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ABSTRACT iii

Abstract

Automated guided vehicles (AGVs) have been increasingly more common in distribution centers and

airport terminals. Although there has been much research conducted on how AGVs navigate through

these environments, there is much to be examined on how human operators in the environment see the

navigation of those AGVs. One way an AGV can display its trajectory to an operator, is through the

use of explicit social cues, such as speech and signalling. However, often these cues are misunderstood

or take a long time to be registered by the human, causing discomfort. Another way in which an AGV

can display where it is proceeding towards, is through the use of human aware navigation through

a trajectory. In this thesis, we used two different navigation methods (minimum jerk versus shortest

path trajectories) to examine which type of trajectory performs better in terms of the positioning under-

standing (knowing to which point the robot will navigate to) and orientation understanding (knowing in

which angle the robot will end up in). These understandings were implicitly measured by checking how

fast and accurate the operator was and explicitly measured by letting the operator evaluate whether

they understood the robot through questionnaires. 27 participants partook in a two-way (trajectory

type: minimum jerk vs. shortest path) within-subjects design lab study. This study found that position-

ing accuracy was significantly higher for minimum jerk trajectories, while orientation accuracy was

significantly higher for shortest path trajectories. These results and additional effects were discussed.

Hence, we concluded that the navigational behavior of the robot can be used as an alternative inter-

action cue, showing where the robot is heading towards, and that dependent on the environment cues

and personal preferences or tasks, the effect of different trajectory types may differ.
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INTRODUCTION 1

Introduction

The practice of implementing automated guided vehicles (AGVs) in sortation centers and airport ter-

minals has been expanding since the early 2000s (IFR, 2018). Due to this increase, a transition has

been taking place from environments which are mainly designed around human factors, towards envi-

ronments which are designed to keep both human and robotic factors in mind. However, this transition

seems to be progressing rather slowly. This slow pace can be explained by the fact that companies

have policies which enforce that distributive operations should either exclusively be performed on a

human-oriented scale (mostly reliant on the use of manned forklifts) or an automation-oriented scale

(mostly reliant on AGVs or robotics picking up one product to drop it off somewhere else). In turn, this

distinction can be attributed to the severe safety regulations, usually physically separating the operators

from the robotics. Therefore, this separation enforces the idea that humans and robotics should only

interact indirectly, usually done through some kind of mediation device. This indirect interaction is

likely to increase idle times for both human and robotics, which was shown to decrease productivity

(Nikolaidis, Ramakrishnan, Gu, & Shah 2015). Moreover, due to the enforcement of less direct contact,

little knowledge is gained on the goals of the robot by the human and vice versa.

Fortunately, over the last decade numerous projects have been conducted, showing the theoretical, in-

creased benefits personal Human-Robot Interaction (HRI) in shared workspaces (Michalos, Makris,

Tsarouchi, Guasch, Kontovrakis & Chryssolouris 2015). These interaction forms show increased ben-

efits for both company goals such as an increase in productivity (Ding, Schipper & Matthias, 2014),

as well as human perception of safety and comfort (Butler & Agah, 2001; Lasota, Rossano & Shah,

2014). When we want to maximize these positive effects, it becomes clear that we need a more intricate

understanding on how different kinds of users interact with different kinds of robotics. Since, it was



INTRODUCTION 2

shown that if we want HRI to truly aid effective collaboration, gestures and cues from both sides need

to be understood (Liu & Wang, 2018 for an overview). In this paper, we will regard how manipulating

an interaction form with an AGV, can influence this understanding.

Application of AGVs

The concept of an AGV navigating through an industrial environment has been established as early as

1968 (Hart, Nilsson & Raphael, 1968). In this paper, a simple algorithm was developed on which a

robot (called Shakey the Robot) could find a cost-effective trajectory in an environment littered with

obstacles. Though innovative, it can hardly be stated that through this obstacle avoidance algorithm

the robot was truly autonomous, since it was still restricted to a predefined path. In a similar approach,

Arkin and Murphy (1990) studied the effect of automatic guided vehicles in the workplace. The authors

saw that when a vehicle is restricted to a predefined track to move around on, it was not able to show

interaction with the environment. They noted that interaction to the environment can be coerced by

introducing an automated robot with actively updated knowledge of the world surrounding it, in order

to avoid unmodeled obstacles. Through this system, the robot was able to show in which direction it

was proceeding to move. This relation the robot had to its environment, was able to show that the robot

was able to autonomously navigate without restricting other activities in that environment.

In more recent times, most HRI is either established in the ’factory’ or ’home’ setting. In the factory

setting, there usually is a clear physical separation between the human and the robot, whereas in the

home setting the robot is seen as a social presence, with an emphasis on interaction through social cues

(Sisbot, Marin-Urias, Broquère, Sidobre & Alami, 2010). There thus seems to be a paradigm for the

distinction between working and living robots. This distinction establishes a grey area in the middle,

for which the interaction factors between human and robot are still largely unknown. Most recent work
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focuses on interaction forms where the robot gets more of a social presence in the factory environment,

and the forms where the robot becomes less of a social presence in the home environment. The HRI

in these environments requires to be more intently researched, especially when we consider the areas

where there is a substantial reliance on the aid of AGVs for operators in distribution and sortation

centers and in airport baggage handling (Bøgh, Hvilshøj, Kristiansen & Madsen, 2012). In a paper

by Lenior (2012), it was shown that with the aid of the right human and robotic design factors, AGVs

can be implemented in airport halls such that they efficiently interact with the human operators in that

environment.

This paradigm can potentially be applied to the FLEET robot, developed by Vanderlande (van Meijl &

van Eekelen, 2016), of which an example is shown in Figure 2. These robots behave as AGVs that are

programmed to navigate through a distribution floor, picking up and delivering packages. through their

shuttle-based AGV design, these AGVs benefit that they can shorten travel time and distance for both

storage and retrieval (Tappia, Roy & de Koster, 2016). Moreover, they decrease the need for locked

conveyors, resulting in a more flexible and less time consuming system. Considering that there is a

rising requirement for flexible space management, and higher fault tolerance, a system with these kind

of AGVs its decentralized control architecture is quite recommendable. Furthermore, it was shown to

open up many potential applications (Lima & Custodio, 2005). For instance, in a decentralized system

with multiple AGVs, it is of great importance to acknowledge the effects of routing, which takes into

account collision avoidance, where other AGVs crossing one AGV its trajectory are actively updated.

This control approach was implemented to avoid small collisions which could result in deadlock sit-

uations, in which all AGVs are all indecisively waiting for another robot to move. These situations

require external intervention to get resolved, thus greatly diminishing productivity (Silven, 2018). To

avoid these situations, it is important that the operator of these AGVs is able to easily understand the
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message being communicated by the AGV through its situated behavior. In summary, decentralization

can lead to unpredictable behavior, altering the effects of communication between an AGV and an op-

erator, and in order to support effective communication, AGVs need to be clear and effective in what

their goal and trajectory is.

Figure 2: Picture of a FLEET robot, developed by Vanderlande, carrying luggage. (Taken from

https://www.vanderlande.com/news/fleet-all-systems-go-at-rotterdam/, 2020)

AGV interaction cues

Humans often rely on non-verbal cues in all sorts of communication (Becchio, Sartori & Castiello,

2010). A substantial amount of HRI literature has shown a reflection of this general reliance, by

implementing these cues in hand-over tasks (Huber, Rickert, Knoll, Brandt & Glasauer, 2008; Paraste-

gari, Abbasi, Noohi & Zefran, 2017; Cakmak, Srinivasa, Lee, et al., 2011; Mainprice, Sisbot, Simeon

& Alami, 2019), pointing tasks (Häring, Eichberg, & André, 2012; Quintero, Fomena, Shademan,
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Wolleb, Dick & Jagersand, 2013) and social tasks (Glas, Satake, Ferreri, Kanda, Hagita & Ishiguro,

2013; Rodriquez-Lizundia, Marcos, Zalama, Gómez-Garcı́a-Bermejo & Gordaliza, 2015) when re-

garding the cooperation between human and robot.

Moreover, it has been shown that using signaling behavior such as gaze direction or using turn indica-

tors were both able to show where the robot was heading towards (May, Dondrup & Hanheide, 2015).

In addition, Scheffer (2018) showed that using movement signals was as favorable as speech for fac-

tors such as social presence, perceived safety, and perceived message understanding. Moreover, in this

paper, it was found that gestures were regarded to be a much faster interaction method, compared to

speech. This might imply that the a robots behavior can be understood much faster with the usage of

gestures, which is beneficial for natural HRI.

However, explicit signalling methods, such as speech, often require much understanding and attention

to be accurately read. Because speech instructions take time to be translated by the operator, especially

when the robot tries to communicate something relating to orientation (e.g.:’move to the left from my

point of view’). Thus, we can assume that operators interacting with this robot might not always have

the required understanding and attention to do this, especially when tending to physically or mentally

challenging tasks. Moreover, it was found that changing a factor as minor as the speed with which the

robot moves was shown to substantially increase mental activity and feelings of anxiety (Koppenborg,

Nickel, Naber, Lungfiel & Huelke, 2017; MacArthur, Stowers & Hancock, 2017). Also, if one is

attending to one task and needs to keep its visual focus there, one can not keep its visual attention on

a robot, even when no interaction is taking place (Rossi, Santangelo, Ruocco, Ercolano, Raggioli &

Savino, 2018). Thus there are multiple reasons as to why more implicit forms of HRI can be more

appropriately applied to situations were both human and AGV are either occupied.
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Human Aware Navigation Models

Much research has been conducted on the subject of AGVs adapted to avoid collisions with a human

(Pandey & Alami, 2010; Lam, Chou, Chiang & Fu, 2011; Kruse, Basili, Glasauer & Kirsch, 2012;

Koppenborg et al., 2017). However, it is not only important that the robot knows how to prevent

collisions with humans and other obstacles in its environment, but also that the intent of where the

robot wants to navigate towards is easily read humans in its environment.

