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Abstract

Electron Cyclotron Resonance Heating (ECRH) is one of the external heating methods em-

ployed in almost all of present day Tokamaks. Its main advantages include localized power depos-

ition, high power absorption efficiency, the ability to suppress MHD instabilities, and the ability to

induce current drive. All of which are desirable for plasma control. Computational tools modelling

the propagation and absorption of the injected EC waves have been developed to better optimize

ECRH performance. However, most of these computational tools are not yet real-time capable.

A real-time capable ECRH model is desirable for real-time Tokamak plasma control which in

turn is desirable for plasma performance optimization. Here, we use neural network regression

to develop a faster surrogate model of the warm plasma routine of a 3D ECRH ray tracing code

called TORAYFOM as part of the effort to make it real-time capable. We show that it is possible

to obtain sufficiently good neural network regression for the O-mode heating and to implement a

faster surrogate model in TORAYFOM based on the aforementioned regression.
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Chapter 1

Introduction and Research

Questions

1.1 Introduction

The world is undergoing a combination of energy and climate crisis [23]. Population growth

and the increase in the standard of living especially in the developing world [37] are contributing

to the continuous rise of global energy demand. On the other hand, mankind’s dependency on

fossil fuels for energy generation [1] has damaged the environment and caused a climate crisis. In

order to successfully overcome the energy and climate crisis, sustainable energy sources have to

be developed. One of these sustainable energy sources is nuclear fusion [18].

Nuclear fusion is the process where two (or more) atoms fuse together to form a heavier nucleus.

This process is accompanied by the release of energy via the conversion of mass. This is the very

process which powers the stars. The development of nuclear fusion for energy generation has been

ongoing since the 1950s. Magnetically confined thermonuclear fusion remains the most promising

concept for energy generation. Examples of devices belonging to this concept are the Tokamak

and the Stellarator. The word ”thermonuclear” refers to the fact that the fuel are heated up to

plasma temperatures (usually tens of keV) where the fusion rates will be maximized. There are

several heating methods commonly employed in the Tokamak or the Stellarator. The main topic

for this project is one of the heating methods: Electron Cyclotron Resonance Heating (ECRH).

More specifically, the focus is on the computational modelling for ECRH waves propagation and

absorption. Note that computational modelling of ECRH is almost always accompanied by Elec-

tron Cyclotron Current Drive (ECCD). For the purpose of this project however, the theoretical

discussion is solely on ECRH. Current drive profiles will still be shown for comparison but they

will not be accompanied by theoretical description.
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CHAPTER 1. INTRODUCTION AND RESEARCH QUESTIONS

ECRH is performed by injecting electromagnetic waves into the plasma. These waves will be

absorbed by the available electron resonances in the plasma and will exclusively heat the electrons.

The heating done by ECRH is localized which also makes ECRH a suitable tool for plasma control

due to the possibility of precise tailoring of the heat and current distributions. To better optimize

ECRH performance in the Tokamak, computational tools have been developed to model the waves

propagation and absorption [16] [36]. One such tool is the TORAYFOM (referred interchangeably

with TORAY throughout this work) which is a 3D ray tracing code for ECRH (and ECCD) in the

Tokamak [34] [7]. For the purpose of real-time control of the tokamak plasma, we require a real-

time capable ECRH code. Unfortunately, TORAYFOM is not yet real-time capable. In particular,

the warm plasma routine (see Chapter 2 for a description of warm plasma) of TORAYFOM is

computationally relatively expensive. In this work, we use neural network regression to develop a

faster surrogate model that emulates the functionality of the original warm plasma routine.

A brief qualitative description of neural network will be given here. A neural network can be

regarded as a single nonlinear function which is able to make an approximate mapping between

an input parameter space and an output parameter space [2]. This dataset of input and output

mapping needs to be provided beforehand. The advantage of using neural networks then is the

ability to predict outputs from known inputs without actually performing the actual calculations

themselves. This often results in a significant decrease in computational time since the function

of a neural network is much faster to compute than the actual calculations. As one example from

the field of Fusion, neural networks have been used to speed up turbulent transport modelling [31]

[13] [5].

1.2 Research Question

ECRH code that is able to perform real-time simulations is desirable for the purpose of real-

time control of the Tokamak plasma. To date, the only known ECRH code to demonstrate

real-time capability is TORBEAM [8] [9]. TORBEAM is actually an ECRH beam tracing code.

A beam tracing code is able to include diffraction effects not accounted for in the ray tracing

code. Diffraction effects can lead to a broadening of the power deposition profile. The real-time

version of TORBEAM however reduces to a ray-tracing code computing a single ray. Furthermore,

TORBEAM also limit itself to using a cold plasma dispersion relation at the moment. For certain

cases near the electron cyclotron resonance, the cold plasma ray tracing could deviate significantly

from the warm plasma ray tracing [35]. Thus, it will be beneficial to also develop a real-time version

of an ECRH code that can account for warm plasma effects such as TORAYFOM. In this project,

we are researching the possibilities of speeding up the warm plasma routines of TORAYFOM

using the help of neural networks. The end goal is to have a real-time capable ECRH ray tracing
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CHAPTER 1. INTRODUCTION AND RESEARCH QUESTIONS

code which has the option of using the warm plasma dispersion relation. Note however that

TORAYFOM itself is currently not optimized for speed. Additional work other than the speed up

of the warm plasma routine also needs to be done in order to achieve real-time capability. This is

however outside the scope of this project.

Neural networks have been successfully used in the field of Fusion for computationally heavy

endeavor such as turbulent transport modelling. Here, they will be used on a ECRH ray tracing

code called TORAYFOM that models the waves propagation and absorption in the fusion plasma.

This ECRH modelling is computationally cheaper than turbulent transport modelling. Never-

theless, it is still necessary to speed up the process for the ultimate end goal of having real-time

simulation. Thus, the research question for this project is the following:

”Is it computationally feasible - with reasonable accuracy 1 - to obtain a neural network

approximation (mapping 4D 2 input parameters space onto 2D 3 output parameters space) of

the warm plasma ray tracing routine of TORAYFOM?

In order to answer the research question, the following steps were taken:

1. Studied the TORAY subroutine which is responsible for the warm plasma dispersion relation

calculation and make a code that calls this subroutine for the purpose of generating the

required dataset. Also, determine whether the subroutine needs to be modified or simplified.

2. Checked the validity of the outputs produced by TORAY’s warm plasma dispersion calcu-

lation.

3. Determined the final size of the dataset considering the requirements and limitations (or

problems).

4. Generated the database required for the training of the neural network.

5. Trained a neural network on the database.

6. Checked the output from the neural network against the dataset.

7. Compared ray tracing results made from the neural network outputs against the original

results from TORAY’s subroutines.

The project was carried out at the Dutch Institute For Fundamental Energy Research (DIF-

FER). The supervisors for this project are Egbert Westerhof and Jonathan Citrin. TORAYFOM

1Determined by the quality of the ray tracing
2Normalized magnetic field (Y = ωce/ω), Normalized electron density (X = (ωpe/ω)2), Electron temperature

(Te), Parallel refractive index (N‖)
3Real and imaginary parts of the perpendicular refractive index (N⊥)
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CHAPTER 1. INTRODUCTION AND RESEARCH QUESTIONS

is written in Fortran and is provided by Egbert Westerhof via the European Integrated Tokamak

Modelling (ITM) framework. The work on TORAYFOM was done through the Eurofusion Gate-

way. The work on the neural network was done using the open-source TensorFlow [10] library in

Python.
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Chapter 2

Waves in Plasmas

As Electron Cyclotron Resonance Heating (ECRH) is performed by injecting electromagnetic

waves into the fusion plasma, knowledge on waves propagation and absorption in plasma is required

in order to utilize ECRH effectively. This chapter briefly reviews basic and relevant concept of

waves propagation and absorption in plasma. Reference texts include Stix [28], Swanson [29],

Freidberg [18], and Westerhof [33].

2.1 Dielectric Tensor

The dielectric tensor of a plasma is able to summarize the plasma behavior and response

towards the propagating electromagnetic waves. Plasma behavior is in general anisotropic thus

necessitating the use of a tensor. The starting point for the definition of the dielectric tensor of a

plasma is Maxwell’s equations (temperature and collision effects are neglected):

∇×E = −∂B
∂t

(2.1a)

∇×B = µ0J + ε0µ0
∂E

∂t
(2.1b)

The variables E, B, and J denotes the electric field, magnetic field, and current density respectively

as per usual. The constants µ0 and ε0 are the vacuum permeability and vacuum permitivitty. We

can combine both equations (2.1a) and (2.1b) as follows:

∇× (∇×E) = − ∂

∂t

(
µ0J + ε0µ0

∂E

∂t

)
(2.2)

Ohm’s law relates J and E as:

J =
↔
σ ·E (2.3)

5



CHAPTER 2. WAVES IN PLASMAS

where
↔
σ is the conductivity tensor which can only be determined after we have assumed a certain

plasma model. Combining equations (2.2) and (2.3) and assuming harmonic perturbation for the(
∼ ei(kx−ωt)

)
to the electric field, we obtain:

k× (k×E) + iω
(
µ0
↔
σ ·E− iωε0µ0E

)
= 0 (2.4)

where k and ω are the wave vector and the radial frequency respectively. We take the dielectric

tensor to be:

↔
ε = 1 +

i

ωε0

↔
σ (2.5)

leading equation (2.4) to become:

k× (k×E) +
ω2

c2
↔
ε ·E = 0 (2.6)

where c is the speed of light in vacuum and c2 = 1/ε0µ0. Equation (2.5) gives us the dielectric

tensor provided we know the conductivity tensor of the plasma model we are using.

2.2 Dispersion Relation (General Formulation)

The dispersion relation of a certain medium is the relationship between ω and k in that

medium. One can easily obtain the phase velocity and the group velocity of the propagating

electromagnetic waves from the dispersion relation. In plasma, the dispersion relation can be

obtained from equation (2.6). More specifically in order to have a non-trivial solutions (i.e. non-

vanishing electric field), the determinant of equation (2.6) must be zero:

det

∣∣∣∣kk− k21 +
ω2

c2
↔
ε

∣∣∣∣ = 0 (2.7)

The determination of the dispersion relation can only proceed when the dielectric tensor
↔
ε is

known. In turn, we can only determine the dielectric tensor if we have already assume a certain

plasma model. Two plasma models commonly used are the cold plasma model and the warm

plasma model. As their names suggested, the cold plasma model neglects all temperature effects

in contrast to the warm plasma model. Analysis of the cold plasma model is significantly simpler

than the more realistic warm plasma model. Nevertheless, it offers good physical insight and can

be seen as the lowest order approximation of the warm plasma model. Notable deficiency of the

cold plasma is its inability to account for wave absorption. We will begin with a description of

the cold plasma model followed by that of the warm plasma model.

2.3 Cold Plasma

We restrict the current discussion to a cold two-fluid magnetized plasma. Two-fluid simply

means we only take into account a single ion species and the electrons. The starting point is the

6



CHAPTER 2. WAVES IN PLASMAS

momentum equations:

me

(
∂ve

∂t
+ ve · ∇ve

)
= −e (E + ve ×B) (2.8a)

mi

(
∂vi

∂t
+ vi · ∇vi

)
= e (E + vi ×B) (2.8b)

where m, v, e, and B are the species’ mass, species’ velocity, electron charge, and the external

magnetic field respectively. The subscript i and e denotes the ions and the electrons respectively.

