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Abstract

Predicting transport in fusion devices is important to interpret and optimize current experi-

ments, and extrapolate to future machines. The purpose of this work is to predict turbulent

heat and particle transport in real-time, to be used for fast discharge optimization and realtime

control applications. Neural networks were used to emulate a first-principle based turbulent

transport model. The training set for the networks consist of a large dataset of 3× 108 flux

calculations by the quasilinear gyrokinetic code QuaLiKiz, generated over a 9D input space. A

Feed-Forward Neural Network was then trained on this data, reproducing the in- and output

mapping of QuaLiKiz, but orders of magnitude faster. The neural network hyperparameters

and pipeline were optimized for Electron Temperature Gradient (ETG) driven heat transport

on a reduced 7D dataset. The ETG networks reached an RMS error of 5 %. Initial tests show

similar results for the full 9D space and various other turbulence regimes. This indicates that

generalization of the optimized training pipelines to the full dataset will be straightforward.

The accuracy of these turbulent predictions at this speed is unprecedented, and opens new

avenues in the modelling of fusion experiments.

v





Introduction

One of the possible solutions to reduce our dependency on fossil fuels is thermonuclear fusion.

Fusion aims to provide CO2-free electricity generation at high-energy-density, leading to a

small ecological footprint relative to power produced. The furthest developed thermonuclear

fusion concept is the tokamak. Nuclear fusion needs a extremely high temperature to allow

the fuel to fuse together and release energy. In a tokamak, the fusion fuel is heated, and the

resulting plasma is confined in strong magnetic fields. The easiest attainable reaction is that

of deuterium (D) and tritium (T), requiring temperatures of around 100 million Kelvin. The

D-T fusion products are helium and a neutron, with a reaction energy of 14.1 MeV, eventually

heating the walls and powering the electricity conversion cycle.

Maintaining the plasma at these temperatures is difficult, as instabilities and turbulence drive

transport, leaking energy out of the plasma. An efficient and cost-effective reactor demands

a detailed understanding of the transport processes, to optimize reactor plasma parameters.

Furthermore, fast and accurate prediction of transport is needed to control the reactor plasma,

as direct measurements of plasma parameters is complicated due to severely limited diagnostics

[1]. The turbulent transport is driven by plasma temperature and density gradient[2], and is

described by diffusive and convective transport coefficients. Calculating and characterising

these transport coefficients is one of the main objectives of transport theory [3]. In the

ideal case, direct control over these coefficients would give direct control of the density and

temperature profiles, and thus over the fusion power and efficiency. In this work, we present

a way to calculate turbulent transport in real-time.

A major branch of tokamak transport theory is direct numerical simulations of the governing

processes. A significant challenge in these simulations is timescale separation; in a fusion

plasma there are many different processes each happening at a different typical timescales.

The macroscopic evolution of plasma profiles (temperature and density), evolve at a typical

scale of 1 Hz to 10 Hz, and the underlying instabilities that drive turbulence have frequencies

of 10 kHz to 100 kHz. However, the quickest process in the plasma, the electron gyro motion

or cyclotron motion, evolves 7 orders of magnitude quicker, around 100 GHz. An overview of

1
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the different timescales can be found in figure 1.1. This timescale separation makes solving

the full system of equations that describe the fusion plasma computationally complex and

expensive, and impossible to solve within reasonable time even on current supercomputers.

One of the ways to reduce the computational complexity is averaging over the gyromotion,

giving rise to the field of gyro-kinetics; the kinetic theory of charged particle rings.

Figure 1.1: The different typical timescales in a fusion plasma. Note the seven orders of
magnitude difference between the smallest and largest timescales. [4]

Even though the gyrokinetic approximation results in codes that are faster than codes solving

the full system, they are still very computationally expensive. Finding the transport coeffi-

cients at one moment in time still takes up to 10 MCPUh1 [5], whilst still having to make

1CPUs or CPU-seconds are a quantity used to measure code run-time in computational science. A code
that takes 4CPUs would take 4 s when ran on a single CPU core, while it would take (assuming perfect
parallelization) 1 s when ran on four cores
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assumptions that reduce the validity for direct comparison with experiments. Ideally, a real-

time controller would need to know these coefficients at the timescale they evolve, so within

a few milliseconds, using a decent sized compute node, for example on 24 cores [5]. More

assumptions can be made to further reduce complexity, and so reduce the computational cost

to run these codes.

The main code used in this project is QuaLiKiz[6]. This code is able to reproduce radial

profiles in about 200 CPUs by making extra assumptions and simplifications, which will be

described in chapter 2. This is an impressive eight orders of magnitude speedup compared

to the slowest codes, while still being valid especially in the tokamak core. While aspects

of the QuaLiKiz model still need improvement compared to full nonlinear predictions, the

accuracy of predictions is sufficiently high such that the code has been successfully used in the

reproduction of JET[6–8], ASDEX-U, and Tore-Supra temperature and density profiles[5, 9],

and has been integrated in the CRONOS [10] and JETTO [11, 12] suites for integrated tokamak

modelling. While it is still five orders of magnitude too slow to use for a real-time controller,

it is fast enough to construct large-scale database of code in-output mappings. For example,

of transport coefficient evaluations throughout a wide parameter space. This database can

then be used to train a neural network to reproduce the QuaLiKiz in-output mapping. The

neural network evaluation is then realtime capable. This is the focus of this work.

A neural network, or more specifically, a feed-forward neural network, is a nonlinear function

that can approximate mapping of a (nonlinear) multi-dimensional space onto another multi-

dimensional space [13, 14]. In other words, it can approximate and thus ’bypass’ the calculation

of transport coefficients from arbitrary input parameters with a code like QuaLiKiz. Neural

networks are used in many fields, also in fusion [15, 16]. The relationship between in- and

output is condensed into a single (analytical) function. The time needed to evaluate this

function is in principle not dependent on the system being approximated, and can be many

orders of magnitude faster. In a proof-of-principle with a 4D input space and 1D output

space, the calculation of a full radial profile of transport coefficients was found to be around

1 CPUms, with a RMS error of only 4.2 % [17]. With this final step, the calculation is finally in

the right order of magnitude for realtime application, for example in the RAPTOR simulation

suite [18]. An overview of the completion time-scales can be found in table 1.1.
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Table 1.1: Overview of different types of gyrokinetic codes and their estimated times to
calculate a full radial profile. Note that the Nonlinear global is for a run with adiabatic
electrons, which significantly reduce the validity of direct comparisons with experiments.

Gyrokinetic Simulation Time to calculate profile at single point in time2

Nonlinear global (adiabatic electrons) 10 MCPUh[5]

Nonlinear local 1 MCPUh[5]

Linear local 500 CPUh[5]

QuaLiKiz Quasilinear local 300 CPUs[5]

Proof of principle Neural Network 1 mCPUs[17]

Real-time controller O(1 mCPUs)

1.1 Research question

One of the main challenges in fusion is to accurately predict particle and heat transport inside

the plasma. This is needed for the interpretation and optimization of current-day experiments.

It is also essential to increase the confidence in extrapolation to future devices. Real-time

capable transport models would allow first-principle based predictions to be used for plasma

control, something not possible up until now. In addition, even non-realtime but very fast

models significantly enhances the ability to optimize tokamak discharges. A first proof of

principle of a real-time capable first-principle based model has been made by J. Citrin [17],

using a neural network to learn the in-output mapping of the QuaLiKiz gyrokinetic quasilinear

transport model in a limited subspace. The purpose of this project is to expand this proof of

principle to a more complete model, so using in- and output-space. To this end, the following

question is proposed:

Can we accurately 3 predict particle and heat transport coefficients 4 as function

of a 9D 5 input space using a feed-forward neural network in realtime6?

Multiple steps have to be taken to answer this question.

1. Generate the training and validation set:

(a) Optimize QuaLiKiz to generate the datasets 7 within reasonable time 8.

(b) Use a supercomputer to run QuaLiKiz and generate the training and validation set

for the neural network.

2These times are estimated, as most of these codes do not actually calculate profiles, but calculate seperate
points which could be used to form a profile

3Relative error of 5% with respect to QuaLiKiz, based on the proof of concept [17]
4χi,e and Di,e
5R/LTi , R/LTe , R/Ln, q, ŝ, ε, Ti/Te, ν

∗, Zeff
6In the order of 1mCPUs
7Initially a hyperrectangle with O(109) points in 9D + kθρs space
8Within the supercomputer allocation of O(106) CPUh
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2. Train a 9D neural network:

(a) Train a neural network with the generated training set.

(b) Compare the output of the neural network with data from the validation set.

This project will be done at the Dutch Institute for Fundamental Energy Research (DIFFER)

under the supervision of J. Citrin. The supercomputer that will be used is Edison from

the National Energy Research Scientific Computing Center in Berkeley, on which 2 MCPUh

is made available. The QuaLiKiz code, written in FORTRAN, is made available for this

project by CEA-Cadarache. Within the framework of the development of the code within this

project, it has since been released as open source. The neural network training will be done

in Python3.5, initially using the TensorFlow library created by the Google Brain team [19].

1.2 Overview

Chapter 2 treats basic gyrokinetics, as well as the QuaLiKiz assumptions in section 2.2.3. This

will give the justification of the choice of parameters in section 2.3. Next, chapter 3 treats the

basic concepts of neural network training. In this chapter, quantities or hyperparameters are

introduced that will be further discussed in light of the trained neural networks for this work

in chapter 5. The tools and dataset created for this work will be discussed in chapter 4.





