are first cross docked to
another warehouse before the pick tasks are executed, and the picked items are subsequently checked
and can be shipped to customers. However, not all warehouses are able to serve all carrier destination
on time, and therefore the items are cross docked from the pick location to shipping warehouse before
shipping them to customers. The warehouse efficiency of an e-commerce company with different
storage facilities can be increased by scheduling the receiving operation in order to avoid cross docks
during the put-away, picking, and shipping operations.

3.3 Scheduling the receiving operations

Scheduling can be done either statically or dynamically. In static algorithms, the assignment of tasks to
processes and the time at which the execution starts is determined in advance. However, if the task
characteristics are not known beforehand, tasks cannot be scheduled statically. In dynamic scheduling,
new tasks are scheduled without affecting the deadlines of the previously scheduled tasks. Dynamic
scheduling algorithms can be centralized or distributed. In centralized algorithms, all tasks are received
at one central location and scheduled on the different processors. In distributed algorithms, tasks
arrive independently at each processor, and the processer checks whether it can accept or needs to
reject these tasks (Manimaran & Siva Ram Murthy, 1998). According to Dertouzos and Mok (1989),
there does not exist a scheduling algorithm that provides an optimal solution without prior knowledge.
This section examines scheduling rules and the influence of prior knowledge on the solution.
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3.3.1 Prior knowledge

The receiving operation can be scheduled to prevent inefficient warehouse operations. Scheduling the
receiving operation is limited by the level of prior knowledge or information that is available. Typically,
three scenarios can be distinguished: 1) no knowledge is available; 2) partial statistical knowledge of
the arrival or departure process and the content of the container is available; 3) perfect knowledge of
the content and sequence of each arriving or departing container is available (Larbi, Alpan, Baptiste, &
Penz, 2011). The second scenario is the basis for most decision models in literature since it is the most
common one in practice (Jinxiang et al., 2007).

The rolling horizon policy is a useful tool in dynamic situations with uncertain arrivals in later stages of
the scheduling horizon (Wilkinson, 1996). It separates the problem in a sequence of iterations, each
iteration only models’ part of the scheduling horizon in detail, while the rest of the horizon is scheduled
in an aggregate manner. This approach results in close to optimal solutions with a significant reduction
of the computation time (Dimitriadis, Shah, & Pantelides, 1997). In static scheduling policies, the arrival
times of all containers must be known beforehand or must be forecasted while in rolling horizon
policies only the actual arrival date need to be known. The rolling horizon policy is therefore suitable
in real-time applications in uncertain environments (Fang & Xi, 1997).

3.3.2 Scheduling rules

Many large distribution centers receive many containers a day. A scheduling rule can be used to select
the next container to be processed from a set of available containers. Scheduling rules are normally
intended to minimize operational costs. However, there are n! possible ways of sequencing n
containers waiting in the queue (Rajendran & Holthaus, 1997). It is therefore not possible to select one
rule that outperforms all other rules in every situation. Most scheduling rules are developed for job
shop environments. A wide variety of scheduling rules for transport are derived from these rules.
However, such rules often deal with minimizing the travel distance and the number of vehicles
required (Le-Anh, Koster, & Yu, 2010). Scheduling rules for job shops can be adapted to schedule the
container receiving operations. However, the rules must be tested through simulation to verify if they
can achieve the desired results in different settings. Most researchers assume that all jobs or
containers are available at the start of the scheduling period (Baker K., 1974; French, 1982; Pinedo,
1995). Only simple scheduling rules, such as shortest processing time, FIFO and longest processing
time, are evaluated in situations where job arrivals are dynamic (Hunsucker & Shah, 1994).

By 1976, more than 100 different scheduling rules had already been developed. Scheduling rules can
be classified into the following categories: 1a) Simple priority rules, which are based on information
related to a specific job, involving sub-classifications developed according to processing times, due
dates, number of operations, costs, setup times, arrival times, slack, machines and miscellaneous
information. 1b) Combinations of simple priority rules, which involve the combination of rules that fall
under category 1a to form other scheduling rules. 1c) Weighted priority indexes, in which each simple
priority rule can be weighted to receive an overall total weight, with important characteristics having
a greater influence on the outcome than less important characteristics. 2) Heuristic scheduling rules,
which involve a more complex consideration such as scheduling alternate operations; such rules do
not only employ mathematical tools but can also include human intelligence. 3) Other rules, which are
designed for a specific situation or consist of a combination of priority indexes based on the
mathematical functions of job parameters. Panwalker and Iskander’s (1976) presents a summary of
these rules. New scheduling rules are still being developed. However, at the foundational level, these
rules are combinations of the simple priority rules or are only applicable in company-specific scenarios.
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3.3.3 Conclusion

There does not exist an algorithm yet to schedule the container receiving operations of a company
with multiple warehouses in the same geographical area. However, the receiving operation can be
scheduled dynamically through a centralized rolling horizon algorithm to face uncertain container
arrivals and information availability. The rolling horizon policy separate the scheduling problem in a
sequence of iterations, each iteration only models’ part of the scheduling horizon in detail, while the
rest of the horizon is scheduled in an aggregate manner.

3.4 Introduction to binary decision models

Scheduling the container receiving operation to reduce cross docks require a decision process that can
be formalized and validated independently of personal preferences. Quantification of variables and
results is necessary. In most cases, the outcome of decisions can be measured by a single value
representing profit, costs or some other category of data. Finding the option with the highest (or
lowest) value can be extremely difficult when there are many possible options. This section therefore
introduces the multiple knapsack problem which functions as basic model for the algorithm.

3.4.1 Multiple knapsack problem

The multiple knapsack problem originates from a cargo problem where multiple aircrafts from the
same airline travel the same flight route multiple times a day. First, the airline must accept a package;
afterwards, it must select a flight to transport the package. This can be formulated with a binary
decision variable for every combination of a package for a flight (Kellerer, Pferschy, & Pisinger, 2004).

5 ={y  tnorioe T, (1)

When choosing the first alternative x;; = 1, a certain weight w; is required, where x;; = 0 does not
require a weight. Each alternative has a particular profit p;. The solution is feasible if the sum of all
weights over all binary decisions does not exceed capacity constraint 3. Moreover, it is not possible to
assign each package twice by constraint 4. There can exist multiple feasible solutions. However, most
of the time, not all feasible solutions optimize the outcome. The multiple knapsack problem can be
formulated as the following linear integer programming problem:

m n
Max Z Z pjXij (2)
i=1 j=1

subjected to:

n

Z ijijsci' i=1,.....,m, (3)
j=1
m

Z' xijS1, j=1,.....,7’l, (4)
i=1

xL-j € {0,1}, i= 1, [ m,j: 1, N (5)

3.4.2 Conclusion

Daily scheduling the container receiving operation is like the multiple knapsack problem since it is not
always possible to select and schedule all containers. Furthermore, only partial knowledge of the
arrival process and the estimated cross docks per container is available. It is therefore not possible to
select and schedule all containers beforehand. The solution is feasible when all constraints are met,
each container is only scheduled once, and each warehouse only receives the containers it can handle.
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3.5 Conclusion

E-commerce has significantly impacted the way business is conducted. Current trends in e-commerce
makes warehouse management one of the most important players in realizing growth, maintaining
profitability and continuously improving customer satisfaction. Following the commercialization of the
World Wide Web, e-commerce companies have been exposed to new trends such as growth, purchase
incentives and short delivery times.

Warehouses of e-commerce companies typically need to fulfill thousands of small orders from
different customers every day. Warehouses reorganize items, which involves the operations: receiving,
put-away, order picking, checking and packing, and shipping. Receiving and shipping operations is the
least explored category in warehousing literature. The flourishing E-commerce economy combined
with new complex logistic challenges stresses the need for efficiently scheduling the receiving
operation.

Large e-commerce companies often have different storage warehouses. Each warehouse has special
equipment for a specific group of products and is therefore not always able to accomplish all
warehouse operations for each item. Items are therefore cross docked to another warehouse when
the succeeding warehouse operation cannot be executed in the current warehouse. The warehouse
efficiency can be increased by scheduling the container receiving operation to reduce the total number
of cross docks.

The receiving operation can be scheduled dynamically through a centralized rolling horizon algorithm
to face uncertain container arrivals and information availability. The rolling horizon policy separate the
scheduling problem in a sequence of iterations, each iteration only models’ part of the scheduling
horizon in detail, while the rest of the horizon is scheduled in an aggregate manner. When scheduling
containers to specific warehouses, a binary decision must be made. The multiple knapsack problem
can be used to make formalized decisions independently of personal preferences. The basic model is
adapted in Section 4, the conceptual model improves the warehouse efficiency by reducing the long-
term cross docks while avoiding situations where the container is picked up after the demurrage date.
The potential and sensitivity of the scheduling algorithm are evaluated in a realistic simulation in
Section 5.
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4. Conceptual model

E-commerce companies have a large product assortment to fulfill small orders from many different
customers, and they typically have multiple warehouses to store the width assortment. Each
warehouse is equipped for a special group of products. Decisions need to be made towards achieving
an efficient flow of goods between the warehouses. Each warehouse tries to increase the efficiency of
its operations by reducing double handling (Bartholdi & Hackman, 2019). The put-away, picking,
checking, and packing strategy are already considered in literature and in practice to increase
warehouse efficiency (Davarzani & Norrman, 2014), and therefore this research focuses on scheduling
the receiving operation integrated with the other warehouse operations at VidaXL.

The goal of this research is to increase the warehouse efficiency by scheduling the container receiving
operation in order to avoid cross docks during the succeeding warehouse operations. E-commerce
companies typically ship small orders with low value to many different customers. The warehousing
costs are therefore responsible for a substantial part of the overall cost and can be reduced by avoiding
cross docks. Moreover, unnecessary cross docks lead to lost items and negatively influences order
accuracy (Hines & Taylor, 2000). Inaccurate orders are wrong delivered orders leading to unsatisfied
customers and a return flow that is expensive to handle (Bartholdi & Hackman, 2019).

VidaXL is a rapidly growing international online retailer with an annual revenue of a quarter billion
euro and the product assortment contains around 70,000 different SKUs (2017). VidaXL is opening two
new warehouses and will have two ship, one pick and two overflow houses in the same geographical
area to fulfill all European orders. However, not all warehouses are equipped with all necessary
resources to accomplish all warehouse operations for each product type, and therefore cross docks
occur when the succeeding operation cannot be executed in the current warehouse. The number of
cross docks associated with receiving, put-away, picking, checking and packing, and shipping
operations can be estimated on the pickup day and differ per container for each receiving warehouse.

The receiving operations at VidaXL can be scheduled within ten days after confirmation of the delivery
date of each container in the container yard at Venlo. VidaXL receives multiple containers per day and
can therefore select the next containers to be processed from a set of available containers. During
most days it is impossible to select and process al available containers since each warehouse is
constrained by the available inbound capacity per day. The receiving operation must therefore be
scheduled to determine which container must be processed in each warehouse on each day.

The objective of our model is reducing the number of long-term cross docks while avoiding situations
where the container is picked up after the demurrage date. The main approach for accomplishing this
is through scheduling containers to the preferred warehouses such that the corresponding estimated
number of cross docks is reduced. Scheduling the receiving operations has a “free operating space”:
The pickup date can be scheduled within ten days after the confirmation of arrival to prevent
demurrage costs, the receiving warehouse can be chosen and the order of receiving each container
can be determined. However, for some urgent critical containers there is no liberty, they must always
be unloaded first at a specific warehouse. This section combines scheduling the receiving operation
for critical and non-critical containers while reducing the long-term cross docks into one algorithm.
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Daily scheduling the receiving operations to avoid cross docks require a decision process that can be
formalized and validated independently of personal preferences. The multiple knapsack problem can
be used as basic model for the new developed scheduling algorithm. This section provides a framework
to reduce the long-term cross docks and demonstrates that the long-term cross docks during each
warehouse operation can be reduced by scheduling the receiving operation.

Section 4.1 first provides a framework to schedule the receiving operation integrated with other
warehouse operations. Section 4.2 issues the variables used in the conceptual model. Section 4.3
provides the container data existing of a distinction between critical and noncritical containers, and
the quantification of the estimated number of cross docks per container regarding each warehouse
operation. Moreover, Section 4.4 proposes an algorithm to subsequently schedule critical and
noncritical containers while reducing the long-term cross docks and the number of days the containers
are picked up after the demurrage date. Finally, the algorithm is validated and verified in Section 4.5.
It is recommended to read Section 4.1 before reading the other sections since Section 4.1 elaborates
in more depth on the remaining structure of this section.

4.1 Framework

The framework to schedule the receiving operation integrated with other warehouse operations will
be presented in this section, the framework is visualized in Figure 5. The framework consists of three
layers: input data, scheduling algorithm and output data. Each layer subsequentially fulfill certain tasks
and provide the subsequent layer with information to complete the scheduling process. The provided
information depends on the current state of the system and therefore differs each day the algorithm
is executed, and a receiving schedule is made. Each layer will be discussed in this section.

> Input data > > Scheduling algorithm > > Quiput data >
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Figure 5: Framework conceptual model
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4.1.1 |Input data

The input layer gathers all relevant data for the scheduling algorithm. The receiving operation will be
scheduled at the start of every day and the input data will therefore be gathered at the start of every
day instead of updating the input data every time new information becomes available. As a result,
decisions can be taken daily, making the model less complex. This section elaborates on the available
input data consisting of container data and warehouse data.

Container data

In 2019, VidaXL received between 1 and 99 containers per day and can therefore select the containers
to be processed on the next day from a set of available containers. During most days it is impossible
to select and process al available containers since each warehouse is constrained by the maximum
inbound capacity. Consequently, a pool of containers is available at the container yard.

Containers can be classified as critical and noncritical containers. Critical containers must be received
as soon as possible at a specific warehouse and it is therefore not possible to schedule the container
receiving operation to achieve an efficient flow of goods. Noncritical containers are preferred to be
picked up from the container yard within ten days, otherwise demurrage costs are incurred, however
these containers lack any other scheduling restrictions. It is therefore possible to schedule the
receiving operation in the upcoming ten days to achieve an efficient flow of goods. Section 4.3.1
provides rules to distinct critical and noncritical containers.

Arriving containers can contain 1 SKU or over 100 different SKUs. After receiving a container at one of
the warehouses, items are put-away, stored, picked, checked and packed, and shipped to fulfill
customer demand. However, not every warehouse operation can be executed in each warehouse for
each SKU. ltems must be cross docked between the warehouses when the subsequent operation
cannot be executed in the current warehouse. The inherent expected number of cross docks during
each warehouse operation when the container is received in one of the warehouses can be estimated
on the pickup day. Section 4.3.2 to 4.3.5 provides guidelines to estimate the number of cross docks
when the container will be received in one of the warehouses.

Warehouse data

The warehouse data consist of the inbound capacity per container type and the total inbound capacity
per warehouse. VidaXL classifies the containers as A, B, and C based on the number of SKUs and on the
number of items in each container, where A containers require less manual effort to unload than C
containers. Each warehouse can be constrained with the number of A, B and C containers it can receive
per day. Moreover, each warehouse is only able to receive a total number of containers per day. Note
that the total inbound capacity is not always equal to the sum of the inbound capacity per container
type. The receiving operations must be scheduled such that all inbound capacity constraints are met.
The inbound capacity constraints are provided by each warehouse individually.

Information availability

In an ideal situation, the container and warehouse data are known far in advance. When there is
enough inbound capacity, it would then be possible to schedule the receiving operation of each
container before the demurrage date while minimizing the total long-term cross docks.

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is
only known a few days in advance, the actual arriving date of each container almost always differs
from the estimated arrival date and it is almost impossible to estimate the number of cross docks of
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each receiving container far in advance. Section 4.3 shows that the estimated number of cross docks
depends on the available storage locations in the receiving warehouse, and on the stock level of each
SKU in the pick and ship warehouses. Both depend on the demand of each SKU and on the earlier
received and stored items in each warehouse. Containers received during previous days, increases the
current stock level in each warehouse and therefore affect the estimated number of cross docks of the
new receiving containers. It is therefore almost impossible to calculate the container and warehouse
data for all feasible solution since each decision affects the estimated cross docks of other containers.
This paper therefore proposes in Section 4.4 an alternative rolling horizon scheduling algorithm to deal
with uncertain container arrivals and new information availability while reducing the computation time
and complexity of the problem.

4.1.2 Scheduling algorithm

The objective of our model is reducing the long-term cross docks while avoiding situations where the
container is picked up after the demurrage date by scheduling the receiving operation. Daily scheduling
the receiving operation of noncritical container to avoid cross docks require a decision process that
can be formalized and validated independently of personal preferences.

In multi container packing problems, a set of containers must be scheduled to one or more
warehouses, each container can be scheduled to at most one warehouse. Each container has a weight
associated with receiving the container at one of the warehouses. Furthermore, each container may
also have a profit or costs which can differ or can be equal to its weight. When there is only one single
warehouse, the problem is similar to the well-known knapsack problem (Fukunaga & Korf, 2007; Keller
et al., 2004).

For our model, the characteristics of four well-known multi container packing problems are evaluated:
bin packing, multiple knapsack, bin covering, and min-cost covering. Many other combinatorial
optimization problems are variants of these multi container packing problems as constraints are added
or adjusted. In the basis, the problems differ from each other in two dimensions. One key dimension
is whether all containers are assigned to a warehouse or whether a subset of containers is selected
and assigned to a warehouse. The second dimension is whether the inbound capacity of the
warehouses cannot be exceeded, referred to as packing, or whether a minimum of containers must be
assigned to each warehouse, referred to as covering (Fukunaga & Korf, 2007). The models are classified
in Table 2.

Table 2: Characterizing multi container problems (Fukunaga & Korf, 2007)

Schedule all containers Select and schedule subset of containers
Packing Bin packing Multiple knapsack
Covering  Bin covering Min-cost covering

In bin packing or covering problems, the goal is to schedule all containers to bins (i.e. warehouses)
without harming the minimum or maximum capacity constraint of each bin. The objective is to
minimize the total number of bins necessary to schedule all available containers. There are infinite bins
available to schedule all containers (Delorme, Lori & Martello, 2015; Fukunaga & Korf, 2007; Martello,
Pissinger & Vigo, 1998; Valerio de Carvalho, 2000). On the other hand, multiple knapsack or min-cost
covering problems aims to maximize the overall profit of the selected and scheduled containers
without harming the minimum or maximum capacity constraint. A subset of containers is selected
since it is not possible to schedule all containers while satisfying the capacity constraints. The total
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number of warehouses is fixed under the multiple knapsack problem while the total number of bins
under the min-cost covering problem is infinite (Fukunaga & Korf, 2007; Keller et al., 2004; Wolsey &
Nemhauser, 1999).