The next step is to linearize the equations by considering small perturbations around equilibrium

values. Additionally, we take the static or equilibrium values of the velocity and electric field to

be zero. This means:

n = n0 + n1 (2.9a)

v = v1 (2.9b)

E = E1 (2.9c)

B = B0 + B1 (2.9d)

where the subscript 0 and 1 denotes the equilibrium and perturbation values respectively. We have

also dropped the species subscript temporarily for convenience. We also take both the ion density

and electron density to be equal to n0. After dropping all terms higher than the first order, we

obtain the following:

m
∂v1

∂t
= q (E1 + v1 ×B0) (2.10a)

J1 = en0 (vi1 − ve1) (2.10b)

where equation 2.10b follows from the usual definition of current density. The charge q is either

−e for electrons or +e for ions. We take a coordinate system where the external magnetic field

B0 is along the direction of the z-axis while the perpendicular wave vector is along the x-axis.

After assuming a harmonic perturbation to equation (2.10a), we obtain the relationship between

the velocity and the electric field as follows:


−iω −ωc 0

ωc −iω 0

0 0 −iω

v1 =
±e
m

E1 (2.11)

where
(
ωc = ±eB0

m

)
is the cyclotron frequency. Combining equation (2.11) with equation (2.10b)

and Ohm’s law (2.3), we can solve for the conductivity tensor giving us:

7



CHAPTER 2. WAVES IN PLASMAS

↔
σ = ε0


σxx σxy 0

σyx σyy 0

0 0 σzz

 (2.12)

with

σxx = σyy = i
∑
s

ωω2
ps

ω2 − ω2
cs

(2.13a)

σxy = −σyx = −
∑
s

ωcsω
2
ps

ω2 − ω2
cs

(2.13b)

σzz = i
ω2
ps

ω
(2.13c)

where ωps =
√

nsq2s
ε0ms

is the plasma frequency of the species. Here, the end result for the conductivity

tensor is given for a multi-fluid plasma in general. The summation is over all plasma species s.

For the case of a two-fluid plasma, the summation is simply over the single ion species and the

electron. The dielectric tensor can be obtained through equation (2.5) and is usually casted in the

form:

↔
ε =


S −iD 0

iD S 0

0 0 P

 (2.14)

with

S =
1

2
(R+ L) = 1−

∑
s

ω2
ps

ω2 − ω2
cs

(2.15a)

D =
1

2
(R− L) =

∑
s

ωcs
ω

ω2
ps

ω2 − ω2
cs

(2.15b)

R = 1−
∑
s

ω2
ps

ω (ω + ωcs)
(2.15c)

L = 1−
∑
s

ω2
ps

ω (ω − ωcs)
(2.15d)

P = 1−
∑
s

ω2
ps

ω2
(2.15e)

Here, R and L represent the plasma response to a right-handed and left-handed polarized electro-

magnetic waves respectively (i.e. when the electric field component of the wave is perpendicular

to the external magnetic field). Notice that since ωce is negative and ωci is positive, R becomes

8



CHAPTER 2. WAVES IN PLASMAS

singular near ωce whereas L becomes singular near ωci. In other words, the wave polarization

needs to match with the particle polarization in order for wave absorption to occur. P represents

the plasma response - which is the same as an unmagnetized plasma - towards electromagnetic

waves whose electric field component is parallel to the external magnetic field.

We can then obtain the dispersion relation by substituting the dielectric tensor into equation

(2.7). We first obtain a dispersion tensor:

↔

Λ =


S −N2 cos2 θ −iD N2 sin2 θ cos2 θ

iD S −N2 0

N2 sin2 θ cos2 θ 0 P −N2 sin2 θ

 (2.16)

where the refractive index N is related to the wave number/vector as N = ck
ω and θ is the angle

between the wave vector and the external magnetic field. The determinant of this dispersion tensor

must be set to zero in order to obtain the dispersion relation. The resulting dispersion relation

can be casted in many forms. Here, we cast the dispersion relation in the form of a biquadratic

equation:

AN4 +BN2 + C = 0 (2.17)

where the coefficients are as follows:

A = S sin2 θ + P cos2 θ (2.18a)

B = RL sin2 θ + PS(1 + cos2 θ) (2.18b)

C = PRL (2.18c)

From this point onwards, we take the high frequency limit of the dispersion relation. This means

that we neglect all ion contributions and only consider the electron contributions. We can then

obtain a solution known as the Appleton-Hartree dispersion relation:

N2 = 1− X(1−X)

1−X − 1
2Y

2 sin2 θ ±
√(

1
2Y

2 sin2 θ
)2

+ (1−X)2Y 2 cos2 θ
(2.19)

where X =
(ωpe

ω

)2
and Y = ωce

ω .

Often, the parallel component - with respect to the equilibrium magnetic field - of the refractive

index is taken to be a conserved quantity. In other words, only the perpendicular component of the

refractive index contributes to the inhomogeneity of the plasma. The reason is that in a toroidal

symmetry the quantity of major radius times the toroidal component of the refractive index RNφ

is conserved. Since the dominant magnetic field in a tokamak is the toroidal field, this also means

that N‖ ≈ Nφ is also approximately conserved. This allows us to recast the biquadratic equations

in terms of the perpendicular component only:

A′N4
⊥ +B′N2

⊥ + C ′ = 0 (2.20)

9



CHAPTER 2. WAVES IN PLASMAS

where the coefficients are now as follows:

A′ = S (2.21a)

B′ = (S + P )(S −N2
‖ )−D2 (2.21b)

C ′ = P ((S −N2
‖ )2 −D2) (2.21c)

This means that we can obtain the solution N2
⊥ by specifying four input parameters: magnetic

field (B), parallel refractive index (N‖), electron density (ne), and the injected waves’ frequency (f

or ω). More succinctly, N2
⊥(B,N‖, ne, ω) for the cold plasma case. Using normalized quantities:

N2
⊥(X,Y,N‖). As X and Y are spatially varying, we could also state that N2

⊥(r,N‖). N2
⊥ is

generally considered to be a time independent quantity as the waves propagation is assumed to

be fast.

We now turn the discussion towards wave cutoffs and resonances. Cutoffs occur when N2 = 0

while resonances occur when N2 = ∞. At the cutoff, the waves stop propagating through the

plasma and are reflected instead. N2 changes sign from positive to negative at the cutoff resulting

in a purely imaginary value for the refractive index (i.e. the waves become evanescent). As for

resonances, in addition to the wave-particle or cyclotron resonances (ω = ωce) there are hybrid

resonances. We need to keep in mind that term ”resonances” does not necessarily imply that

energy absorption occurs. Even for the cyclotron resonances, it is necessary for the wave field to

have the same polarization as the particle gyro motion in order for wave absorption to occur. In

fact in the framework of the cold plasma analysis, we cannot account for any wave absorption at all.

The cutoff and resonances will be illustrated more clearly when we consider the dispersion diagram

for the waves. From now on, we will restrict the discussion to a perpendicular propagating wave

(θ = π
2 ) and oblique propagating wave as they are the more relevant one with regard to ECRH

in a fusion plasma. An oblique propagating wave refers to a wave with finite parallel refractive

index (N‖). For these cases, there are two modes: the O-mode and the X-mode. We consider

perpendicular propagation to illustrate these modes. In this case, the O-mode corresponds to

the case where the electric field of the wave is parallel to the external magnetic field whereas the

X-mode corresponds to the case where the electric field is perpendicular to the external magnetic

field. For oblique propagation, these polarizations no longer hold.

The O-mode is a simple one. It only has a cutoff at the plasma frequency ωpe. Depending

on the electron density and magnetic field, this cutoff could be lower or higher than the electron

cyclotron frequency. For ECRH to work, it is imperative that the cyclotron frequency is above

the cutoff. The X-mode is somewhat more complex than the O-mode. It has two cutoffs: the

right-handed (+) and left-handed (-) cutoffs. They are given as follows:

ω± = ±1

2
|ωce|+

√(
1

2
ωce

)2

+ ω2
pe/(1−N2

‖ ) (2.22)

10
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There are also two hybrid resonances: the upper hybrid and the lower hybrid. For the high

frequency limit, only the upper hybrid is of interest. The upper hybrid is obtained by setting

S = 0. The result is:

ωuh =
√
ω2
ce + ω2

pe (2.23)

There is an evanescent region between the right-handed cutoff and the upper hybrid. This evanes-

cent region will separate the X-mode into the Fast X-mode (FX) branches and the Slow X-mode

(SX) branches. No X-mode wave can propagate in the evanescent region. Additionally, the O-

mode and X-mode do not propagate below the plasma frequency cutoff and the left-handed cutoff

respectively. In summary, the dispersion diagram for a perpendicular or oblique propagating wave

in a cold magnetized plasma and in the high frequency limit is illustrated by Figure 2.1.

11
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Figure 2.1: A typical dispersion diagram for a perpendicular or oblique propagating wave in a cold

magnetized plasma. Only modes relevant to the high frequency limit are shown. The O-mode is

represented by the blue curve while the X-mode is represented by the orange curves. The X-mode

consists of two branches: Fast (FX) and Slow (SX). Between the right-handed cutoff and the

upper hybrid resonance, there exist a evanescent region for the X-mode where wave propagation

is prohibited. In addition, the O-mode and X-mode do not propagate below the plasma frequency

cutoff and left-handed cutoff respectively. Note that the electron cyclotron frequency is chosen

such that it is above the plasma frequency. Also note that ω±, ωuh, and ωpe are all dependent

on the density and as such their positions relative to the resonances (nωce) can be different than

what is shown here.
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2.4 Warm Plasma

The cold plasma analysis described in the previous section is unable to account for waves

absorption. Kinetic theory is needed in order to properly describe waves absorption. We introduce

a general particle distribution function fs(r,p) that exists in a six dimensional phase space where

r and p denote the position and momentum vector respectively. In the absence of collisions, the

particle phase space density is conserved when we follow a trajectory in phase space. Hence, we

can write:

dfs(r,v, t)

dt
≡ ∂fs

∂t
+ v · ∇fs +

qs
ms

(E + v×B) · ∇vfs = 0 (2.24)

which can be recognized as a collisionless Boltzmann equation. This equation is also frequently

referred to as the Vlasov equation. Combining the Vlasov equation with Maxwell equations creates

a set of equations called the Vlasov-Maxwell equations. The set of Vlasov-Maxwell equations

forms the foundation for the analysis of a warm plasma. The full analysis and derivation for the

description of a warm magnetized plasma are lengthy and complicated. They are beyond the

scope of this master thesis. Interested readers are referred to more detailed texts for a full analysis

and derivation [28] [29]. Here, we will merely present the resulting dielectric tensor for a warm

magnetized plasma. We will also briefly describe some differences between a cold plasma and a

warm plasma.

The dielectric tensor for a warm magnetized plasma (in the high frequency limit) is given by

[11]:

εij = δij −
(ωpe
ω

)2 +∞∑
n=−∞

∫
d3p̄

S
(n)
ij

nωce

ω +N‖p̄‖ − γ
(2.25)

where p̄ ≡ p/mec, γ =
√

1 + p̄2 is the relativistic factor, and the integer number n denotes the

electron cyclotron harmonics. Note that the summation is over all cyclotron harmonics but in

practical implementation there will be a limit on the order of harmonics included. The tensor S
(n)
ij

is a Hermitian matrix and is given by:

S
(n)
ij =



p̄⊥U
(
nJn
b

)2 −ip̄⊥ nJnJ
′
n

b p̄‖U
nJ2

n

b

ip̄⊥
nJnJ

′
n

b p̄⊥U
(
J
′

n

)2

ip̄‖UJnJ
′

n

p̄‖U
nJ2

n

b −ip̄‖UJnJ
′

n p̄‖WJ2
n


(2.26)

where Jn is a shorthand for Jn(b) which is a Bessel function of order n, J
′

n = dJn
db , and b = k⊥ρ =

N⊥p̄⊥
ω
ωce

is the ratio of the Larmor radius (ρ = v⊥/ωce) to the perpendicular wavelength. The

variable b is a measure of what is called as the finite Larmor radius (FLR) effects. The finite

13
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value of b causes additional effects not found in the cold plasma analysis. Consequences of the

FLR effects include the contribution of higher cyclotron harmonics to the dielectric tensor and

the existence of a new set of electrostatic waves called Bernstein waves not found in cold plasma.