There are several Human Aware Navigation (HAN) models of robot navigation that have kept human

knowledge and preferences in mind, such as the Human Aware Interaction Planner (Sisbot, Marin-

Urias, Alami & Simeon, 2007). This planner keeps the AGV trajectory on a specific path while keeping

distance and social costs into account. This ensures that the AGV will be inside the field of view and

within a safe distance of the human. In order to achieve this, the planner must consider a correct

identification of human positioning and orientation in the environment, and the task being performed

by the human. Another model is the Qualitative Trajectory Calculus, proposed by Hanheide, Peters, and

Bellotto (2012), which regards a human’s personal space as a probabilistic model. This model weighs

the velocity vector based on distance and velocity of the humans, where this weight is also largely

dependent on the kind of task the human and AGV are trying to complete (cooperative or competitive),

and whether this task is based on whether or not the AGV is engaged in guiding the human or vice

versa (Yuan, Twardon & Hanheide, 2010; Jevtić, Doisy, Parmet & Edan, 2015; Triebel, Arras, Alami,

Beyer & Breuers, 2016).

In the study by Lichtenthäler, Lorenz, Karg and Kirsch (2012) several of the aforementioned HANs

were tested on whether their trajectories were predictable according the operator. The predictability of

an AGV was defined as the understanding of how the current trajectory of an AGV leads to a possible
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destination. For the model in which the human was regarded as an obstacle (MB-DWA), predictability

would be rated the highest by the operator. Meaning that an AGV with MB-DWA planning, would

mainly show the navigation towards the end goal, in a way where the orientation and the position from

the trajectory reflected a change towards the end position and orientation. These results were also

found in the understanding of the operators, since they were able to infer the destination of the robot

with high confidence, if the current trajectory and orientation of the robot was highly predictable.

In similarity to Lichtenthäler et al. (2012), Dragan, Lee, and Srinivasa (2013) defined the ease with

which we can understand the navigation of an AGV towards a certain endpoint, dependent on the

current trajectory, to be the legibility of the AGV. Contrary to this, predictability was defined as the

ease at which we can understand the next displacement by the robot given the current trajectory. These

definitions were used to test the legibility and predictability of differing limb movements of a robot.

Dragan et al. (2013) concluded that a limb movement trajectory with high legibility would be paired

with low predictability and vice versa. We can illustrate this finding with an example, which can be

seen in Figure 3. When an AGV is programmed to drive around objects in a very wide margin and there

is an object between it and its goal, we might see a very wide trajectory around the object, resulting

in high understanding of the end orientation, and a high predictability. Since the angular velocity (the

velocity with which the orientation changes) stays mostly constant during the trajectory and we can

thus easily see in which orientation it is going to end up, we know what the endpoint is. However,

when a robot deviates from the shortest path right from the start, it will presumably result in a low

understanding of the end positioning, and thus also a low legibility.

In the paper by Lasota, Rossano and Shah (2014), where a participant collaborated with a robot in a

virtual shared workspace to put adhesive on screws. It was shown that legible, gesture-like limb motion

from the robot decreased human idle time. Thus we can assume that clear predictability of either the
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Figure 3: Example of two different trajectories, where the left one has a larger arc, resulting in a better

knowledge of the end orientation by the operator, but a lower knowledge of the end positioning, if all

points on the horizontal end line can be a potential end position. On the right side, we see a trajectory

where the end positioning might be easier to know, however the end orientation might not be clear

end orientation or end positioning, through coherent movement of an AGV towards this endpoint can

increase task performance. In the paper by Stulp, Grizou, Busch, and Lopes (2016) it was shown that by

using reinforcement learning for the robot, based on the user preferences of predictability, that over time

illegible navigation behavior from the robot was corrected to legible behavior where the navigation was

slightly altered. Thus, the understanding of where the robot will end (positioning understanding), and in

which orientation the robot ends (orientation understanding) is of great importance to the collaboration

between a human and robot. Hence, we have to ensure that the understanding of the end orientation

and end positioning is always realized, possibly resulting in an optimal understanding of the trajectory

of the robot.

In this thesis, we will specifically regard the effect of different trajectories on a persons perceived

message understanding (PMU) of a robot. This term was coined by Harms and Biocca (2004), referring

to the ability ”of the user to understand the message being received from the ’interactant’ as well as

their perception of the ’interactant’ its level of message understanding” (p. 1).
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Minimum Jerk Trajectories

One element that can strongly influence the PMU of a robot, is through the implementations of min-

imum jerk trajectories. Outside of the literature on robotics, minimum jerk is often defined as the

gradual and smooth deceleration or acceleration of joints in limbs, so that it is perceived as fluent

movement (Flash & Hogan, 1985). From past HRI research, it can be shown that minimum jerk tra-

jectories are commonly used in robotic joint movement of manipulators. These movements have been

applied to an assortment of different tasks, such as hand-over tasks (Amirabdollahian, Louireiro & Har-

win, 2002), or imitation movement for rehabilitation tasks (Glasauer, Huber, Basili, Knoll & Brandt,

2010), where smooth transitions between endpoints for the joints was seen as more intentful, and thus

the message from the robot was easier understood. In return, it was shown from kinematic profiles

that humans show minimum jerk in a hand-over task interaction with a robot which shows minimum

jerk, suggesting a more smooth and social interaction profile (Quesque, Lewkowicz, Delevoye-Turrell

& Coello, 2013).

It seems conceivable that the results related to the limb movements of a robot can also be applied to the

navigation of an AGV. It was shown that through smooth movements an AGV can ensure its trajectory

is comfortable and predictable towards the operator (see Kruse et al., 2013 for an overview). Van den

Goor (2019) showed that minimum jerk trajectories can be implemented to plan a path for a humanoid

robot. It was shown that when the robot would approach the human under larger angles, a minimal jerk

approach had a higher perceived message understanding than when the robot used the shortest path.

However, in Kruse et al. (2012), it was seen that sometimes it is more natural for an AGV to suddenly

decelerate when it encounters a possible collision situation in an mobile environment. This situation

is similar to how a human may decelerate when it crosses another human at a right angle to avoid
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collisions. In this paper, it was shown that this type of trajectory was able to make a person understand

the end position of the robot quite well, but the trajectory itself was less predictable.

In a paper by Lichtenthäler, Lorenz and Kirsch (2012) it was shown that the understanding of the end

positioning of a robot, decreased with a trajectory similar to a minimum jerk trajectory. Thus, how

the positioning and orientation understanding and PMU are influenced by the type of AGV trajectory,

changes depending on the situation. This might be explained when we regard van den Goor (2019).

Since this paper altered the end positioning, but not the end orientation, we might assume that minimum

jerk trajectories only worked better because the end orientation was not varied and only the begin

position and orientation was.

In some situations, it may be more important to be able to predict the positioning of an AGV, while in

other situations it is more important to predict the end orientation. For example, if an operator has to

ensure that they stand right across the AGV when it arrives at the endpoint, because the packages the

AGV carries can only be taken off from a specific angle, this operator might be more interested in what

orientation the AGV stops. However, if the operator has to ensure that they move towards the point

where the AGV is moving towards and the orientation does not matter, the end positioning of the AGV

might be regarded as more important.

We consider knowing both the positioning and orientation understanding to be of primary importance

when interacting with any kind of automated mobile device, since we assume that these understandings

are used to evaluate the PMU of the robot in terms of navigation. Furthermore, it was shown that

the understanding of the end position of a robot increases the efficiency of the interaction (Guzzi,

Giusti, Gambardella, Theraulaz, & Di Caro, 2013; Zhang, Sreedharan, Kulkarni, Chakraborti, Zhuo

& Kambhampati, 2017), as well as the well-being of the human during the interaction (Bortot, Born

& Bengler, 2013). Moreover it was shown that PMU is closely related to the acceptance (Eyssel,
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Kuchenbrandt & Bobinger, 2011), approachability (Takayama, Dooley & Yu, 2011), trust (Schaefer,

2013) in/of a robot. It is thus apparent that the understanding of an AGV plays a vital role in the

interaction itself and the expectations of future instances of an interaction.
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Research aims

The purpose of this thesis is to examine the effects of different AGV trajectory conditions on people’s

PMU of the AGV’s navigational goals, as indicated by the understanding of both positioning and

orientation. The purpose culminated into the following research question:

How do different trajectory types of an AGV influence its perceived message understanding?

We expect that the orientation understanding will be higher for the minimum jerk trajectories than

the shortest path trajectories. In contrast we expect that the positioning understanding will be higher

for the shortest path trajectories than the minimum jerk trajectories. The expectations are based the

work by van den Goor (2019), Scheffer (2018), and Lichtenthäler, Lorenz and Kirsch (2012). Van

den Goor (2019) showed that the PMU of the robot did increase for minimum jerk trajectories under

a large angle. This makes sense considering that Scheffer (2018) has shown that PMU does increase.

This was confirmed in papers by Papenmeier, Uhrig, and Kirsch (2019) and Lichtenthäler, Lorenz and

Kirsch (2012). In the paper by Papenmeier et al. (2019), it was shown that predictability and autonomy

ratings were higher for robots with more constant angular and linear velocities compared to fluctuating

velocities.

