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Abstract 

This thesis presents the study, conception and employment of an aggregate production 

planning solution for one of Nike’s footwear production plants. In order to have the right products 

in the right place at the right time, the production of those products must be planned in advance. 

This must be done in a highly volatile environment with short product life cycles, long lead times, 

minimum order quantities and tight production resource capacity. Currently, a fully rule-based 

method is used which fills the planning on a per-period basis for each Priority Class of products. 

This approach does not search to optimize any objectives, merely to create a feasible planning. An 

MIP solution which looks to minimize multiple objectives is presented. These objectives are the 

minimization of lost sales, demand lateness and demand earliness, which all show improvements. 

In order to be able to compare the proposed solution to the current situation, a benchmark has 

to be made. Because not all data that is used in the day-to-day planning is available, a simulation 

of the CTM logic has been made which takes the same input as the proposed solution. Through 

the comparison of the results of this benchmark and the proposed MIP solution, it is shown that 

there is big room for improvement. This possible improvement lies mostly in the reduction of lost 

sales and the increase in on-time deliveries, while minimizing growth in inventory levels. All by 

better utilizing the available capacity and letting an optimization model make some smart trade-

offs. 
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Executive summary 

Business Problem 

Most companies which are active in the mass fashion industry sell products with highly volatile 

demand, short selling-windows, long production and transportation lead times. The typical product 

lifecycle (PLC) of the products sold is only three to six months, both due to rapidly changing 

fashion and due to the changing weather. The total lead time, including transport, is often in excess 

of three months, especially if products have to be shipped from half-way across the globe. 

Therefore, production has to start long before the customer knows which products will be available 

for purchase.  

To meet customer demand, forecasts have to be made of the demand. These forecasts are then 

used to acquire enough production capacity for the season in question. These forecasts are also 

used to make a preliminary tactical production schedule. This is used as an indication of whether 

or not it will be possible to produce the forecasted quantities at the right time. 

Through the exploration of historical literature, state-of-the-art solutions to this problem and 

logic applied by the author, a Proposed Solution to the Problem is presented.  

The problem researched in this thesis is that of the resource capacity allocation, planning all 

these products with their highly volatile demands, in tight capacity, with short lead times, no 

options for safety stock and MOQs to adhere to. All while trying to keep inventory, lost sales and 

lateness to a minimum. 

Research Question 

Due to the nature of the Capable-to-Match (CTM) planning algorithm being sequential as 

explained before, the planning is not optimized to, for example, minimize the number of late 

productions or unplanned units. As shown in the examples in the previous chapter, the CTM does 

not pull a material forward if needed, nor does it prioritize materials which have low coverage. 

The planning logic therefore seems to be subject to a big improvement.  

An alternative algorithm should be able to better utilize opportunities which can optimize the 

production planning. However, there are many ways to go about finding a solution to the planning 

problem described here. These will be explored in part in the literature review and in part by 

exploring different options in this research. This will give answer to the main research question 

which is formulated as follows. 

MRQ. How can the production planning be improved by using a different planning algorithm, 

under the same constraints? 

The wording of the Main Research Question above is in fact purposefully chosen to include 

subjectivity through the use of the word ‘improved’, rather than to include something objective 
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such as ‘mathematically optimal’. This is done because there are many objectives which may be 

optimized and some of these are conflicting with each other.  

To be able to define whether or not a different planning algorithm improves the production 

planning, Key Performance Indicators (KPIs) must be defined. To do so, KPIs must be chosen 

and/or defined where necessary. These can then be used to compare the resulting Buy Plans from 

the proposed improvement and the CTM output. The first sub question is therefore: 

SQ1. Which Key Performance Indicators should be chosen and/or defined to guide and test 

the performance of a different planning approach? 

It might seem obvious that, for example, having higher numbers of just-in-time delivery or 

lower numbers of Unplanned units would be better by default. However, it could be possible that 

a planning algorithm lets products with high Demand Plans cannibalize on those with low Demand 

Plans. This would then in turn mean that smaller demand size products might not get planned at 

all, even though the larger demand size products are getting fully planned. This might not be a big 

problem for bigger categories, which have plenty of large demand products. However, smaller 

categories only have smaller demand size products and might lose a substantial part of their 

business to the bigger ones. 

This has to be taken into consideration while answering SQ1, in order to have a comprehensive 

representation of the different stakeholders’ interests. This is done by exploring not only the 

individual KPIs’  performances, but also the interactions thereof. The second sub question is 

therefore as follows.  

SQ2. How should the chosen Key Performance Indicators’ performance and the interactions 

thereof be interpreted, to reflect the quality of the planning approach? 

Answering SQ2 will prevent ambiguity in the case of scenarios such as the one described right 

after the formulation of SQ1. These KPIs and the valuation of those can also be used to help define 

the mathematical objectives of the proposed solution. This is important as some objectives are 

contradictive. Take for example ‘Minimize Inventory Levels’ versus ‘Minimize Product Lateness’. 

The first of these objective would require that all products are produced either too late or at the 

very last minute, to be able to ship out products immediately after production and not have them 

sitting in inventory. However, the second of the objectives would require pre-producing and thus 

create inventory to utilize the low utilization of the factories in low-demand periods. A solution in 

which one of these objectives is optimal, will therefore not be optimal for the other objective – 

unless the demand is perfectly uniform over time and within capacity. 

Results 

However, it should be noted that the Benchmark is of course not the same as the CTM logic 

that is currently in place. It is, after all, an approximation which uses the same input as the Proposed 

Solution, such that they can be compared better. In fact, maybe the comparison isn’t really fair, 
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considering the age of the CTM logic and its simple, yet effective approach which can be 

understood by all.  

In reality, there might be more complications which the Proposed Solution might run into. 

This is in part because of the computation time of all the constraints and setting up the model. If 

more constraints are added to this model, the computation time will of course also increase. 

Table 1: Comparison of Key Performance Indicators of the CTM Logic and Proposed Solution, colors are the 

same as used in Figures 4.1 and 4.2. 

 CTM LOGIC PROPOSED SOLUTION   

TOTAL DP 5,805,547  100% 5,805,547  100% Difference (% of CTM) 

>3 WKS EARLY 371,785  6.40%  405,217  6.98% +33,432 +9.0% 

1-3 WKS EARLY 535,623  9.23%  610,899  10.52% +75,276 +14.1% 

IBW 4,133,747  71.20%  4,456,728  76.77% +322,981 +7.8% 

1 WK LATE 199,868  3.44%  235,031  4.05% +35,163 +17.6% 

>1 WK LATE 111,249  1.92%  83,822  1.44% -24,427 -24.7% 

UP 453,275   7.81%  13,850  0.24% -439,425 -96,9% 

PIFOT 90.3%  98.3% +8.9% 

UNITS*WKS OF 
INVENTORY 

3,760,561  4,003,962 +6.4% 

CAPACITY UTIL DEV 6.9% 5.5% -20.3% 

Of course, considering the performance of the method, I would recommend implementing it 

in the business. But I do see the implications thereof: the CTM method works in conjunction with 

SAP, the Materials Planning system used throughout the entire company. Having something that 

works with that is of course very convenient.  

However, the performance improvements that are implied throughout this research are quite 

severe. For years, the two main headaches of the business are (1) getting the hugely growing 

demand in the right place in the right time, struggling with tight resource capacities and (2) the 

constant rise of inventories. In order to solve the first problem, Nike has taken all kinds of 

precautions in order to pull production in earlier, such as through the use of Target Days Shipping 

(TDS, explained in Chapter 3.2.1) and Blind Buys (explained in Chapter 3.1.4) which in turn have 

caused increments in the Inventory Levels.  
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1. Introduction 

1.1. Company Background 

On January 25th, 1964, runner Philip Hampson "Phil" Knight and running coach William Jay 

"Bill" Bowerman shook hands and pledged $500 each to produce the first 300 pairs of Tiger 

running shoes under the improvised business name "Blue Ribbon Sports". In the summer of 1971, 

the end-date of Blue Ribbon Sports' contract with their Japanese distributor, Onitsuka Tiger, was 

closing in and Knight and Bowerman turned to a Mexican manufacturer to produce the first shoe 

under the NIKE brand name, after the winged Greek goddess of victory. After a heated lawsuit 

battle over contract breaches, Blue Ribbon Sports emerged victorious and won exclusive rights to 

the footwear names.  

Fast forward to the end of fiscal year 2018: Nike just had a 

$36.4 billion revenue year (NIKE, Inc., 2019) and employs over 

74,000 employees worldwide. NIKE, Inc. (henceforth: Nike) 

has been able to stay on top of the sporting goods market 

through strong brand support from its customers, state-of-the-

art running technology and well-made strategic business 

choices such as acquiring Converse, Hurley and Umbro - and 

subsequently letting go of the latter. Compared to the number 2 

through 5 apparel brands in terms of brand value, Nike is in a 

league of its own, as shown in Figure 1.1. 

 

1.2. Organizational Structure 

As of the 2018 fiscal year, Nike and its Jordan brand, as 

well as its subsidiaries Converse and Hurley, are governed from four business units known as 

Geographies (GEOs). These are North America (NA), Europe, Middle East & Africa (EMEA), 

Asia Pacific and Latin America (APLA) and Greater China (GC). NA and APLA are directly 

governed by World Headquarters (WHQ) in Beaverton, Oregon in the USA. EMEA sits under 

Europe Headquarters (EHQ) in Hilversum, the Netherlands. Greater China Headquarters (GCHQ) 

is located in Shanghai, China. 

The Demand Supply Management (DSM) team consists of seven subdivisions as shown in 

Figure 1.2. The highlighted team in this structure is the Supply & Inventory Planning (S&IP) team. 

Within Nike, there are three so-called Product Engines (PEs): Apparel (APP), Equipment (EQP) 

and Footwear (FTW). The Apparel PE consists of all clothing, with the exception of socks. The 

Equipment PE contains socks, all types of balls, sticks, protective gear, gloves, among other 

materials. Footwear are sneakers, flipflops and other shoes.  

 

 

Figure 1.1 Brand value over time for 

the top 5 apparel brands in US$B (Brand 

Finance, 2019) 
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As shown in the blue boxes on the left, each of the three Product Engines (PE) has its own 

Senior Director, who monitors each of the PEs on a global level. There is a Senior Director 

Inventory Operations as well, who monitors all inventory related business globally. The first blue 

box to the right of the blue arrow going across shows the Senior Director S&IP for EMEA. There 

is one of these for each of the four Geographies (GEOs). All these Senior Directors report into the 

VP S&IP. The Geography specific Senior Directors also report into the VP DSM for their 

respective GEOs. Both the VP S&IP and the four VP DSMs report into the global VP DSM. The 

structure for the EMEA S&IP teams is shown in Figure 1.3.  

The (Senior) Category Planners take place in the 11 Category teams: Football, Kids, Running, 

Men’s Training, Women’s Training, Jordan, Skateboard, Basketball, Tennis, Golf and Nike 

Sportswear – which is Nike’s lifestyle line. Depending on the number of SKUs and volume of 

demand of these categories, a planner can take place in more than one of them, if needed.  

Figure 1.2: Organizational structure of the Demand Supply Management (DSM) Team 

Figure 1.3: Structure of the S&IP Teams in EMEA 
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These category teams are cross-functional, so they also include a Demand Planner (DP) who 

forecasts demand on SKU level, a Category Sales Director (CSD) who is the main contact for third 

party retailers, a Category Sales Manager (CSM) who is the right-hand of the CSD, a Merchandiser 

who negotiates with global which products will go into the season and a Launch Coordinator who 

keeps track of all SKUs with important launch dates. 

The factories which produce Nike products are not a part of Nike. They do however have 

contracts with Nike in which production and demand minimums are agreed upon. A single factory 

never focuses on one single Category of products and one single Category’s products are never all 

in one factory. By doing this, risks are spread for both the factories and the categories.  

If, for example, there are delays in a factory, it does not completely ruin a single Category’s 

season. The other way around, if a Category is having a bad season, this reduction in demand is 

spread over different factories. This is important because Nike has to live up to the agreed 

production demand, or it could lead to monetary claims or discontinuation from the factories’ 

sides. 

To get all the right products in the right time at the right place, a lot of processes have to take 

place. After the products are designed and sampled, the regions have to decide which products to 

take into the assortment. To make this less abstract, let’s use the most sold shoe in Nike: the ‘Air 

Force 1’ (AF1) as example. Every three-month period, also known as a season, a certain range of 

products are on offer. The AF1 has different designs, materials or colorways mostly every season, 

and keeps some of the old ones in the assortment as well. In the following chapters, the AF1 will 

be used for example reasons more often. 

1.3. Planning Activities 

The Supply and Inventory Planning (S&IP) team has to review and fix the production planning 

for Nike where necessary. Before they can do so, a few other processes have to be completed. In 

order to fully understand the work that the S&IP team does, those processes which are done 

beforehand are described in this chapter. 

1.3.1. Design to Forecast (Demand Plan) 

Let’s take the Air Force 1 (AF1) shoe as an example again and say that there are six different 

types of the AF1 in a certain season which all have their own Stock Keeping Units (SKU). A 

certain region, such as the Europe, Middle East & Africa (EMEA), might choose to take four out 

of these six SKUs in their assortment if they do not think there will be enough demand in their 

markets to launch all of the different types of the AF1.  

The EMEA sales team will then communicate to their retailers (Zalando, JD, etc.) which SKUs 

they are planning to have available for sale. The retailers will then create forecasts for the available 

SKUs. After communicating these forecasts back to Nike, a general forecast for demand will be 

created. This is done by combining Nike’s own financial goals for the season with the consolidated 

forecasts from the individual retailers, including their own Nike.com platform. This general 

forecast is for an entire season of three months and includes the moments in time where the demand 
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will sit. In other words, taking our example from earlier again, it might be that two of the SKUs of 

the AF1 are entering the market in the first month of the season so those have demand sitting in 

every month of the season, starting from the very first week. The other two SKUs however might 

only come onto the market in the second month and therefore have no demand sitting in the first 

four weeks of the season. This time-bound demand forecast is called the ‘Demand Plan’.  

1.3.2. Demand Plan to Buy Plan 

Once the Demand Plan is in place, the Global Supply Planning (GSP) team uses the forecasts 

to allocate which factories will produce which SKUs, usually with different colorways of the same 

styles in a single factory as they might need the same production tools or raw materials. During 

this process, the GSP team makes sure that there is enough capacity for all units of demand in the 

forecasts. Some products might need special raw materials or processes, complicating the 

production. Examples of this are airbags for in shoes – such as in our AF1 example – or yarn for 

knit materials, which also take more time to produce as knitting is a more time-consuming process 

than cutting. 

Once the demand plan (forecasts including the required delivery dates), assigned factories and 

lead times for each product are in the systems, a planning algorithm tries to create a so-called ‘Buy 

Plan’. This is basically a schedule of how many units of each SKU have to be placed on Purchase 

Orders (POs) and when, in order for them to arrive on time for the customers. It is possible that 

the total demand for a product is split up over several buy weeks because of capacity constraints 

or simply because the full quantity is not needed immediately at the start of its lifecycle. In our 

example, it could be that 10,000 units are put on PO to meet the demand of the first month of the 

season, and then 7,500 more are placed a month later to meet the demand of the second month. 

This allows for excess capacity in month 1 to be utilized by other materials and less stock in the 

warehouse during the first month. 

1.3.3. The Planning Algorithm (CTM) 

This planning algorithm that creates the Buy Plan is the SAP extension called ‘Capable-To-

Match’ (CTM). Since the implementation of the CTM method in 2016, the amount of manual work 

that has to be done to plan and put the goods on Purchase Orders has gone down substantially. 

Furthermore, the performance has gone up in terms of products being planned on time. The 

detailed workings of the CTM, including a pseudocode, are described in Chapter 3.1. To 

understand the following parts, it is important to already describe the basic workings, as follows. 

For its inputs, the CTM uses the Demand Plan, factory issued capacity constraints, order and 

delivery minimums, production and transportation lead times and parameters showing by how 

much the required delivery date can be relaxed. Purchase Orders are placed once per two weeks. 

This happens automatically for all units that are scheduled to be bought on a certain date. This 

would mean that only a single Buy Plan is executed per twee weeks. The CTM however actually 

produces a Buy Plan twice per week, four times as often as necessary. 

The reason for these four CTM runs per buy, is such that the Buy Plan output can be reviewed 

by Planners, and levers can be pulled if necessary. This is done because the CTM is not 

programmed to optimize its output, resulting in a suboptimal Buy Plan. By pulling the necessary 
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levers, communicating with the Global Supply Plan teams and discussing issues with cross-

functional Category teams, the CTM can be pushed to create a better output. In the worst cases, 

Purchase Orders must be placed manually to be able to meet demand. This does however interfere 

with the Buy Plan, as capacity is consumed which was intended to be used for other materials.  

The CTM makes a feasible production schedule. It does so 

by using the following to decide the sequence to plan all demand 

in.  

1. Demand Priority Class; 

2. Demand Ideal Buy Week (IBW); 

3. Demand Type; 

4. First Come First Serve (FCFS) Logic.  

There are six Priority Classes for Apparel and Equipment 

products (Figure 1.4), but only four for Footwear products. 

These classes are Promo demand, Launch demand, Short 

Leadtime (SLT) demand and three Demand buckets that signify 

the importance of the timing with regard to the Customer 

Required Date (CRD). For this research, the focus is on 

Footwear products though, the reason for which is explained in Chapter 1.6.  

Taking the average from all demand from April 2019 to March 2020, the average spread of 

all demand is found. It is about 0.73% of all demand which sits in the Promo prioritization, 9.9% 

sits in the Launch prioritization, 30.1% sits in Short Leadtime and the remaining 59.2% is left in 

the lowest priority scale. That means that the majority of what the CTM is trying to plan for a 

single buy week is the same in priority. This allows products in the first two priorities to be planned 

with (almost) 100% certainty, demand in the third priority class are also still relatively safe, but it 

does not help in the allocation of capacity to the majority of the business.  

The second attribute, the IBW, is the week in which the units should be purchased to exactly 

meet the Customer Required Date (CRD), considering all production and transportation lead times. 

The calculation of the IBW is further detailed in Chapter 3.4.5 as well. So, for each Priority Class 

bucket, the demand is sorted by IBW, then it is sorted within each of those IBWs by Demand Type. 

