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1 Introduction

Current day nuclear fusion reactors are designed for the confinement of a plasma
at sufficiently high pressure to fuse deuterium and tritium with the goal of
producing sustainable energy for the future. To maintain fusion reactions and
produce net energy it is important to confine energy and plasma particles for
a sufficient time under pressure. It is for this reason that tokamak reactors are
built in a torus shape with a magnetic field of 2-5T in the toroidal direction
such that the plasma ions and electrons are guided into making an infinite loop
inside the reactor. However, a toroidal magnetic field created by coils wrapped
around a vacuum vessel has a gradient in the radial direction and a magnetic
field curvature. These two properties result into a drift of the electrons and
ions in the plasma, which leads to a loss of confinement. To counter these
drifts a current is driven in the toroidal direction by applying a voltage over
the plasma. This current creates a poloidal magnetic field perpendicular to
the toroidal magnetic field. In a simple torus with a circular cross section the
combination of a toroidal and poloidal magnetic field creates magnetic field
lines confined to surfaces that are shaped like a torus. These surfaces are called
flux surfaces as the magnetic flux is contained in these surfaces. On the flux
surfaces temperature and particle density are constant as particle and heat
transport is much faster along the magnetic field lines than perpendicular to
the magnetic field lines. The magnetic topology consisting of the poloidal and
toroidal field together creates an equilibrium containing plasma particles and
energy. Through collisions with particles gyrating around neighboring magnetic
field lines however, energy still leaks out of the plasma. This creates one of
the challenges of nuclear fusion research. Namely, understanding the thermal
transport to find conditions under which energy loss from the plasma is minimal.
This challenge can be quantified as striving for the highest energy confinement
time 7. Which is defined as:

TE — W/Ploss- (1)

Where W is the total energy confined in the plasma and Pj,ss is the power loss
from the plasma. The power loss of the plasma can increase when magnetic
perturbations cause the magnetic field to reorganize and create what is known
as a magnetic island. In a 2D cross section of the magnetic field lines, magnetic
islands appear as nested flux surfaces separated from the bulk plasma as can
be seen in figure (1). Magnetic islands have 2 regions of particular interest.
The O-point in the middle where the magnetic field consists of concentric flux
surfaces. And the X-point where the magnetic field is more chaotic and field
line reconnection takes place. In 3D, the magnetic islands are shaped like tubes
within the nested flux surfaces. These tubes go around toroidally and poloidally
and close on themselves. The ratio of toroidal turns over poloidal (m/n) turns
before closing on themselves is used to name and differentiate between magnetic
islands as it is unique for their location in the plasma. Figure (2) shows a 3D
representation of a m/n = 2/1 magnetic island from a simulation of the DIII-D
tokamak published by the U.S.A. department of energy [1].



X-point

R (major radius)

Figure 1: A sketch of the magnetic topology of a magnetic island (purple) in
a tokamak with a cylindrical cross section. The light blue arrows indicate the
location of the so called X-point and O-point areas of the magnetic island. The
dark blue arrows indicate the rotation of the magnetic island in the poloidal
direction over time.

Figure 2: A simulation indicating the shape of a m/n = 2/1 magnetic island
in the DIII-D reactor in green. The black grid indicates the vacuum vessel of
the reactor and the yellow lines show a 2D cross section of the magnetic flux
surfaces. Note how the magnetic island closes on itself after 2 laps around
the length of the torus. This simulation has been done by S.Kruger using the
NIMROD code. Published online by the USA department of energy [1].



1.1 Magnetic islands and electron thermal transport

In general magnetic islands are known for their ability to reduce the confinement
time by enhancing the power loss from the plasma. The increase in power lost is
caused by rapid transport of energy over the width of the island by fast transport
over its outermost flux surfaces. Essentially causing a thermal shortcut over
the width of the island. If the island is wide enough this can even lead to a
disruption of the plasma. It has however been observed in multiple experiments
that magnetic islands can also cause increased electron temperature gradients on
the side towards the center of the plasma, suggesting thermal transport barrier
behavior [2][3][4]. In a paper by M.J. Choi [2] it has been shown that magnetic
islands have areas with varying degrees of electrostatic turbulence and poloidal
flow on the inboard side. Specifically, that near the X-point exists a region with
stronger turbulence and a weaker poloidal flow and on the inboard side from
the O-point there is a region with less turbulence and stronger poloidal flow. It
is then suggested that the strong poloidal flow near the O-point causes shear to
disrupt turbulent currents which causes lowered flux surface averaged turbulent
transport. This would then lead to the observed increased electron temperature
gradient on the inboard side. This work will aim to test this hypothesis by
measuring the electron thermal transport near the magnetic island in 2D.

1.2 Objective of this thesis

To test the hypothesis that the presence of a magnetic island can decrease the
electron thermal transport on the inboard side this thesis will ask two research
questions:

e Can a 1D diffusive heat transport model describe a 2D measurement of
the thermal transport in a tokamak?

e Can lowered electron thermal transport be observed on the inboard side
of a magnetic island lower compared to the unperturbed section of the
tokamak plasma?

The physical quantity that will be used to examine these questions is the
thermal diffusion coefficient x that relates the heat flux ¢ with the temperature
gradient VT through:

q=—xVT. (2)

Also known as Fourier’s law. With a constant heat flux, a high y represents
higher thermal transport and low temperature gradient and a lower x represents
lower thermal transport and a higher temperature gradient. To find the heat
diffusion coefficient in the area near a magnetic island each section will answer
a subquestion to leading up to answering the research questions in section 6 and
7.

e How does one calculate the heat diffusion coefficient x from the heat flux
and temperature? Treated in section 2.

e How does one measure the temperature in a tokamak in 2D? Treated in
section 3.



e On what basis are transport differences expected to occur near a magnetic
island? Treated in section 4.

e How does one analyze a temperature measurement? And how does the
error on the temperature measurements behave? Treated in section 5.

1.3 Approach to determining the electron heat transport
near a magnetic island

To study heat transport in 2D and around a magnetic island in a controlled envi-
ronment this experiment will make use of of the resonant magnetic perturbation
(RMP) field of KSTAR to induce stationary magnetic islands in a plasma. The
thermal transport coefficients will then be determined by means of a modulated
heating experiment similar to work done by G. Spakman at TEXTOR [5] and
work by S. Inagaki at LHD [6]. Modulated electron cyclotron resonance heating
(MECRH) will be deposited off center such that the resulting heat wave travels
outwards across the magnetic island. The propagation of this heat pulse will be
imaged by 3 2D electron cyclotron emission imaging (ECEI) systems. A method
is developed using a transformation of time dependent data to the frequency
domain to arrive at an approximation of the electron heat diffusion coefficient.
Section 2 will explicate the relation between the heat wave properties and the
thermal diffusion coefficient by using a heat transport model based on cylindric
geometry. Furthermore it will explain the role of a magnetic island related to
the thermal transport as found in experiments.