Turbulent transport

2.1 Transport coefficients

An import measure of tokamak performance is called the fusion energy gain factor, or Q. It

is defined as:

Q ≡
Pfus
Pext

(2.1)

in which Pfus is the fusion power and Pext is the external input power. Clearly one of the

ways of increasing this performance is reducing the external power needed to sustain the

fusion reaction. A measure for how well energy is confined in the (tokamak) system is the

energy confinement time τE . A high confinement means that less energy is needed to heat

the plasma. Unfortunately the confinement time is limited by the energy transport within

the plasma. Thus, to understand and hopefully control and improve tokamak performance,

transport has to be better understood.

Fusion power depends on the reaction rate 〈σv〉, the densities of deuterium nD and tritium

nT (assuming a D-T tokamak) and the fusion energy per reaction Efusion as:

Pfusion = nDnT 〈σv〉Efusion (2.2)

Assuming a 50-50 distribution of deuterium and tritium, this equation can be written as:

Pfusion =
1

4
n2〈σv〉Efusion (2.3)

A power-generating tokamak is operated at a specific temperature to maximise the fusion

power. On the temperature range of interest, the reaction rate scales as:

〈σv〉 ∝ T 2 (2.4)

Resulting in:

Pfusion ∝ n2T 2 ∝ p2 (2.5)

7
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Equation (2.5) implies that it is beneficial for a tokamak to operate at an as high as possible

pressure. However, as the pressure is necessarily zero at the plasma edge, a high pressure

implies steep gradients. These gradients drive microinstabilities in the plasma, which give rise

to turbulent transport and thus limit the maximum achievable pressure and the confinement

time τE of the system.

The temperature and density can be directly related using the ion and electron particle flux

Γi,e, and the ion and electron heat flux qi,e [3, 20] using transport equations. These equations

can also be expressed using their transport diffusivities D and χ and pinches V . For heat

transport, the pinch is typically small, so it is simplified by using the effective diffusivity χeff .

Γi,e = −Di,e
dni,e
dr

+ Vi,eni,e (2.6)

qi,e = −χeffi,e

dTi,e
dr

(2.7)

Calculating these transport coefficients is the objective of (turbulent) transport theory [3].

Detailed knowledge of the transport would enable researchers to better optimize and interpret

current experiments, as well as open ways to extrapolate to future machines and aid the design

of control systems for future and present-day devices. In this work, the QuaLiKiz code will

be used to calculate these transport coefficients. QuaLiKiz is a quasi-linear gyrokinetic solver,

which will be further described in section 2.2.3.

2.2 Gyrokinetics

2.2.1 The gyrokinetic assumption

A plasma can be described by the position, speed, and the evolution in time of all individual

particles. As the amount of particles in a typical tokamak system is very large, instead

an ensemble averaging of the particles is performed. The system is them described by a

particle distribution function fs, where the subscript s is a species index, i.e. ions or electrons.

Collisions are included using a collision operator Cs, which gives a probabilistic description of

binary collisions. This results in the Fokker-Planck equation [21, 22]:[
∂

∂t
+ v · ∇+

qs
ms

(
E +

v

c
×B

)
· ∂
∂v

]
fs = Csfs (2.8)

This is a very good assumption for magnetic fusion plasmas with a large number of particles in

the Debye sphere. As such, collective effects dominate over (binary) collisions. This equation

is known by different names, for example the (collisional) Vlasov equation, the Boltzmann
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kinetic equation or just simply the Fokker-Planck equation. It describes the evolution of the

distribution function due to flows and forces. In a tokamak plasma, this equation is coupled

to Maxwell’s equations, with the charges and currents described by the distribution function

moments themselves.

Particle and heat fluxes are determined from the evolution of the distribution functions. How-

ever, direct numerical simulation of this equation is nearly intractable. One reason for the

difficulty of the equation is the dependence of the Fokker-Planck equation on effects that evolve

at different timescales spanning over 13 order of magnitudes. Figure 1.1 gives an overview of

the different timescales. This makes solving the involved differential equations computation-

ally expensive. Fortunately, the gyrofrequency ωc = |q|Bm evolves at a much faster rate (10 MHz

to 100 MHz for ions) than the instabilities that are of interest (10 kHz to 100 kHz), an effect

called timescale separation [23]. The timescale separation can be removed by averaging over

the gyro-phase, giving rise to the field of gyro-kinetics; the kinetic theory of charged particle

rings. So called full-f gyrokinetic solve the 5D gyroaverage equation of equation (2.8) coupled

to Maxwell’s equations directly. Some examples of full-f gyrokinetic codes are GT5D [24] and

GYSELA [25].

Even with the previous simplifications, the computational cost to run these codes is still very

large. For example, the estimated time to simulate a radial profile of transport coefficients

is around 10 MCPUh [5], while the codes are heavily parallelized and can run on thousands

of cores simultaneously. Here one CPUh is defined as the amount of time the code would

run on one CPU core. This is too long for even a relatively small range of parameters scans.

Furthermore, to get to these runtimes major assumptions have to be made, for example

adiabatic electrons, so fusion relevant comparisons with experiments are impossible.

2.2.2 Delta-f splitting and locality

More assumptions can be made to reduce the computational cost of solving equation (2.8)

without reducing the accuracy of the model. In the core of tokamak plasmas, the fluctuation of

the particle density function is relatively small compared to the equilibrium distribution; only

in the order of a few percent for r/a ≤ 0.8 [26]. This allows equation (2.8) to be expanded with

respect to a small fluctuation parameter δf describing the dynamics with a static background

Maxwellian particle distribution f0. In nonlinear simulations, only the leading nonlinear term

describing the ExB drift is retained. In linear codes all nonlinear terms are neglected

Additionally, δf codes assume locality. This assumption is valid when the gradient lengths

( B
∇B ,

T
∇T ,

n
∇n) are large compared to the size of the turbulence length scale, the size of the

turbulent eddies. The Larmor radius with respect to the sound speed ρc is a good estimation
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of the size of turbulent eddies [27]:

ρc =
mvc,⊥
|q|B

(2.9)

And the gradient length scales are given by:

LB ≡ −
B

∇B
(2.10a)

LTi,e ≡ −
Ti,e
∇Ti,e

(2.10b)

Ln ≡ −
n

∇n
(2.10c)

This assumption is justified for tokamaks equal or larger than present-day medium sized

tokamaks, for example WEST, Asdex Upgrade and TCV. This means that the background

plasma parameters in the simulation, e.g. temperature and density gradients, q-profile, etc.,

can be taken constant within the simulation domain representing a specific radial location.

This allows for a spectral formulation in the spatial directions perpendicular to the magnetic

field, saving a lot of calculation time.

Some examples of so called δf gyrokinetic codes are GENE [28] and GYRO [29]. Even though

these simulations are orders of magnitude faster than full-f simulations, they are still too

expensive for our purposes. The estimated time to simulate a radial profile of transport

coefficients is still around 1× 106 CPUh for non-linear runs (Although including more com-

prehensive physics such as kinetic electrons and magnetic fluctuations) or 500 CPUh for linear

runs. Again, these codes are parallelized to a large degree.

2.2.3 QuaLiKiz

Gyrokinetic modelling can be sped up even further by making more assumptions, at the cost

of losing accuracy. These models are known as reduced models. In this section, the most

important assumptions of the reduced model used for this work, QuaLiKiz, are explored.

However, a full derivation is beyond the scope of this work. For a full treatment, see [5, 30–

33]. This step results in another major speedup, needing only around 300 CPU− seconds for

a single profile calulation, or around 50 CPUh for the evolution of one second of JET plasma

[6].

2.2.3.1 Electrostatic limit

If we assume no magnetic perturbations, corresponding to the electrostatic limit. This ap-

proximation is valid for low β plasmas [5]. We can then write the linearised (single-species)
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Vlasov equation as:

δfs,k =
qs
Ts
fs,0

[
1−

ωk − ω∗s,k
ωk − k‖vs,‖ − ωds,k

J0 (k⊥ρs)

]
δφk (2.11)

Here fs,0 is the, assumed to be Maxwellian, equilibrium distribution function. δφk is the

pertubative potential, defined by δEk = −ikθδφk. Only the poloidal electric field is treated as

it dominates the fluctuating E × B-drift, which sets the transport levels. qs, Ts, and vs,‖ are

respectively the particle charge, temperature, and parallel velocity. k‖ and k⊥ are the parallel

and perpendicular wavenumber (with respect to the magnetic field line). ωds,k and ω∗s,k are

the particle drift and diamagnetic frequency, and are treated in section 2.2.5. J0 is a Bessel

function of the 0-th order, which appears from the gyroaveraging in Fourier space. ρs is the

Larmor radius for the species under consideration, weighted to the sound speed. Finally, ωk
is the complex frequency of the perturbation, the variable of interest. Here ωk = ωr,k + iγk

where ωr,k is the real mode frequency, and γ is the growth rate.