This Demand Type split is the same for each Priority Class. Finally, the CTM applies a FCFS logic 

based on the Product Activation Timestamp (PAT) which denotes when the materials’ Demand 

Plans were last altered in the system. This is only used as a tiebreaker for products where all other 

three attributes are the exact same. 

In some cases, units of demand do not get scheduled to be bought. This can be because the 

CRD cannot be met due to the Lead Time. Another reason can be that production or destination 

minimums are not met. Yet another reason could be that the factory simply does not have the 

capacity to produce the units. In any of these cases, the units fall in the planning bucket called 

‘Unplanned’ and are noted in the Buy Plan as such, including the reason why.  

  

Figure 1.4: Prioritization Classes 

and Demand Types 
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Example 1.1 

The Demand Plan for all the products from the ‘Running’ Category is uploaded in the system 

before that of the ‘Skateboard’ Category. If both Categories have units of products in the same 

Factory, with the same IBWs and Priority 3, the products in question from Running get planned 

to be bought before the Skateboard ones – given that capacity is enough. This could possibly 

cause more Skateboard goods to go Unplanned than in the situation where the Demand Plans 

were uploaded the other way around.   

Something else that might happen is fluctuation over time in the Demand quantities as a 

product might be doing better (or worse) than forecasted and therefore might see more (or less) 

demand from retailers. It is also possible that the available capacity decreases because of delays in 

production or raw materials.  In both cases, this can lead to delays in the delivery of products, or 

to units going Unplanned which were in a previous Buy Plan.  

1.3.4. Reviewing the Buy Plan 

The team of Supply & Inventory Planners (S&IP) in each of Nike’s four regions review the 

Buy Plan that the ‘Capable-to-Match’ (CTM) outputs. After each CTM run, the planners look at 

the output and by adjusting planning parameters, they try to make the CTM find a Buy Plan that 

is an even better fit to what is needed in the market. This includes trying to get units that are 

Unplanned into the Buy Plan. Examples of these parameters that can be adjusted are the number 

of weeks that a batch of units of an SKU may come in earlier (or later – that is a separate parameter 

called “Build Late”) than the ideal date. Another way to push the system is by (temporarily) putting 

a ‘Done Buying flag’ on an SKU which stops the system from purchasing more units of that 

product. Finally, it is possible to increase the Forecasted demand in order to meet production or 

destination minimums.  

In practice however, having eleven different categories in each of the four different regions 

working on all kinds of parameters for a plethora of materials that are sourced in a limited number 

of factories, often makes for unexpected results. Not only that, it is possible that solving the 

Unplanned units – those which do not fit in the Buy Plan due to capacity, minimums or lead time 

– is simply impossible. This can be because a factory is planned full in the foreseeable future, it is 

seeing big delays in production, or raw materials are missing.  

If the period in which materials can be bought to meet the demand of a Season is (almost) 

over, being able to still get any units at all might be in jeopardy. It is possible to reach out to the 

Global Supply Planning (GSP) team to discuss if there is any possible way to get the units. This is 

all manual work though, for example by switching other units which are on a standing Purchase 

Order out for the required ones.  

It should be noted that any tweaks done to get units into the Buy Plan, can cause other units 

to fall out of it, somewhere down the line. Especially when the constraints are very tight – such as 

when capacity is fully utilized – relaxing one product’s required date may get it to be planned 

where another product was planned. Thus, resulting in a knock-on effect where other products 

have to be pushed out to be “Build Late”, or might fall out of the Buy Plan and into Unplanned 
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completely. Due to the complexity of the CTM algorithm, it is impossible to see which factor leads 

exactly to what result. In other words, if a material which was planned fine, goes into Unplanned, 

it could be any other material that is being produced in the factory that pushed it out. 

1.3.5. Exception-Based Planning 

The vast majority of the exception-based work that the Planners have to do is to adjust 

parameters to get units of materials into the Buy Plan. Most of it requires little judgement as long 

as the solution is within certain thresholds. Such as a product needing to be allowed to get produced 

two weeks later if there was two weeks of slack time on the production to begin with. Another 

example where it is not this simple is illustrated in Example 1.2.  

Example 1.2 

Situation: A batch X of product ABC is planned to be bought such that they arrive one week 

before (-1) needed but are not converted into purchase orders yet. For all production weeks before 

the currently planned week, the resources are already fully utilized.  

Issue: Due to production delays, the resources for the production in the originally planned week 

and the two weeks after, are taken by products that have earlier Customer Required Dates (CRD). 

This basically shifts the production plan forward by three weeks, but only if the products that are 

shifted allow for the shift. This should cause batch X to be pushed out but unfortunately, its 

allowed lateness parameter setting is 1 week. Therefore, the batch falls into the ‘unplanned’ 

bucket. In other words: unless space frees up, or the parameter settings are changed, it will not 

be produced. 

Possible action: The parameter setting can be increased, such that batch X can be allowed to be 

produced late (+3). Possible consequences: 

- If the action is taken, the retailers get the batch two weeks later than ideal (+2); 

- If the action is not taken, the retailers do not get this batch at all. 

Taking the action seems to be the obvious choice here since a product coming in two weeks later, 

is better than not at all. However, this will induce a knock-on effect. In other words, if every 

batch is allowed to be pushed a bit later, the exact same issue will happen the next week and the 

next, etc. It could be a better choice to bite the bullet, in order for other orders to still arrive as 

planned. 

Although apparently a simple choice at first, this is not something that can be decided upon 

automatically. The cons might outweigh the pros. In fact, it could be possible that a new product, 

or even the exact same product but in a different colorway, is coming out the very next month. In 

that case, the demand for the previous material might cannibalize on the other product’s demand, 

especially if it gets price reductions to clear out stock. This could mean that not all units are needed, 

and the batch can be dropped or reduced in size. 

These types of issues, where delays cause ripple effects in the supply, can be comprehended 

and decided upon quite easily. Other issues however are more complex and do not have a very 

clear cause. To illustrate one such situation, see Example 1.3, which is an extremely simplified 
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situation of reality. A solution to a problem like this can only be found by increasing late/early 

allowance parameters of whichever batches are falling into the unplanned bucket. It could be 

prevented though, if the planning logic would allow shifting to less than ideal buy dates, to 

accommodate other product batches. 

Example 1.3 

Situation: All demand can be produced up to 2 weeks earlier and 1 weeks later than the Ideal Buy 

Week (IBW – that is the week that would make sure to get the units at the retailer exactly on their 

required date, explained further in Chapter 3.4.5). Products A and B are both manufactured in 

the same Factory and fall in the lowest priority bucket. The available resource capacity and 

demands for both products are shown in Table 1.1 and Figure 1.5. 

Table 1.1: Example capacity and demand 

Week Resource 

Capacity 

Product A 

Demand 

Product B 

Demand 

47 25 20 - 

48 25 25 - 

49 5 5 - 

50 - - 5 

51 - - - 

 

Since the CTM plans per period, all of Product 

A’s demand will be planned in their IBW just 

fine, as there is enough resource capacity. 

Issue: Product B’s demand sits outside of available demand though, even when trying to apply 

its maximum earliness (-2 weeks) or lateness (+1 week) parameters. 

Possible actions: Adjust Product B’s earliness (lateness) parameter to allow it to be produced 

earlier (later). Possible consequences: 

- If product B gets produced in week 47, it has to be bought a lot earlier than normal, meaning 

the chance that the demand for the product is subject to change is bigger. Furthermore, it will 

be sitting in inventory for nearly a month until it is shipped.  

- If product B gets produced in week 1 of the next year (if that has resource capacity again), the 

consequences will be the same as in example 1.2’s action-taken scenario. 

Producing it early will generate as many extra inventory over time. However, because of the 

earliness of the buy of product B, any deviations in its demand might render the produced number 

either insufficient or more than necessary. Producing it late gets rid of that problem but creates 

the same issues as in example 1.2. There are quite some factors which might make one of the 

solutions more favorable than the other, such as product-specific holding costs, costs involved 

for having extra SKUs in the warehouse – which cannot be stored in the same physical location 

– and whether there’s a risk of damage to the goods while in the warehouse, to name a few.  

Figure 1.5: Example capacity and demand, graphed 
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Logically, the best option would be to push 5k units of Product A back to the available capacity 

in week 47. But there is no way to make that happen using the current logic and parameters, bar 

playing around with the demand batch information itself. A local search algorithm or a Linear 

Programming solution could move demand around and find (local) optimums for a certain 

objective function. This could improve the initial Buy Plan without requiring any intervention from 

the local planning teams. 

Example 1.2 shows that there are planning issues which need assessment from planners to 

decide on an action and are comprehensible enough to do so by looking at a couple of factors. 

However, example 1.3 – which, again, is very simplified – shows that there are also planning issues 

which are very hard to track by hand but can be kept from reaching the planners if the algorithm 

is able to prevent the problems by itself. 

1.3.6. Problem Size 

The situation as it is, requires the Supply and Inventory Planning (S&IP) team to figure out 

which parameters to tweak and how, in order to solve these issues. This is very time-consuming 

and can – such as is the case in a scenario like that of example 1.3 – be impossible. 

Because of this interdependence of planned productions, it is evident that an optimal solution 

cannot be found in a short time. More specifically and to give more of a sense of size: in the Buy 

Plan of July 15th, 2019, there are 65,833 batches of materials planned to be bought which sum up 

to 180.4 million units and still have 16.8 million Unplanned units. If the average batch size of the 

Unplanned units is comparable, that would mean there are just under 72,000 batches to be 

produced as per the following calculation: 

65,833 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 ∗
16.8 𝑀 𝑢𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 + 180.4 𝑀 𝑝𝑙𝑎𝑛𝑛𝑒𝑑

180.4 𝑀 𝑝𝑙𝑎𝑛𝑛𝑒𝑑
= 71,964 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 

Each batch is by default allowed to be planned up to 9 weeks prior, or 1 week later than the 

Ideal Buy Week (IBW) and can go unplanned as mentioned before. This makes for 12 different 

states that a batch can be in. There are materials that have different default parameter settings, but 

those are few, and the ones with shorter horizons cancel out most of the longer horizon materials. 

Since each batch can inhibit one of these 12 possible spaces, that means that there are 

approximately 71,96412 different Buy Plans which can be made with this number of batches. Of 

course, there is a slight nuance to be made, as capacity and minimum order quantity constraints 

might not allow some options. However, many products have extended lateness/earliness 

parameter settings. 

Out of these many, many options there is however a big chunk that are qualitatively bad plans. 

Since the one considered here is created by the CTM, it can be considered a pretty simply achieved 

Buy Plan. It could be considered that any Buy Plan which has fewer batches planned than this one 

can be subtracted from the overall number. That would mean that there would ‘only’ be 65,83311 

Buy Plans left that might be better than the current one. After that, it is hard to decide which (set 

of) Buy Plans is actually better or worse than this one unless performances of both are compared. 
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Odds are quite probable that better Buy Plan can be found with a logic that aims to optimize 

towards a certain target, rather than to find a feasible plan with minor logic. However, considering 

the number of options, it is hard to proof – let alone find – this optimum buy plan. And even if 

such a solution were found, the definition of a ‘good’ Buy Plan might differ from person to person 

as well. Each criterium added to this definition would continue to add exponential complexity to 

finding the ‘best’ one. This codependency of possible outcomes and the sheer complexity of both 

the criteria and possibilities leads to believe that this planning problem is at least in the NP 

(nondeterministic polynomial) class of computational hardness. As further described in the 

Literature Review, NP-hardness for a similar problem was claimed by Dixon and Silver (1981) 

and logically derived by the author from a study by Lagoudakis (1996). 

1.4. Problem Statement 

1.4.1. Demand Planning Instability 

Demand planning is unstable due to the combination of the following properties of this 

specific production planning problem. See also the timeline in Figure 1.6. 

- Most products have short Product Life Cycles (3-6 months); 

- The volume of product demand always starts high and goes down throughout the season; 

- Production and delivery lead times are long (4-6 months); 

- Sales orders come in only 6 months before the Customer Required Date (CRD); 

- Most products are new releases of which forecasts are based on similar products, if available; 

- These forecasts are used to choose production plants for all products, with tight resource 

capacity. 

1.4.2. Maximum Earliness/Lateness Impact 

The Maximum Earliness (ME) parameter of a batch of demand is set to 9 weeks by default in 

the hope to have materials too soon, rather than too late. Mostly, resource capacity is utilized by 

demand that is planned close to the Ideal Buy Week (IBW). Then, when running into capacity 

issues later, the demand batches have to be either planned: 

- Not at all (‘Unplanned’), because the available slot is out of the range of the ME of the demand 

batch (like Example 1.3), or; 

- Very early, since it has to skip all full weeks between it and the available slot which might be 

months earlier (i.e. an extremer version of Example 1.2). This might even lead to: 

o Blind Buys, orders of which the volume and timing are based fully on forecasts, which are 

placed at factories before the Customer Order Deadline has passed (see Figure 1.6); 

Figure 1.6: Example timeline of a product which might have to resort to Blind Buys if resource capacity is very tight 
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o High inventories, due to materials being (very) early and sitting in DC, waiting idly to be 

shipped to customers. 

This can be caused by insufficient resource capacity as mentioned before but can also be due 

to not being able to meet Minimum Order Quantities (MOQ). In this case, if a batch of demand 

can be pulled forward to an earlier date, in order to help meet the MOQ, the CTM does so.  

The Maximum Lateness (ML) parameter of a batch is not used until there is absolutely no 

capacity left to plan a batch of demand early. In most cases, it makes sense to prefer to have 

materials too early than too late. In practice however, it seems that the diminishing sales do not 

really occur until 3-4 weeks lateness. This was researched internally at Nike EHQ.  

Resource Capacity issues are common when trying to plan the actual orders for production 

due to the high volatility of the forecasted demand, the strong seasonality of the products and the 

tightness of the resource capacity. Furthermore, factories have Minimum Order Quantities (MOQ) 

per SKU, per week, which have to be met. There are two types of MOQ in place at Nike. One is 

the so-called Production Minimum (PM) which can be met by combining orders from all over the 

world, if necessary. The second minimum they use however, called Destination Minimums, are 

not only per SKU, but also per target location. Unless there are exceptions negotiated beforehand, 

the Production Minimums are 3000 units, and the Destination Minimums are 240 units for 

Footwear products. There are some exceptions to this, which will be addressed in Chapter 3.1.3 as 

well. Furthermore, each batch of demand has predetermined maximum earliness and lateness. 

These are generally set to maximum 9 weeks early and 1 week late.  

The problem researched in this thesis is that of the resource capacity allocation, planning all 

these products with their highly volatile demands, in tight capacity, with short lead times, no 

options for safety stock and MOQs to adhere to. All while trying to keep inventory, lost sales and 

lateness to a minimum. 

1.5. Research Question 

Due to the nature of the Capable-to-Match (CTM) planning algorithm being sequential as 

explained before, the planning is not optimized to, for example, minimize the number of late 

productions or unplanned units. As shown in the examples in the previous chapter, the CTM does 

not pull a material forward if needed, nor does it prioritize materials which have low coverage. 

The planning logic therefore seems to be subject to a big improvement.  

An alternative algorithm should be able to better utilize opportunities which can optimize the 

production planning. However, there are many ways to go about finding a solution to the planning 

problem described here. These will be explored in part in the literature review and in part by 

exploring different options in this research. This will give answer to the main research question 

which is formulated as follows. 

MRQ. How can the production planning be improved by using a different planning algorithm, 

under the same constraints? 
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The wording of the Main Research Question above is in fact purposefully chosen to include 

subjectivity through the use of the word ‘improved’, rather than to include something objective 

such as ‘mathematically optimal’. This is done because there are many objectives which may be 

optimized and some of these are conflicting with each other.  

To be able to define whether or not a different planning algorithm improves the production 

planning, Key Performance Indicators (KPIs) must be defined. To do so, KPIs must be chosen 

and/or defined where necessary. These can then be used to compare the resulting Buy Plans from 

the proposed improvement and the CTM output. The first sub question is therefore: 

SQ1. Which Key Performance Indicators should be chosen and/or defined to guide and test 

the performance of a different planning approach? 

It might seem obvious that, for example, having higher numbers of just-in-time delivery or 

lower numbers of Unplanned units would be better by default. However, it could be possible that 

a planning algorithm lets products with high Demand Plans cannibalize on those with low Demand 

Plans. This would then in turn mean that smaller demand size products might not get planned at 

all, even though the larger demand size products are getting fully planned. This might not be a big 

problem for bigger categories, which have plenty of large demand products. However, smaller 

categories only have smaller demand size products and might lose a substantial part of their 

business to the bigger ones. 

This has to be taken into consideration while answering SQ1, in order to have a comprehensive 

representation of the different stakeholders’ interests. This is done by exploring not only the 

individual KPIs’  performances, but also the interactions thereof. The second sub question is 

therefore as follows.  

SQ2. How should the chosen Key Performance Indicators’ performance and the interactions 

thereof be interpreted, to reflect the quality of the planning approach? 

Answering SQ2 will prevent ambiguity in the case of scenarios such as the one described right 

after the formulation of SQ1. These KPIs and the valuation of those can also be used to help define 

the mathematical objectives of the proposed solution. This is important as some objectives are 

contradictive. Take for example ‘Minimize Inventory Levels’ versus ‘Minimize Product Lateness’. 

The first of these objective would require that all products are produced either too late or at the 

very last minute, to be able to ship out products immediately after production and not have them 

sitting in inventory. However, the second of the objectives would require pre-producing and thus 

create inventory to utilize the low utilization of the factories in low-demand periods. A solution in 

which one of these objectives is optimal, will therefore not be optimal for the other objective – 

unless the demand is perfectly uniform over time and within capacity. 

1.6. Scope 

1.6.1. Factory 

The biggest planning issue is tight capacity constraints, caused by lean capacity procurement, 

forecasting inaccuracies and production delays. The consequences of this are always on a factory 
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level. Since products from each of the three different product types (apparel, footwear and 

equipment) are produced in mutually exclusive sets of factories, it is possible to focus on a specific 

product type and not worry about other product types in the same factories.  

Products from a single category (running, training, basketball, etc.) however, are spread over 

different factories. In other words, focusing on a single category’s products will hardly reduce the 

scope in terms of the number of factories to focus on, as most factories will still be involved. 