Our assumptions will be tested in an experiment where people will anticipate the end orientation and

position of a robot navigating following either a minimum jerk or shortest path trajectory.

Both positioning and orientation understanding will be measured. Implicitly this will be measured by

the participants performance in making clear they understand where and in which the position the robot

will end up in, and explicitly we will evaluate their understanding of what the robot will do on a rating

scale.
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In addition, we will explore whether the explicit evaluations and the implicit measurements correlate.

we are mostly interested in whether there is a correlation between implicit positioning understanding

measures and the respective explicit positioning evaluation, and if implicit decision time and accu-

racy of the orientation understanding measures will correlate with the respective explicit orientation

evaluation.
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Methods

Participants and design

Based on our power analysis in G*Power, with α = 0.05, power = 0.9, effect size = 0.4299, we needed

a total of 27 participants (16 male, Mage = 22.70, SDage = 2.60, range = 18-27). This effect size was

based on the results from van den Goor (2019), which had an η2 of 0.156. The probability distribution

as well as the protocol for these analyses can be found in Appendix A. Participants were recruited using

the J.F. Schouten Database of Participants. This is a database for the largest part (but not exclusively)

comprised of students of the Eindhoven University of Technology, where members of the database

receive invites for studies through email. Participants were selected on the following criteria: they

should be at least 18 years old, and speak English. They were compensated for their participation with

C5.00. They received an extra C2.00 if they were not affiliated with the university.

This study has a two (AGV trajectory type: shortest path vs. minimum jerk) x two (end orientation:

0°versus 90°) x five (endpoint: -2,-1,0,1,2) within-subjects design. This accumulates in a total of

twenty trials, with ten minimum jerk trajectories and ten shortest path trajectories. All trajectories can

be seen in Figure 4. In the minimum jerk condition, a robot moved towards one of the five endpoints

while ensuring minimal change in both angular and linear velocity, creating a very curvy trajectory,

with minimal accelerations and decelerations. In the shortest path condition, the robot turned towards

the orientation of the endpoint and proceeded to move towards this endpoint in a straight line. Once

at the endpoint, the robot turned itself towards the right orientation. In this condition, the changes in

both the angular and linear velocity are high compared to the minimum jerk condition. The specific

differences between the two trajectory types as input for the robot is given in Table 1.
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Figure 4: Position of the robot given by the ”X” sign at (0,0) on this 11 by 11 grid, with a grid size of

50 by 50 centimeters. The red lines and blue lines represent the ten minimum jerk trajectories and ten

shortest path trajectories, respectively, towards the five endpoints given by the ”+” signs: endpoint -2

at (1,4), endpoint -1 at (1.75,3.25) endpoint 0 (2.5,2.5), 1 at (3.25,1.75) and 2 at (4,1). The robot stops

at these endpoints with two different end orientations, either in a 0 or 90 °angle from the abscissa. The

start orientation of the robot is in a 45 degree from the abscissa. The start position of the participant

is given by the round dot in the upper right corner at the (5,5) position. Note that the data from the

dotted trajectory were omitted from further analysis due to the errors made in this trajectory
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Minimum jerk Shortest path

Path-planning description Trajectory where the ∆θ = ∆θmin & ∆v = ∆vmin Trajectory where the T = Tmin

Angular velocity
√
θ(t−1)−θ(t)

dT
2
√

1
cos(θ(t=0))

20°/s

Linear velocity
√

1
cos(θ(t=0))

√
gain ∗ cos(θ(t))2 +

√
gain ∗ sin(θ(t))2 3m/s

Table 1: With dT being the time derivative of 0.05 seconds, the gain*cos(θ(t)) being the velocity in

the x direction, gain*sin(θ(t)) being velocity in the y direction, with the gain factor set at 0.2, and θ(t)

orientation at time t, for which the equation is given in Appendix C. And
√

1
cos(θ(t=0))

being the change

of total distance being longer due to the endpoints not being on a circle, but on a line. The shortest path

trajectory was accelerated to the maximum velocities given, with an angular acceleration of 43°/s2 and

an linear acceleration of 0.3m/s2
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Measures

We analyzed seven measures per participant per trial. These measures include the Decision Time (DT),

which measured how fast the participant was able to decide where the robot was going. To measure

the DT we asked the participant to press the left mouse button for the positioning and the middle scroll

wheel for the orientation. The timing with which either of the buttons was pressed was tracked and

compared to our simulated robot trajectory in our python code. This timing was then divided by the

total time of the trial to make it a fraction from 0 to 1. We then transformed this fraction to represent

the DT performance, which is: 1-DT fraction. We will from now on refer to this DT performance as

the DT.

We also measured the rate for which the participant was able to make the right decision, and how

often this decision was correct, which is referred to as the accuracy. Both DT and efficiency were

measured for positioning understanding, referred to as the positioning DT and positioning accuracy,

and the orientation understanding, referred to as the orientation DT and orientation accuracy. We also

let the participants explicitly rate the positioning and orientation understanding, as well as the PMU

of the trajectory of the robot after each trial through a questionnaire consisting of one question per

measurement. This self-made questionnaire can be found in Figure 5 below as well as in Appendix B.
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Figure 5: The three questions used measuring the explicit positioning understanding(1), the explicit

orientation understanding(2) and the perceived message understanding(3) with a 5 point Likert scale

to evaluate the trajectory of the robot, used in between each trial.

The participants were additionally questioned on their overall experience of the positioning and ori-

entation understanding and the PMU, as well as their overall experience with robotics. Both of these

questionnaires can be found in Appendix B. In addition, they were also asked to rate their general at-

titude towards AGVs. This attitude towards robots was measured with the negative attitudes towards

robots survey (NARS), developed by Syrdal, Dautenhahn, and Koay (2009). This questionnaire had

an average Cronbach’s α value of 0.60 over the five questions. This low value was due to the low

inter-item correlations for the third (”I would hate the idea that robots or artificial intelligences were

making judgments about things”) and fifth item (”I would feel uneasy if I was given a job where I

had to use robots”). However, the α value is shown to decrease when we omit these items, thus we

decided to leave them all in and sum them together. The questions with each rest-item and inter-item
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correlations is shown in Table 2 below, while the questionnaire itself can be found in Appendix B. In

addition, we asked the participants for their age and gender which can also be found in Appendix B.

α IR corr Q5 Q4 Q3 Q2 Q1

Q1: I feel that if I depend on robots too much, something bad might happen 0.470 0.496 0.088 0.282 0.545 0.318

Q2: I am concerned that robots would be a bad influence on children 0.509 0.427 0.249 0.436 0.082

Q3: I would hate the idea that robots or artificial intelligences were making judgments about things 0586 0.281 0.098 0.028

Q4: I would feel very nervous just standing in front of a robot 0.544 0.362 0.196

Q1: I would feel uneasy if I was given a job where I had to use robots 0.611 0.232

Table 2: Alpha values in the first column, as well as the inter-rest correlation in the second column, and

the inter-item correlations between questions in the other columns for the evaluation of the negative

attitudes towards robots survey, developed by Syrdal, Dautenhahn, and Koay (2009)

Apparatus

The setup for our experiment is a combination of the setups used in van den Goor (2019) and Scheffer

(2018). However, in our experiment, we added the component that the human is able to move. We

made use of the Pepper Robot (Softbank Robotics, 2019) to represent the AGV in the experiment.

We expected that despite its many humanoid features, it would be able to fulfill all the requirements

necessary in order to compare it to a standard AGV, like the FLEET robot, as long as it kept itself in a

neutral standing pose, for which only the wheels were allowed to move, while stiffening the joints to

keep the Pepper robot in its neutral pose. Therefore it will make for an acceptable substitute. In order

for us to make start and endpoints for the AGV as illustrated in Figure 4, a nine by nine grid was used,

with a grid size of 50 by 50 centimeters. On this grid, the Pepper robot was located on the center of

grid point (0,0). The robot had a start orientation of 45 degrees, in the orientation of the middle end
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position (2.5,2.5). In Figure 6 the actual physical setup of these endpoints are shown.

Figure 6: Photographs taken from the actual experimental setup where the arrows represent the com-

bination of the robots end positioning and end orientation. In the left picture we can see one of our

participants standing at the starting point on the left side, and the robot is standing on its starting point

on the right side

In addition to the Pepper robot and this grid, a wireless mouse connected to a laptop running the

python code in Vizard 6, was used to register the implicit measures, through the mouse button clicks.

This laptop was also used to execute the python code that moves the robot, for which the code can

be found in Appendix C. A desktop was also used on which the participants were asked to fill out the

online questionnaires. Moreover, the participants were video-recorded through two camera’s installed

in the experiment room. Two still frames from the footage taken from each of these cameras can be

found in Figure 6.

The minimum jerk trajectory was continually assessed in a six by six matrix representing the change

in position, velocity, and acceleration in the x and y-direction. These values ensured that the number

of positions was the shortest for smallest changes in velocity and acceleration, suggesting that both

changes in velocity as well as acceleration where kept to a minimum to a fifth-order degree. Once the

AGV had reached its endpoint it was ensured that the end acceleration is equal to zero. This ensured
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by both the angular and linear velocity being extrapolated to zero accordingly based on the heading

and the distance towards the endpoint. The equation for both the x and y evaluations according to these

equations is given in Appendix C as equations 1 and 2. From this evaluations the new x and y position,

as well as the new orientation can be found as the inverse tangent function of the x velocity and y

velocity as seen in equation 3. While the equation of the orientation for the shortest path trajectory is

simply given by the inverse tangent function of the x and y position of the endpoint, which can be seen

in equation 4.