Daily scheduling the container receiving operation at VidaXL is similar to the multiple knapsack
problem since VidaXL is only able so select and schedule a subset of containers. Each warehouse is
constrained by the maximum available inbound capacity, VidaX| is therefore not able to pick up all
available containers on the arriving day. VidaXL aims to select and schedule all containers before the
demurrage date but is not always able and not forced to pick up all containers before the demurrage
date when there is not enough inbound capacity. Furthermore, only partial knowledge of the container
arrival process and the estimated cross docks per container is available. Deciding to receive a container
in a warehouse increases the inventory position of the warehouse and affects the estimated cross
docks for new arrived containers. It is therefore not possible to schedule all containers beforehand as
a bin packing problem since new containers and information becomes available during the scheduling
process. Moreover, VidaXL has a finite number of warehouse available and can therefore not minimize
the number of warehouses necessary to receive all containers as they do in bin packing or covering
problems. Even if the bin packing problem is constraint with the number of available bins equal to the
number of warehouses is it still not a bin packing problem since it is not always possible to select and
schedule all available containers. Which is a key characteristic of the bin packing problem.
Furthermore, it is also not possible to minimize the number of inbound teams necessary to receive all
containers. The warehouses have a restricted inbound capacity and can therefore not always receive
all available containers on the same day. Moreover, the resources necessary to unload a container are
equal in each receiving warehouse, it is therefore not possible to schedule the container such that as
many containers as possible are received while minimizing the inbound teams necessary. Cross docks
are not physically executed by the inbound teams and do therefore not impact the resources necessary
to receive containers.

Basic multiple knapsack problem

The multiple knapsack problem originates from a cargo problem where multiple aircrafts from the
same airline travel the same flight route multiple times a day. First, the airline must accept a package;
afterwards, it must select a flight to transport the package. The airline attempts to maximize the value
of the selected packages without harming the maximum capacity constraint of each flight. Each flight
can have a different capacity. Furthermore, each package can only be assigned once to a flight. This
scenario can be formulated with a binary decision variable for every combination of a package for a
flight. If there are n packages available and m flights, there are n*m binary decision variables (Kellerer
et al., 2004).

Daily scheduling the receiving operation at VidaXL is similar to the cargo problem, as VidaXL has w
warehouses and there are j containers available with the result of w*j binary decision variables. VidaXL
is not able to schedule the receiving operation on next day for all available containers and must
therefore select a subset of containers; afterwards it must schedule the containers to a warehouse.
VidaXL wants to reduce the long-term cross docks and the number of days the containers are picked
up after the demurrage date, without harming the inbound capacity constraints of each warehouse.
Furthermore, each container can only be assigned once at one of the warehouses. Container j will be
assigned to warehouse w if the binary decision variable is equal to 1, and if the container is not assigned
to warehouse w, the binary decision variable is equal to 0.

21



Myopic

The multiple knapsack problem can be used as basic model to select and schedule the next container
to be processed. However, daily minimizing the number of cross docks is exposed to myopic and does
not lead to the optimal answer. In fact, the total long-term cross docks are not minimized with the
basic multiple knapsack problem because of:

1.

Daily selecting containers to minimize the total number of cross docks automatically means
not selecting “hard containers” with many cross docks at all warehouses. These containers are
forced to be scheduled just before the demurrage date and are therefore most of the times
scheduled at a less preferred warehouse resulting in avoidable cross docks. Forced scheduling
a “hard container” with 10 avoidable cross docks at a less preferred warehouse results in more
cross docks as voluntary scheduling another container with one avoidable cross dock at a less
preferred warehouse.

Minimizing the total number of cross docks every day does not minimize the long-term cross
docks, since two sub optimizations do not automatically lead to the overall optimum.

The total number of cross docks are minimized without harming the inbound capacity
constraint by selecting zero containers.

Scheduling containers
Four adjustments must be made to the basic multiple knapsack problem to schedule noncritical
containers in order to reduce long-term cross docks.

1.

The model must consider the profit associated with receiving the container at the most
preferred warehouse instead of at a less preferred warehouse. This will prevent the model
from not scheduling “hard containers”. Moreover, this feature assist in selecting the right
container to be received in a less preferred warehouse since it contemplates the profit of
receiving container j at warehouse w. Section 4.4.3 proposes a method to quantify the profit.
The algorithm must be able to optimize the binary decision model for multiple periods to
reduce the long-term cross docks. However, confirming the pickup date of all available
containers makes the system inflexible to new information and leads to suboptimal answers
as well. The model is therefore adapted to a rolling horizon procedure where only the
immediate short-term schedule is implemented. VidaXL can confirm the pickup date of the
containers scheduled on the next day and can consequently reschedule the pickup date of the
other containers if new information becomes available. This working procedure is explained in
more depth in Section 4.4.2 and Section 4.4.3.

The model must be rewritten as a maximalization function to schedule as many containers as
possible in order to prevent the model from selecting zero containers, it consequently enables
selecting containers for the complete scheduling horizon.

The possibility of selecting and scheduling a container must be increased when the container
is approaching its demurrage date to prevent demurrage costs.

Scheduling critical and noncritical containers can be combined in one rolling horizon scheduling
algorithm, the objective function of the algorithm will be discussed in more depth in Section 4.4.3 while
Section 4.4.4 demonstrates the working procedure of the algorithm.

4.1.3 OQutput data
The scheduling algorithm is able to select and schedule every day as many containers as all warehouses
can receive during the scheduling horizon from the available set of containers. The algorithm will
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reduce the
demurrage

long-term cross docks while avoiding situations where the container is picked up after the
date. However, VidaXL must only confirm the pickup date of the containers scheduled on

the next day in order to retain flexible to new information. New containers can arrive at the container

yard and th

e number of cross docks associated with receiving the container at a warehouse can differ

over time. The list with available containers must be updated after confirming the pickup date of the
scheduled containers. The potential and quality of the scheduling algorithm is evaluated in Section 5.

4.2 Variables

The sets, parameters, vectors, and decision variables used in Section 4.3 and in the proposed binary
decision model in Section 4.4 are specified as follows:

Sets

I
J
w
T

Parameters

AD;

ASyy

Set of SKUs (index = i) 1,...,1
Set of containers (index = j) 1,...,J
Set of warehouses (index = w) 1,....W
Set of periods (index = t) 1,...,T

Arriving Day container j

Available number of storage locations of storage type t in warehouse w

Total bulk locations in pick warehouses

Total bulk locations in overflow warehouses

Total bulk locations in shipping warehouses

Capacity of warehouse w

Number of put-away cross docks if container j will be received at warehouse w
Number of picking cross docks if container j will be received at warehouse w
Number of pick and ship cross docks if container j will be received at warehouse w
Total number of cross docks if container j is docked at warehouse w

Demand in pallets per week of SKU i

Free demurrage days

Big M, large positive penalty constant

Penalty when approaching due date of container j

Number of pallets of SKU i in container j which cannot be stored in warehouse n

Number of pallets of SKU i in container j
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E[SLO;]

The expected equivalent number of weeks container j occupies one bulk pallet place if the
container is received in the ship or pick warehouse

SLO,, Average SLO at warehouse w
Sip Current total bulk stock in number of pallets of SKU i at pick warehouses
Sis Current total bulk stock in number of pallets of SKU i at ship warehouses
Siw Current total bulk stock in number of pallets of SKU i at warehouse w
Stw Stock level of storage type t at warehouse w
SC; Stock coverage of SKU i
TD Today
TS Total storage locations of storage type t at warehouse w
Ut Allowed utilization of storage type t
A Average utilization of bulk locations in all warehouses
ij Weight of assigning container j to warehouse w
WBy,,  Fraction of the capacity at warehouse w allowed to be occupied with type A containers
WBg,, Fraction of the capacity at warehouse w allowed to be occupied with type B containers
WBcw Fraction of the capacity at warehouse w allowed to be occupied with type C containers
Zp Cut-off SLO of pick warehouses
Zs Cut-off SLO of shipping warehouses
Ziw Lower-bound SLO of receiving warehouse w
Zyw Upper-bound SLO of receiving warehouse w
Vectors
CT;  Vector containing all CT}y, of container j CTj = {CTyy, -, CTpy}
D; Vector containing all D; of the SKUs in container j Dj ={D; ..., Dsg, ..., Dgg}
Qj Vector containing all Q;; of container j Qj = {Q1j, -+ Qs0j» - Qoo}
S; Vector containing all (Si, + Si5) S; ={(S1p + S15)s e, (Sip + Si5)}

of the SKUs that are in container j

Decision variables

ij

{0 Not assigning container j to warehouse w
1 Assigning container j to warehouse w
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4.3 Container data

Multiple containers a day arrive at the container yard waiting to be picked up by VidaXL. After arrival,
containers are first classified as critical and noncritical containers. Critical containers must be
scheduled before scheduling noncritical containers. Section 4.3.1 first provide rules to make a
distinction between critical and noncritical containers. Noncritical containers must be picked up within
ten days and lack any other scheduling restriction, it is therefore possible to schedule the receiving
operation to reduce long-term cross docks. Section 4.3.2 to 4.3.5 provides methods to determine the
number of cross docks associated with the put-away, picking and shipping operation respectively when
the container will be received in one of the warehouses. Cross docks are inefficient flow of goods
between warehouses and occur when the succeeding warehouse operation cannot be executed in the
current warehouse. The put-away, picking and shipping cross docks are marked red in Figure 6. Cross
docks can be avoided through scheduling the receiving operation such that the flow of goods between
the warehouses is organized as efficient as possible.

Ship warehouses MKI &
JTS:

-Forward area
-Reverse area
- Conveyor/Sorter

Pick warehouses WTR:
-Forward area
-Reverse area

Overflow warehouses MPO &~~~ \ N I XI\KN W/, /e Ny
MKO:

-Reverse area

Legenda
B: Bulk locations reserve area

C-D: Carrier destinations

N: Narrow aisle locations reserve area
OD: Qutbound docks

P: Pick locations forward area
Numbers x1,000

—— Material flow

= Put-away, picking and shipping cross docks

N N N N

ooy S T S Froing S Checiing & Pacira S Svors >
Vv Vv V V

Figure 6: Put-away, picking and shipping cross docks between warehouses (marked red)

4.3.1 Distinct critical and noncritical containers

Containers available at the container yard can be classified as critical and noncritical containers. Critical
containers must be received as soon as possible at a specific warehouse and it is therefore not possible
to schedule the container receiving operation to achieve an efficient flow of goods. Noncritical
containers are preferred to be picked up from the container yard within ten days, otherwise
demurrage costs are incurred, however these containers lack any other scheduling restrictions. It is
therefore possible to schedule the receiving operation in the upcoming ten days to achieve an efficient
flow of goods.

Critical containers are the containers which must be unloaded as soon as possible at a specific

warehouse, which only occurs when a container at the container yard contains items which are almost

out of stock. To fulfill customer demand on time, it is desirable to reduce the throughput time between

the moment the critical container arrives at the container yard and when the item is shipped to the

customer. Therefore, these containers are preferred to be received as soon as possible in a ship
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warehouse, even if the number of cross docks in the ship warehouse is higher than in another
warehouse. Containers are classified as critical when the current stock coverage is below a certain
value. The current stock coverage of SKU i can be calculated as follows:

— Zwew Siw (6)

SC;
l Dl

When the stock coverage is lower than the desired stock coverage, container j with SKU i must be
received as soon as possible in a shipping warehouse. The critical containers must be scheduled before
the noncritical containers, which is included in the scheduling algorithm in Section 4.4.3.

4.3.2 Put-away cross docks

Put-away cross docks occur when the receiving warehouse is not the same as the storage warehouse.
Items cannot be stored in the receiving warehouse when the receiving warehouse lacks the right
storage type or when the storage type is fully utilized (as pointed out in Section 2.3.2). The number of
put-away cross docks of SKU i in container j are:

PA., _{ 0 if Qij < ASty (7)
YW Qij — ASew if Qij > ASpy

The number of put-away cross docks when receiving container j at warehouse w, as a consequence of
not having the right storage type available, are:

CPAjy, = Z PA;jw (8)

i€l

4.3.3 Picking cross docks

Picking cross docks occur in cases of customer demand when there is no stock available at the pick or
ship warehouses while there is stock available in the overflow warehouses. Cross docks (e.g., external
replenishments) are executed to replenish bulk stock from the overflow warehouse to one of the ship
or pick warehouses. Pallets are always completely replenished from the reserve area into the forward
area, and demand occurs in full pallets and can occur with equal probability at any day of the week.
Picking cross docks can be avoided by assigning available containers to each warehouse so that the
pallets stored in the overflow warehouse remain there as long as possible. More containers containing
items with a short storage time can consequently be received in the preferred shipping warehouse
resulting in less put-away, picking and shipping cross docks.

To determine where to receive a container, the expected storage location occupation (SLO) is
calculated, along with the equivalent number of weeks the container occupies one bulk pallet place if
the container is received in the ship or pick warehouse. The SLO is determined for the whole container
instead of each item individually since all items will be stored in the receiving warehouse if possible.
Section 4.3.3.1 elaborates on the calculations of the SLO. To increase warehouse efficiency, containers
must be allocated such that the amount of picking cross docks between warehouses is reduced.
Therefore, containers with a low SLO are preferably received in the pick or ship warehouses, while
containers with a high SLO are preferably received in an overflow warehouse. Items stored in the
overflow warehouse are consequently requested less often resulting in less cross docks. Section 4.3.3.2
proposes an equation for calculating the cut-off SLO to distinct high and low SLO. Section 4.3.3.3
provides formulas to calculate the number of picking cross docks if a container is received in a less
preferred warehouse. The same example is referred to at the end of every section for clarification.
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4.3.3.1 Storage location occupation

The SLO consist of two parts: The first regards the time required before the current stock is sold and
VidaXL begins to sell the content of the receiving container if the container is received in the pick or
ship warehouse; the second regards the time required before the content of the receiving container is
sold. For simplicity is assumed that it never occurs that two containers containing the same SKU are
available in the container yard.

The first part requires (S, + S;5)/D; time units, where Sy, is the total current stock level of SKU i in
the pick warehouses, S;s the total current stock level of SKU i in the ship warehouses, and D; is the
demand pattern of SKU i. In the meantime, the items are occupying Q;; pallet places, so the SLO during
this timeframe is (53, + Sis) * Q;;/D;. The first part is marked blue in Figure 13. The current stock level
of SKU i in the ship and pick warehouse is considered instead of the overall stock since the stock level
in the overflow warehouse does not affect the decision.

Demonstration A: The stock level of SKU i in the overflow warehouse does not affect the allocation
decision of the receiving container, given the restriction that first all stock is sold from the ship and pick
warehouses before stock in the overflow warehouses.

VidaXL receives one container with ten pallets of SKU i. Before assigning the container to the ship, pick,
or overflow warehouse, the company checks the stock level in each warehouse and the demand pattern
of SKU i. There are currently ten pallets located in the ship and pick warehouses and ten pallets located
in the overflow warehouse, and the demand pattern is one pallet every week. First the stock is sold
from the ship and pick warehouses before the stock in the overflow warehouses, the company therefore
forecasts that the stock level will develop as shown in Figure 7 and Figure 8. The company calculates
the SLO of the receiving container using equation 10, and two situations can occur: 1) the SLO is low
and the container is assigned to the pick or ship warehouse or 2) the SLO is high and the container is
assigned to the overflow warehouse.

Stock level SKU i pick & ship Stock level SKU i overflow
warehouses warehouses
_ 10 _ 10
g g
2 7 @ 7
S S
g 4 g !
9 R
0 10 20 30 0 10 20 30
Weeks Weeks

Figure 7: Current stock level SKU i pick and ship warehouses ~ Figure 8: Current stock level SKU i overflow warehouses

In the first situation, ten pallets of SKU i are received in the pick or ship warehouse and the current stock
level of SKU i increases to twenty pallets (Figure 9). The increase in stock in the pick and ship warehouses
is allowed since the demand is high enough so that the SLO of the receiving container is below the cut-
off SLO Zp (which is explained in Section 4.3.3.2). The ten pallets stored in the overflow warehouse
consequently remain ten weeks longer in the overflow warehouse (Figure 10), which is preferred since
the company wants to store pallets as long as possible in the overflow warehouse in order to reduce
cross docks between warehouses.
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Figure 9: Stock level SKU i pick & ship warehouses SLO < z, ~ Figure 10: Stock level SKU i overflow warehouses SLO < Zp

In the second situation, the company handles a lower cut-off SLO Zp and the container is assigned to
the overflow warehouse. The stock level in the pick and ship warehouses remains equal and the
company forecasts to sell all the pallets within ten weeks (Figure 11). However, the stock level of the
overflow warehouse increases by ten pallets to twenty pallets, the pallets stay in the overflow
warehouse on average longer as forecasted earlier, which is desired since the throughput time of the
pallets stored in the overflow warehouse must be as long as possible in order to reduce the cross docks
between warehouses (Figure 12).

Stock level SKU i pick & ship Stock level SKU i overflow
warehouses warehouses
_ 10 — 19
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Weeks Weeks

Figure 11: Stock level SKU i pick & ship warehouses SLO > Z, ~ Figure 12: Stock level SKU i overflow warehouses SLO > Z,

The stock level in the overflow warehouses does not affect the decision to receive the container in the
overflow warehouses or in the pick or ship warehouses. The stock level in the pick and ship warehouses
represents the sole crucial stock affecting the decision to receive containers in one of the warehouses.

The second part of the SLO consists of the time required before all pallets of SKU i of container j are
sold, which can be calculated by summing the time that each pallet remains in the warehouse. For
example, container j contains ten pallets of SKU i with a demand of one pallet per week. The first pallet
demand occurs within one week on a random day, so it occupies one pallet place for half a week on
average, while the second pallet is sold within two weeks, so it occupies one pallet place for one and
a half weeks on average, and so on. In total, the pallets occupy the equivalent of one pallet place for
0.5+1.5+2.543.5+4.5+5.5+6.5+7.5+8.5+9.5=50 weeks. It is possible to calculate the sum of consecutive
numbers using the Gauss sum formula (equation 9). Demand occurs at a random day of the week and
not always at the end of the week, and therefore the formula of Gauss must be adjusted to (n”2)/2. In
addition, the demand is not always one pallet per week, and the Gauss formula can be divided with
the demand pattern D; to calculate the equivalent number of weeks the item occupies one pallet place
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(marked red in Figure 13). The SLO can be calculated with equation 10, which represents a combination
of the first and second equation.

Stock level SKU i
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Figure 13: Stock level evolution SKU i container j with marked SLO denotation

k:n(n+1) (9)

n
1+2+3+---+n=z >

k=1

I
F{s10,] = z((sip Sy 0 Z! Qf+2+Sp+S)*Qy (10
g i D; 2D; i=1 2D;

Example 1 : Calculating the SLO

VidaXL receives one container j, which has eight SKUs inside which can be stored on fifty-five pallets in
total. The container contains six pallets of the first item, the demand pattern for this item is one pallet
per week, and there are currently fourteen pallets stocked in the pick and ship warehouses. Container
j also contains seven pallets of the second item, the demand pattern for the second item is one pallet
per week, and the current stock level in the pick and ship warehouses is twenty-six pallets. The content
of container j, the demand pattern of the SKUs in container j, and the current stock level of those SKUs
are summarized in the following vectors:

|: 8

Qj: {6,7,10,7,5,12,1,7}

Dj: {1,1,2,1,2,3,2,1}

S]-: {14,26,23,15,25,29,10,18}

The SLO of container j can be calculated using equation 10:

8 2 4 2%(S: +S:)*0;;
E[SLO,] = z : Qu ( lp. is) * Qij — 9995
i=1 2D;

Container j is expected to occupy the equivalent of 999.5 storage locations for one week if it is received
in a pick or ship warehouse.
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4.3.3.2 Cut-off SLO

For every receiving container, the appropriate receiving warehouse needs to be determined. As
previously mentioned, the efficiency of the warehousing system can be increased by assigning the
containers so that the amount of picking cross docks between the warehouses is reduced. Therefore,
containers with a low SLO are preferred to be received in one of the pick or ship warehouses, while
containers with a high SLO are preferred to be received in an overflow warehouse. This section
provides equations to specify low and high SLO.