Moreover, if not all products within each of the factories are in the scope of a single category and 

the consequences for those products would not be considered, that would result in conclusions 

which do not reflect consequences to other categories’ materials. This might then cause the result 

to be interpreted more positively than it actually is. 

If the focus is on a specific factory, rather than a category however, the consequences for each 

of the products produced in said factory would be considered. This is only the case for footwear 

factories however, as apparel and equipment products are produced in factories which produce 

materials for other brands as well. These non-footwear factories do have dedicated capacity for 

Nike products, but these factories might retroactively change the resource capacity available due 

to fluctuations in the need for capacity of another company. The other way around, where Nike is 

not going to utilize all the capacity it initially though, is also possible. This might mean that 

available capacity data in the system was already adjusted to reflect these changes. Thus, resulting 

in false utilization rates of the factories, for example. 

Therefore, in order to have as many variables in control as possible, it would be better to focus 

on the footwear factories. This allows for not only independency from other companies, but also 

for a complete overview of all products produced there. This means that all consequences are taken 

into consideration for all materials produced in the factory. 

1.6.2. Time 

Another factor to consider is the moment in time from which to pull the data. This will be 

further discussed in Chapter 3.4. However, the number of moments to consider and the distribution 

of the demand over time can already be addressed in order to get a general idea.  

Multiple moments in time can be evaluated, in order to see how the volatility of demand has 

an effect on the performance of the proposed solution. However, a well-chosen moment in time 

can be as valuable, if not more valuable because it allows a deeper dive in the results for that 

dataset. An example of how to dive deeper into such a dataset is by splitting it into subsets of 

demand. Since the demand is volatile over time, it is logical that demand in the system for a 

moment later in time, will always be subject to more changes than demand which is already due 

soon. Therefore, prioritizing the earlier demand might be valuable for a good solution. This is 

especially the case when using a planning algorithm which treats the lateness, earliness and lost 

sales of any future demand in the exact same way. 

As mentioned before, the demand at Nike has strong seasonality. This is not only in the sense 

of flipflops being sold in spring and summer and outerwear in fall and winter. Products always see 

a peak in demand at the start of the season and go down significantly towards the end. This makes 

sense as the market appetite for a product is highest when it is just released. Then, towards the end 
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of the season, the new products are just around the corner and people are less interested in the 

current season’s materials. Not only that, towards the end of the season – and therefore towards 

the end of a products lifecycle – discounts are often applied to get rid of materials, thus lowering 

overall margins. Since Wallstreet uses growth in revenue, inventory and margins to calculate stock 

stability, it is important to keep discounts to a minimum. 

One of the dashboards used by the DSM department is called the Planned In Full On Time 

(PIFOT) dashboard. This dashboard shows the planning status of all materials, on color level, in 

comparison to the Ideal Buy Weeks. This allows a planner to see how all materials do with regard 

to earliness, lateness and how many units of demand 

are unplanned. 

This dashboard also has an overview of how 

materials are ‘flowed’ throughout a season. In other 

words: how are sales orders distributed over months 

within a season? Figure 1.7 shows the overall 

demand for 2019 graphed against the months in 

which they are required. The y-axis shows the 

demand linearly, but the exact numbers are censored. 

These are however irrelevant to see how much 

variation there is in product demand. Often resource 

capacity at the factory is quite constant over time, so 

that means that early-season products have to be 

pulled forward into the low-demand part of the 

previous season, or they are postponed to the low-

demand part of the current season.  

In order to give the proposed solution a thorough test, it is important to take a dataset where 

there are still trying circumstances with regard to the amount of demand to be planned in each 

week. The demand numbers still shift vigorously throughout the season six months prior, after the 

Order Entry Deadline (OED). The changes are usually caused by the cutting away of demand that 

cannot be met and by extending the Maximum Lateness (ML) settings in an attempt to pull the 

demand into the Buy Plan late. A good dataset would therefore be at the very start of a season, 

since it will have the least changes made to the demand of the demand two seasons later but will 

have the actual demand numbers in the books already. 
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Customer Required Dates (CRD) 
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2. Literature Review 

2.1. Economic Optimization 

The origins of the production planning problem and historical methods that have been used to 

tackle it are researched first. Many articles take minimizing costs associated with production and 

inventory as objective (Dannerstedt, 1955; Charnes, et al., 1955; Spurrell, 1967; Hausman, 

Peterson, 1972; Lambrecht, Vander Eecken, 1978) This is an expected starting point for the 

research into the topic as minimizing costs maximizes profits if all else is kept equal.  

Overhead costs can theoretically be left out since these remain unchanged for each execution 

of the optimization. Inventory costs are a bit ambiguous then though, as it is not clear what costs 

are included in these. Running warehouses evidently costs money because of labor, machine usage 

and depreciation and expansions if needed. Some of these are also overhead though. So, should 

these costs be included in the objective function then? As a matter of fact, if not all costs are 

included, the costs calculated might be under- or overstated for either or both costs factors. 

In some articles, extra costs are added to the models to find an optimal solution, such as setup, 

changeover or lost sales costs (Wagner, Whitin, 1958; Wagner, Shetty, 1962; Eppen, et al., 1969; 

Florian, Klein, 1971; Jannagathan, Rao, 1973; Walker, 1980; Ruth, 1981) If the costs route is 

taken, this is a step forward as it depicts reality better. However, margins might differ from product 

to product just as production costs might differ. This raises the question if revenue should be 

included in the objective function as well. Some literature takes this route, maximizing the profit 

by minimizing costs as well as maximizing revenue in one function (Lee, Aronofsky, 1958) This 

seems to be the most comprehensive method when going down the financial route.  

In the case of this research however, it is not a matter of reducing costs or increasing profits. 

All demand must be covered as much as possible, timeliness is the only reason to not have demand 

in the system. This does translate to penalties for earliness and tardiness though, as cumulative 

inventory levels require enormous expansions to warehouses. This is impossible to translate 

directly to a product-specific holding cost, not in the least because of the difference in storage 

volume consumption, say between a down filled winter jacket and a pair of flip-flops for example. 

2.2. NP-Hardness 

In the research done by Dixon and Silver (1981) into a heuristic procedure for the lot-sizing 

problem, the computational complexity of the problem is briefly discussed. They mention that it, 

the Dynamic Lot-Sizing Problem with two commodities and constant capacity, is NP-hard. 

Unfortunately, the research they reference for this is Dixon’s own unpublished graduation thesis.  

The computational complexity raises the question whether the subject of this research is also 

NP-hard. The problem in question has multiple items, a single level (no interdependent products), 

one constrained resource (production capacity), due dates, minimum order quantities and lost sales. 

This makes it similar to a Resource Allocation Problem (RAP) where each time period has limited 
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resources which can be used to meet demand. According to Darmann, Pferschy and Schauer 

(2010), the RAP is NP-hard as it can be reduced to a 0-1 Knapsack problem.  

The 0-1 Knapsack problem has a single capacity constraint, usually referred to as a maximum 

‘weight’ which the knapsack can contain. There are some items 𝐼 ∈ {𝑖1, 𝑖2, … , 𝑖𝑛}, each with weight 

𝑊 ∈ {𝑤1, 𝑤2, … , 𝑤𝑛} and profit 𝑃 ∈ {𝑝1, 𝑝2, … , 𝑝𝑛}. The objective is to maximize the profit 

without going over the maximum weight of the knapsack. Each item can either be included (1) or 

excluded (0) from the knapsack, hence the name of the problem. The 0-1 Knapsack problem was 

proven to be NP-hard by Lagoudakis (1996). Since the problem at hand translates to a further 

constrained set of knapsack problems with non-integer solutions – i.e. a proportion of a demand 

batch can be allocated, it is obvious that this problem is also NP-hard. Because of the NP-hardness 

of the problem, there is no absolute method to solve the problem. The best that can be done 

approximates optimality using heuristics and/or mathematical programming.  

2.3. Timeliness optimization 

Starting with Orlicky’s documentation of the use and inception of the Material Resource 

Planning (MRP) system (1975), optimization in pursuit of pure timeliness to meet demand became 

more and more common. This is how many companies still work today and is without a doubt a 

fundamental part of tracking inventory, orders, production and coverage of demand to this day.  

Some literature concerning the freezing of the Material Production Schedule (MPS) that 

follows from the MRP is discussed. This concept seems useful for the splitting up of the future 

demand into chunks, which can individually be optimized. By doing so, the schedule of the earlier 

demand can remain unaltered, while the rest of the demand can still be planned to optimality. 

Unfortunately, this is not the type of ‘freezing’ the authors (Sridharan, et al., 1987; Xie, et al., 

2003; Diaz-Madroñero, et al., 2014) mean. Instead, they consider freezing from optimization over 

optimization. This would mean that part of the future orders that are yet to be placed, are already 

set in stone for a new optimization run. Following, these will be unalterable and possibly cause 

over- or underbuying of a commodity due to this. They discuss the usefulness of this, because it 

allows the production plants to prepare the job sequencing in advance. 

2.4. Exploration of current state 

The different production strategies are 

reviewed next. The strategies shown in Figure 

2.1 are the strategies commonly used in the 

industry as discussed by Rudberg and Wikner 

(2004). The Make-to-Stock (MTS) strategy 

and Make-to-Order (MTO) strategies 

specifically require some extra focus as they 

are most commonly used. Segal (2019) 

discusses the elements an MTS strategy 

requires, such as safety-stock possibilities 

which are not possible with Nike’s materials in 
Figure 2.1. The four most common different production 

strategies (Rudberg, Wikner, 2004) 
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the scope of this research. The MTO strategy are discussed by Köber and Heinecke (2012). They 

explain that MTO strategies are usually used for highly customizable materials, which allow users 

to customize their products. The materials in the scope of this research cannot be produced using 

this strategy because the lead times are too long.  

Because of the specific characteristics that demand has at Nike (long lead times, short 

lifecycle, etc.), the method explained in Nike founder Phil Knight’s biography, “Shoe Dog” 

(Knight, 2016), still seems to be the best option to produce the demand. This method requires 

business customers to place orders six months in advance. By doing so, a production planning can 

be finalized and buy plans can be converted to orders once the Ideal Buy Week (IBW) for products 

comes around. 

The Capable-to-Match planning logic which is currently in place is described in detail by 

Kallrath and Maindl (2006) who explain that it was originally developed for the Semiconductors 

industry. The CTM logic is not mentioned in many articles. However, in one article, it is critiqued 

for being complicated to set up (Kepczynski, Ghita, Jandhyala, Sankaran, Boyle, 2019). On the 

other hand, it is noted that a plus for the logic is that it is not a black box like many other automated 

planning systems (Guimaraes, Klabjan and Almada-Lobo (2015). In other words, the system 

follows a pre-defined set of rules which can be logically followed. Knowing how the input is 

changed for this system, technically allows the user to determine what repercussions that will have 

on the output of it. 

2.5. Specific MIP approaches 

Further applications of Mixed Integer Planning (MIP) logic are explored to solve the issue at 

hand. Mathematical programming is the most mathematically feasible solution offered in the 

literature for this problem, considering the size of the problem, as discussed in Chapter 1.3.6. 

Among the mathematical programming options, Mixed Integer Programming is the most 

mathematically logical option to pursue because it allows penalties and all necessary constraints 

to be included in the model. 

The other solution methods found in Chapter 2.1 include enumeration by mapping out all 

possible decisions (Florian, Klein, 1971), heuristics (Eppen, Gould, Pashigian, 1969; Lee, Shaikh, 

1969; Hausman, Peterson, 1972) and even game theory (Shubik, 1983) – albeit this last one is not 

used for the exact purpose this research is pursuing. These other methods are tedious and require 

building models from the ground up, whereas mathematical programming can be done by 

employing solvers, which have been optimized for efficiency for years and years.  

Looking specifically at MIP solutions which use the quantity of each product in each period 

to be produced as a decision variable, some relevant articles are found. Just as before, these focus 

on the minimization of costs. This, again, is common and logical, but raises the question what is 

and what is not included and, more importantly, what should and should not be included. The 

article by Hung and Hu (1998) does include revenue as well in its calculation, to be more complete. 

All articles discussed in this chapter have constraint on the amount of available production 

time. The paper by Omar and Teo (2007) also includes a maximum inventory level though. This 
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creates a maximum earliness, due to limited capacity. In this research, there is no such hard 

maximum, but inventory levels should be minimized as much as possible. It would be interesting 

to include such a constraint but considering the time between ordering and delivery at the 

warehouses, preventive measures can be made well in time to store the extra inventory.  

Though not exactly used as a Minimum Order Quantity (MOQ), Hung and Hu (1998) do use 

a binary variable in the constraints which allows production of a product if that binary variable is 

1. This can be used to create MOQ constraints as well, as it would be able to set a flexible minimum 

for production, depending on whether a product is produced in that time slot at all. Omar and Teo 

(2007) use this method and formulate the constraint in such a way that a product is never 

unnecessarily setup if it is not produced in a time period. Now this last part is logical if there are 

setup costs. In the case of this research however, there are no setup costs, so this is essential to 

include. 

Finally, lost sales are included in one of the setups by Sung and Maravelias (2008). There’s 

not much to say about it, they simply let products fall out of the schedule against a certain cost. 

This allows for the MIP to choose whether or not to include a product if the benefits outweigh the 

lost sales. This is necessary for this research as well. 

2.6. Resource Utilization Smoothing 

Finally, resource utilization smoothing is explored. Some alternative solutions are presented 

in the work by Lovgren and Racer (2000). They describe the use of an MIP, three different 

heuristics and combinations thereof to find the best method to optimize the contradictive objectives 

of minimizing tardiness and resource utilization deviation.  

Out of the heuristics they present, it seems that the Border Swap technique is the most 

applicable to the research. This is because they start from an optimal solution and only make 

switches based on the highest reward for a swap. It is questionable whether this is feasible with a 

large dataset though, as the computation time would require the calculation of every single possible 

swap of demand batches. 
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3.  Methodology 

In order to be able to compare any results at all, a benchmark has to be used. Not all historical 

data is available. Therefore, the proposed solution cannot take all the same factors into account as 

the original data. Thus, it would be unfair to compare the proposed solution to an actual CTM run 

outcome. Therefore, a simulation has to be made which uses the same logic as the CTM and the 

same input which will be used for the proposed solution. This will be described in Chapter 3.1. 

As became apparent through the literature study, the best way to approach the problem at hand 

is the Mixed Integer Programming (MIP) method. However, in order to set up an MIP solution, 

objectives should be known. In order to find out which objectives to pursue, the S&IP Leadership 

Team had to be consulted. The results thereof are described in Chapter 3.2.  

After mapping the objectives to pursue, Chapter 3.3 will describe the approach to actualize 

these. This chapter will include a motivation for the choice of the approach and a description of 

the workings behind Mixed Integer Programming and the solver used for this research. 

In Chapter 3.4, the exact data which will be used for the research will be discussed next. This 

will include both the selection criteria and descriptive statistics of the data in question. The method 

of data extraction and a sample of the data will also be shown, in order to create a sense of 

understanding of what is available and how it can be used for the proposed solution approach. 

Chapter 3.5 will describe how all the different parts of the problem are incorporated into the 

solution approach. Finally, Chapter 3.6 will present the final mathematical model, including all 

variables, the objective function and all constraints necessary for solving the problem.  

3.1. Benchmark 

3.1.1. CTM Logic 

As described in Chapter 1.3.3, the current logic is the SAP APO extension called the Capable 

to-Match (CTM) logic. This logic is a rule-based sequential planning logic. As described in that 

chapter, the rules consist of a bucketing of the different demand prioritizations, sorting each of 

those buckets according to the Ideal Buy Week (IBW), all the demand within each IBW by demand 

type and finally by the Product Activation Timestamp (PAT) – which acts as a tiebreaker.  

The exact input data that the CTM logic uses is not available. To still be able to compare the 

proposed solution to the CTM logic, a simulation of it had to be made. The description of this 

simulation is also a great opportunity to dive deeper into the exact workings of the CTM logic. To 

this end, Chapters 3.1.1 through 3.1.5 explain all the details of the logic and includes examples 

and a pseudocode of the CTM benchmark. 

3.1.2. Demand Batches 

The Demand that needs to be produced at the factories has certain attributes. Examples of 

these attributes are the unique Stock-Keeping Unit (SKU) for each style-color combination, the 
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demand season, the Customer Required Dates (CRD), Lead Times (LT) and demand destination 

(for a complete list, see the pseudocode in Chapter 3.1.5)  

 

As mentioned before, Nike works with four seasons per year, each consisting of three months. 

Materials from different seasons can technically not be combined. However, sometimes production 

for a certain material is so late, that the units can be used in the season after. The CTM logic will 

however never combine different Seasons’ demands. 

 

For convenience, it is possible to group together Demand that has the exact same parameters 

into batches. These batches of demand will be referred to as Demand Batch (DB) from here on 

out. Note that the CTM might split these batches up if necessary. They are, after all, only grouped 

together for convenience. More on why and when these are split up and what the benefits and 

downsides of doing this are, is explained in Chapter 3.1.4. 

 

Another vital attribute that is tied to all demand, is the Customer Required Date (CRD). By 

deducting the Lead Times from this CRD, the Ideal Buy Week (IBW) can be calculated. The 

IBW reflects the week in which a DB order has to be placed at the factory for it to arrive exactly 

in the week in which the customer needs it – given that the actual lead times are exactly the same 

as those in the system, of course.  

 

For feasibility’s sake however, there is a possibility to deviate from the IBW if necessary. 

How many weeks earlier or later than this IBW an order may be placed is dependent of the 

Maximum Earliness (ME) and Maximum Lateness (ML) parameters in the system. The author 

decided to name this range in which the materials can be planned the Planning Horizon (PH) for 

convenience. The calculation of this PH is illustrated in Figure 3.1 with arbitrary values for the 

lead times, ME and ML. The IBW is also used to sort the DBs into the order in which they are 

planned in the actual algorithm, which is discussed in detail in the pseudocode in Chapter 3.1.5 as 

well. 

3.1.3. Planning Constraints and Unplanned 

There are certain constraints that must be met for the Demand to be planned for production. 

If there is no possibility to plan the DB in the PH that is in the system, it is labeled as Unplanned. 