2 Thermal transport in tokamaks

In a fully ionized plasma such as in a tokamak all transport mechanisms, be
it of particles or energy, are based on collisions. The main component of the
velocity of electrons and ions in a tokamak plasma is in the direction of the mag-
netic field lines due to the interaction of moving charged particles and magnetic
fields. This means that transport inside a flux surface is orders of magnitude
higher than perpendicular to the flux surface. Because of this property both
density and temperature are constant on a flux surface and are therefore also
called flux functions. In a classical cylindrical approximation of the plasma,
transport across flux surfaces happens only due to the cyclotron rotation that
every charged particle makes around a magnetic field line. By colliding with a
particle circling a different field line on a nearby flux surface, energy gets trans-
fered. In reality however the classical picture has been shown to predict values
of energy transfer orders of magnitude lower than observed. The differences are
attributed to a combination of geometric effects and electrostatic turbulence.
On a coarser scale than single particle collisions the thermal transport can be
represented by x as the diffusional heat transport coefficient. This work makes
use of thermal transport models previously derived in nuclear fusion literature.
The main equations for these models can be found in the works of N. Lopes
Cardozo [7], A. Jacchia [8] and M. van Berkel [9]. The work of M. van Berkel [9]
also contains a summary of multiple approximations for the thermal diffusion
coefficient and their accuracy. The following subsections will address the main
equations and assumptions necessary to derive an equation for the electron heat
diffusion coefficient and how magnetic islands relate to the thermal transport.

2.1 Electron heat diffusion coefficient approximations for
tokamaks

The energy of electrons in a volume element is described by:

% (;neTe) =-Veg+ 8. (3)
Where ¢ represents the heat flux, S, the power of the heating sources injected
into the plasma per volume element, n. the electron density and 7, the electron
temperature. The left hand of the equation describes the total energy contained
in a plasma per volume element per unit time and the right hand is the energy
transport through conduction and energy gain by heating. If the energy trans-
port is assumed to be purely diffusional, the classical Fourier’s law for the heat
flux can be used:

q=—nexVTe. (4)

Where y represents the heat diffusion coefficient. In this equation the heat diffu-
sion coeflicient has an important role as a variable by connecting a certain heat
flux to a gradient of the temperature. Because for the upcoming experiments
the plasma will be heated with a modulated heating source the temperature fluc-
tuations will be dominant over density fluctuations which means the density on
the left hand of the equation can be moved outside the derivative. This means
the density can be divided away from each side of the equation. To indicate
the change from a static temperature profile to temperature perturbations. the



temperature will be noted as T. It will also be assumed that measurements are
not done at the deposition location of the heating so that S, = 0. Which should
be and accurate assumption as the applied heating will be localized and outside
the measurement volume in the experiments. At the same time the plasma will
be assumed to be cylindrical because of the high ratio of R/a (major radius by
minor radius). In this cylindrical geometry the heat transport is only in the
radial direction, thus simplifying equation (3) to:

soi 10 ( of .
20t pdp PX ’

Where p is the minor radius. The next step to finding a solution for x is
to transform the equation to the Fourier domain resulting into the following
ordinary differential equation:

10 00 3

- — | — —iw® = 0. 6
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Where O(p,w) is the Fourier transform of the temperature, i =v/—1 and w is
the angular frequency. This second order ordinary differential equation has an
exact solution consisting of the modified Bessel functions of the first I, and
second kind K, of order v. Making the solution for the Fourier transform of 7"

3w

e(p,m:Ol(w)Ko( 2XP>+02(W)IO< ;;;p) (7)

C7 and C represent the constants that depend on the boundary conditions.
To continue the derivation it is necessary to say something about these con-
stants. Because tokamak nuclear fusion reactors lose heat to the wall, temper-
ature decreases in the radial direction, one can therefore assume that far from
where measurements will be done the temperature converges to zero meaning
lim, o ©(p,w) = 0. This means that C, = 0 as Iy does not converge to 0 but
to infinity for this limit. The next step is to take the logarithmic derivative to p
to eliminate the need to find a value for C;. The logarithmic derivative In this

case results in: .
w
K /32
e _ 3W1<2Xp> (8)
e 2 x iw
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X

Here the prime denotes a derivative of © to p. The fraction of the two modified
Bessel functions can be written as an infinite fraction which can be truncated
to its shortest form as the following equation.

o' 3iw 1
Z = s — . 9
C) 2 x * [5iw ©)
_2. Eip
X

For the perturbation experiment a heat pulse with a constant frequency will be
injected so the left hand side of (9) can also be written as a single frequency



component O(wg) = A - e, Substituting this and its derivative to p and
rewriting the equation one gets:

3@0.}0_ Al VA 1
HZX—_(A“FZ(ZS +% . (10)

Squaring this equation and splitting it up in the real and imaginary part allows
the derivation of two equations which can be combined to result in two approx-
imations for xy. One equation containing the amplitude and the phase and one
equation requiring only the phase.

3&)0
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These two approximations for the heat diffusion coefficient can be used in all
further sections.

X2 (12)

2.2 Thermal transport and Magnetic islands

Magnetic islands can be found in a plasma where a perturbation of the mag-
netic field, either through instabilities or induced by coils, influences a resonant
magnetic flux surface by using free energy energy at the resonance to reconnect
magnetic field lines. There is only a limited number of resonant flux surfaces,
know as rational surfaces. Rational surfaces are flux surfaces in the magnetic
field geometry that have field lines that close upon themselves with the ratio
of toroidal divided by poloidal turns being a rational number. As each ratio
uniquely defines the shape of the magnetic island that can appear at that sur-
face, they are indicated by the notation m/n. Where m indicates the number
of toroidal turns and n the number of poloidal turns before the magnetic island
closes on itself. After being created a magnetic island will typically either grow
or shrink. The rate at which this happens is known to depend on the current
density inside the magnetic island. This means that driving a current in the one
direction inside a magnetic island will shrink them away and driving a current
in the other direction will cause them to grow.

Due to the idea that magnetic islands can only decrease the energy con-
finement time, most research has been focused on shrinking them. The relation
between a magnetic island and the energy transport around it has however been
found to be more complex, meaning it can either enhance or inhibit thermal
transport [2][3][4]. Magnetic islands influence both the transport near their po-
sition and the energy contents of the entire plasma. Inside the magnetic islands
the two regions around the X-point and O-point behave quite differently related
to thermal transport. The O-point region acts essentially as a region of nested
flux surfaces just like a tokamak with an unperturbed magnetic field. With the
difference that these flux surfaces are a helical tube an have a cross section more
akin to an elongated ellipse (see again in figure 1 and 2). Due to this structure
the magnetic island guides the energy very quickly along the outer flux surface.
As there is generally no heat deposited within a magnetic island this means the



temperature tends to flatten out within the O-point region. The X-point region
does not have a constant structure due to the reconnection of field lines that
takes place there and is therefore a region with fluctuating transport. Outside
the separatrix of the magnetic island the plasma also behaves differently com-
pared to an unperturbed plasma. On the basis of the behavior explained later
in section 4 this leads to the second research question of this thesis.

2.3 Summary

This section explained the heat transport in a tokamak. The energy balance
differential equation is used to derive three equations for the heat diffusion
coefficient assuming a cylindric geometry and purely radial heat transport for
a single harmonic component of a temperature perturbation. The ratio of the
modified Bessel functions in equation 8 is truncated in its shortest form but
can be expanded to contain more components of the infinite fraction for a more
accurate approximation of y. The influence of a magnetic island on the heat
transport in its proximity and the transport inside the magnetic island are also
discussed. In the upcoming experiments it will be assumed that the equations
for x derived for a cylindric geometry are still valid near the magnetic island
as the magnetic field still consists of nested flux surfaces in this region. With
the conditions and an equation for the heat diffusion coefficient known the next
section will describe the method for detecting temperature modulations locally
in two dimensions in a tokamak plasma.