The variables U and W are given by:

U =
∂f

∂p̄⊥
+
N‖

γ

(
p̄⊥

∂f

∂p̄‖
− p̄‖

∂f

∂p̄⊥

)
(2.27)

W =
∂f

∂p̄‖
− nωce
ωγp̄⊥

(
p̄⊥

∂f

∂p̄‖
− p̄‖

∂f

∂p̄⊥

)
(2.28)

where f refers to the electron distribution function which is still being kept general for now.

The warm plasma dispersion relation can still be cast in a biquadratic equation as in equation

(2.20) for the cold plasma case. However, except when considering the lowest order approximation

for the FLR effects, in general the coefficients themselves become a function of N⊥. The solution

then needs to be solved computationally using iterative methods. The computational method used

to solve the warm plasma dispersion relation will be discussed in greater detail in later section

dedicated to the TORAY code.

There are several notable differences that differentiate waves propagation in a warm plasma

from a cold plasma. These are in addition to ability of the warm plasma analysis to account for

wave absorption. First of all, we can notice from equation (2.25) that the condition for wave-

particle or cyclotron resonance for a warm plasma is given by:

ω = k‖v‖ +
nωce
γ

(2.29)

instead of only ω = ωce from the cold plasma analysis. The most important thing to note is

that higher order harmonics are also included in the equation. Next, the equation reveals two

dominant broadening mechanism that will affect ECRH: Doppler broadening represented by the

first term and relativistic broadening represented by the second term. Increase in temperature

will increase both types of broadening while increase in parallel component of the wave number

will increase the Doppler broadening. The cyclotron resonance interactions will mainly increase

the energy of the resonant particles in the perpendicular direction. The second notable difference

from a cold plasma is the existence of a group of electrostatic waves called the Bernstein waves

due to additional solutions to the dispersion relation. Refer to Figure 2.2 for an illustration of

these Bernstein waves adopted from [17]. It is possible for mode conversion to occur from the

cold plasma waves into these Bernstein waves. One example that will be somewhat relevant for

this project is the conversion from the X-mode into the electron Bernstein waves near the second

harmonic. The third difference - which is the most relevant to this project - is the modification of

the waves propagation near the cyclotron resonances. How significant this deviation is from the

cold plasma depends on the plasma parameters involved. For present day fusion machines, this
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CHAPTER 2. WAVES IN PLASMAS

deviation is unlikely to play an important role. More exact description on the waves propagation

trajectory in a warm plasma requires the usage of ray tracing or beam tracing method. Figure 2.3

shows how the wave propagation can be affected [35].

15



CHAPTER 2. WAVES IN PLASMAS

Figure 2.2: An illustration depicting the existence of warm plasma electron Bernstein modes in

the electrostatic approximation (Orange) in addition to the cold plasma X-mode (Dashed blue).

Adapted from [17].
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Figure 2.3: An illustration depicting how the (Real) N⊥ varies as a function of N‖ and ω/ωce

for an O-mode wave propagating near the first harmonic cyclotron resonance of a warm plasma.

The plasma parameters are Te = 1 keV and ω2
pe/ω

2 = 0.7. This illustration was generated using

results from the ray tracing code TORAY. Source: [35].
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Chapter 3

Electron Cyclotron Resonance

Heating

In this chapter, we will describe in more detail - based on knowledge of waves propagation in

plasma from the previous chapter - how the injected waves from the ECRH system are going to

propagate in a tokamak plasma. Perhaps the most important question is of the accessibility of the

EC waves. This is because we know that there are evanescent regions that prevent the EC waves

from propagating further. We will briefly describe the basics of ECRH in a tokamak plasma in

the first section of this chapter. The second section briefly describes the ray tracing method that

is commonly used to describe the ECRH waves trajectory in a more exact manner. The third

section describes the relevant routines of the ECRH ray tracing code TORAY/TORAYFOM.

3.1 Basics

ECRH is one of the external heating method applied to tokamak plasma. It allows localized

heating and current drive owing to its small wavelength and its relatively narrow absorption region.

It can also be used for perturbative heat experiments and for suppressing plasma instabilities. The

most important drawback is that it requires a high frequency source that can deliver high power in

a sufficiently long pulse. Another drawback is the fact that most of these sources (the Gyrotrons)

only have a single fixed frequency. On present day tokamaks, the frequencies used are around the

100 GHz mark. In ITER, they will use a frequency of 170 GHz. It is convenient to know that a 28

GHz electron cyclotron wave will approximately have its first harmonic or fundamental resonance

at 1 T. This means that in ITER, the fundamental resonance is around 6 T.

Evanescent regions determine the accessibility of the EC waves. To illustrate the accessibility

aspect, it is sufficient to simply use the cold plasma analysis. We will also set the N⊥ equals to zero
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CHAPTER 3. ELECTRON CYCLOTRON RESONANCE HEATING

for this purpose. We start with the O-mode which only has one cutoff at the plasma frequency.

In a tokamak, the magnetic field is inversely proportional to the major radius (B ∝ 1/R). The

density is higher towards the center of the magnetic axis. This lead to a picture of a poloidal cross-

section as shown in Figure 3.1. Once the density is high enough to cause the plasma frequency

to be equal to the injected waves frequency, the EC wave will be reflected. For O-mode, there

is good accessibility when ω2
pe/ω

2
ce < 1. We can also easily calculate for the O-mode the density

limit for a certain value of wave frequency:

nlimit = 1.24× 1020 × f2
100 GHz m−3 (3.1)

where the frequency is in units of 100 GHz. O-mode ECRH is almost always done at the fun-

damental resonance. There is not much reason to heat at higher harmonics since accessibility is

reasonably good and absorption efficiency will decrease at higher harmonics. In ITER, the ECRH

will be done at the fundamental O-mode. For the X-mode, the picture is a bit different than the

O-mode. Recall that there is an evanescent region between the right-handed cutoff and the upper

hybrid. If we heat at the fundamental resonance, the result will be similar to that of the left

diagram of Figure 3.2. There is a crescent-like evanescent region blocking access to the absorption

region if we inject waves from the low field side. As a result, we are only able to heat if we inject

waves from the high field side (i.e. from the center of the tokamak). This is undesirable from a

design point of view and thus X-mode heating is typically done at the second harmonic instead.

The second harmonic heating is illustrated by the right diagram of Figure 3.2. Notice that it

looks similar to the fundamental O-mode heating. In order to perform second harmonic X-mode

heating at the same absorption region, the wave frequency must be doubled. This typically means

a frequency above 200 GHz for tokamak operating at 4 T (on the magnetic axis) or above. Devel-

oping a frequency source that high with sufficient power and pulse duration will be a challenge in

itself. This means that second harmonic X-mode heating is more practical to perform in smaller

tokamak that operate at lower magnetic fields than in big tokamak like ITER. The advantage

compared to the fundamental O-mode is the higher density limit of ω2
pe/ω

2
ce < 2. The absorption

efficiency is also stronger than the fundamental O-mode.
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CHAPTER 3. ELECTRON CYCLOTRON RESONANCE HEATING

Figure 3.1: An illustration of the O-mode accessibility in a tokamak plasma. The shaded region

represents the evanescent region where wave propagation is prohibited. The density is higher

towards the center of the magnetic axis to the point that the plasma frequency becomes equal to

the injected waves frequency. The vertical line denotes the absorption region. Source: [32].

Figure 3.2: An illustration of the X-mode accessibility in a tokamak plasma for heating at the

fundamental (Left) and second harmonic (Right) resonance. The shaded region represents the

evanescent region where wave propagation is prohibited. Heating at the fundamental resonance

is only possible from the high field side (i.e. from the center of the tokamak) because there is

a crescent-like evanescent region blocking access from the low field side. Heating at the second

harmonic is similar to the fundamental O-mode. The vertical line denotes the absorption region.

Source: [32].
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CHAPTER 3. ELECTRON CYCLOTRON RESONANCE HEATING

3.2 Ray Tracing

A more exact description of the EC waves trajectory in the tokamak plasma is possible through

the ray tracing method. Ray tracing method is a method that approximates the propagating waves

as a number of independent rays. This is often called the geometric optics approximation. The rays

are advanced in small steps considering the local parameters of the medium. The local parameters

determine the new direction of the rays at each steps. This allows us to approximately trace the

trajectory of the actual waves.

The basis for ray tracing is a set of Hamiltonian equations:

∂r

∂s
=
∂D

∂k
(3.2a)

∂k

∂s
= −∂D

∂r
(3.2b)

where D(ω, r,k) is the local dispersion relation, r is the position of the ray, k is the local wave

vector, and ∂s is an infinitesimal step of the ray. After obtaining the rays trajectory, power

absorption along the trajectory can be calculated according to:

pabs(s)ds = Pray α(s) exp

(
−
∫ s

s0

α(s)ds′
)
ds (3.3)

where pabs(s) is the power absorbed along the path, Pray is power carried by a particular ray, and

α(s) is the absorption coefficient which is proportional to the imaginary part of the perpendicular

refractive index (N
′′

⊥). In summary, for a three dimensional ray tracing, each ray is governed by a

total of seven ordinary first order differential equations. Note that ray tracing is unable to account

for diffraction effects and breaks downs at the focus of the wave beam. Beam tracing method is

able to solve these deficiencies but requires solving second order differential equations.

Regarding the dispersion relation, for a cold plasma this is simply provided by solving the bi-

quadratic equation. For the warm plasma however, Westerhof [35] discovered that for the purpose

of ray tracing we should use the following (real) dispersion relation:

D′ = k2 − k
′2
⊥ (r, k‖)− k2

‖(r,k) = 0 (3.4)

where k
′

⊥ and k‖ are functions of spatial coordinates r and wave vector k. k
′

⊥ is the real part of the

solution of the full warm plasma dispersion relation which is obtained by solving the biquadratic

equation. This has the effect of including the anti-hermitian part of the dispersion tensor which

is not negligible compared to the hermitian part near the resonances. Using Equation (3.4) for

warm plasma ray tracing is necessary in order to avoid anomalous behavior near the cyclotron

resonances. Another method is to diagonalize the dispersion tensor and use the real part of the

eigenvalue for ray tracing [30].
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3.3 TORAYFOM

TORAYFOM is a 3D ray tracing code for solving the EC waves propagation and absorption

in a tokamak. It can used for the purpose of both ECRH or ECCD. In this project, the focus

is solely on ray tracing for the purpose of ECRH. A brief history of the code is as follows. The

original code is called RAYS by Batchelor and Goldfinger. The version called TORAY is used

by Kritz to treat ECRH in tokamak. TORAYFOM refers specifically to the version of TORAY

maintained at the Dutch Institute for Fundamental Energy Research (DIFFER). TORAYFOM is

the version used for this project but for convenience we often refer to it simply as TORAY.

Over the years, many different authors have contributed to different parts of the code. The

current version of TORAY is a quite extensive code consisting of many subroutines. We will not

describe all the subroutines in this report. Figure 3.3 shows the relevant subroutines for this

project. The ODE subroutine solves the set of ordinary differential equations for the ray tracing

(Equation3.2). It requires spatial coordinates, wave numbers, energy, and their derivatives with

respect to the ray position as input. These inputs are provided by the subroutine DERV. DERV in

turn requires the values of the real and imaginary part of the perpendicular refractive index. These

values are provided by the subroutines TWOCMPC and TWOCMPW depending if we choose the

cold plasma or the warm plasma respectively. These two subroutines are actually where the

plasma dispersion relation is evaluated. Therefore, they require the dielectric tensor of the plasma

in order to function. Whereas the calculation of the dielectric tensor is relatively straightforward

for TWOCMPC, the calculation for the TWOCMPW is significantly more involving. There are

two subroutines options to calculate the (fully relativistic) dielectric tensor for TWOCMPW:

through the default subroutine FREPSLN (NLRELA=1) or through the subroutine by Farina

[12] (NLRELA=3). We also show the subroutine TWOCMPWNN developed in this project. This

subroutine houses the neural network regression of the results by TWOCMPW and is expected

to be able to take the role of TWOCMPW but with greater speed. As a rough approximation,

the TWOCMPW subroutine time for a single execution is on the order of 10−4 s on average when

using FREPSLN to compute the dielectric tensor. When using the Farina method to compute

the dielectric tensor, the time for a single execution of TWOCMPW is on the order of 10−5 s on

average. A more appropriate comparison however would be the total time needed for TORAY

to successfully complete its run. This computational time is harder to approximate beforehand

as it is dependent on more factors including the system architecture. We will provide these total

computational time later in the results section.