This means that these units will never be made, unless a (Global) Supply Planner takes 

countermeasures to get the DB into the buy planning. Countermeasures that can be taken include 

changing the BE and BL parameters, negotiating extra Capacity with the factory in question or 

changing the volume of the demand. When which of these actions can be taken to solve issues is 

further discussed in the chapters handling Unplanned reasons up next. 

Figure 3.1: Example PH calculation where ME = 9 weeks, ML = 1 week and Lead Time = 20 weeks 
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3.1.3.1. Unplanned due to Capacity  

The first and foremost constraint is that there must be Capacity in the factory where it is to 

be produced. For footwear materials, a single type of product is always sourced from one factory. 

This means that once a factory’s capacity is fully planned with other materials, it is possible that 

any more demand simply does not fit. When this happens, the Demand Batch is labeled as 

‘Unplanned due to Capacity’.  

 

To solve this issue, Supply Planners can widen the product’s allowed Planning Horizon by 

tweaking the ME and ML parameters. If this is done, the CTM might be able to plan the units for 

purchase in the next iteration of the run. Global Supply Planners are often working with factories 

to increase capacity for certain products if there is a high need for it. Because of this, sometimes, 

it is better to contact them and see if there are possibilities to increase capacity, than to add several 

weeks of allowed lateness immediately.  

 

A consequence of increasing allowed lateness is that the product might face lost sales due to 

being unavailable when the market wants it. Another possible consequence is that the window for 

selling the product becomes too small as the final offer date is predetermined for all products. This 

selling window can be extended, often going hand in hand with discounts, but doing so might 

cannibalize on sales of other products which are meant to be sold at that moment for full price. 

3.1.3.2. Unplanned due to Lead Time 

When capacity is not added, but some weeks have gone by waiting for this, it is possible that 

the PH has fully passed for the DB in question. In this case, a DB falls into ‘Unplanned due to 

Lead Time’. If this is the case, the only way to still get the units, is by increasing the ML such that 

the PH is extended past the current date. Of course, this does not guarantee that the order can be 

placed, as the other constraints still also have to be met. 

3.1.3.3. Unplanned due to Minimums 

Earlier, it was mentioned that Demand Batches may be split by the CTM if necessary. 

Sometimes, this occurs when Capacity constraints do not allow for the full batch to be produced. 

In this case, part of the batch can be produced in one week and another part in another. In cases of 

very high demand, this can be split even further.  

 

However, there are Minimum Order Quantities (MOQ) to be considered as well. There are 

two of these quantities: Production Minimums (PM) and Destination Minimums (DM). Both 

are weekly quantities and can differ between SKUs and destinations. Each DB has to adhere to 

these predefined MOQs. DBs may be combined to meet the PM and DM. This process is also 

shown in the pseudocode in Chapter 3.1.5. There are some exceptions to these MOQs. Namely, 

any DB which is in the Promo Priority Class does not have to adhere to either the PM or the DM 

but will always be planned if Capacity allows it. Materials that fall in the Direct Ship (DRS) 

Demand Type do not have to adhere to the Destination Minimums either. This is because these 

materials ship directly to the client. Besides, a client cannot place a DRS order for a small amount, 
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so this should technically not be a problem. It does mean however, that it cannot help other DBs 

meet the DM either, exactly because of this property.  

 

Production Minimums are on SKU-level, this means that demand from all over the world can 

be combined to meet them. It is a different story for Destination Minimums though. These must 

be met for all demand of a single SKU for each Destination separately.  

Example 3.1 

To illustrate, imagine demand for one SKU of 1,500 units for the EU, demand for the same SKU 

of another 1500 units for the USA and a Production Minimum (PM) of 3,000 units. Separately, 

the demands do not meet the PM and thus are impossible to be planned separately. However, if 

the Planning Horizon (PH) for both demands overlaps, they might be combined to meet the PM. 

 

The CTM can combine future DBs with the one it is trying to plan, if the volume helps reach 

the Production Minimums, if necessary. It does this by pulling all of the DBs back to the earliest 

of the DBs’ IBW – or as close to that as possible. In the case that the overlapping date is later than 

the earliest IBW, the DB with the earliest IBW is moved out to that same earliest possible date. It 

should also be noted that if non-Promo DBs of the same SKU are already planned in the current 

week, the PM has already been met and the DB in question can be added without problems. 

Example 3.1 (cont.) 

Let’s say that there is one week that overlaps for the DBs mentioned before, as shown in Figure 

3.2. In this case, the EU DB has to be moved out 1 week and the NA DB has to be moved back 

9 weeks for them both to meet the PM and get planned. 

 

In other words, as long as demand can be combined to meet the PM, irrespective of the 

destination of the goods, those units can be produced. In the cases where the PM cannot be met 

because the PHs are not overlapping, there is not enough capacity in the overlapping period to 

meet the PM or simply because of insufficient demand, the DBs in question are labeled ‘Unplanned 

due to Production Minimums’.  

The case for Destination Minimums is very similar, but the DBs can only be combined if they 

have the same Destination, as explained before. Example 3.2 looks at a hypothetical situation. 

Figure 3.2: How two batches might be moved to meet the PM 



Optimizing the Multi-Item Aggregate Production Planning Problem under Minimum Order Quantities 

 

23 

Example 3.2 

Let’s take a PM of 3,000 again and a DM of 500 for all destinations. Now imagine that EU has 

a DB of 400 units of a certain SKU and NA has a DB of 2,600 for the same SKU. 

In this case the PM can still be met by combining the DBs, however EU is 100 units short to meet 

the DM. Those 400 units will therefore fall into the Unplanned bucket. They will then in turn no 

longer be able to help NA out to meet the PM. This will cause those 2,600 units to also fall into 

the Unplanned bucket.  

If Europe artificially increases their DB by 100 units to meet the DM, the batches can be 

combined to meet the overall PM again. If North America wants their units without being 

dependent of Europe’s choice to increase or not, they can choose to artificially increase their 

demand by 400 units to meet the PM as well. This will leave EU without supply though. 

The extra units that come from these artificial inflations will evidently not be linked to 

customer orders but will be labeled as Available to Promise (ATP) inventory. Customers can see 

what is available in ATP from their ordering systems and place At Once (AO) orders for these 

units such that they can receive them when they arrive – or immediately if the units have already 

shipped to the destination. 

3.1.3.4. Miscellaneous Unplanned reasons 

The Unplanned reasons discussed so far are the main drivers of all Unplanned. Taking the 

average from a couple of random samples, Unplanned due to Capacity and due to Lead Time are 

the most prevalent, responsible for 36% of the total Unplanned each. Unplanned due to Minimums 

comes in at about 12%. The remaining 16% of Unplanned are due to six smaller causes. These are, 

from most common to least: 

- Done Buying (4.4%) – the Done Buying Flag (DBF) is a date set by planners which prevents 

the CTM from planning remaining demand for the SKU-Destination-Season combination 

from that date onwards; 

- Marketing Line Plan (4.2%) – caused by a material not being taken into a season’s purchasable 

products but somehow still getting orders placed by accounts; 

- Planning Master Data Exception (3.3%) – caused by incomplete data, such as missing factory 

information, lead times or the like; 

- Master Data (2.2%) – Any problem that has to do with missing data/untimeliness of demand 

that is not captured by the previous two reasons; 

- Raw Material (1.5%) – caused by constraints set in the system where raw material for 

production of goods is limited (e.g. knit products); 

- Initial Capacity Consumption Week (0.5%) – caused by a hard-set first possible consumption 

date before which no orders can be placed for a product. 

Upon each iteration of the CTM run, all the latest data from the system is taken to create a buy 

plan. It does, however, not take previous buy plans that have been generated into account. That 

means that anything which was planned in a previous CTM run and has not been converted into a 

Purchase Order (PO), is completely disposed of upon the new CTM run. Due to this property of 
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the CTM logic, it is possible that something that was in the planning before without any issues, 

now shows up in one of the ‘Unplanned’ buckets. 

3.1.4. CTM Runs 

In reality, one ‘CTM Run’ consists of several instances of an algorithm being run. This 

algorithm is called the Sequential Algorithm (SA). Each instance of the SA runs for a single 

Priority Class. The resulting Buy Plan from one SA is stored in the system before the next instance. 

The products that are planned to be bought from previous SA runs take up capacity which is 

considered in subsequent SA runs. With the exception of the Promo Priority Class, DBs  which 

are planned in earlier SA runs can be used by subsequent SA runs’  DBs to meet Production and 

Destination Minimums – if the SKU and, in the case of DM, Destination matches of course. 

3.1.4.1. DB Sequence 

The Priority Classes, from high to low, are Promotion, Launch, Precise, Short Lead Time, 

Standard and Flexible. The Benchmark solution includes all of the Priority Classes, but the scope 

of the research renders three out of these six useless. As the scope only includes Full Lead Time 

(FLT) Footwear materials, for which the Precise, Standard and Flexible timing buckets are not set 

up.  

These three timing buckets (Precise, Standard, Flexible) are a recent expansion of the Priority 

Classes and are currently experimented with in the Apparel and Equipment Product Engines. The 

idea is that products in the Precise bucket are more important to have on time. These therefore 

have tighter default Maximum Earliness (ME) and Maximum Lateness (ML) settings. However, 

due to their high prioritization, this generally does not pose an issue for getting the materials 

planned. The Flexible bucket is another story though. These products are allowed to arrive even 

earlier or later than the Default settings of 9 weeks early or 1 week late. However, as they are the 

very last Priority Class to be planned, these are currently seeing a lot of Unplanned issues due to 

Capacity. 

In the Footwear Product Engine, only the Standard bucket of this three is in use. Since this 

simply means that the other Classes will be empty, the Benchmark CTM simulation can remain 

the same. This means that the Sequential Algorithm (SA) is run for Promotion Materials first, then, 

taking the results of that run, it runs for Launch products, etc. From one run to the next, the planned 

products and remaining capacity are updated as they will impact the next SA run. 

Within each of these runs, the demand is sorted to a specific sequence before it starts the actual 

creating of the buy plan. Within each Priority Class, the demand is sorted according to the Ideal 

Buy Week (IBW). This used to be done in order of the Customer Required Date. This seems fairer 

at first, because each destination wants to have the same products at the same time – at the start of 

the season mostly. However, destinations close to the factories ran into big problems with their 

begin-of-season demand losing out in priority to the (very) late end-of-season demand from further 

away destinations. Of course, the last demand of a season is less profitable than the demand for 

the new season’s materials. Therefore, it was changed to the IBW instead. 
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Then, within each Priority Class, in each IBW, the DBs are once again sorted. This time they 

are sorted according to the Demand Type. These are – again from high to low – Direct Ship (DRS) 

demand, standard demand, At Once (AO) demand and lastly, all other demand.  

As briefly mentioned before, DRS orders are demand for products that are shipped directly to 

the accounts (Zalando, Intersport, etc.), rather than to the DC. Standard orders are normal Sales 

Orders (SOs) which are placed by accounts, At Once (AO) orders are placed for products that are 

already in stock at the warehouse, so they are irrelevant to the production planning. Other orders 

are DBs that do not have one of the other labels. This might be because the Demand is not on any 

order but is only a forecast that has not been converted, a so-called ‘Blind Buy’. 

In case that multiple DBs are of the exact same Priority Class, the demand has the same Ideal 

Buy Week and the Demand Type is the same, the Product Activation Timestamp (PAT) is used 

to break the tie. The PAT is almost certainly unique to each DB, as it is the timestamp of when the 

Demand Plan for those exact units was last altered. The odds that those are also exactly the same 

for different DBs are nearly impossible. However, if they are, the multiple DBs are handled in an 

unknown random order.  

3.1.4.2. The Steps of the Benchmark 

For convenience, the Benchmark CTM Simulation, which consists of multiple runs of the 

Sequential Algorithm (SA) will be called ‘the Benchmark’ from here on out. It is programmed 

fully in Microsoft’s Visual Basic programming language and uses Microsoft Excel tables to 

receive its input and paste its output. The Benchmark simulates the actual CTM logic, but one big 

difference is that the Benchmark does all separate SA runs in one. It simply continues from the 

end of one PC to the next. All of the steps described here correspond to the steps in the pseudocode 

in Chapter 3.1.5. 

Step 0. The first thing which the Benchmark does is bucketing all DBs into their respective 

Priority Class (PC). Then, it sorts the DBs in each PC according to the IBW first, then the Demand 

Types (DT) order discussed before and finally the Product Activation Timestamps (PAT). It then 

calculates the Available Factory Resource Capacity (AFRC) by subtracting any DBs which are 

already converted to Purchase Orders (POs) in the system from the total Factory Resource 

Capacity (FRC). This is technically preprocessing and could arguably be done before running the 

Benchmark, but for convenience is included into the code. 

Step 1. The Benchmark starts by checking the AFRC for the specific Capacity Type (CT) in 

the IBW of the first DB. If there is enough capacity to produce the DB in question, the Benchmark 

moves to step 2. However, if there is not enough capacity in this week, the available capacity is 

compared to the Production Minimum (PM) of the DB in question. If there is enough capacity to 

produce the PM of the DB in question, the DB can be split in two separate DBs. The first of these 

will then be set equal to the remaining AFRC in the current week and will move on to step 2. The 

other DB will move into the queue of DBs to be planned.  

If there is not enough capacity to produce the PM, there is no use looking in this week any 

further for this DB. To continue, t is set to the next week and the Benchmark goes back to the start 

of Step 1. The sequence of the weeks to plan a DB in is as follows. It starts with the IBW, then 
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moves back one week at a time until the Maximum Earliness (ME) parameter is maxed out (IBW-

ME), it then moves to one week later than the IBW and from there moves forward one week at a 

time until the Maximum Lateness (ML) parameter is maxed out (IBW+ML).  

If no week with available capacity for the CT of the current DB is found, the DB is labelled 

‘Unplanned due to Capacity’ and will not be planned during this run of the Benchmark. 

Step 2. After finding available capacity to produce the DB, the Benchmark goes on to check 

if the Production Minimums (PM) and Destination Minimums (DM) are met. These can also be 

met by combining the current DB with existing POs in the same week. If they are not met however, 

the Benchmark tries to find future DBs of the same SKU (and Destination for DM) to add to the 

current DB. It should be noted that DBs that are combined to meet Minimum Order Quantities are 

not combined into one DB in the system. This is because the attributes of the DB (such as its IBW, 

PC and DT) can still differ between them. They are simply planned at the same moment.  

Promo materials do not have to adhere to either the PM or DM constraints, because these 

materials are considered critical for business and need to be produced no matter what. Direct 

Shipment (DRS) orders do not have to adhere to DM constraints on paper – though they always 

do because accounts cannot place small DRS orders. DRS orders cannot be combined with regular 

orders to meet DMs of those regular orders due to the different destinations. 

If no possible combination of DBs is found to meet the PM and/or DM, the DB is labelled 

‘Unplanned due to Minimums’ and will not be planned during this run of the Benchmark. 

Step 3. This is where the actual finalizing of the planning of the DB takes place. The DB is 

marked as planned, the AFRC is reduced by the number of items in the DB and the Benchmark 

moves to the next DB to plan it. 

3.1.4.3. Benchmark extra notes 

It should be noted that there are two input parameters which might cause a DB to move into 

an unplanned bucket during step 0. These are the Initial Capacity Consumption Week (ICCW) 

parameter, and the Done Buying Date (DBD) parameter. Both parameters reflect a date: the ICCW 

gives the first possible week in which a SKU may be produced, the DBD gives the last possible 

date on which a SKU may be bought. The DBD is Destination-specific. These parameters do not 

need to have a value but can be set by (Global) Supply Planners in order to prevent buys from 

happening.  

Including the logic of these parameters in step 0 of the pseudocode made it too convoluted as 

this would cause too many checks on different levels. They are however used in the actual 

programmed version of the Benchmark though. 
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3.1.5. CTM Pseudo-code 

Input: 

- Demand Batches (DBs), each containing information on its: 

o Product Type (SKU) 
o Destination 
o Priority Class (PC) 
o Demand Type (DT) 
o No. of units in Batch (Demand) 
o Customer Required Week (CRW) 
o Lead Times (LT) 
o Ideal Buy Week (IBW) [= CRW – LT] 
o Maximum Earliness (ME) 
o Maximum Lateness (ML) 
o Initial Capacity Consumption Week (ICCW)* 
o Done Buying Date (DBD)* 
o Capacity Type (CT)  
o Product Activation Timestamp (PAT) 

- Production Minimum (PM), per SKU 

- Destination Minimum (DM), per SKU, per Destination 

- Factory Resource Capacity (FRC), per CT, per week 

- Planned DBs, per week 

 

 Step 0.  

- 0a. Split up the data according to Priority Class (high to low: Promo, 

Launch, Precise, Short Lead Time, Standard, Flexible); 

- 0b. Sort the DBs within each Priority Class (PC), according to: 

o Demand Type (high to low: Direct Shipments, Standard, At Once, Other); 
o Ideal Buy Week; 
o Product Activation Timestamp – tiebreaker if the other two are the same. 

- 0c. Calculate the Available FRC (AFRC), per CT, per week by subtracting 

the Planned DBs’ Demand per CT, per week, from the respective FRC; 

- 0d. Select the first DB in the first PC & Go to Step 1. 

 

Step 1. Initialize by setting t = Ideal Buy Week (IBW) for the current DB 

- 1a. If the AFRC in t for the CT of this DB is greater than or equal to the 

Demand in this DB: 

➢ Go to Step 2. 

➢ Otherwise, go to Step 1b. 

- 1b. If the AFRC in t for the CT of this DB is greater than or equal to the 

PM of this DB:  

➢ Split the DB into one part which equals the AFRC in t for the CT of 

this DB and one part which equals the rest; 

➢ Set the current DB to the first of the two new DBs, set the next DB in 

line to the other DB & Go to step 1. 

- 1c. If t equals the IBW or is between IBW and the lower limit (IBW-ME):  

➢ Set t = t - 1 & Go to step 1a. 

Else, if t is equal to the lower limit (IBW-ME): 

➢ Set t = IBW + 1 & Go to step 1a. 

Else, if t is greater than the IBW but lower than the upper limit (IBW+ML): 

➢ Set t = t + 1 & Go back to step 1a. 