2.2.3.2 Dispersion relation for calculating instabilities

To get the full characteristics of the perturbation, this equation has to be coupled to Maxwell’s

equations. In the electrostatic limit, this can be done by coupling the weak formulation of

quasineutrality
˝ ∑

s qsδns,kφ
∗
k d3 r = 0 [34]:

∑
s

Ls,t + Ls,p = 0 (2.12)

Where Ls,t and Ls,p = 0 are the trapped and passing particle integrals for each species. These

integrals have to be treated separately, as only the passing particles have a finite average

transit frequency k‖v‖,s. The trapped species are bounce averaged, so v‖,s = 0. The trapped

particles also have an increased orbit width δs, the banana width, due to their bouncing

motion. Assuming toroidal symmetry gives as integrals [33]:

Ls,t =

〈ˆ +∞

−∞

dkr
2π

J2
0 (k⊥ρs)J

2
0 (krδs)

∣∣∣φ̃(kr)
∣∣∣2 × ωk − nω∗s,k

ωk − nωds,t + iν

〉
t

(2.13)

Ls,p =

〈¨ +∞

−∞

dθ dx

π
J2

0 (k⊥ρs)
∣∣∣φ̃(x, θ)

∣∣∣2 ωk − nω∗s,k
ωk − nωds,p − k‖vs,‖ + i0+

〉
p

(2.14)
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With the integrals 〈. . . 〉t,p the velocity space integration in terms of energy E and pitch angle

λ:

〈. . . 〉t =

ˆ +∞

0

2√
π

√
E dE

ˆ 1

λc

dλ

4ω̄b
(2.15)

= ft

ˆ +∞

0

2√
π

√
E dE

ˆ 1

0
K(κ)κdκ (2.16)

〈. . . 〉p =

ˆ +∞

0

2√
π

√
E dE

ˆ λc

0

dλ

4ω̄b
(2.17)

The elliptic integral K(κ) comes from the averaging over the trapped particle bounce orbit.

It is further treated in sections 2.2.5 and 4.1. ω̄b is related to the poloidal orbit frequency.

ν is the collisionality. The only unknowns to be solved are ω and the poloidal eigenfunction

φ̃. In less simplified codes this eigenfunction is solved fully self-consistently. In QuaLiKiz it

is solved via a separate method to save computing time, expanding the dispersion relation in

small k‖v‖ω and ωd/ω, see section 2.2.3.4. All other variables are input parameters, or can be

re-written or approximated as detailed in the next sections.

2.2.3.3 Mode structure

In a tokamak, the spatial structure of instabilities tends to be highly uniform along field lines,

so k‖ � k⊥. Physically it’s related to field-line bending being energetically unfavourable. The

uniformity is verified by nonlinear gyrokinetic simulations [35]. This justifies the following

assumptions regarding the structure of the eigenfunction. Assume a spatially slowly-varying

envelope and strongly varying eikonal, giving:

φ = φ(θ, r)e

(
in[φ−q(r)θ]

)
(2.18)

where n is the toroidal mode number φ is the toroidal angle and θ is the poloidal angle. Along

the field line of the instability being analysed, the eikonal is constant. Since the eikonal spatial

variation is much faster than the envelope, the wavevector k can be approximated by defining

it only with respect to the eikonal, and can be written as [30]:

kθ =
nq

r
=
nq′

ŝ
(2.19a)

kx = nq′θ = kθŝθ (2.19b)

k‖ ≈
nq′x

qR
= kθ

ŝx

qR
(2.19c)
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These wavenumbers depend on two magnetic quantities, the safety factor q and its derivative

the magnetic shear ŝ:

q =
dφ

dθ
(2.20)

ŝ =
r

q

dq

dr
(2.21)

Where the safety factor represents the number of toroidal revolutions performed by a field line

for one poloidal revolution.

One challenge now becomes apparent. The integral in equation (2.14) now contains x via the

k‖ term. Unfortunately, this integral can not be further simplified, so this is the main speed

limitation to the QuaLiKiz code.

2.2.3.4 Gaussian eigenfunction ansatz

A major speedup is gained by an approximated solution of the eigenfunction. This is carried

out by assuming the driving frequency ω is much larger than the particle transit frequency

k‖v‖,s and the particle drift frequency ωd [36]. Furthermore, it is assumed the wave vectors

are small, such that k⊥ρe � k⊥δe � k⊥δi � k⊥δi � 1. Furthermore, it is assumed that the

eigenfunction solution is a shifted Gaussian, such that:

φnω(x) =
φ0(

π<(w2)
)1/4 e− (x−x0)

2

2w2 (2.22)

With these assumptions, one can expands the dispersion relation, and find a system of polyno-

mial equations from which the width w, mode shift x0, and eigenfrequency ω are calculated.
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Figure 2.1: Some examples of the solution of the eigenfunction in QuaLiKiz and GENE.
As can be seen, the QuaLiKiz approximation matches the more complete GENE solution

fairly well. Figure taken with permission from [33].

2.2.3.5 Quasi-linear assumption

From the reduced gyrokinetic equation one gets the eigenfrequencies ω. These eigenfrequencies

are then used to calculate the particle and heat fluxes. In QuaLiKiz, the quasilinear assumption

is used to do this. This assumption has been extensively validated by comparisons with

nonlinear simulations [31, 33, 37]. Assume the fluxes can be decomposed in a linear response

R to the instabilties and the saturated electrostatic potential, as such:

Γ, Q =
∑
kθ,ωkj

=
(
RΓ,Q
lin (kθ, ωkj)

) ∣∣δφ(kθ, ωkj)
∣∣2 (2.23)

The linear response is related to moments of equation (2.11). The zeroth moment is related

to density and particle transport, and the second to temperature and heat transport. This

response is then evaluated at the calculated eigenfrequencies ωk of which there can be several

per ωk, which leads to ωkj .

Finally, the amplitude and spectrum of φ0 from equation (2.22) is set by a so called saturation

rule. In the case of QuaLiKiz, it is given by a model to capture the nonlinear φ spectrum

based on simple analytical formulae tuned to nonlinear simulations. [33, 37].

2.2.4 Overview of QuaLiKiz assumptions

Summarizing, these are the main assumptions of the QuaLiKiz code.
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1. Low Mach number U‖
v‖
� 1

2. Electrostatic limit (section 2.2.3.1)

3. Eigenfunction is assumed to be Gaussian (section 2.2.3.4)

4. Shifted circle geometry (s− α) with small inverse aspect ratio

5. For passing particles: since v‖ >> v⊥, a pitch angle averaged transit frequency as well

as curvature and ∇B drift frequencies are performed. (equation (2.14))

6. For trapped particles: since the bounce frequency is larger than ω, a bounced average is

performed. (equation (2.13))

7. Only collisions for trapped electrons are taken into account using a Krook type collision

operator. (equation (2.8))

2.2.5 Physical implications

Now that the full system has been described, it is insightful to look at some physical implica-

tions of the formulas presented in the previous sections. The background distribution function

gradients drive the pertubation and thus the instabilities, and they are represented in the dia-

magnetic frequency ω∗. The term appears in both equation (2.14) and equation (2.13), and

can be written as:

ω∗s = −kθ ·
Ts

qsBR

 R

Lns
+

R

LTs

(
msv

2
s

2Ts
− 3

2

) (2.24)

One should note the appearance of the gradient length Ln and LT , which also appear in the

transport equations (2.6) and (2.7). This leads to the nonlinearity of the transport equation,

since χ and D are functions of Ln and LT themselves.

Another quantity appearing in the gyrokinetic system of equations is the trapped particle

vertical drift frequency. This is the ∇B drift that leads to charge separation. It can be

written as:

nωdt = −kθTs
qsB

f(κ) (2.25)

Where:

f(κ) = 2
E(κ)

K(κ)
− 1 + 4s

(
κ2 − 1 +

E(κ)

K(κ)

)
(2.26)

Where E(κ) and K(κ) are first and second order complete elliptic integrals. These integrals

took up a significant fraction of the QuaLiKiz run time, but has been improved in this work,

see section 4.1. The quantity κ is related to the pitch angle through:

λ ≡
v2
⊥

v2
‖ + v2

⊥
= 1− 2εκ2 (2.27)
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Finally, the passing particle vertical drift frequency can be written as:

nωdp = −kθTs
esB

(
cos θ (ŝθ − α sin θ) sin θ

)
(2.28)

The formulas presented in this section show how the parameters chosen to investigate in this

work relate to physical frequencies within the tokamak plasma.

2.2.6 GyroBohm normalization

Heat- and particle fluxes in QuaLiKiz are normalized to GyroBohm units, denoted by [GB].

For the remainder of this report, all fluxes are in GyroBohm units. They are related to their

SI equivalents as:

χGB ≡
√
ms

q2
sB

2
0

T 1.5
s

a
(2.29)

qGB ≡
qSI
χGB

R0

nsTs
(2.30)

ΓGB ≡
ΓSI
χGB

R0

ns
(2.31)

2.2.7 Expected effect of input on unstable modes

Turbulent transport is governed by the modes in the plasma that are unstable, of which the

low-frequency ones dominate transport [2, 38]. Generally three of those modes are considered

in transport models: the Ion Temperature Gradient mode (ITG)[39, 40], the Electron Tem-

perature Gradient mode (ETG)[41], and the Trapped Electron Mode (TEM) [42, 43]. The

Trapped Ion Mode (TIM) are usually suppressed by nonlinear effects [44–46]. QuaLiKiz can

differentiate between these three modes based on the characteristic wavelength kθρs and real

angular frequency ωr,k, as shown in table 2.1. Postive real frequencies in QuaLiKiz are defined

to be in the electron diamagnetic direction.

Table 2.1: The criteria on which QuaLiKiz determines the type of mode.

Mode kθρs ωr,k

TEM ≤ 2 > 0

ETG > 2 > 0

ITG ≤ 2 < 0

This split in modes makes analysis easier, as the three modes react differently to changes input

parameters. Table 2.2 summarizes these influences based on the previous discussion of the
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dispersion relation. However, the influence on the eigenfunction solution is outside the scope

of this analysis. In this table, in addition to the already discussed variables, the following

definitions are used.