As TWOCMPW is needed to generate the dataset for a neural network regression, we will

look into it in more details. We first reproduce the expressions for the warm dielectric tensor from

the previous chapter for convenience. The dielectric tensor for a warm magnetized plasma (in the

22



CHAPTER 3. ELECTRON CYCLOTRON RESONANCE HEATING

Figure 3.3: A flowchart of the relevant TORAY subroutines.

high frequency limit) is given by:

εij = δij −
(ωpe
ω

)2 +∞∑
n=−∞

∫
d3p̄

S
(n)
ij

nωce

ω +N‖p̄‖ − γ
(3.5)

The tensor S
(n)
ij is given by:

S
(n)
ij =



p̄⊥U
(
nJn
b

)2 −ip̄⊥ nJnJ
′
n

b p̄‖U
nJ2

n

b

ip̄⊥
nJnJ

′
n

b p̄⊥U
(
J
′

n

)2

ip̄‖UJnJ
′

n

p̄‖U
nJ2

n

b −ip̄‖UJnJ
′

n p̄‖WJ2
n


(3.6)

The variables U and W are given by:

U =
∂f

∂p̄⊥
+
N‖

γ

(
p̄⊥

∂f

∂p̄‖
− p̄‖

∂f

∂p̄⊥

)
(3.7)
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W =
∂f

∂p̄‖
− nωce
ωγp̄⊥

(
p̄⊥

∂f

∂p̄‖
− p̄‖

∂f

∂p̄⊥

)
(3.8)

This rather complex expressions for the warm dielectric tensor will be computed by the subroutine

FREPSLN [36]. First of all, we assume the electron distribution function to behave as f ∼ e−µγ

(also known as the Maxwell-Juttner distribution) where µ = mec
2/kBTe with kB as the Boltzmann

constant and Te as the electron temperature. In other words, for large momenta we assume the

distribution falls off to zero. We then perform a series expansion to evaluate the Bessel functions

Jn(b) and their derivatives as follow:

Jn(b) =

∞∑
m=0

(−1)m

m(m+ n)

(
b

2

)2m+n

(3.9)

where m denotes the order of the expansion. The number of terms to keep is set by the code

parameter NTERM in TORAY. For the dataset generation, we took NTERM = 7 which is a

rather high order in order to ensure accuracy. For ray tracing runs, NTERM is set to 3. The

integral in Equation 3.5 can be separated into two as follows (we exploited toroidal symmetry):

2π

∫ +∞

−∞
dp̄‖

∫ +∞

γ−
dγ
γS

(n)
ij (p̄‖, γ)

γ(n) − γ
(3.10)

The γ integral has a singularity at γ = γ(n) and thus is needed to be evaluated by its principal

value plus a resonant contribution according to Landau integration contour. This resulted in the

dielectric tensor having two parts: the Hermitian part and the anti-Hermitian part which determ-

ines wave absorption. The principal value of γ integral can be written as:

PV

∫ +∞

γ−
dγ
γS

(n)
ij (p̄‖, γ)

γ(n) − γ
=

∫ +∞

γ−
dγ
γS

(n)
ij (p̄‖, γ)− γ(n)S

(n)
ij (p̄‖, γ

(n))e−µ(γ−γ(n))

γ(n) − γ

+ PV

∫ +∞

γ−
dγ
γ(n)S

(n)
ij (p̄‖, γ

(n))e−µ(γ−γ(n))

γ(n) − γ

(3.11)

The second term has the analytical solution of:

PV

∫ +∞

γ−
dγ
e−µ(γ−γ(n))

γ(n) − γ
= Ei(−µ(γ − γ(n))) (3.12)
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where Ei means an exponential integral. The exponential integral is numerically solved using

the subroutine CALCEI. The first term of Equation 3.11 can be calculated using the Gaussian

quadrature method. More specifically, since the distribution function behaves as ∼ e−µγ , we use

the Gauss-Laguerre form with weights wi and nodes γi as follows:

∫ +∞

−γ
dγf(γ)e−µγ =

∑
i

wif(γi) (3.13)

The number of nodes is set by the parameter NGM. In the code, it is able to take values in the

range of 1 to 64.

In order to evaluate the p̄‖ integral, we first determine the range of p̄‖ that fulfills the resonance

condition (γ =
√

1 + p̄2
‖ = γ(n)). This is given by:

p̄±‖ =
nωceN‖

ω(1−N2
‖ )
±

√√√√( nωceN‖

ω(1−N2
‖ )

)2

− ω2 − n2ω2
ce

ω2(1−N2
‖ )

(3.14)

There are two cases depending on the value of N‖: one where |N‖| < 1 and one where |N‖| > 1.

In the case of |N‖| < 1, real solutions only exist when:

ω <
nωce√
1−N2

‖

(3.15)

For the case of |N‖| ≥ 1 or N‖ ≤ −1 and N‖ ≥ 1, there will always be real solutions. We can now

define up to three integration regions based on the value of N‖ and the existence of real solutions.

When |N‖| < 1 and real solutions exist, we can define a non-resonant region I (−∞, p̄−‖ ], a resonant

region II [p̄−‖ , p̄
+
‖ ], and a non-resonant III [p̄+

‖ ,+∞). When |N‖| < 1 and real solutions do not

exist, then we only have one non-resonant region I over the entire domain (−∞,+∞). For the

case of |N‖| > 1, we only need to consider for N‖ ≤ −1 and N‖ ≥ 1 since there will always be

real solutions. For N‖ ≤ −1, we divide into a resonant region II (−∞, p̄−‖ ] and a non-resonant

region III [p̄−‖ ,+∞). For N‖ ≥ 1, we divide into a non-resonant region I (−∞, p̄+
‖ ] and a resonant

region II [p̄+
‖ ,+∞). The p̄‖ integral can also be evaluated using the Gaussian quadrature method.

The code parameter which set the number of nodes is NPM with a range of value from 1 to 32.

Different cases will use different forms of the Gaussian quadrature. For cases with high values of µ,

the integrand will have a factor of ∼ e−
1
2µp̄

2
‖ and is appropriately solved using the Gauss-Hermite:
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∫ +∞

−∞
dp̄‖f(p̄‖)e

− 1
2µp̄

2
‖ =

∑
i

wif(p̄‖,i) (3.16)

It is sufficient to use only Gauss-Hermite if all of its nodes fall inside the resonant region II. If not

and in the case of N‖ ≤ 1/µ, then the integration for region II must be done using Gauss-Legendre:

∫ p̄+‖

p̄−‖

dp̄‖f(p̄‖) =
∑
i

wif(p̄‖,i) (3.17)

while region I and III is done using Gauss-Hermite. For cases with large values of |N‖|, the

integrand factor behaves as ∼ e−µN‖p̄‖ . If the nodes of the Gauss-Laguerre quadrature falls inside

region II, we can use it for integration region I and II or II and III depending on the value of N‖.

If not, Gauss-Legendre is used for region II while Gaussian-Laguerre is used for region I or III.

The final integral concerns the anti-Hermitian part of the dielectric tensor and is given by:

εaHij = −iπ
(ωpe
ω

)2 +∞∑
n=−∞

2π

∫
dp̄‖γ

(n)S
(n)
ij (p̄‖, γ

(n)) (3.18)

where the integration is carried out according to the resonant regions defined previously. The

integration factor behaves as ∼ e−µN‖p̄‖ if the resonant region is in a large enough range of p̄‖.

Thus, the Gauss-Laguerre quadrature is used if all of the nodes are inside the resonant region. If

not, the Gauss-Legendre quadrature is used instead. The number of nodes for the anti-Hermitian

integral is set through the parameter NAM and has a range of 1 to 64.

The subroutine FREPSLN computes the warm plasma dielectric tensor but needs N⊥ as one

of its input. Since the coefficients for the biquadratic equations are dependent on the dielectric

elements, they are also dependent on N⊥ in general. Since N⊥ is also the output that we want

to obtain, we must solve the problem iteratively. We provide an initial guess of N⊥ and solve

iteratively for:

A(N
(i)
⊥ )N

(i+1)4

⊥ +B(N
(i)
⊥ )N

(i+1)2

⊥ + C(N
(i)
⊥ ) = 0 (3.19)

where i is the step of the iteration. Convergence is achieved when the difference between the new

and old value is less or equal than a certain value of accuracy. This accuracy value is set using the

parameter ACCUR. The maximum number of iterations is set through the parameter MAXIT.

This iterative method could fail if there are two nearby solution roots for the dispersion relation.

As an example, this could happen near the second harmonic X-mode for certain values of density

because of the existence of Bernstein waves nearby.
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The computation of the elements of dielectric tensor can be done in a more compact form

as illustrated by Farina [12]. This resulted in a faster computational time. In this method, the

harmonic number is taken to be equal to the number of terms in the FLR expansion. For the

Hermitian part, there is an additional constraint of taking the FLR expansion only up to the third

order as a compromise between accuracy and speed.

Last but not least, the wave absorption coefficient α is computed using the imaginary part of

the obtained perpendicular refractive index (N
′′

⊥). It is given by:

α = 2 sin(β)N
′′

⊥
ω

c
(3.20)

where β is the angle between the ray step (ds) and the external magnetic field (B).
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Chapter 4

Neural Network

Before we discuss about neural network, it is perhaps worthwhile to say several words on ma-

chine learning in general. At its core, machine learning algorithms can be considered as algorithms

for fitting an arbitrary non-linear function. This might seem unrelated to what we often heard

machine learning does: classifying images, translating languages, playing chess, etc. But most

processes can be thought of as an input-output function/mapping. As a result, machine learning’s

ability to approximate arbitrary non-linear function is very powerful and can be used to solved

multitude of problems (problems that most often are unfeasible to solve using traditional computer

algorithms). Effectively, machine learning algorithms can make predictions based on data that we

gave to them similar to how humans learn from examples. Hence, machine learning is a subset of

the field of artificial intelligence.

Artificial Neural Network (NN) or simply Neural Network (NN) is a class of machine learning

tools inspired by the biological neurons in our brain. Much like the biological neural network in

the brain, the artificial neural network consists of nodes or neurons interconnected with each other.

There are different types of neural network with different level of complexity. In this project, we

are using a Feedforward Neural Network (FFNN) which is arguably the simplest type of neural

network. FFNN is sufficient for solving the regression problem encountered in this project. In

this chapter, we will briefly describe the basics of neural network. Example of reference texts for

a primer on neural network and machine learning are: [24], [21], [3], and [19] .

4.1 The Universal Approximation Theorem

Before delving into the details of neural network, it is worthwhile to briefly mention a theorem

that is crucial for explaining why neural networks work: The Universal Approximation Theorem.

The Universal Approximation Theorem ensures that for any continuous function there exists a
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neural network that is able to approximate the function up to an arbitrary accuracy. Without this

universality theorem, there is no reason to think that a particular function can be approximated

using neural networks. The mathematical proof for this theorem is outside the scope of this thesis.