Else if t is equal to the upper limit (IBW+ML): 

➢ Set the DB status to ‘Unplanned due to Capacity’. 

- 1d. If there is another DB in the current PC: 

➢ Select it & Go back to Step 1. 
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Else, if there is another PC: 

➢ Select it and its first DB & Go back to Step 1. 

Else, End Code. 

 

Step 2.  

- 2a. If the DB Demand is less than its PM** AND there is no other non-Promo 

DB planned in t with the same SKU: 

➢ Go to Step 2b. 

➢ Otherwise, Go to step 2c.  

- 2b. If there are any future DBs of the same SKU in this or any lower PC 

that have a planning horizon (IBW-ME to IBW+ML) which includes t: 

➢ If possible, add as many of those DBs to the current selection to meet 

the PM, starting with the closest IBW to t & Go to step 2c. 

➢ Otherwise, set DB status to ‘Unplanned due to Production Minimums’ & go 

to 1d. 

- 2c. If the DB Demand is less than its DM*** AND there is no other non-Promo 

and non-DRS DB planned in t with the same SKU AND Destination: 

➢ Go to Step 2d.  

➢ Otherwise, go to Step 3. 

- 2d. If there are any future DBs of the same SKU AND Destination in this or 

any lower PC that have a planning horizon (IBW-ME to IBW+ML) which 

includes t: 

➢ If possible, add as many of those DBs to the current selection to meet 

the DM, starting with the closest IBW to t & Go to step 3. 

➢ Otherwise, set DB status to ‘Unplanned due to Destination Minimums’ & 

go to 1d. 

 

Step 3.  

➢ Set the current DB(s) to ‘Planned’; 

➢ Reduce AFRC for the CT, for t by the Demand of the DB(s); 

➢ Go to step 1d. 

 

* Usage explained in Chapter 3.1.4.3 

** Not applicable for Promo PC 

*** Not applicable for Promo PC and Direct Shipment DT 
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3.2. Optimization Objectives 

3.2.1. Leadership Team Input 

In order to be able to construct an optimization solution, the objectives of the product planning 

have to be mapped. To do so, the S&IP leadership team was asked the question which objectives 

they would like to see optimized. This led to a substantial list of items as seen in Table 3.1. Most 

of the concepts in the table, such as Unplanned, should be familiar by now. However, there are 

some new metrics and abbreviations in this table which have not been used before. These will be 

explained briefly.  

The given objectives can be split up in roughly three groups. The first group are concrete values 

which can be quite easily measured given the availability of the values necessary to calculate them, 

of course. The second group are metrics which can all be expressed in a direct percentage of the 

Demand Plan which is in place. The third group are meta-measurements, which look at deviations 

and stability of certain factors.  

Table 3.1: List of Proposed Objectives 

Objective Name Measure Function 

Unplanned % of DP Minimize (-) 

Lateness % of DP Minimize (-) 

Earliness % of DP Minimize (-) 

Expected Inventory Units*weeks Minimize (-) 

Revenue $ Maximize (+) 

Profit Margins % Maximize (+) 

PIFOT % of DP Maximize (+) 

Target Days Shipment % of DP Minimize (-) 

Airfreight necessary % of DP Minimize (-) 

UP due to Production Mins % of DP Minimize (-) 

UP due to Destination Mins % of DP Minimize (-) 

UP due to Cap % of DP Minimize (-) 

UP due to LT % of DP Minimize (-) 

PIFOT Deviation SD of PIFOT between runs Minimize (-) 

Buy Plan Deviation Aggregate SD of Buy Plan 

volumes per SKU between runs 

Minimize (-) 

Parameter Deviation SD of parameter settings between 

runs 

Minimize (-) 

Parameter Utilization % of SKUs with non-standard 

parameter settings 

Minimize (-) 

Production Capacity Utilization 

Variance 

SD of Cap. Util. Minimize (-) 

Customer Service Level Variance SD of Destination Service Levels Minimize (-) 

Minimums Shortage % increase of DP necessary - 
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Of group 1, colored yellow in Table 3.1, the first three objectives are quite self-explanatory: 

unplanned are materials which have not been included in the buy plan due to possible reasons 

described in Chapter 3.1.3.4. Lateness and Earliness are measures of how many weeks demand is 

produced before/after the Customer Required Date (CRD). The Expected Inventory is the sum of 

the time which products spend in the warehouse due to early production. Revenue is the sum of 

the expected selling price of the produced goods. Profit Margin is the average expected cut of the 

Revenue which is higher than the costs of the production of the goods. PIFOT stands for Planned 

In Full On Time and is a measure of how many units are not late for the CRD. 

Since PIFOT is the main metric used to evaluate the quality of the Buy Plan now, it might be 

good to explain it a bit further. It is calculated by taking the portion of the Demand Plan (DP) 

which has been planned to be delivered in time for the CRD. All demand that has been planned to 

be produced more than three weeks early is labeled ‘Built Early’ (BE), demand that has been 

planned to be produced up to three weeks early, or up to one week late is labeled Just In Time 

(JIT) and demand that is planned to be produced more than one week late are labeled ‘Build Late’ 

(BL). The calculation for PIFOT for any given time 𝑡 is therefore as follows. Note that this can be 

done for any time interval, such as a week, an entire season or even an entire year if needed. This 

is because all parts of the calculation can be measured on this same timescale. 

𝑃𝐼𝐹𝑂𝑇𝑡 =
𝐵𝐸𝑡 + 𝐽𝐼𝑇𝑡

𝐷𝑃𝑡
∗ 100% = (1 −

𝐵𝐿𝑡

𝐷𝑃𝑡
) ∗ 100% 

The objectives in group 2, colored blue in Table 3.1, can be measured fairly straightforwardly 

as they can all be expressed as a portion of the total Demand Plan. Target Days Shipment (TDS) 

is a parameter setting which allows the S&IP team to artificially pull demand earlier than 

necessary. By doing this, the Ideal Buy Week (IBW) of the demand is changed, causing it to be 

prioritized earlier in the CTM run. However, this will result in earlier deliveries as well. Airfreight 

necessary can be calculated by taking the portion of the DP which has Lead Time issues, but still 

falls within the time window that it can be delivered on time in order to meet the CRD. This can 

only be done for Launch and Promo products though. 

The following five metrics are all specific instances of the Unplanned metric. All of these can 

be expressed as a percentage of the total DP as well. These different Unplanned reasons are 

explained in detail in Chapter 3.1.3.4. The miscellaneous Unplanned reasons which are described 

in that chapter are missing from this objective list. This is because these are independent of the 

planning logic. For example, if a Done Buying Date (DBD) is entered in the system, it does not 

matter which logic is used: if the DBD is passed, it cannot be planned anymore. 

Group 3, colored green in Table 3.1, could be described as a set of meta-objectives. These 

are all measurements of deviations and/or stability over time. PIFOT Deviation should reflect the 

Standard Deviation (SD) in PIFOT scores when comparing two optimization runs. Buy Plan 

Deviation should reflect the aggregate SD of the weekly Buy Plan output when comparing two 

optimization runs.  

Parameter Deviation is not caused by the Planning logic itself, but actually happens in between 

optimization runs. It is however a reaction to the Planning logic’s output as the parameters are 



Optimizing the Multi-Item Aggregate Production Planning Problem under Minimum Order Quantities 

 

31 

adjusted to remedy Unplanned issues as discussed in Chapter 3.1.3.4 as well. It can be measured 

by taking the SD of the input parameter settings between two optimization runs.  

Parameter Utilization, Production Capacity Utilization Variance and Customer Service Level 

Variance are metrics that can be measured within one optimization run, unlike the others. 

Parameter Utilization measures the portion of Demand Batches (DBs) which have parameter 

settings that are different from the default settings. Capacity Utilization Deviation measures the 

SD of the weekly Capacity Utilization at a factory. Customer Service Level Variance measures the 

aggregate SD of product Coverage between different destinations. Product Coverage is the portion 

of the Demand Plan that is planned overall, irrespective of timing.  

Grouped separately from the three main groups is the factor Minimums Shortage. The idea is 

to measure how many units needed to increase the Demand of the materials that are Unplanned 

due to Production Minimums (PM) or Destination Minimums (DM). However, this is independent 

of the planning algorithm used. This is because the minimums requirements have to be met no 

matter the logic. This one is therefore immediately disregarded as a possible objective of the 

optimization. 

3.2.2. Finalized Objectives 

The same Leadership Team was asked to prioritize the 

aforementioned list from most to least important objectives. Of this 

prioritized list, a feasibility check was done by the author. This resulted 

in the list shown in Table 3.2. A lot of the proposed objectives were 

excluded from the final model. A brief explanation per exclusion reason 

is given. The finalized list of objectives is shown in Figure 3.3. 

The first reason in order of appearance is self-explanatory: no 

accurate data of prices and margins was available for the goods. This is 

partly because actual selling prices can still be altered before the season. 

Furthermore, products can be sold for different prices, depending on the 

account, the timeliness of the order and whether it was sold at full price, 

was discounted or liquidated. All in all, there are too many uncertain 

factors to be able to use this in the final model. 

Both PIFOT related objectives were excluded because their values 

can be completely derived from the Unplanned, Lateness and Earliness 

objectives. It could be argued that the inter-run compared PIFOT scores 

could be useful, but that would hardly be an optimization objective, but 

rather a performance indicator of the stability of a combination of the 

Demand Plan and the Planning logic.  

 

 

 

Figure 3.3: Final set of 

optimization Objectives 
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Table 3.2: Prioritized list of objectives, including decision to include or not 

Objective Name Priority Inclusion in model 

Unplanned 1 Yes 

Lateness 2 Yes 

Earliness 3 Yes 

Expected Inventory 4 Yes 

Revenue - No; missing accurate pricing data. 

Profit Margins - No; missing accurate pricing data. 

PIFOT - No; fully dependent of other metrics. 

Target Days Shipment (TDS) - No; too circumstantial. 

Airfreight necessary - No; too marginal. 

UP due to Production Mins - No; specified below. 

UP due to Destination Mins - No; specified below. 

UP due to Cap - No; specified below. 

UP due to LT - No; specified below. 

PIFOT Deviation - No; fully dependent of other metrics. 

Buy Plan Deviation - No; too circumstantial. 

Parameter Deviation - No; too circumstantial. 

Parameter Utilization - No; too circumstantial. 

Production Capacity Utilization 

Variance 

5 Yes 

Customer Service Level Variance 6 Yes 

Minimums Shortage - No; as explained before. 

 

The TDS, Buy Plan deviation and Parameter related objectives were excluded because of two 

reasons. First, they are not caused by the Planning logic. It could be argued that they are reactions 

to the Planning logic output, but even then, it would take time for Planners to adapt their use of 

these levers to a new method. Therefore, it would be impossible to measure without actual 

implementation over a long period of monitoring. The second reason is that they are Planner-

dependent. Some Planners might have a specific approach to applying these levers. For example, 

some planners increase the Maximum Lateness parameter for many, many weeks of a single 

product’s demand, such that they only have to do it once, rather than only in response to when it 

does not get planned. All of these objectives were therefore deemed too circumstantial.  

The Airfreight necessary was deemed to marginal a measure. Though its impact on 

transportation costs and carbon emissions is not to be dismissed, this will be improved by reducing 

Lateness as much as possible if anything. Since Airfreight is only applicable for Promo and Launch 

materials, it is important that these are still prioritized in the final planning logic though. This will 

be further explained in Chapter 3.5.2. 

  



Optimizing the Multi-Item Aggregate Production Planning Problem under Minimum Order Quantities 

 

33 

Finally, the zoomed in Unplanned reasons were all excluded because they are all dependent 

of other factors, plus it does not matter to anyone what the reason is why something is Unplanned 

in terms of performance. The only reason these are important, is such that the planners know how 

to resolve them. If all Unplanned is caused by Capacity, or it is caused by Lead Time, yet the 

numbers are the exact same, the performance will be deemed equal. 

This final list of prioritized objectives was shared and discussed with the S&IP Leadership 

Team and was unanimously agreed upon as a good set of objectives to pursue. However, there 

were doubts of whether the two variance objectives were to be pursued directly. Reason for this is 

that it is thought that these would be improved automatically by pursuing the other four objectives. 

For now, these are left in the final objective list, but could be subject to change later.  

3.3. Optimization Approach 

3.3.1. Decision for MIP 

As found in the literature review and specifically in Chapter 2.2, mathematical programming 

is a preferred option for dealing with production planning problems. Mathematical programming 

includes, but is not limited to, Linear Programming, Integer Linear Programming and Mixed 

Integer Programming. The application for each of these is specific to the problem at hand. Some 

of these will be discussed in order to provide a basic knowledge for the Mixed Integer 

Programming method applied in this research. 

3.3.1.1. Linear Programming (LP) 

The most fundamental of these mathematical programming methods must be the Linear 

Programming Model. It can be used to optimize a mathematical objective under certain constraints, 

as long as all of these functions are linear.  

An example of this could be an objective function which maximizes a formula with two 

Decision Variables (max 𝑍 = 10𝑥 − 2𝑦), two Constraints (𝑥 ≤ 4; 𝑦 − 𝑥 ≥ 1) and a non-

negativity constraint (𝑥, 𝑦 ≥ 0). These constraints limit the values that the variables can take to 

specific ranges. Such a mathematical programming problem has an optimum solution for at least 

one combination of values of 𝑥 and 𝑦 (in this example, 𝑥 = 4, 𝑦 = 5, 𝑍 = 30). Given the 

constraints and the objective, there is no other solution that will yield a higher result. In Linear 

Programming, the variables can take any value in ℝ, the set of real numbers, for the solution.  

3.3.1.2. Integer Linear Programming (ILP) 

In Integer Linear Programming, the values which the decision variables can take are limited 

to ℤ, the set of integer values, including negative numbers and zero by default. In practice however, 

non-negativity is applied, leaving only 𝕎, the set of integer positive values and zero as possible 

values for the variables. This setup can be useful when the variables represent units which cannot 

be split, such as a number of goods to produce, trucks to buy or people to employ.  
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Take for example the number of people that work during a shift. Though an employee can 

work half shifts technically speaking, this might be contractually forbidden. Therefore, the solution 

must be a whole integer number of employees working on a shift.  

To solve this optimization, the problem is often ‘relaxed’ to exclude the integrality constraint.  

When disregarding this constraint however, the optimal answer might be a fraction (e.g. 𝑥 = 3.7) 

– as it often is. To go from that fraction to an optimal integer solution, new constraints are 

implemented (𝑥 ≤ 3; 𝑥 ≥ 4) to exclude the fraction. Often this results in one of the limits being 

the optimal solution but can result in other solutions of course. In such cases, the adding of 

constraints is repeated until an integer solution is found. This method is called the Branch and 

Bound method (https://gurobi.com/resource/mip-basics/). 

3.3.1.3. Mixed Integer Linear Programming (MILP) 

Moving along, there are sometimes combinations of integer value variables and continuous 

value variables. These can be combined into a mathematical program and are called Mixed Integer 

Linear Programs.  

An example of this could be the aforementioned factory which produced integer numbers of 

products but allows the employer to send home an employee if there is not any work to do anymore. 

Thus, allowing shifts that are non-integer values. It is quite common to see MILP implementations. 

The optimal solution of an MILP is found through similar methods as an ILP, as the Integer 

variables must still adhere to integrality, which can be found using the Branch and Bound method 

described before. 

3.3.1.4. Quadratic Programming (QP) 

Quadratic Programming gives rise to many new possibilities. The QP model can be used to 

solve optimizations that include interdependent variables and non-linear objectives. This can be 

further expanded to Quadratically Constrained Quadratic Programming (QCQP), which also 

allows for non-linear constraints to be used in the optimization.  

The methods of solving these types of programming become severely more complicated, 

compared to the previously discussed mathematical programming methods. These methods 

include the use of relaxation of constraints, as discussed before,  heuristics to find local optima 

and vast enumeration methods.  

3.3.1.5. Mixed Integer Programming (MIP)  

The Mixed Integer Programming method is slightly different from the MILP method 

discussed before. Where MILP requires all of its constraints and objective function to be fully 

linear, the MIP allows a combination of linear and non-linear constraints.  

In the proposed solution, there was seemingly no need to include Quadratic Constraints or a 

Quadratic Objective Function. In fact, the proposed solution is practically a MILP solution. 

However, in order to be able to include the Minimum Order Quantity (MOQ) constraints, quadratic 

functions had to be used where Binary variables were multiplied with decision variables. The exact 

workings of these constraints are explained in Chapter 3.6.4.  

https://gurobi.com/resource/mip-basics/
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3.3.2. Gurobi Solver and R Studio 

To solve the Mixed Integer Programming solution approach, the best option is using a solver 

such as CPLEX or Gurobi. The author chose to use Gurobi due to experience with the solver in 

the past, as well as expansive online documentation on the workings, compatibility with many 

different software programs and, of course, the fact it has free student licenses. 

Once downloaded, the Gurobi installation folder contains many example codes which come 

in handy to help understand the way the program works. These examples are written in many 

different coding languages, such as Python, C++, R Studio, Java and C#. Again, because of the 

author’s experience with the program, the choice was made for R Studio. R studio is a free, open-

source piece of data analysis software. It does currently support Python as well, but the R 

programming language was used for this research. 

3.4. Dataset 

To be able to design and test the proposed MIP solution, data had to be collected from the 

system. The decision for Footwear products over Apparel and Equipment products was already 

touched upon in Chapter 1.6.1.  

The choice to take a dataset from the beginning of a season, such that the season 6 months 

from that point is still as clean as possible was also explained. By doing so, the Maximum Earliness 

(ME) and Maximum Lateness (ML) parameter settings for that season are still mostly untouched, 

as well as that demand is not altered to fit the constraints better. Aside from this, picking this 

moment in time also allows the proposed solution to show whether it can improve the planning for 

the season that is 3 months from that point in time, which is already heavily adjusted to meet the 

CTM logic. The different variables which can be used to narrow down all historical data are 

described in the next subchapters. 

3.4.1. Factory Level 

As discussed in Chapter 1.6.1, the Footwear Product Engine (PE) has more variables in control 

than the other two. This is mostly because these factories are not shared with other companies and 

as a result, the resource capacity cannot be shifted between companies if it becomes available. 