Demonstration B: Containers with a low SLO are preferred to be received in one of the pick or ship
warehouses, while containers with a high SLO are preferred to be received in an overflow warehouse.

VidaXL receives four containers in the next thirty weeks. For simplicity, the warehouses currently do not
have stock of the SKUs that are in the containers (which is also the case when new SKUs are received).
The first three containers each contain ten pallets, and the demand is one pallet per week. The SLO of
each container is calculated using equation ten and is equal to fifty. The fourth container has ten pallets,
but the demand pattern is one pallet per three weeks. The SLO of the fourth container is also calculated
with equation 10 and is equal to 150. To equalize the usage of the storage space between the pick,
ship, and overflow warehouses, the containers can be divided into two sets. Set A contains the first
three containers, where 3*10=30 pallets with a total SLO of 50+50+50=150. Set A uses five storage
places on average in the upcoming thirty weeks, see Figure 14 for the expected stock level evolution of
set A. For calculating the average storage places in the upcoming thirty weeks, it does not matter
whether all three containers are received from the start 30*(5+0+0)/30=5 or whether one container is
received every ten weeks 10*(5+5+5)/30=5). Set B contains the fourth containers with ten pallets and
a SLO of 150 as well. Set B uses five storage places on average in the upcoming thirty weeks as well,
see Figure 15 for the expected stock level evolution of set B. To reduce the number of cross docks
between warehouses, it is better to assign set B to an overflow warehouse. Ten pallets are consequently
cross docked in the upcoming thirty weeks to fulfill customer demand. If set A is assigned to an overflow
warehouse, VidaXL needs to cross dock ten pallets from set A every ten weeks, resulting in thirty cross
docks in the upcoming thirty weeks.

Stock level set A Stock level set B
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Figure 14: Stock level evolution set A (SLO=150) Figure 15: Stock level evolution set B (SLO=150)

The example shows that containers with a low SLO are preferred to be received in the pick and ship
warehouses and shows that the storage locations in the warehouses can be equally utilized if the total
SLOs of each set are equal. However, in practice the bulk storage locations are not equally divided over
the pick, ship, and overflow warehouses. Therefore, the overall SLO must be divided according to the
distribution of the bulk storage places between the pick, ship, and the overflow warehouses, which is
represented by the right side of equation 11. The left side illustrates the sum of all expected SLOs lower
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than Zp so that all containers with a SLO lower than Zp are preferred to be received in the pick and
ship warehouses to achieve balanced storage location utilization. Parameter Zp must be set so that
the following equation holds:

E[SLO;] = By + Bs ZE SLO;] (11)

] B + B, + B;
JEJ|E[SLOj]=Zp JeJ

Example 1 : Calculating the cut-off SLO

VidaXL received 7,100 containers in 2019. The SLO per container can be determined from historical data
and yields the result of Figure 16. The SLO faces a “long tail,” where all values above 3,000 are given in
the last column. A SLO value of 3,000 is on average almost equivalent to storing all items of a container
for one year without selling any items. When items are not sold within one year, VidaXL tries to sell the
items via other sales channels or they scrap the items.
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Storage location occupation

Figure 16: Storage location occupation and cut-off SLO Zp VidaXL (2019)

The “long tail” makes the warehouse operations at VidaXL highly suitable for assigning containers with
a high SLO to overflow warehouses. As earlier noted, ten containers with a SLO of 300 occupy the same
amount of storage places as one container with a SLO of 3,000.

Vida XL has 284,700 bulk storage locations divided across three overflow warehouses, one pick
warehouse, and two ship warehouses, they have 238,700 bulk storage locations in the pick and ship
warehouses and 46,000 bulk storage locations at overflow warehouses. VidaXL wants to utilize the
storage locations equally over the warehouses while reducing the number of cross docks. To achieve
this result, 84% of the overall SLO must be assigned to the pick and ship warehouses and 16% to
overflow warehouses. To reduce the number of cross docks between the warehouses, the containers
with a high SLO must be received in the overflow warehouses. In other words, containers with a SLO
lower or equal to Zp must be stored in the pick and ship warehouses so that the sum of the SLO of those
containers divided by the overall SLO is equal to 84%.

After evaluating the historical data of VidaXL, the cutoff score Zp must be set to 2,765.
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E[SLO; 61,500 + 177,200 7,322,506 = 6,138,549
* =

, [SLO;1 = 46,000 + 61,500 + 177,200 e

Jj€EJ |E[SLO]']S2,765

4.3.3.3 Additional cross docks if received in another warehouse as preferred

If containers are received in another warehouse as preferred (according to the cutoff SLO), the items
occupy storage locations so that other containers must be received in other warehouses as well. Pallets
are consequently cross docked between the pick and ship warehouses and the overflow warehouses
unnecessary. Two events cause cross docks: 1) The wrong container is received in the pick or ship
warehouse or 2) the wrong container is received in the overflow warehouse. The expected
unnecessary cross docks in the first event can be calculated by multiplying the additional fraction of
time that the items unnecessarily occupy the storage location with the average pallets per container
and subtracting it by the average pallets per container. The additional fraction of time that the items
occupy the storage location can be calculated by dividing the expected SLO of container j with the
average SLO of the pick and ship warehouses. However, the outcome needs to be divided by two since
in practice such cross docks only occur for the items wrongly stored in the overflow warehouse rather
than to the items wrongly stored in the pick and ship warehouses (equation 12).

The expected unnecessary cross docks caused by the second event can be calculated by multiplying
the average pallets per container with the expected SLO of container j and dividing this result by the
average SLO of the received containers in the overflow warehouse. This value can be subtracted from
the average pallets per containers to calculate the unnecessary cross docks. Moreover, the outcome
needs to be divided by two since additional cross docks only occur for the containers assigned to the
overflow warehouse (equation 13).

If E[SLO;] > Zp and container is assigned to the pick or ship warehouse:

E[cpr,] = B
[ W] 2 % SLOpLCk and ship wh

Q * E[SLO;] Q (12)
2

If E[SLO;] < Zp and container is assigned to the overflow warehouse:

Q * E[SLO;] (13)
2 % SLOoverflow wh

E[CPly,] = % —

Example 1 : Calculating additional picking cross docks

Container j from example 1 is received in the overflow warehouse, and therefore container j+1 must be
received in the pick or ship warehouse to equalize the utilization of the storage locations. Container j+1
has an expected SLO of 3,000, and the average SLO of the containers received in the pick and ship
warehouses is 1,000. Therefore, the additional pallet cross docks of receiving container j+1 in the pick
or ship warehouse instead of the overflow warehouse are:

Q * E[SLO;] Q 565%3,000 56.5
E[CPI;,] = ——= - =56.5
2 % SLOplck and ship wh 2 2% 1'000 2
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Container j+1 occupies the equivalent of 3,000 storage places for one week in the pick or ship
warehouse. Three other containers with a SLO of 1,000 must consequently be received in the overflow
warehouse to equalize the utilization between the ship, pick, and overflow warehouses.

Container j in example 1 has an expected SLO of 999.5, and the container must be received in the pick
or ship warehouse because its expected SLO is below 2,765. If the container is received in the overflow
warehouse, avoidable cross docks occur. Therefore, the additional pallet cross docks due to the wrong
receiving location are calculated as follows:

@+ E[SLO;] 565 56.5%999.5

2% SLOgverfrowwn 2 2 3,000

E[CPI;,] = %

In total, four containers are wrongly assigned. Container j+1 is assigned to the ship and pick warehouse.
Equation 12 assigns 56.5 additional cross docks to container j+1. Three containers with a SLO of 999.5
are assigned to the overflow warehouse, and 18.8 additional cross docks are assigned to each
container. In total, 56.5+18.8+18.8+18.8=112.9 cross docks are equally assigned to the four containers.

In practice, three containers with on average 56.5 pallets are stored in the overflow warehouse,
resulting in 3%56.5=169.5 cross docks. If the containers were assigned correctly, the container with a
SLO of 3,000 was stored in the overflow warehouse, resulting in 56.5 cross docks. The wrong
assignment results in 169.5-56.5=113 unnecessary avoidable cross docks, which is equal to the sum of
all additional assigned cross docks to all four containers.

4.3.4 Shipping cross docks

Shipping cross docks occur when the pick warehouse is not the same as the shipping warehouse. This
section first elaborates on the occurrence and prevention of shipping cross docks. Moreover, it
proposes a method to reduce shipping cross docks and it presents an example for clarification.

VidaXI| has one pick warehouse which is not equipped for shipping items directly to the customer, and
they have two shipping warehouses which can pick and ship items directly. Items picked in the pick
warehouse are always cross docked to one of the shipping warehouses.

VidaXL currently ships items to forty-five carrier destinations in Europe, carrier destinations with low
demand are not reach by both shipping warehouse. They are not able to forecast the demand pattern
per item per carrier destination since the demand pattern is exposed to multiple trends and
seasonality, and it is therefore not possible to assign the right shipping warehouse to receiving
containers based on forecasted customer demand. In addition, the expected utilization of the pick
locations will deviate between 70% and 90% in 2020. VidaXL lacks sufficient pick locations to make
items pickable in multiple warehouses, and shipping cross docks will consequently occur when the pick
warehouse is not the same as the ship warehouse.

The shipping cross docks from the pick warehouse to the ship warehouses can be reduced by storing
items with a high demand in the ship warehouse, items with an average demand in the pick warehouse
and items with a low demand in the overflow warehouse. More containers containing items with a
short storage time can consequently be received in the preferred shipping warehouse resulting in less
put-away, picking and shipping cross docks. After observing Figure 6, it looks like it does not matter if
the items stored in the pick and overflow warehouse are cross docked to the ship warehouse during
the picking or shipping operation. However, scheduling the receiving operation does not affect the
current replenishment procedure and the warehouse network design of VidaXL.
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Items are not always directly cross docked (e.g. replenished) from the overflow warehouse to the ship
warehouses. Sometimes, they are first cross docked to the pick warehouses, the items are
consequently cross docked to the ship warehouses before shipping them to the customers. The picking
cross docks are executed to the pick or ship warehouse based on the utilization of the forward area of
those warehouses. Moreover, it is only possible to pick some items in the pick warehouse and not in
the ship warehouse since the forward area of the ship warehouses are not always equipped with all
storage types. Pallets must therefore first be cross docked from the overflow warehouse to the pick
warehouses before cross docking the items to the ship warehouses.

When receiving containers in the overflow warehouse, it is not possible to determine beforehand if
the items will be cross docked to the ship or pick warehouse. It is therefore desirable to reduce all
cross docks during the shipping and picking operation from the overflow warehouses, by receiving
container with a low SLO in the shipping warehouse, containers with an average SLO in the pick
warehouse and containers with a high SLO in the overflow warehouse. More containers containing
items with a short storage time can consequently be received in the preferred shipping warehouse
resulting in less put-away, picking and shipping cross docks. Receiving containers can be assigned to
the warehouses in the same manner as described in Section 4.3.3. Equation 11 must be adjusted as
follows to calculate the cut-off SLO Z:

Bs

E[SLOj] = ———— ZE[SLOJ-]
€J

_ . (14)
Bo + Bp + Bs £
]

j€J |E[SLOj]<Zs

The right side of the equation is adjusted so that the containers are equally distributed over the
warehouses according to the distribution of the storage locations. There are consequently two cut-off
SLOs: The cut-off SLO Zs is the upper bound SLO of the shipping warehouses, Zs is also the lower
bound of the pick warehouses, and the cut-off SLO Zp is both the upper bound of the pick warehouses
and the lower bound of the overflow warehouses.

If the container is not received in the preferred warehouse, the estimated number of additional cross
docks can be calculated in the same manner as in Section 4.3.3. However, equations 12 and 13 must
be adjusted to:

If E[SLO;] > Zyw where Zyy, is the upper bound of the receiving warehouse w:

Q * E[SLO;] Q (15)
E[cPS;y,] = Q—[J] _Q
2 *SLOy 2
If E[SLO;] < Z.y where Z;; is the lower bound of the receiving warehouse w:

Q Q-+ E[sLOj ( 16)

E[cPs;,] = 2" Ze300s
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Example 1 : Calculating Z; v, Zyw, and the additional number of cross docks.

VidaXL still has the same amount of bulk locations in each warehouse: 62% are located in the shipping
warehouses, 22% in the pick warehouses, and 16% in the overflow warehouses. To reduce the number
of cross docks, the receiving containers must be allocated so that the overall SLO is divided according
to the same distribution. The same historical data from the previous section is evaluated (Figure 17).
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300 S" ' P.‘_’
|
i
> i !
g250
o 200
=]
o 150
L
- 100
50
0
O OO 0O 0O 0O 0O OO0 0O O 000 0O O 000 0O O 000 0O O OO 9O 9O O
l=li<lielNellelellellelellelellellelNellellelle e e e llelle e le e lle e e le e
AN M IFT D OKODADTNO AN MSTNHNORNKO®NONONOO ANMSTNMORNO®DOAN O
S A A H A A AN ®

Storage location occupation

Figure 17: Storage location occupation and cut-off SLO Zp and Zg VidaXL (2019)

The cut-off SLO Z is equal to Zyy, of the shipping warehouses and to Z;y, of the picking warehouses,
which can be calculated as follows:
177,200

_ EISLOl = 25500 + 61,500 + 177,200 * 322506 = 4,556,382
j€J |E[SLO;]<1,872.5

The cut-off SLO Zs is equal to 1,872.5. Every receiving container with a SLO lower or equal to 1,872.5
must be received in one of the shipping warehouses to reduce the number of shipping cross docks. The
cut-off SLO Zp is equal to the Zyy, of the picking warehouses and to the Z;y, of the overflow
warehouses, which can be calculated as follows:

61,500+ 177,200

_ EISLO] = 38000 + 61,500 + 177,200 * 322506 = 6,138,549
j€J |E[SLO]<2765

Receiving containers with a SLO lower than 1,872.5 are consequently preferred to be received in the
shipping warehouse. Containers with a SLO between 1,872.5 and 2,765 are preferably received in the
pick warehouses, while containers with a SLO above 2,765 are preferably received in the overflow
warehouses to reduce put-away, picking and shipping cross docks.

Consider the containers j, j+1, and the new introduced container j+2, which have SLOs of 999.5, 3,000,
and 2,000 respectively. Imagine that container j is received in the overflow warehouse, container j+1 in
the pick warehouse, and container j+2 in the ship warehouse.

For container j holds E[SLO;] < Z,, the additional number of cross docks are:

E[cPs ]_(2 Q* E[SLOj| _ 565 56519995
M2 2xSL0y 2 2x3000
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For container j+1 holds E[SLO;] > Zy, the additional number of cross docks are:

Q* E[SLO;] Q 565%3,000 565 6
2%SLO, 2  2%2500 2 7

E[CPS;,] =

For container j+2 holds E[SLO;] > Zy, the additional number of cross docks are:

Q* E[SLO;] Q 5652000 565 283
2%SLO, 2  2%1,000 2

E[CPS;,] =

4.3.5 Total number of cross docks

The total number of cross docks as a result of assigning container j to receiving warehouse w can be
calculated by summing the number of cross docks during the put-away, picking, and shipping
operations (equation 17). The total number of cross docks during put-away are defined as CPA;,,
while the expected total number of avoidable cross docks during picking and shipping are defined as
CPSy,.

CTj,, = CPAj,, + CPS}, (17)

4.4  Scheduling container receiving operation

In an ideal situation, the inbound capacity per warehouse, the arriving date and the number of cross
docks of each receiving container is known far in advance. When there is enough inbound capacity, it
would then be possible to schedule the receiving operation of each container before the demurrage
date while minimizing the total long-term cross docks. A binary decision must be made, containers
must be picked up by a warehouse on a specific date resulting in J*W*T binary decision variables. The
triple sum objective function can minimize the total long-term cross docks by assigning the containers
to warehouses on specific periods. Container j will be assigned to warehouse w on period t if the binary
decision variable is equal to one, the container is not assigned to warehouse w on period t if the binary
decision model is equal to zero. Triple sum objective functions are complex to solve and requires high
computational effort, the solution space increases exponentially.

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is
only known a few days in advance, the actual arriving date of each container almost always differs
from the estimated arrival date and it is almost impossible to estimate the number of cross docks of
each receiving container far in advance. Previous section showed that the estimated number of cross
docks depends on the available storage locations in the receiving warehouse, and on the stock level of
each SKU in the pick and ship warehouses. Both depend on the demand pattern of each SKU and on
the earlier received and stored items in each warehouse. Containers received during previous periods,
increases the current stock level in each warehouse and therefore affect the estimated number of
cross docks of the new receiving containers. Scheduling the container receiving operation for many
periods in advance with a triple sum objective function is therefore almost impossible since each
receiving operation during previous periods affects the estimated cross docks of to be received
containers in future periods.

It would be possible to resolve the triple sum objective function each period when new information
becomes available. However, solving a triple sum objective function with J*W*T binary decision
variables requires computational effort and there is only limited time available to complete the
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calculations. VidaXL schedules its container receiving operation each day, there will only be a few hours
available during the night to provide a proper receiving schedule for each warehouse. Applying a rolling
horizon and resolving a triple sum objective function for the coming months each day new information
becomes available would therefore not be possible.

The solution space can be decreased significantly through daily assigning the containers to warehouses
while meeting the inbound capacity constraints, resulting in W*J binary decision variables. However,
minimizing the total cross docks daily is exposed to myopic and does not reduce the total long-term
cross docks. Section 4.4.1 provides three examples to discuss all three myopias and proposes a method
to conquer them. This paper proposes an alternative rolling horizon scheduling algorithm to deal with
uncertain container arrivals and new information availability while reducing the computation time and
complexity of the problem. First, an aggregate solution for multiple periods is provided with a binary
decision model. The binary decision model has a double sum objective function and selects the next
containers to be processed at each warehouse for the upcoming periods. The binary decision model
only assigns the containers to warehouses, resulting in J*W binary decision variables and a double sum
objective function. Second, the FIFO dispatch rule is applied to gather a detailed solution for the first
scheduling’s period. The FIFO dispatch rule schedules the container to specific receiving periods such
that the throughput time decreases, and the containers are picked up before its demurrage date. The
algorithm can be resolved each period new information becomes available. Section 4.4.2 first
elaborates in more depth on the rolling horizon policy whereas Section 4.4.3 proposes a binary decision
model including the objective function. Finally, the complete algorithm to schedule the receiving
operation of critical and noncritical containers is provided in Section 4.4.4.