Readers interested in the proof should consult the relevant papers such as: [6] and [20]. Note that

this theorem only ensures existence. It does not say how to obtain such network or how feasible

it is to obtain such network. Therefore, solving practical problems using neural networks often

becomes a problem of finding the right tools and techniques to obtain a sufficiently good network

in a reasonable amount of time.

4.2 Neurons

Neurons are the basic building blocks of neural network. Mathematically, a single neuron is

expressed as:

y = f

(
n∑
i=0

wixi + b

)
(4.1)

where wi are the weights, xi are the inputs, b is the bias, f is the activation function, and y is

the output of the neuron. We can consider the weights as a measure of the importance of an

input. If the weight of an input is zero, then that input is simply removed from the equation.

Biases can be considered as thresholds that determine how easy it is for the neuron to transmit its

signal. A high bias will be more likely to cause the neuron to transmit regardless of the weighted

sum. The weighted sum plus bias is inserted into a non-linear activation function. Non-linearity is

needed in order for the neural network to be able to approximate non-linear functions. A graphical

illustration of a single neuron is depicted in Figure 4.1.

Figure 4.1: A graphical illustration of a single neuron.

29



CHAPTER 4. NEURAL NETWORK

4.3 Activation Function

The choice of activation functions are crucial for the ability of neural networks to approx-

imate non-linear continuous functions. A non-linear activation function is required if we want

to approximate non-linear continuous functions which is the case for most of practical problems.

Traditionally, the non-linear activation function has to be bounded (i.e. saturates as its input

approaches +∞ and −∞) and monotonically increasing [31]. However, recent research has shown

that they need not be bounded [27]. Many non-linear activation functions have been developed

over the years. For this thesis, we will only consider two: Tanh and ReLU.

4.3.1 Tanh

This activation function as its name suggested is simply the function tanh(x):

tanh(x) =
2

1 + e−2x
− 1 (4.2)

It has an ”S” shape and is centered at the origin (see Figure 4.2). Note that it fulfills the bounded

and monotonically increasing requirements. Another function similar to the tanh is the sigmoid

function:

f(x) =
1

1 + e−x
(4.3)

In fact, tanh is merely a scaled sigmoid function centered at the origin. In practice, tanh is almost

always used over sigmoid because a zero-centered function is found to be better for the purpose

of training a neural network. Until relatively recently, tanh is the go-to activation function for

training neural networks.

4.3.2 ReLU

ReLU stands for Rectified Linear Unit and is given by:

f(x) = max(0, x) (4.4)

Figure 4.2: A tanh function.
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Figure 4.3: A relu function.

As its name suggested, it is a linear function that rectifies all its negative values to zero (see

Figure 4.3). Note that this is an unbounded function and thus does not fulfill the traditional

requirements. Relu has recently replaced tanh as the go-to activation function for training deep

neural networks. Deep neural networks are typically used for image and speech recognition. Its

effectiveness compared to tanh for shallow neural networks is less clear however.

4.4 Feedforward Neural Network

A single neuron by itself is not able to accomplish much. The next step of building a neural

network is to connect multiple neurons with each other in a particular way. Figure 4.4 illustrates

a typical FFNN. There are 2 inputs that ended up producing 1 output. We map them using a

FFNN with 2 hidden layers consisting of 4 neurons or nodes each (2x4) for a total of 8 nodes.

The outputs of the first hidden layer are taken as the inputs for the second hidden layer. The

connecting lines can be considered as the weights. Each of the hidden layer nodes and the output

node have their own biases. Typically the activation function is the same for all the hidden nodes.

Note that the entire network ”flows” forward as there is no connections between nodes in the same

layer and no looping connections to previous layers. Hence the name feedforward neural network.

The number of inputs and outputs are usually determined by the problem. The size of the hidden

layers on the other hand is fully determined by the user.
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Figure 4.4: A typical pictorial representation of a feedforward neural network. Here, it maps 2

inputs onto 1 output. There are 2 hidden layers with 4 neurons or nodes each (2x4) for a total of

8 nodes. The connecting lines can be considered as the weights. Each of the hidden layers nodes

and the output node have their own biases. Typically the activation function is the same for all

the hidden nodes.
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4.5 Training

Training a neural network means optimizing the weights and biases in order to obtain the best

possible fit of the function we are approximating. The weights and biases are the free parameters

that will be ”learned” by the neural network. In order to optimize the weights and biases, we need

an algorithm that is able to determine the effects of changing the weights and biases on the quality

of the regression. We also need an algorithm that can iteratively converge on a set of weights and

biases that will provide the best regression. Generally speaking, the two algorithms are always

combined together. In more details, we have:

1. Backpropagation algorithm

This algorithm computes the partial derivatives of a defined loss function with respect to the

weights and biases. The loss function represents the general quality of the fit. Smaller value

of the loss function means a better quality fit. Backpropagation got its name by the way it

computes the derivatives: by first computing the final output given certain inputs (forward

pass) and then computing all the derivatives backwards using the chain rule (backward

pass). We will not describe the mechanism in detail here. Readers are referred to relevant

texts such as [26] or [24] for more details. We will simply briefly describe the loss functions

considered for this work in a short while (subsection 4.5.1).

2. Optimizer/Learning Algorithm

The optimizer or the learning algorithm determines how the weights and biases will be

updated for the next iteration. They aim to minimize the loss function. They are dependent

on the derivatives computed by the backpropagation algorithm. Various optimizers have

been developed over the years. We will briefly describe only two (subsection 4.5.2): the

simplest algorithm called gradient descent [24] and a presently popular one called Adam

[22].

Training a neural network requires the user to provide a dataset or examples. In general, the

full dataset is divided into a training set and a test set (sometimes there is also a validation set).

Training is only done on the training set. The test set is used to gauge the ability of the neural

network to generalize outside of the training set.

4.5.1 Loss Function

For a regression problem, a common loss function to use is the Mean Squared Error (MSE):

LMSE =
1

n

n∑
i=1

(fi − yi)2 (4.5)
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where fi is the neural network output and yi is the actual true output. It is also common to add a

regularization term to the actual loss function. Regularization is added in order to tackle a problem

called overfitting. When overfitting occurs, the neural network loses its ability to generalize beyond

the dataset it was trained upon. This is generally due to the high number of free parameters in a

neural network. In this work, we only consider the use of the L2 regularization where all of the

squared-weights are summed:

LL2 =
λ

2

∑
w

w2 (4.6)

with λ the regularization strength. This regularization will heavily penalize large weights. Large

weights will generally add to the complexities of the regression. The analogy would be like perform-

ing a high-order polynomial regression on a noisy experimental data instead of a linear regression.

The total loss function we will be using is the sum of the MSE and the L2 regularization:

LTotal = LMSE + LL2 (4.7)

4.5.2 Optimizer

Gradient Descent

The simplest optimizer algorithm is the gradient descent. Suppose we have a vector of free

parameters x (either weight or bias) that will be learned by the neural network. The update rule

for the next iteration step according to gradient descent will be:

xi+1 = xi − η∇Li (4.8)

where ∇Li is a vector containing the corresponding partial derivatives of the loss function with

respect to the free parameters and η is the learning rate tunable by the user (a hyperparameter).

We can imagine the optimization process as trying to roll a ball into the deepest valley (i.e. the

global minimum) of the loss function surface. Since derivatives point to direction of increasing

values, we put a negative sign to the second term of Equation 4.8 to guide the ball to a general

direction of decreasing values. However, in general the loss function surface is non-convex [4] which

can cause difficulties for the gradient descent to converge to a solution. For example, at saddle

points the derivatives may be too small causing the update to get ”stuck” if the learning rate is

unable to compensate.

Note that because the loss function is an average over all training examples (Equation 4.6), the

derivative∇L also need to be averaged over the individual derivatives of each training examples. In

practice, this is too time consuming to perform. As an alternative, people instead approximate the

true value of ∇L by averaging over a random smaller subset batch (mini-batch) of the full training

examples. This method is called stochastic gradient descent (SGD) and is not dissimilar to how
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survey or poll sampling works. If the size of the mini-batch is large enough, we can expect that

the mini-batch ∇L will be a good approximation of the full training set ∇L. There is no general

rule regarding the appropriate size of the mini-batch yet. For now, it needs to be determined in

a case-by-case basis. But in general, smaller size leads to quicker training while larger size leads

to better approximation of the true gradient. Note that SGD is in general applicable to other

optimizers not only gradient descent. We will also employ training by mini-batches in this work.

Adam

Adam (Adaptive moment estimation) [22] was conceived relatively recently in 2014 by Kingma

et al and has since become widely used for training neural networks. Interested readers are referred

to the original paper for the full description. Here, we will merely cite the update rules and briefly

explain some of the features. The update rules of Adam are:

mi+1 = β1mi + (1− β1)∇Li (4.9a)

mti+1 = mi+1/
(
1− βi+1

1

)
(4.9b)

vi+1 = β2vi + (1− β2)(∇Li)2 (4.9c)

vti+1 = vi+1/
(
1− βi+1

2

)
(4.9d)

xi+1 = xi − η mti+1/(
√
vti+1 + ε) (4.9e)

where η, β1, β2, and ε are all hyperparameters tunable by the user which have default values

of 0.001, 0.9, 0.999, and 10−8 respectively. The hyperparameter η is the same learning rate as

in gradient descent. The hyperparameters β1 and β2 control the exponential decay rates of the

moving averages of the gradient (m) and the squared gradient (v). The hyperparameter ε serves

to avoid division by zero. Note that (∇Li)2 and
√
vti+1 are element-wise operations.

The first thing to notice is that unlike gradient descent, Adam does not directly update the

trainable parameters using the derivatives. It updates the parameters using the variable m which

is analogous to velocity. The parameters (x) then are analogous to position. To resume our analogy

of a ball rolling down a surface, this means that in Adam the virtual ball behaves more like a

real physical ball. Second, the effective learning rate in Adam is modified by the denominator

in Equation 4.9e. If the derivatives become small, then the effective learning rate is increased

and vice versa. As a result, Adam has less risk of becoming ”stuck” in saddle points or ”bad”

local minima compared to gradient descent. Furthermore, this modification of the learning rate

is applied per parameters. Third, Equations 4.9b and 4.9d are bias correction mechanisms. Since

the vectors of m and v are initialized at zero, they will be biased at zero especially during initial

iterations.

In this work, we used the Adam optimizer with the default values of hyperparameters for
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all neural network training. We used Adam because it is presently considered to be the default

optimizer to use for training neural networks [25].
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Methodology

5.1 Dataset Generation

We have decided to perform neural network regression only on the O-mode for this work.

The reason is that the O-mode with a single branch is simpler to fit than the X-mode with two

branches. Furthermore, there are numerical problems near the X-mode second harmonic due to

nearby Bernstein modes. The iterative algorithm used to compute the perpendicular refractive

index could fail due to the presence of multiple solutions. We leave the X-mode regression for

future work.

The dataset generation are done using TORAY warm plasma routine (TWOCMPW) with the

dielectric tensor determined by the Farina routine. We found that the the Farina routine is more

numerically stable than the FREPSLN routine. The warm plasma routine dataset consists of 4

inputs and 2 outputs. The inputs are X =
(ωpe

ω

)2
, Y = ωce

ω , electron temperature (Te), and the

parallel refractive index (N‖). X and Y can be seen as normalized electron density and normalized

magnetic field respectively. The range of these inputs are:

1. X

From 0.01 to 0.90 with all multiples of 0.05 in between as the interval points.

2. Y

From 0.3 to 2.0. Standard interval is 0.01 but is increased to 0.001 (or 0.0001 for Te = 1 keV)

near the first and second harmonic if the features are sharp enough. More specifically, higher

resolution is used if the approximate broadening width is less than a certain value:

∆wTotal ≈ ∆wDoppler + ∆wRelativistic = N‖

√
Te[keV ]

500
+
Te[keV ]

500
< ∆wThreshold (5.1)
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where Te is in keV. A value of ∆wThreshold = 0.05 is found to be sufficient for limiting high

resolution only to cases with small enough broadening. The input Y has the most points

compared to the other inputs because it is imperative to capture the features around the

cyclotron resonances well.