Due to the fact that in the shortest path condition the robot will first turn in place, the direction the

wheels are pointed in is altered. However after giving it the turn command, the wheels do not perfectly

return to a position in which the direction of the wheels is pointed straight forward. This becomes

problematic when next, the robot starts to move in a straight trajectory to the endpoint. Due to this

deviation in wheel direction from the initiation, and the fact that the robot does not get any commands

to change its angular direction until the end, the robot will sometimes had some initiation drift in the

direction it had turned towards while it was still at its start point. We have counteracted this drift by

having the robot move in the opposite direction, called the suppression drift. The equation for this

suppression drift can be found in Appendix C, as equation 5.

Procedure

The participants were welcomed into the Virtual Reality lab in the Atlas building on the campus of the

Eindhoven University of Technology. Subsequently, they were briefed about the aim of the experiment

and they gave informed consent. Next, the participant was lead to the distribution floor setting. The

participants had to position themselves on the human starting point. This starting point was located

at the (5,5) point on the grid. Meanwhile, the AGV moved from the AGV start point: (0,0) in this
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grid, towards one of five endpoints: (1,4) or (1.75,3.25) or (2.5,2.5) or (3.25,1.75) or (4,1). The robot

moved to these endpoints and either ended with a 0 or 90 degree end orientation in respect to the

origin. While the robot was moving towards its endpoint, the participant was allowed to freely move

around within the triangle bounded by the start point (5,5), and the two outer end positions of the

robot: (4,1) and (1.4). As soon as the participants were sure to which of these five endpoints and one

of two ending orientations was heading, they were urged to press the button corresponding to either

the end positioning or the end orientation. When both buttons were pressed by the participant, they

had to move to the arrow corresponding with this end position and orientation. After the AGV arrived

at its end position in the appropriate orientation, the participant had to fill out the three questions of

the understanding questionnaire. This process was repeated for all 20 trials in random order. After all

trials were conducted, the participant had to fill out the overall understanding questionnaire, the attitude

questionnaire and the demographic questionnaire. After that, they were compensated and thanked for

their participation. The whole procedure took, on average, 30 minutes to complete.
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Results

In this results section we will firstly check our assumptions and examine whether there are any other

effects biasing our data. Next we will present the primary results answering our research questions,

after which we will present the secondary effects, which are based on some of our assumptions and

the demographic data. Lastly, we will explore our results and examine what might have caused the

presence and absence for our primary and secondary results.

Assumption checking and order effects

A few outliers were found that negatively affected the assumptions of normality and heteroscedasticity

of the residuals, and thus we decided to drop those few unrelated values. In addition, the values con-

nected to one trajectory (endpoint=-2, orientation=90°, trajectory type=minimum jerk) were dropped,

because this trajectory deviated from its intended trajectory too many times in the experiment. But

other than those issues, all necessary assumptions were met.

In addition, it was checked whether participants were better able to predict both the end position and end

orientation over each trial. We performed four regression analyses with the trial number as the indepen-

dent variable and both DT and accuracy of both positioning and orientation dependent variables. It was

shown that only positioning DT showed significant increase over each trial (β = 0.027,p = 0.001,R2

= 0.023). Thus, since participants only show a small increase in DT over the trials, which opposes our

assumptions of the learning effect, this effect was disregarded in further analyses.
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Primary results

To test whether or not AGVs with minimum jerk trajectories had different values for positioning and

orientation understanding, than shortest path trajectories, data on positioning accuracy and DT, ori-

entation accuracy and DT, the explicit positioning and orientation understanding and the PMU were

submitted to seven multi model analyses of variance. In the full model of the analysis we included the

absolute end position of the robot (0,1,2), instead of the end position of the robot (-2,-1,0,1,2). Since it

was shown that there were no difference between either the outer end positions (-2,2) or the inner end

positions (-1,1) for all measures, except for a difference in trajectory type conditions for positioning

understanding for the outer end positions (F(1,509)=23.88, p<0.001). Thus from now on we will refer

to the absolute end position of the robot, as the end position. We also included the end orientation of

the robot (0°or 90°) as a predictor, and participant ID as a covariate, and all interaction effects between

the trajectory type condition and these added predictors, since we assumed that these predictors can

influence the effect of the trajectory type condition. However we do not believe that the effect for the

end position, might influence the effect, because all trajectories were mirrored, thus the end position

should not matter between whether the robot ends in a 90°angle or a 0°angle. Thus only 7 predictors,

of which 3 were an interaction effect were included in our analyses.

In this full model, the trajectory type did not influence the positioning DT, however there was an

effect of the end position (F(2,449)=9.55, p<0.001, η2p=0.046), and an interaction effect between

participant ID and trajectory type (F(45,449)=6.88, p<0.001, η2p=0.439) on positioning DT. Still,

there was an effect of the trajectory on positioning accuracy (F(1,509)=32.30, p<0.001, η2p=0.067).

Moreover, there was also an effect of the end position (F(2,509)=3.41, p=0.034, η2p=0.015), and

an interaction effect between these two predictors (F(2,509)=15.43, p<0.001, η2p=0.064) on posi-
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tioning accuracy. In addition, it was found that trajectory type had an effect on explicit position-

ing understanding, (F(1,509)=114.74, p<0.001, η2p=0.203), and there was an effect of end position

(F(2,509)=22.59, p<0.001, η2p=0.091), and an interaction effect between end position and trajectory

type (F(2,509)=22.59, p<0.001, η2p=0.093) on explicit positioning understanding. These effects are

visualized in Figure 7. Thus both positioning accuracy as well as explicit positioning understanding

were influenced by the trajectory type.
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(a) (b)

(c)

Figure 7: Marginsplot dividing the outcomes of the positioning accuracy (a), positioning decision time

(b), and explicit positioning understanding (c) over the three absolute endpoints of the robot divided as

an interaction effect with the two trajectories types: minimum jerk and shortest path trajectories with

95% confidence intervals

In the same model for orientation understanding, there was again, no effect of trajectory type on orienta-

tion DT, however there was an effect of the end position on orientation DT (F(2,438)=25.75, p<0.001,

η2p=0.118). Similarly to positioning accuracy, there was an effect of the trajectory type on orientation
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accuracy (F(1,509)=19.66, p<0.001, η2p=0.041). Moreover, it was found that trajectory type did signif-

icantly influence the explicit orientation understanding (F(1,509)=39.16, p<0.001, η2p=0.080). These

effects are visualized in Figure 8. Thus both orientation accuracy and explicit orientation understanding

were influenced by the trajectory type.
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(a) (b)

(c)

Figure 8: Marginsplot dividing the outcomes of the implicit orientation accuracy (a), implicit orienta-

tion decision time (b), and explicit orientation understanding (c), over the three absolute endpoints of

the robot divided as an interaction effect with the two trajectories types: minimum jerk and shortest

path trajectories, with 95% confidence intervals

In contrast to our assumptions, it was shown that both the trajectory type (F(1,509)=58.28, p<0.001,

η2p=0.115) as well as the end position (F(2,509)=13.48, p<0.001, η2p=0.056), and the interaction effect

between these two predictors (F(2,509)=10.17, p<0.001, η2p=0.043) had an effect on PMU. These
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effects are visualized in Figure 9.

Figure 9: Marginsplot dividing the outcomes of the PMU over the three absolute endpoints of the

robot divided as an interaction effect with the two trajectories types: minimum jerk and shortest path

trajectories, with 95% confidence intervals for each condition

Secondary results

Additionally, we explored the correlation between the explicit measures to the participants explicit po-

sitioning and orientation understanding ratings from the questionnaire. Furthermore, overall position-

ing and orientation understanding, and overall PMU, showed small correlations towards their explicit

counterparts. These correlations can be seen in Table 3. When regarding the correlations between these

overall measures to the respective DT and accuracy, we examined that overall positioning understand-

ing correlated a bit towards positioning DT(r=0.22, p<0.001) and positioning DT (r=0.14, p=0.005)

and that overall orientation understanding was surprisingly enough, negatively related to the orientation
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DT (r=-0.21, p<0.001). Which could imply that when the participants took longer to make a decision

on the orientation, they would regard this overall longer time as a indication of better understanding in

the orientation and/or vice versa.

Positioning understanding Orientation understanding PMU

Positioning decision time - -0.129** -

Positioning accuracy 0.510*** - 0.364***

Orientation decision time - 0.112* -

Orientation accuracy - 0.567*** 0.198***

Overall positioning understanding 0.213*** 0.104* 0.128**

Overall orientation understanding - 0.187*** -

Overall PMU - - 0.188***

Significance codes: ∗ = p<0.05,∗∗ = p<0.01,∗∗∗ = p<0.001

Table 3: The upper half displays the Pearson r correlations of the implicit measures compared to the

explicit measures, and the lower half the Pearson r correlations of the explicit measures to the overall

measures. All correlation with a r >0.3 is given in bold.

However based on the correlations in Table 3, we can assume that most participants were able to both

reflect on their positioning and orientation understanding quite well. However, once we ask them on

their overall understanding, they were not able to reflect on their performance as strongly.

When we regard the demographic data on our results it becomes clear that there were no effects of
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gender, nor were there any effects explained by age when regarding the difference between trajectory

types. Also we examined that negative attitude towards technology was barely correlated with any

of these variables. Interestingly enough, it was also shown that having experience with robotics had

a negative correlation with positioning accuracy (r=-0.18, p=0.008) and a similar positive correlation

with implicit orientation DT (r=0.18, p<0.001). Moreover, for the explicit evaluations we saw an

unexpected negative correlation between experience and orientation understanding (r=-0.27, p<0.001)

and PMU (r=-0.40, p<0.001).