The effective ion charge:

Zeff ≡
∑

i niZ
2
i∑

i niZi
=

∑
i niZ

2
i

ne
(2.32)

The local MHD alpha:

α = q2
∑
s

βs

(
R

LTs
+

R

Lns

)
(2.33)

And the rotational flow shear:
dV⊥
dr

(2.34)

βs is the plasma-β. The normalized collision frequency ν∗, related to the collisionally ν,

normalized by the trapped electron bounce frequency.

Table 2.2: Various QuaLiKiz input parameters and their expected effect on ETG, ITM and
TEM instabilities. In this table, a − denotes a stabilizing effect, a + a destabilizing effect
and a o a negligible effect. The influence of these parameters on the eigenfunction solution

is outside the scope of this analysis.

Effect on

Effect of increase Influences ETG ITG TEM

R/LTi ω∗ o + o
R/LTe ω∗ + o +
R/Ln ω∗ o + +

q k‖ magnitude + + +

ŝ 6= 0.51 ωd - - -
Ti/Te Relative weight linear response + - +

ε Increases trapped electron fraction o + +

ν∗ Detraps electrons o - -

Zeff Dilutes main ions - - o

α Shafranov shift, impacting ∇B drift - - -

vertical drift frequency
dV⊥/dr shears eddies o - -

Two variables are not explored in this work: α and dV⊥/dr. The effect of α can be roughly

approximated by shifting ŝ, and so computation time is saved by not scanning this variable.

Furthermore, the impact of α at low magnatic shear is not validated in QuaLiKiz [6]. To

calculate the effect of dV⊥/dr, QuaLiKiz has to be run with rotation. Running with rotation

increases the runtime by a factor 4, which would increase the computational time beyond the
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scope of this work. As a workaround, the effect of flow-shear can be captured in post-processing

using Waltz-rule like techniques [47, 48]. However, it is out of scope for this work.

2.3 Real-time capable gyrokinetic-based model

Reduced models enable gyro-kinetic calculations for a reasonable computational cost. In the

case of QuaLiKiz, one second of plasma evolution in the JET tokamak can be calculated in

about 100 CPUh. While impressive, this is still impractical for discharge optimization, and too

long for real-time simulation and control. In this work, the QuaLiKiz model is approximated

by using a neural network regression, see chapter 3. The result of this regression is an analytical

function, which can be evaluated within tens of microseconds, allowing for a full radial profile

of all transport coefficients to be calculated within a millisecond [17].

A neural network needs a large database of code in-and output to train, and is only accu-

rate within the parameters contained in the dataset. So, ideally, the dataset should contain

parameters of interest for which this model will be used. This usually means experimentally

relevant ranges. However, a full analysis of the experimentally relevant subspace is beyond

the scope of this work, although this is planned for future work [49]. Instead, the dataset is

based on the limits of parameters found by experience in gyrokinetic modelling of experiments.

By then scanning a regular hyperrectangle between these ranges, it is assumed the relevant

experimental values are captured within this dataset. The database and other methods in

this work are modular. If it is found in future work that more training points are needed, for

example in important regions in parameter space, the neural network can be retrained. As

such, by using the tools developed in this work, one can easily retrain the network with new

data.

The hyperrectangle of input parameters contained in the database can be found in table 2.3.

The most important parameters are the gradients, as is clear from the analysis in this chapter

and experience. Then, a wide range of wavenumbers is needed to sufficiently cover both ion and

electron lengthscales. As such these parameters are scanned most densely. Also important are

the safety factor q and shear ŝ, which were also used in the proof-of-principle [17]. The other

parameters are less important, and so are scanned less densely. Note that the full subspace of

the proof-of-concept is contained within this dataset.
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Table 2.3: Description of the hyperrectangle of QuaLiKiz input parameters. The ranges of
the rectangle are based on experience with gyrokinetic modelling of experimental tokamak

plasmas, and are expected to cover the relevant range for core turbulent transport.

variable # points min max

kθρs 18 0.1 36
R/LTi 12 0 14
R/LTe 12 0 14
R/Ln 12 -5 6

q 10 0.66 15

ŝ 10 -1 5

ε 8 0.03 0.33
Ti/Te 7 0.25 2.5

ν∗ 6 1× 10−5 1

Zeff 5 1 3

Total 3× 108 ≈ 1.3 MCPUh





Machine Learning

In the past few years machine learning has gained increased interest from researchers and

companies alike. Machine learning is a subfield of computer science that gives computers the

ability to learn without being explicitly programmed [50]. It has been applied from Google

DeepMind’s AlphaGo beating the world champion in the game Go [51], to researchers finding

novel ways to detect breast cancer [52]. In the context of fusion, machine learning has been

used as early as the 1990s [15]. For example, in the prediction of energy confinement scaling

[16] and the extraction of plasma equilibrium parameters [53]. Recent increases in processing

power have facilitated new opportunities and renewed interest. For example, progress has been

made on the regression of DIII-D heat fluxes from an experimental power balance database

[54], and on emulating a multi-machine database of the EPED1 [55] pedestal stability code

output. In this work, machine learning techniques are applied to emulate the QuaLiKiz code,

to allow for sub-millisecond gyrokinetic modelling of turbulent fluxes.

3.1 Neural networks

Neural networks are a class of machine learning models often used for pattern recognition and

regression applications. A neural network is a collection of nodes or functions, commonly called

neurons, that are connected to each other in a specific way, as described in section 3.1.2. This

work focusses on a specific class of neural networks, the feedforward neural network (FFNN).

3.1.1 Neurons

The basic building block of an FFNN is the neuron. In mathematical terms, a neuron is

described by multiplying a weight wi to the individual inputs xi [56]. Then, all results are

summed together and a bias b is applied. Finally a so called activation function f is applied,

21
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such that:

y = f

 n∑
i=0

wixi + b

 (3.1)

Historically this activation function has been a bounded, nonlinear function, which when

applied acts as a binary classifier. This was inspired by the characteristics of biological neurons.

It can be represented as a directed graph in the following way:

∑x0

xi

xn

∏
wi

∑
b

f y

Figure 3.1: Flow diagram of a single neuron

Or more condensed:

x0

xi

xn

y

Figure 3.2: Schematic representation of a single neuron

3.1.2 Feedforward Neural Networks

A feedforward neural network is formed by combining neurons in layers, such that every layer

is fully connected with the next one. In a feedforward network, only connections with the next

layer are allowed, but connections within the layer, or loops to previous layers are not. The

neurons within a single layer are fully parallel and thus don’t interact. Typically an FFNN

consists of an input layer, one or more hidden layers and an output layer. An example of an

FFNN with four inputs, a single output and a single hidden layer can be found in figure 3.3.
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Input #1
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Figure 3.3: Schematic overview of a single layer Feed-Forward neural network.

In essence, an FFNN is simply a matrix equation that creates a nonlinear mapping between

an input vector x to an output vector y, albeit one with many free parameters in the form of

the weights W and biases b:

y(x,W,b, f) (3.2)

FFNNs are widely used, because an FFNN using a constant, bounded, and monotonic-

increasing activation function with one hidden layer can approximate any continuous function

up to an arbitrary error. This property is commonly known as the universal approximation

theorem [57].

3.1.3 Activation functions

For the FFNN to act as an approximator, the activation function has to be a constant,

bounded, and monotonic-increasing function. Moreover, for convergence reasons, it is use-

ful to use a function that results in a gradual change in output for a gradual change in input

[58]. Usually a computationally cheap function is chosen, as the activation function is eval-

uated very often during neural network training, at least once per neuron for every training

sample. The gradient of the outputs with respect to the input are also of interested in this

work, as they are needed for fast integrated modelling. The gradients are vital for use in real-

time capable solvers such as RAPTOR [18] and for trajectory optimization [17]. For these

cases, it is best to use functions with easily determined derivatives. One class of functions

satisfying all aforementioned criteria are the sigmoid functions. As such, sigmoids are the

main focus of this work. A sigmoid function is a mathematical function having an ’S’ shaped

curve. One common formulation is the following:

σ(x) =
1

1 + e−x
(3.3)
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with its derivative:

σ′(x) = σ(x)
(
1− σ(x)

)
(3.4)

It has been found that a sigmoid centered around zero oftentimes converges in less optimization

steps [59]. This results in:

σ(x) =
2

1 + e−2x
− 1 ≡ tanhx (3.5)

As such, this is the function used in both the QuaLiKiz neural network proof of principle and

in this work.

3.1.4 Neural Networks as QuaLiKiz emulator

In this work, the ability to approximate any function of an FFNN is used to emulate the Qua-

LiKiz code. The input x is a 9D vector of local plasma parameters most relevant for turbulent

transport, as discussed in section 2.3. The output vector y is the transport coefficient or flux

of interest, i.e. heat fluxes, particle diffusivities and convective terms. The activation function

f is defined in equation (3.5), and the weights and biases are set through an optimization

algorithm, as described in section 3.2.2.

It is important to note that the approximation theorem is only an existence theorem, it does not

guarantee that the training converges within finite time. Neither does it say anything about

the optimal network topology (number of layers, neurons per layer) or activation function

needed. As training a neural network is generally a non-convex, highly-dimensional problem,

it is impossible to make general claims about convergence. While theoretical proofs exist

for very specific cases, it is usually sufficient to use heuristics to reach convergence within

reasonable time [59]. Unfortunately, the effectiveness of these heuristics are very problem

specific. One such heuristic is that a single FFNN layer is generally insufficient. Two layers

give better results, and simple problems usually do not improve much by increasing the amount

of layers. Networks with many layers have had a lot of success solving complex problems [60].