3 Detection of 2D temperature profiles in a toka-
mak plasma

To be able to detect the amplitude, phase of a temperature modulation and
their derivatives in a tokamak one can look at the rotating movement of the
plasma particles in the magnetic field. During this movement the plasma ions
and electrons emit electromagnetic waves with the same frequency as their ro-
tation. The intensity of these waves is directly related to the temperature of
the plasma particles. Subsections 3.1 and 3.2 will explain these properties and
section 3.3 will argue for the detection of electron cyclotron radiation over ion
cyclotron radiation and explain the method for making 2D images of electron
temperature. Subsection 3.4 explains the KSTAR reactor where the experiments
will be done and subsection 3.5 will explicate the KSTAR cyclotron radiation
detection system.

3.1 Cyclotron radiation

To simplify the calculation showing the origin and properties of cyclotron radia-
tion the assumption will be made that no electric fields are present and a plasma
particle is only influenced by a magnetic field as in the reactor the electric field
is only present to accelerate the particles in a direction and plays only a small
role in the case of drifts. The cyclotron resonance equation is shown for the case
of an electron. An explanation for the choice of electron radiation will be given
in subsection 3.3. The difference between electrons and ions in these equations
is only in the different mass and opposite charge. When the magnetic field is
the only field interacting with an electron the equation of motion is given by:

%(Vme’ov) = —e(v x By). (13)
With v being the relativistic factor, m. o the electron rest mass, v the velocity
vector and By the magnetic field vector. If a direction for the magnetic field is
chosen along the Cartesian z-axis, the equations for the position and the velocity
can be derived from (13). This derivation is skipped here as it is quite extensive
and the only important result for this experiment is the cyclotron resonance
frequencies. A full derivation and the source for this work can be found in [10].
The equation for the cyclotron radiation resonances becomes:

mQ(l _ ﬂ2)1/2 "
Wr(m) = 1— BH cos(6) : (14)
Where Q = eB/m. is called the cyclotron frequency and 5 is the ratio of the
velocity of the electron v over the speed of light ¢. The factor m is a real integer
indicating the discretization of frequency harmonics. From this equation a cou-
ple of things can be deduced. Firstly, the cyclotron frequency is only dependent
on the magnetic field and the mass of the particle. Secondly, two broadening
mechanisms are included in the resonance frequencies equation. The relativistic
broadening v~1 = (1 — 62)1/ 2 caused by mass increase when particles move
near the speed of light. And the Doppler broadening 1 — 3| cos(#) caused by
the emission of waves during movement relative to an observer dependent on



the observation angle between the line of sight and the electron velocity vec-
tor. In the case of electron velocities much smaller than the speed of light and
perpendicular observation these factors however reduce to 1. The thermal elec-
trons in a tokamak move at speeds that are mere percents of the speed of light
and as such the factor 82 can be neglected. Concerning the Doppler broaden-
ing the experiment is done under perpendicular observation Which means the
second broadening term is also insignificant. This means that the mass and
the magnetic field are the main factors that determine the cyclotron radiation
frequency for the experiments. The frequency of radiation is now known but
just as important is the propagation of this radiation through the plasma.

3.2 Black body radiation and wave propagation

The next equations describe the radiation propagation through the plasma for
electron cyclotron waves. The transport over a 1D ray of light can be summa-
rized with the equation from [10]:

dl

— =jw) -1 . 15
== () - Ta(w) (15)
With I the intensity of radiation, a(r) the absorption coefficient, s the distance
of propagation and j(v) the emissivity of the 1D volume with v indicating the

radiation frequency in Hz. This equation has the solution:

S2
I(sy) = I(sy)emm2) 4 / j(w)elm ™) ds. (16)

S1

through a length of medium from s; to so. With

r= /Sa(u)ds. (17)

The second term on the right hand can be rewritten assuming that j/« is
uniform.

T2

I(s9) = I(s1)em™™) +/ (j/a)eT"™)dr, (18)
T1

If the medium in which the radiation propagates has 7o —7m >> 1, it is called op-
tically thick. This means I(s2) = j/a. The emitted radiation of this frequency
gets absorbed completely before it gets re emitted again. As « is dependent on
frequency this condition may not hold for all frequencies. For a tokamak plasma
an electron cyclotron frequency satisfies the condition. This means the medium
is a black body. All black bodies radiate at an intensity

V2 hv

I(v) = 2 h/ksT _ 1’ (19)

which is also called Planck’s law. For low frequencies compared to the thermal
energy hv < kpT this can be approximated as

V2]€BT

> .

I(v) =

As this last condition is easily satisfied in a fusion plasma the intensities mea-
sured at electron cyclotron frequencies are directly proportional to the electron

. (20)
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temperatures at the location of emission in the plasma. Now it is known that
electrons radiate with a intensity determined by their temperature at the elec-
tron cyclotron frequency. The next subsection will explain how a 2D image can
be created by using the properties of cyclotron radiation

3.3 Electron temperature profile measurements

The dependency of the electron cyclotron radiation frequency on the magnetic
field and its intensity on temperature allows for the detection of electron temper-
ature profiles in a tokamak reactor. This is because the toroidal magnetic field
in a tokamak is not constant in the entire plasma volume but has a gradient pro-
portional to 1/R where R indicates the major radius. This means every radial
position has its own absolute magnetic field strength and thus its own cyclotron
frequency. By installing antennas that detect multiple frequencies and using the
known toroidal magnetic field one can get a radial profile measurement of the
electron temperature. To also measure the temperature in the vertical direction
one can stack sets of these antennas detecting different frequencies with each
set receiving light from a narrow sight line in the plasma. This kind of antenna
array is known as an Electron Cyclotron Emission Imaging (ECEI) system. An
ECEI system therefore has the ability to make non invasive 2D cross section
images of the electron temperature in a tokamak plasma. As the experiments
in this report are done at KSTAR with its ECEI system the next subsections
will explicate the reactor and its systems.

3.4 KSTAR reactor

The KSTAR reactor is a tokamak with a major radius of 1.8m and a minor
radius of 0.5m. With a triangularity of 0.8 and an elongation of 2 the KSTAR
magnetic flux surfaces have a non circular cross section as shown in a simulation
of the equilibrium magnetic field in figure (3). The KSTAR tokamak can drive a
maximum plasma current of 2 MA and achieve a maximum on axis toroidal mag-
netic field of 3.5 T. The coils that induce the toroidal magnetic field of KSTAR
are superconducting which allows for longer operating times than reactors with-
out superconducting coils and for stronger magnetic fields. The KSTAR reactor
also has two ECRH gyrotrons that can deliver the modulated heating necessary
for this experiment where one can heat at a electromagnetic wave frequency
of 105 GHz and the other at 170 GHz. To detect cyclotron radiation emitted
by the tokamak plasma the KSTAR reactor has an ECEI diagnostic which is
further explained in the following subsection.