3. Te

From 1 to 40 keV with an interval of 3 keV starting from 1 keV (i.e. 4 keV, 7 keV, and so

forth). This range of temperature should cover most present day fusion machines, ITER,

and DEMO.

4. N‖

From 0.00 to 0.99 with all multiples of 0.05 in between as the interval points.

The outputs of the dataset are the real and imaginary part of the perpendicular refractive index

(N⊥).

Not all possible permutations are included in the dataset. If N2
⊥ ≤ 0, then the propagating

wave has transformed into an evanescent wave and these points are excluded from the dataset.

Data points with a combination of Te > 16 keV and X > 0.80 are also excluded as they produced

erroneous outputs. Simply speaking the code fails to produce valid outputs due to reasons that is

not yet known. In general, one should be wary for errors when approaching cutoff and when the

values of Te, X, and N‖ are all simultaneously high. The final dataset consists of about 2.5× 106

data points.

5.2 Neural Network Training

All neural network trainings were done using TensorFlow 1.8 [10] in the Python language. The

dataset is divided randomly into 80% training set and 20% test set. Training is only performed

with the training set. The test set is used to test the network ability to generalize beyond the

training set. Training is also performed separately for the real and imaginary part of the refractive

index. Since they are visually different function-wise, we reason that training separately would

allow for more flexible choices of network topology and hyperparameters.

Several pre-treatments or pre-processings are performed on the raw dataset before actual train-

ing. These were all done to aid the network in the training process. First, each of the four inputs

in the training set are normalized to a distribution with a mean of 0 and a standard deviation

of 1. This is done by first subtracting the mean of an input and then dividing by the standard

deviation on every elements of that input:

xi,norm =
xi −Meanx

Stdx
(5.2)
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This operation is also applied on the test set. The only difference is that the means and standard

deviations used must be the same one from the training set. Subtracting by the mean serves to

center the data on the origin while dividing by the standard deviation serves to make each of the

inputs equal in range. The purpose of this normalization is to make every inputs to be roughly

equal in importance for the training.

The second pre-treatments are on the outputs. The raw real part of the perpendicular refractive

index is processed as follows:

N
′

⊥,train =
(
N
′2
⊥,raw −N

′2
⊥,cold

)
(X (1−X))

−1
(5.3)

where N
′

⊥,raw is the raw warm plasma value and N
′

⊥,cold is the cold plasma value. We computed

N
′

⊥,cold using TORAY cold plasma routine (TWOCMPC). We subtract the cold plasma value from

the warm plasma value in order to make it easier for the neural network to perform regression

on the warm plasma effects. The X scaling factor is performed in order to make the absolute

magnitude for varying X values roughly the same. This scaling is introduced since the magnitude

of N
′

⊥,raw for higher values of X can be smaller by about two orders of magnitude compared to

lower values of X. This resulted in worse regression for cases where N
′

⊥,raw is small since their

features are negligible compared to cases where N
′

⊥,raw is large. The X scaling can be considered as

a magnitude equalizer. The raw imaginary part of the perpendicular refractive index is processed

as follows:

N
′′

⊥,train = N
′′

⊥,raw (X (1−X))
−1

max

(
N‖√

Te[keV ]/500
, 1

)
(5.4)

The last scaling (based on the scaling of the absorption coefficient for large angle on page 1202

of [11]) is applied because at high enough N‖ the absolute magnitude of N
′′

⊥,raw becomes small.

The reasoning is the same as in the case of N
′

⊥,raw. Lastly, both the processed outputs are also

subjected to the normalization done on the inputs.

The neural networks were trained using a mini-batch size of 1024 (see subsection 4.5.2), the

Adam optimizer, and the mean squared error as the loss function. The Adam hyperparameters

are fixed at the default settings: η = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. We considered

hidden layers of 2 and 3 with the same number of nodes in each layers. Deeper layers are likely to

be impractical for our purpose due to the higher computational time in computing the matrices.

A single hidden layer however was found to lead to very slow convergence. The number of nodes

considered were 32, 64, and 128. Number of nodes lower than 32 were also found to lead to very

slow convergence. The activation functions considered are tanh and relu. We considered only

L2 regularization with different regularization strength. We also implemented an early stopping

mechanism with a patience (how many epochs to keep training after the loss function stopped

improving) set to 30 epochs. One epoch means the entire training set has been used once. Early
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stopping can be considered as another form of regularization. One thing that was not done

is training repetition for each of the neural networks. Because of randomness in the weights

initialization, there will be variations in each training run even if all settings are fixed. There are

possibilities that some runs will found a better local minima in the loss functions surface than

others.

5.3 Validation

Similar to [31], we also found that the mean squared error is an insufficient metric for de-

termining the quality of the regression. Problems that occur in several regimes of the parameter

space cannot be known simply by observing the mean squared error. Therefore in this work, we

simply determine the quality of the regression through visual inspection. A plot of the refractive

index against the the normalized magnetic field Y - with the rest of the inputs fixed - can give a

rough idea of the quality of regression. Several different cases can be chosen to represent different

regimes in the parameter space. In this work however, we only show the detailed plot comparison

for two different cases (both with X = 0.30):

1. A case where both Te and N‖ are low (Te = 1 keV, N‖ = 0.00) resulting in sharp features at

the resonances.

2. A case where N‖ is high (N‖ = 0.90) and Te is moderate (Te = 16 keV). This leads to an

evanescent region appearing for N
′

⊥ and a broad peak for the N
′′

⊥.

From experience, problems are more likely to occur for these two cases. The quality of the

regression for most other explored cases are generally better than these two cases. Thus, they are

not shown here. However, there is still a possibility of bad regression in some unexplored region

of the parameters space.

We also performed another step of validation using the ray tracing results. This is simply done

by comparing the ray tracing results when we use the original warm plasma routine (TWOCMPW)

and when we use the neural network warm plasma routine (TWOCMPWNN).
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Results and Discussions

The main results of this project are presented in four parts in the following order: the regression

plots of the perpendicular refractive index versus the normalized magnetic field, the graphs showing

the loss function of a neural network as a function of training epoch, the ray tracing results, and a

brief analysis on the computational time of each TWOCMP routines including the newly created

TWOCMPWNN routine.

6.1 Regression Plots

Here, we visually compare regression plots of different neural networks. We first compare re-

gression plots of neural networks with different topologies and activation functions. We then picked

one neural network that seems to produce the best regression. We then add L2 regularization to

the chosen network to see if we can improve the regression. The method of comparison employed

here is by no means robust or objective. However, we will see later that the chosen neural networks

can produce sufficiently good ray tracing results. Since this work serves as a proof-of-principle, we

reason that a more robust optimization of the neural networks can be further explored in future

work. Also, keep in mind that regression points that are negative are physically invalid (for N
′

⊥

these indicate an evanescent region) and will be set to zero in the implementation.

6.1.1 Topology and Activation Function

We show the regression plots for several neural networks with different topologies and activation

functions. We show two different cases: low Te low N‖ and moderate Te high N‖. We focused

only on the first harmonic as it is the most relevant for O-mode heating. Keep in mind that we

also have separate neural networks for the real and imaginary refractive index respectively. Also,

we expect the plots to contain 80% points from the training dataset and 20% points from the test
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Figure 6.1: A regression plot for the real perpendicular refractive index for several neural networks

with different topologies and activation functions. This shows a zoomed-in view (notice the small

interval of the horizontal axis) of the first harmonic for a case where both Te and N‖ are low.

With the exception of 2x32 relu, the neural networks show good regression with TORAY.

dataset.

Figure 6.1 and 6.2 show the regression for the real perpendicular refractive index. Except

for the neural network with 2x32 relu, the regressions are generally good. We have problems in

the high N‖ case near the evanescent region for most of the networks. The reason for this is not

understood but one possibility might be because of the relatively high gradient when you approach

the evanescent region. The networks with 3 hidden layers seem to have an advantage near the

evanescent region. However, we prefer networks with fewer layers as we are aiming to minimize

the computational time of the matrix operations. After considerations, we decided to use the

network with 2x64 tanh. This is a trade off between better regression near the evanescent region

with computational speed. The effects of the number of nodes are hard to discern from the graphs

but we settled for 64. Using 32 nodes will make the computational time faster but it was found

that the speed up is minor (about 2 seconds for a single TORAY run) and the ray tracing results

are slightly worse. Lastly, we used tanh as it produces a smoother (i.e. less kinks) regression

compared to relu. A smoother regression of N
′

⊥ means it will be easier for TORAY to compute

the derivatives necessary for the ray tracing.

Figure 6.3 and 6.4 show the regression for the imaginary perpendicular refractive index. Com-

pared to the real part, the regressions for the imaginary part are generally worse. For the case of

low Te and low N‖ shown in Figure 6.3, networks with 3 layers generally perform better than those
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Figure 6.2: A regression plot for the real perpendicular refractive index for several neural networks

with different topologies and activation functions. This shows a case where N‖ is high resulting in

low values of (real) N⊥ and the appearance of an evanescent region (points not included) where N2
⊥

becomes smaller than zero. The neural networks show good regression (2x32 relu still performs

worse than the others) except near the evanescent region. In this case, neural networks with 3

hidden layers seems to be better near the evanescent region.
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with 2 layers. Networks with the relu activation function are also generally better than those with

the tanh activation function. The quality of the regressions degrade significantly for the case of

high N‖ as shown in Figure 6.4. The cause of this problem is not properly understood but might

be related to the relatively small magnitude of the imaginary perpendicular refractive index. The

values might be just too small for the neural networks to register as an absorption peak. The

pre-processings done before training are supposed to alleviate this problem in principle. However,

it was discovered that the N‖ scaling (see Equation 5.4) did not manage to properly equalize the

order of magnitude for the different cases. Due to time constraint, a better scaling factor has not

been conceived. Despite this, we nevertheless proceed in choosing 3x64 relu as the neural network

for our imaginary refractive index. It is one of the networks with smaller noise oscillations in the

high N‖ case while still having relatively moderate network size. Unlike for the real refractive

perpendicular index, we are not willing to sacrifice the better performance of the 3 layers for the

speed of 2 layers. Somewhat surprisingly, even with the problem in the high N‖ case we can still

obtain decent current drive and power absorption profiles as we will see later. Note that we do not

require the derivatives of N
′′

⊥. As a result, we can afford to use the choppier relu regression. This

might also be why we can still produce decent current drive and power absorption profiles even

though we have bad regression in the high N‖ case. Another reason might be that the absorption

for the high N‖ cases are simply too weak to affect the current drive and power absorption profile

(i.e. N
′′

⊥ is too small).

We also show the regression for a neural network trained on a reduced dataset that only contains

N‖ ≥ 0.90 in Figure 6.5. The idea here is to train different neural networks on different regimes

of the parameters space. We can see that the regression is better compared to the regression

on the full dataset (Figure 6.4). However, we will see later that the ray tracing results are not

improved. This lends further support to the idea that the bad regression in the high N‖ case is

not a significant problem. Therefore, this method of improving the regression by having multiple

neural networks is not pursued further as it is deemed a lower priority. Nevertheless, it remains a

possible path for improvement that can be explored in later works.

6.1.2 L2 Regularization

We show the effects of adding L2 regularization to regression plots of the chosen networks from

the previous section: 2x64 tanh for N
′

⊥ and 3x64 relu for the N
′′

⊥. Several plots with different

regularization strength are shown. The two different cases used for comparison are the same as in

the previous section. The purpose of adding regularization is to prevent overfitting. Overfitting

leads to a worse regression for points outside of the training set.