4.4.1 Reducing the total number of cross docks

The goal if this research is to increase the efficiency of warehouse operations by reducing the total
number of cross docks. First, this section provides evidence that unnecessary cross docks are not
avoided through daily selecting containers to minimize cross docks since this automatically means not
selecting “hard containers” with many cross docks at all warehouses. Second, this section provides
evidence that minimizing the number of cross docks daily does not minimize the total long-term cross
docks. Third, this section provides evidence that the total number of cross docks are minimized without
harming the inbound capacity constraint by selecting zero containers. Afterwards, it proposes a
method to tackle these myopias through maximizing the long-term profit associated with receiving the
container at the most preferred warehouse instead of at a less preferred warehouse.

Myopic 1

Selecting containers to minimize the total number of cross docks automatically means not selecting
“hard containers” with many cross docks at all warehouses. These containers are forced to be scheduled
just before the demurrage date and are therefore most of the times scheduled at a less preferred
warehouse resulting in avoidable cross docks. Forced scheduling a “hard container” with ten avoidable
cross docks at a less preferred warehouse results in more cross docks as voluntary scheduling another
container with one avoidable cross dock at a less preferred warehouse.

There are six containers available in the container yard waiting to be picked up, and VidaXL can receive
one container per day in the upcoming five days in each of the two warehouses. VidaXL must pick up
all available containers within four days to prevent itself from demurrage costs. Moreover, VidaXL
receives two containers per day in the upcoming two days. The cross docks associated with receiving
the containers at MKI or JTS are provided in Table 3.
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Table 3: Container data myopic 1

Container A B C D E F G H ] J
MKI 5 5 5 5 6 6 5 5 5 5
JTS 6 7 8 9 12 13 0 0 0 0
Available date t t t t t t t+1 t+1 t+2 t+2

Demurrage date  t+3 t+3 t+3 t+3 t+3 t+3 t+4 t+4 t+5 t+5

To minimize the number of cross docks daily, the containers can be scheduled as shown in Table 4.

Table 4: Receiving schedule daily minimize cross docks myopic 1

Day t t+1 t+2 t+3 t+4
MKI C G D F J
JISs A H B E /

The total number of cross docks are5+6+5+0+5+7+6+12+5+0=51.

Through minimizing the number of cross docks daily, the containers G and H are scheduled on day t+1
and VidaXL is therefore forced to pick up the “hard containers” E and F on day t+3 since these containers
are approaching the demurrage date. Container E is assigned to a less preferred warehouse, causing
12-6=6 unnecessary avoidable cross docks. The containers can also be assigned as in Table 5.

Table 5: Receiving schedule conquer myopic 1

Day t t+1 t+2 t+3 t+4
MKI C D E F J
JTS A B G H /

The total number of cross docks are5+6+5+7+6+0+6+0+5+0=40.

Minimizing the total number of cross docks automatically means not selecting “hard containers” with
many cross docks at all warehouses. These containers are forced to be scheduled just before the
demurrage date and are therefore most of the times scheduled at a less preferred warehouse resulting
in unnecessary avoidable cross docks.

Myopic 2
Minimizing the total number of cross docks every day does not minimize the total long-term cross docks
since two sub optimizations do not automatically lead to the overall optimum.

There are eight containers available in the container yard waiting to be picked up, and VidaXL can
receive two containers per day in the next two days in each of the two warehouses. The number of cross
docks associated with receiving the containers at the MKI and JTS warehouse are presented in Table 6.

Table 6: Container data myopic 2

Container A B Cc D E F G H
MKI 4 4 4 4 7 7 8 8
JTS 6 6 6 6 6 6 6 6
Available date t t t t t t t t

Demurrage date | t+5 t+5 t+5 t+5 t+5 t+5 t+5 t+5
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Minimizing the number of cross docks on the first day can be achieved as presented in Table 7.

Table 7: Receiving schedule daily minimizing cross docks myopic 2

Day t t+1
MKI A B EF
JTS CD GH
The total number of cross docks are 4 +4+6+6+7+7+8+8=50.

Minimizing the total number of cross docks over both days results in the assignment of Table 8.

Table 8: Receiving schedule minimizing total number of cross docks myopic 2

Day t t+1
MKI A B CD
JTS EEF G H

The subsequent number of cross docks are 4 +4 +4 +4 + 6 + 6 + 6 + 6 = 40. Minimizing the number of
cross docks daily thus does not minimize the total number of cross docks.

In a static situation, scheduling all available containers for the upcoming days results in the optimal
answer. However, the scheduling procedure is exposed to uncertainty, because VidaXL does not know
exactly when the containers become available, and the number of cross docks associated with each
container can differ each day. Containers received over the following days can influence the decision
made on the previous day. The rolling horizon policy may therefore be very useful in dynamic situations
with considerable uncertain arrivals in later stages of the scheduling horizon (Wilkinson, 1996).
Applying the rolling horizon policy to schedule the container receiving operation is described in more
depth in Section 4.4.2.

Myopic 3
The total number of cross docks are minimized without harming the inbound capacity constraint by
selecting zero containers.

There are six containers available in the container yard waiting to be picked up, and VidaXL is able to
pick up one container per day in the upcoming tree days in each of the two warehouses. VidaXL must
pick up all available containers within three days to prevent itself from demurrage costs. The cross
docks associated with scheduling the containers at MKI or JTS are provided in Table 9.

Table 9: Container data myopic 3

Container A B C D E
MKI 5 5 5 5 6
JTS 6 7 8 9 12
Available date t t T t t

Demurrage date | t+2 t+2 t+2 t+2 t+2

Minimizing the total number of cross docks while there is no minimum inbound capacity constraint yield
the result of Table 10.
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Table 10: Receiving schedule minimizing cross docks myopic 3

Day 't t+1  t+2
MKI - - B
JTS - - A

No containers are scheduled on day t and on day t+1. However, all containers must be picked up before
or on day t+2, each warehouse is only able to receive 1 container per day and not all containers are
therefore picked up before the demurrage date by daily minimizing the number of cross docks.

Selecting containers to minimize the number of cross docks automatically means not selecting “hard
containers” with many cross docks at all warehouses. Moreover, minimizing the number of cross docks
daily does not minimize the total long-term cross docks and selects zero containers when none of the
available containers are approaching the demurrage date. The total number of cross docks can be
reduced by scheduling the containers for a larger scheduling horizon existing of multiple periods by
maximizing the profit from assigning container j to warehouse w instead of less-preferred warehouse.
This principle is a combination of a rolling horizon policy and the greedy heuristic, the latter selects the
“biggest bang for the buck,” yielding a better result than minimizing the number of cross docks daily.

Conquer myopic 1, 2 and 3 while reducing long-term cross docks

Scheduling containers for a scheduling horizon of multiple periods by maximizing the profit associated
with receiving the container at the most preferred warehouse instead of at a less preferred warehouse
conquer myopic 1, 2 and 3.

At day one, there are eight containers with the same demurrage date available at the container yard
waiting to be picked up, containers A, B, C, D, E, F, G, and H. On the fourth day, four new containers
become available at the container yard, and VidaXL has the capacity to receive one container per day
in two warehouses. VidaXL schedules the containers over two periods and only confirms the pickup day
of the containers scheduled on next period (the scheduled for the second period can consequently still
be changed). The cross docks associated with scheduling the containers at MKI or JTS are provided in
Table 11.

Table 11: Number of cross docks per container per warehouse

Container A B C D E F G H ) J K L
MKI 5 5 5 5 5 5 5 5 5 5 5 5
JTS 6 7 8 9 10 11 12 13 0 0 0 0
Available t t t t t t t t t+3 t+3 t+3 | t+3

Demurrage @ t+3 t+3 t+3 t+3 t+3 t+3 t+3 t+3 t+12  t+12 t+12 | t+12

To minimize the number of cross docks, the containers are scheduled as shown in Table 12 (c =confirmed
picked up, n=scheduled but pick up not yet confirmed).

Table 12: Receiving schedule minimizing the number of cross docks

Day t t+1 t+2 t+3 t+4
¢/N C N C N C N C N C N
MKI ¢ D D E E G G J J L
JIS A B B F F H H | | K
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The total number of cross docks are5+6+5+7+5+11+5+13+5+0=62.

Scheduling the containers for two periods by maximizing the profit associated with receiving the
container at the most preferred warehouse instead of at a less preferred warehouse leads to the
assignment of Table 13.

Table 13: Receiving schedule "biggest bang for the buck"

Day t t+1 t+2 t+3 t+4

¢/N C N C N C N C N CN
MKI H G G F F E E | | K
Js A B B € C D D J J L

The total number of cross docks are5+6+5+7+5+8+5+9+5+5=50.

The total number of cross docks is reduced by maximizing the profit associated with receiving the
container at the most preferred warehouse instead of at a less preferred warehouse. Moreover,
maximizing the profit daily yields a suboptimal solution, and therefore the total number of cross docks
can be reduced by maximizing the profit over a larger horizon. Sections 4.4.2 to 4.4.4 elaborate on the
scheduling procedure to maximize the profit over a scheduling horizon existing of multiple periods.
The influence of different scheduling horizons on the total number of cross docks is investigated in
Section 5.

4.4.2 Rolling horizon policy

As mentioned in the introduction of Section 4.4, each receiving operation affects the estimated cross
docks of new to be received containers. Furthermore, the receiving operation at VidaXL is exposed to
uncertainty and it is therefore almost impossible to apply a static algorithm to schedule all container
arrivals in advance. A rolling horizon policy can therefore be applied to revise the receiving schedule
every period new information becomes available. This section first introduces the rolling horizon
policy, hereafter it discusses the usability of the rolling horizon policy to schedule the container
receiving operation at VidaXL.

To reduce the long-term cross docks, the rolling horizon policy will be applied. The rolling horizon policy
separate the scheduling problem in a sequence of iterations, each iteration only models’ part of the
scheduling horizon in detail, while the rest of the horizon is scheduled in an aggregate manner. This
approach results in close to optimal solutions with a significant reduction of the computation time
(Dimitriadis, Shah, & Pantelides, 1997). The length of the scheduling horizon has a significant impact
on the performance of the model. Some simulation studies show even better performance under the
rolling horizon policy as under static scheduling since it can deal with environmental changes (Fang &
Xi, 1997). The rolling horizon policy may therefore be very useful in dynamic situations with
considerable uncertain arrivals in later stages of the scheduling horizon (Wilkinson, 1996). In static
scheduling policies, the arrival times of all containers must be known beforehand or must be
forecasted while in rolling horizon policies only the actual arrival date need to be known. The rolling
horizon policy is therefore suitable in real-time applications in uncertain environments (Fang & Xi,
1997). Figure 18 provides a rough idea of the outcome of the rolling horizon policy.
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Period
1 2 [ s ] 4] 5 [ 6 |7
First iteration | | | | |
Second iteration | | | | | |
Third iteration | [ | [ |
Implementation | ¥ | ¥+ | | | | |

Figure 18: Rolling horizon policy

The container receiving operation at VidaXL can be scheduled with the rolling horizon policy to deal
with uncertain future container arrivals. The rolling horizon policy can reschedule the receiving
operation every period new information becomes available. Most rolling horizon policies optimizes the
objective function over multiple periods, schedules the container to a warehouse and assigns the
containers directly to one of the scheduling blocks (e.g. periods). The detailed schedule of the first
period will be implemented and the other containers will be rescheduled during next period when new
information becomes available. However, solving a triple sum objective function with J*W*T binary
decision variables is complex and requires computational effort, there is only limited time available to
reschedule the containers. VidaXL schedules its container receiving operation each day, there will only
be a few hours available during the night to provide a proper receiving schedule for each warehouse.
Applying a rolling horizon and resolving a triple sum objective function each day new information
becomes available would therefore not be possible.

The computational effort can be reduced through splitting the problem in sequence of iterations, each
iteration only models’ part of the scheduling horizon in detail, while the rest of the horizon is scheduled
in an aggregate manner. This approach results in close to optimal solutions with a significant reduction
of the computation time (Dimitriadis, Shah, & Pantelides, 1997). At VidaXL, an aggregate solution can
be provided with a binary decision model thereafter the FIFO dispatch rule can be applied to gather a
detailed solution for the first scheduling’s period, Figure 19.

t=1 t=2 t=3 t=4 t=5
Lo I | | |
AL
S L
o Binary decision model -~

Figure 19: Aggregate and detailed schedule

The solution space can be decreased significantly, the binary decision model selects a subset of
containers out of the available containers and schedules them to a warehouse, resulting in J*W binary
decision variables. However, the containers are not yet assigned to one of the scheduling blocks (e.g.
periods). The FIFO dispatch rule can be used to complete the detailed schedule for the first period by
assign the containers FIFO to the scheduling blocks. The rule is effective in minimizing the maximum
throughput time and variance of throughput times. The FIFO dispatch rule is therefore chosen to avoid
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situation whereas the container is picked up after its demurrage date. The detailed schedule of first
period can immediately be implemented. The receiving operation can be rescheduled during
succeeding periods when new information becomes available, Figure 18.

Assigning containers directly to one of the scheduling blocks with a triple sum objective functions has
the potential to be investigated in more detail when facing tight demurrage dates. The weight variable
of the triple sum objective function differs per schedule block since it aims to schedule containers with
a tight demurrage date first without using a dispatch rule. We expect that the triple sum objective
function therefore will assign more containers in an earlier stage to less preferred warehouses when
the preferred warehouse is not able to receive all containers on time, resulting in less containers
scheduled after the demerge date. However, when demurrage dates are loose, the triple sum objective
function can also assign fewer desirable containers to less preferred warehouses since it contemplates
the demurrage and pick up date as well, which can result in unnecessary avoidable cross docks. The
double sum objective function only considers the demurrage date when selecting the next containers
to be processed but treats containers with different demurrage dates equally when deciding which
container is desired to be received at a less preferred warehouse. The double sum objective function
only contemplates the long-term cross docks and can therefore avoid unnecessary cross docks in some
situations. Notably, the outcome of both models strongly depends on the parameters used and it is
therefore not possible to conclude beforehand which method suits best (Addis, Carello, Grosso, &
Tanfani, 2015; Monch & Habenicht, 2003). VidaXL is opening two new warehouses and will extend
their inbound capacity, the probability of facing tight demurrage dates consequently decreases. In
consultation with VidaXl is therefore decided to apply a rolling horizon policy where the aggregate
schedule is provided with a binary decision model whereas the detailed schedule is made with the FIFO
dispatch rule.

4.4.3 Binary decision model

Complex professional environments require a decision process that can be formalized and validated
independently of personal preferences. This section therefore presents a binary decision model which
provides an aggregate mid-term container receiving schedule through selecting a subset of containers
out of the available containers and schedule them to warehouses, while reducing the long-term cross
docks and the total number of days the containers are picked up after the demurrage date. Moreover,
it explains the logic behind each constraint and proposes a method to solve the binary decision model.

The problem can be defined as a maximization function since it aims to maximize the profit from
assigning container j to warehouse w instead of another warehouse, which seems contractionary since
our goal is to reduce the total number of cross docks. However, if the problem is rewritten to a
minimization function, the total number of cross docks on the long-term increases as concluded in
Section 4.4.1. Furthermore, the model includes a double sum objective function instead of a triple sum
objective functions to reduce the computational effort. The model only selects a subset of containers
and schedules them to one of the warehouses, the containers are not yet assigned to one of the
scheduling blocks (e.g. periods). The FIFO dispatch rule will afterwards be used to assign the containers
to specific scheduling blocks as mentioned in the previous section. The binary decision model is
incorporate in the scheduling algorithm proposed in Section 4.4.4.
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Deciding where to receive which container can be formulized as the following binary decision model:

Maximize Z Z Wi * Xj (18)

WEW jej

subjected to:

ijWSL ji=1,..] (19)
WEW
Y xusTrC, w1 W (20)
j€l
Y G SWBuy +THC,  w=1.,W (21)
J€Ja
Y G SWBay +THCy  w=1.W (22)
j€lB
> g SWBey <TGy w=1.,W (23)
j€lc
ijWZCW w=1,.,W (24)
J€l
Stw = Ut * TSty w=1,., W (25)
XWj € {0;1}; w = 1’ ’W] = 1’___’] (26)
Where:
Wj,, = 1000 — (CT},, — min(CT;) — (TD — AD;)  P) (27)
M if TD—AD;>FD -1 (28)
P={
p else

The aggregate receiving schedule can be provided through solving a binary decision model, as VidaXL
has w warehouses and receives j containers with the result of w*j binary decision variables. Container
j will be assigned to warehouse w if the binary decision variable x;,, is equal to 1, and if the container
is not assigned to warehouse w, the binary decision variable is equal to 0. The binary decision model
provides an aggregate mid-term container receiving schedule for each warehouse.

Each container has a weight W,,,, which depends on the receiving warehouse w and on the demurrage
date of container j. The weight contemplates the profit from assigning container j to warehouse w
instead of another warehouse by subtracting the least possible number of cross docks of container j
from the number of cross docks if it is received in warehouse w. Additional penalty costs P are included
so that containers approaching the demurrage date are preferred to be selected first when it is not
possible to select and schedule all available containers. The value of the penalty sole depends on
number of days the container is already available in the container yard, since the model aims to
contemplates the long-term cross docks when considering which container is desired to be received at
a less preferred warehouse. The binary decision model only schedules the containers to warehouses
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and does not assign the actual receiving date, the detailed schedule will be completed in a later stage
by the FIFO dispatch rule. Furthermore, the structure of W, prevent weights equal to zero such that
the model always schedules as many containers as possible under the specified constraints.

The goal of the binary decision model is to maximize the product of all weights W},, and decision
variables x;,, under constraints 19 to 26. Because this model tries to maximize the profit from assigning
container j to warehouse w, it schedules as many containers as possible and proposes an aggregate
schedule for the upcoming T periods. If the binary decision model was defined as a minimization
function by adjusting the weight W},,, it would only schedule as many containers as necessary under
constraints 26 to 33, which will result in an aggregate planning for one period and would result in a
suboptimal solution, as concluded in the previous sections. However, it is possible to make an
aggregate schedule for the upcoming T periods with a minimization function by adding and adjusting
constraints (Addis, et al., 2015).

Containers are received loose loaded and can contain multiple SKUs, and items of the same SKU can
be staged at the beginning and end of the container. The complete container is therefore unloaded at
the receiving warehouse. Moreover, the warehouse operations at VidaXL are not designed to receive
and unload one container in multiple warehouses. Constraint 19 ensures that each container cannot
be allocated to multiple warehouses.

Each warehouse can receive multiple containers per period; however the maximum inbound capacity
is constrained by the available resources at each warehouse. The binary decision model provides an
aggregate mid-term container receiving schedule for each warehouse. Constraint 20 ensures that the
model does not schedule more containers at each warehouse than the warehouse can handle during
the aggregate scheduling period.

The performance of the inbound teams can be improved by balancing the workload between the
warehouses. VidaXL categorizes its containers as A, B, and C containers, where A containers are easy
to unload and cost little manual effort, while C containers typically contain many different SKUs which
require significant effort from the inbound teams to unload the container. Constraints 21 to 23 assure
that the workload is balanced between each warehouse for the aggregate mid-term receiving
schedule.