3.5 KSTAR ECEI system

The KSTAR ECEI system consists of 3 systems. Two systems are installed at
the H-port and can observe two different radial ranges of the cross section at
that location. The third system is located at the G-port toroidally separated
from the two other systems by 22°. Figure (4) shows a depiction of the setup
from the works of G.S. Yun [11] [12]. The setup consists of a set of lenses to
focus the radiation, a beam splitter at the H-port and a heterodyne detection
system. The heterodyne detection system makes use of local oscillators to mix
the signal with a chosen frequency such that the difference between the local

11
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Figure 3: Simulation of the cross section of the KSTAR tokamak showing the
equilibrium magnetic field flux surfaces in black. The blue line indicates the
edge of the vacuum vessel and the red line indicates the last closed flux surface.
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Figure 4: A depiction of the KSTAR ECEI systems named HFS and LFS. The
observation surfaces HF'S and LFS are located at the same toroidal angle. They
simultaneously observe two radial locations by making use of a beam splitter and
two local oscillators which can be set to different frequencies in combination with
two antenna arrays. The second ECEI system named the G-port system has a
similar setup without the beam splitter but with some differences to increase
the signal to noise ratio. Details of specific components and the original image
can be found in the works of G.S. Yun [11] [12].

oscillator frequency and the signal frequency can be detected by an detector
array. This down conversion of the frequency is necessary as there exist no
efficient detection systems for frequencies in the range of 100 GHz and above. All
three systems have an antenna array of 24 vertically spaced sets of antennas that
detect 8 frequencies going from 2.6 GHz to 8.9 GHz. The vertical spacing of the
antennas in combination with the zoom of the lenses can image from 30 cm up to
90 cm vertically. The different antennas in combination with the local oscillator
can detect frequencies in the range of 75-130 GHz. As the cyclotron frequencies
emitted by the plasma are dependent on the magnetic field (see equation 14),
the choice of magnetic field influences the measurement location together with
the local oscillator frequency. To manually adjust the measurement location
the local oscillator frequency can be varied. These parameters lead to a typical
observation window in a 2 T magnetic field of 46 cm vertically and 12 cm radially
with a vertical resolution of 2 cm and a radial resolution of 1.5 cm. Every one of
the three systems also has a time resolution of 2 ps or alternatively a sampling
rate of 0.5 MHz.

The detection of the electron cyclotron radiation by the ECEI system can be
done for O-mode radiation and X-mode radiation polarization. Where O-mode
represents a wave polarized with the electric field parallel to the magnetic field
of the plasma and X-mode represents a wave polarized with the electric field
partially transverse to the magnetic field of the plasma and partially longitudi-
nal. The best polarization for detection depends on the plasma parameters as
the O-mode has a cutoff (propagation frequency limit) at the plasma frequency
and the X-mode has a cutoff at the upper hybrid frequency. This is depicted in
figure (5). When the magnetic field is high enough (B > 2.5 T) the fundamental
O-mode can be used for measurements. For a low magnetic field (~ 2 T) or
a high density plasma the fundamental cyclotron frequency is not accessible in

13
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Figure 5: Example of cyclotron frequencies and cutoffs in a 2.5T plasma at
KSTAR. The black range indicated on the right of the figure shows the ECEI
system frequency range. The colored areas under the first and second harmonic
(fee and 2f..) show the radii that fall within this frequency range. The red and
black lines shot the cutoffs for the X- and O-modes respectively. The image
originates from the work of G.S. Yun [12].

either O-mode or X-mode. In this case the second harmonic in X-mode is there-
fore used for measurements. Figure 5 shows the values of the first and second
harmonic as well as the cutoffs for O- and X-mode in a 2.5 T KSTAR plasma
(made by G.S. Yun [12]).

3.6 Summary

This section showed the properties of electron cyclotron radiation and how it can
be used to detect electron temperature profiles in 2D. The key property is the
proportionality of the electron cyclotron frequency to the magnetic field strength
such that each radial position in a tokamak radiates at its own frequency. In
combination with the black body radiation linking the intensity of cyclotron
radiation to the local electron temperature these frequencies allow the detection
of a electron temperature profile. By using an array of antennas one can then
create an ECEI system that can take 2D electron temperature images of a
tokamak cross section. The KSTAR reactor and its ECEI system are described
as well as the different polarizations and harmonics accessible to detect electron
cyclotron radiation. The next section will show a short summary of the results
from M.J. Choi [2] using the KSTAR system which is the base for the second
research question of this report.
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4 Turbulence near a magnetic island

As described in the introduction and in section 2, magnetic islands are known
to act as a shortcut for heat transport by guiding energy along their outer
flux surface, reducing the energy confinement time. Magnetic islands can also
become unstable and disrupt the plasma completely when they grow beyond
a certain width. But recently it has appeared that the influence of magnetic
islands on the plasma is not limited to these effects. It has been observed that
the presence of a magnetic island can result in two scenarios for the electron
temperature as sketched in figure (6). In figure (6a) the magnetic island acts
as a fast transport channel resulting in an unchanged temperature gradient on
the inboard side of the magnetic island and a lower core temperature. Figure
(6b) shows the more recently found alternative scenario. Here the inboard side
of the magnetic island acts as a transport barrier and the temperature gradient
increases. Allowing for a possible higher core temperature and better energy
confinement.

In KSTAR the scenario where a magnetic island creates a transport barrier
has been observed in shot #13371. The radial electron temperature profile for
shot #13371 is displayed in figure (7). To find an explanation for the increased
electron temperature gradient a paper by M.J. Choi [2] has analyzed the elec-
tron temperature turbulence. M.J. Choi finds that near magnetic islands exist
areas with varying degrees of temperature turbulence and poloidal flow. A re-
sult from his paper is shown in figure (8). The figure shows calculations for
the electron temperature turbulence in (8a) and (8b) and for the poloidal flow
in (8c) calculated by using vertically adjacent channels. M.J. Choi observed
that the area near the X-point has more turbulent fluctuations than near the
O-point. Besides this the poloidal flow and radial poloidal flow gradient are
higher near the O-point. It is suggested by M.J. Choi that the shear created
by the poloidal flow gradient reduces the size of the turbulent structures near
the O-point resulting in the observed turbulence differences between O- and
X-point. The turbulence reduction by shear could then also cause lower flux
surface averaged transport as part of the turbulence on the inboard side of the
magnetic island is suppressed. This could then be causing the observed increase
in temperature gradient on the inboard side of the magnetic island. The follow-
ing sections aim at answering the question: Can we directly measure a difference
in thermal transport between the inboard side of the magnetic island compared
to the unperturbed section of the tokamak plasma?
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Figure 6: Sketch of the two scenarios for the electron temperature profile as a
function of minor radius with the presence of a magnetic island. If the mag-
netic island acts as a fast transport channel the gradient of the temperature is
unchanged as depicted in figure (a). If the magnetic island creates a transport
barrier on the inboard side the temperature gradient will increase which results
in figure (b).
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Figure 7: Image from the work of M.J. Choi [2] depicting the 1D temperature
profile of a KSTAR shot containing a magnetic island in red and before the
island appears in black. The black arrow shows the temperature flattening at
the location of the magnetic island. An increased temperature gradient can be
seen on the inboard side of the magnetic island.
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Figure 8: A plot of the results of turbulence and poloidal flow measurements
near a magnetic island. The experiment was done by M.J. Choi [2] on KSTAR
shot #15638 for (a) and (b) and #13371 for (c). ry and 74, indicate the inner
and outer separatrix of the magnetic island. It was found that there exists an
area with high turbulence near the X-point compared to the O-point of the
magnetic island shown in (a) and (b). Sub figure (c) shows high poloidal flow
near the O-point and lower poloidal flow near the X-point. The gaps in these
graphs are data points omitted due to low accuracy.
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5 Signal analysis

This section will explain the general data processing done to arrive at the phys-
ical quantities phase and amplitude of the heat wave that are used in the equa-
tions of section 2 for the approximation of the heat diffusion coefficient.