Figure 6.6 and 6.7 show the results for N
′

⊥ while Figure 6.8 and 6.9 show the results for N
′′

⊥.

The regularizations do not seem to improve the original regression. In fact for the case of low Te
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Figure 6.3: A regression plot for the imaginary perpendicular refractive index for several neural

networks with different topologies and activation functions. This shows a zoomed-in view (notice

the small interval of the horizontal axis) of the first harmonic for a case where both Te and N‖ are

low. Generally, networks with 3 hidden layers seems to perform better than those with 2 layers.

Networks with the relu activation function also seems to perform better than those with the tanh

activation function.
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Figure 6.4: A regression plot for the imaginary perpendicular refractive index for several neural

networks with different topologies and activation functions. This shows a case where N‖ is high

resulting in low values of (imaginary) N⊥. The regression for this case is significantly worse

compared to other cases. This may be caused by the relatively small magnitude of the imaginary

perpendicular refractive index. The difference in absolute magnitude might be too minute for the

neural networks to capture.
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Figure 6.5: A regression plot for the imaginary perpendicular refractive index for a 4x64 relu

neural network trained on a reduced dataset that only contains N‖ ≥ 0.90. There are differences

in the training settings compared to the values described in Chapter 5: Batch size is 512 and the

last term of the N
′′

⊥ pre-scaling (Equation 5.4) is not applied. We can see that the regression here

is better compared to the regression on the full dataset (Figure 6.4).

and low N‖, too strong regularization will only degrade the quality of the regression. We conclude

that the early stopping mechanism is enough to prevent overfitting in this work. We therefore use

the unregularized networks for implementation in the TWOCMPWNN routine.
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Figure 6.6: A regression plot for the real perpendicular refractive index for several neural networks

with different L2 regularization strength. This shows a zoomed-in view (notice the small interval

of the horizontal axis) of the first harmonic for a case where both Te and N‖ are low. There

appears to be no noticeable difference for L2 1.0e-8 and L2 1.0e-7. L2 1.0e-6 degrades the quality

of the regression.

Figure 6.7: A regression plot for the real perpendicular refractive index for several neural networks

with different L2 regularization strength. This shows a case where N‖ is high resulting in low values

of (imaginary) N⊥. There does not appear to be much effect in adding regularization.
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Figure 6.8: A regression plot for the imaginary perpendicular refractive index for several neural

networks with different L2 regularization strength. This shows a zoomed-in view (notice the small

interval of the horizontal axis) of the first harmonic for a case where both Te and N‖ are low. As

we increase the regularization strength, the regression appears to only become worse.

Figure 6.9: A regression plot for the imaginary perpendicular refractive index for several neural

networks with different L2 regularization strength. This shows a case where N‖ is high resulting

in low values of (imaginary) N⊥. The regularization appears to have no effect on the already bad

unregularized fit. We prefer not to increase the strength further as the regression for the case of

low Te low N‖ is already degraded even with current strength levels.
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6.2 Loss Function

We show the graph of loss function versus training epoch for our final choice of neural networks.

There are two plots for each neural network: the loss function of the training set (orange) and the

loss function of the test set (blue).

Figure 6.10 shows the loss function for the 2x64 tanh N
′

⊥ network. As expected, the loss

function decreases as we train. There does not seem to be any sign of overfitting which is usually

indicated by increasing test lost function after we have trained long enough. It is however unex-

pected that the test loss function is always lower than the training loss function. This is believed

due to a mistake in how the average loss function is computed in the author’s coding. Due to time

constraint, this problem has not been rectified.

Figure 6.11 shows the loss function for the 3x64 relu N
′′

⊥ network. The loss function is noisier

than the case for N
′

⊥ especially the training loss function. This could indicate that the regression

for N
′′

⊥ is relatively bad compared to N
′

⊥. Another reason might be because of too small mini-

batch size. The MSE value also converge to a larger magnitude (by about one order of magnitude)

compared to N
′

⊥ which could also indicate a worse regression. In any case, the early stopping

mechanism ensures that the epoch with the lowest test loss function is chosen. Same as the case

for N
′

⊥, the test loss function is surprisingly always lower than the training loss function.
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Figure 6.10: A plot of the mean squared error loss function against the training epoch for the

2x64 tanh N
′

⊥ network. The loss function decreases as expected. There does not seem to be

any sign of overfitting. It is however unexpected that the test loss function is always lower than

the training loss function. This is believed due to a mistake in how the average loss function is

computed in the author’s coding.

Figure 6.11: A plot of the mean squared error loss function against the training epoch for the

3x64 relu N
′′

⊥ network. The loss function decreases as expected but it is noisier than the case

for N
′

⊥ especially the training loss function. This could indicate that the regression for N
′′

⊥ is

relatively bad compared to N
′

⊥. The MSE value also converge to a larger magnitude (by about

one order of magnitude) compared to N
′

⊥ which could also indicate a worse regression. The early

stopping mechanism ensures that the epoch with the lowest test loss function is chosen. Same

as the case for N
′

⊥, the test loss function is always lower than the training loss function. This is

believed due to a mistake in how the average loss function is computed in the author’s coding.
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6.3 Ray Tracing Results

We show the ray tracing results from using the outputs computed by our chosen neural net-

works. We compare the neural network results with the cold and warm plasma results from

TORAY original routines. The EC benchmarking used in this work is the EC-17 benchmark for

ITER [16]. In this benchmark, three EC beams each carrying 1 MW heating power are launched:

two from the equatorial port and one from the upper port. Beam 1 is launched from the equatorial

port and has a 25o toroidal launching angle. Beam 2 is launched from the equatorial port and has

a 40o toroidal launching angle. Beam 3 is launched from the upper port and has a 18o toroidal

launching angle and 48o poloidal launching angle. There are four type of plots (see Figure 6.12,

6.13, 6.14, 6.17, 6.20, 6.21, 6.22, 6.23): the ray trajectories projected on the tokamak equatorial

mid-plane, the ray trajectories projected on the poloidal cross-section of the tokamak, the current

drive profile, and the power deposition profile. We first show the results for ray tracing using only

one ray per beams. Afterwards, we will show the results for a more realistic ray tracing using 81

rays per beams. The one ray per beams run was performed only on a single thread. The 81 rays

per beams run was parallelized using 48 threads.

Figure 6.12, 6.13, 6.14, and 6.17 show the results for ray tracing with 1 ray per beam. The ray

trajectories produced by using the neural network regression (green) are in good agreement with

the original warm plasma dispersion relation (red). In the current drive and power deposition

profile, we can see discrepancies between the neural network and original warm plasma especially

for beam 1 and beam 2. For the current drive, the neural network produced some positive current

drive as can be seen from Figure 6.15. This is because there are finite values of N
′′

⊥ between

the first harmonic and the second harmonic in the neural network regression. These values are

supposed to be zero or too small to be significant. TORAY mistakenly attributed these finite

values as absorption at the second harmonic leading to a positive current drive. Figure 6.16 shows

more details regarding the discrepancies in the current drive. In any case, the discrepancies in

the current drive and power deposition profile are expected because we have a relatively bad N
′′

⊥

regression. We simply need a better N
′′

⊥ regression to rectify the discrepancies. In particular, the

greatest problem seems to be when the beam first start to approach the absorption region (i.e.

from the low field side). This is consistent with the behavior observed in the N
′′

⊥ regression plots

such as Figure 6.3 and 6.8. In these plots, we can see that in general the regression has some

trouble at the area where the peak starts to rise from the low field side. One explanation could be

that there is a relatively steep increase in gradient that makes the neural network regression more

difficult when approaching the first harmonic from the low field side. This explanation is the same

one used to explain the worse regression for N
′

⊥ with high N‖ when approaching the evanescent

region (see Figure 6.2 or 6.7). Over there, there is also a relatively steep increase in gradient. In
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Figure 6.12: The ray trajectories projected on the equatorial midplane for ray tracing with 1 ray

per beams. The blue lines, red lines, and green lines refer to the cold plasma, warm plasma, and

neural network ray tracing respectively. Ray tracing using the neural network regression produced

results in good agreement with the original warm plasma ray tracing.

any case, the area at the foot of the peak from the low field side is likely to have relatively worse

regression resulting in too early or too late rise of the peak. For the oblique beam 2, the problem

could be exacerbated because the regression for the N
′′

⊥ with high N‖ is particularly bad. But

we suspect from the relatively good results of beam 2 that the bad regression for high N‖ is less

significant than previously thought. In Figure 6.18 and 6.19 we plotted the power deposited as

the ray was traced for beam 1 and beam 2 respectively. We see that indeed problems occur near

the start of the absorption.

Figure 6.20, 6.21, 6.22, and 6.23 show the results for ray tracing with 81 rays per beam. The

results are similar to the case of ray tracing with 1 ray per beam. One exception is the appearance

of anomalous spikes near the core for the original warm plasma ray tracing (red). These spikes
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Figure 6.13: The ray trajectories projected on the poloidal cross-section for ray tracing with 1 ray

per beam. The blue lines, red lines, and green lines refer to the cold plasma, warm plasma, and

neural network ray tracing respectively. Ray tracing using the neural network regression produced

results in good agreement with the original warm plasma ray tracing.
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Figure 6.14: The current drive profile for ray tracing with 1 ray per beam. The blue lines, red

lines, and green lines refer to the cold plasma, warm plasma, and neural network ray tracing

respectively. There is a current drive deficiency from beam 1 and 2 in the neural network ray

tracing compared to the original warm plasma ray tracing. As a result, the total current drive in

the neural network ray tracing is less than the original warm plasma ray tracing. The discrepancies

are due to the relatively worse N
′′

⊥ regression compared to the N
′

⊥.
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Figure 6.15: Zoomed-in view of Figure 6.14 near Beam 3. There are some positive current drive

for the neural network. This is because there are finite values of N
′′

⊥ between the first harmonic

and the second harmonic in the neural network regression. These values are supposed to be zero

or too small to be significant. TORAY mistakenly attributed these finite values as absorption at

the second harmonic leading to a positive current drive.

Figure 6.16: A table showing the total current drive and the location of the peak tip of each

beams for the cold, warm, and neural network ray tracing. The neural network has a discrepancy

of about 5% for the total current drive compared to the cold and warm likely in part due to the

existence of erroneous positive current drive. The differences in the location of the peak tip are

minute (less than 1%).
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Figure 6.17: The power deposition profile for ray tracing with 1 ray per beam. The blue lines,

red lines, and green lines refer to the cold plasma, warm plasma, and neural network ray tracing

respectively. In beam 1, too early absorption occurs for the neural network compared to the

original warm plasma. There is also a discrepancy near the tip of the peak of beam 1. In beam 2,

too late absorption occurs for the neural network compared to the original warm plasma. However

despite these discrepancies in the power deposition profile, the total absorbed power remains the

same. The discrepancies are due to the relatively worse N
′′

⊥ regression compared to the N
′

⊥.