The containers are unloaded by an inbound team, and if the warehouse does not receive enough
containers, the performance of the inbound team decreases since it cannot unload as many containers
as desired. Constraint 24 ensures that at least C,, containers are scheduled at warehouse w for the
aggregate schedule such that the FIFO dispatch rule can complete the detailed container receiving
schedule for at least one period in advance.

Warehouses can only receive containers when they have storage locations available to store the items.
If containers are unloaded at a fully utilized warehouse, all items need to be cross docked to another
warehouse to store all items. Therefore, constraint 25 ensures that VidaXL only receives containers at
a warehouse which has storage space available in the warehouse.

The PulP library in python is used to solve the integer linear programming problem. The PulP library
generates mathematical programming systems or linear programming files, and calls GLPK, CLP, CPLEX,
and Curobi to solve linear problems (Hall, 2016). The default solver is the Coin Linear Programming
(CLP) model which is open-source mixed integer programming and is free to use. The code is designed
by COIN-OR and uses branch-and-cut algorithms to solve the problem. Branch and cut algorithms are
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computation effective and are very powerful approaches to solve integer programming problems
(Hillier & Lieberman, 2001). The CLP uses three hierarchical levels: The first two contain all the problem
data which define the model, while the third contains the algorithmic aspects of the CLP model (Coin-
Or, sd).

The PulP library can validate whether the provided solution is optimum or not using the function
LpStatusOptimal (Mitchell, Kean, Mason, O'Sullivan, & Phillips, 2009). However, solving the binary
decision model optimal for each iteration leads to close to optimal long-term solutions (Dimitriadis, et
al. 1997). The length of the aggregate scheduling horizon has a significant impact on the performance
of the model. Different scheduling horizons are therefore evaluated in Section 5.

4.4.4 Scheduling algorithm

This section proposes a scheduling algorithm to schedule critical and non-critical containers while
accomplish fewer cross docks and avoiding situations where the container is picked up after the
demurrage date. The algorithm applies the rolling horizon policy proposed in Section 4.4.2 and uses
the binary decision model suggested in Section 4.4.3. This section illustrates the working procedure of
the scheduling algorithm with an example.

The total long-term cross docks can be reduced by solving a binary decision model to make an
aggregate receiving schedule for the upcoming T periods while completing the detailed schedule with
the FIFO dispatch rule. The binary decision model selects and schedules containers to one of the
warehouses by maximizing the profit associated with receiving the container at the most preferred
warehouse instead of at a less preferred warehouse while considering the demurrage date, the
objective function is provided in Section 4.4.3. The binary decision model selects and schedules under
constraint 20 as many containers as all warehouses can receive during the upcoming T periods. The
total inbound capacity of all warehouses during next period will never exceed the number of container
available in the container yard. Furthermore, under constraint 24 the binary decision model schedules
at least as many containers to each warehouse as each warehouse can receive in the next period. The
FIFO dispatch rule will otherwise not be able to complete the detailed schedule for next period as
mentioned in Section 4.4.3. The binary decision model only selects a subset of containers and
schedules them to warehouses. The FIFO dispatch rule is used afterwards to complete the detailed
schedule for the first period by assign the containers FIFO to the scheduling blocks. The rule is effective
in minimizing the maximum throughput time and variance of throughput times. The FIFO dispatch rule
is therefore chosen to avoid situation whereas the container is picked up after its demurrage date. The
detailed schedule of first period can immediately be implemented. The receiving operation can be
rescheduled during succeeding periods when new information becomes available.

At VidaXL, one scheduling’s period is equal to one day and the scheduling algorithm will therefore be
executed every day. If there are enough containers available, the binary decision model will select and
schedule as many containers to each warehouse as each warehouse can receive in the upcoming T
days. Afterwards, the FIFO dispatch rule assigns the scheduled containers FIFO to pickup days. VidaXL
needs to confirm the pickup date to the forwarder one day in advance, the detailed schedule of next
day is therefore immediately implemented and communicated to the forwarder. However, the
forwarder is sometimes not able to make the container available for pickup on time. VidaXL therefore
wants to inform the forwarder two days in advance with the expected pickup date of each container
such that the forwarder can anticipate on the request. The detailed schedule must therefore be
completed with the FIFO dispatch rule for at least next day and preferred for the upcoming two days.
On day t+1, VidaXL executes the algorithm again, due to new information availability, the best receiving
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schedule for day t+2 differs from the expected receiving schedule communicated to the forwarder.
VidaXL is still able to revise the expected detailed receiving schedule of day t+2 on day t+1. Sometimes
there are not enough containers available to complete the detailed schedule two days in advance.
VidaXL can therefore only inform the forwarder two days in advance when there are enough containers
available at the container yard. New containers and information become available every day which can
affect the receiving schedule, and therefore the scheduling algorithm must be executed at the start of
every day to revise the receiving schedule for next days. Furthermore, it makes no sense to update the
container receiving schedule during the day since the forwarder must be informed at the beginning of
the current day to make the container available for next day.

The receiving operation can be scheduled for period t+1 on period t using the following algorithm:

1. Formlong list with containers available at the container yard at Venlo from which the pickup
date is not confirmed yet.
2. For each container j:
a. Determine demurrage date
b. Calculate number of cross docks CT,,;
c. Verify stock coverage SC; of each SKU i in container j
3. Schedule critical containers:
a. IfSC;<Ydo:
i. Schedule container j to preferred ship warehouse as soon as possible
ii. AdeptC,,
4. Complete aggregate receiving schedule for noncritical containers:
a. Solve binary decision model for T periods
5. Complete detailed receiving schedule for noncritical containers:
a. Assign containers FIFO for next period (t+1) for each warehouse
b. If ¥ je;xjw >+ Cy, do:
i. Schedule containers FIFO for the period after next period (t+2) for each
warehouse
6. Update list with available containers at container yard:
a. Remove containers scheduled on period t+1 from list with available containers
b. Update list with new container arrivals

The scheduling algorithm must be solved daily hereafter the detailed schedule is implemented for next
day. The containers are consequently scheduled as shown in Figure 20 (T=5).
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Period

t+ 1 2 3 4 5 6 7

MKI| 1,2 6,7 8,9, 13, 15, 16, 17

JTs| 3,4 5,10 11, 12, 14, 18, 19, 20

MKI 6,8 | 9,10 13, 15, 16, 17, 21, 22

JTS 57 | 11,12 14, 18, 19, 20, 23, 24

MKI 9,10 | 13,15 | 16,17,21,22,25,26

JTS 11,12 | 14,18 | 19, 20, 23, 24, 27, 28
Implementation: -+ + <+

MKI [ 1,2 6,8 | 9,10

JTs| 3,4 57 | 11,12

Figure 20: Outcome scheduling algorithm three iterations

First, the scheduling algorithm is executed on day t at the start of the day. A long list with available
containers at the container yard is created and the container data for each container is determined by
evaluating the system. Critical containers are immediately scheduled to the shipping warehouses. The
aggregate receiving schedule for noncritical containers is completed by solving the binary decision
model provided in Section 4.4.3. There are 55 containers available at the container yard and VidaXL
can receive two containers per day in each warehouse. Under constraint 20, it is not possible to
schedule the receiving operation for all available containers. The binary decision model selects a subset
of containers and schedules the containers 1, 2,6, 7, 8,9, 13, 15, 16 and 17 to the MKI warehouse and
the containers 3, 4, 5, 10, 11, 12, 14, 18, 19 and 20 to the JTS warehouse. The detailed schedule is
completed by assigning the containers with the FIFO dispatch rule to the upcoming 2 days. The MKI
warehouse is able to receive two containers a day, the containers 1 and 2 are consequently scheduled
on day t+1 and the containers 6 and 7 on day t+2. The detailed container schedule of day t+1 is
implemented and confirmed to the forwarder since VidaXL needs to confirm the pickup day one day
in advance. Furthermore, it is already possible to inform the forwarder with the expected detailed
schedule of day t+2. However, the detailed schedule of day t+2 can still change when new information
becomes available after completing the algorithm again on day t+1. VidaXL should therefore carefully
inform the forwarder that it expects to pick up the containers 5,7,8 and 9 on day t+2 without actually
confirming the pickup date of these containers. Furthermore, the containers 1, 2, 3 and 4 are removed
from the list with available containers since their pickup is scheduled and confirmed.

Second, the scheduling algorithm is executed on day t+1 at the start of the day, new container arrivals

are added to the list with available containers at the container yard. There are no critical containers at

the container yard. The aggregate receiving schedule is again completed by solving the binary decision

model of Section 4.4.3. The model selects a subset of containers and schedules the containers 6, 8, 9,

10, 13, 15, 16, 17, 21 and 22 to the MKI warehouse and the containers 5, 7, 11, 12, 14, 18, 19, 20, 23,
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24 to the JTS warehouse. Due to the availability of new information, the performance increases when
the container 7 and 10 are swapped between the MKI and JTS warehouses. The detailed receiving
schedule is completed by applying the FIFO dispatch rule to the scheduled containers. The containers
5, 6, 7 and 8 are scheduled on day t+2, the detailed schedule made on day t for day t+2 is incorrect.
VidaXL need to inform the forwarded that it will pick up container 8 instead of container 10 on day t+2.
Furthermore, VidaXL can again inform the forwarder that it expects to pick up the containers 9, 10, 11
and 12 on day t+3.

Third, the scheduling algorithm is repeated on day t+2. The binary decision model schedules 10
containers to each warehouse thereafter the detailed schedule is completed by scheduling containers
9 and 10 to the MKI warehouse and containers 11 and 12 to the JTS warehouse on day t+3. The detailed
schedule made on day t+1 is in line with the detailed schedule made on day t+2 and VidaXL affirms the
pickup date of these containers to the forwarded.

The scheduling process can be repeated every day, in this example the aggregate schedule is provided
for the upcoming 5 days while the forwarder is informed with the detailed schedule for the upcoming
2 days. Section 5 investigates the influences of different planning horizons and penalty values on the
performance of the scheduling algorithm.

4.5 Validation and verification

The conceptual model and simulation need to be verified and validated before conclusions can be
drawn and recommendations can be made. Verification refers to the steps, processes, or techniques
that are employed in the model to ensure that it behaves according to the specifications. Validations

refers to validating whether the model adequately represents the actual process (North & Macal,
2007).

The model is verified using stress testing, stage-by-stage, and scenario analysis. With stress testing, the
model is tested under extreme and unlikely situations such as zero containers, zero capacity, maximum
capacity, and zero cross docks, which allows flaws and errors to be easily detected. Stage-by-stage
verification refers to building the model piece by piece where every new stage is extensively tested
using multiple test sets. Errors can be detected early in the modeling phase. Lastly, the model is verified
by scenario analysis, where multiple scenarios under different conditions are tested, and the results
are compared with each other in Section 5. The outcome is checked, and the results of different
performance measurements are compared.

The underlying logic of the conceptual model has been validated by the logistics department of VidaXL.
The scheduling algorithm is implemented at VidaXL, and the solution will be validated every day by the
logistics department.

As mentioned in Section 4.4.2, the PulP library checks whether the solution is optimum. However,
finding the optimum per scheduling horizon does not automatically results in the overall long-term
optimum as demonstrated in Section 4.4.1. Furthermore, the rolling horizon policy separate the
scheduling problem in a sequence of iterations, each iteration only models’ part of the scheduling
horizon in detail, while the rest of the horizon is scheduled in an aggregate manner. This approach
results in close to optimal long-term solutions (Dimitriadis, et al. 1997). Calculating the long-term
optimum assignment with brute force is not possible, because brute force calculates every possibility
and the problem is too large for brute-force methodology according to the following example.

49



If there are 3 warehouses which can receive goods, the warehouses can receive 4, 4, and 2 containers
per day for seven days in a row. In total, (4+4+2)*7=70 containers can be scheduled. The first
warehouse can schedule 28 containers out of 70, which results in 1.17 * 10%* possible combinations.

(Jo) =117 <102

The second warehouse can schedule 28 containers of the remaining 42 containers, which results in
7.40 * 10! possible combinations. The third warehouse can schedule 14 containers out of 14
containers, leaving only one remaining combination. In total, there are 1.17 x 102 * 7.40 * 10* x
1 = 8.69 * 1032 combinations to schedule 70 containers. The python function combinations can
calculate 300,000 combinations per minute, which will require 2.01 * 102 days to calculate every
combination. The calculation time increases exponentially with the number of available containers,
and it is impossible to validate the model using brute force.

Assuming that the branch and cut algorithm of the CLP solver from the PulP library provides the correct
answer, it is possible to calculate the theoretical upper bound of the minimum number of cross docks
possible. The theoretical upper bound quantifies the optimal static solution when the inbound capacity
per warehouse, the arriving date and the number of cross docks of each receiving container is known
one year in advance. The theoretical upper bound solution of the simulation is provided in Section 5.4.

4.6 Conclusion

The warehouse efficiency can be increased by scheduling the receiving operation in order to avoid
cross docks during the put-away, picking, and shipping operations. The receiving operation can be
scheduled with the usage of the proposed framework. The framework consists of three layers: input
data, scheduling algorithm and output data. Each layer subsequentially fulfill certain tasks and provide
the subsequent layer with information to complete the scheduling process.

The input layer gathers relevant container and warehouse data for the scheduling algorithm. The
container data consist of a distinction between critical and noncritical containers, and estimates the
total number of cross docks when the container is received in a warehouse. The warehouse data
consist of the inbound capacity per container type and the total inbound capacity per warehouse.

The scheduling algorithm subsequently schedules critical and non-critical containers with a rolling
horizon policy. The rolling horizon policy separate the scheduling problem in a sequence of iterations,
each iteration only models’ part of the scheduling horizon in detail, while the rest of the horizon is
scheduled in an aggregate manner. The aggregate schedule is provided through solving a binary
decision model, it selects and schedules containers to one of the warehouses by maximizing the profit
associated with receiving the container at the most preferred warehouse instead of at a less preferred
warehouse while considering the demurrage date. The detailed schedule can be completed by
assigning the scheduled containers FIFO to the upcoming scheduling periods.

The output data consist of the detailed schedule where the pickup dates of the scheduled containers
are specified with the FIFO dispatch rule. VidaXL can implement the receiving operation of the
containers scheduled on the next day. However, VidaXL must not confirm the pickup date of the other
scheduled containers in order to retain flexible to new information and container arrivals. The
potential and sensitivity of the scheduling algorithm are evaluated in a realistic simulation in Section
5.
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5. Simulation

To evaluate the potential of the proposed scheduling algorithm, the receiving operation at VidaXL is
simulated. The simulation setup is discussed in Section 5.1. The datasets used as input are described
in Section 5.2. The output of the scheduling algorithm is compared with other scheduling procedures,
which are presented in Section 5.3. Section 5.3 also shows an overview of the used performance
measures. The quality of the scheduling algorithm is specified in Section 5.4. The final results are shown
in Section 5.5, and the sensitivity of the model is analyzed in Section 5.6.

5.1 Simulation setup

The receiving operation at VidaXL is simulated using discrete-event simulation. Each event occurs at a
particular moment in time and causes a change in the system, and therefore this type of simulation
only evaluates the system after each event. Figure 21 shows the general architecture of the simulation.
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Figure 21: Simulation architecture VidaXL

The simulation aims to represents the warehouse operations at VidaXL of 2020 as accurately as
possible, and therefore the simulation setup is the same as the warehouse setup of VidaXL in 2020.
The following warehouses are included in the simulation:

e MKI (ship warehouse)

e JTS (ship warehouse new: January 2020)

e WTR (pick warehouse new: November 2019)
e OF (all overflow warehouses)
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The storage types and number of storage locations in each warehouse are equal to the warehouse
network of VidaXL. All overflow warehouses are equipped with the same storage types and can
therefore be seen as one warehouse. The company opened one pick warehouse in November 2019,
one new ship warehouse in January 2020, and closed three overflow warehouses. Stock is moved from
the old warehouses to the new warehouses and is currently not equally distributed over the
warehouses. Therefore, the effect of the scheduling algorithm is analyzed using two different settings:
First the potential of the scheduling algorithm is evaluated in a ramp-up situation where the inventory
is not equally distributed over the warehouses. In this situation, VidaXL wants to equalize the utilization
of the resources in each warehouse as quickly as possible without having avoidable cross docks.
Second, the potential of the scheduling algorithm is evaluated when the starting inventory is equally
distributed over the warehouses.

VidaXL does not receive containers during the weekend. Moreover, it is not possible to schedule
containers in the first week of the simulation to generate a pool of available containers. If there is no
pool of available containers, it is not possible to schedule the containers for the whole scheduling
horizon and the algorithm reduces the number of cross docks per day. Reducing the number of cross
docks per day does not lead to the minimum number of possible cross docks, as concluded in Section
4.4.1.

The proposed scheduling algorithm in Section 4.4 has four variables which can be adapted and
immediately affect the outcome of the algorithm. The influence of different scheduling horizons and
penalty values are analyzed in the results section, and the proper values are later used to compare the
results with other scheduling procedures.

The inbound capacity per warehouse immediately influences the outcome of the proposed scheduling
algorithm. The total inbound capacity per day is calculated by counting all containers received in the
corresponding month and dividing this value with the number of workdays in that month. The inbound
capacity for warehouse w is calculated using the following equation:

c ) (Total inbound capacity * available storage locations warehouse w 20) (29)
= min )
W Ywew available storage locations warehouse w

The inbound capacity cannot exceed 20 containers per day since there are insufficient resources in
each warehouse to handle more than that. The sensitivity analysis investigates whether the proposed
scheduling algorithm behaves independently of the inbound capacity of each warehouse.

Moreover, the following assumption is made in the simulation model:

- The maximum SLO is equal to 3,000, which is on average almost equivalent to storing a
container for one year without selling any items. When items are not sold within one year,
VidaXL tries to sell the items via other sales channels or they scrap the items.

5.2 Input

The simulation model uses in the basis four different input datasets, namely the arriving pattern of
containers, the demand pattern per item, the inbound capacity per warehouse, and the starting
inventory per warehouse.
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The arriving pattern of containers corresponds to the arriving pattern of 2019. The simulation model
can schedule the containers after confirmation of the actual delivery date, which can be received on
the day of arrival or one day beforehand. The contents of each container correspond to the actual
received containers in 2019. Each container can contain multiple items of multiple SKUs, and the
number of items per SKU is divided with the Packspec to calculate the number of pallets per item per
container. The Packspec regards the packing specifications and differs per SKU, as some SKUs are large
and can only fit 2 items on one pallet, while other SKUs are small and can fit 1,000 items on one pallet.
The containers are classified as A, B, and C based on the number of SKUs and on the number of items
in each container, where A containers require less manual effort to unload than C containers.