Explorative results

In the primary and secondary results it was first of all examined that positioning accuracy is higher

for shortest path than minimum jerk trajectories, and that orientation accuracy is higher for minimum

jerk than shortest path. Secondly, we examined that DT did not differ between trajectory types could

partially be explained by the fact that both the end position and the participant ID influenced the posi-

tioning and orientation DT. Lastly, we saw that the accuracy was much more used for the evaluation of

explicit positioning and orientation understanding than DT, and PMU was more related to the position-

ing accuracy than the orientation accuracy. In this section we will explore these three findings in more

details.

Considering this first finding, it can be specifically shown that the variance in positioning accuracy

and explicit positioning could be explained by the trajectory type for respectively 6.4% and 14.9%.

In addition, the variance in implicit orientation accuracy and explicit orientation can be explained by

the trajectory type for respectively 4.4% and 7.3%. These differences in correctness between trajec-

tory types over the positioning of the robot at the DT are depicted in Figure 10. In this figure it can

be noted that differences between trajectory types were much more pronounced, for the positioning
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and orientation accuracy, compared to the positioning and orientation DT. However, contrast analyses

revealed that there was only a difference in positioning accuracy between trajectory types found for

the inner end position (-1,1) (F(1,396)=11.95, p<0.001) and middle position (0) (F(1,396)=53.13,

p<0.001) and not found for the outer end positions (-2,2) (F(1,396)<0.001, p=0.96) and orienta-

tion accuracy was only higher for minimum jerk trajectories compared to shortest path trajectories

for inner (F(1,450)=13.12, p<0.001) and outer end positions (F(1,450)=7.02, p=0.008), but not for

the middle end position (F(1,450)=3.28 p=0.071). These effects show that differences for position-

ing become bigger for the inner end positions, and the differences for orientation become bigger for

the outer end positions. Moreover, both the positioning and orientation DT, was also higher for the

outer end positions, than the inner end positions (positioning: F(1,396)=12.02, p<0.001; orientation:

(F(1,385)=36.06, p<0.001)), and than the middle end position (positioning: F(1,396)=15.57, p<0.001;

orientation: F(1,385)=38.58, p<0.001). Thus not only was the positioning of the outer end positions

easier to predict, they were also relatively earlier predicted.
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Figure 10: Positioning and orientation of the robot at the decision time, for the trajectories for which

positioning accuracy was correct (green), incorrect (red), and the orientation accuracy was correct

(blue) or incorrect (yellow)

However, both positioning and orientation DT did not generally differ between trajectory types and

showed to be more nested on a participant level than the accuracy, which addresses our second finding.

In the main analysis it was shown that participant ID, even as a covariate, influenced the positioning

DT (F(1,509)=4.67, p<0.001, η2p=0.009). We thus assume that many effects are nested within the

participant level itself, which can be shown by making a variable that includes both the positioning

and orientation time, called understanding time. By performing a multi-level analysis of variance, it

was shown that the covariance for the participant level on understanding time is σ2
u = 0.014 (p<0.001).

Which is 49.34% of the total variance. However, for the understanding correctness, which is the com-

bination of the positioning and orientation correctness, the variance nested within the participant level

is 0.46% (p=0.003). In Figure 11 we can see that for positioning and orientation DT, there is a small

intra-personal difference between trajectory types for some participants (participants 4, 8, 9, 18, 19,
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20) but there is large interpersonal difference between these participants. In contrast, some partici-

pants have a large intra-personal difference (for participants 7, 10, 15, 22), however there is not much

interpersonal difference between these participants. For accuracy in both positioning and orientation,

only the interpersonal differences were large, but when we compared for example the accuracy of

participant 1 to all other participants, not a single participant had significantly different results. This

difference in how people utilize their DT differently can be examined in the interaction effect between

trajectory types and participant ID on positioning DT (F(45,449)=6.88, p<0.001, η2p=0.439), posi-

tioning accuracy (F(51,509)=1.38, p=0.050, η2p=0.135), positioning understanding (F(51,509)=2.91,

p<0.001, η2p=0.248) orientation DT (F(45,438)=14.01, p<0.001, η2p=0.621), orientation understand-

ing (F(51,509)=2,24, p<0.001, η2p=0.203) and PMU (F(51,509)=2.54, p<0.001, η2p=0.223). These

results reveal especially great effect sizes on DT, but smaller effects on accuracy and understanding.
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(a) (b)

(c) (d)

Figure 11: Marginsplot dividing the outcomes of the positioning decision time (a) and orientation

decision time (b), over the participant ID of the robot divided as an interaction effect with the two

trajectories types: minimum jerk and shortest path trajectories, with 95% confidence intervals for

each condition

These large differences between DT and accuracy results, might be explained by how they are re-

lated: we examined that there is a significant correlation between DT and accuracy for both positioning

(r=0.22, p<0.001), and orientation (r=0.22, p<0.001). Unsurprisingly, this correlation was positive,

meaning that with increased DT, comes a better correctness of both positioning and orientation. How-

ever, it was shown that this effect is still largely nested within the participants. For positioning under-
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standing, 37.10% (p<0.001) of the variance can be explained on the participant ID level. For orien-

tation understanding, this nesting effect within variance for the relationship between DT and accuracy

was 53.25% (p<0.001). We can annul the effect of nesting by regarding the average score within each

participant and compare these values in a correlation between DT and accuracy. It was examined that

both correlations between DT and accuracy did increase (positioning: r=0.63, p<0.001, orientation:

r=0.75, p<0.001).

For our third finding, we examined a correlation between the implicit measurements of positioning

and orientation understanding and their explicit counterparts in the secondary results. Unsurprisingly,

the correlations from the explicit measurements of positioning and orientation understanding towards

the corresponding DT were either insignificant or low, while the correlation towards the corresponding

accuracy is high, as can be seen in Table 3. However, the relation between the explicit measurements

and DT explained on participant ID level is low and quite similar to that of the explicit measure-

ments and accuracy on participant ID level: 7.46% (p<0.001) for explicit positioning understanding

and DT compared to 0.47% (p=0.008) for explicit positioning understanding and accuracy, and 0.47%

(p<0.001) for explicit orientation understanding and DT compared to 1.01% (p<0.001) for explicit

orientation understanding and accuracy. Interestingly enough, the correlation between explicit posi-

tioning understanding and PMU (r=0.60, p<0.001) was much higher than the correlation between

explicit orientation understanding and PMU (r=0.25, p<0.001). This difference might explain why

we examined a small difference in PMU between minimum jerk and shortest path, where the shortest

path trajectories where regarded as more understandable than the minimum jerk trajectories: people

might use the positioning of the robot more to evaluate their understanding than the orientation. More-

over, only a very small part from the effect of trajectory type on PMU was explained on a participant

level (σ2
u=0.003, p<0.001). However, PMU was substantially influenced by end position: According
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to the contrast analysis on end position, the shortest path trajectory was higher in PMU than the mini-

mum jerk trajectory for the middle end position (F(1,450)=38.74, p<0.001), and all inner end positions

(F(1,450)=33.09, p<0.001), but not the outer end positions (F(1,450)=0.99, p=0.320). However, the

outer end positions showed to be higher in PMU than the inner (F(1,450)=22.43, p<0.001) and mid-

dle end position (F(1,450)=16.32, p<0.001). Showing, in the same manner as position accuracy the

importance of the end position, hence the moderate correlation between PMU and position accuracy

(r=0.364, p<0.001).
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Discussion

In this paper, human understanding of the end position and end orientation of a robot was explored, and

whether this is influenced by the type of trajectory a robot navigates through. Using two time-efficient

trajectory types in our experiment, we discovered a few interesting findings and gathered an insight in

what is important in the movement of a robot. We will discuss the following insights and try to explain

them by relaying them on the data and several other papers.

Firstly, we have seen that positioning accuracy is higher for shortest path than minimum jerk trajecto-

ries, and that orientation accuracy is higher for minimum jerk than shortest path trajectories. However,

it did not seem intuitive that the orientation accuracy is also different for each end position. Especially

when we regard that on average, the direction the robot was in when the orientation button was pressed,

differed more from the end orientation of the robot for the outer end positions (63.07 and 52.30°) com-

pared to the inner end positions (47.98 and 45.23°). Knowing this, we can safely state that even if the

orientation at the DT is very different from the end orientation of the robot, the end orientation can be

known based on the current trajectory of the robot in the minimum jerk trajectories. Especially when

the endpoints are further away from the start point and are more unaligned with the starting orientation,

such as the outer end positions. This makes sense for positioning understanding, considering the only

alternative is either point -1 for -2 and point 1 for 2. On the other hand, shortest path trajectories,

have a positioning and orientation accuracy independent of the endpoint. Thus these effects show for

the orientation understanding, that for long distances which are more unaligned with the endpoint, it

is better to implement minimum jerk trajectories. However, for more aligned endpoints, it does not

matter for orientation understanding which trajectory is implemented. While on the contrary for the

positioning understanding, these effects show that for short distances that are more aligned with the
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endpoint, it is better to implement shortest path trajectories. However, for more unaligned endpoints, it

does not matter for positioning understanding which trajectory is implemented.

This latter finding does not seem to be in accordance with the conclusions of van den Goor (2019).

Since in this paper, the positioning accuracy in the shortest path condition seems to be much more

dependent on the start position, compared to minimum jerk accuracy. However, this makes sense con-

sidering that in this paper, for the outer starting points, the angle between the two endpoints is smaller.