5.1 The Fourier transform

One of the most used and well known analysis methods for periodic signals is
the Fourier transform. This transform maps any function onto an orthogonal
basis consisting of the cosine and sine functions by means of the transformation
function

F(w) = /_Oo f(t)e ™“tdt. (21)

A Fourier transform creates a complex function F'(w) from the function f(t)
that is dependent on frequency instead of time. The purpose of transforming
a signal to the frequency domain is generally the analysis of specific frequency
components in the signal and filtering of noise. One of the limitations of the
Fourier transform however, is that all time information is lost, i.e. the Fourier
transform shows the frequency components but not when they are present in
the time domain. The Fourier transform is therefore ideal for periodic signals
with a constant frequency composition and amplitude.

5.2 Error on Fourier components

To calculate the phase and amplitude of a heat wave of a constant frequency
from a time window of ECEI data one can apply the Fourier transform. This
will yield complex Fourier coefficients for all the frequencies present in the sig-
nal. The absolute value of the complex Fourier component belonging to the
heat wave frequency will give the amplitude of the wave and the angle of the
complex Fourier component with the real axis will yield the phase. However,
applying one single Fourier transform over the time window will give no indi-
cation of the error made on the calculation of the amplitude and phase. To
calculate the error caused by white noise components another calculation can
be used. Assuming the noise is Gaussian distributed and constant in amplitude
over time, reasonable assumptions for thermal noise in a stable plasma, there
is a method for estimating the error made on the calculation of the Fourier
components. By splitting the time domain in smaller pieces and applying the
Fourier transform separately on each piece an indication of the fluctuation of
the Fourier components can be found. In [9] it is shown that for a stable plasma
with no time localized temperature perturbations in the measurement window,
the complex Fourier coeflicients are distributed Gaussian in both complex an
real components with one general standard deviation ¢. This means an average
of complex Fourier coeflicients from smaller time windows gives the complex
Fourier coefficient of the larger time window. The error on phase and ampli-
tude can be estimated with the variance of the Fourier coefficients making up
the average. To calculate the average and variance for Fourier coefficients the
following equations can therefore be used [9]:
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Figure 9: This figure shows a representation of the mean and variance calculated
by means of equation 22 and 23. The blue dot represents the time averaged
Fourier coefficient ((©)), while the red circle indicates the standard deviation
calculated from the variance (¢2). The green lines indicate the minimum and
maximum phase angle where all points within the standard deviation lie.
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Where (©) represents the average complex valued Fourier coefficient over
the time window and o2 the variance of that average. Note that the variance
is always a real value indicating the absolute deviation from the average of the
complex values in both real and imaginary direction. Figure (9) displays a repre-
sentation of the complex average and the standard deviation calculated from the
variance in the complex plane. For the calculation of the approximation of the
heat diffusion coefficient from subsection 2.1 however, one needs the amplitude
and phase of the complex Fourier component for a heat wave frequency.
The error on the amplitude and phase of a Fourier coefficient are noted to be
a Rician and Rician phase distribution respectively in the work [9]. These Rician
distributions have the property that they tend towards a Gaussian distribution
in the limit of amplitude over standard deviation: A/o — oco. In [9] it is
stated that for A/ > 5 the use of a Gaussian approximates the statistical error
boundaries of the Rician distributions well. As can be observed from figure (9),
for a Gaussian distribution the error on the amplitude is simply the standard
deviation on the Fourier coefficient. But, the derivation of the error on the
phase from the standard deviation is not as straightforward. It can however be

seen from figure (9) that the error on the phase angle depends both on the mean
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value of the complex Fourier component and the standard deviation. As a lower
amplitude with the same standard deviation will mean the red circle moves
closer to the origin and thus the angle being covered by the circle is bigger. The
brute force way to determine the standard deviation of the phase is to create a
distribution based on the mean Fourier coefficient and the standard deviation
and calculate the phase for all values in the distribution. Here, however, will be
suggested an alternative method based on the geometry of figure (9). The points
of maximum and minimum phase on the red circle representing the standard
deviation of the Fourier coefficient should also be an indication of the standard
deviation of the phase for this coefficient. These points should easily be found
if the system is transferred to a polar coordinate system as such:

r? + A% —2rAcosf = o? (24)
Where A = |(0) (w)| and o2 is the variance. By finding the minimum and
maximum 6 for this circle an approximation can be found for the standard
deviation of the phase as a function of amplitude and variance. This can be
done by calculating the derivative:

00 0 2+ A% — o2

or Or (arccos 2rA ) (25)
Which results in
a0 A% — g% — 72 —0 96
or A1 242(024a2)+(02—12)2 (26)
Arz\/— 17,
Which has the solution for r
r=v A% —o? (27)

Substituting r in equation 24 and solving for 8, results for the standard deviation

on the phase:
/AZ — 02>
— | = 0y.

0 1naz = Arccos ( " (28)

Note that this equation does not give a real valued solution for o2 > A2 which
can be understood as under this condition the standard deviation of the Fourier
coefficient crosses the origin. If the standard deviation crosses the origin any
phase is possible and the idea of phase boundaries is no longer valid. The
solution derived here for o, can be compared with the brute force solution of
creating a sampled Gaussian distribution with random numbers as mentioned
before. The results can be seen in figure (10). Here the relative error of the
approximation o, to the actual 68% boundaries for the phase angle calculated
from a Gaussian distribution of Fourier coefficients is plotted as a function of
the ratio A/o. For the region of non-Gaussian phase distribution the 68%
boundaries are defined as the 68% sample points closest to the highest probable
value. In figure (10) can be seen that the approximation o4 quickly approaches
the actual standard deviation and seems lo level out at 0.1% relative error.
The fluctuation on the values of figure (10) is caused by the random numbers
used to create the phase distribution. Note that the phase distribution can be
accurately approximated from A/c > 5 and thus the approximation is accurate
for the entire domain in which the phase distribution can be approximated by
a Gaussian distribution.
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Figure 10: Depicted in this figure is the relative error of the approximation from
equation 28 to the actual 68% error boundaries of a distribution of the phase of
a Fourier coefficient with a standard deviation o and amplitude A. For a ratio
of A/o > 5 the distribution of the phase can be approximated by a Gaussian as
stated in [9]. It can be seen that the relative error tends towards 0.1%.

5.3 Summary

This section explained the data processing used for analysis of the ECEI data.
The calculation of amplitude and phase from the Fourier coefficients was ex-
plained and how the error of these two quantities behaves. The next section
will apply the Fourier transform to experiments. The method will be shown to
be consistent in 1D with a result acquired in a different work. After which, the
method will be expanded to 2D.
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6 Calculating thermal transport coefficients from
ECEI data in 1D and 2D

This section will present the results of the application of the proposed method
for calculating the heat diffusion coefficient developed in this work. It will also
address the first research question of this thesis. Can a 1D diffusive heat trans-
port model describe a 2D measurement of the thermal transport in a tokamak?
The method will first be demonstrated with a 1D line of sight on the horizontal
axis of the tokamak and compared with a previous experiment. After this com-
parison, the measurement will be expanded to 2D and the cylindrical plasma
assumption and heat diffusion coefficient approximation will be tested.
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Figure 11: The conditions of shot #12864. After plasma startup indicated by
the sharp initial rise in plasma current the modulated ECRH with a frequency
of 25 Hz is turned on from 2 seconds up to 6 seconds as can be seen in the
heating plot. This shot has a constant toroidal magnetic field with an on axis
value of 2.9 T and does not use any kind of magnetic perturbations.