The demand pattern per item corresponds to the demand pattern of 2019 and is converted to the
demand pattern per pallet since full pallets are replenished from the reserve area into the forward
area. Each demand event occurs with probability equal to the distribution of the number of storage
locations between the ship and pick warehouses (e.g., if the shipping warehouse has 50% of the total
bulk storage locations, the probability is 50% that the demand occurs in the shipping warehouse). If
one of the shipping warehouses lacks the item in stock, the inventory of the picking warehouse is
evaluated, and if the pick warehouse has the item in stock, the items are cross docked to the shipping
warehouse. If the ship and pick warehouses lack the item in stock, the inventory of the overflow
warehouses is evaluated, and if they have the item in stock, the items are cross docked to the ship
warehouse. If the item is not in stock in any of the warehouses, the demand request is forfeited.

The total inbound capacity per day is calculated by counting all containers received in the
corresponding month and dividing this with the number of workdays in that month. The inbound
capacity per warehouse is calculated using equation 29 as described in Section 5.1.

The starting inventory differs regarding the ramp-up and steady-state situations. The starting inventory
of the ramp-up situation is equal to the actual inventory in the reserve areas on the first of February
2020 and is measured in number of pallets. In contrast, the starting inventory in the steady-state
situation is generated by running the simulation for one year for the extended FIFO scheduling
procedure (explained in Section 5.3) and constraining the maximum capacity of each warehouse to
75% of actual capacity. At the end of the simulation, all warehouses are consequently equally utilized
with 75% of total storage capacity. The ending inventory position is used as the starting inventory for
the steady-state situation. The extended FIFO scheduling procedure is used since it most closely
corresponds to the current working procedure of the logistics department of VidaXL.

5.3 Output

The output of the simulation is compared with three other scheduling procedures to evaluate the
potential of the proposed scheduling algorithm. The results are compared with scheduling the
containers FIFO and minimizing the number of cross docks FIFO every day. Moreover, the effect of
including picking and shipping cross docks in the binary decision model is investigated by running the
model with and without additional cross docks based on the SLO.

Proposed scheduling algorithm: The algorithm applies a rolling horizon policy which reschedules the
receiving operation every day new information becomes available. First, an aggregate solution for the
coming four days is provided with a binary decision model. The binary decision model selects a subset
of containers out of the available containers and schedules each container to a warehouse. The binary
decision model maximizes the profit associated with receiving the container at the most preferred
warehouse instead of at a less preferred warehouse while considering the demurrage date. Second,
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the FIFO dispatch rule is applied to gather a detailed solution for the first day. The detailed schedule
of first day can immediately be implemented. The receiving operation can be rescheduled during
succeeding days when new information becomes available.

FIFO: In the FIFO scheduling procedure, the system is evaluated at the start of every day and the
containers are scheduled for next day. The containers with the earliest arrival date are selected until
the number of containers corresponds to the inbound capacity of that day. The containers are
scheduled chronologically, which means that the first container is assigned to its preferred warehouse
based on the number of put-away cross docks. The container is only scheduled to its preferred
warehouse if the preferred warehouse has remaining inbound capacity, otherwise the container is
scheduled at the second preferred warehouse and so on. The procedure is repeated until all selected
containers are scheduled.

FIFO extended: The third scheduling procedure is an extension of the FIFO procedure where every day,
the containers with the earliest arrival date are selected until the number of containers corresponds
to the inbound capacity of next day. The scheduling procedure aims to minimize the total number of
put-away cross docks for the next day by solving a binary decision model for that day. Accordingly, the
scheduling procedure is repeated every day.

NoSLO: The proposed scheduling algorithm tries to reduce the number of picking and shipping cross
docks by assigning containers with a high SLO to the pick and overflow warehouses. The demand for
the items stored in the pick and overflow warehouses is low, and thus causes fewer cross docks. The
scheduling procedure NoSLO behaves as the proposed scheduling algorithm but does not consider the
SLO; it only contemplates the put-away cross docks and the demurrage date.

The following KPls are measured for every scheduling procedure:

e Number of containers received in each warehouse;

e Number of pickup dates predicted correctly during day t for day t+2;

e Number of pickup dates predicted incorrectly during day t for day t+2;

e Real put-away cross docks from each warehouse;

e Real picking cross docks after customer demand;

e Real shipping cross docks after customer demand;

e Average throughput time per arriving container;

e Number of containers picked up after the demurrage date;

e Total number of days the containers are picked up after the demurrage date;
e The reserve area utilization per warehouse.

5.4 Quality of scheduling algorithm

Before evaluating the potential of the scheduling algorithm, a theoretical upper bound of the main
performance measurement the total number of cross docks is determined. The theoretical upper
bound quantifies the optimal static solution when everything is known beforehand. For the theoretical
upper bound calculation is therefore assumed that perfect knowledge of the content, number of cross
docks and the arrival date of each container is available. Furthermore, the containers must be
scheduled under the same constraint as the algorithm does.
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The default CLP solver of the PulP library in python is used to calculate the theoretical upper bound.
The code is designed by COIN-OR and uses branch-and-cut algorithms to solve the problem. The PulP
library can validate whether the provided solution is optimum or not using the function
LpStatusOptimal (Mitchell, Kean, Mason, O'Sullivan, & Phillips, 2009).

Assuming that the branch and cur algorithm of the CLP solver provides the correct answer, the
minimum number of cross docks possible are 89,148 and 64,138 in the ramp-up and steady state
situation respectively. The theoretical upper bound solution has 5.7% and 10.4% less cross docks as
the solution provided by the scheduling algorithm presented in Section 5.5. The scheduling algorithm
does not provide the optimal solution regarding the theoretical upper bound. However, recall that
there does not exist a scheduling algorithm that provides an optimal solution without prior knowledge
(Dertouzos & Mok, 1989). Furthermore, the algorithm uses a rolling horizon policy which provides
close to optimal solutions (Dimitriadis et al., 1997).

5.5 Results

The goal of this research is to schedule the receiving operations in e-commerce logistics to increase
the efficiency of the warehouse operations put-away, picking and shipping simultaneously, by reducing
the long-term cross docks while avoiding situations where the container is picked up after the
demurrage date. First, parameter tuning is used to increase the performance of the scheduling
algorithm in Section 5.5.1. Second, the potential of the scheduling algorithm is analyzed by comparing
its performance with three other scheduling procedures during the ramp-up phase. Last, the
performance of each scheduling procedure is analyzed in a steady state situation.

The goal of constraints 21, 22, and 23 is to balance the workload between the warehouses and the
inbound teams. The workload can also be balanced with other managerial decisions, for example, by
extending certain inbound teams. The parameters WB,,,,, WBg,, ,and WB(,, are therefore set equal
to one since these are managerial decisions, and the purpose of this section is to evaluate the maximal
potential of the scheduling algorithm. The sensitivity of the scheduling algorithm under different
values for WBy,,, WBg,, , WB¢,, is evaluated in Section 5.5.

5.5.1 Scheduling algorithm parameter tuning

The proposed scheduling algorithm may behave differently with different parameters settings. As
such, parameter tuning is used to determine the appropriate settings for the container scheduling
process at VidaXL. An aggregate scheduling horizon equal to two, three, four or five days combined
with penalty value of ten, twenty, twenty-five and thirty for each day the container is not scheduled
after its arrival day in the container yard.

The main purpose of the penalty is to plan the containers before the demurrage date. Figure 22 and
Figure 23 illustrate the behavior of the scheduling algorithm under the different scheduling horizons
and penalties for each day the container is not scheduled after its arrival day in the container yard on
the number of days the containers are picked up after the demurrage date. The results of a scheduling
horizon equal to two days are excluded from these figures since the total number of days containers
are picked up after the demurrage date differ between 18 and 1,650 days. The results are less visible
when these values are included in the figures. A detailed overview of the simulation results for all
instances is given in Appendix C.
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Figure 22: Simulation results, effect of different parameters on days containers are picked up after demurrage date (1)

From Figure 22 can be observed that the total number of days that the containers are picked after the
demurrage date decreases when the assigned penalty increases. The effect stabilizes when the penalty
rises to a value between 20 and 30. The penalty is responsible for a substantial part of the overall
weight. Moreover, when there is not enough inbound capacity to receive all containers before the
demurrage date, the total number of days the containers are picked up after the demurrage date
increases. As such, increasing the penalty value does not decrease the total number of days the
containers are picked up after the demurrage date anymore.
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Figure 23: Simulation results, effect of different parameters on days containers are picked up after demurrage date (2)

Figure 23 shows the effect of completing the aggregate schedule for different scheduling horizons.
Being able to complete the aggregate schedule for the upcoming four or five days does not reduce the
total number of days the containers are picked up after the demurrage date. Notably, the scheduling
algorithm performs worse with an aggregate scheduling horizon equal to five days as applying an
aggregate scheduling horizon of three days. VidaXL has over 40 different storage types, the storage
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types at MKI ship warehouse are more varied than those in the other warehouses. Accordingly, most
containers prefer to be assigned to the MKI warehouse since most of their items can be stored there.
Making an aggregate schedule by solving the binary decision model for five or more days assigns more
containers to the MKI warehouse and less containers to the other warehouses. The number of
containers scheduled to each warehouse depends on their inbound capacity during the scheduling
horizon (i.e. constraints 20 till 23). When more containers are approaching the demurrage date as the
preferred warehouse can handle, not all containers are picked up before the demurrage date.
Completing the aggregate schedule for a shorter horizon assigns more containers to the second
preferred warehouse so that the total number of days the containers are picked up after the
demurrage date decreases.

The effect of different aggregate scheduling horizons on the average number of cross docks per
container is illustrated in Figure 24.
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Figure 24: Simulation results, effect of different parameters on average pallet cross docks per container

As concluded in Section 4.4.1, the number of cross docks can be reduced through applying a larger
aggregate scheduling horizon. Daily minimizing the number of cross docks does not lead to the overall
optimum and therefore the average number of cross docks reduces when applying an aggregate
scheduling horizon equal to three or four days. The average number of cross docks are at lowest under
a scheduling horizon equal to four days and a penalty value equal to twenty-five.

If an aggregate scheduling horizon of five days is applied, more containers are assigned to the preferred
warehouse and less containers are assigned to the other warehouses. However, each warehouse can
only receive as many containers as it can handle on a day. As a result, more containers are facing tight
demurrage dates and are scheduled three or less days before the demurrage date. The calculated
weight of these containers depends, for a substantial part, on the penalty for each day the container
is not scheduled after its arrival day. The scheduling algorithm schedules the containers such that the
containers are picked up as soon as possible; it focuses less on the corresponding number of cross
docks. The number of cross docks consequently increases when the aggregate scheduling horizon is
equal to five days.
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All parameter values together form sixteen different instances. The summary of results is presented in
Table 14, while the detailed results can be found in Appendix C. The performance of the scheduling
algorithm is at best through applying a scheduling horizon of four days and a penalty of twenty-five for
every day the container is scheduled after its arrival date. Both the average number of cross docks and
the total number of days to late are reduced at this instance.

Table 14: Summary of results parameter tuning scheduling algorithm

Average Total cross Average Total days Percentage Containers

cross docks TH time  after of containers picked up after

docks demurarge on time 8 days
T=2Penalty=10 10.59 73,799 7.23 1,652 87.9% 2,224
T=3Penalty=10 10.26 72,523 4.07 24 99.7% 59
T=4Penalty=10 10.17 71,955 3.59 19 99.7% 32
T=5Penalty=10 10.37 73,333 3.58 26 99.6% 51
T=2Penalty=20 10.52 73,336 7.28 1,638 88.1% 2,075
T=3Penalty=20 10.18 72,054 4.01 10 99.9% 13
T=4Penalty=20 10.17 71,940 3.51 8 99.9% 8
T=5Penalty=20 10.27 72,803 3.59 22 99.7% 37
T=2Penalty=25 10.43 72,787 6.93 943 91.8% 1,635
T=3Penalty=25 10.12 71,504 3.92 8 99.9% 0
T=4Penalty=25 10.11 71,551 3.57 8 99.9% 9
T=5Penalty=25 10.26 72,605 3.61 19 99.7% 30
T=2Penalty=30 10.25 72,511 3.56 18 99.7% 25
T=3Penalty=30 10.14 71,711 3.87 9 99.9% 11
T=4Penalty=30 10.17 71,993 3.60 9 99.9% 10
T=5Penalty=30 10.23 72,398 3.58 18 99.7% 24

5.5.2 Ramp-up situation

In the ramp-up situation, VidaXL opened one new shipping warehouse: JTS. VidaXL aims to ramp up
the usage of resources in the new warehouse as soon as possible so that the resources in each ship
warehouse are utilized equally. The ramp-up situation differs from the steady state situation in that
the inventory in the reserve areas is not equally distributed among the warehouses. This section
describes the effect of the scheduling algorithm on the receiving operation and on the cross docks
during put-away, picking, and shipping operations. The detailed simulation results can be found in
Appendix D.

Receiving operations: In total, 99.7% of the containers are picked up before the demurrage date. The
detailed schedule made on day t predicted the pickup date of the containers scheduled on day t+2 in
66.3% of the containers correctly. In 23.3% of the cases, the scheduling algorithm predicted the wrong
pickup day and did not predicted the pickup day at all in 10.5% of the cases. The total number of
containers received in the new JTS warehouse per week per scheduling procedure is visualized in
Figure 25. The proposed scheduling algorithm, on average, schedules more containers to the JTS
warehouse compared to other procedures. More items are consequently stored in this warehouse.
However, the reserve area is less utilized under the proposed scheduling algorithm since the received
items have a high turnover rate (see Figure 26); therefore, the pick density in the new warehouse
increases, which positively influences the warehouse’s efficiency. The resources of the new JTS
warehouse are used more intensively under the scheduling algorithm in contrast to other procedures.
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Figure 25: Simulation results, effect of different scheduling procedures on containers received in JTS warehouse

Utilization reserve area JTS warehouse

100%
90%

o 80%

S 0% S

S 60% P

0 ey

3 50% .

S 40%

T 30%

— A

T 20% °

-}

10%
0%

AN ONONDO ANNMIETNONRNNDO ANMSNMONNDNO AN M S
ANMIFETNONOO ANMSIINONNDNDANNSTNONOIWNOIDONMST N O
™ A A A A AN AN AN AN AN AN AN NN OO NN 0N oM
Day in the year
e scheduling algorithm NOSLO  e=====F|FO extension e F|FO scheduling algorithm

Figure 26: Simulation results, effect of different scheduling procedures on utilization reserve area JTS warehouse

Total number of cross docks

In Figure 27, the number of cross docks during each warehouse operation are graphically presented
under the four scheduling procedures. The proposed scheduling algorithm uses an aggregate
scheduling horizon of four days and a penalty of twenty-five for each day a container is scheduled after
its arrival date. The algorithm performs at best under these settings, resulting in 94,572 cross docks
during the simulation period of one year.
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Figure 27: Simulation results, effect of different scheduling procedures on put-away, picking and shipping cross docks (1)

Put-away cross docks: Put-away cross docks occur when the receiving warehouse does not hase the
right storage type available. The total put-away cross docks are lower when applying the algorithm
NoSLO and extended FIFO scheduling procedures since these procedures assign less containers to JTS
warehouse. Moreover, the JTS warehouse does not has all 40 storage types; therefore, more put-away
cross docks occur when more containers are received in this warehouse. The total number of cross
docks are still lower under the scheduling algorithm since more items are stored in JTS warehouse, and
less items need to be cross docked during picking or shipping operations.

Picking cross docks: Picking cross docks occur when the item is not available after a customer demand
in the ship and pick warehouse but is available in the overflow warehouse. Containers with a high SLO
are stored in the overflow warehouse. Most of the items stored in the overflow warehouse
consequently have a low turnover rate, reducing the number of picking cross docks when applying the
scheduling algorithm.

Shipping cross docks: Shipping cross docks occur when the items are picked in a pick warehouse, which
is not able to ship items. The algorithm reduces shipping cross docks through receiving containers with
an above-average SLO in the pick warehouse. The items stored in the pick warehouse have a low
turnover rate and are requested less often.

Figure 28 shows the total number of cross docks per week when applying the scheduling algorithm.
The number of cross docks decreases as the process becomes more stable and when the warehouses
are utilized equally.
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Figure 28: Simulation results, effect of the utilization rate per warehouse on the total cross docks

5.5.3 Steady state situation

In the steady state situation, each warehouse already operates for a certain amount of time; therefore,
the start utilization of the reserve area in each warehouse will be the same. The scheduling algorithm
again uses an aggregate scheduling horizon of four days and a penalty of twenty-five for each day a
container is scheduled after its arrival date. This section outlines the results of the scheduling algorithm
regarding receiving operation and the cross docks during put-away, picking, and shipping operations.
The effect of including picking and shipping cross docks in the algorithm based on the SLO of each
container is described at the end of this section. The detailed simulation results can be found in
Appendix E.

Receiving operation: Results affirm that 99.9% of the containers are picked up on time. In total, eight
containers are picked up one day after the demurrage date. The detailed schedule made on day t
predicted the pickup date of the containers scheduled on day t+2 in 65.1% of the containers correctly.
In 21.5% of the cases, the scheduling algorithm predicted the wrong pickup day and did not predicted
the pickup day at all in 13.4% of the cases. The MKI and JTS shipping warehouses received 25.3%,
26.3%, and 10.5% more containers under the scheduling algorithm than under the scheduling
algorithm without SLO, the extended FIFO procedure, and the normal FIFO procedure, respectively
(Figure 29).

61



Number of containers received per warehouse

8000
7000
6000
5000
4000
3000
2000
1000

Number of containers

Scheduling algorithm Scheduling algorithm FIFO extension FIFO
NoSLO

B Containers received MKI M Containers received JTS

B Containers received WTR Containers received overflow

Figure 29: Simulation results, effect of each scheduling procedure on the number of containers received per warehouse

Total number of cross docks

In Figure 30, the cross docks during each warehouse operation are graphically presented under the
four scheduling procedures. The proposed scheduling algorithm outperforms the scheduling algorithm
without SLO, the extended FIFO procedure, and the normal FIFO procedure. The total cross docks are
reduced by 32.7%, 35.9%, and 54.2%, respectively.
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Figure 30: Simulation results, effect of different scheduling procedures on put-away, picking and shipping cross docks (2)

Put-away cross docks: There are less put-away cross docks at each warehouse under the proposed
scheduling algorithm. Most containers are received in the shipping warehouses. However, the received
items have a high turnover rate, and the storage location becomes available for new arrivals after a
relatively short time. The ship warehouses are equipped with most of the storage types, decreasing
the number of put-away cross docks.



Picking cross docks: The picking cross docks are lower under the scheduling algorithm since containers
with a high SLO are received in the overflow warehouse. The items stored in the overflow warehouse
are sold less often, reducing the number of picking cross docks.

Shipping cross docks: The shipping cross docks account for 46.9% of the total number of cross docks
under the scheduling algorithm. However, it is hard to prevent shipping cross docks because VidaXL is
not able to make items pickable in both shipping warehouses since pick locations are scare. However,
the shipping cross docks are reduced by receiving containers with a SLO above average in the pick or
overflow warehouses.

Effect of including picking and shipping cross docks

The previous section affirmed that the number of cross docks decreases when picking and shipping
cross docks based on the SLO are considered in the scheduling algorithm. This section describes the
effect of including picking and shipping cross docks on the utilization of each warehouse. The utilization
of each warehouse under the scheduling procedures with and without SLO are presented in Figure 31
and Figure 32.