These networks are called deep networks, the topic of deep learning, However, they are harder

to train and are computationally more expensive to evaluate. In light of the promising earlier

results [17, 54, 55] we focus on using shallow neural nets in this work.

3.2 Training

With the shape of the neural network and the activation function defined, the next step is

to train the neural network. In other words, determine the weights and biases such that any

input x gives the correct output y. To this end, a dataset of 3× 108 QuaLiKiz runs has been

generated, see chapter 4. Each run gives a single input-output relation made by QuaLiKiz.
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The weights and biases of the neural network then have to be optimized such that the input-

output mapping is reproduced. As the mapping between QuaLiKiz input and output is known

this makes the training so-called supervised learning. The most widely used [13] supervised

learning algorithm is called backpropagation. Backpropagation works by first defining a loss

function1, whose minimization is the basis of the optimization of the weights and biases. The

network has finished training as soon as the minimum loss has been found.

3.2.1 Loss function

The loss function should represent the goodness of the fit, and should be a function of the

outputs of the neural network. A common goodness measure Lgood for regression is the mean

squared error (MSE), which is also used in this work:

LMSE =
1

n

n∑
i=1

(ŷi − yi)2 (3.6)

Or, alternatively the mean absolute error (MABSE):

LMABSE =
1

n

n∑
i=1

∣∣(ŷi − yi)∣∣ (3.7)

Here, ŷ is the output of the neural network, y the target value as given by the samples and

n the number of samples. In this work, a regularisation term is also included. Training

without regularisation tends to cause overfitting, caused by the many free variables of the

neural network. Overfitting results in a network that reproduces the training set well, but is

unable to generalize outside the training set. This means that the fluxes between two data

points will vary wildly, resulting in a severe over or underestimation of the real flux. Moreover,

it results in gradients flipping signs where they should be constant, pushing the system in an

unphysical regime when used in integrated modelling. Figure 3.4 contains a simplified example

of overfitting. In this picture one can find the datapoints of a linear function with gaussian

noise. The complex model is represents a result of a non-regularized network, while the simple

model has very high regularization.

1Sometimes called cost or error function
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Figure 3.4: A simplified example of overfitting. The datapoints are generated on the line
y = 2x+1+noise with gaussian noise. Then, a polynomial function is fitted on the data, the
simple one representing the regularized case (y =

∑i≤1
i=0 aixi) and a complex one representing

the non-regularized case (y =
∑i≤9
i=0 aixi). Even though the non-regularized fit matches the

data points exactly, it does not represent the most probable model. Regularization is needed
for this reason, although the implicit assumption is that the simpler model is the best model.
In this work however, it is known that the training variables should be smooth functions of

the input, so this assumption is justified.

To prevent this, a function that represents the regularization Lregu is added to the loss function.

One commonly used function is the L2 norm. The L2 norm penalises large weights, a common

sign of overfitting. This results in:

LL2 =
1

2

∑
i,j

w2
i,j (3.8)

Alternatively, one can use the L1 norm, which also penalises large weights:

LL1 =
∑
i,j

∣∣wi,j∣∣ (3.9)

The total loss is the sum of both losses, with a weight λ representing the relative importance

of regularization:

L = Lgood + λLregu (3.10)
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3.2.2 Optimizers

The next component of backpropagation is the optimizer. The optimizer is used to iteratively

update the weights and biases until the loss function is, ideally, at its global minimum. Back-

propagation got its name from the way it calculates the gradients used to update the weight

and biases in the next iteration. Because an FFNN is layered, the gradient of the loss function

is calculated by determining the derivative of the n-th layer with respect to the n−1-th layer.

In other words, the error is propagated back, from the output layer to the input layer. More

mathematically [59], each layer of the NNFF is a vector function depending on the output of

the previous layer Xn−1 and its trainable variables, the weights and biases Wn ⊃ {wi,jn , bjn}.
Together with the matrix activation function F , that applies the previously defined activation

function to each element, the input of layer n is:

yn = Wnxn−1 (3.11)

xn = F (yn) (3.12)

Here the bias bn can be taken into account by extending the input vector xn with a one, such

that:

yn =
[
Wn bn

]xn
1

 (3.13)

Then the derivative of each layer, and thus the total derivative, can be determined as:

∂L

∂yn
= F ′(yn)

∂L

∂xn
(3.14)

∂L

∂Wn
= xn−1

∂L

∂yn
(3.15)

∂L

∂xn−1
= W>

n

∂L

∂yn
(3.16)

Using the gradient, the trainable variables can now be updated using a learning rule. In

training step k the learning rule has the form2:

Wk+1 ≡Wk −∆Wk = Wk − γ
∂L

∂W

∣∣∣∣
k

≡Wk − γ∇Lk (3.17)

Where γ is the step size, which is constant in the simplest case. The step size determines

how quickly the weights are being changed, so it is usually tweaked with a factor commonly

called the learning rate η. In more advanced algorithms, the step size can be adjusted per

step, so γ = η(k). In the class of Newton-based optimizers, the step size is calculated based

on (an estimation of) the inverse Hessian of the cost function, γ = η
[
H(W)

]−1 Newton-based

2In some algorithms, the average gradient is used instead of the gradient
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algorithms generally converge in less steps, but the steps are computationally more expensive.

An overview of common choices for optimizer algorithms can be found in table 3.1.
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Constructing the QuaLiKiz dataset

A dataset with QuaLiKiz in- and output has been generated to train the neural network on.

First, QuaLiKiz had to be prepared to do massive parallel runs. This makes it possible to

generate as many datapoints as possible within a reasonable time using the available compu-

tational budget. Intensive profiling is needed, as QuaLiKiz has not been used for this purpose

before. During profiling, two main bottlenecks were identified: the calculation of elliptic in-

tegrals in for the trapped particles (section 4.1), and to IO to disk (section 4.2). Then, tools

have been developed to run massively parallel QuaLiKiz jobs (section 4.3). Finally, statistics

of the generated dataset are shown (section 4.4).

4.1 Elliptic integrals

The integral for trapped particles, equation (2.15), contains two elliptic integrals. It was found

during profiling that the calculation of these integral using the Carlson method [65] was taking

up a significant part of runtime. As can be seen in figure 4.1, solving these integrals could

take up to 40% of the total walltime. For most QuaLiKiz runs, these two functions dominated

the total runtime.

31



Constructing the QuaLiKiz dataset 32

Figure 4.1: The relative CPU time (y-axis) used by specific QuaLiKiz functions as function
of the amount of CPU cores used (top) and the amount of QuaLiKiz points per core (bottom).
As can be seen in the top plot, the MPI functions (green and purple) use up to 45 % of the
CPU time for a large amount of CPU cores. From the bottom plot it can be seen that the
elliptic integrals rd and rf (blue and yellow) use up to 40 % of CPU time. As such, these

functions are the subject of optimization in section 4.1 and section 4.2 respectively.

A suitable replacement was found to remove this bottleneck, and by doing so allowed for a

much larger dataset to be generated. The used algorithm was designed by T. Fukushima [66],

and uses an internal table containing pre-calculated coefficients which are normally calculated

during the integration routine. In doing so, this algorithm was orders of magnitude faster,

while it was able to give the same results on the integration domain within machine precision.

As can be seen in figure 4.2, the elliptic functions no longer dominate the runtime. This

update to QuaLiKiz has been incorporated into the latest release version [6].
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Figure 4.2: The relative CPU time (y-axis) used by specific QuaLiKiz functions as func-
tion of the amount of CPU cores used (top) and the amount of QuaLiKiz points per core
(bottom) after massive-run optimization. Both plots do not show a clear type of function
that dominates the runtime. The dataset can now be generated within the computational

budget available.

4.2 Fully-parallel QuaLiKiz

Another bottleneck was found while profiling QuaLiKiz for a large amount of points. Prior

to this work, QuaLiKiz was mainly used for runs containing at most a few hundred points.

The bulk of the QuaLiKiz calculation is in the eigenvalue calculation. As such, only this part

of QuaLiKiz was parallelized, while the rest was handled by a single core. For small runs,

this is no problem. However, for a larger amount of points, the non-parallel part of QuaLiKiz

started to dominate the runtime. For example, for a run of 1× 105 points the non-parallel

part used around 45% of the walltime. For runs with 1× 104 points the walltime used by

the non-parallel part was below 1%. A large speedup was gained by parallelizing the rest of

QuaLiKiz. As can be seen in figure 4.2, even for 4× 105 points the previously non-parallel

part only took around 8% walltime.

4.3 Managing massive QuaLiKiz runs

The dataset generated contains 3× 108 points and each point contains 16 growth-rate cal-

culations. The average time to calculate a single growth-rate is about 1 s, made possible by
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the optimizations to QuaLiKiz described in this chapter. Generating this dataset on a single

core would take 150 years, which is clearly infeasible. As such, the dataset was generated on

the Edison supercomputer at the NERSC supercomputer in U.S. Berkeley. Edison has 5586

compute nodes, each containing 24 2.4 GHz cores with hyperthreading, which means that one

node can do 48 flux calculations in parallel. QuaLiKiz runs fully in memory, so the amount

of points being calculated at a single node is limited by the amount of RAM available. The

memory usage of QuaLiKiz itself was made as low as possible by removing any unnecessary

variables. On Edison, each node has 64 GB of RAM, which allowed for a maximum of 34 560

points per job. However, to make data analysis easier it was chosen to split the full 9D hyper-

rectangle up in jobs each containing a 4D hyperrectangle. As such, each job contains 17 280

points and uses around 76.8 CPUh, which is more or less a single wallhour. Then, the jobs

are grouped together in a batch of 5D hyper rectangles. To get even more parallelism, the

batch is run on 48 nodes at the same time. Summarising, there are 1680 batches, each taking

about an hour. It would take 70 days to run these batches assuming they are run sequentially

without downtime in-between.