6.1 Thermal transport in 1D

For the calculation of the thermal diffusion coefficient in 1D KSTAR shot
#12864 will be used. This shot consists of a stable plasma with modulated
ECRH heating of 25 HZ. Figure (11) shows the plasma current, average density
and heating power for KSTAR shot #12864. After plasma startup shown by
the steep slope of the plasma current, the plasma current is kept stable. The
modulated ECRH is injected from 2 to 6 seconds at major radius R = 1.72 m.
This is the time window for the heat diffusion measurement. A single sight line
of the ECEI system can be used to calculate the diffusion coefficient in 1D. A
horizontal sight line is chosen at z ~ 0 because this sight line is perpendicular
to the flux surfaces and thus measures the radial temperature profile. An in-
dication of the sight line is depicted by the black solid line in figure (12). The
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Figure 12: A plot of figure 3 of the KSTAR reactor magnetic flux surfaces with
a Thick black line indicating the line of sight for the 1D measurement of the
heat diffusion coefficients in shot #12864.

radius is normalized by dividing through the minor radius.

Figure (13) displays the amplitude and phase of the temperature perturba-
tion caused by the MECRH as a function of normalized minor radius calculated
with use of the Fourier transform over the time window from 3.5 to 4.5 sec-
onds. This time window was chosen as it is the longest constant temperature
window within the activation time of the MECRH and avoids the density fluc-
tuation at 3 seconds that can be seen in figure (11). As calibration data for the
temperature was not available for this shot the amplitude of the temperature
fluctuation induced by the MECRH is depicted as a relative value. Due to the
linear relationship between the ECE radiation intensity and the temperature as
shown in equation 20, the relative temperature perturbation can be calculated
from uncalibrated data after background radiation subtraction as:

s—<s>_T—<T>
<s>  <T>

(29)

Where s represents the uncalibrated data, T' the temperature and the brackets
represent an average over time. This equation will be slightly shortened for

convenience to . The phase of the heat wave is normalized to the phase

of the injected modulation at the main frequency of 25Hz.

The local heat diffusion coefficient can now be calculated by means of the
approximations from equation 11 or 12. For this experiment initially equation
12 will be used, the choice of which will be discussed on acquiring values for y.
To use equation 12, a gradient has to be calculated from the phase and ampli-
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Figure 13: Amplitude and Phase calculated with the continuous wavelet trans-
form over a single sight line as a function of normalized minor radius from
KSTAR shot 12864. Both figures seem to adhere to the behavior expected from
the theory.

tude. This work uses a linear gradient calculation between adjacent channels in
such a way that the gradient of amplitude and phase can be determined locally.
The thermal transport coefficients calculated through this method are shown
in figure (15). The error on the diffusion coefficients is found by using error
propagation throughout the calculation of the diffusion coefficient. This means
that an approximation of the Gaussian distribution of the amplitude and phase
values is created based on the standard deviation of the phase and amplitude
multiplied with a collection of random numbers. The whole distribution for am-
plitude and phase is put through the calculation of the heat diffusion coefficient.
This will then result in a distribution of heat diffusion coefficients. From this
distribution the highest probability value can be taken to be the expectation
value and the error deviation can be defined as the 34% points above and 34%
points below the highest probability. These definitions are necessary due to
the non-Gaussian distribution of x. Of which an example can be seen in figure
(14). This figure shows the distribution function of the heat diffusion coefficient
at p = 0.37. It is observed that a higher relative error on the phase gradient
and amplitude results in a significantly higher upper error on the heat diffusion
coefficient. In the figure it can be seen that the probability distribution has a
long tail towards higher x. This means the accuracy of the amplitude and phase
data is hugely influential on the accuracy of .

Calculating the expectation value and error boundaries for the 68% inter-
val results in figure (15). The results from figure (15) can be compared with
results from a paper by T.Kobyashi done on the same KSTAR shot #12864
[13]. T.Kobayshi assumes constant values for ¢’ and A’/A and this results in
X &~ 1m?/s as an average for the measurement volume. The value of x = 1m?/s
is indicated in figure (15). It can be observed that the local electron heat dif-
fusivity values calculated in this work lie near the average value calculated by
T.Kobayashi.
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Figure 14: Heat diffusion coefficient probability distributions at p = 0.37 and
p = 0.17. Both distributions are a non-Gaussian, but the probability function for
p = 0.37 has a long tail towards higher xy. Meaning that the upper uncertainty
boundary is significantly higher than at p = 0.17. The upper error boundary
shows a strong dependency on the relative error in amplitude as the absolute
error at both locations is comparable (see figure (13)).
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Figure 15: Heat diffusion coefficient x as function of normalized minor radius
calculated over a single sight line. The black line indicates the value of x (x =
1.0m/s?) as calculated by T. Kobayashi [13].
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Figure 16: Figure from the work of M.Berkel [9] indicating the relative error
(€ret = (Xapproz —X)/X) of approximations of the heat diffusion coefficient for the
parameter space of normalized radius p and normalized diffusion coefficienty =
x/w. Where xs1 = X1, Xe = X2 and w is the ECRH modulation frequency
multiplied with 2.

The values for x from figure (15) can now also be used to review the choice
of approximation from the two equations found in section 2 (equation 11 and
12). In the work of M.berkel [9] a multitude of approximations for the heat
diffusion are examined by their relative error to the true value of the heat
diffusion coefficient (ere; = (Xapproz — X)/X). Figure 16 shows the results for
the equations from section 2 in the parameter space of p and ¥ = x/w. Where
Xs1 = X1, Xe = X2 and w is the modulation frequency times 2 7. From this figure
it can be seen that for the parameter space of this experiment (0.1 < p < 0.4
and Y ~ 6 - 1073) equation 11 will give a higher relative error than the other
approximations. It is also clear that from these 2 approximations, equation 12
would have the biggest parameter space with a low error. However, it has to
be considered that this figure displays the error made by the approximation
compared to the true value and does not include error boundaries on the input
values.

6.2 2D thermal transport in steady state plasmas

The 1D calculation of the heat diffusion coefficient has shown agreement with
a previous measurement and has shown that the best approximation equation
in the parameter space of this experiment is equation 12. As subsection 6.1
used only a subset of the data from the ECEI system the other channels can
be used to expand to 2D and examine the assumptions made in the derivations
of subsection 2. In particular the cylindrical approximation and the transport
model equations. To do this both the higher harmonics of the modulation
frequency and different propagation angles will be examined. As in the previous
section this will be done on KSTAR shot #12864. The measurement surface
for the 2D measurement is indicated by a black box in figure (17). Figure
(18) shows the relative amplitude and phase of the 25Hz main component of
the temperature modulation plotted on the equilibrium magnetic flux surfaces.
The phase is normalized to the 25Hz component of the MECRH source. In
figure (18) the source of the heat wave coming from major radius R = 1.72m is
clearly visible by the profiles showing symmetric profiles around the axis z = 0
and a higher amplitude and lower phase on the right side of the figures. This
gives an indication of the expected radial propagation of the heat wave. If
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Figure 17: A plot of figure 3 of the KSTAR reactor equilibrium magnetic flux
surfaces with a black box indicating the measurement surface for the 2D mea-
surement of heat diffusion coefficients in shot #12864.

the approximation of the cylindric plasma holds true the measured phase and
amplitude from figure (18) should be flux functions. To test this figure (18) is
interpolated on multiple lines perpendicular to the flux surfaces.