Utilization per warehouse per day scheduling algorithm

100%

©
o = I asannl
o 80% S s
g i
660%
O
- 40%
[
o
B 20%
©
N
= 0%
o AN N <N OMNN0ODDO A1 AN M TN OO A AN M N ONN0OOOO I AN
AN N <N ONOO A AN NN ORNODOOA AN NS ONOOOOOANMS N O
™ A A AN AN AN AN AN AN AN AN AN DD D D DM
Day
e \K| e | TS WTR Overflow

Figure 31: Simulation results, effect of considering picking and shipping cross docks on the utilization per warehouse
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Figure 32: Simulation results, effect of not considering picking and shipping cross docks on the utilization per warehouse
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The algorithm schedules containers with a long storage time to the overflow and pick warehouses. The
utilization of the reserve area of these warehouses increases faster than that in the ship warehouses
because the demand for these items is lower. Accordingly, less containers are received in the pick and
overflow warehouses, while items with a high turnover rate are received in the ship warehouses. As
such, the pick density in the shipping warehouses increases, whereas the number of cross docks from
the pick and overflow warehouses to the ship warehouses decreases. Notably, when more items are
picked in the same warehouse, it costs less effort to bundle items that are purchased by the same
client. Scheduling containers to receiving warehouses using the algorithm increases efficiency in the
receiving, put-away, picking, packing, and shipping operations.

5.6 Sensitivity analysis

This section determines whether the conclusions drawn in the previous section are still valid under
different circumstances. First, sensitivity during the ramp-up situation is investigated in Section 5.6.1.
This is done by evaluating the performance of the scheduling algorithm when the overflow warehouse
is only able to receive containers if the utilization of the other warehouses is above 70%. This situation
corresponds to the current ramp-up procedure at VidaXL. Second, sensitivity during the steady state
situation is evaluated in Section 5.6.2. The inbound capacity per warehouse is adjusted to determine
if the scheduling algorithm still outperforms the other scheduling procedures. Moreover, the workload
balance parameters are modified to analyze if the model behaves the same way in different
circumstances.

5.6.1 Ramp-up situation

After opening a new warehouse, VidaXL temporarily stops receiving any container in the overflow
warehouses to increase the usage of resources in the new warehouse. This section analyzes the
consequences of this temporary block on the inbound flow of the overflow warehouses.

5.6.1.1 Temporary block on the inbound flow

VidaXL currently abolished the temporary block on the inbound flow of the overflow warehouses when
the utilization of the reserve area of all pick and ship warehouses is above 70%. The simulation is thus
executed with these settings. Figure 33 illustrates the utilization per warehouse while temporary
blocking the inbound flow of the overflow warehouses.
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Figure 33: Simulation results, effect of temporary blocking the inbound flow on the utilization per warehouse
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The temporary blockage has been abolished from day 330. Utilization in the MKI, JTS and WTR
warehouses is above 70%. The effect on the number of cross docks is visualized in Figure 34. The left
bar corresponds to the results presented in Section 5.5. The right bar represents the results when
VidaXL temporary blocks the inbound flow of the overflow warehouses.
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Figure 34: Simulation results, effect of temporary blocking inbound flow on the total cross docks

The total number of cross docks increases by 5.0%. The additional cross docks are mainly put-away
cross docks from JTS and WTR warehouses since they receive 12.3% more containers than before. The
JTS and WTR warehouse are not equipped with all storage types, causing extra put-away cross docks.
The utilization of the JTS and WTR warehouses with and without temporary blocking on the inbound
flow is visualized in Figure 35.
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Figure 35: Simulation results, effect of temporary blocking inbound flow on the utilization new opened warehouses

The utilization of the newly opened JTS and WTR warehouses increases faster when temporary
blocking the inbound flow of overflow warehouses. Containers with an average SLO are received in the
new JTS ship warehouse; therefore, items with a low turnover rate are stored in the wrong warehouse.
Temporarily blocking the inbound flow causes unnecessary cross docks in the short and long term.
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5.6.2 Steady state situation

This section investigates the sensitivity of the scheduling algorithm in the steady state situation. First,
sensitivity under different inbound capacities is analyzed in Section 5.6.2.1. The goal of equation 29 is
to determine the inbound capacity per warehouse based on the available number of storage locations
in each warehouse. The inbound capacity per warehouse determines, to a large extent, the total
number of cross docks; therefore, the sensitivity of the scheduling algorithm under different inbound
capacities in steady state is analyzed. Second, the behavior of the scheduling algorithm under different
workload balancing parameters is investigated in Section 5.6.2.2.

5.6.2.1 Different inbound capacities

The inbound capacity per warehouse influences the total number of cross docks. When a warehouse
is forced to receive a certain number of containers that it cannot store, the total number of put-away
cross docks increases. Moreover, when a ship warehouse is forced to receive more containers, it also
receives containers with a high SLO since there are no more containers with a low SLO available. The
number of long-term picking and shipping cross docks thus increases. Accordingly, the effect of the
scheduling algorithm is tested under five different inbound capacities, as used in the previous sections.

The inbound capacity of both ship warehouses decreased by 10%, while the inbound capacity of the
pick warehouse increased by 10% in the first instance. In the second instance, the capacity of both ship
warehouses increased by 20%, whereas the inbound capacity of the pick and overflow warehouses
decreased by 10%. The third instance decreased the inbound capacity of the JTS ship warehouse by
10% and increased the inbound capacity of the MKI ship warehouse by 10%. The fourth instance is the
opposite of the third instance. In the fifth instance, both shipping warehouses have 10% more inbound
capacity, while the pick warehouse has 5% less inbound capacity.

Table 15 presents a summary of the results. Cross docks are expressed as percentages and compared
with the total number of cross docks for the simulation period caused under the FIFO scheduling
procedure. The detailed simulation results can be found in Appendix G.

Table 15: Total number of cross docks per scheduling procedure under different inbound capacities

Scheduling NoSLO FIFO FIFO

alg. (ext.)
Equation 29 45.8% 68.0% 71.5% 100.0%
Ship - 10%, Pick + 10% 60.8% 70.4% 73.1% 100.0%
SHIP + 20%, Pick/OF - 10% 48.5% 75.4% 92.1% 100.0%
JTS - 10%, MKI + 10% 45.3% 67.9% 71.5% 100.0%
JTS + 10%, MKI - 10% 48.3% 69.5% 72.4% 100.0%
Ship + 10%, Pick - 5% 45.0% 66.2% 67.6% 100.0%

The proposed scheduling algorithm outperforms the three other scheduling procedures in all
situations. As the inbound capacity of the shipping warehouses decreases, the benefits of the
scheduling procedure also decrease. Less items are stored in the ship warehouses; consequently, the
number of picking and shipping cross docks increases. Remarkable, the benefits of the scheduling
procedure do not increase when the capacity of the shipping warehouses increases. The utilization
rate of the reserve area of the ship warehouses consequently increases faster, resulting in more put-
away cross docks. The detailed simulation results can be found in appendix F.
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5.6.2.2 Workload balance parameters

This section investigates the behavior of the scheduling algorithm under different workload balance
parameters. First, containers are classified as A, B, and C. Second, the total number of cross docks and
the total number of days the containers are picked up after the demurrage date during the simulation
period under different workload balance parameters are evaluated. Last, the effect of the workload
balance parameters on the percentage of A, B, or C containers per warehouse is analyzed.

The inbound teams of VidaXL unload the received containers. Some containers may contain only a few
SKUs stored in a few boxes and are thus easy to unload. Other containers may contain many small
SKUs in multiple boxes, and these containers cost much effort to unload. VidaXL therefore categorizes
containers as in Table 16. When a container has less than 10 SKUs inside or less than 460 boxes, the
container is categorized as A. If the container is not an A container, and it contains more than 10 SKUs
or more than 1,150 boxes, it is categorized as a C container. All other containers are B containers.
Notably, 25% of the containers are A containers, 50% are B containers, and 25% are C containers.

Table 16: Classification of containers

Category SKUs Boxes

A <=10 <=460

C >20 >1,150

B Otherwise Otherwise

Since the containers are unloaded by humans, it is not fair to assign all C containers to the same
inbound team. Each warehouse can divide the containers among inbound teams so that workload is
equally distributed. However, when one warehouse only receives C containers, it is not possible to
divide the workload equally among inbound teams in all warehouses. Constraints 21, 22, and 23 are
therefore included in the scheduling algorithm. The cross docks under the scheduling algorithm with
WB4,, = WBg,, = WB., = 1.0, WB4, = WBgy = WBc, = 0.75,and WB,,, = WBg,, =
WB¢,, = 0.50 are presented in Figure 36. The number of cross docks under the three other scheduling
procedures can be found in Appendix H.
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Figure 36: Simulation results, effect of applying workload balance constraints 21,22 and 23 on cross docks
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When it is only possible to assign 75% of A, B, or C containers to the aggregate schedule, the total
number of cross docks during the simulation period increases with almost 5,400. More than 80% of
these extra cross docks are put-away cross docks. Meanwhile, when its only possible to assign 50% of
A, B, or C containers to the aggregate schedule, the total number of cross docks increases with almost
6,000. Notably, 70% of those extra cross docks are put-away cross docks. Limiting the number of A, B,
or C containers to 75% or 50% for the aggregate schedule increases the number of cross docks
significantly although there is only a small change visible between these two parameters. Balancing
the workload results in more cross docks, which consequently increases workload.

Balancing the workload negatively influences the number of containers picked up after the demurrage
date. Part of the “free operating space” is used by the workload balance constraint. When WB,,, =
WBg,, = WB¢, = 0.75, the total number of days the containers are picked up after the demurrage
date increases to 275, and 2.7% of the containers is picked up after the demurrage date. However,
when WBy,,, = WBg,, = WBc, = 0.5, the total number of days the containers are picked up after
the demurrage date only increases to 19, and only 0.4% of the containers are picked up after the
demurrage date. When multiple containers in the same category are available for pickup and prefer
the same receiving warehouse, the aggregate schedule can only assign half of the available inbound
capacity to these containers when applying the parameters WB,,, = WBg,, = WB(,, = 0.5. The
scheduling algorithm assigns the leftovers to the second, third, or fourth preferred warehouse; thus,
throughput time decreases. This phenomenon is illustrated in Figure 37 and Figure 38.

Percent of B containers per
day JTS warehouse under
different workload constraints

Percent of B containers per
day MKI warehouse under
different workload constraints

0% 0

30% 0,3
100%.— 5co 10% 1025 0,1

20% 0,2

90% 15% 20% 0,9 Q15 0,2
10% 0,1
0,
5%, | £ 0,05\ e
0% Og

80% / \ 30% 0,8 [ > 0,3

\
\ L /
70% 40% 0,7 0,4
60% 50% 06 0,5

Figure 37: Simulation results, effect of different workload

Workload constraint = 0.5
Workload constraint = 0.75

Workload constraint =1.0

balance constraints on percent of B containers JTS warehouse

68

Workload constraint = 0.5
Workload constraint = 0.75

Workload constraint =1.0

Figure 38: Simulation results, effect of different workload

balance constraints on percent of B containers MKI
warehouse



Most B containers prefer to be received at the JTS warehouse. On average, half of the received
containers at JTS are B containers. When WBpg,, = 0.75, a little over 15% of the simulation period, the
JTS warehouse receives 70% B containers on one day. When WBjg,, = 0.5, the JTS warehouse is not
able to receive that many B containers; more B containers are assigned to the MKl warehouse. As such,
the MKI warehouse receives more often 50% of B containers per day, and the throughput time
consequently decreases.

The effect of the scheduling algorithm on the JTS warehouse is visible in Figure 37. The percentage of
B containers received per day at the JTS warehouse is less spread under WBjg,, = 0.5. Moreover,
more B containers are assigned to the other warehouses when the number of available B containers
increases.

5.7 Conclusion

The potential of the proposed scheduling algorithm has been evaluated by comparing its performance
with three other scheduling procedures. The proposed scheduling algorithm performs at best when
applying an aggregate scheduling horizon equal to four days and a penalty value equal to twenty-five
for every day the container is scheduled after its arriving day. The theoretical upper bound solution
has 5.7% and 10.4% less cross docks in ramp-up and steady state situations respectively as the solution
provided by the scheduling algorithm. However, recall that there does not exist a scheduling algorithm
that provides an optimal solution without prior knowledge (Dertouzos & Mok, 1989). It outperforms
all other procedures in the ramp-up and steady state situations. Moreover, the scheduling algorithm
is not sensitive to different inbound capacities and different workload balance parameters.

In the ramp-up situation, the total number of cross docks can be reduced by 26.3%, 28.7%, and 45.6%
compared with the scheduling algorithm without SLO, the extended FIFO, and the FIFO procedure,
respectively. Moreover, 99.7% of the containers are picked up before the demurrage date. The number
of cross docks decreases when the process becomes more stable, and the warehouses are utilized
equally.

In the steady state situation, the total number of cross docks can be reduced by 32.7%, 35.9%, and
54.2% compared with the scheduling algorithm without SLO, the extended FIFO, and the FIFO
procedure, respectively. Moreover, 99.9% of the containers are picked up on time.

The scheduling algorithm performs best when there is no workload balancing constraint. The
scheduling algorithm assigns containers with a high SLO to the overflow and pick warehouses. The
utilization of the reserve area of these warehouses increases faster than that in the ship warehouses
since the demand for these items is lower. Less containers are consequently received in the pick and
overflow warehouses. Accordingly, items with a high turnover rate are received in the ship
warehouses. The pick density in the shipping warehouses increases, whereas the number of cross
docks from the pick and overflow warehouses to the ship warehouses decreases. Scheduling
containers with the proposed scheduling algorithm increases efficiency during the receiving, put-away,
picking checking and packing, and shipping operations.
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6. Conclusion and recommendations

The goal of this research is to schedule the receiving operations to increase the efficiency of the
warehouse operations put-away, picking and shipping simultaneously, by reducing the long-term cross
docks while avoiding situations where the container is picked up after the demurrage date. Hereto,
current scheduling procedure were captured, after which a new scheduling algorithm is proposed. The
potential and sensitivity of the scheduling algorithm is evaluated in a realistic simulation. This section
first answers the research questions in Section 6.1. Second, the contribution to the literature is pointed
out in Section 6.2. Recommendations to VidaXL are made in Section 6.3 and directions for further
research are stated in Section 6.4.

6.1 Answer on research questions
In this section, the sub research questions are answered based on the findings of previous sections.

Sub question 1: How is the receiving operation at VidaXL currently organized, planned, and controlled?

At the beginning of the day, the inbound logistics department receives a message signaling the actual
arrival and assigns the containers FIFO to one of the warehouses. In 2019, VidaXL had one main ship
warehouse, two small pick warehouses and multiple overflow warehouses. From each warehouse, the
inbound logistics department receives the available storage locations per storage type and the number
of containers that each warehouse can unload on a particular day. The inbound logistics department
checks in the SAP system the percent of the content which can be stored in each warehouse. They
attempt to reduce the cross docks by manually assigning the containers FIFO to a warehouse where
most of the content can be unloaded without harming the capacity constraints of the warehouse.

Sub question 2: How does the receiving operation influence the efficiency during put-away, picking
and shipping operations?

VidaXL is opening two new warehouses and will have two ship, one pick and two overflow houses in
the same geographical area to fulfill all European orders. However, not all warehouses are equipped
with all necessary resources to accomplish all warehouse operations for each product type, and
therefore inefficient cross docks occur when the succeeding operation cannot be executed in the
current warehouse. The total number of cross docks can be estimated on the pickup day and differ per
container for each receiving warehouse.

VidaXL receives multiple containers per day and can therefore select the containers to be processed
on the next day from a set of available containers. During most days it is impossible to select and
process al available containers since each warehouse is constrained by the available inbound capacity.

Scheduling the receiving operations has a “free operating space”: The pickup date can be scheduled
within ten days after the confirmation of arrival to prevent demurrage costs, the receiving warehouse
can be chosen and the order of receiving each container can be determined. However, for some urgent
critical containers there is no liberty, they must always be unloaded first at a specific warehouse. The
efficiency can be increased through reducing the long-term cross docks by scheduling the receiving
operation in the “free operating space”.
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Sub question 3: How can the receiving operation be scheduled to increase efficiency during put-away,
picking and shipping operations?

Cross docks during put-away, picking, and shipping can be estimated and prevented using the
proposed scheduling algorithm. The objective of the algorithm is reducing the long-term cross docks
while avoiding situations where the container is picked up after the demurrage date. The main
approach for accomplishing this is through scheduling containers to the preferred warehouses such
that the corresponding estimated number of cross docks are reduced.

In an ideal situation, the container and warehouse data are known far in advance. When there is
enough inbound capacity, it would then be possible to schedule the receiving operation of each
container before the demurrage date while minimizing the total long-term cross docks. A binary
decision must be made, containers must be picked up by a warehouse on a specific date resulting in
J*W*T binary decision variables. The triple sum objective function can minimize the total long-term
cross docks by assigning the containers to warehouses on specific days.

The container receiving operation at VidaXL is not ideal, the exact inbound capacity per warehouse is
only known a few days in advance, the actual arriving date of each container almost always differs
from the estimated arrival date and it is almost impossible to estimate the number of cross docks of
each receiving container far in advance. Containers received during previous days, increases the
current stock level in each warehouse and therefore affect the estimated number of cross docks of the
new receiving containers. It would be possible to resolve the triple sum objective function each day
new information becomes available. However, solving a triple sum objective function with J*W*T
binary decision variables requires computational effort and there is only limited time available to
complete the calculations. This paper therefore proposes an alternative rolling horizon scheduling
algorithm to deal with uncertain container arrivals and new information availability while reducing the
computation time and complexity of the problem.

First, an aggregate solution for the coming four days is provided with a binary decision model. The
binary decision model selects a subset of containers out of the available containers and schedules them
to a warehouse, resulting in J*W binary decision variables. The binary decision model maximizes the
profit associated with receiving the container at the most preferred warehouse instead of at a less
preferred warehouse while considering the demurrage date. Second, the FIFO dispatch rule is applied
to gather a detailed solution for the first scheduling’s period. The FIFO dispatch rule schedules the
container to specific receiving periods such that the throughput time decreases, and the containers
are picked up before its demurrage date. The algorithm can be resolved each period new information
becomes available.

The algorithm performs at best for VidaXL when applying an aggregate scheduling horizon equal to
four days and a penalty value equal to twenty-five for every day the container is scheduled after its
arriving day. The theoretical upper bound solution has 5.7% and 10.4% less cross docks in ramp-up and
steady state situations respectively as the solution provided by the scheduling algorithm. Furthermore,
cross docks can be reduced through receiving containers with a short storing time in the ship
warehouses, with an average storage time in the pick warehouse and with a long storage time in the
overflow warehouses. Consequently, more containers are received in the preferred ship warehouse
and the efficiency of the receiving, put-away, picking, checking and packing, and shipping operations
simultaneously increases.
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The potential of the scheduling algorithm is evaluated through comparing the performance with
scheduling the containers FIFO and minimizing the put-away cross docks FIFO every day. Moreover,
the effect of including picking and shipping cross docks in the scheduling algorithm is investigated by
running the model with and without additional cross docks based on the storage time. After opening
a new ship warehouse, the total number of cross docks can be reduced with 26.3%, 28.7% and 45.6%
compared with the scheduling algorithm without storage time component, minimizing the put-away
cross docks FIFO every day and FIFO procedure respectively. The number of cross docks decreases
when the process becomes more stable and the warehouses are equally utilized. When all warehouses
have the same start utilization, the total number of cross docks can be reduced with 32.7%, 35.9% and
54.2% respectively. Moreover, the scheduling algorithm is not sensitive to different inbound capacities
and different workload balance parameters.