A framework to run massive QuaLiKiz jobs was designed, as micro-managing 1680 batches for

several months is undesirable. The framework consists of two parts: the QuaLiKiz-pythontools

to initialize and run QuaLiKiz hyperrectangle scans, and the QuaLiKiz-jobmanager to set up

large scale QuaLiKiz scans on a supercomputer.

4.3.1 QuaLiKiz-pythontools

The QuaLiKiz-pythontools are a set of classes and functions implemented in Python, allowing

a researcher to conveniently work with QuaLiKiz. At the heart of the tools is the hyperrect-

angle scan. The scan is set up with a human-readable settings file, as reproducibility is very

important. One specifies the QuaLiKiz input parameters, and the parameters to be varied

during the scan. The tool then calculates the specific input needed for QuaLiKiz while taking

into account some physical considerations. For example, the densities of species needed to

maintain quasi-neutrality, or the temperature needed for a specific collisionally. Finally, the

input files are generated and QuaLiKiz is run.

Tools have been designed to do output processing as well. The sheer size of the dataset

suggests that an efficient way of storing and indexing data has to be used. The QuaLiKiz

output is parsed and stored in a hyperrectangle with the varied input parameters as axes.

Then, all data that does not vary is removed, and saved as a single value. Finally, the set is

stored in HDF5 [67] and compressed. Processing the data this way allowed the final database

to be only 20 GB instead of the 9 TB size of the raw output. The folded hypercube structure
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also allows for sub-ms querying of the database, as well as loading only part of the dataset in

memory, allowing data analytics on normal desktop computers.

The tools are open source and available at

https://github.com/QuaLiKiz-group/QuaLiKiz-pythontools.

4.3.2 QuaLiKiz-jobmanager

The QuaLiKiz-jobmanager was developed to manage the large amount of runs. It uses an

SQL database to keep track of the status of all runs. If needed, new jobs are submitted to

the supercomputer using the QuaLiKiz-pythontools. The output of runs that are finished are

parsed, folded into a hyperrectangle, compressed and archived automatically. This allows for

quick analytics on the output of the QuaLiKiz runs while generating the dataset simultane-

ously. This allowed for small bugs in QuaLiKiz to be fixed real-time, barely slowing down the

dataset generation. These bugs only became apparent in exotic corners of parameter space,

outside the space typically explored in integrated modelling. It also makes future expansion

of the dataset easy to set up and manage.

The tools are open source and available at

https://github.com/QuaLiKiz-group/QuaLiKiz-jobmanager.

4.4 Dataset validation

4.4.1 Statistics

The dataset covers a 9D input dimension hyperdimensional space. As such, visualizing the

dataset is complicated and outside the scope of this work. Instead, some relevant statistics are

shown in this section. For example, the various scalings in table 2.2 should be reproduced by

QuaLiKiz. The scaling should become apparent by looking at the population of stable points

for a specific input parameter, although cross-parameter effects are not visible in this way.

Here stable is defined as a point where QuaLiKiz found a growth rate of 0. The result of this

analysis can be found in figure 4.3.

https://github.com/QuaLiKiz-group/QuaLiKiz-pythontools
https://github.com/QuaLiKiz-group/QuaLiKiz-jobmanager
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Figure 4.3: Stable point fraction for the full flux in the dataset dependent on input param-
eter. Yaxes show population in bin over the total amount of points in percent. As the input
does not form an orthogonal basis for the output, direct conclusions based on this plot are
not possible. However, general trends can be observed. For example, R/Ln, R/LTe , R/LTi are
destabilizing, as an increase of these parameters reduces the stable population. The other
parameters, ν∗, Ti/Te, Zeff , q, ε, and a very high or very low magnetic shear ŝ have a

stabilizing effect.

Transport coefficients in experimental plasmas are usually limited to a range between 0 and

10 in GyroBohm units. The population of the dataset within certain ranges of qs are shown in

figure 4.4. As can be seen, most of the generated datapoint are within experimentally relevant

ranges.
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Figure 4.4: Fraction of dataset within a certain range of heat flux. Most of the dataset is
within experimentally relevant range, between 0 and 10 in GyroBohm units. A very small
fraction has a negative heatflux, see section 4.4.3. The rest of the fluxes above expected
fluxes for experimental fusion plasma’s, but can still be used in the Neural Network training

process.

4.4.2 QuaLiKiz-dataslicer

It is crucial to visually check the dataset, as global statistics hide local details that might be

important for transport modelling. A tool has been developed to look at 1D slices through the

dataset. This way, one can easily identify QuaLiKiz points that might be in the wrong place.

By looking at the kθρs spectra, one can identify possible reasons why this particular point

is wrong, for example, an eigenvalue not found by the eigenvalue solver. Also, one can plot

various trained neural networks in the same plot, allowing networks to be rapidly compared

qualitatively, and increase our intuition throughout the multi-dimensional space.

4.4.3 Validation of QuaLiKiz

The large dataset of QuaLiKiz runs can be used for the validation of QuaLiKiz against more

complete codes. However, to do a direct comparison, one would need a database with different

gyrokinetic codes using the same normalizations. The GyroKineticDataBase (GKDB) project
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was set up to allow for such an cross-code validation. It is envisioned that part of the generated

database will be included in the GKDB. Although the project is at a very early stage at time

of writing, it can be found at gkdb.org.

One example of a subspace that would need to be validated with more complete codes is a

region of negative fluxes. While only occuring for a small minority of cases, a negative heat

flux may be indicative of a strong heat pinch in certain corners of parameter space. According

to figure 4.6, this tends to occur for hollow density profiles (negative R/Ln) and high electron

temperature gradients. A more complete analysis is necessary to judge physical correctness

and experimental relevance of these observations.

A figure with the population fraction that result in negative fluxes can be found in figure 4.6.
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Figure 4.6: Fraction of dataset with negative energy fluxes dependent on input parameter.
This figure shows that the negative fluxes mostly occur for hollow density profiles (negative

R/Ln) and high electron temperature gradients.
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Training and validation of Neural Networks

The generated dataset of QuaLiKiz in- output described in chapter 4 can now used to train

neural networks. Because of the huge amount of datapoints, training these networks can take

a long time. Since the training time is approximately linearly related to training set size, we

focus instead on a 7D subset of the dataset. For this dataset, Zeff = 1 and ν∗ = 10−3. Even

for this 30 times smaller dataset, training still takes around 2 hours per network. To allow

for a more extensive optimization of network models and hyperparameters, priority is given

to optimizing for electron ETG flux qETG,e. It is expected, confirmed by very preliminary

tests, that the 9D networks and networks of TEM and ITG fluxes are optimal at similar hyper

parameters as the ETG heat fluxes. This can be explained because of the similar structure of

the threshold behaviour in R/LTe for TEM and ETG, and R/LTi in ITG.

The final goal, beyond the scope of this work, is the inclusion of these networks in transport

modelling. As such, the main focus of this chapter is on a feature very important for transport

modelling: the critical gradient. In this chapter the behaviour of this feature is shown with

respect to different hyperparameters. First, the hyperparameters subject to tuning are shown

(section 5.1). Next, RMS error, a common measure of goodness is discussed (section 5.2).

Then, a qualitative analysis of trained qETG,e networks is shown. Finally, a short preliminary

note on execution speed and extension to other output variables is given in sections 5.4 and 5.5.

5.1 Hyperparameters

A pipeline has been set up to create and compare networks with different hyperparameters.

The experimenter can choose hyperparameters using a settings file. After training, this file

and the resulting network are stored in a SQL database. Afterwards, one can easily query

the database and compare different networks. Additionally, some post-processing is set up to

determine different measures of goodness against different subsets of the dataset. For example,

the RMS error against the stable population of QuaLiKiz points, as in section 5.2.

41



Training and validation of Neural Networks 42

At time of writing, these hyperparameters are chosen manually. However, an automatic opti-

mum search routine is planned for future work. The main hyperparameters available can be

found in table 5.1

Table 5.1: The main hyperparameters available in the neural network training pipeline.
The parameters not contained in this report are greyed out.

Class Description NNDB name

Topology Hidden layer structure hidden_neurons

Hidden layer activation function hidden_activation

Output layer activation function output_activation

Network parameters Measure of goodness goodness

Cost function L2 weight cost_l2_scale

Cost function L1 weight cost_l1_scale

Measure deciding when to stop early early_stop_measure

Filter used for training set filter_id

Training parameters Amount of batches per epoch minibatches

Optimizer optimizer

Standardization standardization

Non-improving epochs before stopping early_stop_after

5.2 Measure of goodness

A common way to judge the performance of regression neural network is by using the root

mean square (RMS) error. It is the root of equation (3.6), so:

RMS =

√√√√√
 1

n

n∑
i=1

(ŷi − yi)2

 (5.1)

Or in its relative form:

RMSrel =
RMS

ymax − ymin
(5.2)

Commonly it is given as a single value. Unfortunately, this way information about the error

distribution in hyperspace is lost.