While in our paper the angle between endpoints becomes bigger for shortest path trajectories. From

these differing results, we can assume that the angle between one endpoint and a possible alternative,

from the starting point, influences the positioning understanding for shortest path trajectories, but not

the minimum jerk trajectories. Thus when a robot approaches an endpoint under an large angle, it might

be better to implement minimum jerk trajectories. But when a robot approaches an endpoint under an

small angle, it might be better to implement shortest path trajectories. This is interesting, considering

that these effects make it more advantageous to implement minimum jerk trajectories in an environ-

ment which is sure to be littered with moving obstacles, such as other AGVs. If, for example, a certain

AGV is heading towards an end point, for which both the positioning and orientation trajectory need to

be known by the operator, it is best to just use a shortest path trajectory. However, if suddenly, another

AGV moves in the way of this trajectory, the AGV needs to update its trajectory. In this situation it

makes sense to use minimum jerk trajectories, considering that now the end point probably needs to be

approached under a large angle, which is unaligned, thus increasing the orientation understanding with

a minimum jerk trajectory. Also changing adapting a minimum jerk approach for the remainder of the

trajectory will probably not influence positioning understanding compared to continuing towards the

end point with a shortest path trajectory.

Secondly, we examined that DT did not differ between trajectory types which could partially be ex-
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plained by the fact that both the end position and the participant ID influence the DT. We anticipated

that this nesting effect within participant ID would disappear when we regarded the relation between

the DT and accuracy of positioning and orientation understanding. Since it can be argued that those

people that make faster decisions of how the robot will end, are often mistaken in their accuracy and

vice versa. It was shown that when we compare the analysis where the effect on participant level was

negated, to the effect sizes from the original analysis, all significant effects are similar in size. Thus,

even if the individual effects are accounted for, there are no differences in how fast a participant is either

able to establish the end positioning and orientation of a robot, between the minimum jerk and shortest

path trajectories. In addition, we could not conclude that each participant uses the DT differently for

their explicit evaluation of their understanding. Instead we can assume that they simply do not utilize

the DT for their evaluation of the explicit understanding, even though it is moderately important for

their implicit understanding.

This conclusion differs from the results found in van den Goor (2019), in which predictions about the

end position of a robot were significantly faster for minimum jerk trajectories compared to shortest

path trajectories. This is even more striking considering that only the end position was predicted by

the participants and not the orientation understanding, which was shown to be higher for minimum

jerk trajectories in our paper. However, this contradiction can be explained by the difference in setup:

in van den Goor (2019) the number of starting points was manipulated, while we manipulated the

number of endpoints. This suggests that it becomes harder to predict the end position of the robot

with an increasing number of endpoints, which might not only explain the higher DT for the outer

end positions in both papers for minimum jerk trajectories, but also the higher correctness rate for

these points: in absence of many concurring possible endpoints, people will more often make the right

prediction, increasing positioning understanding. Also the inclusion of predicting the end orientation
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might have increased the DT on a participant level, where some participants might check, the end

position first and then the end orientation and vice versa.

Lastly, we can conclude that it is better for PMU to implement shortest path trajectories, for short

distances that are oriented towards the endpoint. However, for trajectories under a larger angle, it does

not matter for the understanding which trajectory is used. This is, again, in contrast to the results found

in van den Goor (2019) where minimum jerk trajectories had a smaller positioning DT irrespective

of the end position. Though this might also be true because in this paper, the positioning was almost

always predicted correctly, meaning that we might as well only analyse the positioning DT for which

the positioning was correct. For this condition, an effect of trajectory type was found. Contrary to the

results of van den Goor (2018), this showed a higher mean for shortest path trajectories on positioning

DT than for minimum jerk trajectories. Additionally, some of these effects might be explained by

Lichtenthäler, Lorenz and Kirsch (2012). Since this paper also studied the effects of the navigation of a

robot on PMU, both implicitly (if participants rightly inferred the robots speed (position) and direction

(orientation)) and explicitly (legibility ratings). They saw that the perceived safety was higher for

shortest path trajectories than for minimum jerk trajectories, and that perceived safety was positively

correlated to the robots legibility of the end position. Thus we can assume that perceived safety might

play a mediating role in the effect of the trajectory type on the positioning accuracy. However in our

study, the number of endpoints may have decreased the perceived safety of a minimum jerk trajectory,

but not a shortest path trajectory. Whereas in a study with a low number of possible endpoints, such as

van den Goor (2019) and Lichtenthäler, Lorenz and Kirsch (2012), the minimum jerk trajectory might

seem safer, thus increasing the positioning accuracy.
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Limitations

There are several technical, as well as methodological limitations that might have restricted or biased

the outcomes of our research. For one, in this project we only used two types of robot trajectories,

while other projects, such as Lichtenthäler et al. (2012), usually use many more types of trajectories.

In this paper they also evaluated the waypoint follower local planner (WF). which takes the velocity

and direction of the human into account while planning the trajectory. By having more trajectories, we

would have gathered more reference material to which we could compare our outcomes. These other

trajectories might have included a trajectory which implements both parts of the minimum jerk and of

the shortest path trajectories. Where it, for example, first turns partially to the direction in line with

the end position, and then moves with a constant turning velocity in an unchanging curve towards this

endpoint. If this trajectory would have been taken as a reference group towards our other trajectories,

we could examine more thoroughly in which situations the PMU of, for example, a minimum jerk tra-

jectory would be higher and for which part of the trajectory it works better. However, since our design

was specifically based on trajectories with large differences in both linear and angular accelerations,

in which the movement of the human did not matter for the planning of the robot, we were able to

disentangle effects on positioning versus orientation understanding.

We may have also been limited by the amount of surface area through which the robot can navigate,

as can be seen in Figure 6. If we had used a larger surface area, the study might have been more

representative of a real life distribution centre scenario, which would have increased our ecological

validity. This smaller size might also have been the reason as to why participants were not urged to

move around to watch the robot move. Moreover, due to this enclosed space the robot could already

be clearly seen from the starting point of the participants, from which the robot is around 7 meters
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removed from the participants. By inserting several obstacles that may hinder the visual field of the

participants, we not only more accurately represent an environment in which these types of robots

may be enforced, but we might also urge the participant to move around more. This might express

more underlying behaviors for an participant. For example, participants who might be convinced that

a robot will move towards a certain endpoint in a certain orientation, might be less inclined to double

check whether this estimate still holds, when the robot is closer to the end goal. However, because the

distance to the endpoint was quite short, we predicted that the operator would start making decisions

of where the robot would end immediately, as is shown in Figure 10. Longer distances would have

resulted in an unnecessary long start time for which the endpoint of the robot would not be assessed.

During the experiment we urged the participants to move towards the endpoint corresponding to the

end position and orientation they judged the robot to move to, when they pressed the button for these

two measures. However, it might have been the case that in some situations a participant would change

their decision on for example the end positioning, once they have pressed the end orientation under-

standing button. In this situation they might walk towards the right endpoint, while when they pressed

the positioning understanding button, they might have had a different endpoint in mind, giving a faulty

estimate of their positioning DT and accuracy. Since the DT will show that they had known the end

positioning much faster than they actually had, since their judgement changed. From the video record-

ings, it becomes clear that some participants might have indulged in this behavior: seeing as how they

occasionally suddenly change their trajectory towards an endpoint, after the positioning understanding

button was already pressed. One way to solve this would have been to use a button for every end

position and orientation combination. However, there might be some time in-between the participant

making their judgement and the participant pressing the corresponding button in this setup, delaying

their judgement, to instantly get the positioning and orientation DT of the participant. Thus, we assume
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that our method, despite it not being exempt from fraud, was a very accurate approach in which the

accuracy and DT could be assessed.

The actual positioning of the robot during its trajectory crossing, deviated on a few trials from its

virtual trajectory, from which we used our implicit measures data. Thus, the endpoint of the actual

robot might be different from the point we measured, it can often be the case that the robot in one trial

might have actually been in a different position or orientation than expected. The wheels of the robot do

not always turn with the same frequency when the command given to the robot is to ride straight ahead,

for which the turn velocity of both wheels should be equal. Also small bumps and rough edges and

heterogeneity in the surface resistance on which the robot was driving, can also account for unwanted

changes in linear and angular velocity of the robot. All of these random errors have fortunately been

accounted by checking whether any of these effects could have possibly confused the participant in

some undesirable way, by checking the video recordings made of all our trials. When we noticed that

these troublesome errors resulted in confusion with the participant or when the robot arrived at the

right place, the corresponding data was removed. This excluded data was mentioned in our assumption

checking section. The largest unwanted change in angular velocity was the ’initiation drift’, which

varied between trials. Therefor, we decided to take the average over these drifts as an estimate for our

suppression drift, which was able to at least partially counteract the effect of the initiation drift.
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Conclusion

Ultimately, we have shown that minimum jerk trajectories allow people to more accurately predict

the end orientation than shortest path trajectories, while a shortest path trajectory allows participants

to more accurately predict the end position. However, comparably high effect sizes were also found

for interaction effects of end position and the trajectory type condition, hence we should always keep

environmental and personal preferences and tasks in mind. By including the way the operator in this

environment think about the moving robot, we add knowledge to a relatively new dimension in the

human robot interaction literature and support the design of understandable navigation behavior in

robots. Also we anticipate that our results can be generalized and attributed to different kinds of robots

in different kinds of environments, such as healthcare and social robots. Hence, transitioning towards a

sortation center or airport terminal where AGVs and humans can comfortably and efficiently interact,

might be close-at-hand.
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Appendix

Appendix A: G*Power Analyses

(a) (b)