The choice for a factory was made based on absolute demand values at the factories, as well 

as a good representation of diversity in types of products. By doing so, any issues from more 

difficult to create products (e.g. shoes with Air cushions or Knit outsides) will interfere with 

performance in the sample. This is a perhaps a more extreme representation of the overall demand, 

but allows for a demanding performance from both the CTM logic and the proposed solution 

The types of factors which are considered to choose the factory for the datasets is:  

- Production volumes (absolute); 

- Number of different SKUs within the season (absolute); 

- Relative product complexity, such as Air or Knit materials (% of total); 

- Inclusion of high priority (Promo & Launch) materials (% of total); 
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At the time of exploring the data, only planning data from the Europe GEO was available. 

That is why, the comparison of the different factories and seasons is done solely based on these 

numbers. However, it is likely that the other Geographies have comparable numbers for these 

factories, as they generally do sell the same products, which need to be produced at the same 

factories.  

3.4.2. Time 

Each week has two CTM runs, both with input and output. The midweek CTM run does not 

take some changes in parameters into account, which the weekend CTM run does. Because of this, 

the parameters are usually not fully updated for a midweek CTM run. In order to give the CTM a 

fighting chance, a midweek engine run dataset should not be chosen. 

There are 13 weeks within one season, of which typically 6 are buy weeks and 7 are planning 

weeks. A buy week is different from a planning week in the sense that Purchase Orders (POs) are 

placed on the Wednesday in the middle of the week. The planning parameters are generally left 

the same in a buy week. In a planning week however, the CTM engine outputs the new Buy Plan 

after the initial weekend run. This gives the planner insights into what actions should be taken in 

order to achieve a better Buy Plan. Using the same logic, the dataset just after a planning week is 

the most updated and allows for a superior result from the CTM logic when compared to that at 

the end of a buy week. That would mean that the focus can be put on the weekend CTM runs which 

precede the buys.  

Following the logic posed in Chapter 1.6.2, this means that the best dataset is that just before 

the first buy week of a new season. Because of the moment in time that the dataset is pulled from 

the system, a dataset that a good mix of unaltered input variables and variables that have already 

been adjusted to optimize the CTM logic runs, Summer 2019 is the best option. This means that 

any demand for Fall 2019 is already optimized, yet the demand for Holiday 2019 is not altered yet. 

Since (high-level) forecasts until January 2021 are already in the system, this allows for a dataset 

which is expansive enough as well. 

3.4.3. Comparison and Decision 

The factors discussed in Chapter 3.4.1 were taken into consideration. All Footwear factories 

were compared for the Summer 2019 Dataset. The values in Table 3.3 show the relative rankings 

of all the factories for each factor. By taking the sum of these rankings, a total score is calculated 

per factory. The factory with the lowest score has the highest average ranking among all factories.  

The factory came out as the most interesting in terms of high demand and high variation was 

factory VO.  
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Table 3.3: Factory rankings per decision factors, summed to find the best (minimum) factory 

 

 

 

 

 

 

3.4.4. Dataset Collection and Description 

The data was pulled directly from Nike’s Teradata environment. Teradata is an SQL User 

Interface that allows for the same use of SQL queries as usual. Teradata does have an Explorer 

view of all tables and the columns that exist within each of the tables with the format of the value.  

The data which had to be collected was all the input needed for the Benchmark and MIP 

planning logic. The necessary data consists of the following list. The mathematical sets used are 

defined in parentheses. The only set that is not defined is time. That is because the optimization 

logic uses the Ideal Buy Week (IBW) for time. The calculation of this is explained in Chapter 

3.4.5.  

- Demand Batches (𝐷𝐵; 𝑖 ∈ 𝐼; index number) that needs to be planned, including: 

o Product Type (𝑆𝐾𝑈𝑖; 𝑗 ∈ 𝐽; alphanumeric code); 

o Destination (𝐿𝑜𝑐𝑖; 𝑙 ∈ 𝐿; numeric code); 

o Demand Type (𝐷𝑇𝑖 ∈ {DRS, Standard, AO, Other}); 

o Demand Quantity (𝐷𝑖 ≥ 0; integer pairs of footwear); 

o Customer Required Date (𝐶𝑅𝐷𝑖; date); 

o Product Activation Timestamp (𝑃𝐴𝑇𝑖; datetime). 

 

- Placed POs at Factory, including the same data as the DBs, except for CRW and PAT; 

 

- Transportation Lead Time, per Destination (𝑇𝐿𝑇𝑙; integer days); 

 

- Product attributes, per SKU, including: 

o Manufacturing Lead Time (𝑀𝐿𝑇𝑗; integer days); 

o Priority Class (𝑃𝐶𝑗 ∈ {Promo,  Launch,  Precise,  SLT,  Standard,  Flexible} ); 

o Initial Capacity Consumption Week (𝐼𝐶𝐶𝑊𝑗; date); 

o Capacity Type (𝐶𝑇𝑗; 𝑐 ∈ 𝐶; alphanumeric code); 

o Production Minimum (𝑃𝑀𝑗; integer pairs of footwear); 

o Destination Minimum, per destination (𝐷𝑀𝑗𝑙; integer pairs of footwear); 

 

2019SU VO JJ VJ VT XC VL VP QD QT LN MX MD 

Volume of DP 5 3 2 1 9 4 8 7 6 10 11 12 

# of SKUs 3 5 1 2 4 6 7 9 10 8 11 11 

Promo (%DP) 3 12 9 8 4 7 11 5 10 6 2 1 

Launch (%DP) 6 11 8 5 7 12 10 2 9 1 3 4 

 Flyknit (%DP) 4 10 7 5 6 11 9 12 3 8 1 2 

Air  (%DP) 6 7 8 9 5 10 3 4 1 2 12 11 

Zoom  (%DP) 7 6 5 8 1 2 4 3 9 9 9 9 

SUM 34 54 40 38 36 52 52 42 48 44 49 50 
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- Parameter Settings, per SKU, per destination, including: 

o Maximum Earliness, per week (𝑀𝐸𝑗𝑙𝑡; integer days) 

o Maximum Lateness, per week (𝑀𝐿𝑗𝑙𝑡; integer days); 

o Done Buying Date (𝐷𝐵𝐷𝑗𝑙; date). 

 

- Factory Resource Capacity (FRC), per CT, per week 

o Total Factory Resource Capacity (𝐶𝑎𝑝𝑐𝑡; integer pairs of footwear) 

3.4.5. Data Preprocessing 

The IBW is calculated by taking the Customer Required Date (CRD), subtracting the sum of 

the Lead Times for that SKU and Location from that and converting it to a week number. The first 

IBW in the dataset is the week of April 20th, which is week 16 of 2019. This week is set as 𝑡 = 1. 

All of the IBWs in the dataset together comprise the total time set to which each t belongs: 𝑡 ∈ 𝑇. 

All time related variables are converted to week numbers in order to be able to express them 

in terms of 𝑡. Since the week of April 20th, 2019 is set as 𝑡 = 1, some values have to be adjusted. 

Any 𝑀𝐸𝑗𝑙𝑡 value that would push the earliest possible order moment to a time before 𝑡 = 1 is set 

such that the earliest moment is equal to 𝑡 = 1. This is realistic as in practise, it is impossible to 

order products in the past.  

𝐼𝐶𝐶𝑊𝑗 and 𝐷𝐵𝐷𝑗𝑙 are not filled in necessarily. This means that sometimes, these have date 

values, and sometimes these are NULL. If an 𝐼𝐶𝐶𝑊𝑗 date is earlier than the week of 𝑡 = 1, it is set 

to 0. If a 𝐷𝐵𝐷𝑗𝑙  date is earlier than the week of 𝑡 = 1, it is set equal to 1 as well. 

The Placed PO data is not used directly in the Benchmark or the proposed solution, but the 

Available Factory Resource Capacity (AFRC) per Capacity Type (CT) per week is calculated by 

subtracting the sum of the PO volumes placed in the corresponding weeks from the Total Factory 

Resource Capacity (TFRC).  

The Production Minimum (PM) and Destination Minimum (DM) are pulled out of the system 

per SKU and SKU-Destination combination respectively. However, these values are converted to 

vectors for all 𝑡 ∈ 𝑇, because they have to be met on a weekly basis. These values per week are 

also reduced with the number of demand which is also on PO for the same week and SKU (and 

SKU-Destination combination for DM). In this case, Promo POs are subtracted from the PM and 

DM for a week, because they can help meet the MOQs. DRS POs are considered for Production 

Minimums but not for Destination Minimums. 

In order to be able to sort by the Priority Class and Demand Type, the classes were converted 

to a numerical ranking. This was done in the order of the classes as shown in the list above (so 

Promo = 1, Launch = 2, etc.). For the MIP model, the usage of the priorities is different than for 

the Benchmark. This is further explained in Chapter 3.4.2. 

Samples of the data can be found in Appendix A. 
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3.5. Research Problem to Model 

To build the actual model, all abstract elements had to be changed to a set of mathematical 

concepts. These concepts include the decision variables, constants,  objective function, constraint 

functions and the splitting of the overall time horizon into smaller “Timechunks”. 

First, the reasoning which led to the objective function is discussed in Chapter 3.5.1. This 

includes the use of penalties and how the values of these penalties are chosen. The implementation 

of the prioritization of the demand is also discussed here. This specifies how the Priority Class, 

Demand Type and the First Come First Serve logic are adapted for the MIP. 

Chapter 3.5.2 will focus on the constraints which needed to be implemented for the MIP to 

function properly. This chapter will include explanations of how the MIP can work with 

Unplanned demand if needed, the factory resource capacity constraints which need to be 

considered and the minimum order quantities (PM and DM) which must be adhered to. 

The prioritization of DBs with earlier Ideal Buy Weeks (IBWs) should be discussed as 

well. The nature of an MIP is to move everything around to make space. This is also the main 

reason why linear programming can find optima which are impossible to find by using a sequential 

planning logic such as the CTM algorithm. It would therefore be nonsensical to remove this ability 

from the suggested MIP by implementing extra penalties for demand that is sitting earlier. 

However, there is still a way to take it into account, all the while reducing the computation time 

of the MIP as well. Doing this by splitting the full dataset according to the Ideal Buy Weeks (IBWs) 

and the ensuing logic required to still run all the DBs in the dataset successfully, is described in 

chapter 3.5.3. 

3.5.1. Objective Function 

The objectives which came forward out of the communication with the S&IP leadership 

team which were discussed in chapter 3.2.1 must now be turned into mathematical concepts. In 

order of priority, these objectives were to minimize: 

1. Unplanned Demand 

2. Demand Lateness 

3. Demand Earliness 

4. Inventory Levels 

5. Production Capacity Utilization Variance 

6. Customer Service Level Variance 

In order to implement objectives 1 through 3, penalties or costs had to be connected to 

demand. Because of the hierarchy of the objectives, these penalties had to be different for each of 

these objectives. In other words, specific values of penalties had to be appointed to demand which 

would fall into the Unplanned bucket, to the demand that would be late and to the demand that 

would be early.  

The objective of minimizing inventory levels is slightly different than the aforementioned 

objectives. However, by minimizing the Demand Earliness, the Inventory Levels are also reduced. 
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The first two objectives are contradictive to these inventory minimizing objectives though. In order 

to be able to strike a balance between these objectives, a penalty scale had to be devised for each 

week of earliness and lateness. 

 The implementation of the last two objectives is far less straightforward. The values which 

are described by these objectives are on a completely different level as the first four, as they are 

both relative, rather than absolute scores. Including these in the same mathematical objective 

function would therefore be illogical. This is because any absolute penalty value given to the 

relative values might either completely overthrow the higher priority objectives or have no impact 

at all.  

A method to implement these objectives would be by implementing a heuristic. This would 

then need to be able to take the output from the MIP optimization as input, allow for some 

predefined deterioration of the penalty (e.g. 1%) and find local optima for these values. This is 

very similar to what was done by Lovgren and Racer (2000). Unfortunately, the method they 

describe which would be best suitable for this implementation, the Border Swap Technique, was 

already mentioned to have long computation times for small batched of demand. Let alone, for 

some 10,000s of Demand Batches, encompassing millions of units of demand. Because of these 

computational limits, it was chosen to use these objectives only as KPIs of the results, rather than 

to actively pursue the minimization of them. 

Aside from the penalties which are necessary to weigh the different objectives, the original 

CTM approach used Prioritization of demand to decide which to plan first. These can be priorities 

can be implemented in the MIP as well. This could be done by setting either hard or soft priorities. 

The choice for this is explained further in Chapter 3.5.1.2. 

3.5.1.1. Penalty Selection 

The proposal is to create an optimized planning, based on penalties, rather than costs. The 

reasoning for this is two-fold. First of all, costs optimization never paints the full picture. In this 

case, we assume that we want to produce as much of the demand as possible and if possible, on 

time. Holding costs, lost sales costs and costs for missing sales would be too big of an assumption 

to implement. The second reason is that the costs for holding inventory are different per 

destination, lost sales due to unplanned might be translated to increased demand for other products 

and lateness might not have a direct effect on the portion of the sales that can’t be made 

The Logic 

Penalties are very similar to these costs, but can take roots in logic, rather than monetary value. 

Especially, when considering that a hierarchy was decided upon by the S&IP leadership team. The 

logic used to define the values that the penalties must take, is therefore as follows. 

- Unplanned Demand must be penalized more than any Earliness or Lateness can cause; 

- Lateness should be penalized heavier than Earliness, but: 

o It is not the case that any amount of earliness should be penalized less than any 

amount of lateness. 
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This last point is required some further investigation. After further consultation with the S&IP 

leadership team, it was decided that the penalty for three weeks early production should equal the 

penalty for one week of late production. It makes sense that this would be the preference as the 

Just In Time (JIT) borders which are in place at the moment coincide with these preferences. 

The fourth objective (Minimize Inventory Levels) is not explicitly included in the 

mathematical objective function. It can be used in the logic to decide on the increments that the 

Earliness Penalty should follow though. Since Inventory is used up linearly by materials that are 

sitting in the warehouse, it would make sense to follow linearity for the Earliness Penalty.  

For the lateness penalty, there is a question of whether the proportion of the sales that are lost 

by lateness are linear or exponential. The second would make more sense, but there is no evidence 

in the company whether this is the case. As a matter of fact, demand is often taken just as well if 

it’s late. However, there are more discounts applied to the products if they are still there at the end 

of the season. The relationship of revenue and lateness is not clear. Because there is no clear 

reasoning to choose otherwise, the Lateness Penalty is chosen to be linear, just as the Earliness 

Penalty.  

Since a season is always 12 to 13 weeks, it was decided that a DB which is 12 weeks late is 

as valuable as being not planned at all. This makes sense since neither an unplanned batch nor a 

12 weeks late batch will be sold, logically speaking. This makes it so that neither a late nor an 

early batch can ever cause a higher penalty than an unplanned batch. In reality, 12 weeks of 

Maximum Lateness (ML) parameter is hardly ever set unless there is a specific ask for by the 

Global office. Since these requests still have to be able to be processed, it is necessary that the 

proposed solution allows these 12 weeks of lateness, albeit very costly in terms of penalties. 

The Penalty Values 

Based on the logic above, the Unplanned/Lateness/Earliness penalties were chosen. Since the 

penalties are not linked to real-life numbers, an arbitrary number can be chosen for each of them. 

In this case, the following must hold according to the logic: 

𝑃𝑈 = 12 ∗ 𝑃𝐿 = 3 ∗ (12 ∗ 𝑃𝐸) 

The penalty for Unplanned demand (𝑃𝑈) is a constant value, this could be 1. The penalty 

scores (𝑃𝐿 for Lateness, 𝑃𝐸 for Earliness) are linear and based on the number of weeks they are 

late (𝑡 − 𝐼𝐵𝑊𝑖) or early (𝐼𝐵𝑊𝑖 − 𝑡), respectively. In this case, the number of weeks that demand 

must be late to get the same penalty score as being Unplanned is: 𝑡 − 𝐼𝐵𝑊𝑖 = 12, were t is the 

week in which the Demand is planned. Since a result of three weeks of Earliness should have the 

same penalty as one week of Lateness, 𝑃𝐸 =
𝑃𝐿

3
 must hold.  
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3.5.2. Constraints  

In order to make sure that the values of the decision variable don’t assume nonsensical values, 

constraints had to be put in place as well. The first constraint makes sure that demand is either met 

or falls into the unplanned bucket. The second constraint ensure that the Factory Capacity is kept 

to. The third constraint is responsible for the adherence of the demand volume planning to the 

Minimum Order Quantities. A final chapter is dedicated to the extra constraints that are necessary 

to tie all the loose ends together. These are however not representations of rules which are 

designed.  

3.5.2.1. Demand Constraint 

The demand constraint is fairly straightforward: all demand should either be planned or fall 

in the unplanned bucket. The Demand within a Demand Batch (DB) can however be split up over 

several weeks (time buckets). The demand of DB 𝑖 which is planned to be produced in time bucket 

𝑡 is represented by the decision variable μi
t. Any demand of DB 𝑖 which falls in the unplanned 

bucket is represented by the decision variable 𝜆𝑖. The sum of all demand covered in different time 

buckets of DB 𝑖 and the unplanned demand must be exactly equal to the total demand in the DB, 

𝐷𝑖. Since Demand can not be planned before the earliest limit (𝐼𝐵𝑊𝑖 − 𝑀𝐸𝑖) or after the latest 

limit (𝐼𝐵𝑊𝑖 − 𝑀𝐿𝑖), the summation is taken only for that time window. This must hold true for all 

𝑖 ∈ 𝐼. 

An extra element was added to this constraint for the purpose of adhering to the Minimum 

Order Quantities later. This element is the binary variable 𝛼𝑖
𝑡 which denotes whether or not any 

demand of DB 𝑖 is planned in period 𝑡. If this is the case, it must take the value 1, otherwise it can 

take the value 0. If it were to take the value 0 while 𝜇𝑖
𝑡 > 0 though, the total Demand covered in 

this period would be negated for this constraint. The value of 𝜇𝑖
𝑡 would then only take up Capacity 

in the system, blocking other demand without any use. Since the MIP will not do this as it harms 

the objective function, the addition of the 𝛼𝑖
𝑡 does not harm this constraint. 

This results in the following Demand Constraint. 