To prevent losing this information, one can use a more visual way of evaluating performance.

One can look at a plot of the predicted value by the neural network versus the points in the

dataset. For a perfect neural network and a perfect target model, these points should all lie

on a straight line with a slope of 1. However, in the case of regression one preferably smooths

over noisy or incorrect data. In this case a distribution around this straight line is obtained.
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By plotting prediction versus target, more details about the distribution of the error can be

seen. For the 7D dataset, this is displayed in figure 5.1 for a typical qe,ETG network. Most of

the population of fluxes lies in the lower flux region. A large part of the predicted fluxes lie

close to the straight line. However, there are two populations of points that need to be further

investigated, both near the origin of the figure. These are located where QuaLiKiz predicts a

value near zero, but the network predicts a value between zero and ten, and the region where

the network predicts a low value, even for points where QuaLiKiz predicts a value between

zero and five.

0 10 20 30 40
QuaLiKiz

0

5

10

15

20

25

30

35

40

Ne
ur

al
 N

et
wo

rk

102

103

104

105

co
un

ts

Figure 5.1: A plot of the QuaLiKiz prediction versus the neural network prediction. Only
the unstable points are shown. Most of the population lies close to the prediction equals
model line, e.g. the line with slope one (dashed). However there are two populations of
points that need to be further investigated, both near the origin of the figure. The points
where QuaLiKiz predicts a value near zero, but the network predicts a value between zero and
ten, and the region where the network predicts a low value, even for points where QuaLiKiz

predicts a value between zero and five.
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5.3 Comparison of hyperparameters

5.3.1 Optimizer algorithms

Two of the algorithms described in section 3.2.2 are further explored: Adam and L-BFGS.

During initial testing, it was found that the other algorithms were not converging without

hyperparameter tuning. As this leaves one algorithm of each order, it was deemed to be

sufficient for this work. A typical convergence curve can be found in figure 5.2. In this figure,

the loss, representing how well the network performs as defined in section 3.2.1, is shown for

the training set and the validation set. These two sets are randomly determined subsection of

the full dataset. The validation set is not used in the optimization of the weights and biases,

and is as such a measure for how well the network generalizes.
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Figure 5.2: A typical convergence curve for the L-BFGS (left) and Adam (right) algorithm.
The hyperparameters used for Adam were β1 = 0.9, β2 = 0.999 and λ = 0.001. L-BFGS has
no hyperparameters. The loss for for the validation set is given in blue, and the loss for the
training set in orange. Training was considered done if the loss did not improve for 5 epochs.
Note the difference between a first and second order algorithm. The former converges in
many quick epochs, while the latter converges in less epochs using considerably more time.
An epoch is defined as training on every sample exactly once. Both training optimizers
show that the validation and train losses are similar, which shows that the network is not

overfitting.

While both algorithms show completely different convergence behaviour, they both converge

to about the same final loss. As expected, this results in similar neural networks, confirmed
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by visual inspection. Unless explicitly stated, the rest of the networks in this work are trained

with the Adam algorithm, as this results in less walltime used for training.

5.3.2 Reproducibility

It is useful to have a baseline of comparison before networks with different hyperparameters

can be compared. Networks trained with exactly the same hyperparameters have been trained

for this purpose. The only differences are different initial values of biases and weights and a

different split of the train, test, and validation set. This is due to the random normal initial-

ization and the shuffling of samples respectively. One would expect to see slightly different

networks behaving largely the same, due to each network being a different local optimum. A

typical slice can be found in figure 5.3. As can be seen, the networks produce similar values

for the region within the training set.
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Figure 5.3: Different networks with the same hyperparameters. The table shows the
values of the other input parameters. The lines are different trained neural networks, all
using the same hyperparameters. Notice the similarity of the networks within the bounds of
the training set. However, as expected, the networks are diverging when extrapolating. The
networks have an average RMS error of 3.35 with a standard deviation of 0.05 on the test

set.



Training and validation of Neural Networks 47

5.3.3 Regularization

Next, the regularization parameter is varied. The parameter is equivalent to λ in equa-

tion (3.10) using the L2 loss defined in equation (3.8).
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Figure 5.4: A slice over R/LTe comparing different regularization parameters. The table
shows the values of the other input parameters. The blue line shows very non-monotonous
behaviour, a sign of under-regularization. The yellow line has trouble capturing both the

points of high and low flux, a sign of over-regularization.

In the figure, the visual change between different networks is large, but the influence on the

global RMS error is relatively minor, as shown in table 5.2.

Table 5.2: RMS error of networks trained with a different regularization parameter cL2.

cL2 RMS error

0.00 3.1605

0.05 3.4149

0.10 3.2631

0.20 3.5454

0.35 3.7103

0.50 3.8537

1.00 4.3036

2.00 5.0452
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5.3.4 Topology

An important parameter for the evaluation speed is the amount of layers and neurons per

layer in the network. To investigate the effect on network performance, this network topology

is varied. A typical slice can be found in figure 5.4.
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Figure 5.5: A slice over R/LTe comparing different topologies of hidden neurons. The table
shows the values of the other input parameters. The networks look very similar, but seem
to extrapolate slightly differently. As the topology influences the loss function, a numerical

comparison is not possible in this plot.

Note that the measure of regularization defined in equation (3.8) does not scale with amount

of neurons. As such, the effects in this comparison might be to regularization effects only, and

not by the topology. A separation of these effects is left as future work.

5.3.5 Filtering

Data filtering and validation is an important step of neural network training. Only the two

most analysed styles of filtering data are presented in this report. First, any point that has

a negative ETG, ITG, TEM or total flux is filtered out. It is generally accepted that these

fluxes should be positive, and as such they are filtered out until checked by more complete

gyrokinetic codes.
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Only the unstable points are included in the training set to cleanly capture the instability

thresholds. As the networks are regularized, including the stable point, which have zero flux,

in the training set would create a smooth bend near threshold. By filtering out the zeros, the

networks extrapolate into the stable region with negative fluxes. Then, these predictions of

negative fluxes are clipped to zero in postprocessing. This should result in a sharper threshold.

However, the robustness of this process must be checked and is part of the sanity checks of

the final networks

Finally, all point below a filter-dependent maximum are filtered out. The filter differences can

be found in table 5.3 and a typical slice can be found in figure 5.6.

Table 5.3: 9676800 QuaLiKiz points were included in the total 7D dataset. This table
shows the fraction of points left after the filter is applied.

filter name filter stable filter maximum [GB] Electron ETG points left [%]

max = 60 yes 60 20

max = 100 yes 100 26
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Figure 5.6: A slice over R/LTe comparing different filters. The table shows the values
of the other input parameters. The networks that includes QuaLiKiz points with higher
flux naturally approximates the data better for higher flux. However, there seems to be a

qualitative effect on the steepness and location of the threshold.
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Naturally the networks trained with the dataset including the higher fluxes fits the QuaLiKiz

points with high flux better. However, this seems to have effect on the steepness of the fit

after threshold, as well as the prediction of where the threshold is in R/LTe space. This has

only been confirmed in a qualitative analysis, a more complete quantitative analysis is needed

to confirm this difference.

5.3.6 Early stop measure

The measure by which to decide to stop training is generally the loss function, as this is the

object of optimization. However, in principle any measure can be used to decide to stop. Most

of the early trained networks stopped based on the RMS error, as initially this was thought to

be the main measure of goodness of interest. In the final stages focus moved away from RMS

error, and as such a comparison with the more general stopping on loss was made. A typical

slice of this comparison can be found in figure 5.7.
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Figure 5.7: A slice over R/LTe comparing different measures of early stopping. The table
shows the values of the other input parameters. The training was stopped after 5 successive
steps that did not improve either RMS error, or the loss function. In a qualitative compari-
son, the networks behave mostly similar, and only differ in subtle ways. More quantitative

analyses is needed to quantify this difference.

In both cases the training was stopped after either the RMS error or loss did not improve

after 5 successive steps of the optimizer algorithm. The two measures look similar if one
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looks at many R/LTe slices, but there seem to be subtle differences which currently cannot be

quantified. However, the effect seems to be insignificant and thus will not be the subject of

future optimization.

5.4 Extension to TEM, ITG and 9D heat fluxes

Some preliminary tests have been done to check the extension of output space from ETG

fluxes to TEM and ITG fluxes, as well as an extension to 9D ETG heat fluxes. A summary

of these best hyperparameters found for 7D ETG heat flux can be found in table 5.4.

Table 5.4: Summary of the hyperparameters found for training ETG heat flux.

Hidden layers 3

Nodes per layer 30

Activation function tanh

Measure of goodness Mean square error

Regularization L2 loss and early stopping

Early stop criteria Loss

Filtering Max = 60

Then, networks are trained using the same pipeline and hyperparameters. This results in the

following networks, summarized in table 5.5.

Table 5.5: RMS errors and L2 norms of neural networks for different training targets. All
networks use the same hyperparameters, as specified in table 5.4

Training Target L2 norm RMS error [GB] RMS error [%]

Ion TEM Heat Flux 9.05491 2.26533 4.554682

Electron TEM Heat Flux 13.91730 2.97436 4.210860

Electron ETG Heat Flux 14.41390 3.18009 4.903538

Electron ETG Heat Flux (9D) 49.8078 3.8967 2.6508

Ion ITG Heat Flux 39.87620 5.41400 5.351478

Electron ITG Heat Flux 8.75148 2.31380 5.654686

As this small test shows, the RMS errors are close to those of the 7D ETG heat flux ones,

and better or close to the requirements introduced in section 1.1. This validates the approach

taken in this work: First, the optimization in 7D and then a simple extension to 9D and

other-flux networks.
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5.5 Note on evaluation speed

As in the end the evaluation of the neural network is just a simple matrix equation, it can

usually be evaluated within a few microseconds. This is confirmed by the proof-of-concept[17]

and early tests within the compiled version of RAPTOR.