Figure 12: The two G*Power analysis performed a priori for our main objective (a) and as a sensitivity

test for our secondary objective (b), executed in order to know our total sample size and expected effect

size f
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Appendix B: Questionnaires

Understanding Questionnaire
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Overall Questionnaire
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Attitude Questionnaire
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Demographic Questionnaire
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Appendix C: Equations and Python code

x evaluation = dTval ·M−1x⇒
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0 t1 t12 t13 t14 t15
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

−1 

px

vx

sin(a)

gx

0

endvx



(1)

In which first the minimum jerk matrix is updated by the new t0 and t1 value which are 0 and the

minimum jerk factor, which is dependent on the distance to the goal. The inverse of this minimum jerk

matrix is matrix multiplied with the current x vector. Next the dot product of the outcome is taken with

the dTval for which tval is the dT which is set at 0.05 seconds. This will give us the new value of the

x position, the x velocity and the x orientation. With the same approach the y evaluation was updated

which can be seen below.

y evaluation = dTval ·M−1y⇒
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
pevaly

vevaly

θevaly


=



1 0 0

tval 1 0

tval2 2tval 2

tval3 3tval2 6tval

tval4 4tval3 12tval2

tval5 5val4 20tval3



T

·



0 t0 t02 t03 t04 t05
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0 t1 t12 t13 t14 t15
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0 0 2 6t1 12t12 20t13



−1 

py

vy

cos(a)

gy

0

endvy



(2)

Minimum jerk orientation = θMJ(t)⇒

arctan(
vevalx
vevaly

)(
180
π

) (3)

With vevalx and vevaly is the evaluation of the minimum jerk trajectory based on the equation of the x

and y evaluation as seen above.

Shortest path orientation = θSP (t)⇒

arctan(
gx

gy
)(
180
π

) (4)

With gx being the x end position, with gy being the y end position.
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Drif tsuppression = drif torientation−orientation
T (5)

With the drift orientation being arctan(gx+(dT ∗endpoint)gy−(dT ∗endpoint) )(
180
π ) with endpoint being either -2,-1,0,1,2,

and dT being the time frequency of 0.05 seconds. The orientation being arctan(gxgy )(
180
π ), with gx

being the x end position, with gy being the y end position. And T being the total trial time,



APPENDIX 63

Python code used in Vizard 6

1 import numpy as np

2 import math

3 import matplotlib

4 import matplotlib.pyplot as plt

5 import setuptools

6 import pandas as pd

7 import nao_nocv_2_0

8 import naoqi

9 from naoqi import ALProxy

10 import os

11 import time

12 import re

13 from pynput import mouse

14 from pynput.keyboard import Key, Listener

15 from pynput import keyboard

16

17 tts = ALProxy("ALTextToSpeech","192.168.0.119", 9559)

18 motionProxy = ALProxy("ALMotion","192.168.0.119", 9559)

19 postureProxy = ALProxy("ALRobotPosture","192.168.0.119", 9559)

20 postureProxy.goToPosture("StandInit", 1)

21 motionProxy.setStiffnesses("RArm", 0.0)

22 motionProxy.setStiffnesses("LArm", 0.0)

23 #motionProxy.setExternalCollisionProtectionEnabled('All', False)

24 motionProxy.setOrthogonalSecurityDistance(0.002)

25 motionProxy.setTangentialSecurityDistance(0.002)
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26

27 vrpn = viz.add('vrpn7.dle')

28 postracker = vrpn.addTracker('PPT0@hostname',0)

29 user_input = raw_input("Enter the participant number, end point, end ...

orientation (-1=Left, 1=Right), and whether it is minimum jerk (0=Y, ...

1=N) separated by commas:")

30

31 point, orient, mj = user_input.split(',')

32 pointn = int(point)

33 orientn = int(orient)

34 mjn = int(mj)

35

36 point = pd.DataFrame([{point}])

37 orient = pd.DataFrame([{orient}])

38 mj = pd.DataFrame([{mj}])

39

40 point.to_csv('DataX.csv', mode='a')

41 mj.to_csv('DataX.csv', mode='a')

42 orient.to_csv('DataX.csv', mode='a')

43

44 drawn = [False]*10

45 PATH, SIGHT, ARROW = 1,2,3

46

47 if mjn==0:

48 mjerk=True

49 else:

50 mjerk=False

51
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52 def init():

53 global path, trialpointx, trialpointy, trialendvelx, trialendvely

54 trialpointx = 2.5+(0.75*pointn)

55 trialpointy = 2.5-(0.75*pointn)

56 if orientn==-1:

57 if pointn < 0:

58 trialendvely = -3.2*(pointn+2)+1.3

59 else:

60 trialendvely = -2.4-(0.5*pointn)

61 trialendvelx = 0

62 else:

63 if pointn ≤ 0:

64 trialendvelx = -2.4+(0.5*pointn)

65 else:

66 trialendvelx = 3.2*(pointn-2)+1.3

67 trialendvely = 0

68

69 viz.setMultiSample(4)

70 viz.fov(60)

71 ground = viz.addChild('ground.osgb')

72 viz.MainView.setPosition([0,15,0])

73 viz.MainView.setEuler([0,90,0])

74 viz.go()

75

76 def main():

77 init()

78 newTrial(trialpointx,trialpointy,trialendvelx,trialendvely)

79 x,z,dir = 0.05,0.05,0
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80 setState(x,z,dir)

81 runExp()

82

83 def newTrial(trialpointx,trialpointy,trialendvelx,trialendvely):

84 global gx, gy, state, targetorient, MT

85 targetorient.x = trialendvelx

86 targetorient.y = trialendvely

87 state[REACHGOAL], state[FINISHED] = False,False

88 clearDrawing()

89 gx, gy = trialpointx, trialpointy

90

91 # Plot new goal point

92 viz.startlayer(viz.LINES)

93 viz.linewidth(3)

94 viz.vertex(gx,0.01,gy)

95 viz.vertex(gx+targetorient.x*.05,0.01,gy+targetorient.y*.05)

96 gl = viz.endlayer()

97

98 def initObstacles():

99 if __name__ == "__main__":

100 create_map()

101 h = 0.05

102 for ob in obstacles:

103 box = viz.addChild('crate.osgb',cache=viz.CACHE_COPY)

104 xl = ob[2]-ob[0]

105 yl = ob[3]-ob[1]

106 box.setScale([xl,h,yl])

107 box.setPosition([ob[0]+0.5*xl,h*0.5,ob[1]+0.5*yl])
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108

109 def runExp():

110 viz.callback(viz.TIMER_EVENT,testLoop)

111 viz.starttimer(1, 1.0/60,viz.PERPETUAL)

112

113 def testLoop(a):

114 finish, d = stepTrial()

115 if finish:

116 viz.killtimer(1)

117 #print(viz.starttimer)

118

119 x, y = 0, 0

120 override_dir = None

121

122 def setState(px=0,py=0,pdir=0):

123 global x,y,direction,override_dir

124 if not (px == 0 and py == 0):

125 x, y = px, py

126 override_dir = None

127 if not pdir == 0:

128 direction = pdir

129 override_dir = pdir

130

131 state = [False]*3

132 REACHGOAL, FINISHED = 0,1

133

134 def stepTrial(px=0,py=0,pdir=0):

135 global state
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136 setState(px,py,pdir)

137 if not state[REACHGOAL]:

138 update_path(0)

139 return state[FINISHED], direction

140

141 def update_path(a):

142 global T, os, direction, obs_map, x, y, gx, gy, slx, sly, srx, sry, ...

steer, mjerk, MT, velx, vely, df2, rotation, targetdir, avec, bvec, ...

dist, gain, con, on_click

143 gain = 0.2

144 dT = 0.05

145 T = T + dT

146 rng = 0.11

147 ang = np.radians(30)

148 a = np.radians(direction)

149 targetdir = (1+orientn)*45

150 velx = np.sin(a)*gain

151 vely = np.cos(a)*gain

152 dirold = direction

153 ddir = dirold - direction

154 direction = np.arctan2(gx,gy)*180/np.pi

155 drift = dT*pointn

156 driftdirection = np.arctan2(gx+drift,gy-drift)*180/np.pi

157 trialperiod = (15+((pointn**2)*0.75))/dT

158 driftsup = (driftdirection - direction)/trialperiod

159 rotation = targetdir - direction

160 startdir = 45-np.arctan2(gx,gy)*180/np.pi

161 vel = ...
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(math.sqrt(1/(math.cos(np.radians(startdir)))))*(math.sqrt((velx**2)+(vely**2)))

162 if pointn != 0:

163 simdif = ...