Figure (19) displays linearly interpolated points created under the angles
f: —58°, —40°, —20°, 0°, 20°, 40° and 58° with the negative horizontal axis.
The cross section of the interpolated lines is at the center of the last closed flux
surface as this flux surface is the least affected by the Shafranov shift. With
positive angles defined in the counter-clockwise direction. If the amplitude and
phase values along these lines as a function of the normalized radius p are
the same for all angles the assumption of 1D thermal transport holds. As the
KSTAR magnetic flux surfaces are not circular but more elliptical the equation
for p can be redefined to transform coordinates from an elliptical space to a
circular space:

V(B = Ro)? + (82(z — 20))*

p= (30)
ar

Where Ry is the radial middle of the plasma, zg is the vertical middle of the
plasma, ag is the minor radius in the radial direction and a, is the minor radius
in the vertical direction determined from the equilibrium magnetic flux surfaces.
Equation (30) does not take into account the triangularity of the KSTAR plasma
as this is expected to have a negligible effect on measurements on the high field
side of the plasma. Plotting the different angles from figure (19) as a function of
p then results in figure (20). The error on the phase and amplitude in figure (20)
are taken as the error on the nearest neighbor to the interpolated grid point.
These two figures show that under any of the angles € the amplitude and phase
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Figure 18: Measured amplitude and phase of the 25Hz main component of the
heat pulse injected by the MECRH system for KSTAR. shot #12864. Below
the pixels indicating the amplitude and phase the equilibrium magnetic flux
surfaces are plotted as dotted lines.
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Figure 20: Amplitude and phase of the 25Hz component of the MECRH induced
heat wave as a function of p defined by equation 30. The values of the amplitude
and phase show similar and overlapping values for the measurements under every
angle. Therefore confirming transport of the heat wave perpendicular to flux
surfaces.

overlap within the error bars and deliver the same values as a function of p.
This means the data supports the assumption that the heat wave propagates
perpendicular to the flux surfaces.

From the data of figure (20) it is now possible to calculate the thermal
diffusion coeflicients for the 2D case. Figure (21) displays x as a function of p
for all the interpolation angles. Here it can be seen again that due to the higher
relative error on data measured at a higher p the upper error boundaries can
reach tenfold the highest probable value. In the domain of 0.17 < p < 0.35 it
seems however that it can be said that the diffusion coefficient is around 1m?/s.
This agreement between the plots for all interpolation angles is to be expected
from the similar values seen for the amplitude and phase in figure (20).

As well as examining the phase and amplitude for different angles it is pos-
sible to examine them at different harmonics of the 25Hz modulation. This
allows the comparison of the data with equation 7 for the temperature Fourier
coefficient. The amplitude and phase of two harmonics with sufficient signal to
noise ratio to satisfy the condition for Gaussian distributed phase an amplitude
errors is calculated together with the 25Hz component under the angle 6 = 0°.
A mean of ¢’ and A’/A is calculated such that under slab geometry an average
x calculated by equation 12 can be substituted in equation 7. Then the complex
valued equation 7 for the temperature Fourier coefficient is fitted through the
data by means of the least squares method to obtain a value for the constant
(4 (iw). The constant Cy is zero as reasoned in chapter 2. Both the data and
fit are plotted for amplitude and phase in figure (22) . It can be observed from
figure (22) that the model does not fit through all of the data points within
the 68% error boundaries both for phase and amplitude. A reduced chi-squared
analysis x?it(here denoted with the subscript fit and in bold to avoid confu-
sion with the diffusion coefficient) is done on the complex Fourier coefficients
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Figure 21: A figure of the heat diffusion coefficient x as calculated from the
25Hz component of the MECRH induced heat wave as a function of p. Where p
is defined by equation 30. The figure is plotted to a logarithmic scale to include
the large error boundaries on y for larger rho.

to show the quality of the fit. For the 25 Hz data points the model fit gives a
XFi = 14.4. This x7,, is significantly higher than one meaning the model does
not describe the data well. However this error could be due to the method of
estimating x. A more significant problem with the model equation 7 can be
seen by looking at the the harmonics in figure (22). The slope of the model can
be seen to be significantly steeper than the data. This hints at an error in the
frequency dependence of the model. An explanation for this mismatch is that
the local heating profile assumed in the equations is not a delta function at the
ECRH deposition location but spread out more along the plasma. This larger
heating profile would account for the slower amplitude decay and for the slower
phase increase.
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Figure 22: Amplitude and phase for multiple harmonics of the heat wave fre-
quency as a function of p. As solid lines are plotted the theoretical amplitude
decay and phase increase for the average x as by equation 7. The theory predicts
different slopes for both the amplitude and the phase compared to the data.

6.3 Summary

This section has displayed a method of calculating local heat diffusion coeffi-
cients from KSTAR ECE data. A comparison is made in a 1D scenario with a
steady state plasma and MECRH between the method developed in this work
and a calculation done in the work of T. Kobayashi [13]. It is observed that both
methods yield similar heat diffusion coefficients within the error. It is also noted
that equation 12 has the smallest error in the estimation of the heat diffusion
coefficient in the parameter space of the experiment. From the 1D case the cal-
culations are expanded into 2D where the assumptions of 1D heat transport and
the transport model are tested. It is found that the 1D transport assumption
holds when a correction is made for the ellipticity of the KSTAR plasma. The
transport model that leads to equation 7 is however found to not fit the data
completely. Indicated by a reduced chi squared of 14.4. It is suggested that the
error is caused by an error in the heating profile. Meaning, the heating profile is
possibly not as localized as expected from the ECRH theory and is also present
in the measurement volume causing slower amplitude decay. The effect of this
is especially noticeable at higher harmonics of the heat wave. Therefore, for
the use of equation 12, only the main frequency component should be used to
estimate the diffusion coefficient.
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7 Modulation experiment in the presence of a
magnetic island

This section will discuss the experiment done to address the second research
question of this thesis. Can lowered electron thermal transport be observed
on the inboard side of a magnetic island lower compared to the unperturbed
section of the tokamak plasma?. KSTAR shot #18686 has been designed to
use an active RMP field to create a n/m = 2/1 stationary magnetic island.
MECRH is then set to inject close to the plasma core such that the resulting
heat wave can propagate past the magnetic island. The three KSTAR ECEI
systems are intended to observe the inboard side, the location of the magnetic
island and the outboard side of the magnetic island on the low field side of the
plasma. This way, the transport in and near the magnetic can be observed.

Figure (23) displays the exact parameters used during KSTAR shot #18686.
In this shot, with an on axis toroidal magnetic field strength of 2 T, a 0.7 MW
50Hz MECRH pulse of frequency 105 GHz is injected at R = 1.91 m at the
second harmonic resonance of the plasma. Additionally, 1.2 MW neutral beam
heating is injected to create a stable temperature profile. The m/n = 2/1 mag-
netic island created by the RMP field appears at R = 2.00 m. The ECEI system
named HFS is set to observe 1.82 < R < 1.97m, the system LFS to observe
2.0 < R < 2.15m and the G-port system is set to observe 2.05 < R < 2.2m.
The data from the ECEI systems shows that the HF'S system is overexposed and
that the LFS system has insufficient signal to noise ratio (A/o < 1) for a large
number of channels. This leaves only the data from the G-port ECEI system
available for analysis. Figure (24) displays the measurement area of the G-port
ECEI system inside the KSTAR flux surface simulation. Note that the G-port
system measures the outboard side of the position of the magnetic island, such
that the main area of interest to answer the research question , namely the
inboard side of the magnetic island, is unavailable. Nonetheless, the transport
behavior in the G-port area will be examined. Figure (25) shows the amplitude
and phase images of a section of data averaged over the window from 5.425 s
to 5.625 s. This time window is is chosen due to the bHz sawtooth oscillation
of the plasma. Because sawtooth crashes cause sudden enhanced transport of
energy and particles, the window within two crashes is used for measurements
of the heat wave amplitude and phase.