Discussion

In this work, we have generated a large database containing 3× 108 QuaLiKiz runs. The

QuaLiKiz inputs cover a wide range of parameter space relevant for the core region of tokamak

experiments. The output most notably contain particle and heat fluxes in the ETG, ITG, and

TEM regime. This dataset was then used to train Feed-Forward Neural Networks, which

provide a regression function able to emulate QuaLiKiz. Extensive work has been done to

optimize the hyperparameters that govern these networks for the 7D ETG heat flux. These

optimal network has a reasonable RMS error and L2-norm, and is in qualitative agreement

with the QuaLiKiz points and their predicted threshold behaviour. Initial test show that these

hyperparameters also give good results for the other heat fluxes, as well as for the 9D networks.

The set up pipeline makes it easy to extend this work to 9D heat and particle fluxes, as well

as carry out extra quantitative analysis. Finally, these networks can be coupled to a transport

model in an integrated modelling suite for validation against experiments, optimization of

plasma shots and control applications.

6.1 QuaLiKiz dataset

The dataset generated for this work is the largest collection of linear gyrokinetic results ever.

Additionally, the extra parallelization makes the code massively parallel, being able to be run

on thousands of cores simultaneously. Together with the pipeline that has been set it, this

makes it easy to expand the database as needed.

The database can also be used to explore the parameter space of tokamak core plasma’s.

In this way, interesting new regions can be found for additional (virtual) experiments. For

example, turbulence simulations in a stable region are unlikely to give additional information.

As such, one could find the stable regions using the database to avoid running expensive

simulations in an uninteresting region of parameter space. Another region of interest is the

space near the turbulent threshold, as that is the region most tokamak experiments operate

in. This exploration is further simplified by the design of the QuaLiKiz-dataslicer.
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Finally, as the GyroKineticDataBase project is extended to include more gyrokinetic codes,

the dataset allows for cross-code validation of QuaLiKiz.

6.2 QuaLiKiz Neural Networks

The neural networks trained in this work are a significant improvement of the proof of concept

[17]. The initial input space has been increased from 4D to 9D. The outputs investigated are

electron and ion heat fluxes in the ITG, ETG, and TEM regime, more general than the proof

of concept which only included ITG heat fluxes. Regression of growth rates has not been done,

but the set up pipeline makes it easy to extend this work to include them, as well as networks

for the particle fluxes. However, multiple challenges have been identified during validation of

these neural networks.

6.2.1 RMS error as measure of goodness

Often times, the RMS error of the network predictions is used as the end-all measure of

goodness of the neural networks. However, for networks that are meant to be used for transport

modelling, other, more local effects are far more important than the RMS error. In this work,

three such effects have been identified.

The first is threshold miss-prediction, when the networks predicts the threshold to be located

different to the original QuaLiKiz threshold. It is related to the relative sparseness of the

dataset, so the threshold itself is almost never contained in the training data. Combined with

the smoothness of neural networks, it can mean that the threshold is found on a significantly

different R/LTe or R/LTi , resulting in turbulent fluxes appearing in stable regimes.

A related effect threshold mismatch. This happens when the network for, for example, electron

heat flux finds a threshold at a different location than the ion heat flux. This could mean

that the ion temperature remains fixed at a certain gradient (if the mode is ITG), while no

electron heat flux from ITG is predicted in the qe model. This would result in a runaway of

the Te profile, until other instabilities are triggered. This is physically inconsistent. It has

been presented at EPS 2017 [68, 69].

The last effect is residual flux pop-back. As the network is extrapolating in stable regions, the

flux may pop back up slightly. In this case, the network predicts a very small, but non-zero

flux in regions where there should not be any turbulent fluxes. This can happen even when

including points of zero flux, as the RMS error is biased for larger errors, it allows for small

errors to be made around 0. Although the influence might be small, it is hard to verify without

doing actual transport simulations, so this effect should be kept in mind during validation.
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Although all these effects have been found qualitatively, a quantitative mathematically rig-

orous measure has to be determined to fully compare different networks to determine which

one is best. Fortunately, using the developed tools extending the pipeline with these extra

analytics should be straightforward, and no problems are foreseen in extending this work.

6.2.2 Comparison with state-of-the-art

The neural network regression of a turbulent transport model carried out in this work is the

largest one in the world to date. The only similar work was done by O. Meneghini et al.[70],

in which a neural network regression was done on the TGLF turbulent transport model.

However, the database used for this regression was based on only 24 DIII-D shots. There is

no hyperspace analysis presented in the paper, but it is expected that the parameter space

covered is relatively narrow to this work. The size of the database is not mentioned in the

paper, but assuming 20 points per radial slice and the reported 4000 time slices of 24 shots,

106 total points are obtained, two orders of magnitude less than the database in this work.

However, their database covers 24 input parameters versus 9 in this work.





Outlook

Multiple topics have been identified to improve upon this work in the future.

The dataset can be expanded with data near the thresholds, using the already generated one as

guide. The networks are then automatically biased to give more importance to the threshold

region, as there are more data points there. Expanding the training set also improves gener-

alization. Related to this is implementation of instance weighting. With instance weighting,

every point in the dataset is given a relative importance. This importance is then incorporated

in the loss function, so that the trained network better approximates the important points.

More smartly filtering out points from the training set can also lead to improvement. It is

known that QuaLiKiz sometimes fails to predict a growth rate, which leads to a smaller flux

than in reality. By looking through the data space and removing these points from the dataset,

it can be avoided that the networks train on these incorrect points, skewing the prediction

near them.

Adding extra dimensions to the dataset is also possible. However, the curse of dimensionality

makes adding dimensions in the hyperrectangle way as in this work computationally too expen-

sive. However, this cost can be circumvented by restricting oneself to the (input)parameters

found in experimental data instead of a hyperrectangle. This will need a large-scale analyses of

experimental data, after which gyrokinetic code can be run. Fortunately, much of the pipeline

set up in this work can be re-used. Currently, this analysis of experimental data is being done

for JET profiles, consisting of 2000 discharges with 7 time-slices each, and will be extended in

future work [49].

The GKDB can be expanded with gyrokinetic data from other less simplified codes. One can

then train neural networks on this database. However, because of the computational cost

involved, it will take simulation data from multiple sources. Currently it is planned to supply

an open-source interface to the GKDB, such that the community can freely contribute.

As noted in section 6.2.1, a well-defined measure of goodness has to be determined. This will

make comparison of networks easier than the visual method used in this work.
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The tuning of hyperparameters can be done automatically, as opposed to a manual grid-like

search like in this work. Using Beyesian optimization [71], one tries to predict the best next

parameters to try. This is a point were either the network is expected to perform best, or

a point were the uncertainty of how well the network will perform is highest. This way, one

needs to train less networks than a naive grid search.

The 9D input space can be expanded to 10D in post-processing by using a Waltz-like rule for

including the impact of rotational flow shear. A toy model for this rule has already been set

up [48], as well as the pipeline to train 10D networks. However, the robustness of this rule

still has to be tested.

Finally, the created networks have to be validated using a integrated modelling suite. This

is planned to be done within the RAPTOR framework [18]. The 4D networks of the proof

of principle are currently integrated in RAPTOR, and extending this to 9D is of the highest

priority.



Conclusion

The goal of this work was to accurately predict particle and heat transport coefficients as

function of a 9D input space using a feed-forward neural network in realtime. The input

parameters of interest were qi,e and Γi,e as function of a − R
Ti,e

dTi,e
dr , Ti

Te
, −R

n
dn
dr , Zeff , ν

∗, qx,

ŝ, r/R. A dataset containing 3× 108 QuaLiKiz runs scanning a hyperrectangle of these input

parameters has been made as training set for the neural networks. To allow such a large-scale

run, QuaLiKiz has been further optimized and parallelized. Furthermore, tools have been

developed in Python to run, manage, and validate large-scale QuaLiKiz runs.

Multiple neural networks with different hyperparameters have been trained using the QuaLiKiz

dataset. The main focus was on the ETG electron heat flux, as it is expected that similar

hyperparameters work for the other fluxes because of the similar structure of the in- and

output mapping. To save training time, two of the input dimensions are taken as constant,

namely Zeff = 1 and ν∗ = 10−3. These networks have been extensively validated using

visual inspection. The best of these networks have an RMS error of only 3.18 with a standard

deviation of 0.05, or a normalized RMS deviation of 4.9 percent, which is within the stated

goal. Similar values of error have been found for the other heat fluxes, and for the initial full

9D training carried out so far. It is expected that similar errors will be found for the particle

fluxes. However, it has also been found that RMS error is oftentimes not the right measure

for the goodness of neural network. In this work we have identified three other important

measures: threshold miss-prediction, threshold mismatch, and residual flux pop-back. These

measures will have to be further quantified to rigorously compare neural networks, and to

determine which is best. Still, the set up pipeline make it easy to extend this work to include

these measures, and so expand the neural network to better represent reality.

The trained networks in this work represent the current state-of-the art. Including these

networks in transport models will open new pathways to do fast optimization of scenarios and

realtime control.
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