Figure 6.18: The power deposited as the ray was traced for the case of beam 1. Discrepancy

occurs near the area where absorption starts to occur.
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Figure 6.19: The power deposited as the ray was traced for the case of beam 2. Discrepancy

occurs near the area where absorption starts to occur.

appeared because of there are some anomalous ray trajectories for the warm ray tracing near the

core. Presumably, this problem occurred when the ray becomes tangent with the magnetic flux

surface near the core. The reason why this problem does not occur in the neural network ray

tracing is not known. One possible explanation is that there are sudden large change in the N
′

⊥

value when this problem occurred. This may lead to a discontinuous function that is naturally

smoothened by the neural network regression. Thus, eliminating the anomalous spikes. Lastly, we

can notice that the peaks in the current drive and power deposition profile are broader and have

smaller magnitudes than the case with 1 ray per beam. This is expected since with 81 rays per

beam we have a better representation of an actual beam which has a broader absorption profile

than a single ray.
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Figure 6.20: The ray trajectories projected on the equatorial midplane for ray tracing with 81

rays per beam. The results are similar to the case of ray tracing with 1 ray per beam.
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Figure 6.21: The ray trajectories projected on the poloidal cross-section for ray tracing with 81

rays per beam. The results are similar to the case of ray tracing with 1 ray per beam.
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Figure 6.22: The current drive profile for ray tracing with 81 rays per beam. Except for some

anomalous spikes occurring near the core for the original warm plasma (red), the results are similar

to the case of ray tracing with 1 ray per beam. Notice that the peaks are also broader and have

smaller magnitudes since the absorptions are more spread out.
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Figure 6.23: The power deposition profile for ray tracing with 81 rays per beam. Except for

some anomalous spikes occurring near the core for the original warm plasma (red), the results are

similar to the case of ray tracing with 1 ray per beam. Notice that the peaks are also broader and

have smaller magnitudes since the absorptions are more spread out.
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6.4 Computational Time

We briefly analyze the computational time required by all of the TWOCMP dispersion routines:

TWOCMPC (Cold plasma with damping), TWOCMPW (Warm plasma using dielectric tensor

computed by Farina and FREPSLN), and TWOCMPWNN (Warm plasma with Neural Network).

The analysis presented here is based on the one ray per beams run on a single thread. Furthermore,

the values presented here are obtained using the Ifort compiler option: -profile-functions. Note that

this compiler option only works for single thread. After adding this option to the makefile, a dump

file will automatically be generated after each execution. This file gives a detailed breakdown on the

computational usage of every routines and functions in TORAY. Note that there are irreproducible

variations between repeated runs but the results presented here are of typical values.

Figure 6.24 shows a table comparing the routines in terms of computational time and number

of calls. We can see that the newly created neural network routine TWOCMPWNN managed to

be the fastest (time per call on the order of 1 microsecond) warm plasma routine. However, all

of the warm plasma routines are called about 9 times more than the cold plasma routine. The

code needs higher number of calls when performing warm plasma ray tracing because it needs to

compute the numerical derivatives. Derivatives for the cold plasma ray tracing on the other hand

is computed analytically without requiring additional calls to the dispersion routine. This tells us

that reducing the number of calls to the warm plasma routine is equally as important as reducing

the computational time of the warm plasma routine itself. Fortunately, since neural networks are

analytical functions, we can directly compute the derivatives analytically from them. This is a

natural next step to pursue for future work.
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Figure 6.24: A table showing comparisons between the TWOCMP routines in terms of compu-

tational time and number of calls. The newly created neural network routine TWOCMPWNN is

the fastest (time per call on the order of 1 microsecond) of the warm plasma routines. However,

all of the warm plasma routines are called about 9 times more than the cold plasma routine. The

code needs higher number of calls when performing warm plasma ray tracing because it needs to

compute the numerical derivatives.
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Outlook and Conclusions

7.1 Conclusions

This project aims to research the feasibility of performing a neural network regression on the

warm plasma dispersion relation for the purpose of electron cyclotron ray tracing. The purpose

of the neural network regression is to create a faster surrogate model of the warm plasma routine

of TORAY. A faster computational speed of the warm plasma routine is necessary as a stepping

stone towards a real-time version of TORAY.

The input parameters space is 4D with the following quantities: normalized magnetic field

(Y = ωce/ω), normalized electron density (X = (ωpe/ω)
2
), electron temperature (Te), and parallel

refractive index (N‖). The outputs consist of the real part of the perpendicular refractive index

(N
′

⊥) and the imaginary part of the refractive index (N
′′

⊥) corresponding to the wave propagation

and absorption respectively. We decided to only perform neural network regression for the O-mode

as it is simpler in behavior than the X-mode. A dataset containing about 2.5 × 106 data points

was generated for this purpose.

The neural network training was done using Tensorflow 1.8 in Python. We used the mean

squared error as the loss function and Adam as the optimizer. The full dataset is randomly split

into 80 % training set and 20 % test set. We also decided to use separate neural networks for N
′

⊥

and N
′′

⊥. Next, we experimented with different hyperparameters for the neural networks: network

topology, activation function, and L2 regularization. We also employed an early stopping with a

patience of 30 epochs. The final decision is to use a 2x64 tanh network for N
′

⊥ and a 3x64 relu

network for N
′′

⊥ both without L2 regularization.

We validate the neural network regression by visually inspecting the quality of regression and

by comparing ray tracing results produced by the neural network routine (TWOCMPWNN) with

the original routine. The regression results are generally good for N
′

⊥ but worse for the N
′′

⊥. This
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translates as expected to the ray tracing results: the ray trajectories are good but discrepancies

occur for the current drive and power absorption profile.

The computational time for one call of the warm plasma routine is reduced by about one

order of magnitude (from 10−5 to 10−6) by using the TWOCMPWNN routine. However, we

discovered that all the warm plasma routines are called about 9 times more than the cold plasma

routine during ray tracing. This is because the need for the warm plasma routines to compute the

derivatives numerically.

In conclusion, this work serves as a proof-of-principle that demonstrated the feasibility of

using neural network regression to speed up the computational time of the electron cyclotron

warm plasma dispersion routine. Future works or improvements are discussed in the Outlook

section (7.2).

7.2 Outlook

Below we list possible future works or improvements that can be taken as continuation of this

work:

1. Perform the neural network regression for the X-mode. The greatest problem will likely be

the existence of multiple solutions near the second harmonic. One would need to devise a

way to identify and separate the Bernstein solutions from the X-mode solutions. Another

problem is the possible existence of an evanescent region between the upper hybrid resonance

and the right-handed cutoff that separates the slow and fast mode branch of the X-mode for

N
′

⊥. This should be less of problem however since we can simply train on N
′ 2
⊥ where the

evanescent region will correspond to negative values and set the negative values to zero in

the regression. It is also possible to split the N
′

⊥ regression into two to avoid the evanescent

region: one for the slow branch and one for the fast branch.

2. Obtain the derivatives of the outputs with respect to the inputs directly from the neural

network. Since neural networks are analytical functions, we can directly compute the deriv-

atives analytically from them. Doing this will reduce the number of calls to the dispersion

routine. This is the natural next step to reduce the computational time of TORAY warm

plasma ray tracing.

3. Optimization of the data generation or the neural network training. The dataset and neural

networks used for this work is far from optimized. The current dataset needs to be further

investigated to remove possible erroneous points or physically unrealistic points. Better

pre-processing of the raw dataset is also beneficial for the training process.
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For the neural network itself, the regression for N
′′

⊥ is relatively bad. We currently have a

problem when we approach the first harmonic from the low field side. The regression seems

to have a problem determining the start of the absorption perhaps because there is a very

steep increase in gradient. Furthermore, if the regression fails to keep the values between the

first harmonic and the second harmonic low enough, TORAY could mistakenly think that

there is absorption at the second harmonic which leads to positive current drive. We could

turn off the contribution from the second or higher harmonics to remove the positive current

drive. However, doing so might have a bad effect on the first harmonic current drive since it

is also affected by higher harmonics contribution except in the lowest order approximation.

For the case of N
′

⊥, the regression is generally good except near the evanescent region that

occurs at high N‖. All of the mentioned problems could be solved by simply having a better

neural network regression however it is not immediately clear how to obtain them. One

would likely have to experiment with all the possible hyperparameters. One option that

may improve the neural network regression is to have different neural networks trained on

different regimes of the parameters space. This method is able to improve the N
′′

⊥ regression

in the high N‖ case as shown in Figure 6.5. Another goal is perhaps to find smaller networks

that work as good as (or even better than) the current one to further reduce computational

time.

In addition, the training pipeline itself has much room for improvement. In particular, the

hyperparameters scan should be automatic as opposed to manual as is the case presently.

A robust measure of the quality of the regression must also be developed to replace the

current visual inspection method. Lastly, a bug in the code that caused the average test

mean squared error to be always lower than the training needs to be identified and fixed.

4. Use neural network regression to speed up beam tracing code such as TORBEAM [8] [9] for

example. Beam tracing has additional second order differential equations to solve but the

warm plasma dispersion relation is the same. Beam tracing can take into account diffraction

effects that may lead to a broader absorption profile. In terms of number of equations to

solve, beam tracing could have a lower amount than ray tracing depending on the number

of rays used to approximate a beam [9].

5. Further validate the neural network regression on other ECRH benchmark cases. The three

beams used in the EC-17 benchmark do not represent all possible cases. It is possible that

the regression will give poorer results for certain cases. In any case, more validation is always

preferred.

6. TORAY - once real-time capable - can provide the current drive and power deposition

profile to plasma transport codes such as RAPTOR [15] [14]. Currently, RAPTOR uses
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ad-hoc models for the ECRH and ECCD. A more physically-robust model can be provided

by TORAY.

7. Intel MKL can be implemented to possibly speed up the neural network matrices computa-

tion even further.
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Appendix A

Files

In this appendix, we describe the various files used in this work which are mainly grouped into

3 types: scripts, datasets, neural networks, and ids files. Ids files described the rays traced and

were used to generate the ray tracing results in this work. The datasets are in csv. The neural

networks use the Matlab variable extension (.mat). We provide a table which states the name of

the file, the location of the file, and a brief description of the file. For datasets, neural networks,

and ids files, we will not list individual files but merely state the location of the files and describe

their naming format. For the purpose of locating files, we assume that the user starts in the

’neuralnet’ branch of the TORAY svn.
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APPENDIX A. FILES

Name (Type) Location in neuralnet/ Description

(Neural Network) In nicholas files/

neural networks/. Neural

networks trained on full

dataset as described in Section

5.1 are located in

fullest data14/. Those trained

on reduced dataset that only

include datapoints with

N‖ ≥ 0.90 are located in

fullest data14c/. Folders ’re’

refer to the real part regression

while folders ’im’ refer to the

imaginary part regression.

The naming format for the

neural networks is as follow:

’hiddenlayers’x’nodes’

’activationfunction’ ’batchsize’

’regularization’. All the

weights and biases for a

particular network are

included in a single mat file.

(Dataset) In nicholas files/datasets/.

Full dataset as described in

Section 5.1 are located in

fullest data14/. Reduced

dataset that only include

datapoints with N‖ ≥ 0.90 are

located in fullest data14c/.

The dataset files used the csv

extension. A text file named

’dataset division’ describes

how the dataset is divided into

the train and test datasets.

(Ids) In ids files/. Files for ray

tracing with 1 ray per beam

are in 1ray/ while those for ray

tracing with 81 rays per beam

are in 81rays/.

Ids files described the rays

traced and were used to

generate the ray tracing

results in this work. For 1 ray

per beam: 705 (Cold), 704

(Warm), and 810 (NN). For 81

rays per beam: 1112 (Cold),

1115 (Warm), and 1116 (NN).
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APPENDIX A. FILES

Name (Type) Location in neuralnet/ Description

regressor nn re.py &

regressor nn im.py (Script)

In nicholas files/scripts/ The Python script used for the

neural network training. ’re’

refers to the real part

regression and ’im’ refers to

the imaginary part regression.

makennf90.py &

makennf90 im hnpar.py

(Script)

In nicholas files/scripts/ The Python script used to

create ’nn.f90’ file which

contains the hard coded neural

networks in Fortran. The

script

’makennf90 im hnpar.py’ is

used specially for the network

trained on the reduced set

only. Note, that the user still

have to manually load the

neural network matrices first

before running the script.

call twocmpw.f90 (Script) In src/ The Fortran script used to

generate the dataset. Needs

the namelist file

’parameters.f90’ for inputs.

parameters.f90 (Script) In obj/ A namelist file containing

inputs for ’call twocmpw.f90’.

ray equations.f90 (Script) In src/ Modified TORAY source file

that now contains the

TWOCMPWNN subroutine.

nn.f90 (Script) In src/ A Fortran file containing the

hard coded neural network

matrices.
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