In figure (25) an area of low amplitude and high phase can be observed on
the left part of the sub figures. Because transport of heat waves into a magnetic
island is typically slow [5] this could indicate the presence of a magnetic island on
the left side of the images. As the surface resonant with the RMP field is located
around R = 2m for this shot the center of this magnetic island, however, is likely
located outside the observation window. The 2D images of figure (25) can be
interpolated to map onto lines as a function of p just like in section 6. In this
experiment as opposed to the previous section, the measurement has a smaller
vertical range and is further removed from the flux surface center. Therefore the
interpolation angles 6 are limited to: —27°, —20°, —10°, 0°, 10°, 20° and 27°.
Where 0 is defined from the horizontal axis with positive angles in the counter
clockwise direction. These radial interpolation lines of phase and amplitude are
plotted as a function of p in figure (26). Where p is again defined as in equation
30. Figure (26) shows a similar pattern to the that of figure (20) but reversed
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Figure 23: The conditions of shot #18686. After creating a magnetic island
with an RMP field at 3 s the MECRH is turned on at 4.5 s. At 9 s the RMP
field is turned off and the plasma is stopped at 10 s.
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Figure 24: Indication of the measurement surface in the overall magnetic struc-
ture of the KSTAR tokamak. The red line indicates the last closed flux surface
of the KSTAR tokamak and the purple line indicates the deposition location and
propagation direction of the MECRH heat wave. The magnetic island appears
at R =2 m.
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Figure 25: Plots of the amplitude and phase of the MECRH heat wave in
KSTAR shot #18686. The left side of both images show signs of the presence
of the magnetic island as this area has a low amplitude and high phase typical
for the long time necessary for a heat wave to penetrate a magnetic island.
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Figure 26: Amplitude and phase for the 50 Hz component of the heat wave
calculated under multiple angles in shot #18686. The heat wave seems to be
reversed in direction compared to figure (20).

in dependency on p. Measurements of all angles also overlap for amplitude and
phase indicating that both are flux functions in the measurement area and that
2D structures like magnetic islands seem to be absent in the measurement area.
Although injected at R = 1.91m the heat wave in this measurement area seems
to propagate inwards due to an increase in amplitude and decrease in phase for
increasing p. Other than the location R = 1.91 there are however no positions
resonant with the injected ECRH at any harmonic. It is suggested here that
this could visible be due to the relatively high ECRH power, being 37% of the
total heating power. The suspicion of non-localized ECRH heating raised in the
previous section could mean figure (25) displays a heat wave originating from
energy absorbed at the edge of the plasma traveling inwards.

When looking at higher harmonics of the 50 Hz modulation frequency some
other behavior appears. Figure (27) shows the 100 Hz component of the heat
wave. Most notable is the maximum in phase located around p = 0.75. This
maximum is removed far from the position p = 0.55 at which the q=2 surface
is located. It can therefore not be the magnetic island. A possible explanation
from the assumption of non localized heating could be that at this location the
heat wave traveling from the edge of the plasma and the heat wave traveling
from the resonance at p = 0.35 meet creating a local maximum in phase.

7.1 Summary

This section shows a shot from KSTAR aimed at answering the second research
question. The ECEI systems of KSTAR were set to observe 3 different sections
near the position of a magnetic island induced by a RMP field: The inboard
side, the position of the magnetic island and the outboard side. It was found
that the high fraction of ECERH heating over the total heating caused the
inboard ECEI system to be overexposed. The system aimed hat the position
of the magnetic island was troubled by a high number of detectors with low
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Figure 27: Amplitude and phase for the 100 Hz component of the heat wave
calculated under multiple angles in shot #18686. The amplitude decays but the
phase has a maximum near p = 0.75.

signal to noise ratio (A/o < 1) leaving only the outboard system. This means
the inboard side relevant to answering the research question is not available
and the question can therefore not be answered. The outboard system showed
an amplitude and phase profile suggesting a inwards traveling heat wave as
opposed to the outwards traveling heat wave expected to originate from the
ECRH resonance position. It is then suggested that this could be due to a
non localized heating profile where ECRH power is deposited in the edge of the
plasma. It is also found that a phase maximum seems to appear at p = 0.75.
An area removed from the position of the q=2 surface at p = 0.55 where a
magnetic island can appear. It is then suggested that this could be a result of
a outward heat wave from the plasma resonance position meeting an inwards
traveling heat wave from the edge of the plasma.
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8 Conclusion and discussion

A method calculating the electron thermal heat diffusion coefficient has been
introduced in this work with the goal of testing if a 1D purely diffusive heat
transport model can be used to describe the thermal transport of a 2D measure-
ment of a tokamak plasma. This is done with the intention to test if transport
barrier behavior can be measured on the inboard side of a magnetic island. The
method uses an approximation of an equation for the electron thermal diffu-
sion coefficient under the assumptions of cylindrical geometry and not heating
sources present in the measurement volume. It makes use of the propagation
of locally injected temperature perturbations. In section 6 measurements have
been done on a stable plasma of the KSTAR reactor using an electron cyclotron
emission imaging system to analyze perturbations created and locally injected
with a modulated electron cyclotron heating system. In Subsection 6.1 a one
dimensional measurement has been done to compare calculations of the heat
diffusion coefficient with a previous calculation of the heat diffusion coefficient
by T. Kobayashi [13] on the same shot. It is found that both calculations show
values that are in agreement. Using a figure from the work of M. Berkel [9] it
is also concluded that equation 12 is the most accurate of the approximation
equations derived in section 2.

Following this an expansion of the measurement is then done into 2D. The
2D measurements of the temperature perturbations are then interpolated to po-
sitions on lines intersecting at the center of the last closed magnetic flux surface
such that the lines are normal to the flux surfaces. By defining a normalized ra-
dius p with a correction for the ellipticity of the KSTAR magnetic flux surfaces
all the interpolated measurements can plotted as a function of p. It is found
that the amplitude and phase of the propagating heat wave give similar values
for the amplitude and phase under any angle, thus confirming the perpendicular
transport and the cylindric plasma assumption used in the derivation of section
2. The assumption of the absence of heating sources in the measurement vol-
ume is then tested by fitting the equation 7 predicting the amplitude and phase
of a heat wave under the assumptions of the theory onto the data of multiple
harmonic components of the heat wave. It is found that the theoretical equation
does not predict fit the data well. It is proposed that the difference between the
data and theory can be explained if the measurement volume does contain ad-
ditional heating sources unlike the assumption made in the theory. The answer
to the research question: Can a 1D diffusive heat transport model describe a
2D measurement of the thermal transport in a tokamak?. Is then, no. The 1D
model does not include terms describing heating in the measurement volume
that are necessary to arrive at accurate predictions of heat wave propagation in
a tokamak plasma.

Finally, a measurement is done on KSTAR shot #18686 to examine the
thermal transport near a m/n = 2/1 magnetic island. Three ECEI systems are
used to observe the inboard side of the magnetic island, the magnetic island itself
and the outboard side. It is found that under the conditions of shot #18686
the inboard side system is overexposed and the system observing the magnetic
island has a low signal to noise ration for most channels. It is therefore that
the second research question of this thesis can not be answered. An analysis
of the heat transport is done on the outboard system is done which suggests
inwards traveling heat waves from the edge of the plasma. It is suggested that
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this could be due to absorption of ECRH energy in the edge of the plasma. To
answer the research question it is suggested to do another experiment with a
lower fraction of ECRH heating and a more inwards positioning of the ECEI
measurement areas.
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