(np.arctan2(gx,gy)*180/np.pi-np.arctan2(gx+0.5,gy-0.5)*180/np.pi)/pointn

164 else:

165 simdif = 0

166

167 if mjerk==False:

168

169 #simulated motion

170 xtstart = np.array([0,x,velx,np.sin(a)])

171 ytstart = np.array([0,y,vely,np.cos(a)])

172 xtstop = np.array([MT,gx,0,targetorient.x])

173 ytstop = np.array([MT,gy,0,targetorient.y])

174 avec = minjerk(xtstart,xtstop)

175 bvec = minjerk(ytstart,ytstop)

176 tt1 = evaljerk(avec,dT)

177 tt2 = evaljerk(bvec,dT)

178 x = tt1[0]

179 y = tt2[0]

180 xoff = trialpointx-x

181 yoff = trialpointy-y

182 dist = math.sqrt((gy-y)**2+(gx-x)**2)

183

184 #real motion

185 if con == True:

186 motionProxy.moveTo(0, 0, np.radians(startdir+simdif))

187 time.sleep(1)
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188 con=False

189 motionProxy.move(vel, 0, driftsup)

190

191 if mjerk==True:

192

193 #simulated motion

194 xtstart = np.array([0,x,velx,np.sin(a)])

195 ytstart = np.array([0,y,vely,np.cos(a)])

196 xtstop = np.array([MT,gx,0,targetorient.x])

197 ytstop = np.array([MT,gy,0,targetorient.y])

198 avec = minjerk(xtstart,xtstop)

199 bvec = minjerk(ytstart,ytstop)

200 ox = x

201 oy = y

202 tt1 = evaljerk(avec,dT)

203 tt2 = evaljerk(bvec,dT)

204 x = tt1[0]

205 y = tt2[0]

206 dist = math.sqrt((gy-y)**2 + (gx-x)**2)

207 if dist < 6.0 and MT > 0.5:

208 MT = max(dist*1.5, 0.5)

209 direction = (np.arctan2(tt1[1],tt2[1])*180/np.pi)

210 ddir = dirold - direction

211 rotation = targetdir - direction

212

213 #real motion

214 if con == True:

215 time.sleep(1)
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216 con=False

217 motionProxy.move(vel, 0, ...

np.radians((ddir/dT)/(math.sqrt(1/(math.cos(np.radians(startdir)))))))

218 df = ...

pd.DataFrame({'T':[T],'dist':[dist],'direction':[direction],'x':[x],'y':[y]})#,'orientationfound':[orientationfound],'positionfound':[positionfound]})

219 print(df)

220

221 if dist > 0.05 or (dist > 0.1 and not mjerk):

222 display()

223

224 else:

225 global state

226 state[REACHGOAL] = True

227 if mjerk==False:

228 if rotation ≤ 180:

229 motionProxy.moveTo(0, 0, ...

np.radians(-rotation+simdif))#-simdif))

230 if rotation ≥ 180:

231 motionProxy.moveTo(0, 0, ...

np.radians(360-rotation+simdif))#-simdif))

232 time.sleep(3)

233 if mjerk: state[FINISHED] = True

234 motionProxy.move(0, 0, 0)

235 print("Reached the goal")

236 #postureProxy.goToPosture("Crouch")

237 x = pd.to_numeric(df2)

238 x = list(map(int, x))

239 plt.plot(x, y)



APPENDIX 72

240 plt.xlabel('x axis')

241 plt.ylabel('y axis')

242 plt.title('Positioning of AGV')

243 plt.grid(True)

244 return plt.savefig("Vizard_Plot.pdf", format='pdf')

245

246 def getReachedgoal():

247 return state[REACHGOAL]

248

249 def rotate(a):

250 global direction, state

251 targetdir = np.arctan2(targetorient.x,targetorient.y)*180/np.pi+180

252 #if targetdir > 360: targetdir-=360

253 targetdir = targetdir % 360

254 direction = direction % 360

255 rotation = (targetdir - direction) % 360

256 #if targetdir > direction:

257 if rotation > 180:

258 direction -= 3

259 #elif targetdir < direction:

260 elif rotation ≤ 180:

261 direction += 3

262

263 def clearDrawing():

264 global path, sight, drawn

265 if drawn[PATH]:

266 path.remove()

267 if drawn[SIGHT]:
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268 sight.clearVertices()

269 count = 1

270

271 def plotPoint(y):

272 global count

273 viz.startLayer(viz.LINES)

274 viz.vertexColor(1,0,0)

275 viz.vertex(y,0.03,count)

276 count-=.002

277 viz.vertex(y ,0.03,count-.008)

278 p = viz.endLayer()

279

280 def plotPath(x,y,gx,gy,dir):

281 global path, sight, drawn, gain

282 if drawn[PATH]:

283 path.remove()

284 if drawn[SIGHT]:

285 sight.clearVertices()

286 it = 0

287 dist = math.sqrt((gy-y)**2 + (gx-x)**2)

288 a = np.radians(dir)

289 viz.startLayer(viz.LINES)

290 viz.vertex(x,0.01,y)

291 dT = 0.08

292 nj = np.floor(MT/dT)

293 for i in range (0,int(nj)):

294 xp = evaljerk(avec,i*dT)

295 yp = evaljerk(bvec,i*dT)
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296 viz.vertex(xp[0],0.01,yp[0])

297 viz.vertex(xp[0],0.01,yp[0])

298 it+=1

299 path = viz.endLayer()

300 drawn[PATH] = True

301

302 def minjerk(xtstart,xtstop):

303 t0=xtstart[0]

304 t1=xtstop[0]

305 tmat=np.mat( [[ 1, t0, t0**2, t0**3 , t0**4 ,t0**5],

306 [0, 1, 2*t0, 3*t0**2, 4*t0**3, 5*t0**4],

307 [0, 0, 2, 6*t0, 12*t0**2, 20*t0**3],

308 [1, t1, t1**2, t1**3, t1**4 , t1**5],

309 [0, 1, 2*t1, 3*t1**2, 4*t1**3, 5*t1**4],

310 [0, 0, 2, 6*t1, 12*t1**2, 20*t1**3]])

311 xvec = np.append(xtstart[1:4], xtstop[1:4])

312 avec = np.linalg.solve(tmat,xvec)

313 return avec

314

315 def evaljerk(avec,tval):

316 tmat=np.array([[1, tval, tval**2, tval**3, tval**4, tval**5],

317 [0, 1, 2*tval, 3*tval**2, 4*tval**3, 5*tval**4],

318 [0, 0, 2, 6*tval, 12*tval**2, 20*tval**3]]) ...

#% ...

319 # 0 0 0 6 24*tval 60*tvalˆ2; ...

320 # 0 0 0 0 24 120*tval; ...

321 # 0 0 0 0 0 120];

322 xtval=np.dot(tmat,avec)
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323 return xtval

324

325

326 def detect_obs(x,y,obs_map):

327 sz = len(obs_map)

328 absx = int(np.round(x*(0.5*sz)+0.5*sz,0))

329 absy = int(np.round(y*(0.5*sz)+0.5*sz,0))

330

331 if absx > sz-1:

332 absx = sz-1

333 elif absx < 0:

334 absx = 0

335 if absy > sz-1:

336 absy = sz-1

337 elif absy < 0:

338 absy = 0

339 return obs_map[absx,absy]

340

341

342 def create_map():

343 global obs_map

344 sz = len(obs_map)

345

346 obs_list = (obstacles+1)*0.5*sz #obstacles*50 + 50

347 for obs1_map in obs_list:

348 for x in range(0,int(obs1_map[2]-obs1_map[0])):

349 for y in range (0,int(obs1_map[3]-obs1_map[1])):

350 posx = int(x+obs1_map[0])
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351 posy = int(y+obs1_map[1])

352 obs_map[posx,posy] = 1

353 1

354 def display():

355 global drawn, sight, arrow, override_dir

356 viz.vertexColor(0,0.6,0)

357 if drawn[SIGHT]: sight.clearVertices()

358 viz.startlayer(viz.POINTS)

359 viz.vertexColor(0.6,0,0)

360 viz.pointsize(3)

361 viz.vertex(slx,0.011,sly)

362 viz.vertex(srx,0.011,sry)

363 sight = viz.endlayer()

364 drawn[SIGHT] = True

365 viz.vertexColor(0,0.6,0)

366 viz.lineWidth(2)

367

368 if not drawn[ARROW]:

369 viz.startlayer(viz.LINES)

370 viz.vertex(-0.03,0,0)

371 viz.vertex(0,0,0.06)

372 viz.vertex(0.03,0,0)

373 viz.vertex(0,0,0.06)

374 viz.vertex(0,0,0.06)

375 viz.vertex(0,0,-0.06)

376 arrow = viz.endlayer()

377 drawn[ARROW] = True

378 if override_dir == None:
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379 arrow.setEuler(direction)

380 else:

381 arrow.setEuler(override_dir)

382 arrow.setPosition([x,0.01,y])

383 if not state[REACHGOAL]:

384 plotPath(x,y,gx,gy,direction)

385 return

386

387 def getState():

388 return x,y,direction

389

390 class pos(object):

391 def __init__(self,x,y,vx,vy):

392 pos.x = x

393 pos.y = y

394 pos.velx = vx

395 pos.vely = vy

396

397 targetorient = pos(0,1,-90,-90)

398 T = 0

399 pos = 0

400 x,y = 0,0

401 slx,sly,srx,sry = 0,0,0,0

402 MT = 4

403 direction = 45

404 steer = 0

405 Frequency = 0.3

406 con=True
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407 obs_map = np.empty([1000,1000])

408 np.arctan2(0,1)*180/np.pi

409 obstacles = np.array([[-0.8,-0.2, -0.2, 0.8],

410 [-0.2,0.4, 0.3, 0.8],

411 [0.2,-1, 1, 0]])

412 obstacles = np.array([[-0.15,-0.4,0.15,0.2]])

413 obstacles = np.array([[-0.4,-0.15,0.4,0.15]])

414

415 if __name__ == '__main__': main()


	Abstract
	Introduction
	Application of AGVs
	AGV interaction cues
	Human Aware Navigation Models
	Minimum Jerk Trajectories
	Research aims
	Methods
	Participants and design
	Measures
	Apparatus
	Procedure
	Results
	Assumption checking and order effects
	Primary results
	Secondary results
	Explorative results

	Discussion
	Limitations
	Conclusion
	References
	Appendix
	Appendix A: G*Power Analyses
	Appendix B: Questionnaires
	Appendix C: Equations and Python code