∑ (𝜇𝑖
𝑡 ∗ 𝛼𝑖

𝑡)

𝐼𝐵𝑊𝑖+𝑀𝐿𝑖

𝑡=𝐼𝐵𝑊𝑖−𝑀𝐸𝑖

+ 𝜆𝑖 = 𝐷𝑖 ,   ∀𝑖 ∈ 𝐼 

3.5.2.2. Resource Capacity Constraint 

Unfortunately, the data for the available capacity per Capacity Type is not kept historically. 

That means that it is updated from run to run. In other words, since the exact Capacity Type 

utilization was not extracted on the same date as the dataset’s 𝑡0 (April 13th, 2019), it was 

impossible to include this specific information into the optimization logic.  

However, the overall Capacity is available. This means that overall capacity can still be 

considered for the optimization. The Benchmark was also run without the Capacity Type specific 

Capacity constraints, only with the overall Capacity. This is extra confirmation that the creation of 
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the Benchmark was necessary to create a fair comparison between the CTM logic and the proposed 

Optimization Algorithm.  

The constraint to make sure that the available Capacity is not surpassed at any given moment 

is also fairly straightforward. The constraint simply demands that the summation of all demand 

planned is smaller than or equal to the available Capacity in that week (𝐶𝑎𝑝𝑡). This must hold true 

for each week 𝑡 ∈ 𝑇. 

This results in the following Capacity Constraint. 

∑  𝜇𝑖
𝑡

𝑖∈𝐼

≤ 𝐶𝑎𝑝𝑡,   ∀𝑡 ∈ 𝑇 

It should be noted that for Capacity Type (CT) specific Capacities, an extra constraint would 

have to be added. This extra constraint would need to include a binary variable which denotes 

whether or not a DB 𝑖 is part of that CT. Then the equation would be similar to this one, requiring 

the sum of all planned demand 𝜇𝑖
𝑡 which sits in each specific CT 𝑐 to be lower than or equal to the 

available capacity for that CT in that week. 

3.5.2.3. Minimum Order Quantities Constraint 

The Minimum Order Quantity (MOQ) constraint was the most complicated out of the three to 

be implemented. Inspiration was taken from Omar and Teo (2007), where a similar approach was 

taken. The problem in this constraint sits in the fact that a demand which is to be planned in a 

certain timeslot, must adhere to the MOQ quantities if, and only if it is planned to be produced in 

that timeslot at all. If it isn’t produced in that timeslot, the demand for that DB should be equal to 

0.  

This is where the binary variable 𝛼𝑖
𝑡, which was added to the demand constraint, comes in 

handy. Similar to this variable, the variables 𝛾𝑗
𝑡 and 𝛿𝑗𝑙

𝑡  were added. The first of these is used to 

signify if any demand of SKU 𝑗 is produced in week 𝑡. The second is used similarly but adds the 

destination to the mix. These are created specifically for the MOQ constraints.  

Aside from these binary variables which signify whether Demand is planned in week 𝑡 for 

specific SKU 𝑗 or a SKU-Destination combination (𝑗, 𝑙) respectively, two more binary variables 

had to be added. These variables, 𝛽𝑖𝑗 and 𝜖𝑖𝑙 signify whether a DB 𝑖 contains units of SKU 𝑗 and 

whether a DB 𝑖 is going to a Destination 𝑙, respectively.  

By using all these variables, the constraint for the Production Minimums can be formulated 

as follows. The left-hand side of the inequality can never be smaller than the right-hand side of the 

inequality. If this would be the case, it would mean that (1) there is a production of SKU 𝑗 in 

timeslot 𝑡 (i.e. 𝛾𝑗
𝑡 = 1), yet (2) the sum of all the Demand of the DBs 𝑖 ∈ 𝐼 that in that week 𝑡 

which consist of SKU 𝑗 would not be bigger than the Production Minimum 𝑃𝑀𝑗
𝑡 for that SKU in 

that timeslot. This is evidently what we try to prevent. This must hold for all SKUs 𝑗 ∈ 𝐽 and 

timeslots 𝑡 ∈ 𝑇. 
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∑ 𝛼𝑖
𝑡 ∗ 𝜇𝑖

𝑡 ∗ 𝛽𝑖𝑗

𝑖∈𝐼

≥ 𝑃𝑀𝑗
𝑡 ∗ 𝛾𝑗

𝑡,   ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 

A very similar formula is presented for the Destination Minimums 𝐷𝑀𝑗𝑙
𝑡 . The only difference 

here is the inclusion of the 𝜖𝑖𝑙 variable on the left-hand side such that only demand which is of the 

exact SKU-Destination combination for which 𝐷𝑀𝑗𝑙
𝑡  is in effect is considered. On the right-hand 

side of the equation, 𝛾𝑗
𝑡 is replaced by 𝛿𝑗𝑙

𝑡  for the same reason. This must hold for all SKUs 𝑗 ∈ 𝐽 

all Destination 𝑙 ∈ 𝐿 and all time buckets 𝑡 ∈ 𝑇. 

∑ 𝛼𝑖
𝑡 ∗ 𝜇𝑖

𝑡 ∗ 𝛽𝑖𝑗 ∗ 𝜖𝑖𝑙

𝑖∈𝐼

≥ 𝐷𝑀𝑗𝑙
𝑡 ∗ 𝛿𝑗𝑙

𝑡 ,   ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 

3.5.2.4. Other Constraints 

The rest of the constraints are added simply to make the others work. These are as follows: 

1. Each DB 𝑖 ∈ 𝐼 can only contain one type of SKU 𝑗 ∈ 𝐽;  

a. ∑ 𝛽𝑖𝑗𝑗∈𝐽 = 1,   ∀𝑖 ∈ 𝐼 

2. Each DB 𝑖 ∈ 𝐼 can only contain demand for one Destination 𝑙 ∈ 𝐿; 

a. ∑ 𝜖𝑖𝑙 = 1𝑙∈𝐿 ,   ∀𝑖 ∈ 𝐼 

3. The binary variable 𝛾𝑗
𝑡, which signifies the production of a SKU 𝑗 ∈ 𝐽 at time 𝑡 ∈ 𝑇, must 

equal 1 in order for any DB 𝑖 ∈ 𝐼, which consists of said SKU (𝛽𝑖𝑗 = 1), to be able to 

produce in that time period. 𝑀 signifies an arbitrarily large number, such as not to limit the 

number of DBs  that can be produced in a timeslot; 

a. ∑ 𝛼𝑖
𝑡 ∗ 𝛽𝑖𝑗𝑖∈𝐼 ≤ 𝑀 ∗ 𝛾𝑗

𝑡,   ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 

4. The binary variable 𝛿𝑗𝑙
𝑡 , which signifies the production of a SKU-Destination combination 

of 𝑗 ∈ 𝐽 and 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇, must equal 1 in order for any DB 𝑖 ∈ 𝐼, which consists of 

said SKU-Destination combination (𝛽𝑖𝑗 = 1 and 𝜖𝑖𝑙 = 1), to be able to produce in that time 

period. M signifies an arbitrarily large number, such as not to limit the number of DBs that 

can be produced in a timeslot; 

a. ∑ 𝛼𝑖
𝑡 ∗ 𝛽𝑖𝑗 ∗ 𝜖𝑖𝑙𝑖∈𝐼 ≤ 𝑀 ∗ 𝛿𝑗𝑙

𝑡 ,   ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 

5. The decision variables 𝜇𝑖
𝑡 and 𝜆𝑖 may only be integer values, including 0, for all 𝑖 ∈ 𝐼 and 

all 𝑡 ∈ 𝑇; 

a. 𝜇𝑖
𝑡, 𝜆𝑖 ∈ ℕ0,   ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 

6. All binary variables may only have the values 0 and 1. 

a. 𝛼𝑖
𝑡, 𝛽𝑖,𝑗, 𝛾𝑗

𝑡, 𝛿𝑗,𝑙
𝑡 , 𝜖𝑖,𝑙 ∈ {0,1},   ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 

3.5.2.5. Priority Classes and Demand Types 

In the original Planning Problem, the Priority Class and Demand Type are used as ranked 

variables which only dictate the order at which the Demand Batches should be handled. However, 

in practice it is possible that a very small amount of high priority demand blocks a large amount 

of lower priority demand. This is especially the case when Capacity is very tight.  
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The Logic 

It is evident that higher priority materials should be given preference for being produced closer 

to their Ideal Buy Week. Especially when it comes to being produced earlier than necessary 

though, there is no apparent logic why it needs to be planned as close to its IBW as possible. After 

all, inventory sitting in a warehouse is treated all the same. 

Because of the logic of the CTM approach, it is necessary to give buckets and prioritizations 

for it to work. In the MIP everything can be treated equal. However, the logic that some products 

are simply more important than others is sound enough to implement. Especially since the 

classification of the materials is already fully implemented in the system, it’s a great opportunity 

to incorporate it. 

The Priority Values 

Instead of a hard priority, a soft priority will therefore be used in the objective function. This 

Priority value will  be calculated by sorting all the combinations of Priority Classes (PC) and 

Demand Types (DT). This is done using the original CTM processing hierarchy. The values 

assigned to this ranked list are inversely proportional to the ranking. I.e. the lowest PC-DT 

combination get a Priority Value (𝑃𝑅𝑖) of 1, increasing by 1 for each step up the ranking. 

This 𝑃𝑅𝑖 value can then be added to the objective function as a weight which increases the 

Penalty Values decided in the previous chapter. The sum of the total penalty is thus calculated 

after the application of the Priority weight. 

The resulting objective function is as follows. 

min ∑ 𝑃𝑅𝑖 [ ∑ [𝜇𝑖
𝑡 ∗ 𝑃𝐸 ∗ (𝐼𝐵𝑊𝑖 − 𝑡)]

𝐼𝐵𝑊𝑖−1

𝑡=𝐼𝐵𝑊𝑖−𝑀𝐸𝑖

+  ∑ [𝜇𝑖
𝑡 ∗ 𝑃𝐿 ∗ (𝑡 − 𝐼𝐵𝑊𝑖)]

𝐼𝐵𝑊𝑖+𝑀𝐿𝑖

𝑡=𝐼𝐵𝑊𝑖+1

+ 𝑃𝑈𝜆𝑖]

𝑖∈𝐼

 

 

3.5.3. Iteration over Timechunks 

Beside the Objective Function and Constraints as discussed so far, there are some other levers 

to pull. One of these is the amount of data to process in an MIP run. Considering the instability of 

future demand, it is far more important to make sure that the demand which must be ordered soon 

is planned correctly, that the demand further away. To that effect, the original CTM logic also 

takes the Ideal Buy Week into consideration for the sequence in which the DBs are planned. As 

briefly mentioned before, it would be unwise to add this to the MIP solution, as it is specifically 

the point of mathematical optimization that it can weigh its own decisions using the given objective 

and constraints. 
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In order to include a prioritization of earlier demand, the choice has been made to split the 

dataset up in smaller sets, which I call ‘Timechunks’, based on the Ideal Buy Week (IBW). By 

doing so, an optimization can be run for one Timechunk and the output of that run can be taken 

into the next Timechunk’s run as input. Some careful considerations must be made though. There 

are two big issues with this approach:  

1. Minimum Order Quantities; 

2. Conflicting border cases. 

3.5.3.1. Minimum Order Quantities (1) 

If the full dataset is not included in the MIP run, MOQ may not be met because Demand 

Batches (DBs) cannot be combined. To make sure that this does not pose any problem, each 

Timechunk must include all DBs which consist of materials with the same SKUs as the demand 

in the Timechunk, if the Planning Horizon (PH) overlaps. The PH was discussed earlier, but just 

in case: this is the range in which a product can be planned, from the earliest moment (𝐼𝐵𝑊𝑖 −
𝑀𝐸𝑖) to the latest (𝐼𝐵𝑊𝑖 + 𝑀𝐿𝑖).  

Example 3.3 

Let’s say that a Timechunk contains IBW 1 through 8, and the DBs in this Timechunk contain 

SKUs A-100, among others. For each SKU in the Timechunk, the outer ranges of the Planning 

Horizons must be considered. Imagine that the extreme outer ranges of the Planning Horizons 

for SKU A-100 are 𝑡 = 2 and 𝑡 = 12.  

In that case, any other DB that consists of SKU A-100, which has any 𝑡 ∈ [2,12] in its own 

Planning Horizon, must be added to this Timechunk. By doing so, the MIP has the possibility to 

pull in those DBs if they are needed to meet the MOQs. 

3.5.3.2. Conflicting Border Cases 

If all the DBs in a Timechunk are planned and carried over to the next Timechunk, the MIP 

loses part of its functionality. Namely, to be able to make a weighted decision of demand to be 

planned when it conflicts. This is still done for all the DBs within each Timechunk of course but 

imagine a DB with an IBW in week 8 and one in week 9. There is no reason why the one in week 

8 should be planned without considering the DB with an IBW in week 9 completely. 

Therefore, the Timechunk should contain more DBs than the ones it will send over as output 

to the next MIP run. The choice was made to double the IBWs in a Timechunk with regard to 

which will be given as input for the next. This means that a Timechunk containing IBW 1 through 

8, will only give the planning output of the DBs with IBW 1 through 4 as input for the next. The 

next Timechunk will then contain all materials with IBW 5 through 12 and will give the planning 

of the DBs with IBW 5 through 8 to the next MIP run. This will be repeated until the very last 

Timechunk is run. 
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3.6. Mathematical Model 

3.6.1. Input Variables 

- 𝑖 ∈ 𝐼: the index of the full collection of Demand Batches in the data set {1,2, . . , 𝐼} 

- 𝑡 ∈ 𝑇: the weeks in which demand can be planned for production {1,2, . . . 𝑇}; 

- 𝑃𝑅𝑖 ∈ ℕ : a ‘soft priority’ weight of Demand Batch 𝑖; 
- 𝑃𝑈: a set penalty score for Unplanned Demand; 

- 𝑃𝐿: a set penalty score for Demand planned late; 

- 𝑃𝐸: a set penalty score for Demand planned early; 

- 𝐼𝐵𝑊𝑖 ∈ 𝑇: The Ideal Buy Week of Demand Batch 𝑖 
- 𝑀𝐸𝑖: The Maximum Earliness of Demand Batch 𝑖, in weeks; 

- 𝑀𝐿𝑖: The Maximum Lateness of Demand Batch 𝑖, in weeks; 

- 𝐷𝑖: The total demand in Demand Batch 𝑖; 
- 𝐶𝑎𝑝𝑡: The total integer Available Factory Resource Capacity at time 𝑡, in units of Demand; 

- 𝑀: An arbitrarily large number; 

- 𝑃𝑀𝑗
𝑡: The integer Production Minimum for SKU 𝑗 ∈ 𝐽 at time 𝑡 ∈ 𝑇; 

- 𝐷𝑀𝑗𝑙
𝑡 : The integer Destination Minimum for SKU-Destination combination (𝑗, 𝑙) for 𝑗 ∈ 𝐽, 

𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇. 

3.6.2. Decision Variables 

- 𝜇𝑖
𝑡: The integer number of units of Demand Batch 𝑖 which are planned in time 𝑡; 

- 𝜆𝑖: The integer number of units of Demand Batch 𝑖 that are Unplanned; 

- 𝛼𝑖
𝑡: The binary variable that signifies production of Demand Batch 𝑖 at time 𝑡; 

- 𝛾𝑗
𝑡: The binary variable that signifies production of SKU 𝑗 at time 𝑡; 

- 𝛿𝑗𝑙
𝑡 : The binary variable that signifies production of SKU-Destination combination (𝑗, 𝑙) at 

time 𝑡; 

- 𝛽𝑖𝑗: The binary variable that signifies which SKU 𝑗 is produced in Demand Batch 𝑖; 

- 𝜖𝑖𝑙: The binary variable that signifies to which Destination 𝑙 Demand Batch 𝑖 goes. 

3.6.3. Objective Function 

min ∑ 𝑃𝑅𝑖 [ ∑ [𝜇𝑖
𝑡 ∗ 𝑃𝐸 ∗ (𝐼𝐵𝑊𝑖 − 𝑡)]

𝐼𝐵𝑊𝑖−1

𝑡=𝐼𝐵𝑊𝑖−𝑀𝐸𝑖

+  ∑ [𝜇𝑖
𝑡 ∗ 𝑃𝐿 ∗ (𝑡 − 𝐼𝐵𝑊𝑖)]

𝐼𝐵𝑊𝑖+𝑀𝐿𝑖

𝑡=𝐼𝐵𝑊𝑖+1

+ 𝑃𝑈𝜆𝑖]

𝑖∈𝐼

 

3.6.4. Constraints 

1. Demand Constraint: For each Demand Batch 𝑖 ∈ 𝐼, the sum of the planned units 𝜇𝑖
𝑡 in the 

possible weeks they can be planned plus the unplanned units 𝜆𝑖 must always equal the total demand 

in 𝐷𝐵𝑖: 𝐷𝑖. Another new variable, 𝛼𝑖
𝑡, is introduced, this is a binary that must equal 1 if 𝜇𝑖

𝑡 > 0, 

because otherwise the constraint can’t be fulfilled. 
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∑ (𝜇𝑖
𝑡 ∗ 𝛼𝑖

𝑡)

𝐼𝐵𝑊𝑖+𝑀𝐿𝑖

𝑡=𝐼𝐵𝑊𝑖−𝑀𝐸𝑖

+ 𝜆𝑖 = 𝐷𝑖 ,   ∀𝑖 ∈ 𝐼 

 

2. Capacity Constraint: For each week 𝑡 ∈ 𝑇, the sum of all units planned in that week may 

not exceed the capacity of that week: 𝐶𝑎𝑝𝑡. For this constraint, 𝛼𝑖
𝑡 should not be added because 

that would allow any 𝜇𝑖
𝑡 to have a value other than 0, as it’s simply cancelled out by an 𝛼𝑖

𝑡 = 0.  

This would lead to an unnecessarily larger solution space and therefore higher computation time. 

∑ 𝜇𝑖
𝑡

𝑖∈𝐼

≤ 𝐶𝑎𝑝𝑡,   ∀𝑡 ∈ 𝑇 

3. SKU Constraint: Each Demand Batch can only be of one SKU. To show this, the binary 

variable 𝛽𝑖𝑗 is introduced, which equals 1 if a Demand Batch 𝑖 is of SKU type 𝑗 ∈ 𝐽. 