6.2 Contributions to literature
The contribution to literature is three-fold and are presented in this section.

First, this is the first research focusing on efficiently scheduling the receiving operations for fast-
growing e-commerce companies with multiple ship, pick and overflow warehouses in the same
geographical area.

Second, while existing literature mainly focuses on improving the put-away, picking and shipping
operations independently of each other, this thesis focuses on scheduling the receiving operation
integrated with other warehouse operations to increase the overall warehouse efficiency.

Third, this paper proposes an alternative rolling horizon scheduling algorithm to deal with uncertain
container arrivals and new information availability while reducing the computation time and
complexity of the problem.

Literature on scheduling the receiving operation integrated with other warehouse operations is scare.
However, this type of literature is extremely relevant for practitioners. To the authors knowledge, this
is the first algorithm which schedules the receiving operation to increase the efficiency of the other
warehouse operations for fast growing e-commerce companies with multiple warehouses.

6.3 Company recommendations
The company recommendations are fivefold and are presented in this section.

First, the receiving operation at VidaXL can be scheduled with the scheduling algorithm to reduce the
long-term cross docks while taking the demurrage date into consideration. The potential of the
scheduling algorithm is quantified with a realistic simulation, and it outperforms scheduling the
containers FIFO and minimizing the put-away cross docks FIFO every day. The scheduling algorithm
can be used at the start of every day by the inbound logistics department to plan the containers for
next day.

Second, after opening a new ship warehouse, the usage of the resources in the new warehouse can be
ramped-up with the scheduling algorithm. Many containers with a short storage time are received in
the new ship warehouse and the pick density increases. As a result, the number of put-away, picking
and shipping cross docks decreases. The performance of the scheduling algorithm increases when the
warehouse processes stabilizes, and the warehouses are equally utilized.
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Third, in the current warehouse set-up, the scheduling algorithm performs at best when applying an
aggregate scheduling horizon equal to four days and a penalty value equal to twenty-five for every day
the container is scheduled after its arriving day. The theoretical upper bound solution has 5.7% and
10.4% less cross docks in ramp-up and steady state situations respectively as the solution provided by
the scheduling algorithm. However, the parameter settings should be evaluated with a simulation after
every change in the warehouse set-up. When the average throughput time increases, the penalty value
must be enlarged.

Fourth, balancing the workload between the warehouses for the aggregate schedule increases the
workload as well. It is recommended to balance the workload with other managerial decisions such as
dividing the workload between the inbound teams in a warehouse or providing more resources to
highly utilized inbound teams.

Fifth, when the total inbound capacity is significantly lower as the expected container arrivals per
month, VidaXL can adjust the workload balance parameters to schedule as many A and B containers
as possible. The inbound teams can unload more containers per day and the total number of days the
containers are picked up after the demurrage date decreases.

6.4 Limitations and further research

The main limitations of the scheduling algorithm are the parameter settings. Proper parameter settings
differ for every warehouse set-up, and parameter tuning is necessary to determine the aggregate
scheduling horizon and penalty value for every day the container is scheduled after its arrival date.
Furthermore, when there is no pool of available containers, the algorithm minimized the total number
of cross docks for next day. Minimizing the number of cross docks per day does not minimize the total
long-term cross docks.

The effect of the scheduling algorithm on the efficiency of the warehouse operations receiving, put-
away, order picking, checking and packing, and shipping can be investigated further. The scheduling
algorithm reduces the long-term cross docks. However, increasing the efficiency of the reorganization
process through the warehouse operations entails more as preventing cross docks between the
warehouses. More in depth research is necessary to quantify for example the effect on the pick density
or checking and packing operations. The algorithm functions as a basic model, constraints can be
added, and the weight can be adapted to further increase the efficiency of the warehouse operations.
Moreover, the scheduling algorithm assigns containers to warehouses, the effect of assigning
containers to inbound docks or inbound teams can be investigated in more depth.

The algorithm applies a rolling horizon policy where the aggregate schedule is provided with a binary
decision model whereas the detailed schedule is made with the FIFO dispatch rule. The theoretical
upper bound solution has 5.7% and 10.4% less cross docks in ramp-up and steady state situations
respectively as the solution provided by the scheduling algorithm. There is still room for improvement,
assigning containers directly to one of the pickup days with a triple sum binary decision model has the
potential to be investigated further.
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Appendix A

Warehouse setup VidaXL
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Figure 39: Warehouse setup VidaXL (2019)
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Appendix B

Business process model VidaXL
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Appendix C
Parameter tuning scheduling algorithm

Table 17: Detailed results parameter tuning scheduling algorithm penalty = 10 and penalty = 20

Nr containers MKI
Nr containers JTS
Nr containers WTR
Nr containers
Overflow

Nr containers not
right predicted

Nr containers right
predicted
Put-away cross
docks MKI
Put-away cross
docks JTS
Put-away cross
docks WTR
Put-away cross
docks overflow
Picking cross docks
Shipping cross
docks

Total nr crossdocks
Average
throughput time
Nr containers
picked up after
demurrage

Nr days containers
picked up after
demurrage

Nr containers
picked up after 8
days

T =2
Penalty
=10
2,629
2,877
791
674

2,603
3,859
126
9,723
3,928
12,446

13,359
34,217

73,799
7.23
843

1,652

2,224

T =3
Penalty
=10
2,697
2,934
796
642

1,995
4,731
119
9,489
3,992
11,673

13,322
33,928

72,523
4.07
24

24

59

T =4T-=25

Penalty
=10
2,709
2,939
788
641

1,525
4,625
142
9,735
3,790
11,427

13,375
33,486

71,955
3.59
19

19

32

81

Penalty
=10
2,682
2,957
793
643

1,387
4,371
162
10,436
4,094
11,324

13,433
33,884

73,333
3.58
26

26

51

T =2
Penalty
=20
2,643
2,875
790
665

2,448
4,006
138
9,454
4,315
12,106

13,533
33,790

73,336
7.28
833

1,638

2,075

T =3
Penalty
=20
2,702
2,935
786
652

1,863
4,846
131
9,358
3,860
11,600

13,508
33,597

72,054
4.01
10

10

13

T =4T-=25

Penalty
=20
2,703
2,939
792
643

1,492
4,592
133
9,792
3,611
11,334

13,386
33,684

71,940
3.51

Penalty
=20
2,689
2,956
787
656

1,363
4,395
139
10,245
3,699
11,813

13,136
33,771

72,803
3.59
22

22

37



Table 18: Parameter tuning scheduling algorithm penalty = 25 and penalty = 30

Nr containers
MKI

Nr containers
JTS

Nr containers
WTR

Nr containers
Overflow

Nr containers
not right
predicted

Nr containers
right predicted
Put-away cross
docks MKI
Put-away cross
docks JTS
Put-away cross
docks WTR
Put-away cross
docks overflow
Picking cross
docks
Shipping cross
docks

Total nr
crossdocks
Average
throughput
time

Nr containers
picked up after
demurrage

Nr days
containers
picked up after
demurrage

Nr containers
picked up after
8 days

T =2
Penalty
=25
2,658
2,871
795
656

2,344

4,086
140
9,490
3,884
11,575
13,769
33,929
72,787

6.93

569

943

1,635

T=3T=4T=5T-=2

Penalty
=25
2,716
2,919
787

641

1,871

4,783
133
9,189
3,841
11,252
13,447
33,642
71,504

3.92

Penalty Penalty

=25
2,716

2,931

788

640

1,522

6,407

133

9,567

3,668

11,242

13,363

33,578

71,551

3.57

=25
2,699

2,949

793

637

1,381

4,385

172

10,326

3,877

11,105

13,417

33,708

72,605

3.61

19

19

30

82

Penalty
=30
2,682
2,954
790

651

1,345

4,388
158
10,359
3,675
11,331
13,138
33,850
72,511

3.56

18

18

25

T =3
Penalty
=30
2,717
2,917
789
649

1,819

4,798
123
9,144
3,981
11,450
13,376
33,637
71,711

3.87

11

T =
Penalty
=30
2,709
2,928
794
646

1,503

4,649
147
9,448
3,857
11,520
13,240
33,781
71,993

3.60

10

4 T =75

Penalty
=30
2,697
2,954
786

640

1,348

4,400
151
10,242
3,866
11,268
13,266
33,605
72,398

3.58

18

18

24



Appendix D

Results ramp-up situation

Table 19: Results ramp-up situation per scheduling procedure

Nr containers MKI

Nr containers JTS

Nr containers WTR

Nr containers Overflow

Nr containers not right predicted
Nr containers right predicted
Put-away cross docks MKI
Put-away cross docks JTS
Put-away cross docks WTR
Put-away cross docks overflow
Picking cross docks

Shipping cross docks

Total nr crossdocks

Average throughput time

Nr containers picked up after
demurrage

Nr days containers picked up after
demurrage

Scheduling Scheduling FIFO
algorithm

2,133
3,103
1,127
697
1,643
4,679
98
15,410
9,044
7,084
19,615
43,321
94,572
3.80
19

19

83

algorithm
NoSLO
1,989
2,654
1,452
978
2,247
4,407
135
11,425
6,756
1,974
49,038
59,051
128,379
3.97
118

225

extension

1,952
2,675
1,503
963

154
13,876
8,805
1,251
48,580
59,992
132,658
2.51

0

0

FIFO

1,722
3,138
1,688
598

42
58,911
26,300
4,031
28,264
56,311
173,859
2.42

0

0



Appendix E

Results steady state situation

Table 20: Results steady state situation per scheduling procedure

Nr containers MKI

Nr containers JTS

Nr containers WTR

Nr containers Overflow

Nr containers not right predicted
Nr containers right predicted
Put-away cross docks MKI
Put-away cross docks JTS
Put-away cross docks WTR
Put-away cross docks overflow
Picking cross docks

Shipping cross docks

Total nr crossdocks

Average throughput time

Nr containers picked up after

demurrage

Nr days containers picked up after

demurrage

Scheduling Scheduling FIFO
algorithm

2,716
2,931
788
640
1,522
4,607
133
9,567
3,668
11,242
13,363
33,578
71,551
3.57

8

8

84

algorithm
NoSLO
2,251
2,257
1,209
1,360
1,808
4,326
151
5,932
3,281
14,732
31,495
50,647
106,238
3.61

7

extension

2,229
2,243
1,283
1,339

161
6,834
5,304
13,496
33,139
52,751
111,685
2.56

0

0

FIFO

1,959
3,152
1,590
466

84
59,009
26,713
4,597
17,568
48,246
156,217
2.37

0

0



Appendix F

Results Temporary blockage OF warehouse

Table 21: Detailed simulation results temporary blocking inbound flow overflow warehouses

Nr containers MKI

Nr containers JTS

Nr containers WTR

Nr containers Overflow

Nr containers not right predicted
Nr containers right predicted
Put-away cross docks MKI
Put-away cross docks JTS
Put-away cross docks WTR
Put-away cross docks overflow
Picking cross docks

Shipping cross docks

Total nr crossdocks

Average throughput time

Nr containers picked up after
demurrage

Nr days containers picked up after
demurrage

Scheduling Scheduling FIFO
algorithm

2,133
3,103
1,127
697
1,643
4,679
98
15,410
9,044
7,084
19,615
43,321
94,572
3,80
19

19

85

algorithm
NoSLO
2,143
3,507
1,244
175
1,824
5,106
98
24,740
16,038
1,333
13,090
43,997
99,296
6,25
437

830

extension

1,965
3,030
1,715
360
2,757
4,244
117
21,923
14,472
2,929
15,953
63,698
119,092
6,12
721

2,443

FIFO

19,999
3,043
1,689
346

92
23,371
14,740
2,196
17,770
62,089
120,258
4,31

31

37



Appendix G
Results different inbound capacities

Table 22: Results different inbound capacities (1)

SHIP -10%, Pick + 10% SHIP +20%, Pick/OF - 10%

Scheduling = Schedu- FIFO FIFO Scheduling  Schedu- FIFO FIFO

algorithm ling exten- algorithm ling exten-

algorithm  sion algorithm sion
NoSLO NoSLO

Nr containers 1,995 1,820 1,924 1,656 3,037 2,560 2,492 2,482
MKI
Nr containers JTS 2,478 1,997 2,072 2,750 3,181 2,603 2,770 3,316
Nr containers 1,063 1,352 1,411 1,759 758 1,142 1,375 1,496
WTR
Nr containers 982 1,379 1,369 589 462 1,100 835 305
Overflow
Nr containers not 3,078 3,125 342 453
right predicted
Nr containers 3,440 4,423 2,804 2,439
right predicted
Put-away cross 113 115 89 65 2,658 3,872 9,962 4,258
docks MKI
Put-away cross 7,437 5,975 7,661 53,906 @ 13,007 15,348 23,620 | 56,236
docks JTS
Put-away cross 17,123 5,558 6,942 32,661 | 5,594 4,371 12,885 | 21,913
docks WTR
Put-away cross 18,943 16,427 15,101 5,061 7,767 10,264 7,951 2,545
docks overflow
Picking cross 19,138 33,411 33,277 19,778 10,424 26,031 24,812 13,661
docks
Shipping cross 37,688 54,733 57,618 53,685 30,308 48,576 53,304 45,324
docks
Total nr 100,442 116,219 120,688 | 165,156 69,758 108,462 132,534 143,937
crossdocks
Average 19.68 19.96 14.12 13.97 1.21 1.22 2.34 1.03
throughput time
Nr containers 5,056 5,122 4,409 4,419 0 0 0 0
picked up after
demurrage
Nr days 67,728 69,896 34,127 33,106 O 0 0 0
containers picked
up after
demurrage
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Table 23: Results different inbound capacities (2)

JTS -10%, MKI + 10% JTS +10%, MKI - 10%

Scheduling = Schedu- FIFO FIFO Scheduling = Schedu- FIFO FIFO

algorithm  ling exten- algorithm ling exten-

algorithm  sion algorithm | sion
NoSLO NoSLO

Nr containers | 2,942 2,441 2,439 2,194 2,426 2,018 1,991 1,731
MKI
Nr containers 2,728 2,097 2,081 2,901 3,201 2,457 2,451 3,358
JTS
Nr containers = 797 1,180 1,257 1,557 786 1,237 1,309 1,574
WTR
Nr containers 620 1,346 1,299 465 663 1,357 1,327 470
Overflow
Nr containers @ 1,462 1,939 1,573 1,971
not right
predicted
Nr containers @ 4,691 4,358 4,652 4,347
right
predicted
Put-away 164 131 153 71 135 116 116 65
cross docks
MKI
Put-away 6,786 4,345 5,200 54,472 14,410 8,408 9,806 64,168
cross docks
JTS
Put-away 3,561 2,350 4,087 26,213 | 4,252 5,018 6,895 26,374
cross docks
WTR
Put-away 10,650 14,535 13,506 @ 3,831 11,669 14,755 13,643 4,619
cross docks
overflow
Picking cross 12,740 30,063 30,970 17,452 14,257 32,562 33,627 | 17,647
docks
Shipping cross 34,057 50,369 53,256 47,876 33,104 51,188 52,636 | 48,297
docks
Total nr 67,958 101,793 107,172 149,915 77,827 112,047 116,723 161,170
crossdocks
Average 3.56 3.96 3.51 2.38 3.64 3.92 2.78 2.33
throughput
time
Nr containers | 13 12 4 0 8 11 0 0
picked up
after
demurrage
Nr days 13 12 21 0 8 11 0 0
containers
picked up
after
demurrage
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Table 24: Results different inbound capacities (3)

Nr containers MKI

Nr containers JTS

Nr containers WTR

Nr containers Overflow

Nr containers not right
predicted
Nr containers right predicted

Put-away cross docks MKI
Put-away cross docks JTS
Put-away cross docks WTR
Put-away cross docks
overflow

Picking cross docks

Shipping cross docks

Total nr crossdocks

Average throughput time

Nr containers picked up after
demurrage

Nr days containers picked up
after demurrage

SHIP +10%, Pick -5%

Scheduling
algorithm

2,840
3,053
756
507
636

3,341
151
11,457
4,283
9,125

11,191
31,655
67,862
1.67

0

Scheduling
algorithm
NoSLO
2,421

2,396
1,151
1,160
780

3,020
134
8,591
3,611
11,645

27,145
48,683
99,809
1.74

0
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FIFO
extension

2,384
2,351
1,204
1,092

95
7,921
5,565
11,138

26,452
50,712
101,883
4.14

41

56

FIFO

2,098
3,525
1,579
382

58
59,344
25,769
3,467

15,068
47,086
150,792
131

0



Appendix H
Results different workload balance
parameters

Table 25: Results workload balance paremeters equall to 0.75 and 0.5

Nr containers
MKI

Nr containers
JTS

Nr containers
WTR

Nr containers
Overflow

Nr containers
not right
predicted

Nr containers
right predicted
Put-away cross
docks MKI
Put-away cross
docks JTS
Put-away cross
docks WTR
Put-away cross
docks overflow
Picking cross
docks

Shipping cross
docks

Total nr
crossdocks
Average
throughput time
Nr containers
picked up after
demurrage

Nr days
containers
picked up after
demurrage

WB,, = WBg, = WB, =0.75
Scheduling = Schedu-

algorithm

2,631
2,970
810
665

1,366

4,260
140
12,067
5,406
11,323
13,845
34,149
76,930
4.36

192

283

ling
algorithm
NoSLO
2,273

2,094
1,154
1,282

621

2,304
146
4,270
1,916
13,453
30,173
50,371
100,329
10.76

2,139

42,108

FIFO FIFO
exten-
sion

2,247 1,705

2,086 3,147

1,138 1,692

1,223 602

0 42

5,334 59,812

2,988 26,396

13,445 3,898

29,482 28,680

50,208 56,263

101,457 175,091

13.68 2.42
3,184 0
39,484 0

89

WB,,

Scheduling
algorithm

2,623
2,957
820
676

1,460

4,457
140
12,165
5,217
11,220
14,676
34,125
77,543
3.66

26

27

= WBp, = WB, =0.50

Schedu-
ling
algorithm
NoSLO
2,277

2,079
1,159
1,272

611

2,306
146
4,226
1,870
13,425
29,862
50,799
100,328
10.96

2163

43,208

FIFO
exten-
sion

2,262

2,112

1,127

1,222

5,308

3,042

13,466

29,650

49,049

100,515

13.12

3,206

36,271

FIFO

1,690

3,126

1,679

637

38

57,707

27,672

4,771

28,835

56,901

175,924

2.39

0

0
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