∑ 𝛽𝑖𝑗

𝑗∈𝐽

= 1,   ∀𝑖 ∈ 𝐼 

4. Destination Constraint: Each Demand Batch can only be linked to one Destination. For 

this, another binary variable 𝜖𝑖𝑙 is introduced, which equals 1 if a Demand Batch 𝑖 has been ordered 

for location 𝑙 ∈ 𝐿. 

∑ 𝜖𝑖𝑙

𝑙∈𝐿

= 1,   ∀𝑖 ∈ 𝐼 

5. Gamma Constraint: This constraint makes sure that the binary variable 𝛾𝑗
𝑡 is set to 1 if any 

Demand Batch which consists of product of SKU 𝑗, is planned in week 𝑡. To do so, 𝑀, an arbitrarily 

large number, is multiplied with 𝛾𝑗
𝑡 on the right-hand side of the equation. This makes sure that 𝛾𝑗

𝑡 

must be set to 1 if any 𝛼𝑖
𝑡 of an 𝑖 that consists of SKU 𝑗 (thus, 𝛽𝑖𝑗 = 1) is also set to 1. Because of 

the size of 𝑀, any number of 𝛼𝑖
𝑡 for which 𝛽𝑖𝑗 = 1 can be active once the corresponding 𝛾𝑗

𝑡 = 1.  

∑ 𝛼𝑖
𝑡 ∗ 𝛽𝑖,𝑗

𝑖∈𝐼
≤ 𝑀 ∗ 𝛾𝑗

𝑡,   ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 

6. Production Minimums Constraint: Using the 𝛾𝑗
𝑡 variable from constraint 5, which is set to 

1 if any units of a SKU 𝑗 are planned in week 𝑡, the sum of all units of Demand Batches 𝑖 ∈ 𝐼 that 

are planned in that week 𝑡 and consists of that SKU 𝑗 (thus, 𝛽𝑖𝑗 = 1) has to adhere to the Production 

Minimums 𝑃𝑀𝑗
𝑡 for that SKU 𝑗, for that week 𝑡. If 𝛾𝑗

𝑡 = 0, the left-hand side of the constraint may 

be equal to 0 as well. This MOQ is time dependent as it should be met in every week.  

∑ 𝛼𝑖
𝑡 ∗ 𝜇𝑖

𝑡 ∗ βi,j
𝑖∈𝐼

≥ 𝑃𝑀𝑗
𝑡 ∗ 𝛾𝑗

𝑡,   ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 
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7. Delta Constraint: Exactly the same concept as constraint 5. In this case however, binary 

variable 𝛿𝑗𝑙
𝑡  is introduced, which keeps track of the activation of any Demand Batch 𝑖 which is of 

SKU 𝑗 (𝛽𝑖𝑗 = 1) and goes to location 𝑙 (𝜖𝑖𝑙 = 1). The construction with the arbitrarily large 

number, 𝑀, is the same as in constraint 5 as well.  

∑ 𝛼𝑖
𝑡 ∗ 𝛽𝑖𝑗 ∗ 𝜖𝑖𝑙

𝑖∈𝐼
≤ 𝑀 ∗ 𝛿𝑗𝑙

𝑡 ,   ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 

8. Destination Minimums Constraint: Again, very much the same as constraint 6, but using 

the 𝛿𝑗𝑙
𝑡  variable to signify any planned units of any Batch Line 𝑖 which consists of SKU 𝑗 and go 

to Location 𝑙 during week 𝑡. Also, the integer variable 𝐷𝑀𝑗𝑙
𝑡  is introduced which contains the 

Destination Minimums for the particular combination of SKU, Location and week in question. 

∑ 𝛼𝑖
𝑡 ∗ 𝜇𝑖

𝑡 ∗ 𝛽𝑖𝑗 ∗ 𝜖𝑖𝑙

𝑖∈𝐼

≥ 𝐷𝑀𝑗𝑙
𝑡 ∗ 𝛿𝑗𝑙

𝑡 ,   ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 

9. Integrality Constraint: For each batch of demand, the number of planned units 𝜇𝑖
𝑡 in each 

timeslot 𝑡 ∈ 𝑇 and the number of unplanned units 𝜆𝑖 can only take on integer values. 

𝜇𝑖
𝑡, 𝜆𝑖 ∈ ℕ0,   ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 

10. Binarity Constraint: All defined binary variables can only take on the values 0 or 1. 

𝛼𝑖
𝑡, 𝛽𝑖,𝑗, 𝛾𝑗

𝑡, 𝛿𝑗,𝑙
𝑡 , 𝜖𝑖,𝑙 ∈ {0,1},   ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 
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4. Results 

The penultimate chapter of this research contains the comparison of the proposed solution 

versus the Benchmarked CTM logic. To do so, the KPIs which were used to construct the proposed 

solution, and some others that were deemed interesting by the S&IP Leadership Team, as discussed 

in Chapter 3.2.1, are included. An assessment of the calculation time of the proposed solution is 

also made. 

4.1. Key Performance Indicators 

The performance of the Benchmark and the proposed solution was measured using several 

Key Performance Indicators (KPIs) that were derived from the input from Nike. These KPIs are: 

1. Unplanned Demand: units which are not planned for production; 

2. Build Late Demand: units which are planned later than its IBW; 

3. Build Early Demand: units which are planned earlier than its IBW; 

4. Inventory Levels: the sum of the number of units that sit in inventory over each week 𝑡 ∈ 𝑇; 

5. Capacity Utilization Deviation: The Standard Deviation of the Utilized Resource Capacity 

over each week 𝑡 ∈ 𝑇; 

6. Customer Service Level Deviation: The Aggregate Standard Deviation of the Demand 

Coverage for all SKUs 𝑗 ∈ 𝐽 for each Destination 𝑙 ∈ 𝐿.  

As stated in Sub Question 2 however, not only the raw values of these KPIs should be 

assessed, but also the interactions of the different KPIs. To that effect, the interaction tables in 

Appendix B are created. These tables show the implications of interactions of all the KPIs in the 

case of both being high (B.1), one being high and one being low (B.2) and both KPIs being low 

(B.3). 

4.2. CTM vs Proposed Solution 

In order to judge whether the proposed solution performs any better than the CTM engine 

which is in place, the aforementioned Benchmark and iterative MIP model were run on the same 

data. Both logics gave a feasible planning. The production which is planned per week for both 

methods is shown in Figures 4.1 and 4.2 for the Benchmark and the Proposed Solution 

respectively.  

At first glance, the Planning for both logics looks very similar. It is possible to make out some 

difference when looking at some specific points though. For example, the capacity used in the very 

first week is clearly different. The CTM logic does not utilize this free capacity at all, whereas the 

proposed solution almost utilizes it fully. By doing so, the Proposed Solution opens up capacity in 

the busier weeks for other demand.  

Another clear difference is the use of the capacity which is sitting later in the planning. The 

CTM logic leaves most of that capacity which isn’t used for demand that has its IBW there 

unutilized. The Proposed solution fills it up more of this capacity with some Demand that is pushed 
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out though. Especially weeks 17 through 19 show that Demand which is only 1 week late is 

planned there. 

Another distinct difference is noticeable not in the graphs themselves, but in the number in 

the title of the graphs. The Unplanned Demand in the CTM logic is over 450 thousand units, 

whereas that of the proposed solution is just under 14 thousand. This is a reduction of 96.9% of all 

Unplanned units. When looking deeper into the Unplanned reasons for the Benchmark results, it 

shows the following split. 

- Unplanned Capacity: 349,175 units 

- Unplanned Destination Minimums: 9,956 units 

- Unplanned Production Minimums: 94,144 units 

Looking at the materials that are marked as unplanned in the Proposed Solution Output gives 

no further insight in the split according to Unplanned reasons. Though upon closer investigation, 
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Figure 4.1: Benchmark Result, shown in planned units per week for all 𝑡 ∈ 𝑇 
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it can be found that 9,294 units of the Unplanned demand in the Proposed Solution have their Ideal 

Buy Weeks between 𝑡 = 20 and 𝑡 = 24 – weeks with plenty of capacity left. It is safe to assume 

that these unplanned units are caused because the MOQs can’t be met. Considering the quantity is 

even less than the Unplanned Destination Minimums of the CTM logic, it would be safe to say 

that these have the same cause. The other 4,556 units cannot be explained easily. 

 Looking at the exact comparison Table 4.1 confirms the observations made from the 

previous Figures and shows some extra interesting pieces of information. The main focus of the 

comparison is the percentual difference. As mentioned before, the Unplanned Demand has seen a 

drastic decrease. The other buckets – except for the ‘very’ late one – see increases. This makes 

sense as they need to accommodate the extra demand that is being planned.  

It would be interesting to see what the percentages in each bucket would have been if the extra 

demand that is being fulfilled by the proposed solution would have been smeared out over the 

buckets in the ratio that the CTM had originally planned the demand. Calculating this shows that 

the percentages for each of the buckets would in that situation would have been 6.97%, 10.05%, 

77.51%, 3.74% and 2.09% respectively. The first two of these percentages match the Proposed 

Solution’s results very closely. The IBW percentage is slightly lower, the 1 week late bucket 

slightly higher but the good news is that the ‘very’ late bucket performs very, very well in this 

regard. 

The increase in PIFOT makes a lot of sense due to the extreme decrease in Unplanned 

materials. The Inventory Levels are an expected trade-off. This increase is caused by the extra 

materials that are being planned. The fact that the increase is less than the relative increase in 

planned units (+8.2%), is a small win. Finally, the Capacity Utilization Deviation. This was 

calculated over the first 24 weeks. The decrease makes sense logically, due to the extra goods 

which are produced pushing the overall utilization of the resource capacity up closer to the fully 

utilized weeks. 

Table 4.1: Comparison of Key Performance Indicators of the CTM Logic and Proposed Solution, colors are 

the same as used in Figures 4.1 and 4.2. 

 CTM LOGIC PROPOSED SOLUTION   

TOTAL DP 5,805,547  100% 5,805,547  100% Difference (% of CTM) 

>3 WKS EARLY 371,785  6.40%  405,217  6.98% +33,432 +9.0% 

1-3 WKS EARLY 535,623  9.23%  610,899  10.52% +75,276 +14.1% 

IBW 4,133,747  71.20%  4,456,728  76.77% +322,981 +7.8% 

1 WK LATE 199,868  3.44%  235,031  4.05% +35,163 +17.6% 

>1 WK LATE 111,249  1.92%  83,822  1.44% -24,427 -24.7% 

UP 453,275   7.81%  13,850  0.24% -439,425 -96,9% 

PIFOT 90.3%  98.3% +8.9% 

UNITS*WKS OF 
INVENTORY 

3,760,561  4,003,962 +6.4% 

CAPACITY UTIL DEV 6.9% 5.5% -20.3% 
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5. Discussion 

5.1. Conclusion  

The performance of the Proposed Solution is especially better than the CTM in preventing 

Unplanned and Late deliveries. The inventory on hand does grow, but less than the increase in 

planned units. To further prevent this, lateness should be penalized less, as a late delivery can 

technically move straight to the customer. It should be noted that the Benchmark is of course not 

the same as the CTM logic that is currently in place. It is, after all, an approximation which uses 

the same input as the Proposed Solution, such that they can be compared better. In fact, maybe the 

comparison isn’t really fair, considering the age of the CTM logic and its simple, yet effective 

approach which can be understood by all.  

In reality, there might be more complications which the Proposed Solution might run into. 

This is in part because of the computation time of all the constraints and setting up the model. If 

more constraints are added to this model, the computation time will of course also increase. To run 

this model for the 28 periods, in 6 Timechunks (1-8, 5-12, 9-16, 13-20, 17-24, 21-28), cost my 

Lenovo t480s 11 hours, 45 minutes and 9 seconds for this size dataset. That is a long time, but it 

gives a half year planning for a single factory. Since the factories are not interdependent, as the 

SKUs are sourced at a single factory, the optimizations could be run in parallel. What’s more, the 

results for the short term are already output long before the final batch is run thanks to the 

Timechunks. So, even if the setting up of the model and running the optimization would take a 

long time, the planners could already start working on the season which is in their scope before 

the entire optimization finishes. 

It is also important to take into consideration that even though the running time mentioned 

before is considerable (11h45m), it does the setting up for all demand twice (except for weeks 1-

4 and 25-28). Running the same dataset without the Timechunks logic, cost the same machine 17 

hours, 32 minutes and 14 seconds. Almost all of this computation time comes from the setting up 

of the constraints (15h34m).  

Another weakness of the Proposed Solution is not knowing why exactly materials go 

Unplanned now. Though with the great reduction in Unplanned demand, the Supply & Inventory 

Team would have more time on their hands to find this out themselves. In fact, it is quite probable 

that the majority of the Unplanned issues from the Proposed Solution will be caused by Minimum 

Order Quantity issues.  

5.2. Recommendations 

Of course, considering the performance of the method, I would recommend implementing it 

in the business. But I do see the implications thereof. Of course, the CTM method works in 

conjunction with SAP: the Materials Planning system used throughout the entire company. Having 

something that works with that is of course very convenient.  
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However, the performance improvements that are implied throughout this research are quite 

severe. For years, the two main headaches of the business are (1) getting the hugely growing 

demand in the right place in the right time, struggling with tight resource capacities and (2) the 

constant rise of inventories. In order to solve the first problem, Nike has taken all kinds of 

precautions in order to pull production in earlier, such as through the use of Target Days Shipping 

(TDS, explained in Chapter 3.2.1) and Blind Buys (explained in Chapter 3.1.4) which in turn have 

caused increments in the Inventory Levels.  

5.3. Further Research Suggestions 

There are quite some alterations which can be made to the proposed solution which can be 

explored. These include, but are definitely not limited to: 

- Using different datasets; 

- Using more capacity constraints; 

- The values of the penalties; 

- The values of the priority parameters; 

- The use of the Timechunks, in the sense of:  

o Using them at all, or if used;  

o The number of weeks to include in each. 

- The addition of a heuristic which allows penalty score deterioration for secondary objective 

improvement; 

- Run over run comparison of results to evaluate Buy Plan stability; 

- Include DC inventory constraints (possibly instead of earliness penalties). 

And all of these suggestions are made when using this research’s Proposed Solution. There 

are many more methods in (more advanced) mathematical programming, heuristics and 

combinations of the two which can probably be explored in order to solve the problem at hand. 
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Appendix A: Data 

Sample 

Table A.1 Demand Data, after pre-processing, used 

for the Benchmark 

PC_i and DT_i are in their non-numerical 

form, but that is not important for the 

sorting logic of the CTM, they do start with 

a numerical value to be able to sort them to. 
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Appendix B. KPI Interaction Matrices 

Table B.1: High interactions of KPIs; the diagonal contains the single KPI’s implication if high 

High 1 2 3 4 5 6 

1 
Missing 

many sales 

opportunities 

Very low on 

time delivery: 

will lose 

business 

ML parameter 

should be used 

to prevent UP 

Too much 

risk is taken 

with Blind 

Buys 

Unplanned is 

mostly due to 

other reasons 

than Capacity 

Big 

differences in 

Demand per 

GEO 

2 - 

Might lose 

business to 

competition 

Hardly any 

UP; low JIT 

delivery 

Focus is on 

the wrong 

products 

Struggling to 

catch up with 

demand 

Other GEOs 

are doing 

better 

3 - - 

Unnecessarily 

early 

production 

Impending 

storage 

catastrophe 

Not 

producing 

lean enough 

Might be 

cannibalizing 

other GEOs 

4 - - - 

Storage 

shortage 

issues will 

arise 

Not 

producing 

lean enough 

Divert 

shipment 

requests 

impending 

5 - - - - 

Factory 

Planning 

will be hard 

Cross GEO 

Demand is 

not aligned 

6 - - - - - 

Manual 

work is 

required 

 

Table B.2: Mixed interactions of high & low KPIs; KPI on the left is low, on top is high 

Low\High 1 2 3 4 5 6 

(1) - 
Struggling to 

keep up 

Growing 

inventory 

Expect 

excess 

inventory 

Low total 

demand 

Cross GEO 

demand is 

not aligned 

(2) 

Bad 

coverage, but 

could be 

worse 

- 

Producing 

too early 

overall 

Expect 

excess 

inventory 

Producing 

close to IBW 

probably 

Cross GEO 

demand is 

not aligned 

(3) Bad coverage 

Producing 

too late 

overall 

- 

Expect 

inventory 

reduction 

Producing 

close to IBW 

probably 

Cross GEO 

demand is 

not aligned 

(4) 
Expect 

shortages 

Expect 

shortages 

Expect 

inventory 

increase 

- 
Lean 

production 

Request 

divert 

shipments 

(5) 
Factories 

running at 

max capacity 

Struggling to 

keep up 

Getting 

highly 

popular 

demand 

Factory 

struggling, 

enough 

buffer 

- 
High total 

demand 

(6) 
Bad coverage 

for all GEOs 

Factories are 

struggling 

Too much 

early 

production 

Stable 

inventories 

Low total 

demand 
- 
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Appendix B (Cont.) 

Table B.3: Low interactions of KPIs; the diagonal contains the single KPI’s implication if low 

Low (1) (2) (3) (4) (5) (6) 

(1) 

High 

coverage 

of 

demand 

Demand is 

met on time 

(high 

PIFOT!) 

Demand might 

be arriving 

late 

Lots of 

demand in 

the pipeline 

Factories are 

managing demand 

All GEOs 

are seeing 

great 

coverage 

(2) - 
Timely 

delivery 

Either lean 

production, or 

high 

unplanned 

Either lean 

production 

or high 

unplanned 

Factories are either 

managing demand 

or are running at 

full capacity 

All GEOs 

have timely 

deliveries 

(3) - - 
Lean 

production 

Either lean 

production 

or not-so-

great 

coverage 

Factories are either 

managing lean 

production or are  

struggling to keep 

up 

All GEOs 

have lean 

production 

(4) - - - 

Very lean; 

may cause 

out of 

stocks when 

demand 

surges 

Factories are either 

producing very lean 

or are running at 

full capacity 

All GEOS 

have lean 

inventories 

(5) - - - - 

Stable factory 

utilization; might 

indicate working 

at full capacity 

Cross GEO 

demand is 

aligned 

(6) - - - - - 

Demand 

distributed 

evenly 

over Geos 

 


